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Abstract

This paper considers a joint pollution-routing and speed optimization problem (PRP-SO) where

fuel costs and CO2e emissions depend on the vehicle speed, arc payloads, and road grades. We

present two methods, one approximate and one exact, for solving the PRP-SO. The approximate

strategy solves large-scale instances of the problem with a tabu search-based metaheuristic coupled

with an efficient fixed-sequence speed optimization algorithm. The second strategy consists of a tai-

lored branch-and-price (BP) algorithm in which speed optimization is managed within the pricing

problem. We test both methods on modified Solomon benchmarks and newly constructed real-life

instance sets. Our BP algorithm solves most instances with up to 50 customers and many instances

with 75 and 100 customers. The heuristic is able to find near-optimal solutions to all instances and

requires less than one minute of computational time per instance. Results on real-world instances

suggest several managerial insights. First, fuel savings of up to 53% are realized when explicitly

taking into account arc payloads and road grades. Second, fuel savings and emissions reduction

are also achieved by scheduling uphill customers later along the routes. Lastly, we show that ignor-

ing elevation information when planning routes leads to highly inaccurate fuel consumption estimates.

Keywords: Network topography; Speed optimization; Branch-and-price; Pollution routing
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1 Introduction

Road freight transportation is vital to the functioning of the economy and the supply chain. However,

significant negative impacts on people and the environment due to excessive energy usage and considerable

greenhouse emissions need to be considered. According to the International Energy Agency (IEA, 2020),

global transportation is still responsible for 24% of direct CO2-equivalent (CO2e) emissions from fuel

combustion. This is especially true in a city logistics context (Savelsbergh and Van Woensel, 2016).

Over the past years, these observations gave rise to the introduction of pollution- and sustainability-

related aspects into traditional Vehicle Routing Problems (VRPs), popularly coined in the literature

as the Pollution-Routing Problem (Bektaş and Laporte, 2011). In the literature, similar problems and

definitions can be found as the Emissions Minimizing VRPs (EMVRPs) (Raeesi and Zografos, 2019) or

Green VRPs (Erdoğan and Miller-Hooks, 2012; Moghdani et al., 2020). These models make use of the

fact that the amount of transport-related greenhouse gases (GHGs) emissions is directly proportional to

the fuel consumption (Kirby et al., 2000). Multiple factors are considered, including the slope (Suzuki,

2011), vehicle speed (Demir et al., 2012), the payload (Bektaş and Laporte, 2011), traffic congestion

(Franceschetti et al., 2013), driver’s operating habit (Bandeira et al., 2013), and the fleet size and mix

(Koç et al., 2014).

Specifically, the PRP aims to build routes that minimize an objective function integrating the vehicle’s

routing cost (e.g., fuel consumption, the pollution aspect) and the driving costs (e.g., vehicle usage,

drivers’ wage, and other direct costs aspect). This paper builds upon this literature and considers

modelling the driving costs as fixed costs of vehicles, which is commonly used in heterogeneous vehicle

routing problems (see, e.g., Koç et al., 2016), but often disregarded and handled as duration-dependent

costs in PRP. Moreover, considering this rich version of the PRP leads to interesting new methodological

challenges for speed optimization.

The majority of models describe the road angle, and thus the network topography, as one of the

parameters used to formulate the instantaneous engine-out emission rate (Barth and Boriboonsomsin,

2009), but do not consider this further in the model, in the solution methodology or in the results and

insights. More specifically, efficient solution methods and extensive computational experiments analyzing

the effect of road gradient on fuel consumption and CO2e emissions are missing in the literature. One

notable exception in the same application domain is the paper by Brunner et al. (2019). These authors

however assume that speed is constant, which is an unrealistic assumption within a city logistics context

(Franceschetti et al., 2013). Concerning vehicle speed, several studies are proposing various optimization

procedures. However, there is still a need for efficient and fast speed optimization algorithms to use in

exact algorithms.

The contributions of this paper are threefold.

• We introduce the road gradient to the computation of fuel consumption utilizing terrain elevation

information. Despite the inclusion of road gradient into the original formulation of fuel consump-

tion, most papers assume a constant road angle for all vehicle trips.

• A number of novel solution approaches are presented, including a branch-and-price algorithm lead-

ing to optimal solutions and metaheuristic for larger instances. We develop a novel, fast and efficient

algorithm for the vehicle speed optimization.
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• We generate important insights based on a broad set of instances to investigate the importance of

road gradient on emissions. Additionally, we propose a number of real-life instances.

The remainder of this paper is organized as follows. Section 2 provides a brief review of related

scientific literature. In Section 3, we give a detailed description of our PRP model. Section 4 shows

the proposed Tabu Search metaheuristic together with a detailed description of the fixed-sequence speed

optimization algorithm. Later in Section 5, we present the major components of our branch-and-price

algorithm. Section 6 offers extensive computational experiments conducted, and finally, we conclude this

research in Section 7.

2 Literature Review

The significant increasing amount of CO2e emissions derived from road freight transportation has cer-

tainly ignited worldwide concerns. Over the last ten years, this resulted in a large body of literature on

emissions-aware transportation problems (see, e.g., the survey by Moghdani et al., 2020). The Pollution-

Routing Problem (PRP) is an efficient and comprehensive formulation to address the minimization of

carbon emissions. The resulting greenhouse emissions of vehicle fuel consumption are the consequence of

some influential factors beyond the travel distance (Ericsson, 2001; Brundell-Freij and Ericsson, 2005).

According to Demir et al. (2014b), vehicle fuel consumption is affected by multiple factors such as speed,

road gradient, road congestion, driver’s operating habit, size and composition (mix) of the vehicle fleet,

and payload.

As summarized in Table 1, we observe that some important factors are less studied in previous vehicle

routing research, specifically the interaction of load, road gradient, and vehicle speed is missing.

Table 1: Pollution-related Factors Covered by Previous Research on PRPs
Authors Pollution-related factors

(model formulation)
Factors included in the
computational analysis

Type of
dataset

Solution
approach

load speed slope others

Bektaş and Laporte (2011)
√ √ √

load, speed UK CPLEX
Demir et al. (2012)

√ √ √
speed UK ALNS

Franceschetti et al. (2013)
√ √ √ √ departure time, speed,

traffic congestion
UK CPLEX

Demir et al. (2014a)
√ √ √

driving time, speed UK ALNS
Koç et al. (2014)

√ √ √ √
speed, fleet size and mix UK HEA

Kramer et al. (2015)
√ √

departure time, speed Modified UK ILS
Fukasawa et al. (2016)

√ √
speed UK DCP

Dabia et al. (2017)
√ √ √

start-time, speed UK B&P
Rauniyar et al. (2019)

√ √
load UK NSGA-II

Brunner et al. (2019)
√ √

arc slope, fixed load New dataset
Tailored
heuristic

Raeesi and Zografos (2019)
√ √ √ √ load, fleet size and mix,

road congestion
New dataset CPLEX

Xiao et al. (2020)
√ √ √ travel-arrival-departure-

waiting time, speed, load
UK CPLEX

Proposed work
√ √ √ √

road gradient, speed, load
Novel
dataset

B&P, TS

Abbreviations – CPLEX: IBM Commercial Solver; ALNS: Adaptive Large Neighborhood Search; HEA:
Hybrid Evolutionary Algorithm; ILS: Iterated Local Search; DCP: Disjunctive Convex Programming; B&P:

Branch and Price; NSGA-II: Non-dominated Sorting Genetic Algorithm; TS: Tabu Search
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Road gradient. The road grade (slope) has a significant influence on both the conventional-vehicle

fuel economy (Suzuki, 2011) and the electric-vehicle energy consumption (Goeke and Schneider, 2015).

The transit of a typical light-duty vehicle over a sloping road surface, with a +6 percent grade, could

increase the fuel consumption by 15-20 percent (Boriboonsomsin and Barth, 2009). The influence of hilly

roads is undoubtedly more significant on the fuel consumption of heavy-duty trucks. According to Davis

et al. (2009), just a minor increase or decrease in road grade (1-4%) can reduce or increase fuel economy

by more than 50%. In the case of electric vehicles, the energy consumption is less affected by the road

gradient as opposed to conventional vehicles. However, experimental results show the impact of hilly

terrain on the electric vehicle miles traveled, confirming that the electric vehicle range in mountainous

landscapes is lower (Travesset-Baro et al., 2015).

The road gradient has been mainly studied in PRPs and the so-called Electric Vehicle Routing

Problems (E-VRPs). Since the first mathematical formulation of PRPs (Bektaş and Laporte, 2011),

the road angle was one of the parameters used to define the instantaneous engine-out emission rate.

Table 1 clearly shows that most PRP-previous contributions included the road angle in the mathematical

formulation of fuel use rate. This table also stands out two major gaps in the area that the proposed

work is trying to address: (i) despite the inclusion of road gradient into the original formulation of fuel

consumption, most of the papers assume that the road angle remains constant throughout all vehicle

trips, and (ii) the majority of previously generated problem instances have not yet considered the road

gradient.

It is worth mentioning that the present work is the first study in the area to create and optimally

solve a set of realistic problem instances, which include elevation information for computing the road

slopes along the paths.

