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Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major
regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both
EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies.
These defects in either are further exacerbated by the reciprocal interactions between the
two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin
adhesion by increasing E-cadherin endocytosis, modifying its interactions with
cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the
other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result,
loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled
activation of EGFR, which displays enhanced surface motility and changes in
endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of
the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role
of endocytosis in this feedback, as well as its relevance to tissue morphogenesis,
homeostasis and cancer progression.
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INTRODUCTION

Few components are as determining for cell behaviour and fate as Epidermal Growth Factor
Receptor (EGFR), which mediates such diverse processes as cell proliferation, survival, growth and
differentiation (Wee andWang, 2017). EGFR is a member of the ErbB family, which is respectively a
part of the receptor tyrosine kinase superfamily (Herbst, 2004; Hynes and MacDonald, 2009).
Downstream, it transduces multiple signalling pathways, most notably Ras/MAPK, PI3K/AKT/
mTOR and PLC/PKC signalling (Oda et al., 2005; Wee and Wang, 2017). Cancer cells often display
upregulation of the EGFR signalling or receptor overexpression (Rowinsky, 2004; Guo et al., 2015;
Wee and Wang, 2017; Sigismund et al., 2018). This highlights the importance of understanding the
regulation and function of the EGFR signalling for novel cancer therapies (Yarden, 2001; Rowinsky,
2004; Vecchione et al., 2011; Sigismund et al., 2018).

Another important component controlling interactions between cells and with their environment
is cell adhesion, mediated by Cell AdhesionMolecules (CAMs) (Gumbiner, 1996; Chothia and Jones,
1997). CAMs perform structural functions by linking extracellular space to the cystoskeleton inside
cells (Parsons et al., 2010). However, rather than just gluing cells, adhesion also acts as a sensory tool
to gather informational cues from the neighbouring cells and substrate (Geiger et al., 2009; Hamidi
and Ivaska, 2021). Among the CAMs, E-cadherin is a the major component of the Adherens
Junctions in epithelial cells, responsible for cell-cell adhesion (Takeichi, 1977; Chothia and Jones,
1997; Halbleib and Nelson, 2006).

Increasing evidence demonstrates interactions between the EGFR signalling and E-cadherin-
mediated cell-cell adhesion. An inverse correlation between levels of EGFR and E-cadherin was
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reported in various cancers including endometrial carcinoma,
cholangiocarcinoma, head and neck squamous cell carcinoma,
and breast carcinoma to name a few (Jones et al., 1996; Zuo et al.,
2011; Clapéron et al., 2014; Yang et al., 2014). Here we summarize
the existing data on these interactions and highlight the major
remaining gaps.

OVERVIEW OF EGFR REGULATION

EGFR activity is highly dynamic with endocytosis playing a key
role in controlling and fine-tuning EGFR signalling (Figure 1A).
As it is reviewed elsewhere (see for example (Barbieri et al., 2016;
Caldieri et al., 2018; Sigismund et al., 2018)), we will only briefly
introduce the main aspects relevant to this minireview. EGFR can
be endocytosed through both clathrin-mediated (CME) and
independent (CIE) pathways, and the pathway choice is linked
with the critical decision for EGFR: its recycling or degradation
(Barbieri et al., 2016). The majority of activated EGFR appears to
be internalized via CME, which is followed by recycling thus
prolonging the signalling (Huang et al., 2004; Sigismund et al.,
2008; Rappoport and Simon, 2009; Chi et al., 2011). However,
several CIE pathways also contribute to EGFR internalization,
including caveolae – smooth vesicles formed by cholesterol- and
sphingolipids-rich lipid rafts (Galbiati et al., 2001). This route was
found to internalize EGFR at high ligand concentrations in HeLa

but not HEp2 cells (Sigismund et al., 2005; Kazazic et al., 2006).
Concurrently, lipid rafts and caveolae may prevent EGFR
clustering and ligand-independent EGFR activation, which is
observed upon cholesterol sequestration and caveolae
inhibition with filipin III (Schnitzer et al., 1994; Lambert et al.,
2006). Overall, CIE pathways appear to be activated at the high
receptor or ligand concentrations and are followed by
degradation (Sigismund et al., 2018, 2008). Such response
makes physiological sense, promoting EGFR degradation as a
countermeasure against hyperactivation (Barbieri et al., 2016).
Therefore, it is not surprising that defects in EGFR degradation
are seen, for example, in cholangiocarcinoma RBE and breast
cancer cells (Gui et al., 2012; Pareja et al., 2012).

