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Exact Methods for Defects in Conformal Field Theory

by Adam Chalabi

The defect operators admitted by a given quantum field theory (QFT) contain crucial
information. E.g in 4d gauge theories some defects play the role of order parameters,
classifying phases of the theory. Defects are also omnipresent in real-world
laboratories. E.g. real systems typically have impurities and defects, which may
change their properties. Since QFT can be used to describe such systems in the
continuum limit, it is essential to systematically understand defects in QFT.

This thesis explores defects in d-dimensional conformal field theories (CFT). CFTs
arise naturally at fixed points of renormalisation group (RG) flows and describe real
physical systems at criticality. We focus on p-dimensional defects, with p ≤ d − 1, that
preserve some of the system’s conformal invariance. Conformal defects give rise to
defect-localised contributions to the CFT’s Weyl anomaly. Their coefficients are often
called defect central charges. They control many physical observables, and obey
interesting bounds, constraints, and relations, partially characterising the defect.

We report novel and original results about conformal defects and their central charges
across dimensions. Our results are exact and apply to large classes of defects. Firstly,
we determine the form of the defect Weyl anomaly of a p = 4 conformal defect in a
CFT of arbitrary co-dimension q = d − 4. We show how some of the new defect central
charges appear in physical observables, and discuss bounds that they need to obey.

We then illustrate these results with a set of simple, yet non-trivial, examples of
defects in free CFTs. Using existing methods available in free field theories, we
compute various correlation functions exactly for arbitrary p, and demonstrate how to
extract defect central charges when p = 2 and p = 4. Moreover, we study novel defect
RG flows which are found to obey monotonicity theorems.

Finally, we develop novel techniques to compute central charges for superconformal
defects in a large class of interacting superconformal field theories. Our methods rely
on supersymmetric localisation, and thus are non-perturbative in the coupling
constants. We illustrate our techniques in numerous examples.
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Chapter 1

Motivation

Since its inception, quantum field theory (QFT) has proven to be an incredibly
powerful tool. Arguably the most celebrated QFT is the Standard Model of particle
physics, which provides the best description of all fundamental forces except gravity.
However, QFT is more than just a tool to compute cross sections of particle decays. It
has found numerous applications. E.g. QFT describes many-body systems in the
continuum limit. It is thus of immense importance in condensed matter physics, and
can be used to describe superconductivity, Luttinger liquids, quantum Hall physics,
and many more systems, see e.g. [6]. In the context of cosmology, QFT is used to
describe primordial fluctuations which give rise to the large-scale structures we see in
the sky via inflation. QFT also underpins string theory, a consistent theory of quantum
gravity. Moreover, certain QFTs are intricately related to beautiful pieces of
mathematics, including knot theory [7], Morse theory [8], and category theory [9, 10],
to name a few. Together with string theory, it has also spurred new advances in
mathematics, sometimes proving long-standing conjectures, e.g. in the context of the
geometry and topology of various types of manifolds [11–14], quantum groups [15],
moonshine theory [16], and the geometric Langlands programme [17].

Famously, QFT is plagued by pesky infinities which arise from very high and very low
energy modes. The latter, so-called infra-red (IR) divergences can be avoided if the
theory is put on a compact space as the wavelength of a particle can no longer become
infinitely large. High energy, or ultra-violet (UV) divergences are more persistent. To
deal with them, one may e.g. impose a hard cut-off, i.e. only keeping modes up to a
certain energy scale. From a Wilsonian point of view, a QFT is an effective theory with
an associated Lagrangian, valid up to some cut-off scale associated with the
emergence of new physics. As one lowers the cut-off scale by performing the path
integral over modes with energies between the old and new cut-offs, the coupling
constants in the QFT change, or ‘run’. Equivalently, this can be thought of as a
coarse-graining of the description as one lowers the energy scale. This running of
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couplings is called a renormalisation group (RG) flow. Depending on the type of
interactions, some coupling constants will become large as the cut-off is lowered.

This poses a challenge for theorists. Despite its vast applicability, there is a limited set
of techniques to compute physical observables of a given QFT. For weakly-interacting
QFTs one can work with the Lagrangian and use perturbation theory in the coupling
constants. However, at strong coupling the Lagrangian is less useful, and QFT
becomes difficult. This lack of tools is problematic as many fundamental theories of
nature are strongly coupled in certain regimes. One such theory is quantum
chromodynamics (QCD), which describes the constituents of subatomic particles as
part of the Standard Model, and is an example of a gauge theory. QCD is
asymptotically free, i.e. it is strongly coupled at low energies. Arguably the best one
can do is to put the theory on a lattice. Numerical methods can then be used to make
theoretical predictions, e.g. for the masses of light hadrons [18]. However, lattice
methods come with their own set of limitations, e.g. they cannot simulate any
dynamical real-time processes. A building block of QCD is Yang-Mills (YM) theory,
which shares its asymptotic freedom. It is unknown whether this simple theory has a
mass gap, i.e. whether the lightest particles are massive. Lattice simulations suggest it
does, however, no formal proof exists. Establishing such a proof and showing that YM
theory can be made mathematically rigorous is one of the unsolved Millennium Prize
Problems in mathematics.

In the absence of generic analytic tools at strong coupling, one may wonder whether
general principles may guide us towards a better understanding of QFT, including in
the strong coupling regime. The uselessness of a Lagrangian description at strong
coupling suggests that the information that uniquely characterises a QFT may be
encoded differently. In some sense, this information should play the role of
coordinates in an abstract space of QFTs. General principles may then impose
constraints on this information, carving out regions of consistent theories in this larger
space of QFTs, and may even lead to a classification scheme for QFTs.

Symmetries are essential tools for characterising and classifying QFTs. In particular, in
any local, unitary QFT in d dimensions, Noether’s theorem for the Lorentz group
requires the existence of a symmetric, conserved stress tensor, Tµν = Tνµ and
∂µTµν = 0, with µ, ν = 1, 2, . . . , d. In this sense, Tµν is universal: we can always
characterise a local Lorentz-invariant QFT, in part, via correlations of Tµν with itself
and other operators.

A particularly powerful symmetry is supersymmetry (SUSY), an extension of the
usual Poincaré algebra to include fermionic generators. Currently, there are no
experimental indications that SUSY is realised in our universe. If it exists, it must be
broken at energy scales accessible to current experiments. Nonetheless, it is of
immense use to theorists. SUSY provides a remarkable abundance of tools for certain
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toy models of the QFTs describing nature. E.g. SUSY allows for determination of the
IR dynamics of some asymptotically free QFTs [19, 20], and for exact computation of
certain quantities [21–24]. This makes supersymmetric QFTs (SQFTs) excellent
laboratories for theorists.

Conformal symmetry is yet another extension of the Poincaré group. Conformal
symmetry includes invariance under scale transformations. In nature, scale and
conformal invariance arise naturally at phase transitions and critical phenomena.
QFTs that enjoy invariance under the conformal group are called conformal field
theories (CFTs). Famously, the Ising model of ferromagnetism at criticality is
described by a CFT in d = 2, 3. In string theory, a 2d CFT provides the underlying
description of a string propagating in spacetime.

More abstractly in QFT, scale invariance appears at the fixed points of RG flows. In
unitary QFTs, this typically enhances to invariance under the full conformal group.
This makes CFTs natural starting points for characterising and classifying QFTs.
Moreover, in a local, unitary CFT, conformal symmetry fixes the correlation functions
of all local operators in terms of the two- and three-point functions of a subset of local
operators, called conformal primaries. Specifically, conformal symmetry fixes the form
of correlation functions of primaries, which in turn determine correlation functions
involving their conformal descendants. This dramatically simplifies the problems of
characterisation and classification for CFTs, and the QFTs connected to them via RG
flows.

Classically, conformal invariance ensures that the stress tensor of a CFT has vanishing
trace, Tµ

µ = 0. In the quantum theory, this translates to a Ward identity whereby
Tµ

µ = 0 inside correlation functions away from other operator insertions. On a curved
background, Tµ

µ = 0 classically but not necessarily in the quantum theory. Indeed, it
is an important property of CFTs in even dimensions that scale invariance is broken by
quantum effects when the theory is placed on a curved metric background. This
breaking is captured by the Weyl anomaly. It states that the trace of the stress tensor
must be given by scalar invariants of the background fields, including curvature
invariants of the metric, multiplying the identity operator.

The coefficients of these invariants are often called central charges. They are important
pieces of information about the CFT and control various physical quantities, including
the thermodynamic entropy in d = 2 [25, 26] and the entanglement entropy
(EE) [27–30]. Moreover, the 2- and 3-point functions of Tµν are fixed (in part) by Weyl
anomaly coefficients when d ∈ 2Z. Importantly, some central charges obey positivity
constraints and/or must decrease along RG flows from an UV to an IR fixed
point [31–34, 34–40]. These co-called c-theorems rely only on generic principles, like
locality, Lorentz invariance, and unitarity, making them powerful non-perturbative
constraints on QFTs. The decreasing quantities provide a measure of the number of
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degrees of freedom (DOF) of a QFT, which we expect to decrease along an RG flow, as
massive modes decouple. Most importantly for characterisation and classification,
c-theorems impose irreversibility along RG flows, providing a hierarchical order
among QFTs, with CFTs occupying privileged places in the space of QFTs.

QFTs allow for deformations by extended operators, called defects, which enrich the
dynamics and extend the algebra of local operators. It is common to also include
boundaries in the discussion of defects as a boundary of a QFT can be considered as a
special case of an interface between a QFT and a trivial or topological QFT. Boundaries
and defects are ubiquitous in physics. E.g. in string theory, strings can end on defects
in spacetime, called branes. Heuristically, strings may tug and pull on these branes
giving rise to local excitations of this defect. The dynamics of these branes in the IR are
naturally described by QFT. Branes in string theory may end on other branes, or
intersect with one another, naturally giving rise to boundaries or defects in the
low-energy QFT description of each brane’s excitations. This suggests that defects are
a fundamental ingredient of QFT.

Defects also play a fundamental role in more traditional fields of physics. E.g. any
experiment is necessarily performed on a system of finite size. In the presence of a
boundary, a physical system can have interesting dynamics confined to its surface.
E.g. topological insulators are insulating in their interior but can support electric
currents on their surface. Impurities in materials can be thought of as higher
co-dimension defects. E.g. the Kondo effect describes the change of electrical
resistivity with temperature of a metal in the presence of magnetic impurities. In fact,
the Kondo problem and the study of impurities were instrumental in the development
of the RG, see e.g. the review [41]. Since QFT can be used to describe various
condensed matter systems in the continuum limit, it is crucial to gain a better
understanding of boundaries and defects in QFT. This includes the development of
tools as well as a more formal exploration of defects.

Indeed, defects are essential for understanding the complete spectra of QFTs, and it
has been suggested recently that defects may provide a basis for a more robust
classification scheme of QFTs and phases of matter [42–45]. E.g. in gauge theories, line
operators are crucial for classifying the QFT’s vacua, and for distinguishing gauge
theories with the same gauge algebras but different gauge groups [43]. Similarly,
higher-dimensional defects can be crucial for classifying vacua, for example by
providing order parameters that can detect whether higher-dimensional objects, such
as strings, have condensed. Co-dimension one defects, also known as interfaces or
domain walls, can provide natural maps between QFTs related by dualities, RG flows,
and other transformations.

A defect in QFT necessarily breaks translational symmetry in directions normal to the
submanifold on which it is supported, so that Tµν is no longer conserved. Indeed, now
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∂µTµi = δ(q) Di, where δ(q) is a delta function that localises to the defect in the q
directions normal to the defect, and Di is the displacement operator. The displacement
operator is a defect-localised scalar, and is a vector in the normal directions, labelled
by the index i = p + 1, . . . , d. In correlation functions, the insertion of Di acts as a local
geometric deformation of the defect, which “displaces” a point on the defect in a
normal direction, hence its name. Since it descends from the stress tensor of the
ambient theory, the displacement operator is itself universal in the defect spectrum: we
can always characterise a local QFT with a defect, in part, via correlations of Di with
itself and other operators.

In generic QFTs, defects remain poorly characterised. However, much progress can be
made by imposing restrictive symmetries. In this thesis we will be interested in
conformal symmetry. A standalone CFT is invariant under the conformal group of d
dimensions. If a p-dimensional defect insertion or boundary preserves the conformal
group in p dimensions as a sub-group, the combined system is called a defect CFT
(DCFT) or boundary CFT (BCFT), respectively. As is the case with ordinary CFTs,
DCFTs and BCFTs are natural starting points for characterising and classifying defects.
In particular, they sit at the endpoints of RG flows, including those localised to the
defect or boundary, and those of the ambient QFT. Local correlators in a BCFT or
DCFT are completely determined by (1) the ambient CFT data, i.e. the spectrum of
primaries and their 3-point functions, (2) the spectrum of defect or boundary
primaries, whose 2- and 3-point correlators with one another are fixed by the defect or
boundary conformal symmetry up to a set of dimensionless coefficients, and (3), the
mixed 2-point functions of ambient and defect/boundary primaries. The study of
BCFT and DCFT has seen tremendous progress in recent years in a wide range of
contexts. See e.g. [46] for a survey.

In a DCFT or BCFT, the conformal symmetry preserved by the defect or boundary
requires Tµ

µ = 0. Much like CFTs, a DCFT or BCFT can exhibit a Weyl anomaly in
curved space and/or when the defect or boundary is curved. In contrast to the Weyl
anomaly in CFTs, now Tµ

µ ̸= 0 generically consists of contributions from both the
ambient CFT, when d is even, and from defect or boundary localised terms, which can
potentially be non-vanishing for both even and odd p. The coefficients of
defect/boundary Weyl anomalies define defect/boundary central charges that are
crucial for characterisation and classification. E.g. some defect central charges
determine the defect’s contribution to the EE [47–50]. However, relatively little is
known about defect central charges compared to their CFT counterparts. For instance,
they should determine many correlation functions involving Tµν and Di, but exactly
how has been determined only for a subset of them [51–54]. These results
subsequently imply positivity constraints for some defect central charges [50, 52]. A
defect/boundary c-theorem for arbitrary p and d has been proposed for RG flows
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localised to the defect/boundary [49], however, rigorous proofs have only appeared
for a subset of these [55–57].

For CFTs in d > 4, power counting forbids any interacting local Lagrangian, so naïvely
we expect the only local, reflection-positive d = 6 CFTs to be free, massless fields,
namely scalars, fermions, self-dual three-forms, and combinations thereof. However,
string theory has revealed that intrinsically strongly-interacting supersymmetric CFTs,
or superconformal field theories (SCFTs), exist in d = 6. Despite lacking a Lagrangian
description, all evidence to date suggests these SCFTs are local. These special
properties suggest d = 6 SCFTs may be “parent theories” that, upon compactification
and (super)symmetry breaking, give rise to many QFTs in lower d [58]. Moreover,
refs. [59–65] proposed a classification of 6d SCFTs, making them an especially
promising starting point for classifying QFTs. The 6d SCFTs with maximal SUSY are
especially challenging to study, being isolated, strongly-interacting fixed points, and
having no continuous free parameters. Very little is known about their local operator
spectrum. However, string theory arguments suggest that these theories admit
superconformal co-dimension two and four defect operators. Studying these defects
provides a direct path towards a better understanding of these SCFTs. It is likely that
some of these lessons will indicate a way towards the characterisation and
classification of QFTs more generally.

The work presented in this thesis aims to take a step towards this broad goal. The
scarcity of non-perturbative tools, however, makes it challenging to obtain exact
expressions for physical observables. Some of the techniques available in DCFT
include numerical [66–68] and perturbative [69] methods. By the celebrated anti-de
Sitter (AdS)/CFT correspondence [70], some CFTs are holographically dual to string
theory on AdS space in one dimension higher. Remarkably, this is a strong-weak
duality, meaning that a strongly coupled CFT has a dual weakly coupled gravitational
description. Conformal defects have been studied in this context, e.g. in
refs. [50, 71–73]. However, the correspondence typically assumes the existence of a
discrete parameter in the CFT, often called N, which is taken to be large. As a
consequence, results derived using the AdS/CFT correspondence are perturbative in
1/N.

The focus of this thesis will be on exact methods for DCFTs. The main subjects of
investigation are the defect central charges mentioned in the previous paragraphs. We
will derive novel universal results about a large class of defects. Some of these results
will be illustrated in examples of simple yet non-trivial conformal defects in free CFTs.
Using existing exact methods for free fields, we can determine various physical
properties of these defects. Beyond free fields, non-perturbative tools are limited.
They include the analytic conformal bootstrap, or require further symmetries. We will
take the latter approach and impose SUSY in addition to conformal invariance. We
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show how SUSY allows us to develop non-perturbative methods to compute defect
central charges exactly, without any limits or approximations.