As mentioned earlier, we found the paper by Brunner et al. (2019) as the only contribution that

studied the influence of road grade on fuel consumption. Although these authors considered the slope in

their VRP formulation, they assumed a constant road grade for all arcs that form the directed graph. The

above does not reflect accurately the hilly topography profile of a road, which typically connects two nodes

(arc) with a sequence of multiple uphill/downhill segments. Another assumption in this contribution is

related to the vehicle speed. The authors addressed a VRP without time windows, assuming that the

vehicles travel through each arc with a given constant speed (input parameter). Last but not least

important with respect to the paper assumptions, in Brunner et al. (2019), the payload carried by the

vehicle is chosen from a prescribed set of values which means that the authors did not consider the

payload as a continuous decision variable.

There are very few papers, outside the application context of PRPs, that take into account the effect

of road gradients on fuel consumption. For instance, Tavares et al. (2009) utilizing an exponential regres-

sion model (COPERT-III method, introduced by Ntziachristos et al. (2000)) to estimate the minimum

fuel consumption during waste collection process. They studied two realistic routing problems showing

that the optimal route does not necessarily correspond to the shortest traveled distance. Their com-

putational results demonstrated that significant fuel consumption savings are possible for longer routes

with moderate road inclination. Moreover, the contribution of Suzuki (2011) proposed a linear regression

model to compute the fuel consumption rate for a heavy-duty truck, based on the fuel-efficiency study

of Davis et al. (2009). The author included the road-gradient factor as one of the objective function

components (distance and fuel consumption), designed to formulate a traveling salesman problem with
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time windows.

Concerning the E-VRPs, Yang et al. (2014) performed a numerical simulation. In their paper, the

authors used the electric vehicle’s battery (physical model) theory to study the effects of the road’s slope

on electricity consumption for both uphill and downhill paths. They concluded that with the increase of

the uphill’s tilt angle, each electric vehicle’s electricity consumption increases significantly. Goeke and

Schneider (2015) also assumed not-flat terrain with grades in their energy consumption model proposed

for electric vehicles. They intensely focused on the effect of load distribution on the performance of

commercial electric vehicles. Later, Liu et al. (2017) also investigate the impact of road gradient on

the electricity consumption of electric cars. Using 12 gradient ranges and GPS tracking data with a

digital elevation map, the authors showed that, in uphill trips, the energy consumption increases almost

linearly with the absolute gradient. However, the numerical results also exhibited the positive effect of

regenerative braking power acquired during the downhill trips. Finally, Macrina et al. (2019) modeled

a comprehensive energy consumption function considering the road gradients. Nevertheless, in their

computational study, the authors set the road angle equal to zero for conventional and electric vehicles.

Vehicle speed. Bektaş and Laporte (2011) first addressed the speed of the vehicle in the area of

PRPs. In the original formulation of this problem, they explicitly assumed that speed over each arc is

chosen from a predefined list of possible values. Koç et al. (2014) also utilized the same discrete speed

function but analyzed, for the first time, the effect of fleet size and mix in PRPs. The discretization of

vehicle speed was also adopted by Eshtehadi et al. (2017). Here, the authors considered the demand and

travel time uncertainty, both aspects addressed by several robust optimization techniques. Moreover,

Demir et al. (2012) proposed a specialized speed optimization algorithm (SOA), which computes optimal

speeds on a given path so as to minimize fuel consumption, emissions and driver costs. The authors

modified the original SOA, which was initially designed for solving the tramp speed optimization problem

(Norstad et al., 2011). The speed and traffic congestion were also studied by Franceschetti et al. (2013),

originating the time-dependent PRP. This research considers two phases within the planning horizon, the

free-transit phase, and the congested phase. One interesting fact of their computational results is that

they reduced the emissions cost by waiting at specific locations (stopped vehicles) and avoiding traffic

congestion. Kramer et al. (2015) also modified the original SOA providing a new speed and departure

time optimization algorithm.

Finally, a huge variety of solution methods has been proposed to solve PRPs. One can find the

frequent application of metaheuristics such as ALNS (Demir et al., 2012, 2014a), evolutionary and genetic

algorithms (Koç et al., 2014; Rauniyar et al., 2019), and hybrid approaches (Tirkolaee et al., 2020). Table

1 shows the methods used for solving different variants of PRPs. As can be seen, the utilization of exact

algorithms in PRPs is very limited. Existing exact methods often approximated or discretized the vehicle

speeds in order to reduce the complexity. Fukasawa et al. (2016) resolved the issues of speed discretization

by introducing a formulation framework to directly incorporate the nonlinear relationship between cost

and speed into the PRP. They employed different tools from disjunctive convex programming to find

a set of vehicle speeds over the routes, minimizing the total cost (operational and environmental) and

respecting the constraints on time and vehicle capacities. More recently, vehicle speed has been computed

using continuous optimization on PRP. Here Xiao et al. (2020) introduced the continuous PRP (ε-CPRP)

where the travel time, load flow, departing/arrival/waiting times, and driving speed were treated as

continuous decision variables. The authors developed an ε-accurate inner polyhedral approximation
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method for linearizing the original fuel consumption equation (Bektaş and Laporte, 2011), and solved

the PRP instances with up to 25 customers.

To the best of our knowledge, Dabia et al. (2017) is the only previous contribution that addressed

a complex variant of PRP, and developed an exact branch-and-price algorithm. To address speed op-

timization within the pricing subproblem, the authors introduced a ready-time function for updating

the speed-dependent routing costs within a bidirectional labeling algorithm. We propose an improved

branch-and-price method that uses a novel speed optimization algorithm.

In Dabia et al. (2017), a complex ready time function has to be solved recursively for determining

the optimal speed that minimizes the routing cost of a partial path, which can be computationally

expensive. In our proposed labeling algorithm, the optimal speed can be determined efficiently and

without full “backtracking” of the partial path. In addition, we have also developed completion bounds

that further improved the efficiency of solving the pricing subproblem.

3 Problem Formulation

In Section 3.1, we formulate the carbon dioxide equivalent (CO2e) emission using the comprehensive

modal emissions model (CMEM). In Section 3.2, we introduce a mixed-integer linear programming for-

mulation for the joint Pollution Routing and Speed Optimization problem (PRP-SO).

3.1 Modelling CO2e emissions

We model CO2e emissions using the CMEM (refers to e.g. Barth and Boriboonsomsin (2009); Boriboon-

somsin and Barth (2009); Demir et al. (2012)). The parameters and the values for light, medium, and

heavy-duty vehicles (denoted respectively as LDV, MDV, HDV) we used in our experiments are shown

in Table 2.

Table 2: Comprehensive Modal Emissions Model (CMEM)

Symbol Description LDV MDV HDV

Fk Engine friction factor (kJ/rev/liter) 0.23 0.20 0.17
Nk Engine speed (rev/s) 35 34 33
Vk Engine displacement (liters) 3 7 11
Ak Frontal surface area of a vehicle (m2) 5 7.6 8.2

Cd
k Aerodynamic drag coefficients 0.32 0.55 0.70

Cr
k Rolling resistance coefficients 0.01 0.009 0.008
rk Vehicle acceleration (m/s2) 0 0 0
wk Curb weight (kg) 2,300 5,500 13,000
κ Heating value for diesel fuel (kJ/g) 45 45 45
ε Vehicle drive train efficiency 0.4 0.4 0.4
$ Efficiency parameter for diesel engines 0.9 0.9 0.9
ξ Fuel-to-air mass ratio 1 1 1
ψ Conversion factor from grams to liters 737 737 737
ρ Air density (kg/m3) 1.2041 1.2041 1.2041
g Gravity (m/s2) 9.81 9.81 9.81

According to the CMEM model, the instantaneous fuel use rate of a vehicle k when traveling at a
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constant speed νk with payload x on a path with the road angle φ is given by

ξ

κψ

(
FkNkVk +

0.5CdkAkρν
3
k + (wk + x)νk(rk + gsin φ+ gCrk cos φ)

1000ε$

)
When traversing a distance of d meters, the amount of fuel consumption is therefore given by

ξFkNkVk
κψ

d

νk
+

1

1000ε$
(rk + g sin φ+ g Crk cos φ)(wk + x)(d) +

0.5CdkAkρ

1000ε$
dν2
k

Now that, there are a sequence of road segments associated on each arc e which are denoted by Se.

Let des denote the travel distance of segment s ∈ Se, and xke denote the payload of vehicle k when

traversing arc e. For traversing the sequence of road segments associated on arc e, the amount of fuel

consumption of vehicle k can then be determined by

αke
1

νk
+ βke(wk + xke) + γkeν

2
k (1)

where

αke =
ξFkNkVk

∑
s∈Se

des

κψ
(2)

βke =
ξ
∑
s∈Se

des(rk + g sin φes + g Crk cos φes)

1000ε$κψ
(3)

γke =
0.5ξCdkAkρ

∑
s∈Se

des

1000ε$κψ
(4)

To speed up the CO2e emission calculations, we precompute the parameters αke, βke, and γke for all the

vehicles k and arcs e. These parameters are used in formulating the mathematical model in Section 3.2

and developing the solution approaches in Section 4 and Section 5.

3.2 Mathematical model

Let K be the set of vehicles. Let G(N ,A) be the underlying directed graph. A set of nodes N =

{0, 1, ..., n} contains n customers and a depot (represented by node 0). The set of arcs A, defined as

{(i, j) ∈ N ×N : i 6= j}, represents the paths between the nodes. Each node i ∈ N is associated with a

demand qi and a time window [ei, li]. Each vehicle k ∈ K is associated with a fixed cost fk, a variable

cost ck (including the costs for CO2e emission and fuel consumption), a vehicle capacity Qk, vehicle curb

weight wk, and speed limits [ak, bk]. Each arc e ∈ A is associated with a distance de, and the parameters

αke, βke and γke described in Section 3.1 for estimating fuel consumption.