Intracellular trafficking of EGFR and its downstream targets
are modulated by posttranslational modifications (Figure 1A).
Ligand-activated EGFR undergoes dimerization and
transautophosphorylation at several residues in the regulatory
C-tail, as well as phosphorylation by kinases that act downstream
(Miloso et al., 1995; Thelemann et al., 2005; Song et al., 2014;Wee
and Wang, 2017). This attunes EGFR interactions, endocytosis
and fate but also alters the cellular response to EGFR activation
(Tong et al., 2009; Jones and Rappoport, 2014; Wee and Wang,
2017).

A core cue in determining the EGFR fate is ubiquitination,
which is mostly placed by Cbl proteins (Levkowitz et al., 1999;
Marmor and Yarden, 2004; Thien and Langdon, 2005; Huang

FIGURE 1 |Overview of mechanisms controlling EGFR and E-cadherin endocytosis. (A,B) – Summary of EGFR (A) and E-cadherin (B) regulation. Ligand-induced
activation and dimerization of EGFR (A) trigger endocytosis of the receptor. The clathrin-mediated endocytosis is followed by recycling of the receptor and comprises
most of the endocytic events, whereas clathrin-independent endocytosis, including caveolae, leads to EGFR degradation and is promoted upon a certain threshold of
EGFR activation. Ubiquitination by Cbls ubiquitin ligases serves as a key cue for EGFR degradation and is modulated by EGFR phosphorylation. Levels of
E-cadherin at the plasma membrane (B) are regulated by endocytosis, which is modulated by E-cadherin interactions with its binding partners. β-catenin (β-cat) helps
retain E-cadherin at the membrane, whereas p120-catenin (p120ctn) prevents E-cadherin endocytosis for degradation but promotes its recycling. Both clathrin-
mediated and independent pathways can be followed by either E-cadherin recycling or degradation, but the latter depends on E-cadherin ubiquitination by the ubiquitin
ligase Hakai and potentially others. E-cadherin membrane presentation also regulates own gene (E-CAD) expression. Dynamics of both E-cadherin and EGFR is also
regulated by glycosylation of their extracellular domains.
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et al., 2007). The ubiquitination depends on the present
phosphotyrosines, highlighting feedbacks between receptor
activation, endocytosis and posttranslational modifications
(Sigismund et al., 2013). Deubiquitination of internalized
EGFR promotes its recycling, bypassing the degradation
pathway (Liu et al., 2013). A threshold EGFR activation is
necessary for ubiquitination, switching from CME to CIE and
subsequent degradation (Pinilla-Macua et al., 2017).

Finally, the EGFR extracellular domain is rich in sites whose
N-glycosylation affects EGFR signalling in multiple ways. Among
other roles, N-glycosylation modifies EGFR folding thus
regulating its ligand-binding; modulates endocytosis and
intracellular trafficking of EGFR thus adjusting protein surface
levels and signalling duration; prevents ligand-independent
activation; and creates binding sites for extracellular lectins –
galectins –, which contribute to the assembly of supramolecular
complexes and limit diffusion of receptors in the plasma
membrane (recently reviewed in Porębska et al., 2021).

OVERVIEW OF E-CADHERIN ADHESION
REGULATION

The membrane levels of E-cadherin determine adhesion strength,
but also cell rearrangements and proliferation within the tissue
(Chu et al., 2004; Ciesiolka et al., 2004; Mohan et al., 2018),
whereas its loss is a hallmark of invasive carcinomas (Birchmeier
and Behrens, 1994; Yu et al., 2019). The most characterized route
to control E-cadherin surface levels is endocytosis (Figure 1B).
Similar to EGFR, E-cadherin can be internalized by both CME
and CIE (reviewed in (Nanes and Kowalczyk, 2012), which can be
followed by its recycling or degradation (Le et al., 1999; Bulgakova
et al., 2013; Cadwell et al., 2016; Brüser and Bogdan, 2017). The
fate of internalized E-cadherin is not ultimately linked to the
internalization pathway; CME can be followed by either
degradation or recycling (Le et al., 1999; Xiao et al., 2003).
Instead, the p120-catenin protein, which directly binds the
E-cadherin intracellular domain, might be determining the
outcome; while p120-catenin binding prevents E-cadherin
CME followed by degradation, it also recruits Numb to
promote CME followed by recycling (Ishiyama et al., 2010;
Sato et al., 2011).