This thesis is organised as follows. Chapters 2, 3, 4, and 5 contain condensed reviews
of CFT, DCFT, EE, and SUSY, respectively. We will be selective in our presentation,
and only introduce concepts that are required for the following chapters. Motivated
by the co-dimension two defect of the 6d SCFT with maximal SUSY, we study 4d
conformal defects in chapter 6. We derive the defect’s general contribution to the Weyl
anomaly, allowing the ambient CFT to have arbitrary dimension d ≥ 5. We then
determine how some of the defect central charges appear in flat and curved space
correlation functions of the stress tensor and the displacement operator. We also
determine the defect contribution to EE, and derive a novel constraint on one of these
defect central charges. In chapter 7, we study a simple co-dimension two defect in the
theories of a complex scalar field and a Dirac fermion. The defect under consideration
is constructed by introducing a monodromy in the ambient fields as they are rotated
around a distinguished submanifold of dimension p = d − 2. We use various free field
methods to compute correlation functions exactly. When the defect dimension
p = 2, 4, we show how defect central charges can be extracted from these correlation
functions. For p = 2, we can obtain all of them in this way. As a consistency check we
compute the defect contribution to the EE when p = 2. In chapter 8, we study defects
in SCFTs. We argue that central charges of 2d defects must appear in SUSY partition
functions on backgrounds of the type Sd and S1 × Sd−1. Using a non-perturbative
method called SUSY localisation [23, 24], these partition functions are exactly
computable. We introduce new methods to extract these central charges without
approximations. Our methods are broadly applicable, and we illustrate them in a
number of examples of 4d and 6d SCFTs, including the 2d and 4d defects of the 6d
SCFT with maximal SUSY. Finally, we make a few concluding remarks in chapter 9.
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Chapter 2

Conformal Field Theory in d > 2

In this section we review CFT in d > 2. The case of d = 2 is special as the (local)
conformal algebra is the infinite-dimensional Virasoro algebra, which contains the
global conformal group as a subalgebra. The discussion below applies to the global
subalgebra.

This section is a lightning review of standard textbook material. We found the
following references useful in writing this section: [74–80]. We will assume Euclidean
signature throughout, unless stated otherwise.

2.1 Conformal symmetry

A conformal transformation is a diffeomorphism x → x′(x) that leaves the metric gµν

invariant up to a scale

g′µν(x′)= gρσ(x)
∂xρ

∂x′µ
∂xσ

∂x′ν
= Λ2(x′)gµν(x′) , (2.1.1)

where Λ(x) is a position-dependent scale factor, and µ = 1, . . . , d. Under an
infinitesimal coordinate transformation generated by a vector ϵµ, such that
xµ → x′µ = xµ + ϵµ(x), metric invariance up to a scale translates to the following
condition

Dµϵν(x) + Dνϵµ(x) = −2σ(x)gµν(x) =
2
d

D · ϵ(x) gµν(x) , (2.1.2)

where D is the Levi-Civita connection and Λ(x) = eσ(x). The final equality follows
from tracing the first equality, solving for σ(x) and substituting it back into the
equation. In Euclidean space with Cartesian coordinates, this reduces to

∂µϵν(x) + ∂νϵµ(x) =
2
d

∂ · ϵ(x) δµν . (2.1.3)
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It is straightforward to show that this condition only has the following solutions:

ϵµ = aµ , (2.1.4a)

ϵµ = ωµνxν , (2.1.4b)

ϵµ = λxµ , (2.1.4c)

ϵµ = 2(x · b)xµ − bµx2 , (2.1.4d)

where a and b are constant vectors, ω is an anti-symmetric matrix with constant
entries, and λ is a constant. The first two transformations correspond to ordinary
translations and rotations. The third transformation implements a dilatation, whereas
the fourth one is called a special conformal transformation. It can be thought of as an
inversion xµ → xµ/x2, followed by a translation by −b, followed by another inversion.

The infinitesimal conformal transformations can be exponentiated to give finite
transformations. The only non-trivial ones are the special conformal transformations,
which are given by

x′µ = β(x)(xµ − bµx2) , β(x) =
1

1 − 2b · x + b2x2 . (2.1.5)

A general conformal transformation has the following Jacobian

∂x′µ

∂xν
= Λ(x)Rµ

ν(x) , (2.1.6)

where Rµ
ν is a position-dependent SO(d) rotation matrix, i.e. a conformal

transformation is a local rescaling and rotation. The metric then transforms as in
eq. (2.1.1).

Invariance of the action I under (infinitesimal) conformal transformations ensures that
there exists an improved stress tensor which obeys

∂µTµν = 0 , Tµν = Tνµ , Tµ
µ = 0 (2.1.7)

on-shell, see e.g. ref. [79].1 Via Noether’s theorem, translations, rotations, dilatations,
and special conformal transformations give rise to conserved currents

(jν
P)

µ = Tµν , (jνρ
M)µ = xνTµρ − xρTµν , (jD)µ = xνTµν , (jν

K)
µ = x2Tµν − 2xνxρTµρ ,

(2.1.8)

1We assumed the existence of an action for convenience but this is not a requirement. Indeed, some of
the CFTs that we will consider in this thesis do not have a (known) Lagrangian description. However, if
the CFT is sufficiently local (and non-topological), it will have a spin-two local operator with the properties
in eq. (2.1.7). For all CFTs (without defects), we will always assume the existence of a local stress tensor.
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respectively, where Tµν is the improved symmetric and conserved (on-shell) stress
tensor.2 The associated charges generate the conformal algebra

[D, Pµ] = iPµ , (2.1.9a)

[D, Kµ] = −iKµ , (2.1.9b)

[Kµ, Pν] = 2i(ηµνD − Mµν) , (2.1.9c)

[Kρ, Mµν] = i(ηρµKν − ηρνKµ) (2.1.9d)

[Pρ, Mµν] = i(ηρµPν − ηρνPµ) (2.1.9e)

[Mµν, Mρσ] = i(ηνρ Mµσ + ηµσ Mνρ − ηµρ Mνσ − ηνσ Mµρ) . (2.1.9f)

Note that the generators Mµν form the Lorentz algebra so(d) in Euclidean signature
(or so(d − 1, 1) in Lorentzian signature) as a subalgebra of the conformal algebra. The
conformal algebra itself can be shown to be isomorphic to so(d + 1, 1) in Euclidean
signature (or so(d, 2) in Lorentzian signature). Let M̃I J be the generators of
so(d + 1, 1), where I, J = 0, 1, . . . d + 1. The generators for (I, J) = (µ, ν) are identified
with the so(d) Lorentz generators Mµν. M̃0(d+1) is identified with D, whereas M̃µ0 and
M̃µ(d+1) are identified with the linear combinations 1

2 (P + K)µ and 1
2 (P − K)µ. This

algebra exponentiates to the Euclidean conformal group SO(d + 1, 1) (or SO(d, 2) in
Lorentzian signature).

The emergence of SO(d + 1, 1) suggests that one should consider its action on Rd+1,1

rather than the physical spacetime R. In fact, SO(d + 1, 1) acts naturally on the space
of light-rays through the origin of Rd+1,1, and Rd can be obtained as a section of the
lightcone. This gives rise to the embedding space formalism in CFT, which is a
powerful formalism that makes the kinematical constraints of conformal symmetry
easier to implement on correlation functions. See e.g. [75, 81] for an introduction.

2.2 States and operators

In a quantum theory, operators sit in representations of the global symmetries. In
Lorentz-invariant QFT, local operators at the origin are in representations of the
Lorentz group SO(d). In a scale-invariant theory, it is convenient to also diagonalise
the dilatation operator D, such that local operators also carry a label ∆, called the
scaling dimension.

2In theories that are only Poincaré and scale invariant, dilatations are necessarily constant. Under a
constant dilatation σ, the action I changes like δI = −

∫︁
σδµνTµν. Requiring that the action is invariant

under constant dilatations implies that Tµ
µ = ∂µVµ for some current Vµ, often called the virial current.

The conserved dilatation current then is (jD)µ = xνTµν − Vµ. It is really the special conformal trans-
formations which allow for spacetime dependent dilatations. Invariance of the action can then only be
guaranteed if ∂µVµ = 0, i.e. Vµ is a conserved current, in which case Tµ

µ = 0.
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Consider a scalar operator O with scaling dimension ∆. Under a constant scale
transformation, it transforms as

O(x) → O′(λx) = Λ−∆O(x) . (2.2.10)

Conformal transformations, however, generically involve position-dependent scale
transformations, and it is not immediately obvious how to generalise the above
transformation rule eq. (2.2.10). A scalar operator O is said to be primary if it
transforms homogeneously,

O(x) → O′(x′) = Λ(x)−∆O(x) , (2.2.11)

under a general conformal transformation. The scale factor Λ is the one appearing in
eq. (2.1.6). Note that ∂µO∆ cannot transform homogeneously, as it will pick up
contributions involving ∂µΛ(x).

By eq. (2.1.6), conformal transformations also involve rotations. An operator O in an
n-dimensional representation ρ of the Lorentz group SO(d) and with scaling
dimension ∆ is said to be primary if it transforms as

Oα(x) → O′
α(x′) = Λ−∆(x)ρ[Rµ

ν(x)]αβOβ(x) , (2.2.12)

where α, β are representation indices and ρ[Rµ
ν(x)]αβ is the n × n matrix

representative of Rµ
ν(x), i.e. it implements the action of Rµ

ν(x) in the SO(d)
representation ρ. E.g. for an operator in the vector representation,
O′

µ(x′) = Λ−∆(x)Rν
µ(x)Oν.

Using the infinitesimal coordinate transformations in eq. (2.1.4), one finds the
following action of the conformal charges on primary fields

[Pµ,O(x)] = −i∂µO(x) (2.2.13a)

[Mµν,O(x)] = −i(Σµν − xµ∂ν + xν∂µ)O(x) (2.2.13b)

[D,O(x)] = −i(∆ + xµ∂µ)O(x) (2.2.13c)

[Kµ,O(x)] = −i
(︁
2xµ∆ + 2xνΣνµ + 2xµxν∂ν − x2∂µ

)︁
O(x) , (2.2.13d)

where we suppressed the SO(d) representation indices. The n × n matrix (Σµν)α
β

satisfies eq. (2.1.9f) and implements an infinitesimal SO(d) transformation. E.g. in the
vector representation, (Σµν)α

β = δµαδ
β
ν − δ

β
µδνα. If the primary is inserted at the origin,

then [Kµ,O(0)] = 0, which may be regarded as the defining property of a primary.
From the algebra eq. (2.1.9), it is clear that the translation generators Pµ raise the
dimension by 1 whereas the special conformal generators Kµ lower it by 1. Therefore,
from each primary operator one can construct operators of higher scaling dimension
by repeatedly acting with Pµ. Such operators are called descendants.
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τ r

FIGURE 2.1: Left: Illustration of quantisation on spatial slices. The Euclidean time
coordinate τ ∈ [−∞,+∞] extends along the vertical axis. Dashed lines are hypersur-
faces of constant τ. Right: Illustration of radial quantisation. The radial coordinate
r = |x| plays the role of time. Dashed lines are hypersurfaces of constant r ∈ [0,+∞].
Note that the Hilbert spaces associated with the spatial slices in the two quantisation
schemes are different, however, there exists an isomorphism between them. In partic-

ular, the two Hilbert spaces have the same dimension.

In QFT, one associates a Hilbert space with each spatial slice in a foliation of
spacetime. Usually, one picks spatial slices, and the generator of (Euclidean) time
translations plays the role of the Hamiltonian. In Euclidean CFT, it is more convenient
to pick a radial foliation around a distinguished point, typically the origin x = 0. One
then quantises radially around this point, with the dilatation generator D playing the
role of the Hamiltonian. See figure 2.1 for an illustration of the two quantisation
choices. We will work in radial quantisation henceforth.

States form irreducible representations of the conformal algebra, and they are labelled
by the scaling dimension ∆ and their spin J,

D|∆, J⟩ = −i∆|∆, J⟩ , Mµν|∆, J⟩ = −iΣµν|∆, J⟩ . (2.2.14)

Consider an operator O∆,J with scaling dimension ∆ and spin J. One can then create
an initial state |∆, J⟩ from the vacuum |0⟩ as follows

|∆, J⟩ = O∆,J(0)|0⟩ . (2.2.15)

This so-called in-state can then be evolved to a later slice via Hamiltonian evolution.

Our choice of quantisation comes with a notion of Hermitean conjugation. In radial
quantisation for real O∆,J ,3 Hermitean conjugation can be identified with an inversion

3A real operator in Euclidean signature is the analogue of a Hermitean operator in Lorentian QFT. For
a complex operator, O† = O∗.
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xµ → x′µ = xµ

x2 , such that

Oµ1 ...µJ
∆,J (xµ)† = Iµ1

ν1(x) . . . IµJ
νJ (x)|x|−2∆Oν1...υJ

∆,J

(︃
xµ

x2

)︃
, (2.2.16)

where ∂x′µ
∂xν = |x|−2

(︂
δ

µ
ν − 2xµxν

x2

)︂
≡ |x|−2 Iµ

ν(x).4 An out-state is then defined as

⟨∆, J| = ⟨0|O∆,J(0)† = lim
y→∞

|y|2∆⟨0|O∆,J(y) . (2.2.17)

Note that the factor of |x|−2∆ in eq. (2.2.16) ensures that the norm of a state, i.e. the
inner product of an in-state |∆, J⟩ with the associated out-state ⟨∆, J| is well-defined.
Hermitean conjugation exchanges in and out states, and thus the roles of origin and
infinity. Since the conformal generators Pµ and Kµ fix the point at infinity and the
origin, respectively, they must be interchanged under Hermitean conjugation:

P†
µ = Kµ , M†

µν = Mµν , D† = −D , K†
µ = Pµ . (2.2.18)

Radial quantisation allows for a one-to-one correspondence between states and local
operators in CFT, known as the state-operator correspondence. A local operator
inserted at the origin trivially maps to a state on a radial slice surrounding it via
Hamiltonian evolution, or equivalently by performing the path integral on the region
enclosed by the spatial slice. We have assumed this direction in writing eq. (2.2.15). In
a CFT, one may also go the other way. To define a local operator, one needs to specify
its correlation functions with other local operators. Given eigenstates of the dilatation
operator |O∆i⟩, one can define a correlation function by excising spherical regions and
assigning a state |O∆i⟩ to the boundary of each ball, and performing the path integral
outside. The spheres can then be brought arbitrarily far apart by a dilatation. This
defines a correlator of local operators, and one can show that it respects conformal
invariance.

Conformal primary operators at the origin are annihilated by K. By the state operator
correspondence, one may equivalently think of primary states

Kµ|∆, J⟩ = 0 , D|∆, J⟩ = −i|∆, J⟩ , Mµν|∆, J⟩ = −iΣµν|∆, J⟩ . (2.2.19)

In a reflection-positive QFT, the Hamiltonian must be bounded from below.5 In radial

4Under an appropriate conformal transformation, the standard notion of Hermitiean conjugation of a
CFT on the cylinder quantised on spatial slices maps to inversion in a radially quantised CFT in flat space,
see e.g. ref. [78], thus justifying the above identification.