For all k ∈ K and i ∈ N , let zki be a binary decision variable, with zki = 1 if and only if customer

i ∈ N \ {0} is served by vehicle k; and with zk0 = 1 if and only if vehicle k is in use. For all k ∈ K and

e ∈ A, let yke be a binary decision variable with yke = 1 if and only if vehicle k traverses arc e, and

let xke denote the corresponding payload when vehicle k traverses arc e. For all k ∈ K and i ∈ N , let

tki denote the time at which vehicle k starts serving customer i ∈ N \ {0}; and let tk0 denote the time

vehicle k returns to the depot. For all k ∈ K, let νk denote the speed of vehicle k.

The objective is to minimize the total CO2e emission costs, fuel costs, and vehicle fixed costs, subject

7
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Table 3: Notation for the MINLP Model
Symbol Description Domain

K Set of vehicles index set
N Set of nodes representing n customers and the depot index set
A Set of arcs index set
qi Demand of customer i Z+

wk Curb weight of vehicle k Z+

Qk Capacity of vehicle k Z+

ei Earliest start time at customer i R+

li Latest start time at customer i R+

si Service time at customer i R+

fk Fixed cost of vehicle k R+

ck Variable cost of vehicle k including fuel and CO2e emission costs R+

ak Lower limit of the speed of vehicle k R+

bk Upper limit of the speed of vehicle k R+

de Distance of arc e R+

αke A constant for estimating the fuel consumption of vehicle k on arc e R+

βke A constant for estimating the fuel consumption of vehicle k on arc e R+

γke A constant for estimating the fuel consumption of vehicle k on arc e R+

zki Decision variable, to allocate customers to vehicles B
yke Decision variable, to allocate arcs to vehicles B
xke Decision variable, payload of vehicle k when traversing on arc e R+

tki Decision variable, time at which vehicle k starts serving customer i R+

νk Decision variable, speed of vehicle k R+

to the following constraints: i) the total demand in a vehicle does not exceed the vehicle capacity; ii)

every route starts and ends at the vehicle’s home depot; iii) every customer is visited exactly once by

exactly one vehicle; iv) all vehicles should return to its home depot within a time limit; v) every vehicle

travels at a speed within the speed limits.

The joint Pollution Routing and Speed Optimization problem (PRP-SO) can be formulated as the

following nonlinear integer programming model.

(PRP-SO) :

min
∑
k∈K

fkzk0 +
∑
k∈K

∑
e∈A

ckyke

(αke
νk

+ βkewk + βkexke + γkeν
2
k

)
, (5)

s.t.
∑
k∈K

zki = 1, ∀i ∈ N \ {0}, (6)∑
e∈δ+(i)

yke =
∑

e∈δ−(i)

yke = zki, ∀k ∈ K, i ∈ N , (7)

∑
e∈δ−(i)

xke −
∑

e∈δ+(i)

xke = qizki, ∀k ∈ K, i ∈ N \ {0}, (8)

xke ≤ (Qk − qi)yke, ∀k ∈ K, e = (i, j) ∈ A, (9)

tkj − tki ≥ si + de
yke
νk
− l0

(
1− yke

)
, ∀k ∈ K, e = (i, j) ∈ A : j 6= 0,

(10)

eizki ≤ tki ≤ lizki, ∀k ∈ K, i ∈ N \ {0}, (11)

8
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tki + si + de
yke
νk
≤ l0, ∀k ∈ K, i ∈ N \ {0}, e = (i, 0)

(12)

ak ≤ νk ≤ bk, ∀k ∈ K, (13)

νk ∈ R+, ∀k ∈ K, (14)

tki ∈ R+, ∀k ∈ K, i ∈ N , (15)

xke ∈ R+, ∀k ∈ K, e ∈ A, (16)

yke ∈ {0, 1}, ∀k ∈ K, e ∈ A, (17)

zki ∈ {0, 1}, ∀k ∈ K, i ∈ N . (18)

The objective function (5) minimizes the total vehicle fixed costs, fuel consumption costs, and CO2e

emission costs. Constraints (6) - (7) ensure that each customer is visited once by exactly one vehicle.

Constraints (8) are the flow conservation constraints. Constraints (9) ensure that the payload does not

exceed vehicle capacity. Constraints (10) - (12) ensure that customers are visited within the given time

windows. Constraints (13) ensure that vehicles travel at a speed within the limits.

4 Metaheuristic

Metaheuristic approaches require frequently evaluating solutions with fixed vehicle routes. We present

an efficient algorithm for finding the optimal vehicle speed of a given route so that we can compute the

costs of CO2e emissions and fuel consumption efficiently. In Section 4.1, we present a novel polynomial-

time algorithm for solving the fixed-sequence speed optimization subproblem — determine the optimal

speed of a vehicle when the customer sequence is fixed. To demonstrate the effectiveness of the speed

optimization algorithm, it is embedded into a Tabu Search (TS) metaheuristic for our experiments.

TS is originally proposed by Glover (1986) as a synthesis of the perspectives of operations research and

artificial intelligence. TS has been widely used and has been shown to be effective for finding near-optimal

solutions to vehicle routing problems, see, e.g. Gendreau et al. (1994), Toth and Vigo (2003), Lai et al.

(2016). Review on the recent development of TS can refer to Gendreau and Potvin (2019). Major

components of the proposed TS include the fixed-sequence speed optimization subproblem in Section

4.1, the penalized objective function in Section 4.2, the initial solutions in Section 4.3, the neighborhood

structure in Section 4.4, the intra-route improvement procedure in Section 4.5, and the search procedure

in Section 4.6.

4.1 Fixed-sequence speed optimization subproblem

The fixed-sequence speed optimization subproblem determines the optimal speed of a vehicle for a given

customer sequence. Let R = (v1, v2, ..., vn) denote a fixed sequence of nodes in a vehicle route where

both v1 and vn represent the home depot.

Without time-window constraints, vehicles should always travel at a speed that is most cost-efficient

and within the speed limits of the vehicle. The most cost-efficient speed of vehicle k when there are no

9
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time window constraints is given by

v̄k = 3

√
ξkFkNkVk1000εk$k

CdkAkρk

Since v̄k is independent of the vehicle route when there are no time window constraints, the optimal

speed of vehicle k within speed limits [ak, bk] can be computed by

v∗k =


v̄k, if ak ≤ v̄k ≤ bk,

ak, if v̄k ≤ ak,

bk, if v̄k ≥ bk.

In the presence of time window constraints, a vehicle should travel at a speed that satisfies all time

window constraints and incurs a minimal cost. Let σ(R) denote the lowest vehicle speed without violating

any time windows associated on the nodes of route R. When a vehicle travels at the speed of σ(R) in

route R, all time window constraints will be satisfied. We will show in Proposition 1 that σ(R) can be

computed efficiently by

σ(R) = max
i,j∈{1,2,...,|R|}:i<j

∆(j)−∆(i)

lvj − evi − Sij
(19)

where ∆(i) =
∑i−1
l=1 dvl,vl+1

denotes the total distance from the depot to node i along vehicle route R,

Sij =
∑j−1
k=i svk denotes the total service time from node vi to node vj−1 along vehicle route R, and that

[ev, lv] is the time window associated on node v. If σ(R) ≤ 0, no feasible speed exists due to conflicting

time window constraints.

Since a vehicle can wait at the customer node if the vehicle arrives earlier than the lower bound of a

time window, any speed that is greater than σ(R) also satisfies the time-window constraints in route R.

Thus, the optimal speed of vehicle k when traversing on route R is given by

max(v∗k, σ(R)) (20)

The total cost (as defined in the objective function (5)) of a given solution can be evaluated straightfor-

ward when the optimal speeds of the vehicle routes have been found by using (19) and (20).

Proposition 1. The minimum speed without violating any time window constraints of a vehicle route

R is given by σ(R) when σ(R) > 0, and can be obtained in a O(n2) complexity where n is the number

of nodes in route R.

Proof. Let R = (v1, v2, ..., vn) denote the sequence of nodes in a vehicle route R with both v1 and vn

representing the home depot, and there is at least one customer node in R i.e. n ≥ 3. Furthermore,

we assume that the nodes in R are not all located at the same location. For i = 2, ..., n, let ∆(i) =∑i−1
l=1 dvl,vl+1

denote the total distance from node v1 (the depot) to node vi along vehicle route R. Set

∆(1) = 0. For all i = 1, 2, ..., n and j = 2, ..., n, with i < j, let Sij =
∑j−1
k=i svk denote the total service

time from node vi to node vj−1. For every distinct pair of nodes i, j ∈ {1, 2, ..., n}, with i < j, the

10
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following lower bound of σ(R) can be derived:

∆(j)−∆(i)

lvj − evi − Sij

Any vehicle speed that is higher than the above lower bound induced from nodes i and j would violate

one of the time window constraints associated on nodes vi and vj .

The minimum speed without violating any time window constraints in R is given by the maximum

lower bounds for all distinct pairs of nodes, and thus we have

σ(R) = max
i,j∈{1,2,...,|R|}:i<j

∆(j)−∆(i)

lvj − evi − Sij
.

Since there are n(n−1)
2 distinct pairs of nodes in a vehicle route of length n, σ(R) can be computed in

O(n2).