Posttranslational modifications modulate E-cadherin stability,
affinity to binding partners and trafficking (Figueiredo et al.,
2013; Brüser and Bogdan, 2017). Phosphorylation at Ser840,
Ser851 and Ser853 increases E-cadherin affinity to β-catenin
and stabilizes adhesion by preventing E-cadherin endocytosis
and degradation (Lickert et al., 2000; Jaggi et al., 2005; McEwen
et al., 2014). In contrast, phosphorylation of Tyr658 and Tyr732
of VE-cadherin reduces its binding to β-catenin and p120-
catenin, negatively affecting its function (Jeanes et al., 2008;
Bertocchi et al., 2012; Chen et al., 2016). Phosphorylation of
E-cadherin at Tyr753-755 creates a docking site for the E3
ubiquitin ligase Hakai, and possibly others such as March8
(Fujita et al., 2002; Pece and Gutkind, 2002; Kaido et al., 2009;
Kim et al., 2014, p. 8). Hakai promotes E-cadherin degradation
and competes with p120-catenin for E-cadherin binding

(Hartsock and Nelson, 2012). Moreover, Hakai alongside Src
also stabilizes δ-catenin, which promotes E-cadherin processing
(Palacios et al., 2005; Kim et al., 2012; Shrestha et al., 2017).
Various proteinases including matrix metalloproteinase-2
(MMP-2) and matrix metalloproteinase-9 (MMP-9) – whose
high levels correlate metastasis and poor prognosis of multiple
cancers – can induce proteolytic cleavage of E-cadherin
extracellular domain (Roomi et al., 2009; Li et al., 2017). Upon
the cleavage, the extracellular proteolytic fragment (soluble
E-cadherin, sE-cad) is released into extracellular space, where
it has multiple effects including interfering with E-cadherin
adhesion, signalling activities and antitumor immune response
(Hu et al., 2016). Additionally, glycosylation of the E-cadherin
extracellular domain modulates E-cadherin adhesive function
and endocytic turnover (Zhao et al., 2008; Advedissian et al.,
2017).

Finally, the regulation of E-cadherin transcription involves a
complex network of transcriptional repressors, activators, and
epigenetic modifiers (Ramirez Moreno et al., 2021). Among
others, the closely related transcriptional repressors SLUG and
SNAIL (also known as SNAI2 and SNAI1) directly repress
E-cadherin transcription by binding conserved E-boxes in its
promoter (Batlle et al., 2000; Cano et al., 2000; Bolós et al., 2003).
Consistently, changes in the machinery that modulates its
expression often lead to loss of E-cadherin in cancers
(Bringuier et al., 1999; Bruner and Derksen, 2018; Ramirez
Moreno et al., 2021).

REGULATION OF E-CADHERIN BY EGFR
SIGNALLING

Changes to EGFR signalling promote epithelial-to-mesenchymal
transition (EMT), at least in part by downregulating E-cadherin.
EGFR is overexpressed in 70% of malignant ovarian tumours and
85% of salivary adenoid cystic carcinomas, leading to increased
mRNA levels of SLUG (Bartlett et al., 1996; Cheng et al., 2012,
2013; Wang et al., 2018). In ovarian cancer cells, EGFR activation
promotes SLUG transcription by inducing the expression of the
transcription factor Egr-1, which directly binds to the SLUG
promoter (Cheng et al., 2013). The relevance of elevated SLUG
expression remains controversial: while inhibiting SLUG
expression in ovarian SKOV3 and OVACR5 and oviductal
OE-E6/E7 cells restored E-cadherin expression and limited cell
invasiveness, silencing SLUG did not inhibit EMT in salivary
adenoid cystic carcinoma cells (Cheng et al., 2012, 2013; Wang
et al., 2018). In ovarian cancer cells SKOV3 and OVCAR3, EGFR
activation also increased SNAIL mRNA levels, which required
EGF-induced H2O2 production and p38 MAPK activation
(Cheng et al., 2010). In contrast, in salivary adenoid cystic
carcinoma cells, EGF-induced EGFR activation lincreases levels
of SNAIL protein without altering its mRNA levels (Cheng et al.,
2012, 2013; Wang et al., 2018). In both cases, however, silencing
SNAIL reduced EMT and invasiveness (Cheng et al., 2010; Wang
et al., 2018). Curiously, in oviductal epithelial cells, EGFR
activation alters neither mRNA nor protein levels of SNAIL
(Cheng et al., 2012).
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EGFR activation also downregulates E-cadherin through
several posttranscriptional mechanisms (Figure 2A). Active
EGFR induces phosphorylation of both β- and p120-catenin
(Hoschuetzky et al., 1994; Hazan and Norton, 1998; Mariner
et al., 2004). Phosphorylation of β-catenin at Tyr654 and Tyr142
reduces its affinity for E-cadherin and α-catenin binding,
respectively (Roura et al., 1999; Piedra et al., 2003), which
could be responsible for the dissociation of E-cadherin from
actin cytoskeleton following EGF treatment in breast cancer cells
MDA-MB-468 (Hazan and Norton, 1998). EGFR-mediated
weakening of association between E-cadherin and actin
cytoskeleton may contribute to normal development by
enabling cell rearrangements through remodelling of cell
contacts, but also promote EMT in malignancy through
fragmentation of adherens junctions and cortical actin bundle
(Zhitnyak et al., 2020; Fu et al., 2021).