5Reflection positivity is the Euclidean analogue of Lorentzian unitarity, ⟨ψ|ψ⟩ ≥ 0 for any state |ψ⟩. By
the Osterwalder-Schrader reconstruction theorem [82], a collection of reflection-positive Euclidean corre-
lation functions can be analytically continued to unitary correlation functions in a Lorentzian QFT under
certain technical assumptions. Ref. [83] recently proved this statement for CFT 2-, 3-, and 4-point functions
assuming only Euclidean CFT axioms. In particular, their work relies on the convergence of the Euclidean
operator product expansion (OPE), which will be introduced in section 2.3.
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quantisation, the Hamiltonian is identified with the dilatation operator. This implies
that reflection-positive representations must be of lowest-weight type. The conformal
primary is the lowest weight since it is annihilated by Kµ, and the other weights in the
module are obtained by acting with an arbitrary number of Pµ’s. In fact, one can do
even better: reflection positivity/unitarity imposes bounds on the scaling dimensions
of primary operators. E.g. for a primary state |∆⟩ ≡ |∆, J = 0⟩,

|Pµ|∆⟩|2 = ⟨∆|KµPµ|∆⟩ = 2∆ ≥ 0 (2.2.20)

for fixed µ. Thus, ∆ ≥ 0. When d > 2, this bound can in fact be strengthened by
considering the norm of P2|∆⟩ to show that reflection positivity implies that primary
operators have ∆ = 0 or ∆ ≥ d−2

2 . The unique operator with ∆ = J = 0 is the identity
operator 1. For non-zero spin J, a similar argument shows that ∆ ≥ J + d − 2 in a
reflection-positive theory, see e.g. ref. [78] for a derivation. Note that conserved
currents saturate the unitarity bounds. E.g. the stress tensor Tµν is a primary with
∆ = d and J = 2.6

2.3 Correlation functions and CFT data

Conserved currents in classical field theory give rise to Ward identities in QFT. Inside
correlation functions, the currents are conserved away from other operator insertions.
For jν

P, jνρ
M and jD defined in eq. (2.1.8) one finds the following Ward identities

⟨∂µTµ
ν(x)O1(x1) . . .On(xn)⟩ = −

n

∑
i=1

δ(x − xi)
∂

∂xν
i
⟨O1(x1) . . .On(xn)⟩ , (2.3.21a)

⟨(Tµν − Tνµ)(x)O1(x1) . . .On(xn)⟩ = −
n

∑
i=1

δ(x − xi)Σ
µν
i ⟨O1(x1) . . .On(xn)⟩ , (2.3.21b)

⟨Tµ
µ(x)O1(x1) . . .On(xn)⟩ = −

n

∑
i=1

δ(x − xi)∆i⟨O1(x1) . . .On(xn)⟩ , (2.3.21c)

where Σµν
i is the rotation matrix in the representation of Oi. See e.g. ref. [74] for a

derivation. Note in particular that Tµ
µ = 0 away from other operator insertions.

Let us now consider the constraints of conformal invariance on correlation functions
of primary operators. This is often called kinematics in the literature. The simplest
correlation function is the one-point function. By Lorentz invariance, only scalar
operators can acquire one-point functions. Translational invariance implies that such a
one-point function must be constant. Scale invariance then fixes this constant to zero
unless the operator has ∆ = 0. Thus, the only operator which can acquire a non-zero

6In 2d CFT, the stress tensor is a Virasoro descendant of the identity. It is not a descendant under the
global conformal algebra.
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one-point function is the identity. It is convenient to normalise the path integral such
that ⟨1⟩ = 1.

Conformal invariance fixes the form of the two-point function in a CFT. For scalar
primary operators, invariance under translations, rotations, and dilatations fixes

⟨O1(x)O2(y)⟩ ∝ |x − y|−∆1−∆2 . (2.3.22)

Invariance under special conformal operators then implies that the two-point function
vanishes unless ∆1 = ∆2. By choosing an orthonormal basis of primary operators, the
constant of proportionality can be set to 1 for the two-point function of conjugate
operators, and zero otherwise.

Two-point functions of spinning primary operators are more involved. E.g. the
two-point function of spin J = 2 primaries with scaling dimension ∆ is

⟨Oµν
1 (0)Oρσ

2 (x)⟩ = c12
Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)− 2

d δµνδρσ

|x|2∆ , (2.3.23)

where Iµν(x) was defined below eq. (2.2.16), and c12 can be set to 1 or 0 by a suitable
choice of basis. Note that the tensor structures are consistent with Oµ

1,2µ = 0. When
Oµν is the stress tensor Tµν, the normalisation contains physical information. There is
a canonical choice which ensures that the Noether charges of conformal symmetry, i.e.
the conformal generators, are correctly normalised. By reflection-positivity, the
coefficient of the two-point function c12 = cT must be positive semi-definite.

The three-point function is the first correlation function whose coefficient(s) cannot be
normalised away. They are said to contain dynamical information. E.g. the correlation
function of three scalar primaries is

⟨O1(x1)O2(x2)O3(x3)⟩ =
λ123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
, (2.3.24)

where xij ≡ xi − xj. Three-point functions of spinning correlators can have multiple
tensor structures, each appearing with their own coefficient. They are most easily
dealt with in the embedding space formalism where conformal symmetry acts
linearly, see e.g. [78].

Four- and higher-point functions have non-trivial dependence on the positions of the
operator insertions. They can depend on conformally invariant scalar combinations of
points, called cross ratios. Correlation functions depend on these cross ratios through
known functions. Remarkably, these functions only depend on the scaling
dimensions, spins, and three point-functions of the operators in the CFT. The spectrum
of local operators and their three-point functions is commonly referred to as CFT data.
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To demonstrate this, it is useful to introduce the operator product expansion (OPE).
Consider two operators O1(x1),O2(x2) inserted inside a spherical region centred on
O2(x2). The path integral inside this region with the operator insertions defines a state
on the sphere surrounding the operators. By the state-operator correspondence, this
state defines a local operator at point x2. Since every local operator in a CFT is a linear
combination of primaries and descendants, one can write

O1(x1)O2(x2) = ∑
k

C12k(x12, ∂(x2))Ok(x2) , (2.3.25)

where the sum runs over all conformal primaries Ok,7 and C12k are differential
operators which take into account the contributions of the descendants of Ok. The
form of the Cijk is fixed by conformal symmetry up to an overall coefficient, called the
OPE coefficient, and depends on the scaling dimensions and spins of the operators
involved. We have suppressed spin indices for readability.

The OPE is an operator equation that holds inside correlation functions. By applying it
inside the three point function ⟨O1O2O3⟩ (and assuming an orthonormal basis for the
two-point function of primaries), the OPE coefficients are fixed in terms of the
coefficient(s) of the three-point function λ123. More generally, an n-point function
decomposed as a sum of (n − 1)-point functions

⟨O1(x1)O2(x2) . . .On(xn)⟩ = ∑
k

C12k⟨Ok(x2) . . .On(xn)⟩ . (2.3.26)

Iterating the procedure, one finds that there is no new data in the higher-point
functions: all the dynamical information is in the three-point functions. Together with
the scaling dimensions of local operators, they determine all higher-point correlation
functions.

The OPE can be applied to pairs of operators inside correlation functions in different
orders, leading to different decompositions. However, the correlator cannot depend
on the order in which the OPE is taken, i.e. the OPE must be associative. E.g. the
four-point function can be decomposed in the following ways, which must be equal
by associativity

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ = ⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ , (2.3.27)

7This sum turns out to be convergent in CFT. The radius of convergence is given by the radius of the
largest sphere that surrounds both O1 and O2, and no other operators. See e.g. ref. [84] as well as ref. [85]
for a more comprehensive discussion.
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where the square brackets denote replacement with the OPE. This can be recast as an
equation on the OPE coefficients

∑
k

C12k(x12, ∂(x2))C34k(x34, ∂(x4))⟨Ok(x2)Ok(x4)⟩

= ∑
k

C14k(x14, ∂(x4))C23k(x23, ∂(x3))⟨Ok(x3)Ok(x4)⟩ .
(2.3.28)

Substituting the two-point functions and effecting the derivatives inside Cijk, one finds
two different decompositions of the four-point function. Each term contains two
factors of λ multiplying a function of cross ratios, called a conformal block. The two
different conformal block expansions must be equal by associativity of the OPE. This
condition is called the crossing equation. It is a highly non-trivial consistency
condition that any set of scaling dimensions, spins and three-point functions must
satisfy to define a CFT. The goal of the conformal bootstrap programme is to carve out
the space of allowed CFT data inside the space of all parameters using these
consistency conditions. One can show that it is sufficient to impose associativity of the
OPE on the four-point functions. No new constraints appear for higher-point
functions, see e.g. ref. [75] for a diagrammatic argument. Thus, by solving the crossing
equation of sufficiently many four-point functions of primary operators, one hopes to
constrain the allowed CFT data to a point in parameter space, thus, solving the theory.
For a discussion of recent progress, see e.g. [86, 87] and refs. therein.

2.4 Curved background

So far we have considered CFTs on Rd. We can put the theory on a curved background
by turning on a non-trivial background metric gµν. We denote the resulting
Riemannian manifold (M, g). Note that the metric is treated as classical, i.e. it is
non-dynamical and not integrated over in the path integral.

We will be interested in QFTs on non-trivial metric backgrounds that have Weyl
invariance. Under a Weyl transformation,

gµν(x) → g′µν(x) = Ω2(x)gµν(x) , (2.4.29)

or infinitesimally
δgµν(x) = 2gµν(x)δω(x) . (2.4.30)

This is a local transformation with finite parameter Ω(x), and infinitesimal parameter
δω(x). It is a re-scaling of all lengths but not a coordinate transformation: unlike
eq. (2.1.1), the transformed metric still depends on coordinates x, and not x′.

Consider a classical action I, which is a functional of some fields Ψi and the metric gµν.
On a curved background, the stress tensor is defined as the response to a small metric
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perturbation

Tµν = − 2
√

g
δI

δgµν
(2.4.31)

It is symmetric by construction and covariantly conserved when the matter fields are
on-shell by diffeomorphism invariance.

To couple spinors to a non-trivial background metric, one needs to introduce an
orthonormal frame eM = eM

µdxµ obeying

eM
µeN

νgµν = δMN , eM
µeN

νδMN = gµν . (2.4.32)

Its matrix inverse is eM
µ = δMN gµνeN

ν. The covariant derivative acting on a spinor
then acquires an additional term involving the spin connection ωM

N = ωM
Nµdxµ,

which depends on eM and its first derivative.8 The stress tensor is defined as

Tµ
M = −1

e
δS

δeM
µ

, (2.4.33)

where e = det eM
µ, from which one can build the symmetric stress tensor

Tµν =
1
2
(Tµ

MeMν + Tν
MeMµ) . (2.4.34)

For a diffeomorphism and Lorentz invariant action, the stress tensor is conserved, see
e.g. [88] for a proof.

A classical action I, which is a functional of some fields Ψi with scaling dimensions ∆i

and a metric gµν, is said to be Weyl invariant if I[Ω−∆i Ψi, Ω2g] = I[Ψi, g]. A simple
argument shows that Weyl, diffeomorphism and Lorentz invariant theories on curved
space become CFTs on flat space. For simplicity, assume that Ψi are scalars, so Lorentz
invariance is automatic. Let ϵµ be a vector field generating an infinitesimal
diffeomorphism. Then

∫︂
ddx

(︃
LϵΨi(x)

δ

δΨi(x)
+ (Dµϵν + Dνϵµ)(x)

δ

δgµν(x)

)︃
I[Ψi, g] = 0 , (2.4.35)

where Lϵ is the Lie derivative with respect to ϵ, Dµ is the Levi-Civita connection, and
we have used that the change in the metric under a diffeomorphism is
(Lϵg)µν = Dµϵν + Dνϵµ. If ϵ is a conformal Killing vector, i.e. Dµϵν + Dνϵµ = 2δω gµν,
then ∫︂

ddx
(︃
LϵΨi(x)

δ

δΨi(x)
+ 2δωgµν(x)

δ

δgµν(x)

)︃
I[Ψi, g] = 0 . (2.4.36)

8We assume that ωM
N is torsion-free.
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But Weyl invariance of I means

∫︂
ddx δω

(︄
−∑

i
∆iΨi(x)

δ

δΨi(x)
+ 2gµν(x)

δ

δgµν(x)

)︄
I[Ψi, g] = 0 . (2.4.37)

Thus, the infinitesimal diffeomorphism generated by the conformal Killing vector ϵµ

can be written as∫︂
ddx ∑

i
(LϵΨi(x) + δω∆iΨi(x))

δ

δΨi(x)
I[Ψi, g] = 0 . (2.4.38)

Taking gµν = δµν, this is simply the statement that under a conformal coordinate
transformation x′µ = xµ + ϵµ, the action is invariant if the field Ψi transforms with
scaling dimension ∆i under a conformal transformation with Λ = eδω. Thus, every
Weyl and diffeomorphism invariant action on curved space gives rise to a classical
CFT in flat space.

Going the other way requires care. E.g. a free scalar field ϕ on flat space is conformal.
Coupling it to a non-trivial background metric in a Weyl invariant way, requires an
additional term. The full action is

I[ϕ, g] =
1
2

∫︂
ddx

√
g
(︃
(∂ϕ)2 +

d − 2
4(d − 1)

Rϕ2
)︃

, (2.4.39)

where R is the Ricci scalar built out of the background metric gµν.

A theory with a classically Weyl invariant action I has a traceless on-shell stress tensor
and vice versa. For an infinitesimal re-scaling δω, eq. (2.4.37) becomes

0 =
∫︂

ddx δω

(︄
−∑

i
∆iΦi(x)

δI[Φi, g]
δΦi(x)

−√
gTµ

µ(x)

)︄
, (2.4.40)

Taking the matter fields on-shell, one finds Tµ
µ = 0.

In a full QFT, one defines the stress tensor as the response of correlation functions to
metric variations. Inside the path integral

∫︂
DΦ e−I[Φ,g]Tµν(x) . . . =

2
√

g(x)
δ

δgµν(x)

∫︂
DΦ e−I[Φ,g] . . . , (2.4.41)

where the ellipsis stands for other operator insertions. If the other operators are just
the identity, then

⟨Tµν(x)⟩ = − 2
√

g(x)
δW [g]

δgµν(x)
, (2.4.42)

where W = − log Z is the effective action, and correlation functions are normalised by
the partition function Z.
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2.5 Weyl anomaly

We saw that Weyl invariance leads to a classically traceless stress tensor. In QFT,
however, symmetries that are present in a trivial background may not be symmetries
of the theory on a generic background. Indeed, Weyl invariance is typically
anomalous in CFT leading to a non-zero trace of the stress tensor. Since the Weyl
anomaly will be a major focus of this thesis, we will review it in detail here.

A familiar example of an anomalous symmetry in a non-trivial background is the
chiral anomaly of a 4d free, massless Dirac fermion. This theory has two global
symmetries: a U(1)V vector and a U(1)A axial symmetry,

ψ → eiαV ψ , ψ → ψe−iαV , (2.5.43a)

ψ → eiγ5αA ψ , ψ → ψeiγ5αA , (2.5.43b)

where γ5 = −γ1 . . . γ4, γM satisfy the Dirac algebra
{︁

γM, γN}︁ = 2δMN , and αV,A are
symmetry transformation parameters for U(1)V,A. This theory has a mixed
vector-axial anomaly. The path integral is UV divergent and needs regulating.
Choosing a scheme that preserves U(1)V, the mixed anomaly can be written as

∂µ jµ
A =

1
16π2 ϵµνρσFµνFρσ , (2.5.44)

where jµ
A is the axial current and Fµν = ∂µ Aν − ∂ν Aµ for a classical background U(1)V

gauge field Aµ. This is an operator equation which holds inside correlation functions.
Notice that the axial current is conserved for a flat U(1)V background connection Aµ.
It is only in the presence of a non-trivial U(1)V background that charge conservation is
spoilt in a specific way. Such an anomaly is called an ’t Hooft anomaly. In this scheme,
U(1)V can be gauged by making the background gauge field Aµ dynamical. Indeed,
the anomaly eq. (2.5.44) persists and does not receive any radiative corrections. Had
we chosen a scheme in which the axial current was conserved but the vector current
was anomalous, then U(1)A can be gauged by making its gauge field dynamical.
However, both U(1)’s cannot be gauged simultaneously. In this sense, an ’t Hooft
anomaly is an obstruction to gauging a global symmetry. See e.g. [88, 89] for a detailed
discussion of anomalies.

In a similar way, Weyl symmetry may be anomalous on a curved background.9 To see
how this could come about, consider the stress tensor one-point function on a
background slightly perturbed away from the flat metric gµν = δµν + hµν. For

9Note that Weyl and ’t Hooft anomalies are qualitatively very different. We will comment more on
some of the differences and similarities in this section and again in section 5.3.
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simplicity, let d = 2. Then,

⟨Tµ
µ(x)⟩δ+h =

1
2

∫︂
d2y ⟨Tµ

µ(x)Tρσ(y)⟩δhρσ(y) +O(h2) . (2.5.45)

Given the two-point function of a spin J = 2 primary with ∆ = d = 2 in flat space
eq. (2.3.23), one would naively expect the right-hand side to vanish identically.
However, the y-integral is over all of spacetime, including the point y = x where the
operators become coincident and the two-point function clearly diverges. Therefore,
we should regularise the two-point function in an appropriate way before substituting
it in. Choosing to preserve diffeomorphism invariance, the unique way to regularise is
to write

⟨Tµν(x)Tρσ(y)⟩ = − cT

6
(∂

µ
x ∂ν

x − δµν∂2
x)(∂

ρ
y∂σ

y − δρσ∂2
y) log (m|x − y|) , (2.5.46)

where m is a constant. Using ∂2
x log (m|x − y|) = 2πδ2(x − y), integrating by parts

twice, and performing the y-integral, we find

⟨Tµ
µ(x)⟩δ+h =

cTπ

6
(∂µ∂ν − δµν∂2)hµν(x) , (2.5.47)

which is finite. Note that (∂µ∂ν − δµν∂2)hµν = R, the Ricci scalar of the Levi-Civita
connection Dµ, to leading order in h. This is manifestly diffeomorphism invariant.
However, diffeomorphism invariance came at the cost of the dimensionful constant m
breaking Weyl invariance. In 2d CFT, it is common to write the coefficient of the stress
tensor two-point function cT = c(2d)

4π2 such that the holomorphic stress tensor
T(z) = −2πTzz has two-point function ⟨T(z)T(0)⟩ = c(2d)/2

z4 . In terms of c(2d), the stress
tensor one-point function becomes

⟨Tµ
µ⟩ =

c(2d)

24π
R . (2.5.48)

This is the Weyl anomaly in d = 2 [90, 91]. Even though we only computed the
one-point function of the trace of the stress tensor, eq. (2.5.48) holds as an operator
statement inside correlation functions. On flat space, eq. (2.5.48) vanishes.
Nonetheless, flat space correlation functions involving Tµ

µ are modified. Indeed, the
regularised two-point function of the stress tensor with its trace can be written as

⟨Tµ
µ(x)Tρσ(y)⟩ = cTπ

3
(∂

ρ
y∂σ

y − δρσ∂2
y)δ

2(x − y) , (2.5.49)

which is a contact term.