To complete the proof, we will show that a pair of conflicting time window constraints exist in route

R if and only if σ(R) ≤ 0. Consider two cases: i) σ(R) < 0; ii) σ(R) = 0. Case i: By definition we

have ∆(j)−∆(i) ≥ 0 for all i, j = 1, ..., n with i < j. Therefore, σ(R) < 0 iff there exist vi and vj with

lvj − evi < Sij which implies a violation on one of the time window constraints associated on nodes vi

and vj . Case ii: Suppose the contrary, we consider a vehicle with a speed equals to zero and that all the

time window constraints in R are satisfied. Since the due date lv 6= ∞ for all v, we have σ(R) = 0 iff

∆(j) − ∆(i) = 0 for all i, j = 1, ..., n with i < j. Since the nodes in R are not all located at the same

location, there exist two distinct nodes vi and vj in R with dvi,vj > 0 and i < j. This implies that, there

exist vi and vj in R with i < j and ∆(j)−∆(i) > 0 which leads to a contradiction.

4.2 Penalized objective function

We allow infeasible solutions in the search space. It is implemented as a penalized objective function

that is obtained by relaxing some of the constraints and incorporating them into the objective function

with the use of self-adjusting penalty parameters.

If a vehicle k ∈ K is assigned to a non-empty route R, and is travelling at a speed of νk, the travel

cost c(R) can be written as c(R) = fk +
∑
e∈A(R) ck

(
αke

νk
+ βkewk + βkex̄ke + γkeν

2
k

)
where x̄ke is the

payload of vehicle k on arc e and A(R) denotes the arcs on route R. The overload P(R) representing

the violation of the vehicle capacity constraints is defined as P(R) =
[∑

i∈N (R) qi −Qk
]+

where N (R)

denotes the customer nodes on route R. After incorporating the penalties for possible violations, the

penalized objective function value is computed by z(R) = c(R) + ρP(R) where ρ ∈ R+ is the penalty

weight that is self-adjusting in the search. The penalty weight ρ is initialized as 1, and updated in every

δ iterations as follows. If P(R) = 0 for all vehicle routes R, then update ρ to 0.5ρ; otherwise, update ρ

to 2ρ.

4.3 Initial solution

The initial solution is created by first applying a stochastic insertion-based heuristic and then improved

by using the TS procedure described in Algorithm 1 with a limited number of iterations. The number of

iterations is set to dI1ne where I1 is a user-controlled parameter and n is the number of customers. After

11
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creating ten such initial solutions, the best one is returned as the initial solution for the main search

procedure described in Section 4.6.

The following stochastic insertion-based heuristic is applied. It begins by assigning exactly one ar-

bitrarily selected customer to each of the randomly selected l vehicles, where l is a randomly generated

integer between 1 and the total number of vehicles available. Then, the remaining customers are con-

sidered one by one, following a randomized order. For each customer, all possible locations in all routes

are evaluated for insertion, and the customer is subsequently inserted into a vehicle route at the position

that minimizes the insertion cost (the incremental change in the penalized objective function value).

We determine the insertion costs by using the algorithm described in Section 4.1 that performs speed

optimization for a fixed sequence of nodes on a route.

4.4 Neighborhood structure

Let X denote the set of all feasible solutions for the instance. We define the solutions in the neighborhood

of a given solution x ∈ X as N(x). At each iteration, all possible move operations for all customers

are evaluated and the best one is subsequently performed. The move operation involves relocating a

customer from its current route to another route at the location that minimizes the insertion cost. The

insertion cost is determined by applying the speed optimization algorithm described in Section 4.1. The

best move operation is the one that leads to the lowest total penalized objective function value and

the following diversification penalty. For a given solution x ∈ X , we define the diversification penalty

as φ(x) = λc(x)
√
nϑir where n is the number of customers, ϑir counts the number of times customer

i has been moved to route r so far in the search, and λ is a positive parameter that controls the

intensity of diversification. Readers can refer to Soriano and Gendreau (1996) for extensive discussion

on diversification schemes.

To prevent cycling, if a customer has been moved from route r to route s in a given iteration, then

moving the same customer back to route r is declared tabu which implies that this reverse operation is

forbidden for the next dh log10(n)e iterations where h is a user-controlled parameter and n is the number

of customers. To prevent the search from stagnating, the following aspiration criterion is applied: a Tabu

move is allowed only when the resulting solution is feasible and has an objective function value that is

better than that of the current best feasible solution found by the search.

4.5 Intra-route improvement procedure

The following procedure is applied for improving the solution by modifying customers’ position within

the same route: a customer is randomly picked and then reinserted into the best location of the same

route, until no further improvement is possible. The intra-route improvement procedure is invoked after

the selected move operation is performed, the parameter for overload penalty is updated, or when the

best feasible solution is improved.

4.6 Search procedure

The TS routine is presented in Algorithm 1. The search procedure consists of two phases. The first

phase of the procedure starts by constructing an initial solution as described in Section 4.3. Next, the

12
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best solution found in the first phase is improved in the second phase by executing I2 iterations of the

TS routine.

Algorithm 1 Tabu Search

1: input: initial solution x0

2: Set x = x0. If x is feasible, set z∗ = c(x) and x∗ = x; otherwise, set z∗ =∞ and x∗ = x.
3: determine z(x̄) and φ(x̄) for all x̄ ∈ N (x)
4: while stopping condition is not satisfied do
5: select x̄ ∈ N (x) that
6: - minimizes z(x̄) + φ(x̄)
7: - x̄ is non-tabu or it satisfies the aspiration criteria
8: set the reverse move tabu for θ iterations
9: perform the intra-route improvement procedure on x̄.

10: if x̄ is feasible and z(x̄) < z∗ then set x∗ = x̄ and z∗ = z(x̄).

11: set x = x̄, and update the penalty weight of overload for every δ iterations
12: update z(x̄) and φ(x̄) for all x̄ ∈ N(x)

13: return x∗

Algorithm 1 shows the TS procedure. In line 2, the algorithm starts with an initial solution x0

which is obtained by running the TS routine with I1 iterations as described in Section 4.3. In line 3,

the penalized objective function and diversification penalty associated on all the move operations are

updated. The loop in lines 4–12 is then invoked and stops until after I2 iterations. In line 5–7, the best

neighborhood solution is picked which takes into account the diversification penalty, overload penalty,

solutions in the Tabu list, and the aspiration criteria. As described in Section 4.4, the diversification

penalty φ(x) depends on the intensification parameter λ. In line 8, the reverse move is forbidden for the

next dh log10(n)e iterations. As shown in lines 9–10, the intra-route improvement procedure described

in Section 4.5 is performed on the two routes that are modified in the best neighborhood solution. The

incumbent is updated if a new best feasible solution is identified. In lines 11–12, the search moves to the

selected neighboring solution. The penalty weight of overload is updated in every δ iterations. Whenever

the search moves to a neighboring solution, the penalized objective function and diversification penalty

associated on each of the move operations are again updated by using the speed optimization algorithm

described in Section 4.1 and the penalized objective function defined in Section 4.2. The computational

time is manageable since we only need to update the costs of the move operations that are involved with

the modified routes. The values for the algorithmic parameters in the search procedure include I1, I2, λ,

h and δ which are set according to the parameter tuning experiment described in Section 6.3.

5 Branch-and-price Algorithm

Branch-and-price is a successful exact method for solving several VRP variants. It relies on reformulating

the problem as a set-partitioning (SP) problem and applying branch-and-bound to solve the SP formu-

lation, which is known to provide tight linear bounds. As the number of variables in the SP model grows

exponentially with the instance size, column generation is applied to identify profitable variables and

add them to the model dynamically. For a review of branch-and-price applied to vehicle routing we refer

to Costa et al. (2019). In this section, we present the SP-based PRP-SO formulation and describe our

branch-and-price solution method, with a focus on the specialized algorithm for solving the non-linear
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column generation subproblem.

5.1 Set-partitioning formulation

A route p is feasible for vehicle k when i) there exists a value ν ∈ [ak, bk] such that no time-window

constraint is violated when vehicle k executes route p at speed ν; and ii) the total demand of the

customers served along p does not exceed the vehicle capacity Qk. Let Ωk be the set of feasible routes

for vehicle k. Furthermore, for each p ∈ Ωk, let ckp be the cost incurred when vehicle k executes route p

at the optimal speed, as defined in Section 4.1. Finally, for each route p ∈ Ωk and customer i ∈ N \ {0},
let

δip =

1, if route p visits customer i,

0, otherwise.

We define binary decision variables λkp for all k ∈ K and p ∈ Ωk, such that λkp = 1 if and only if

vehicle k executes route p in the solution. Then, the PRP-SO is formulated as the following SP problem:

(SP) : min
∑
k∈K

∑
p∈Ωk

ckpλ
k
p, (21)

s.t.
∑
k∈K

∑
p∈Ωk

δipλ
k
p = 1, ∀i ∈ N \ {0}, (22)

∑
p∈Ωk

λkp ≤ 1, ∀k ∈ K, (23)

λkp ∈ {0, 1}, ∀k ∈ K,∀p ∈ Ωk. (24)

The objective function (21) minimizes the total costs. Constraints (22) ensure that each customer is

visited exactly once, and constraints (23) enforce a maximum of one route per vehicle.

