
A Lightweight Approach to the Concurrent Use and Integration of
SysML and Formal Methods in Systems Design

Robert Thorburn
Vladimiro Sassone

University of Southampton
robert.thorburn@soton.ac.uk

Asieh Salehi Fathabadi
Leonardo Aniello
Michael Butler

University of Southampton

Dana Dghaym
Thai Son Hoang

University of Southampton

ABSTRACT
Increased systems complexity and ubiquitous computing drive the
need for improved systems design. Model-based systems engineer-
ing using general purpose languages such as SysML, is a well-
established response to this challenge. However, for systems where
correctness-by-construction is critical, formal methods are often
also deployed. This is a significant undertaking often involving
complete model translation. We address this problem by develop-
ing a novel requirements interchange system, presented as a SysML
model library, to guide the concurrent use of SysML and formal
models without requiring complete model translation.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation.

KEYWORDS
SysML, formal methods, model library, requirements engineering
ACM Reference Format:
Robert Thorburn, Vladimiro Sassone, Asieh Salehi Fathabadi, Leonardo
Aniello, Michael Butler, Dana Dghaym, and Thai Son Hoang. 2022. A Light-
weight Approach to the Concurrent Use and Integration of SysML and
Formal Methods in Systems Design. In ACM/IEEE 25th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS ’22
Companion), October 23–28, 2022, Montreal, QC, Canada. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3550356.3559577

1 INTRODUCTION
The use of different modelling languages within a single project is
an increasingly common occurrence, with each approach target-
ing a set application and level of abstraction [4]. Since no current
modelling language can be all things to all users, a hybridised ap-
proach is a good alternative ensuring that all needed capabilities
are provided to the larger project, albeit by more than one model.
One prominent option, especially in systems design, is the Systems
Modelling Language (SysML). While SysML models are intended
to act as a single version of the “truth”, that is a single point of
reference for the entire system model [2], SysML cannot attend
to matters such as guaranteeing component correctness, which is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3559577

the domain of formal modelling. SysML can, however, integrate
output from other models and systems. Accordingly, there is a clear
case to make for the use of both SysML and formal modelling for
the design and lifecycle management of a single system. Doing so
though requires an explicit rule set for governing the interaction
between the SysML and formal models [5].

We have experienced this need directly through work on a case
study involving a smart ballot box (SBB), which stores and verifies
paper ballots. The SBB contains a number of structural components,
off-the-shelf components, and a Morello board with CheriBSD as
operating system. Verifying the relationship between application-
level security requirements and secure software implementations
on this hardware is the main case study aim. The Morello board
developed by ARM, deploys prototype architecture adapting the
Capability Hardware Enhanced RISC Instructions (CHERI) archi-
tecture developed by the University of Cambridge. Cambridge also
developed the CheriBSD operating system as a fork of FreeBSD. For
our work, a SysML model can attend to the design and specification,
including requirements derived from additional sources such as
threat modelling, but it can not directly speak to correctness-by-
construction for which formal methods must be employed. Full
semantic translation of the model would, however, not only be
a large undertaking but could also not yield any benefit beyond
applying formal methods to only the needed critical subsystems.

Our contribution, therefore, is a novel and reusable system for
linking SysML and formal models. This system is a lighter weight
alternative to full semantic translation1, includes the process of
selecting formal modelling languages to use and is made available
as a stand-alone model library.

2 DEVELOPING THE INTERCHANGE SYSTEM
The “requirements interchange system" (RIS) connects a SysML
model to a formal model via bi-directional information flow, but
does not include any assumptions about either model, making it
reusable. As shown below, the RIS forms an operational loop with
continual interaction between the two models which allows for
iterative development across the system lifecycle and also governs
synchronisation. A specifically problematic challenge to synchro-
nisation is the prospect of parallel updating where either model
can initiate changes the other is oblivious to, thereby bringing the
models out of sync[3]. Although formalised translation can be de-
ployed andmay be a good option in certain circumstances, a simpler
approach is to impose a fixed sequence for model changes. If the
SysML model attends to the system as whole, while the formal
model is focused on a subset of the system model it is possible to

1Which is traditionally employed for such work.

https://orcid.org/0000-0001-5888-7036
https://doi.org/10.1145/3550356.3559577
https://doi.org/10.1145/3550356.3559577


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Thorburn, et al.

impose such a sequence. Here any changes needed in the subset are
determined via requirements in the SysML model, then passed to
the formal model for modelling and/or code generation before the
results are passed back to the SysML model. Since the actual mod-
elling for the subset is initiated in the SysML model but conducted
in the formal model, parallel updating is prevented.