Similarly, EGFR promotes tyrosine phosphorylation of p120-
catenin at Tyr228 (Mariner et al., 2004), although the exact
intermediate of this phosphorylation is unclear (Alemà and
Salvatore, 2007). This residue is present in both common
isoforms of p120catenin – mesenchymal isoform 1 and
epithelial isoform 3 (Reynolds and Roczniak-Ferguson, 2004).
While Tyr228 phosphorylation does not affect p120-catenin
binding to E-cadherin and its endocytosis directly, it increases

p120-catenin affinity for RhoA binding (Mariner et al., 2004;
Castaño et al., 2007; Kourtidis et al., 2013). The effect of this
phosphorylation appears to be context-dependent. In
E-cadherin-deficient breast cancer cells MDA-MB-231, the
binding of p120-catenin N-terminus inhibits RhoA activity
(Yanagisawa et al., 2008). Conversely, deletion of the p120-
catenin N-terminus inhibits EGF-induced motility, whereas
ectopic expression of full-length p120-catenin promotes cell
motility in keratinocytes through activation of RhoA and
cytoskeletal rearrangements (Cozzolino et al., 2003). This
discrepancy in effects of p120-catenin N-terminus on RhoA
activity and cell behaviour is consistent with the differences in
levels and roles of Tyr228 phosphorylation of p120-catenin in
cancer cells. In colon adenocarcinoma cells, phosphorylation of
Tyr228 correlates with better prognosis and inhibits cell invasion
(Ding et al., 2019), whereas in the breast cancer cells MDA-MB-
231 it is essential for the invasiveness-promoting activity of p120-
catenin isoform 1 (Yanagisawa et al., 2008; Kourtidis et al., 2015).
In either case, the changes in RhoA activity are likely to alter
(promote or inhibit) E-cadherin endocytosis depending on the
context (Lee and Harris, 2013; Kourtidis et al., 2015; Greig and
Bulgakova, 2020).

EGFR activation promotes E-cadherin endocytosis through
various routes. In MCF-7 cells, stimulation with EGF promotes