5.2 Column generation subproblem

The restricted master problem (RMP) refers to the linear relaxation of (21)-(24) with a restricted set of

vehicle routes. Let πi, i ∈ N \ {0}, be the dual prices associated with constraints (22) after solving the

RMP. The pricing problem for vehicle k is defined as follows:

(PP) : min fk + ck
∑
e∈A

(αke
ν

+ βke(wk + xe) + γkeν
2
)
ye −

∑
i∈N\{0}

πizi, (25)

s.t.
∑

e∈δ+(i)

ye =
∑

e∈δ−(i)

ye = zi, ∀i ∈ N \ {0}, (26)

∑
e∈δ+(0)

ye =
∑

e∈δ−(0)

ye = 1, (27)

∑
e∈δ−(i)

xe −
∑

e∈δ+(i)

xe = qizi, ∀i ∈ N \ {0}, (28)

xe ≤ (Qk − qi)ye, ∀e = (i, j) ∈ A, (29)∑
i∈N\{0}

qizi ≤ Qk, (30)

14
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tj − ti ≥ si + de
ye
ν
− l0

(
1− ye

)
, ∀e = (i, j) ∈ A : j 6= 0, (31)

eizi ≤ ti ≤ lizi, ∀i ∈ N \ {0}, (32)

ti + si + de
ye
ν
≤ l0, ∀i ∈ N \ {0}, e = (i, 0), (33)

ν ∈ [ak, bk], (34)

ti ∈ R+, ∀i ∈ N , (35)

xe ∈ R+, ∀e ∈ A, (36)

ye ∈ {0, 1}, ∀e ∈ A, (37)

zi ∈ {0, 1}, ∀i ∈ N \ {0}. (38)

The objective function (25) minimizes the route-dependent costs (including vehicle fixed cost and

CO2e emissions cost) and the dual prices of the RMP. Constraints (26)-(27) are the flow conservation

constraints. Constraints (28)-(29) keep track of the payload in the vehicle along each arc traversed.

Constraint (30) is the vehicle capacity constraint. Constraints (31)-(33) are the time window constraints.

Finally, constraint (34) ensures that the vehicle travels at a speed within the prescribed limits.

5.3 Pricing algorithm

The pricing algorithm identifies columns with a negative reduced cost, that is, it finds solutions to (PP)

with a negative objective value. As common in branch-and-price for vehicle routing, we solve the pricing

problem with a labeling algorithm. A label represents a partial route from the depot to a customer. Label

extensions are created by extending labels to all feasible customers. Table 4 summarizes the attributes

of a label alongside their corresponding initialization values and updating rules.

Table 4: Pricing Algorithm: Label Attributes, Initialization Values and Updating Rules

Attributea Description Initializationb Updating rulec

NP Set of customers {i} NQ = NP ∪ {j}
nP Last customer served i j
qP Total demand qi qQ = qP + qj
DP Total distance traveled de DQ = DP + de
τP Earliest departure time assuming

maximum speed
max(ei, de/bk) + si τQ = max(ej , τP + de/bk) + sj

SP Total service time before nP 0 SQ = SP + snP

TP Triples of distance, total service time
and earliest service time
for calculating σP

{(de, 0, ei)} TQ = TP ∪ {(DQ, SQ, ej)}

σP Minimum vehicle speed such that
all time windows are respected

de/li σQ = max
(d,s,t)∈TP

DQ−d

lj−t−(SQ−s)

νP Optimal speed max(v∗k, de/li) νQ = max(v∗k, σQ)
αP

βP
γP
δP

Coefficients for CO2e emissions

αke

βke
γke
βP qi

αQ = αP + αke

βQ = βP + βke
γQ = γP + γke
δQ = δP + βQqj

a Assuming label P ; b Assuming vehicle k and a label representing the partial route along arc e = (0, i); c Assuming label
Q obtained by extending P along arc e = (i, j).

A key component of our pricing algorithm is the set of label extension procedures that do not require
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full backtracking to determine the cost of a route under the optimal speed. The idea is formalized with

the following definition and proposition.

Definition 2 (Cost of a path). Let Q be a path with arcs (e1, e2, ..., eL) and nodes (v0, v1, v2, ..., vL)

where v0 = vL = 0 is the depot. The cost of path Q when travelling at a speed of ν is defined as

ck

(αQ
ν

+ δQ + βQwk + γQν
2
)
− πQ, (39)

where αQ =
∑L
l=1 αkel , βQ =

∑L
l=1 βkel , γQ =

∑L
l=1 γkel , πQ =

∑L
l=1 πel , δQ =

∑L−1
i=1 βPiqi, and Pi

denote the path (v0, v1, v2, ..., vi).

Proposition 3. Let P be a complete path that ends at the depot, and let p be the route induced by P .

Then, the cost of p executed under the optimal vehicle speed, given by cp, is equal to the cost of P as

determined by (39) where ν = νP .

Proof. Let Q be a partial path of vehicle k with arcs (e1, e2, ..., eL) and nodes (v0, v1, v2, ..., vL) where

v0 = vL = 0 is the depot with demand q0 set to 0. The travel cost of the route induced by Q, according

to the objective function (25), is given by

ck

L∑
l=1

(αkel
ν

+ βkel(wk + xel) + γkelν
2
)
−

L∑
l=1

πvl , (40)

where xel =
∑L−1
m=l qm is the sum of the demand of the customers in the remaining part of the route,

that is, the payload of arc el. As shown below, the cost calculation by (40) is equivalent to (39).

The travel cost (40) can be rewritten as

ck

(∑L
l=1 αkel
ν

+

L∑
l=1

L∑
m=l

βkelqm +

L∑
l=1

βkelwk +

L∑
l=1

γkelν
2
)
−

L∑
l=1

πvl

= ck

(αQ
ν

+

L∑
l=1

L∑
m=l

βkelqm + βQwk + γQν
2
)
− πQ.

Note that
∑L
l=1

∑L
m=l βkelqm =

∑L
l=1

∑l
m=1 βkemql =

∑L
l=1 βPl

ql = δQ, and hence equivalent to the

routing costs defined in the objective function (25).

The pricing problem can be considered as a variant of the resource-constrained shortest-path (RCSP)

problem (see e.g. Feillet et al., 2004). Typically, one finds the RCSP with a labeling procedure where

dominance rules are employed to discard non-promising partial paths. In our case, however, dominance

rules are likely to be ineffective because of the large number of resources involved. More specifically, in

addition to the usual resources to handle vehicle capacity and time windows, in our case one must also

observe dominance conditions on the allowed vehicle speed range and each cost component individually.

Therefore, in our pricing algorithm, we decide to control the combinatorial growth of labels exclusively

with completion bounds, which are detailed next.
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5.3.1 Completion bounds

A completion bound is a lower bound on the reduced cost of all routes that can be generated from a label.

Completion bounds accelerate the solution of the pricing problem since partial paths with nonnegative

bounds are discarded during the labeling procedure.

Consider a partial path P with arcs (e1, e2, ..., eL) and nodes (v0, v1, v2, ..., vL). The precise cost along

P depends on the customers visited after vL, since the cost along each arc depends on the arc payload.

A lower bound on the cost along P , however, can be computed as follows:

ΦP = fk + ck

L∑
l=1

(αkel
ν

+ βkel(wk + x̄el) + γkelν
2
)
, (41)

where

x̄el =

qP −
∑l−1
m=1 qvm , if βkel ≥ 0,

Qk −
∑l−1
m=1 qvm , if βkel < 0.

(42)

Equation (42) considers a best-case (i.e., cost-minimizing) scenario concerning the payload along each

arc. If the corresponding β is nonnegative, the vehicle is assumed to travel along arc e as light as possible.

Otherwise, the vehicle is assumed to travel as loaded as possible.

Given the lower bound (41), we propose two completion bounds for a label P . The first bound is

based on a RCSP and explores the capacity resource to find a lower bound on the reduced cost of any

extension of P . The second bound is based on a knapsack problem and explores not only the capacity

resource but also the “timing” resources, that is, the fact that customers cannot be visited after their

time windows and the vehicle must return to the depot no later than instant l0.

We start with the RCSP-based completion bound, which adapts the bound proposed by Florio et al.

(2021) for solving the elementary RCSP. First, we associate to each arc e = (i, j) ∈ A a lower bound φ̄e

on the reduced cost change when partial path P is extended along e = (i, j):

φ̄e =
αke
v∗k

+ βke(wk + x′e) + γke(v
∗
k)2 − πj , (43)

where x′e = 0 if βe ≥ 0 and x′e = Qk otherwise.

We denote by S∗i (Q) the value of the RCSP from node i ∈ N \{′} to node 0 in a graph with arc costs

given by (43), in which the initial resource limit is Q and an amount qj of resource is consumed each

time node j 6= 0 is visited. Then, the RCSP-based completion bound is given by:

ΦP −
∑
i∈NP

πi + S∗nP
(Qk − qP ). (44)

Equation (44) yields a valid bound because ΦP −
∑
i∈NP

πi is a lower bound on the reduced cost of

partial path P , and S∗nP
(Qk − qP ) is a lower bound on the reduced cost of any feasible extension to P .

To enable evaluations of (44) in constant time for any label P , at the beginning of an iteration of the

pricing problem we pre-compute S∗i (Q) for all i ∈ N \ {′} and Q ∈ {0, . . . , Qk}. The (non-elementary)

RCSPs can be solved efficiently by dynamic programming.

While the RCSP bound is computationally efficient, it does not explore time window constraints nor

the fact that we price elementary routes. In the knapsack bound, we set up a {0, 1}-knapsack problem
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with capacity of l0 − τP , which corresponds to the maximum remaining routing time after customer nP

is served. Then, we define a set of knapsack items

I = {i ∈ N \ ({0} ∪NP ) : qi + qP ≤ Qk ∧ τP + dnP ,i/bk ≤ li}.