The model interchange requirements (MIR) directing the opera-
tion of the RIS are captured in a single SysML package and are:

• MIR01 Formal Modelling Method Determination: The SysML
model shall include documentation describing and justifying
the formal modelling approach opted for.

• MIR02 Formal Modelling Requirements Setup: The SysML
model shall include dedicated packages for collecting, deriv-
ing and managing requirements passed to a formal model.

• MIR03 Return Rationale: The SysML model shall, by way of
either a «Rationale» note or preferably a linked document,
described the expected revised requirements and source code
returned from the formal model and how this is to be imple-
mented into the SysML model.

• MIR04 Model Synchronisation: Any relevant model changes
shall be reflected in the MIR02 requirements, initiating the
formal modelling process and updating the MIR03 process.

• MIR05 Return Check: The return from the formal model shall
be checked against the expected results of MIR03, with any
variance triggering MIR04.

• MIR06No Parallel Updating: Updating the formal model shall
proceed once requirements are passed to it via MIR04 and
cease once revised requirements or source code is returned.
(«deriveReqt» from MIR04)

• MIR07 Consistency Assessment: Consistency between the
formal and SysML models shall be assessed, any variance
addressed, and MIR04 triggered. («deriveReqt» from MIR04)

3 INTERCHANGE SEQUENCE
The RIS directs the iterative updating of both the SysML and formal
models with the sequence for this process described in an activ-
ity diagram as presented in Figure 1. This figure lists all possible
actions including those for starting the process and eventual code
generation, which would of course not execute in every run.

The full sequence in a single run is as follows:
(1) Determine the formal modelling method to use and docu-

ment this decision.
(2) Derive requirements to pass to the formal model.
(3) Develop rationale for feedback from the formal model, in-

cluding how to act on said feedback.
(4) Ensure model synchronisation, including passing new re-

quirements to the formal model and returning to step two,
based on return data received from the formal model.

(5) Construct or update the formal model.
(6) Assure that the formal model is fit for purpose.
(7) Conduct model checking, assessing not only newly passed

requirements but also the model as a whole.
(8) Determine if source code should be generated.
(9) Pass model checking results and source code (if generated)

back to the SysML model.
(10) Implement revised requirements and/or source code.

(11) Check formal model returns against the expected return and
move to step four if needed.

Figure 1: Activity diagram for the Requirement Interchange
System.

4 CONCLUSIONS AND FUTUREWORK
In this paper we presented a lightweight requirements-based alter-
native to existing model translation approaches. By implementing
the RIS, a SysML model and formal model can be linked without
the need for extensive additional effort. Discussing inter-model
interaction, [1] specifically credits the Object Management Group
(OMG) 2 with generating interest in such interactions. The need
addressed by the RIS is therefore both relevant and timely. The
RIS is being extensively used by the authors and is under active
development. The current version is available for download.3

ACKNOWLEDGMENTS
As part of the HD-Sec project, this work is funded by the Digital
Security by Design (DSbD) Programme delivered by UKRI.

REFERENCES
[1] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based Survey of Model

Transformation Approaches. IBM systems journal 45, 3 (2006), 621–645.
[2] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2014. A Practical Guide to

SysML: the Systems Modeling Language (3rd ed.). Morgan Kaufmann, Waltham.
[3] Lars Fritsche, Jens Kosiol, Adrian Möller, Andy Schürr, and Gabriele Taentzer.

2020. A Precedence-driven Approach for Concurrent Model Synchronization
Scenarios Using Triple Graph Grammars. In Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering. 39–55.

[4] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. 2010. Model Synchro-
nization at Work: Keeping SysML and AUTOSAR Models Consistent. In Graph
transformations and model-driven engineering. Springer, 555–579.

[5] Satoko Kinoshita, Hidekazu Nishimura, Hiroki Takamura, and Daichi Mizuguchi.
2014. Describing Software Specification by Combining SysML with the B Method.
In 2014 IEEE International Symposium on Software Reliability Engineering Work-
shops. IEEE, 146–151.

2The OMG maintains SysML and a number of other languages and systems.
3https://hd-sec.github.io/publications/

https://hd-sec.github.io/publications/

	Abstract
	1 Introduction
	2 Developing the interchange system
	3 Interchange sequence
	4 Conclusions and future work
	Acknowledgments
	References