On a general curved background, the Weyl anomaly appears in the Weyl variation of
the effective action

δωW = −
∫︂

ddx
√

g ⟨Tµ
µ⟩ δω . (2.5.50)
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It is useful to define the integrated anomaly

A =
∫︂

ddx
√

g ⟨Tµ
µ⟩ , (2.5.51)

such that by δω0W [g] = −A δω0 for a constant Weyl transformation δgµν = 2δω0 gµν.
In computing the effective action, one typically encounters divergences. On a compact
manifold, the characteristic length-scale L acts as an IR cut-off. The short-distance
divergent terms must be diffeomorphism invariant local functionals of the
background fields which can diverge no stronger than ϵ−d as the short-distance cut-off
ϵ → 0. If the metric is the only background field, then each power law divergent term
must be of the form ∫︂

ddx
√

g ϵ2k−dR̃(k) ∼
(︃

L
ϵ

)︃d−2k

, (2.5.52)

where k = 1, . . . ⌊ d
2⌋, and R̃(k) is a scalar built out of k Riemann tensors or pairs of

derivatives acting on the curvatures. Schematically,

W [g] = #
(︃

L
ϵ

)︃d

+ #
(︃

L
ϵ

)︃d−2

+ . . . −A log
(︃

L
ϵ

)︃
+ (−1)

d+1
2 F[g] , (2.5.53)

where the logarithmic divergence in ϵ only appears when d is even, and F stands for
finite terms [80, 92]. The power law divergent terms can be removed by local
counter-terms built out of the metric. The log-term, however, is physical. Its coefficient
is fixed to be the integrated Weyl anomaly since a re-scaling of the characteristic size
of the system L must give δω0W = −A δω0. The finite term F is a scheme-independent
non-local functional of gµν in odd dimensions. In even dimensions, however, it is
scheme-dependent.

The general form of the Weyl anomaly is very strongly constrained. This is most easily
seen by considering an infinitesimal Weyl transformation of the effective action
eq. (2.5.50). We saw that the Weyl anomaly arises from regularising short-distance
divergences in a diffeomorphism invariant way, which is a local effect. Thus, δωW
should be a local functional of the background fields.10 Demanding that the trace of the
stress tensor be diffeomorphism and Lorentz invariant, it must be built out of scalar
combinations of background fields.11 The stress tensor has scaling dimension ∆ = d.
The anomaly must therefore have d derivatives acting on the metric to match the
scaling dimension of Tµν. There is a finite number of terms which meet these criteria.

10Note that typically W is a highly non-local functional of background fields. In fact, any non-trivial de-
pendence on background terms is encoded in these non-local terms, as they must be scheme-independent.
The requirement that δωW be local is highly restrictive. Nonetheless, the Weyl anomaly knows about
the non-locality of the effective action. Indeed, the Weyl anomaly completely determines the difference
W [e2σg]−W [g] as a non-local functional of gµν. See e.g. [84] for a detailed discussion of the 2d case.

11In principle, a theory could have many background fields which could contribute to the trace anomaly.
We will only look for universal contributions coming from a non-trivial background metric.
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Any anomaly must also satisfy the algebra of the anomalous symmetry. This principle
goes by the name of Wess-Zumino (WZ) consistency [93]. Weyl transformations are
Abelian, which means that the anomaly must satisfy [δ1, δ2]W = 0. A simple
argument shows that the integrated anomaly A must therefore be Weyl invariant
itself.12 WZ consistency implies

δωδω0W = δω0 δωW (2.5.54)

for an arbitrary, spacetime dependent Weyl transformation δω, and a constant Weyl
transformation δω0. The left-hand side evaluates to

δω(Aδω0) = δω0 δωA , (2.5.55)

whereas the right-hand side is equal to

−δω0

∫︂
ddx

√
g ⟨Tµ

µ⟩ δω = −
∫︂

ddx
√

g
(︁
d ⟨Tµ

µ⟩ δω0 + δω0⟨Tµ
µ⟩
)︁

δω . (2.5.56)

where we have used δω0

√
g = d

√
gδω0. If we turn on a non-trivial background for the

metric only, then ⟨Tµ
µ⟩ must be built out of the metric and d derivatives. Each

derivative has one downstairs index which needs to be soaked up. If there are n
metrics and m inverse metrics, then equating the number of upstairs and downstairs
indices gives 2m = 2n + d. An immediate consequence of this is that the Weyl
anomaly can only exist when d ∈ 2Z. Under a constant Weyl transformation, each
inverse metric contributes −2δω0 times itself, whereas each metric contributes +2δω0

times itself. Therefore,
√

gδω0⟨Tµ
µ⟩ = (2n − 2m)

√
g⟨Tµ

µ⟩δω0 = −d
√

g⟨Tµ
µ⟩δω0,

which precisely cancels the term coming from the variation of
√

g, i.e. δω0 δωA = 0.
Since this must hold for any constant Weyl variation δω0, we conclude that δωA = 0
for an arbitrary spacetime dependent Weyl variation δω.

In QFT, physical observables are only defined up to local counter-terms. For instance,
we are free to add a counter-term action WCT to W consisting of a linear combination
of scalars built out of background fields with arbitrary coefficients. Taking
δω(W +WCT), and adjusting coefficients appropriately, one can remove some of the
terms appearing in the Weyl anomaly. Whatever cannot be removed by local
counter-terms constitutes the physical Weyl anomaly. This gives rise to
cohomology-type problem formalised in ref. [95].

The above considerations lead to the following three-step algorithm to determine the
form of the Weyl anomaly:

1. Find a basis of terms for the anomaly δωW . This amounts to enumerating all
possible terms that may appear in δωW to linear order in the Weyl

12See e.g. ref. [94] for a particularly clear discussion.
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transformation parameter δω. We insist that the terms appearing in δωW are
local, diffeomorphism and Lorentz invariant. Each term must contain d
derivatives acting on the metric gµν, or the Weyl variation parameter δω.
However, not all of these terms are linearly independent due to geometric
relations. One must choose a linearly independent basis, and each basis element
is then included in the integrand of δωW , with free coefficients.

2. Impose WZ consistency. The WZ consistency condition forces the
anti-symmetrisation of two independent Weyl variations of W to vanish, i.e.,
[δω1 , δω2 ]W = 0. As we will see, solving WZ consistency sets to zero some of the
coefficients of the linearly independent anomaly basis, or it fixes some
coefficients in terms of others.

3. Determine which terms in the Weyl anomaly are scheme-independent. To do
so, we introduce in the effective action W all possible local, diffeomorphism and
Lorentz invariant counterterms with d derivatives acting on gµν. Including each
of these terms with their own free coefficient builds up the counterterm action,
WCT. Taking an infinitesimal Weyl transformation of WCT, one can shift the
anomaly δωW ↦→ δωW + δωWCT. Since the coefficients in WCT are free, one can
then tune them so as to cancel terms appearing in δωW . The WZ consistent
terms that cannot be removed by any choice of counterterms are the
scheme-independent contribution to the Weyl anomaly.

This algorithm implies that the anomaly takes the schematic form

Tµ
µ =

1

(4π)
d
2

(︂
(−1)

d
2−1a(dim)

M Ed + ∑
n

c(dim)
n In

)︂
, (2.5.57)

where we omitted any scheme-dependent contributions. The coefficients aM and c(dim)
n

are called central charges, and In are a set of conformal invariants that are generally
expressed as rank- d

2 scalar monomials built from contractions of Weyl tensors and
their derivatives. Ed is the Euler density

Ed =
1

2d/2 δ
µ1ν1...µd/2νd/2
ρ1σ1 ...ρd/2σd/2 Rρ1σ1

µ1ν1 Rρ2σ2
µ2ν2 . . . Rρd/2σd/2

µd/2νd/2 , (2.5.58)

where δ
µ1ν1 ...
ρ1σ1... is the generalised Kronecker delta. It is a topological density and

transforms as a total derivative under Weyl transformation, whereas the In are
trivially Weyl invariant. We will call the former “A-type” anomalies and the latter
“B-type” anomalies. Since we will discuss central charges of CFTs and defects of
various dimensions, we use the superscript (dim) to distinguish the dimension in which
the central charges are defined, and the subscripts on aM and aΣ to distinguish the
ambient CFT and intrinsic defect/boundary A-type central charges, respectively.
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The nomenclature of A- and B-type anomalies was originally introduced in ref. [96].
There, the authors study CFTs on curved backgrounds deformed away from flat
space. They distinguish two types of conformal anomalies based on whether the
integrated anomaly A vanishes on this background. If A = 0, then the anomaly is
A-type, and if A ̸= 0, then the anomaly is B-type. Since they consider generic small
deformations away from flat space, A-type anomalies must necessarily be associated
with topological densities. In parity-preserving CFTs, ref. [96] argues that the only
such density is the Euler density, Ed, which transforms into a total derivative under a
Weyl transformation. The remaining B-type terms are Weyl invariant scalar
polynomials built out of curvatures and suitably contracted derivatives. Note that our
definition below eq. (2.5.58) is not necessarily equivalent to the original definition of
ref. [96].13 They happen to agree in the parity-preserving case. However, if one allows
for parity-breaking, there exist topological densities, such as the Pontryagin density,
whose integral vanishes on deformations around flat space and which are exactly Weyl
invariant. We will classify these terms as B-type in accord with our definition below
eq. (2.5.58).

Let us briefly comment on the physical origin of the different types of anomalies in a
parity-preserving CFT on flat space. Since the integrated Euler density vanishes on
small deformations around flat space, the A-type anomaly preserves scale invariance
(but breaks the special conformal generators). Importantly, it is not related to a
genuine UV divergence as can be seen from the way it is encoded in the effective
action W [g]. Recall that W [g] is a non-local functional of g arising from loop
integrations. In dimensional regularisation, where ε ≪ 1 parametrises the deviation
from the physical dimension, UV divergences manifest themselves as 1/ε poles
multiplying (non-local) geometrical structures. For the A-type anomaly, these
geometrical structures vanish identically in the physical dimension ε = 0 [96]. Thus,
the overall result is finite by itself, and the anomaly doesn’t contribute to the
logarithmic divergence in eq. (2.5.53). This is analogous to the chiral (’t Hooft)
anomaly, which is finite by a similar mechanism. Note that the existence of such a
“0/0” mechanism is also often quoted as the defining feature of an A-type anomaly,
see e.g. ref. [99].14

When d = 2(1 + ε), this “0/0” mechanism can equivalently be seen from the flat space
two-point function of the stress tensor. As argued earlier, its coefficient is proportional
to the coefficient c(2d) of the Euler density. Integrating over internal loop momenta
produces a 1/ε pole in the momentum space two-point function multiplying an
evanescent tensor structure. When d = 2 exactly, this structure vanishes identically,

13Our definition below eq. (2.5.58) is by no means original. To our knowledge, it first appeared in
ref. [97]. See also ref. [98].

14By this definition, any term that is exactly Weyl invariant is classed as type-B as it cannot be associated
with a “0/0” mechanism. This includes the parity-breaking Pontryagin density. Conversely, it is less
clear whether all terms transforming into a total derivative under a Weyl transformation are necessarily
associated with a “0/0” mechanism.
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thus cancelling the divergence. See e.g. refs. [99, 100] for a pedagogical treatment. This
is consistent with our earlier discussion in position space. To arrive at eq. (2.5.46), we
employed differential regularisation which required introducing a scale m.
Nonetheless, a logarithmic derivative with respect to m vanishes, and so the two-point
function is indeed scale invariant. Similar “0/0” structures appear inside certain
higher-point functions in larger d. See e.g. refs. [99, 101] for the stress tensor
three-point function in d = 4.

In contrast, B-type anomalies are associated with genuine UV divergences. They
manifest themselves as divergent terms in W [g] for which the geometrical structures
do not vanish in the physical dimension. To cancel the divergence, one must introduce
a scale-dependent counter-term, thus breaking scale invariance of the CFT. A simple
example is the two-point function of the stress tensor when the physical dimension is
even and greater than 2. In that case, the two-point function is not saved by a “0/0”
mechanism. It is divergent and requires regularisation, thus introducing a scale. E.g.
when d = 4, the stress tensor two-point function in differential regularisation can be
found in ref. [101]. Unlike the d = 2 case, its logarithmic derivative with respect to the
scale does not vanish, thus showing that scale invariance is truly broken when d = 4.

We now return to our discussion of Weyl anomalies on more general backgrounds.
The fact that, by our definition, A-type anomalies transform as total derivatives
immediately implies that its coefficient cannot depend on marginal couplings [38].
Consider a deformation by an exactly marginal operator O by inserting∫︁

ddx
√

g λO(x) into the path integral. By making λ spacetime-dependent, it acts as a
source for the operator O: varying W [g, λ] with respect to λ(x) inserts O(x) into a
correlation function. Now that λ is an additional background field, the Weyl anomaly
will pick up additional terms. Since λ is dimensionless, it could also enter in the
coefficients a(dim)

M and c(dim)
n . However, since Ed transforms into a total derivative,∫︁

ddx
√

g a(dim)
M Ed cannot be WZ consistent unless a(dim)

M is a constant and independent of
λ. Thus, the A-type central charge must be independent of marginal couplings. The
B-type central charges, however, can and do depend on marginal couplings.

Let us now illustrate this algorithm with a number of simple examples.

Step 1: In 2d, the only term that meets the criteria above is

δω2W =
∫︂

d2x
√

g b1Rδω2 , (2.5.59)

where we have ignored a total derivative D2δω2. In 2d, R is equal to the Euler density
E2 of the manifold, i.e. the Euler characteristic

χ =
1

4π

∫︂
d2x

√
g R (2.5.60)
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by the Gauss-Bonnet theorem.

Step 2: We now compute a second Weyl variation δω1 and anti-symmetrise in 1 and
2. One finds

[δω1 , δω2 ]W = −2b1

∫︂
d2x

√
g (δω2(D2δω1)− δω1(D2δω2)) = 0 (2.5.61)

after integration by parts. Thus, the term
∫︁

ddx
√

g b1Rδω is WZ consistent.15

Step 3: Finally, we may introduce a local counter-term WCT =
∫︁

d2x
√

gc1R.
However, δωWCT ∝

∫︁
d2x

√
g D2δω = 0, and thus the anomaly cannot be removed.

Therefore, the full physical anomaly is of the form in (2.5.48) with b1 = c(2d)

24π .16

The coefficient c(2d) is called the central charge of the CFT. We already showed that it is
proportional to the stress tensor two-point function. In fact, one can show that it
controls all self-correlators of the stress tensor [102]. Moreover, it determines various
other physical observables, including the thermal entropy for a CFT on S1

L × S1
β

Sthermo = (1 − β∂β) log Z −→
LT≫1

π

6
c(2d)TL , (2.5.62)

where β, L are the circumference of S1
β,L, respectively, and T = 1

β is the
temperature [25, 26]. As we will see in section 4.4, c(2d) also controls the universal
contribution to the EE of an interval [28].17 If the CFT is also supersymmetric, c(2d) has
further properties that we will discuss in section 5.4.