Each element of I is a customer that can be visited after nP , considering time window and vehicle

capacity constraints. With each item i ∈ I a value v(i) and a weight w(i) are associated:

v(i) = max
e=(j,i)∈A

−φ̄e,

w(i) = min
(j,i)∈A

dji/bk.

The value and weight of an item i correspond to the maximum reduced cost decrease and minimum

amount of the time resource consumed, respectively, when customer i is visited in an extension of partial

path P . We let K∗P be the optimal solution value of the knapsack problem defined above. Then, the

knapsack completion bound is given by:

ΦP −
∑
i∈NP

πi −K∗P . (45)

Each time a label P is generated, we evaluate (45) and discard P if the bound is nonnegative. This

evaluation requires solving the knapsack problem to optimality, which can also be achieved efficiently by

dynamic programming.

5.4 Branch-and-bound

The implemented branch-and-bound framework finds an optimal integer solution to (SP) by branching

on variables ye, e ∈ A, that take fractional values. We apply a semi-strong branching rule where each

potential branching variable is evaluated under the current pool of columns, and the variable on which

branching leads to the highest lower bound is chosen. More precisely, at a given branch-and-bound node,

we let ΩR be the set of all columns generated and Y the set of arc variables that assume fractional values

in the solution to the RMP. Then, we evaluate

min{RMP(ΩR, {ye}, {}),RMP(ΩR, {}, {ye})} (46)

for each ye ∈ Y, where RMP(Ω,Y′,Y∞) corresponds to the optimal solution value of the RMP restricted

to columns Ω and enforcing constraints ye = 0 for all ye ∈ Y′ and ye = 1 for all ye ∈ Y∞ in addition

to the branching constraints of the parent branch-and-bound node. Finally, we branch on the variable

ye ∈ Y such that (46) is maximum. Note that evaluating (46) for each potential branching variable

can be implemented efficiently by loading a single linear program and (re)solving it for each variable

after adjusting the cost vector accordingly, by penalizing the cost of routes that do not comply with the

candidate branching decision.
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6 Computational Experiments

In this section, we will evaluate the performance of the tabu search heuristic described in Section 4

(denoted as TS) and the branch-and-price approach described in Section 5 (denoted as BP). Afterward,

we make use of the heuristic in an empirical study for evaluating the potential benefits of using elevation

data in optimizing the vehicle routes.

We organize the remainder subsections as follows. Section 6.1 describe the test instances constructed

using data from literature, and Section 6.2 describe the test instances constructed using real-world data.

Section 6.3 is about the parameter tuning experiment. In Section 6.4, we evaluate the efficiency of BP

and TS. In Section 6.5, we evaluate the potential benefits of using elevation data for planning the vehicle

routes.

6.1 Test instances using data from literature

Since there are no existing benchmark datasets of PRP-SO, we constructed test instances based on

the instances of Solomon (1987) which are originally created for VRPTW. The VRPTW instances are

adapted into PRP-SO instances by associating randomly generated elevation information on the nodes.

The units for time and demand are also scaled to match the realistic instances.

The VRPTW instances have four sets of instances involving 25, 50, 75, and 100 customers, respec-

tively. Instances are divided into three classes according to the customer location distribution: clustered

distribution (C class), scattered distribution (R class), and partially scattered and partially clustered

distribution (RC class). Each class is further subdivided into the narrower time window class and the

wider time window class. In our experiments, we will test on the instances with narrower time windows.

In total, there are 116 instances of PRP-SO constructed from using the instances of Solomon (1987). The

remaining part of this subsection describes how the VRPTW instances are adapted into the PRP-SO

instances.

The elevation of the nodes is randomly generated with a uniform distribution between 0 and 1,000

meters. The distance in kilometers between node i and node j is given by

Dij =

√
(Xi −Xj)2 + (Yi − Yj)2 +

(Zi − Zj
1000

)2
which rounds to the nearest meter, where (Xi, Yi) and (Xj , Yj) are the coordinates, and Zi and Zj are

the elevations of node i and j respectively. With the rounded values of distances, the road angle between

two nodes is given by tan−1
(
Zi−Zj

Dij

)
.

The units for time and demand are also scaled to match the realistic instances. For our experiments,

service times and the time windows have a unit of 0.02 hours. For example, a due date of 1236 from

the Solomon’s instances represents a due date at the 24.72 hours (given by 1236*0.02) after the planning

horizon starts. This implies that, if vehicles always travel at 50 km per hour, the time window constraints

would remain the same as the ones in the original VRPTW instances.

Three types of vehicles appeared in Solomon’s instances: 200, 700, and 1,000 units. We scale the

demand and the vehicle capacity accordingly so that it is equivalent to the original constraints for vehicle

capacity and at the same time matches typical truck classifications: LDV, MDV, and HDV for the 200,

700, and 1,000 capacity units respectively. Table 5 summarizes the vehicle capacity and demand unit
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Table 5: Vehicle Information
Original capacity Vehicle type Capacity Demand unit

200 LDV 1,200 kg 6 kg per unit
700 MDV 12,600 kg 18 kg per unit

1,000 HDV 31,000 kg 31 kg per unit

used in our experiments. For example, the vehicles in the Solomon’s instances with a capacity of 200

units correspond to the LDV vehicles of the PRP-SO instances, and therefore a demand of 20 units in

those instances represents a demand of 120 kg (given by 20× 6) in the PRP-SO instances.

All the vehicles have a fixed cost of 100 EUR, a fuel cost of 1.42 EUR per liter, and a maximum speed

of 80 km per hour. Other parameters used for the CO2e consumption calculations are summarized in

Table 2.

6.2 Test instances using real-world data

Another dataset is constructed based on the distribution network of a large international health and

beauty retailer. There are 248 customers considered in our experiments which are representing the

retailer’s stores in Hong Kong. Geometric information is obtained by using Google Maps APIs, including

the coordinates, elevations, suggested paths between the stores. Figure 1 illustrates the geographical

locations of these stores. The landscape varies from fairly hilly to mountainous with steep slopes. The

stores’ locations are clustered, densely populated in the central areas. We will use this dataset for

evaluating the potential benefits of using elevation information in optimizing the vehicle routes.

Figure 1: Customer locations

We preprocess the geographic data from the Google Maps API and the Elevation API into the α,

β, and γ values associated on the arcs (defined in Section 3), so that the proposed solution approaches

can compute the fuel consumption and CO2e emission efficiently. To begin with, for every distinct pair

of the stores, we obtain a suggested path by using the Google Maps API and find out the elevation for

all the coordinates along the suggested path by using Google Elevation API. Afterward, to construct

arc segments, coordinates along a path are divided into segments, with each segment the distance is no
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longer than 1,000 meters. An arc segment can be viewed as a slope along the suggested path. In our

experiments, there are in total 155,333 such slopes. Lastly, the angles and distance of all these slopes are

determined using the coordinates and elevation data, and thus we have the α, β, and γ values of all the

arcs connecting the stores.

In our experiments, nine instances are constructed. Each instance consists of 100 customers which

are randomly selected amongst the 248 stores. The ready time, due time, demand, vehicle number, and

capacity are data from the Solomon’s C class instances. The depot is located at the Kwai Tsing Container

Terminal which is the busiest port in Hong Kong.

6.3 Parameter tuning

The best parameters amongst the values specified in Table 6 are chosen for each instance class.

Table 6: Parameter Values

Parameter Possible values Description

I1 1, 2 Number of iterations in the first phase
I2 100,000 Number of iterations in the second phase
λ 10−6, 5× 10−6, 10−7, 5× 10−7 Diversification intensity
h 3, 4, 5, 6 Parameter for setting the tabu tenure
δ 10, 20, 30, 40 Penalty update frequency

All experiments have been conducted on a server computer running Ubuntu with an Intel Xeon CPU

E5-2698 v3 @ 2.30GHz, 16 cores, and 15 GB of main memory. Algorithms have been implemented in

C++ and compiled using GNU g++ version 10.2.0 with -O2 flag. The algorithms run on a single core

per instance.

6.4 Efficiency of the approaches

Table 7 summarizes the computational results of BP and TS on the instances described in Section 6.1

with 25, 50, 75 and 100 customers respectively. Results on individual instances are shown in Appendix

A. Column NI is the number of instances in the dataset class excluding the ones that no feasible solution

can be found by using BP within 3 hours. Column NO is the number of instances that can be solved to

optimality by using BP within the time limit. Column NV is average number of vehicle routes, column

TD is average total travel cost, column AT is the average cpu time (in seconds), and column AG is the

average optimality gap (in percentage). When reporting the average values, we excluded the instances

that no feasible solution can be found by using BP within 3 hours.