FIGURE 2 | Interactions between EGFR and E-cadherin. (A) – Summary of the known effects of EGFR activation on E-cadherin. EGFR signalling downregulates E-
cadherin (E-CAD) gene expression via the transcriptional repressors SNAIL and SLUG. By promoting phosphorylation, it also destabilizes membrane E-cadherin by
reducing its affinity with β-catenin and the subsequent connection to the actin cytoskeleton as well as alters interactions between p120-catenin with RhoA. Additionally,
EGFR signalling increases E-cadherin endocytosis by blocking Caveolin-1 activity, a negative regulator of the EGFR pathway itself, and promotes processing of
E-cadherin into soluble E-cadherin (sE-cad) through activation of the Matrix Metalloproteinases (MMPs) 2 and 9. Grey dashed lines indicate protein binding. (B) –
Summary of the known effects of E-cadherin on EGFR. E-cadherin stabilizes EGFR at the membrane, blocks its activation by EGF and reduces its internalization.
Through STAT3 and RanBP6, E-cadherin represses EGFR gene expression. Additionally, sE-Cad is an agonistic ligand of EGFR, and therefore E-cadherin cleavage,
which is promoted by EGFR activity, positively regulates EGFR signalling. (C) –Model of the feedback mechanism between EGFR activity and E-cadherin; the negative
feedback loop between the two leads to stable EGFR activation and loss of E-cadherin in cancer cells. Gray arrows indicate unknown mechanisms by which both
transmembrane proteins coexist and fine-tune each other in normal tissue during development and homeostasis.
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either macropinocytosis of E-cadherin or its endocytosis
mediated by the small GTPase Arf6, which is likely to be
clathrin-dependent (Bryant et al., 2007; Kon et al., 2008).
Here, the internalization route might depend on the levels of
E-cadherin expression. EGFR activation by EGF also leads to
E-cadherin internalization in A431 epidermoid carcinoma cells
and A549 lung cancer cells via caveolae (Lu et al., 2003). EGFR
activation leads to caveolin-1 phosphorylation at Tyr14 and its
fast redistribution from the plasma membrane (Pol et al., 2000;
Orlichenko et al., 2006). Caveolin-1 negatively regulates the
caveolae-mediated endocytosis due to its ability to stabilize
caveolae association with the plasma membrane (Le et al.,
2002; Simón et al., 2020). Consistently, disruption of caveolae
using filipin III blocks E-cadherin endocytosis following EGFR
activation (Lu et al., 2003). In addition, chronic EGFR activity
inhibits mRNA expression of caveolin-1 (Lu et al., 2003), which is
likely to ensure sustained caveolae endocytosis of surface
E-cadherin. Curiously, knockdown on caveolin-1 is sufficient
to downregulate E-cadherin but also leads to SNAIL
overexpression (Lu et al., 2003). While EGF-activated EGFR is
not internalized by caveolae (Kazazic et al., 2006), disruption of
lipid rafts leads to ligand-independent EGFR activation (Lambert
et al., 2006). Therefore, we speculate that the changes in gene
expression of SNAIL and E-cadherin following caveolin-1
knockdown might be due to an indirect effect of ligand-
independent EGFR activation.

Finally, EGFR activation may further inhibit E-cadherin-
mediated adhesion through proteolytic cleavage of E-cadherin.
The secretion of matrix metalloproteinase-2 (MMP-2) is
enhanced by EGF supplementation in salivary gland
pleomorphic adenoma cells (Navarini et al., 2017), whereas in
some ovarian cancer cell lines (OVEA6 and OVCA 429 but not
DOV13 and OVCA 432) EGFR activation increases the
expression of matrix metalloproteinase-9 (MMP-9) (Ellerbroek
et al., 1998). Conversely, EGF produced by lymphoma cells
inhibits MMP-9 expression in neighbouring stromal cells
through induction of Egr-1 expression (Bouchard et al., 2010).
Such context-dependency indicates that these effects might be
indirect and rely on additional factors present in each case.

To summarize, at least five molecular routes links EGFR
activity and E-cadherin (Figure 2A). Altogether, this ensures
robust inhibition of E-cadherin-mediated adhesion, promoting
EMT and cell migration in cancer.

REGULATION OF EGFR SIGNALLING BY
E-CADHERIN

The extracellular domain of E-cadherin directly binds EGFR in
both mammalian and fly cells (Dumstrei et al., 2002; Qian et al.,
2004). This binding promotes EGFR localization at the sites of
E-cadherin-mediated adhesion, but also interferes with EGF
binding to EGFR and reduces the mobility of EGFR in the
plasma membrane (Figure 2B) (Qian et al., 2004; Rübsam
et al., 2017). Consequently, the loss of E-cadherin leads to
increased ligand binding to EGFR, but at the same time
promotes EGFR mobility which may stimulate EGFR

dimerization and further boost its activation (Bremm et al.,
2008). As the result, the loss of E-cadherin often observed in
cancer cells leads to activation of EGFR signalling, thus,
promoting cancer cell dissemination (Takahashi and Suzuki,
1996; Bae et al., 2013). Conversely, in some contexts,
E-cadherin may have an opposite effect as the induction of
E-cadherin adhesion assembly in HaCat keratinocyte cells and
MCF-10A mammary epithelial cells leads to EGF-independent
EGFR activation and requires the extracellular domain of
E-cadherin (Pece and Gutkind, 2000; Fedor-Chaiken et al.,
2003). Besides EGF, EGFR can be activated by other ligands
(Harris et al., 2003; Singh et al., 2016), including sE-cad
(Brouxhon et al., 2014; Hu et al., 2016). Moreover, in MCF7
and MDA-MB-231 breast cancer cell lines sE-cad shows a
stronger effect than EGF, and acts additively with it
(Brouxhon et al., 2014).