The central charge c(2d) is essential for characterising and classifying d = 2 CFTs and
QFTs. Famously, it obeys what is called a c-theorem [31]. At the RG fixed points of a
reflection-positive/unitary QFT, scale invariance typically enhances to the full

15If b1 had non-trivial dependence on a marginal coupling λ(x), we wouldn’t have been allowed to take
b1 out of the integral. Integrating by parts would then give

[δω1 , δω2 ]W = 2
∫︂

d2x
√

g (δω2(Dµb1)(Dµδω1)− δω1(Dµb1)(Dµδω2)) ̸= 0 ,

in conflict with WZ consistency.
16Note that ⟨Tµ

µ⟩ is not Weyl invariant: it transforms into a total derivative. The integrated anomaly A,
however, is Weyl invariant after integration by parts, as it must.

17The central charge c(2d) also appears as the central extension of the Virasoro algebra, giving rise to the
term ‘central charge’.
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conformal group.18 The theorem states that in a reflection-positive QFT, there exists a
function of couplings gi built from correlators of Tµν, called the c-function c(2d)(gi),
which monotonically decreases along a gradient under the RG flow. The c-function is
stationary only at RG fixed points, where it reduces to the central charge of the CFT at
the fixed point. This implies that c(2d)

UV ≥ c(2d)
IR . Moreover, since c(2d) is the coefficient of

the stress tensor two-point function (at the fixed points), reflection-positivity implies
that c(2d)(gi) ≥ 0 along the flow. In this sense, c(2d)(gi) counts DOF along the flow.19 The
original proof crucially uses the conservation of the stress tensor and certain special
properties of 2d CFT. Relaxing these assumptions, a weaker version of the c-theorem
can be proven, c(2d)

UV ≥ c(2d)
IR [34]. Note that this is a statement about the fixed points only,

and not the entire flow.

The same algorithm can be used to determine the general form of the trace anomaly in
a 4d CFT.

Step 1: The most general form of δωW is

δω2W =
∫︂

d4x
√

g
(︁
b1R2 + b2RµνRµν + b̃1WµνρσWµνρσ + b̃2ϵµνρσRµνλκRρσ

λκ

+ d1RD2)︁δω2 ,
(2.5.63)

where Rµνρσ is the curvature tensor of Dµ, Rµν = Rρ
µρν is the Ricci tensor, Wµνρσ is the

Weyl tensor, and ϵµνρσ is the totally anti-symmetric Levi-Civita tensor. We have made
sure to select a linearly independent basis of terms by using geometric identities. E.g.
the divergence-free property of the Einstein tensor implies RµνDµDνδω = 1

2 RD2δω up
to total derivatives. As we are looking for Weyl invariant combinations, it is
convenient to replace RµνρσRµνρσ by WµνρσWµνρσ plus a linear combination of RµνRµν

and R2. We have included a parity-breaking term proportional to the Pontryagin
density, which can also be written as ϵµνρσRµνλκRρσ

λκ = ϵµνρσWµνλκWρσ
λκ. We’ve

denoted the coefficients of trivially Weyl invariant terms as b̃i. Notice that the second
line involves terms which vanish for a constant Weyl transformation.

18In d = 2 this can be rigorously proven by showing that the stress tensor on flat space is exactly traceless
in all correlation functions, see e.g. [80, 103]. The proof comes with a small caveat: a key assumption is
that the spectrum of operator dimensions is gapped and discrete, which is known to be violated by some
CFTs, e.g. Liouville theory. For d ≥ 3, there is no complete non-perturbative proof, however, there are no
non-trivial counter-examples. See e.g. [104] for a review. In non-unitary theories, scale invariance need
not enhance to conformal symmetry. E.g. the theory of elasticity in d = 2 is a physical non-unitary theory
that has scale but not conformal invariance [105]. Reflection-positivity/unitarity appears to be a sufficient
condition for the enhancement to conformal invariance, however, it is not necessary. E.g. the Lee-Yang
minimal model is non-unitary but does have full conformal invariance.

19More precisely, it counts non-topological DOF because of its definition as the response to metric per-
turbations.
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Step 2: Performing a second Weyl transformation, the (Weyl)2 terms (including the
Pontryagin density) vanish, leaving only

[δω1 , δω2 ]W =
∫︂

d4x
√

g
[︁
− 4(3b1 + b2)Rδω2D2δω1 + 4b2RµνDµδω1Dνδω2

− 2b2RDµδω1Dµδω2 − 6d1D2δω1D2δω2

+ 2d1RDµδω1Dµδω2
]︁
− (1 ↔ 2) .

(2.5.64)

All but the first term vanish in the anti-symmetrisation, and so Wess-Zumino
consistency requires b2 = −3b1, while b̃1, b̃2, and d1 remain unfixed.

Step 3: The most general counter-term action is

WCT =
∫︂

d4x
√

g(c1R2 + c2RµνRµν + c3WµνρσWµνρσ + c4ϵµνρσRµνλκRρσ
λκ) . (2.5.65)

A first Weyl variation gives

δωWCT = −4
∫︂

d4x
√

g(3c1 + c2)RD2δω . (2.5.66)

Setting c1 = − c2
3 + d1

12 , one then has

δω(W +WCT) =
∫︂

ddx
√

g
(︁
b1(R2 − 3RµνRµν) + b̃1WµνρσWµνρσ

+ b̃2ϵµνρσRµνλκRρσ
λκ
)︁
δω ,

(2.5.67)

i.e. the Weyl anomaly involves three linearly independent terms. In 4d, the Euler
density can be written as

E4 =
2
3

R2 − 2RµνRµν + WµνρσWµνρσ . (2.5.68)

Therefore, the full anomaly is often written as

δωW = − 1
(4π)2

∫︂
ddx

√
g(−a(4d)

ME4 + c(4d)WµνρσWµνρσ + c̃(4d) ϵµνρσRµνλκRρσ
λκ)δω ,

(2.5.69)
where a(4d)

M = 3(4π)2

2 b1, c(4d) = −(4π)2(b̃1 − 3
2b1) and c̃(4d) = −(4π)2b̃2, and we have

re-labelled W +WCT → W . Equivalently, in terms of the stress tensor

⟨Tµ
µ⟩ =

1
(4π)2

(︂
−a(4d)

ME4 + c(4d)WµνρσWµνρσ + c̃(4d) ϵµνρσRµνλκRρσ
λκ
)︂

. (2.5.70)

The coefficients a(4d)
M , c(4d), and c̃(4d) are commonly referred to as central charges. The

coefficient of the Euler density, a(4d)
M , is A-type as it is the analogue of c(2d). The central

charges c(4d) and c̃(4d) are coefficients of Weyl invariants, and are thus B-type. For
reflection-positive, local d = 4 CFTs, the A-type central charge a(4d)

M obeys the
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a-theorem: a(4d)
UV ≥ a(4d)

IR , which was conjectured by [35, 36] and proven decades
later [34, 39]. Explicit examples are known in which the parity-even B-type central
charge, c(4d), can decrease or increase along an RG flow [32, 106]. Unlike d = 2 CFTs, no
single central charge determines all of Tµν’s self-correlators. Instead, the B-type
anomaly c(4d) fixes Tµν’s two-point function, while a(4d)

M and c(4d) are two of the three
numbers that fix Tµν’s three-point function [101, 107]. The third number in the
three-point function is not related to an anomaly. Reflection positivity then requires
c(4d) ≥ 0. If Tµν is the unique conserved spin-2 operator, then the conformal bootstrap
and other CFT “first principles” bound the ratio a(4d)

M/c(4d) [108, 109], so that in
particular a(4d)

M ≥ 0. Somewhat like a d = 2 CFT, the d = 4 central charges determine
the universal contribution to EE [29], see section 4.4. Further properties of a(4d)

M and c(4d)

in supersymmetric theories will be discussed in section 5.4. In contrast to a(4d)
M and c(4d)

M ,
little is known about the parity-odd B-type central charge, c̃(4d). E.g. there is no
consensus in the literature whether c̃(4d) ̸= 0 for a chiral fermion, see refs. [110–122].

As in 2d, the Weyl anomaly affects correlation functions in flat space through contact
terms. In fact, varying eq. (2.5.70) twice with respect to the metric gives the three-point
function ⟨Tµ

µ(x)Tρσ(y)Tλκ(z)⟩. It consists of contact terms with singularities at x = y
and x = z coming from the Ward identity eq. (2.3.21c) and additional anomalous
terms analogous to the right-hand side of eq. (2.5.49). The exact expression can be
found e.g. in [76]. All the structures appearing are controlled by the Weyl anomaly
coefficients a(4d)

M and c(4d)
M , such that the contact terms vanish when a(4d)

M = c(4d)
M = 0.

The same algorithm applied in 6d yields

⟨Tµ
µ⟩ =

1
(4π)3

(︁
a(6d)
ME6 + c(6d)

1 I1 + c(6d)
2 I2 + c(6d)

3 I3
)︁

. (2.5.71)

where the B-type Weyl invariants are [95, 123]

I1 = WµλρνWλστρWσ
µν

τ, (2.5.72a)

I2 = Wµν
λρWλρ

στWστ
µν , (2.5.72b)

I3 = Wµνλρ

(︃
D2 δν

σ −
6
5

R δν
σ + 4Rν

σ

)︃
Wσνλρ . (2.5.72c)

The central charge a(6d)
M appears in Tµν’s 4-point function, c(6d)

1 and c(6d)
2 are related to the

two free parameters in Tµν’s 3-point function, and c(6d)
3 fixes Tµν’s 2-point

function [101, 107, 124]. Reflection positivity then requires c(6d)
3 ≥ 0. Whether a(6d)

M
generically obeys a c-theorem remains an open question. For the state of the art, see
refs. [125–130] and refs. therein. We will comment on constraints from SUSY in
section 5.4. As in lower d, the d = 6 central charges determine the universal
contribution to EE [131, 132].20

20Note that parity-odd terms do not exist in the 6d Weyl anomaly for the same reason that 4d QFTs
cannot have gravitational, i.e. diffeomorphism/Lorentz, anomalies: there are no Lorentz-invariant cubic
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Before closing this section, let us remark that the discussion in the present thesis
focusses on Weyl anomalies that are universal in CFT, i.e. the ones associated with the
metric. However, these are not the only conformal anomalies that can appear. Indeed,
if a CFT has certain operators in its spectrum, correlation functions of these operators
can be anomalous. The first such example was found in refs. [38, 107] and
systematically studied in ref. [133]: the two-point function of a local scalar operator O
has a conformal anomaly if its scaling dimension ∆ ∈ d

2 +N. Correlation functions in
CFT must be well-defined distributions, and, in particular, their Fourier transform
must exist. For these ∆, however, the two-point function does not admit a Fourier
transform due to short distance singularities. Regularising and renormalising the
two-point function requires the introduction of a scale. A logarithmic derivative with
respect to this scale then reveals the conformal anomaly. Since these anomalies are
associated with genuine UV divergences, they are B-type in the classification of
ref. [96].

These anomalies obey an interesting non-renormalisation theorem: the ratio of the
anomaly and the overall constant of the two-point function does not renormalise
provided that the scaling dimensions are protected [133]. Indeed, it turns out that the
ratio only depends on ∆ and the spacetime dimension d. Moreover, when a source for
such O is turned on, the trace of the stress tensor receives additional contributions.
These terms are built out of the sources, and their coefficients are the above conformal
anomalies.

In a similar vein, n-point correlation functions can be anomalous. For a detailed
discussion of three-point functions of scalar and spinning operators, see
refs. [133–135]. Note that for scalar three-point functions an analogous
non-renormalisation theorem exists [133]. For conformal anomalies in higher-point
functions, see ref. [136] where the authors study tree-level holographic four-point
functions of scalar operators.

Finally, let us make a brief remark about odd-dimensional CFTs. In that case, there is
no Weyl anomaly associated with the metric. However, the finite piece of the effective
action, F[g] in eq. (2.5.53), is physically meaningful, and one may wonder if it has any
special properties. On a d-sphere, F[g] is the renormalised sphere free energy.
Refs. [137–139] proposed a monotonicity theorem for F[g] when d = 3, called the
F-theorem: the sphere free energy must decrease along an RG flow to an IR fixed
point. Indeed, the F-theorem was proven in refs. [40, 140]. Moreover, ref. [141]
proposed that F- and c-theorems can be combined into a monotonicity theorem in
continuous d, called the generalised F-theorem, however, that remains conjectural.

polynomials in the 2-form curvature tensor. The only options are TrR∧ R∧ R, Tr(R∧ R)∧TrR and (TrR)3,
where the trace is taken over the so(d) indices M, N of RM

N = 1
2 RM

Nµνdxµ ∧ dxν. However, all of these
terms vanish by anti-symmetry.
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Chapter 3

Conformal Defects

Our discussion so far has focussed on local operators. However, QFTs also admit
extended operators, often referred to as defects. Defects may come in numerous
different types, with various properties and constructions, however, a classification
scheme is currently unavailable.

The focus of this thesis is on defects in CFT, which partly preserve the conformal
group. Concretely, a p-dimensional conformal defect in a d-dimensional CFT breaks
the conformal group

SO(d + 1, 1) → SO(p + 1, 1)× SO(d − p) , (3.0.1)

i.e. the defect is invariant under conformal symmetry on its support, and transverse
rotations.1 The unbroken generators are {D, Pa, Ka, Mab, Mij}, where a, b = 1, . . . , p are
indices along the defect directions, and i, j = p + 1, . . . , d are indices in the transverse
directions. Note that in Rd these symmetries can only be preserved by a flat or
spherical defect. The parallel coordinates xa are labelled x∥ collectively. The normal
directions xi are labelled x⊥, and the defect is located at xi = 0. It will be useful to
introduce unit normals x̂i = xi

|x⊥|
, where |x⊥| =

√︁
xixi. The co-dimension of the defect

is denoted q = d − p.

3.1 Correlation functions and DCFT data

We now turn to correlation functions of local operators in the presence of a conformal
defect whose study was pioneered by refs. [142–146]. The constraints from the
residual conformal symmetry were systematically studied in refs. [147, 148]. A
p-dimensional defect can be thought of as an extended operator D with support Σp

1Invariance under transverse rotations is sometimes relaxed, however, we will typically assume it un-
less stated otherwise.
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inserted inside a correlation function of local operators. We define a correlation
function in the presence of D as

⟨O1 . . .On⟩D =
⟨O1 . . .OnD⟩

⟨D⟩ , (3.1.2)

where the local operators can be inserted either in the bulk or on Σp. The
normalisation ensures that ⟨1⟩D = 1. In the subsequent discussion, we will drop the
subscript ⟨. . .⟩D → ⟨. . .⟩ as it will be clear from context if a defect is inserted or not.

In the presence of a defect of any co-dimension, bulk operators can acquire
non-vanishing one-point functions as there is now a scale: the distance from the
defect. For a bulk scalar operator O∆,J=0, scale invariance implies

⟨O∆,J=0(x)⟩ = aO
|x⊥|∆

, (3.1.3)

where aO is a dimensionless constant, and x = (x∥, x⊥). Note that bulk operators are
normalised such that their two-point function in the absence of a defect is canonical.
Thus, the coefficient of the one-point function with a defect, aO, contains dynamical
information.

In a parity preserving theory, spin J = 1 bulk primaries sit in the vector representation
of SO(d + 1, 1), and cannot acquire a one-point function. Invariance under scale
transformations, translations along the defect, Lorentz invariance on the defect, and
rotations around it require the putative one-point function to be

⟨Oa
∆(x)⟩ = 0 , ⟨Oi

∆(x)⟩ = aO x̂i

|x⊥|∆
. (3.1.4)

However, invariance under the unbroken special conformal transformations Ka sets
aO = 0. Indeed, under a special conformal transformation eq. (2.1.5) with bi = 0, the
normal components of Oi transform as

⟨O′i
∆(x′)⟩ = β−∆(δi

j − 2β|b|2xixj)⟨O
j
∆(x)⟩ = β−∆⟨Oi

∆(x)⟩ − 2aO
β1−∆|b|2 x̂i

|x⊥|∆−2 . (3.1.5)

But also

⟨O′i
∆(x′)⟩ = aO x̂′i

|x′⊥|∆
= β−∆ aO x̂i

|x⊥|∆
= β−∆⟨Oi

∆(x)⟩ . (3.1.6)

These two equations are only consistent if aO = 0. Thus, a spin J = 1 primary cannot
acquire a one-point function.

An important exception occurs in parity violating theories. Pseudo vectors sit in
representations of O(d + 1, 1). These may acquire one-point functions, which
necessarily involve an ϵ-tensor. E.g. when q = 2, a spin J = 1 operator can acquire the
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following one-point function

⟨Oa
∆(x)⟩ = 0 , ⟨Oi

∆(x)⟩ =
aOϵij x̂j

|x⊥|∆
, (3.1.7)

where ϵ is the Levi-Civita tensor in the transverse directions. Indeed, computing a
special conformal transformation similarly to eq. (3.1.5), one finds that the second
term vanishes by anti-symmetry of ϵij. This is compatible with eq. (3.1.6) for any aO.