As shown in Table 7, BP can solve instances up to 100 customers, with 61 instances (53%) solved to

optimality. BP can find all the optimal solutions of the dataset with 25 customers within a reasonable

time, and most optimal solutions of the dataset with 50 customers within 3 hours. As compared to TS,

BP can determine better solutions on smaller instances, but at the expense of significantly more CPU

time. TS can find near-optimal solutions for all instances within one minute, and outperforms BP on

solution quality for the dataset with 100 customers.
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Table 7: Computational Results of the PRP-SO Instances

BP TS
Class NO/NI NV TD AT (s) AG (%) NV TD AT (s)

N25 C 9/9 3.000 24.059 215.90 0% 3.000 24.597 0.41
RC 8/8 3.250 45.314 30.28 0% 3.250 45.331 0.98
R 12/12 4.667 60.240 30.02 0% 4.750 59.306 2.49

N50 C 7/7 5.000 45.641 3608.80 0.000% 5.000 46.612 2.65
RC 4/8 6.500 94.850 6933.27 0.087% 6.500 97.514 10.26
R 9/10 7.500 107.889 2707.29 0.018% 8.000 109.131 8.17

N75 C 2/4 8.000 83.020 8314.54 0.079% 8.000 82.994 3.85
RC 1/6 9.667 154.001 9262.17 4.088% 10.333 153.598 10.03
R 5/6 11.833 152.447 3956.78 0.018% 12.500 160.035 8.23

N100 C 1/1 10.000 107.742 3255.73 0.000% 10.000 107.742 2.21
RC 1/4 12.750 210.165 8957.57 2.440% 13.000 195.959 12.93
R 2/3 16.667 194.144 4489.88 1.983% 13.500 170.702 42.31

Total: 61/78 98.8 1279.5 51762.2 97.8 1253.5 104.5

6.5 The value of using elevation information

For evaluating the potential benefits of using elevation information in optimizing the vehicle routes,

the real-world instances described in Section 6.2 are solved by using TS. Table 8 summaries the total

distance (in km), average speed (in km/h), total fixed cost (in EUR), total fuel cost (in EUR), and the

total elevation (in meters). Figure 2 illustrates an example vehicle route. The same dataset is solved

again with which elevation information is ignored when planning the vehicle routes. The results are

reported in Table 9. This is achieved in our experiment by setting the angles of all slopes to zero when

optimizing the vehicle routes by using TS, and evaluating the solutions with the correct elevations and

slopes after the vehicle routes have been decided.

Figure 2: An example vehicle route

We can observe the impacts on solutions when elevation information is used for planning the vehicle

routes by comparing the results in Table 8 and Table 9. As shown in the experimental results, when

elevation information is considered in planning, fuel consumption decreased by 54% on average while

the average vehicle speed and elevation increased slightly, and the total travel distance increased by

31%. Larger travel distances and lower fuel consumption seem to be contradictory for typical vehicle

routing problems. This is because differs from typical vehicle routing problems, the fuel consumption now
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Table 8: Results on Real-world Instances

Instance Distance Speed Fixed cost Fuel cost Elevation

HK01 1638.6 62.3 1500 109.5 1816
HK02 1460.1 62.3 1400 163.6 1436
HK03 990.2 61.1 1200 196.7 1070
HK04 1153.7 63.1 1000 50.0 1440
HK05 1209.0 63.5 1400 197.5 1185
HK06 1441.9 64.9 1300 89.4 1748
HK07 1159.5 65.5 1300 185.4 1309
HK08 1384.8 64.6 1200 110.3 1359
HK09 1088.5 63.7 1100 81.5 1495

Average: 1280.7 63.5 1266.7 131.5 1428.7

Table 9: Results on Real-world Instances when Slopes are Ignored

Instance Distance Speed Fixed cost Fuel cost Elevation

HK01 1158.7 60.6 1500 405.1 1582
HK02 1015.1 60.7 1400 331.1 1152
HK03 953.0 60.9 1200 184.5 1043
HK04 765.2 60.5 1100 114.5 1443
HK05 1040.7 62.9 1400 409.8 1140
HK06 1071.8 62.8 1300 518.3 1536
HK07 1004.4 62.3 1300 278.1 1311
HK08 945.3 64.0 1300 197.7 1307
HK09 831.7 59.5 1100 138.0 1331

Average: 976.2 61.6 1288.9 286.3 1316.1

depends not only on the distance, but also on the slopes, payload, and vehicle speeds. Optimal vehicle

routes should therefore save fuel costs by avoiding going uphill at a high speed with a large payload. As

a result, vehicles tend to visit more customers first before going uphill. Although this will increase travel

distance, fuel consumption can be saved from going uphill with less payload.

For typical vehicle routing problems or when vehicle routes are planned manually, travel distance

is usually minimized in the objective function. Our experimental result reveals that this can lead to

a suboptimal solution in reality. With the elevation information, the optimal solution can balance the

tradeoff between the energy consumption due to longer distances and the higher payload when going

uphill. To avoid high fuel consumption when vehicles going uphill, heavier items tend to be delivered

first before going uphill. Customer time windows have to be taken into account so that vehicles do not

need to speed up to meet the due times which can result in high fuel consumption. If elevation information

is ignored when planning the vehicle routes, fuel consumption due to payload is underestimated when

vehicles are going uphill, which leads to poor solutions. With the significant savings we observed from

the experimental results, logistic service providers should consider using elevation data for planning their

vehicle routes in practice.

23



PRP with Speed Optimization and Uneven Topography May 20, 2021

6.6 Impact of payloads and slopes

For evaluating the impact of payloads and slopes on the optimized solutions, the real-world instances

described in Section 6.2 are modified by scaling the payloads by a factor r1 ∈ {0, 0.1, ..., 1} when calcu-

lating the costs, and scaling the slopes by a factor r2 ∈ {0, 0.1, ..., 1}. In our experiments, we replace

the payload xke in (1) by a factor r1xke when calculating the costs, and replace the slope φes in (3) by

r2φes when preprocessing the data. A higher value of the payload factor (r1) represents scenarios when

relatively heavier items are shipped, and a higher value of the slope factor (r2) represents more hilly

areas where steep slopes commonly appear. There are 1089 instances tested in total, and each of them

is solved by using TS with a timelimit of 300 seconds. Table 10 summarizes the average costs (and refer

to appendix B for the complete results). Figure 3 shows the average cost with varying payloads (r1) and

slopes (r2) respectively.

Table 10: Impact of Payloads and Slopes on Routing Costs
Slope factor (r2)

0 0.2 0.4 0.6 0.8 1 Average

Payload
factor
(r1)

0 1516.0 1543.9 1527.4 1458.7 1456.2 1361.8 1477.3
0.2 1514.3 1519.5 1527.3 1472.0 1475.4 1374.8 1480.6
0.4 1530.7 1563.0 1540.4 1466.4 1478.4 1363.9 1490.5
0.6 1545.9 1565.5 1556.6 1475.9 1512.0 1373.8 1505.0
0.8 1553.0 1532.5 1582.0 1511.1 1494.6 1404.7 1513.0
1 1575.1 1542.8 1586.7 1516.6 1496.1 1413.3 1521.8

Average 1539.2 1544.6 1553.4 1483.5 1485.5 1382.0

Figure 3: Impact of payloads and slopes on routing costs

From the experimental results, we can see that the shipping cost increases with the payload (r1) and

decreases with the slope (r2). It is more costly to ship with a heavier payload (higher value of r1) with a

percentage increase in total costs up to 3.49% on average regardless of the slopes. It is less costly to ship

in more hilly areas (higher value of r2) with a saving up to 11.71% of the total costs on average regardless

of the payloads. The impact due to slopes is significantly higher than the impact due to payloads, which

reveals the importance of taking into account slopes when optimizing the vehicle routes.
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7 Conclusions

This paper formulates and proposes efficient solution methods for a joint Pollution Routing and Speed

Optimization Problem (PRP-SO), where the total travel cost is a function of fuel consumption and CO2e

emissions and depends, simultaneously, on road grades, arc payloads, and vehicle speed. The introduction

of the vehicle speed as continuous decision variables results in more complicated optimization subproblems

in the presence of time window constraints. For the fixed-sequence speed optimization problem where the

vehicle route is known, the proposed approach is conceptually simple and computes the optimal vehicle

speed (with and without time windows) in quadratic time. In the speed optimization with variable routes,

we introduced a novel labeling algorithm, without full backtracking searching, that efficiently determines

the cost of a vehicle route that travels with optimal speed. Based on the proposed speed optimization

algorithms, we present two general solution approaches for solving the PRP-SO. An approximate solution

strategy aims to solve large instances in a short computational time. For this purpose, we integrated the

fixed-sequence speed optimization algorithm in a tabu search metaheuristic. The second approach consists

of an exact branch-and-price algorithm, in which the variable-route speed optimization is managed within

the pricing problem.

We carried out extensive computational experiments on modified Solomon benchmarks and newly

constructed real-life instances. Numerical results show that the exact solution methodology performs

very well in terms of solution quality: 61 out of 116 instances are solved to optimality. Contrary to

the computational outcomes presented by Dabia et al. (2017), in which several instances with only 25

customers cannot be solved, we are able to solve all small-scale problem instances (25 customers) within

a reasonable time. Our BP algorithm solved most of the problem instances with 50 customers and

reached optimal solutions for some larger benchmark instances with up to 100 customers. We show that

our metaheuristic works very effectively for all instances solved. The heuristic consumes less than one

minute to find near-optimal solutions in all instances and improved best-known solutions where the exact

algorithm did not reach optimality.

Our computational results on real-world instances provide sufficient evidence to suggest some essen-

tial managerial insights. First, significant savings (53%) in fuel consumption and CO2e emissions are

observed, especially when shipping heavy items in hilly areas. Second, vehicle routes included a larger

number of customer visits (located at flatter terrain) before going to uphill destinations, also significantly

reducing fuel consumption. Third, if elevation information is ignored when planning vehicle routes, fuel

consumption estimation is inaccurate.

Finally, we do believe that pending issues are requiring future research. From a modeling perspective,

the route security (uphill and downhill paths) in hilly topographic cities is a challenging issue to be

included. Future studies can now be focused on generalizing the proposed methodological approaches to

a new setting where two metrics of performance, fuel consumption, and vehicle route security should be

optimized.
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T. Bektaş and G. Laporte. The pollution-routing problem. Transportation Research Part B: Method-
ological, 45(8):1232–1250, 2011.