One of the possible, though unexplored, explanations for the
observed opposite effects of E-cadherin on EGFR, is its potential
effect on EGFR endocytosis (Figure 2B). As described above,
endocytosis of EGFR is a powerful mechanism of tuning its
activity. Indeed, increased activation of EGFR in cells
expressing the E-cadherin mutant, which lacks the exon 8 in
its extracellular domain (corresponding to the E-cadherin
ectodomain 2) but still binds EGFR, is accompanied by the
decreased internalization of EGFR from the plasma membrane
upon EGF stimulation (Bremm et al., 2008), indicating that the
ectodomain 2 promotes EGFR endocytosis. In contrast, the
ectodomain 3 is connected to EGFR by galectin-7, which
negatively regulates EGFR endocytosis (Proux-Gillardeaux
et al., 2021). Thus, E-cadherin extracellular domain may
promote or inhibit EGFR endocytosis depending on the context.

In addition to regulation of EGFR activity at the cell surface,
E-cadherin downregulation leads to EGFR upregulation on
mRNA level in cells from squamous cell carcinoma of the
head and neck (Wang et al., 2011). This upregulation might
be an indirect effect of positive feedback whereby EGFR
activation at the plasma membrane results in increased
expression of the EGFR gene (Clark et al., 1985; Oldrini et al.,
2017). This feedback was suggested to act to restore levels of
EGFR following its activation, internalization and consequent
degradation, therefore ensuring the robustness of EGFR
signalling (Oldrini et al., 2017). The feedback from EGFR to
its own gene expression involves the signal transducer and
activator of transcription 3 (STAT3) protein. STAT3 binds
EGFR promoter and inhibits its transcription in RanBP6-
dependent manner in HEK-293T human kidney cells. When
demand arises this inhibition can be lifted, for example when
additional production of EGFR is required following its ligand-
induced degradation (Oldrini et al., 2017). At the same time,
inhibition of STAT3 phosphorylation is sufficient to increase
levels of EGFR mRNA (Oldrini et al., 2017), whereas E-cadherin
promotes STAT3 activation in mouse embryonic stem cells (del
Valle et al., 2013), suggesting that it can contribute to this
feedback.

Therefore, E-cadherin in most cases inhibits EGFR through a
combination of modulating its behaviour at the cell surface and
promoting transcriptional silencing (Figure 2B). However,
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E-cadherin acts in more than one way and in some contexts, may
activate EGFR instead.

CONCLUSION

Both EGFR and E-cadherin are vital for normal development,
highly dynamic and often dysregulated in cancer cells. In the
latter, there is feedback between the two proteins; EGFR
downregulates E-cadherin through multiple mechanisms
and vice versa (Figures 2A,B). Such feedback should lead to
fast amplification of adhesion loss and EGFR activation,
promoting invasiveness and proliferation of a tumour
(Figure 2C). However, if the interaction between the two
proteins were limited to this feedback, it would be
impossible for simultaneous E-cadherin-mediated adhesion
and EGFR signalling in a cell. Meanwhile, multiple
examples of such cells exist. Human skin stem cells require
EGFR activity for proliferation and express E-cadherin, even if
at lower levels than other keratinocytes (Molès andWatt, 1997;
Brechbuhl et al., 2014). Similarly, during Drosophila wing
development EGFR activity is required for specification of
veins and leads to a basal shift in E-cadherin localization

without adhesion loss (O’Keefe et al., 2007). We speculate
that expression levels and endocytic trafficking of both
proteins play an important role in their effects on each
other, as well as the mechanical environment of the cells.
Thus, upon mechanical stress, EGFR promotes E-cadherin-
mediated cell stiffening through activation of the Abl kinase,
leading to the recruitment of vinculin to the adhesion sites
(Sehgal et al., 2018). Discovering molecular mechanisms of
how EGFR activity and E-cadherin-mediated adhesion co-
exist in normal tissues is essential for understanding the
causes of the amplifying feedback between them in cancer
cells and developing approaches to break this feedback.
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