Next, consider operators with spin J = 2. For now, we’ll keep the scaling dimension ∆
general but we’ll eventually take ∆ = d to consider the stress tensor. Using scale
invariance, translational invariance in the directions parallel to the defect, and
covariance under rotations in the plane of the defect and the transverse directions, the
most general form of the one-point function is

⟨Oab
∆ (x)⟩ = c1

δab

|x⊥|∆
, ⟨Oai

∆ (x)⟩ = ⟨Oia(x)⟩ = 0 , (3.1.8a)

⟨Oij
∆(x)⟩ = c2

δij

|x⊥|∆
+ c3

x̂i x̂j

|x⊥|∆
, (3.1.8b)

where c1,2,3 are dimensionless coefficients to be fixed. A spin J = 2 operator has
vanishing trace, thus δµν⟨Oµν

∆ ⟩ = 0. This imposes the following condition on the
coefficients c1,2,3

p c1 + q c2 + c3 = 0 . (3.1.9)

Invariance under the special conformal transformations Ka imposes another
constraint. A spin J = 2 primary transforms as

O′µν
∆ (x′) = β−∆(x)Rµ

ρ(x)Rν
σ(x)Oρσ

∆ (x) , (3.1.10)

where Rµ
ν is an SO(d) rotation matrix. A simple calculation gives for the

normal-normal components

O′ij
∆ (x′) =β−∆Oij

∆(x)− 4β−∆(c2 + c3)
x̂i x̂j

|x⊥|∆−2 (β|b|2 − β2|b|4|x⊥|2)

+ 4c1β−∆+2|b|2(1 − 2(b · x) + |b|2|x∥|2)
x̂i x̂j

|x⊥|∆−2 .

(3.1.11)

The ansatz eq. (3.1.8b) transforms simply by an overall factor,
⟨Oij

∆(x)⟩ → β−∆⟨Oij
∆(x)⟩. Matching both expressions, one finds the following

constraint
c1 = c2 + c3 . (3.1.12)

This gives a system of two linear equations in three variables, and thus the one-point
function is fixed up to a single overall coefficient aO = − c1

q−1 with c2 = (d − q + 1)aO
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and c3 = −d aO.2

In the above we implicitly assumed that the co-dimension q is greater than 1. The
q = 1 case is special as both tensor structures in the normal-normal components in
eq. (3.1.8b) are identical. In this case, the only solution is the trivial solution
⟨Oµν

∆ (x)⟩ = 0. Indeed, in that case both c1 = 0 and c2 + c3 = 0.

For the stress tensor Tµν, it is common to write aT ≡ h such that the non-zero
components are

⟨Tab⟩ = −h
(q − 1)δab

|x⊥|d
, ⟨Tij⟩ = h

(d − q + 1)δij − dx̂i x̂j

|x⊥|d
. (3.1.13)

Note that ∂µ⟨Oµa⟩ = 0 and ∂µ⟨Oµi(x)⟩ = (q − 1)(∆ − d)aO x̂i

|x⊥|∆+1 , which vanishes
when Oµν = Tµν and ∆ = d. Therefore, this one-point function is compatible with
conservation of the stress tensor away from the defect.

The form of the two- and higher-point functions of bulk primary operators in the
presence of a defect are less constrained by conformal symmetry: they can depend on
functions of dimensionless cross ratios. We will see an explicit example in section 7.2,
where we will examine the two-point function of a scalar in the presence of a
co-dimension two defect. See also ref. [147] for details.

So far we have discussed bulk operators in the presence of a defect. However, a
conformal defect comes with a set of local operators that only live on the defect.
Physically, they correspond to local excitations of the defect. An example of such an
operator is the displacement operator Di, which exists for any non-trivial and
non-topological DCFT. A defect breaks translational invariance in the directions
transverse to it. Therefore, the Ward identities for translations normal to the defect are
modified, and the stress tensor is no longer conserved in these directions at the
location of the defect

∂µTµi(x∥, x⊥) = δ(q)(x⊥)Di(x∥) . (3.1.14)

The displacement operator Di captures this non-conservation. It has scaling
dimension ∆̂ = p + 1,3 no spin in the defect direction, ĵ = 0, and spin ŝ = 1 in the
transverse directions. By acting with Ka on eq. (3.1.14), one can show that Di is a
primary under the conformal group preserved by the defect. Using the Jacobi identity,
the algegra eq. (2.1.9), and eq. (2.2.13), one finds after a few lines of algebra that

[Ka, [Pµ, Tµi(0, x⊥)]] = δ(q)(x⊥)(2xjΣaj + |x⊥|2∂a)Di(0) = 0 , (3.1.15)

2The same form can be derived in a much neater way using the embedding space formalism, see [147]
for details.

3The delta function δ(q)(x⊥) has scaling dimension q.



3.1. Correlation functions and DCFT data 39

where the last equality follows from the identity xδ(x) = 0. Thus, [Ka,Di(0)] = 0, and
Di is a defect primary.4

In the co-dimension q = 1 case, a Gauss law pillbox argument [53] shows that the
displacement operator may be identified with the defect limit of the normal-normal
component of the stress tensor

D(x∥) ≡ Dn(x∥) = lim
x⊥→0

Tnn(x∥, x⊥) , (3.1.16)

where n labels the single normal direction. Note that when q = 1, the scaling
dimension ∆̂ = (d − 1) + 1 = d, in agreement with that of the stress tensor.5

Invariance under the unbroken conformal generators implies

⟨Di(x∥)D j(y∥)⟩ =
cDD δij

|x∥ − y∥|2(p+1)
. (3.1.17)

The normalisation of the displacement operator two-point function cDD is physically
meaningful as it is fixed by the ambient CFT’s stress tensor.

More generally, a defect that breaks a continuous bulk symmetry induces a defect
local operator via the associated current’s modified Ward identity. In particular, this
holds for flavour and global internal symmetries. Bulk currents have scaling
dimension ∆ = d − 1. Therefore, the associated defect primary has scaling dimension
∆̂ = p, i.e. it is exactly marginal.

Correlation functions of defect primary operators are completely analogous to those in
ordinary CFT. It is again customary to canonically normalise two-point functions. E.g.

4If the defect additionally breaks rotational invariance in the transverse directions, the stress tensor no
longer needs to be symmetric at the location of the defect,

T[ij](x∥, x⊥) = δ(q)(x⊥)λ
ij(x∥) ,

where λij is a defect primary in the anti-symmetric representation of SO(d− p) [147,149]. We will typically
assume rotational invariance in the transverse directions such that λij will play no role in this thesis.

5The argument goes as follows: Consider the boundary as an interface with the empty theory and
introduce a cylindrical Gaussian pillbox I × Bd−1

δ centred on the interface, where I is a closed interval
in the normal direction, x⊥ ∈ [−ε, ε] and Bd−1

δ is the solid (d − 1)-ball of radius δ whose boundary is
∂Bd−1

δ = Sd−2
δ . By the divergence theorem,∫︂

I×Bd−1
δ

∂µTµn =
∫︂

Bd−1
δ,ε

Tnn −
∫︂

Bd−1
δ,−ε

Tnn +
∫︂

I×Sd−1
δ

Trn ,

where r is the index of the radial coordinate in the boundary direction, and Bδ,±ε are the solid balls at the
endpoints of I, i.e. x⊥ = ±ε. Now, the second term vanishes as Tnn = 0 for the empty theory, and the
third term can be made arbitrarily small by taking ε → 0. Substituting eq. (3.1.14) on the left-hand side,
one has ∫︂

Bd−1
δ,0

D =
∫︂

Bd−1
δ,ε

Tnn ,

where Bd−1
δ,0 is the solid ball located entirely within the interface at x⊥ = 0. This must hold for arbitrarily

small δ, which implies eq. (3.1.16).
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for an orthonormal basis of defect scalar primaries,

⟨Ô1(x1)Ô2(x2)⟩ =
δ1,2

|xa
12|2∆̂

. (3.1.18)

This only applies to operators whose normalisation is not physically meaningful,
unlike eq. (3.1.17). Three-point functions are again fixed by kinematics up to a single
coefficient, λ̂123. The only novel ingredient is that defect operators may carry spin
with respect to the transverse rotation group. This may be regarded as a global SO(q)
symmetry from the defect’s point of view.

For correlation functions mixing bulk and defect primaries, the conformal symmetry
preserved by the defect fixes the kinematic dependence of the bulk-defect two-point
function. E.g. the two-point function of a bulk scalar primary and a defect scalar
primary is

⟨O∆,J=0(x1)Ô∆̂, ĵ=0,ŝ=0(x2)⟩ =
bOÔ

(|xi
1|2 + |xa

12|2)∆̂|xi
1|∆−∆̂

, (3.1.19)

where x1 = (xa
1, xi

1), x2 = (xa
2, 0), and the coefficients bOÔ are constants. Since both O

and Ô are canonically normalised, the coefficients bOÔ carry dynamical information.
Note that when the defect operator is the identity, the two-point function reduces to
the one-point function of O with bO1̂ = aO.

Two-point functions of spinning operators like O = Tµν or Ô = Di are slightly more
involved. E.g. the two-point function of a bulk scalar primary and a defect primary
with transverse spin s = 1 is

⟨O∆,J=0(x1)Ô
i
∆,j=0,s=1(x2)⟩ =

bOÔxi
1

(|xi
1|2 + |xa

12|2)∆̂|xi
1|∆−∆̂+1

. (3.1.20)

Explicit expressions for other mixed two-point functions can be found in ref. [147].
Higher-point correlation functions mixing bulk and defect primaries have much more
complicated coordinate dependence as they are functions of cross ratios.

Just like in a standalone CFT, the defect local operators have an OPE. When two defect
operators are brought close to each other, they can be expanded as a linear
combination of defect local operators, which again assemble into a sum over defect
primaries and their descendants. Using associativity of this OPE, one can show
exactly like in standard CFT that the higher-point correlation functions of defect
primary operators are (fixed) functions that depend on the scaling dimensions ∆̂i,
spins ĵ and ŝ, and the three-point functions of defect primaries λ̂123.
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Similarly to the bulk OPE, a bulk local operator close to the defect can be expanded in
terms of defect local operators as a consequence of the state-operator correspondence,

O(xa, xi) = ∑
Ô

COÔ(xi, ∂∥)Ô(xa) . (3.1.21)

The coefficients COÔ(xi, ∂∥) are differential operators which take into account the
contributions from descendants of Ô such that the sum can be taken to run over defect
primaries only. The sum is convergent as can be shown by quantising radially around
a point on the defect [66, 146, 147, 150]. This expansion of a single bulk operator in
terms of defect local operators is often called the defect OPE, or defect operator
expansion, and should not be confused with the OPE of two defect local operators
discussed above. Physically, the defect OPE states that a bulk excitation near the
defect is indistinguishable from an excitation localised on the defect. Applying the
defect OPE inside the bulk-defect two-point function, one finds that the COÔ(xi, ∂∥)

must be proportional to bOÔ .

Given some bulk CFT data, mixed bulk-defect higher-point functions can be reduced
to correlation functions of defect local operators only by repeatedly using the defect
OPE. These can then be reduced further into three point functions of defect primaries.
Thus, to be able to completely solve for all correlation functions of local operators in
the presence of a defect, one needs to know the spectrum of defect local operators Ô,
the defect three-point functions λ̂123, and the bulk-defect two-point functions bOÔ .
These are called the DCFT data.

Associativity of the (defect) OPE gives rise to a number of consistency conditions that
should hold in the presence of any conformal defect. Firstly, the bulk CFT must be
consistent by itself, and thus its data must satisfy the crossing equations. Similarly, the
spectrum of defect local operators and their three-point functions λ̂123 must obey their
crossing equations. Lastly, there are consistency conditions that arise from bulk or
bulk-defect correlation functions. E.g. the bulk two-point function ⟨O1O2⟩ can be
decomposed in two ways. In the first decomposition, we use the bulk OPE on O1 and
O2 first, and then the one-point function. This gives an expansion, where each term
contains a factor of λ12kak times a function of cross ratios, called a defect conformal
block. In the second decomposition, we first use the defect OPE on O1 and O2

separately, and then the defect two-point function. This results in an expansion where
each term contains a factor b1kb2k times another type of conformal block. We will see
an explicit example of the latter defect conformal block expansion in chapter 7.
Further consistency conditions, which involve the defect three-point functions λ̂123,
can be obtained from ⟨O1O2Ô3⟩. Using these consistency conditions to identify the
space of allowed DCFT data is the goal of the defect conformal bootstrap
programme [66, 68, 147, 148, 151, 152].
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3.2 Examples of conformal defects

Conformal defects typically fall into two classes, commonly called order- and
disorder-type defects.

Order-type defects are engineered by introducing local DOF on a p-dimensional
submanifold Σp. Consider pure Maxwell theory in R4 with action

I =
1

4e2

∫︂
d4x FµνFµν , (3.2.22)

where the field strength Fµν = ∂µ Aν − ∂ν Aµ, and Aµ is the U(1) gauge field. A simple
example of an order-type conformal defect is the straight infinite Wilson line. It is
defined by inserting

Wn[A] = exp
(︃

in
∫︂

dxµ Aµ

)︃
(3.2.23)

into the path integral, where n is an integer. Physically, the Wilson line describes a
heavy, i.e. non-dynamical, particle with electric charge ne. The one-point function of
the bulk stress tensor in the presence of the Wilson line can be easily computed, and
indeed takes the form of eq. (3.1.13) with h = n2e2

96π2 [153].

More generally, one can introduce a new set of fields ψ which only have support on Σp

in addition to the bulk CFT fields Ψ, and insert the following deformation in the path
integral

exp
(︃
−
∫︂

Σp

dpx LD[ψ, Ψ]

)︃
, (3.2.24)

where the defect Lagrangian LD is some local functional of Ψ and ψ. If LD is
conformal, its insertion in the path integral engineers a conformal defect. An example
of such a defect is mixed-dimensional quantum electrodynamics (QED), where the
charged fermions are confined to the boundary of a 4d spacetime [53]. This can be
viewed as the IR fixed point of an infinite sheet of graphene. However, if LD has
dimensionful couplings, they will flow under a defect RG flow.6 The IR fixed point
will then correspond to a conformal defect. We will encounter such defects in
chapter 8.

Disorder-type defects are introduced by prescribing singularity or boundary
conditions for the ambient fields. The simplest example of this type of defect is the
straight infinite ’t Hooft line in 4d Maxwell theory. It is defined by imposing
singularity conditions in the gauge field Aµ. Choose polar coordinates {τ, r, θ, ϕ}
where the ’t Hooft line is extended along Euclidean time τ, r is the radial direction
away from it, and θ and ϕ are the polar and azimuthal angles, respectively. Pick a

6Couplings of the bulk CFT are unaffected due to locality.
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gauge in which Ar = 0. Then the ’t Hooft line is defined by the following singularity
condition as r → 0

Aϕ → m(1 − cos θ)

4πr sin θ
, (3.2.25)

where m is the integer quantised magnetic charge.7 Physically, this boundary
condition corresponds to a heavy Dirac monopole of quantised charge m. To compute
correlation functions in the presence of such a defect, one is instructed to perform the
path integral only over field configurations that satisfy the appropriate boundary or
singularity condition. To find the stress tensor one-point function for the ’t Hooft line
in free Maxwell theory it suffices to evaluate the classical stress tensor on the unique
solution of the equations of motion (EOM) that satisfies the boundary conditions. The
result is again of the form in eq. (3.1.13) with h = m2

24e2 [153].8

Another example of a disorder-type defect is the monodromy defect, which will be
studied in detail in chapter 7. It is a co-dimension q = 2 defect that can be introduced
whenever there is a global symmetry group G in the bulk theory. If the bulk is a CFT,
then a straight monodromy defect is conformal. Let xµ = {τ, x⃗, ρ, θ} be cylindrical
coordinates on Rd, where τ is Euclidean time, x⃗ denotes the spatial flat directions, ρ

the radial coordinate, and θ the polar angle. A monodromy defect at ρ = 0 along x⃗ is
engineered by declaring that bulk operators

Ψi(τ, x⃗, ρ, θ) → Ψ′
i(τ, x⃗, ρ, θ + 2π) = giΨi(τ, x⃗, ρ, θ) , (3.2.26)

i.e. each field Ψi experiences a monodromy gi ∈ G as it is rotated around the defect in
the transverse directions. From another point of view, monodromy defects can be
thought of as co-dimension two operators on which topological domain walls that
implement flavour symmetry rotations can end. This type of construction of defects in
QFTs fits into a larger class of topological defects effecting generalised global
symmetry transformations [154]. In free theories, monodromy defects are special. E.g.
in the theory of a 4d free scalar field, the only reflection-positive defects that can have
interesting dynamics are monodromy defects. All other defects must have trivial
dynamics, i.e. all connected n-point functions of the bulk field remain zero, even in the
presence of the defect. [155, 156].9,10 Monodromy defects in free theories will be
discussed in detail in chapter 7.