K. Boriboonsomsin and M. Barth. Impacts of road grade on fuel consumption and carbon dioxide
emissions evidenced by use of advanced navigation systems. Transportation Research Record, 2139(1):
21–30, 2009.

K. Brundell-Freij and E. Ericsson. Influence of street characteristics, driver category and car performance
on urban driving patterns. Transportation Research Part D: Transport and Environment, 10(3):213–
229, 2005.

C. Brunner, R. Giesen, and M. A. Klapp. Vehicle routing problem with steep roads. Optimization Online,
2019. URL http://www.optimization-online.org/DB_FILE/2019/03/7113.pdf.

L. Costa, C. Contardo, and G. Desaulniers. Exact branch-price-and-cut algorithms for vehicle routing.
Transportation Science, 53(4):946–985, 2019.

S. Dabia, E. Demir, and T. Van Woensel. An exact approach for a variant of the pollution-routing
problem. Transportation Science, 51(2):607–628, 2017.

S. C. Davis, S. W. Diegel, R. G. Boundy, et al. Transportation energy data book. Technical report, Oak
Ridge National Laboratory, 2009.
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E. Demir, T. Bektaş, and G. Laporte. A review of recent research on green road freight transportation.
European Journal of Operational Research, 237(3):775–793, 2014b.
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A Results

Table 11: Results on dataset A with 25 customers

TS BP
Instance NV TD Time(s) NV TD Time(s) Gap

c101 3 24.426 0.04 3 24.426 34.48 0.00%
c102 3 23.836 0.33 3 23.278 167.03 0.00%
c103 3 25.120 0.15 3 24.749 564.82 0.00%
c104 3 25.835 0.15 3 23.994 750.72 0.00%
c105 3 23.893 0.04 3 23.893 37.14 0.00%
c106 3 22.743 0.04 3 22.743 30.45 0.00%
c107 3 24.087 0.08 3 24.087 49.42 0.00%
c108 3 25.666 1.10 3 25.199 86.84 0.00%
c109 3 25.767 1.71 3 24.163 222.18 0.00%
r101 8 75.787 0.17 8 75.787 3.43 0.00%
r102 7 67.899 0.25 7 67.899 8.99 0.00%
r103 4 60.948 25.69 4 60.948 20.41 0.00%
r104 4 51.749 0.13 4 51.749 24.55 0.00%
r105 5 73.139 2.24 5 71.878 12.81 0.00%
r106 5 59.079 0.61 4 71.543 17.33 0.00%
r107 4 52.313 0.08 4 52.313 39.68 0.00%
r108 4 50.755 0.14 4 50.755 112.96 0.00%
r109 4 58.009 0.13 4 58.009 17.49 0.00%
r110 4 56.352 0.06 4 56.352 31.29 0.00%
r111 4 55.261 0.14 4 55.261 29.14 0.00%
r112 4 50.382 0.29 4 50.382 42.16 0.00%

rc101 4 59.050 0.36 4 59.050 21.24 0.00%
rc102 3 46.660 0.04 3 46.660 18.98 0.00%
rc103 3 43.835 0.81 3 43.752 38.84 0.00%
rc104 3 40.023 0.51 3 40.023 53.76 0.00%
rc105 4 51.685 0.55 4 51.685 12.62 0.00%
rc106 3 43.845 1.09 3 43.845 17.57 0.00%
rc107 3 39.803 3.75 3 39.803 28.56 0.00%
rc108 3 37.749 0.70 3 37.693 50.68 0.00%
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Table 12: Results on dataset A with 50 customers

TS BP
Instance NV TD Time(s) NV TD Time(s) Gap

c101 5 46.632 0.58 5 46.632 355.82 0.00%
c102 5 44.457 1.41 5 44.324 9896.23 0.00%
c105 5 45.762 3.34 5 45.762 1373.90 0.00%
c106 5 43.440 3.14 5 43.440 1014.27 0.00%
c107 5 45.942 1.45 5 45.942 1515.75 0.00%
c108 5 49.758 5.09 5 48.022 4114.59 0.00%
c109 5 50.292 3.51 5 45.368 6991.02 0.00%
r101 11 153.622 40.54 11 136.449 66.09 0.00%
r102 10 118.659 1.68 10 116.500 113.91 0.00%
r103 8 109.075 9.20 8 100.962 352.12 0.00%
r105 9 121.023 1.92 8 128.679 356.35 0.00%
r106 8 105.068 5.83 7 110.509 646.84 0.00%
r107 7 92.989 10.15 6 94.761 3521.55 0.00%
r109 7 113.663 6.36 7 102.349 329.25 0.00%
r110 7 94.271 3.59 6 102.664 2792.51 0.00%
r111 7 95.106 2.04 6 100.870 8357.22 0.00%
r112 6 87.839 0.36 6 85.143 10537.02 0.18%

rc101 8 122.350 8.16 8 120.475 2761.42 0.00%
rc102 7 112.088 21.62 7 108.434 10785.42 0.27%
rc103 6 95.953 9.52 6 92.720 10772.43 0.22%
rc104 5 73.271 19.88 5 71.435 2075.18 0.00%
rc105 8 110.736 8.75 8 108.016 5045.61 0.00%
rc106 6 96.262 3.35 6 94.017 10794.97 0.17%
rc107 6 89.167 3.20 6 85.984 10736.23 0.04%
rc108 6 80.282 7.58 6 77.722 2494.94 0.00%

Table 13: Results on dataset A with 75 customers

TS BP
Instance NV TD Time(s) NV TD Time(s) Gap

c101 8 84.075 1.28 8 84.075 1307.64 0.00%
c105 8 83.800 10.61 8 83.675 10707.30 0.00%
c106 8 80.379 0.60 8 80.743 10524.12 0.26%
c107 8 83.723 2.90 8 83.588 10719.11 0.06%
r101 16 188.867 1.50 16 178.963 239.79 0.00%
r102 14 172.323 1.73 14 164.139 481.14 0.00%
r103 11 146.177 19.15 11 134.750 5015.91 0.00%
r105 12 174.159 8.76 11 154.253 744.75 0.00%
r106 11 146.746 8.86 10 147.330 10769.54 0.11%
r109 11 131.937 9.36 9 135.247 6489.55 0.00%

rc101 12 182.652 1.26 12 176.597 2595.03 0.00%
rc102 11 171.448 18.98 10 168.386 10771.39 0.10%
rc103 10 143.512 0.63 9 146.403 10539.07 0.84%
rc106 11 153.381 3.68 9 158.384 10750.79 0.20%
rc107 9 144.181 33.79 9 144.269 10772.05 10.87%
rc108 9 126.413 1.85 9 129.969 10144.71 12.52%
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Table 14: Results on dataset A with 100 customers

TS BP
Instance NV TD Time(s) NV TD Time(s) Gap

c101 10 107.742 2.21 10 107.742 3255.73 0.00%
r101 20 211.371 6.76 19 207.751 983.72 0.00%
r102 18 206.003 18.26 17 190.955 2111.25 0.00%
r105 15 186.240 7.66 14 183.726 10374.66 5.95%

rc101 16 225.632 5.18 14 224.172 10786.57 0.22%
rc102 14 209.526 13.02 12 221.372 10585.25 1.80%
rc105 15 245.247 24.93 13 211.847 3935.69 0.00%
rc106 13 195.968 22.91 12 183.270 10522.80 7.75%
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B Impact of Payloads and Slopes on Routing Costs

Table 15: Impact of Payloads and Slopes on Routing Costs
Slope factor (r2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average

Payload
factor
(r1)

0.0 1516.0 1525.0 1543.9 1490.0 1527.4 1466.6 1458.7 1429.5 1456.2 1419.1 1361.8 1472.2
0.1 1525.6 1550.8 1496.3 1530.8 1536.9 1455.9 1441.2 1480.4 1433.8 1439.8 1375.7 1478.8
0.2 1514.3 1542.1 1519.5 1536.1 1527.3 1445.3 1472.0 1452.6 1475.4 1445.6 1374.8 1482.3
0.3 1532.6 1511.8 1564.2 1489.7 1569.1 1478.0 1473.6 1478.8 1470.4 1435.7 1355.1 1487.2
0.4 1530.7 1545.8 1563.0 1551.3 1540.4 1474.5 1466.4 1454.4 1478.4 1455.9 1363.9 1493.2
0.5 1530.8 1567.3 1555.8 1567.1 1551.9 1490.6 1470.8 1482.0 1474.8 1439.2 1371.1 1500.1
0.6 1545.9 1571.4 1565.5 1570.8 1556.6 1470.0 1475.9 1475.0 1512.0 1435.6 1373.8 1504.8
0.7 1562.1 1541.6 1520.5 1564.9 1534.8 1518.6 1488.3 1489.5 1514.7 1429.3 1377.1 1503.8
0.8 1553.0 1553.9 1532.5 1564.9 1582.0 1499.2 1511.1 1503.4 1494.6 1465.7 1404.7 1515.0
0.9 1555.6 1552.7 1568.9 1574.3 1569.3 1498.9 1507.3 1486.3 1495.6 1498.7 1395.3 1518.4
1.0 1575.1 1569.9 1542.8 1543.2 1586.7 1523.5 1516.6 1544.5 1496.1 1468.2 1413.3 1525.4

Average 1540.1 1548.4 1543.0 1543.9 1553.0 1483.7 1480.2 1479.7 1482.0 1448.4 1378.8
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