In the discussion above, we introduced order and disorder as a broad partitioning of
defects. However, it is unlikely that this partitioning will form the basis for a
classification because order and disorder-type defects can sometimes be related. E.g.

7This expression only holds in the patch including the north pole θ = 0. An analogous expression
exists for the patch with the south pole. On the overlap of the patches, the two gauge fields are related by
a gauge transformation.

8Maxwell theory famously enjoys electric-magnetic duality Fµν → ϵµνρσFρσ and e2 → 4π2

e2 . Under this
map, Wilson and ’t Hooft lines are exchanged as can be seen from their values of h.

9In dimensions d ≥ 5, there can exist non-trivial non-monodromy defects if the co-dimension q = 3.
10In 4d Maxwell theory it was shown that all surface defects have trivial dynamics [157].
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we may be able to integrate out DOF on Σp to obtain singular behaviour of the
ambient fields at Σp. We will discuss an example in chapter 8 for which this happens.

3.3 Submanifold geometry

We would now like to put our DCFT on a curved background to study the Weyl
anomaly in the presence of the defect. Before we can do so, we need to review the
geometry of embedded submanifolds.

Let Md be a smooth d-dimensional Riemannian manifold. Md with d ≥ 2 is the
background geometry into which we will embed a defect, or introduce a boundary.
We refer to this background as the ambient space. Let xµ be the coordinates on Md,
where µ = 1, . . . , d, and let gµν be the metric on Md. The Levi-Civita connection on
Md is denoted by Dµ, and its connection coefficients are the Christoffel symbols Γρ

µν.
The associated curvature tensors are denoted by R, i.e. Rµ

νρσ is the Riemann tensor,
Rµν = Rρ

µρν is the Ricci tensor, and R is the Ricci scalar on Md. The ambient Weyl
tensor is denoted by Wµνρσ.

The defects that we will study are supported on a p-dimensional embedded
submanifold, Σp ↪→ Md. Let σa be coordinates on Σp, where a = 1, . . . , p. The
embedding induces various intrinsic geometric quantities on Σp that we distinguish
from their counterparts on Md with a bar. In particular, let gab = eµ

a eν
b gµν denote the

induced metric, where eµ
a = ∂aXµ, and Xµ(σa) are the embedding functions. The

matrix eµ
a acts to pull back ambient tensors onto Σp, e.g. the pullback of the ambient

Ricci tensor is Rab = eµ
a eν

b Rµν.

On Σp we denote the induced Levi-Civita connection as Da, with its connection
coefficients being the Christoffel symbols Γa

bc built out of gab. The Riemann curvature
tensor constructed from Da is Ra

bcd, and similarly for the Ricci tensor and scalar. We
further introduce a covariant derivative that acts on tensors with mixed indices. We
will abuse notation and also refer to it as Da, e.g. Dawµ

b = ∂awµ
b + Γµ

νawν
b − Γc

abwµ
c for a

mixed tensor wµ
b , where Γµ

νa = eρ
aΓµ

νρ. From Da, we define the second fundamental
form, IIµ

ab ≡ Daeµ
b . It is symmetric in a and b, and it obeys Ec

µIIµ
ab = 0. Its traceless

version is denoted as II̊
µ
ab ≡ IIµ

ab −
1
p gabIIµ, with IIµ ≡ gcdIIµ

cd.

The embedding Σp ↪→ Md splits the ambient space’s tangent bundle
TMd ≃ TΣp ⊕ NΣp into a sum of the defect submanifold’s tangent bundle, TΣp, and
the normal bundle, NΣp. We will often replace tensor indices µ, ν, . . . that are only
valued in the normal bundle by i, j, . . . for emphasis, e.g. IIµ → IIi.
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The important geometric features of the normal bundle NΣp derive from the totally
antisymmetric normal tensor,

nµ1 ...µq =
1
p!

ϵa1 ...ap ϵν1 ...νpµ1...µq eν1
a1
· · · eνp

ap , (3.3.27)

where ϵa1...ap and ϵµ1 ...µd are Levi-Civita tensors on Σp and Md respectively. From
nµ1 ...µq , we define a projector onto NΣp,

Nµν ≡ 1
(q − 1)!

nµσ2 ...σq nν
σ2...σq . (3.3.28)

We can similarly define a projector onto TΣp, also called the first fundamental form,

hµν ≡ gµν − Nµν . (3.3.29)

Note that hµν = Ea
µEb

νgab, where Ea
µ is a matrix which obeys Ea

µeµ
b = δa

b . The
decomposition eq. (3.3.29) implies for example

gabRab = hµνRµν = R − NµνRµν , (3.3.30)

and

D2 f = hµνDµDν f + NµνDµDν f = D2 f − IIµDµ f + NµνDµDν f , (3.3.31)

for some scalar function f .

On a non-trivial normal bundle, one can also define a covariant derivative on normal
vectors descending from Dµ. We denote it as D⊥

a . Its associated curvature (R⊥)µ
νab is

anti-symmetric under (a ↔ b) and (µ ↔ ν) separately.

The curvature tensors of Dµ, D⊥
a , and Da are related via the Gauss-Codazzi-Ricci

equations. The Gauss equation relates the intrinsic Riemann tensor Rabcd on the
submanifold and the pullback of the ambient Riemann tensor Rabcd. Together with the
equation’s contractions with the induced metric gab, they read

Ra
bcd = Ra

bcd − 2IIµ[c
aIIµ

d]b , (3.3.32a)

Rab = Rab − IIµabIIµ + IIµacIIµ
b

c + NρσRaρbσ , (3.3.32b)

R = R − IIµIIµ + IIµabIIµba + 2NµνRµν − NµρNνσRµνρσ . (3.3.32c)

The Codazzi relation and its contraction with gab read

Nµ
ν Rν

abc = Nµ
ν

(︁
DbIIν

ca − DcIIν
ba
)︁

, (3.3.33a)

Nµ
ν Rν

b = Nµ
ν

(︁
DbIIν − DcIIν

b
c)︁+ NµνNρσRbσνρ . (3.3.33b)
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Finally, we also have the Ricci equation

Nµ
ρ Nσ

ν Rρ
σab = (R⊥)µ

νab − IIµ
acIIνb

c + IIµ
bcIIνa

c . (3.3.34)

When q = 1, i.e. for a boundary or interface, NΣp is a trivial bundle. In that case,
(R⊥) = 0 and the Ricci eq. (3.3.34) becomes trivial. Moreover, the normal projector
becomes Nµν = nµnν, where nµ is the outward pointing unit normal co-vector.
Moreover, hµν reduces to the usual hypersurface metric, hµν = gµν − nµnν. We define
the extrinsic curvature as Kµν ≡ 1

2Lnhµν, where Ln is the Lie derivative along nµ,
which satisfies nµKµν = 0, and is related to the second fundamental form by
Kab = −nµIIµ

ab, where Kab = eµ
a eν

bKµν. We define the traceless version
K̊ab ≡ Kab − 1

p gabK, with K ≡ gabKab.

Finally, we define two notions of parity. By “parity along the defect”, we mean
simultaneous orientation reversal of the submanifold and the ambient space, such that
ϵa1...ap → −ϵa1...ap and ϵµ1 ...µd → −ϵµ1 ...µd , such that nµ1...µq , as defined by eq. (3.3.27), is
invariant. Intuitively, this corresponds to reversing parity in the directions parallel to
the defect. By “parity in the normal bundle” we mean orientation reversal of the
ambient space alone. Under this transformation, ϵµ1...µd → −ϵµ1...µd while ϵa1 ...ap is
invariant, such that nµ1...µq → −nµ1...µq . This corresponds to reversing parity in the
directions normal to the defect.

3.4 Defect Weyl anomaly

Consider a d-dimensional CFT on a curved background Md with a p-dimensional
conformal defect supported on Σp ↪→ Md. The embedding functions Xµ(σ) now play
the role of background fields in the path integral. Under an infinitesimal variation of
W [g, X] with respect to gµν and Xµ,

δW [g, X] =− 1
2

∫︂
Md

ddx
√

g δgµν⟨Tµν|Md
⟩

− 1
2

∫︂
Σp

dpσ
√︁

g
(︂

δgµν⟨Tµν|Σp
⟩+ 2δXµ(σa)⟨Dµ⟩

)︂
,

(3.4.35)

where Tµν|Md
and Tµν|Σp

denote the contributions to the stress tensor from the
ambient CFT and the defect, respectively. The response of the path integral to
deformations of Σp is denoted very suggestively as Dµ. Consider a diffeomorphism of
Md parametrised by ξµ. This induces a variation of both gµν and Xµ. Indeed, the
variation of W [g, X] under ξµ allows one to identify Dµ with the displacement
operator defined in eq. (3.1.14), with ∂µ → Dµ. Moreover, reparametrisation
invariance of Σp on its own implies that one can set eµ

aDµ = 0. I.e. only Di is
non-trivial, where i is a normal bundle index [147]. This ultimately gives the
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displacement operator its name: it “displaces” a point on the defect in a normal
direction. Note that generically the defect does not have its own intrinsically defined,
conserved stress tensor. However, the components of the full stress tensor along Σp,
containing both ambient and defect contributions, are conserved everywhere on Md,
including Σp, i.e. DµTµa = 0.

If we instead consider an infinitesimal Weyl rescaling without affecting the defect’s
embedding, then the Weyl anomaly picks up a contribution localised to Σp,

Tµ
µ = Tµ

µ

⃓⃓
Md

+ δ
(q)
Σp

Tµ
µ

⃓⃓
Σp

. (3.4.36)

Here we indicate by Tµ
µ

⃓⃓
Md

the contributions to the Weyl anomaly purely from the
ambient CFT, and by Tµ

µ

⃓⃓
Σp

we denote the defect/boundary Weyl anomaly, which

will be the primary focus of the following sections. The delta function δ
(q)
Σp

is defined

as
∫︁
Md

ddx
√

g f (x) δ
(q)
Σp

=
∫︁

Σp
dpσ

√︁
g f (X(σ)) for some test function f . Importantly,

Tµ
µ

⃓⃓
Σp

is built out of structures that involve (derivatives of) the metric gµν and the
embedding functions Xµ(σa). This leads to a much richer basis for conformal
invariants, and hence novel defect Weyl anomalies.

The form of the defect Weyl anomaly δωW =
∫︁

Σp
(. . .)δω can be determined

algorithmically by modifying the three-step algorithm in section 2.5 on page 26. The
main novelty is that each term in δωW [g, X] may also contain Xµ and its derivatives.
In particular, each term must contain p derivatives acting on the metric gµν, the
pullbacks eµ

a , or the Weyl variation parameter δω. Ensuring that all the terms in step 1
are linearly independent can become rather cumbersome as there are new geometric
relations stemming from the decomposition of the metric in eq. (3.3.29) and the
Gauss-Codazzi-Ricci eqs. (3.3.32), (3.3.33), and (3.3.34). Moreover, when p ≥ 3, the
second Bianchi identity can be combined with the Gauss-Codazzi-Ricci equations, to
produce additional geometric relations, which can be further adorned with extra
derivatives. Each linearly independent term is then added to the defect Weyl anomaly
with an unfixed coefficient. The remaining steps involving WZ consistency and local
counter-terms go through unchanged.

The defect/boundary Weyl anomaly has been determined in four cases: p = 1 in
d = 2 [84], p = 2 in d ≥ 3 [50, 71, 72, 97, 98, 158–160], p = 3 in d = 4 [51, 52], and p = 4
in d = 5 [161]. In the rest of this section we will review the first three cases. In
chapter 6, we review the fourth case and generalise it to d ≥ 6. This turns out to be
rather involved due to an abundance of additional tensor structures.

For a p = 1 defect, applying the algorithm is straightforward. The only allowed tensor
structures are

∫︁
Σ1

dσ
√︁

g Kδω and
∫︁

Σ1
dσ
√︁

g nµDµδω. The former is not WZ consistent
on its own and the latter can be removed by a counter-term. Thus, for p = 1 in a d > 2
CFT the defect Weyl anomaly vanishes. However, when d = 2, WZ consistency of the
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bulk anomaly eq. (2.5.48) requires the following boundary term [84]

Tµ
µ|Σ1 =

c(2d)

12π
K . (3.4.37)

Note that its coefficient is fixed by the bulk central charge c(2d). More generally, if the
ambient CFT has even d, and the defect has co-dimension q = 1, then WZ consistency
of the ambient Euler density induces a term in the defect’s Weyl anomaly whose
coefficient is fixed in terms of the ambient CFT’s A-type central charge. We will see
this feature again for p = 3 in d = 4, see eq. (3.4.45). In fact, these boundary terms are
known for all even d [51].

Applying the algorithm to determine the Weyl anomaly of a p = 2 defect in a d ≥ 3
CFT is less trivial since defect Weyl anomalies are much richer compared to their
counterparts in standalone CFTs. E.g. for a p = 2 defect in d = 4, a linearly
independent basis of terms is 10-dimensional. Contrast this with the case of a
standalone 2d CFT, which only allowed for a single term, see eq. (2.5.59). We
summarise the computation in appendix A.1. It is convenient to turn the process of
eliminating scheme-dependent terms into a linear algebra problem, which we also
illustrate there. The result is [50, 71, 72, 97, 98, 158–160]

Tµ
µ|Σ2 =

1
24π

(a(2d)
Σ R + d(2d)

1 II̊
2
+ d(2d)

2 Wab
ab) +

δq,2

24π
ϵabnij(d̃

(2d)

1 (R⊥)ij
ab + d̃(2d)

2 II̊
i
acII̊

j
b

c) ,

(3.4.38)

where δq,2 is a Kronecker delta. Within the first set of parentheses, the first term is an
A-type central charge, while the remaining two are B-type. The term d(2d)

2 Wab
ab does

not exist for q = 1 because the ambient Weyl tensor W vanishes identically when
d = 3. In that term, the trace over the indices is performed with the induced metric
gab, hence Wab

ab is generically non-vanishing when d ≥ 4. In the second set of
parentheses, both terms exist only when q = 2. They are B-type, and odd under parity
along the defect and separately under parity in the normal bundle. The indices i, j, . . .
are valued in the normal bundle. We often use them instead of µ, ν . . . to denote
projection onto the normal bundle. Note that even if d is odd, and hence the ambient
CFT has no Weyl anomaly, the defect Weyl anomaly in eq. (3.4.38) still exists.

Like their CFT counterparts, the defect/boundary central charges should appear in a
number of observables, besides Tµ

µ itself. We will review what is known to date. The
central charge a(2d)

Σ appears in the free energy of a spherical defect. Consider a defect
supported on an equatorial S2 ↪→ Sd, and let L be the radius of the sphere. For a CFT
on a round S2k, the free energy has a log divergence proportional to the integrated
Weyl anomaly A. From eq. (3.4.38), it is clear that only the A-type anomalies of the
ambient CFT and the defect contribute. In particular, S2k is conformally flat, and so its
Weyl tensor vanishes. This implies that all the ambient B-type anomalies vanish, and
further Wab

ab = 0. The second fundamental form for S2 ↪→ S2k is pure trace, so II̊
µ
ab = 0
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as well. The Ricci eq. (3.3.34) can be rewritten in terms of the Weyl tensor, the traceless
second fundamental form and the normal bundle curvature, implying that when
q = 2 all the parity-odd terms vanish, too. Denoting the partition functions with and
without defect by ZDCFT and ZCFT, respectively, one finds

Fdef|log L
ϵ
≡ (− log ZDCFT + log ZCFT)|log L

ϵ
= −

a(2d)
Σ
3

. (3.4.39)

The central charge d(2d)
1 controls Di’s two-point function in flat space. For example, for

a flat defect in R4 [162, 163],

⟨Di(x∥)D j(0)⟩ = 4
3π2

d(2d)
1

|x∥|6
. (3.4.40)

This can be seen from the fact that IIµ ∼ ∂a∂bXµ close to flat space, and varying W
with respect to Xµ inserts the displacement operator into correlation functions. We
will make this argument precise in section 6.2.1.1. Reflection positivity then requires
d(2d)

1 ≥ 0. When q > 1, the central charge d(2d)
2 controls Tµν’s one-point function

eq. (3.1.13). As shown in refs. [50, 162, 163], the coefficient h is determined by d(2d)
2 ,

h = − 1
6π(d − 1)vol(Sd−3)

d(2d)
2 , (3.4.41)

where vol(Sd) is the volume of a unit d-sphere. Heuristically, Wab
ab ∼ ∂2g, and taking

a variation of W with respect to gµν computes the one-point function of the stress
tensor. This argument will be made precise in section 6.2.2.1. If we Wick-rotate to
Minkowski space, then the average null energy condition (ANEC) states∫︂ ∞

−∞
du ⟨Tµν⟩vµvν ≥ 0 , (3.4.42)

where vµ is a null vector in R1,d−1 with affine parameter u. If the ANEC holds in the
presence of a defect, then d(2d)

2 ≤ 0 [50].11 To show this, consider a null ray skew to the
defect and parametrised by

t = ℓu , x1 = ℓu cos ψ , x2 = ℓu sin ψ , x3 = ℓ , x4 = . . . = xd−1 = 0 , (3.4.43)

where the defect is extended along t and x1, ℓ is the shortest distance between the
defect and the null ray, and ψ is the angle between them. See figure 3.1 for an
illustration of the set-up. By plugging eq. (3.4.43) and eq. (3.1.13) into the ANEC and

11The proofs of the ANEC in refs. [164–166] have not yet been extended to include defects. Nevertheless,
in unitary DCFTs we expect the ANEC to hold for defects, because physically a defect should not change
the fact that the total energy measured by a null observer should be non-negative.
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ψ

ℓ

Σ
t

x2
x3

FIGURE 3.1: Configuration for the null geodesic vµ described in eq. (3.4.43). The null
geodesic (blue) passes by the defect (red, labelled Σ) at an angle ψ in the x1 − x2 plane

and at a distance ℓ away in the x3 direction.

using eq. (3.4.41), we obtain

∫︂ ∞

−∞
du⟨Tµν⟩vµvν = −d(2d)

2

| sin ψ| Γ
(︂

d−1
2

)︂
6
√

πℓd vol(Sd−3) Γ
(︂

d
2

)︂ ≥ 0 . (3.4.44)

Since the fraction is strictly positive, d(2d)
2 ≤ 0.

The A-type defect central charge, a(2d)
Σ , shares a few key features with the d = 2 CFT

central charge, c(2d). For instance, under a defect RG flow, a(2d)
Σ obeys a c-theorem:

a(2d)
Σ,UV ≥ a(2d)

Σ,IR [55]. This is a direct generalisation of the proof of the weak c-theorem in
2d CFT by ref. [34], which does not rely on a conserved stress tensor. By the same
argument as in section 2.5, WZ consistency implies that a(2d)

Σ is independent of defect
marginal couplings. However, the similarities seem to end there. For example, a(2d)

Σ can
depend on marginal couplings of the ambient CFT [167–169]. The argument is evaded
due to a scale anomaly in the one-point functions of marginal bulk operators as
|x⊥| → 0. The one-point functions can depend on marginal couplings, and they
diverge as the operator approaches the defect. This requires regularisation and
introduction of a scale. As a result, the Weyl anomaly picks up contributions
dependent on the bulk marginal couplings. WZ consistency of the full anomaly then
requires that also all the defect central charges depend on these bulk marginal
couplings, including the A-type anomaly. Unlike c(2d), a(2d)

Σ is not necessarily positive
semi-definite, even in reflection-positive theories. In particular, a free, massless scalar
with Dirichlet boundary conditions in d = 3 has a(2d)

Σ < 0 [48, 55, 170]. This raises the
question of in what sense a(2d)

Σ is counting defect/boundary DOF. More generally, what
bounds a(2d)

Σ obeys, if any, remains an open question.
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The Weyl anomaly of the p = 3 boundary in a d = 4 CFT is [51, 52]

Tµ
µ

⃓⃓
Σ3

=
1

16π2

(︂
a(4d)
ME4|∂M + b(3d)

1 K̊
3
+ b(3d)

2 K̊
ab

Wc
acb

)︂
. (3.4.45)

As anticipated below eq. (3.4.37), the first term in the parentheses in eq. (3.4.45) is the
Chern-Simons (CS)-like boundary term of the bulk A-type anomaly,

E4|∂M = δabc
de f

(︂
2Kd

aRe f
bc +

8
3

Kd
aKe

bK f
c

)︂
, (3.4.46)

with a coefficient determined entirely by the ambient CFT’s A-type central charge,
a(4d)
M . It is required by WZ consistency of the ambient CFT’s Weyl anomaly in the

presence of the boundary. The boundary thus has only two new central charges, b(3d)
1

and b(3d)
2 , which are both B-type and parity odd in the normal bundle. In free field

CFTs, b(3d)
2 is fixed in terms of the ambient CFT’s B-type central charge, c(4d), specifically,

b(3d)
2 = −8c(4d), independent of the boundary conditions [171–173]. However, ref. [53]

showed that the same is not true in interacting CFTs. The other boundary central
charge, b(3d)

1 , does depend on boundary conditions, even for free fields [174, 175].

Similarly to the p = 2 defect/boundary, the B-type central charges b(3d)
1 and b(3d)

2

determine correlation functions of the boundary displacement operator, D. In
particular, b(3d)

2 controls D’s two-point function for a flat defect in flat space [52, 53]:

⟨D(x∥)D(0)⟩ = − 15
2π4

b(3d)
2

|x∥|8
. (3.4.47)

Reflection positivity then requires b(3d)
2 ≤ 0. Further, b(3d)

1 controls D’s three-point
function [52]:

⟨D(x∥)D(y∥)D(0)⟩ = − 35
2π6

b(3d)
1

|x∥|4|y∥|4|x∥ − y∥|4
. (3.4.48)
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Chapter 4

Entanglement Entropy

In this chapter, we review the role of entanglement entropy (EE) in QFT and CFT. As
we will see, EE is an immensely useful tool, and e.g. provides a way to prove
c-theorems. We will take a pedestrian approach inspired by refs. [92, 176]. Excellent
modern reviews with a more algebraic treatment are [177, 178].

4.1 Entanglement in finite quantum systems

Given a quantum mechanical system in a pure state |Ψ⟩ in the Hilbert space H, we can
construct its density matrix

ρ = |Ψ⟩⟨Ψ| . (4.1.1)

If ⟨Ψ|Ψ⟩ = 1, then Trρ = 1. Suppose the Hilbert space admits a factorisation,
H = HA ⊗HB, where A and B = A are complementary subsystems. Using the
Schmitt decomposition theorem, one can write

|Ψ⟩ =
m

∑
k=1

√
pk |ψk⟩A ⊗ |ψk⟩B , (4.1.2)

where pk ∈ R+ satisfying ∑k pk = 1, the states |ψk⟩A,B are orthonormal, and
m = min(dimHA, dimHB). By tracing over HB, one defines a reduced density matrix

ρA = TrBρ = ∑
|ψ⟩B∈HB

B⟨ψ|ρ|ψ⟩B , (4.1.3)

such that TrAρA = 1, and similarly for ρB. Note that ρA is generically not a pure state
on A. The reduced density matrices ρA can be used to compute correlation functions
of operators of the subsystem A, i.e. O = OA ⊗ 1B. E.g. ⟨O⟩ = TrρO = TrAρAOA.
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The EE measures the entanglement between A and its complement. It is defined as the
von Neumann entropy of the reduced density matrix ρA

SA = −TrAρA log ρA , (4.1.4)

where log denotes the matrix logarithm. The von Neumann entropy vanishes if and
only if the state is pure. Since ρA is generically mixed, the EE SA ̸= 0. If ρ is a pure
state, then SA = SB. The EE is bounded from above, SA ≤ log m.

A simple example in quantum mechanics (QM) is a system of two spins |s1⟩A ⊗ |s2⟩B,
where the spins s1,2 can be either up or down, denoted 0 and 1. The Hilbert spaces
have dimension dimHA = dimHB = 2. Consider the four Bell states

|Ψ±⟩ =
1√
2
(|0⟩A|0⟩B ± |1⟩A|1⟩B) , (4.1.5)

|Φ±⟩ =
1√
2
(|0⟩A|1⟩B ± |1⟩A|0⟩B) . (4.1.6)

The reduced density matrix for each state is

ρA =
1
2
(|0⟩A A⟨0|+ |1⟩A A⟨1|) . (4.1.7)

Matrix logarithms are typically hard to compute. Luckily, the reduced density matrix
is diagonal, and thus SA = log 2 for each state. The Bell pairs saturate the bound
SA ≤ m = 2, and are said to be maximally entangled.

For more complicated states in more complex quantum systems, it is useful to
compute the EE via their Rényi entropies

Sn(A) =
1

1 − n
log TrAρn

A , (4.1.8)

where the integer n is often called the replica number. The Rényi entropies are easier
to compute than the EE as they do not contain a matrix logarithm. Assuming one can
analytically continue n, one finds that the n → 1 limit reduces to the EE

lim
n→1

Sn(A) = − lim
n→1

∂

∂n
log TrAρn

A = SA . (4.1.9)

For the Bell pairs, Sn(A) = 1
1−n log(2−nTrA1A) = log 2 for all integer n > 1.

Analytically continuing and taking the n → 1 limit becomes trivial, and we recover SA.
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4.2 Entanglement in QFT

The Bell states can be thought of as states of a spin chain with two sites. The partition
into subsystems A and B then corresponds to chopping the chain in two. In more
general lattice models, this is a natural way to partition a system: given a spatial slice
with an associated Hilbert space, separate the lattice sites by introducing a
co-dimension 1 surface. The sites enclosed by the surface form subsystem A. In the
full lattice model including the (possibly Euclidean) time direction, this is a
co-dimension 2 surface. It is often called the entangling surface. Taking the continuum
limit, one defines EE entropy in QFT geometrically in this way.1

Consider a quantum field ϕ(x), where xµ = (τ, x⃗) are coordinates on spacetime Md,
which we take to be flat for the moment. A spatial slice at time τ = 0 has an associated
Hilbert space. Let |Ψ⟩ be a pure state in this Hilbert space. We can define the density
matrix of |Ψ⟩ as in eq. (4.1.1). The QFT analogue of a quantum mechanical
wavefunction is the wavefunctional of field configurations at τ = 0,
Ψ[ϕ(x⃗)] = ⟨ϕ(x⃗)|Ψ⟩. Consider a formal basis of field configurations at τ = 0 labelled
by the indices R, S. E.g. ϕR(x⃗) is a basis vector. Formally, ρ can be thought of as a
linear map on the space of field configurations, with matrix elements

ρRS = ⟨ϕR(x⃗)|ρ|ϕS(x⃗)⟩ = Ψ∗[ϕR(x⃗)]Ψ[ϕS(x⃗)] . (4.2.10)

If |Ψ⟩ is the vacuum, the wavefunctionals can be computed by performing the
following path integral over half of spacetime

Ψ[ϕS] =
1√
Z

∫︂
ϕ(0−,x⃗)=ϕS(x⃗)

Dϕ(x) exp
(︃
−
∫︂ 0−

−∞
dτ
∫︂

dd−1 x⃗ L[ϕ, ∂ϕ]

)︃
, (4.2.11)

where L is the QFT Lagrangian, and Z is the partition function. Note that the field
configuration ϕS(x⃗) at τ = 0− becomes a boundary condition in the integration.
Intuitively, this path integral computes the transition amplitude from the vacuum in
the far past to a reference state ϕS(x⃗) at τ = 0−. The wavefunctional Ψ∗[ϕR] can be
computed by performing a similar path integral on the other half of spacetime.

One can obtain the reduced density matrix ρA on a subregion of space A by fixing
boundary conditions at τ = 0− and τ = 0+ that only have support on A. In the
complement, boundary conditions should be identified and integrated over. One can
write this path integral in a compact form as an integral over all field configurations

1As we will see, EE in QFT suffers from short-distance divergences which are state-independent. In
our discussion of QM, we assumed that the Hilbert space factorises. In QFT, this is not true, and the UV
divergences arise a consequence. They are state-independent because at short distances, every state looks
like the vacuum. What does factorise, is the algebra of observables. See e.g. [177,178] for a modern review.
We will ignore these subtleties here.
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with delta functions imposing the boundary conditions at τ = 0− and τ = 0+,

⟨ϕr(x⃗A)|ρA|ϕs(x⃗A)⟩ =
∫︂

Dϕ(x)δ
(︁
ϕ(0+, x⃗A)− ϕr(x⃗A)

)︁
× δ

(︁
ϕ(0−, x⃗A)− ϕs(x⃗A)

)︁
exp

(︃
−
∫︂ +∞

−∞
dτ
∫︂

dd−1 x⃗ L[ϕ, ∂ϕ]

)︃
,

(4.2.12)

where the delta function constraints are imposed at every point in A, and ϕr(x⃗A) form
a basis of boundary field configurations on A only.

Equipped with the matrix elements of ρA, we can now compute the Rényi entropies
eq. (4.1.8). Matrix multiplication amounts to identifying the boundary field
configurations ϕr(x⃗A) of adjacent matrices and path integrating over all possible
configurations. Trρn

A can then be written as a single path integral on the n-sheeted
cover of spacetime M(n)

d , where the spatial region (τ = 0+, x⃗A) on one sheet is
identified with the spatial region (τ = 0−, x⃗A) of the next sheet. See figure 4.1 for a
pictorial representation of the reduced density matrix and the n-sheeted cover. We
denote this path integral by Zn such that

Trρn
A =

Zn

Zn , (4.2.13)

where the denominator ensures that the path integral is unit normalised. The
n-sheeted and appropriately glued cover of spacetime has a conical singularity around
the (d − 2)-dimensional surface Σd−2 = ∂A, called the entangling surface or twist
defect, with conical deficit angle 2π(1 − n). We then obtain the EE via eq. (4.1.9),

SQFT
A = lim

n→1

∂

∂n
(Wn − nW) , (4.2.14)

where Wn = − log Zn, and W is the ordinary effective action. This procedure is called
the replica trick [27, 28].

4.3 Entanglement in free QFTs and the heat kernel

The replica trick eq. (4.2.14) instructs us to compute the full path integral on Md and
M(n)

d in order to determine the EE. For interacting QFTs, this is often out of reach. In
free CFTs, however, the path integral reduces to a functional determinant of the kinetic
operator ∆,

W =
1
2

log det ′∆ , (4.3.15)

where the ′ indicates that zero eigenvalues are omitted. It is useful to write this
determinant in terms of the heat kernel, see ref. [179] for a detailed review. The heat
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ϕr( ⃗x A)
ϕs( ⃗x A)

τ

0+
0−

A
⃗x

B B

τ

⃗x
ϕs( ⃗x A)
ϕr( ⃗x A)

ϕr( ⃗x A)
ϕt( ⃗x A)

ϕt( ⃗x A)
ϕs( ⃗x A)

FIGURE 4.1: Left: Illustration of the path integral representation of the matrix elements
of the reduced density matrix ρA. The path integral is evaluated over the blue region
with boundary conditions ϕs(x⃗A) and ϕr(x⃗A) at τ = 0− and τ = 0+, respectively,
which are only supported on the spatial region A. Right: Illustration of the replica
trick. The Rényi entropy Sn(A) is mapped to the path integral over the n-sheeted cover
of spacetime, with sheets glued together along the cuts as indicated by dashed lines.
Repeated subscripts on ϕ on adjacent cuts indicate that the boundary conditions are
identified and integrated over in the path integral, thus effecting matrix multiplication

of ρA.

kernel of ∆ with eigenvalues λn is defined as

K(s; ∆) = e−s∆ . (4.3.16)

If ∆ is the Laplacian −D2, then the heat kernel in position space,

K(s; x, y; ∆) = ⟨x|K(s; ∆)|y⟩ , (4.3.17)

satisfies the following differential equation and initial condition(︂
∂s − D2

(x)

)︂
K (s; x, y; ∆) = 0 , (4.3.18a)

K(0; x, y; ∆) = δ(d)(x, y) . (4.3.18b)

This is the heat equation, which lends the heat kernel its name. Notice that these
equations imply that the Green’s function of ∆, i.e. the propagator G(x, y), obeying

∆(x)G(x, y) = δ(d)(x, y) , (4.3.19)

can be written as
G(x, y) =

∫︂ ∞

0
ds K(s; x, y, ∆) . (4.3.20)

Therefore, if one is given a propagator, one can deduce the heat kernel by performing
a spectral decomposition.
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To relate the functional determinant of ∆ to the heat kernel, we introduce the
zeta-function

Z∆(t) = ∑
n

′λ−t
n , (4.3.21)

where the prime means that the sum is only taken over strictly positive eigenvalues
λn. This sum is convergent for t > t∗ ∈ R. Taking a derivative with respect to t gives

Z′
∆(t) = ∑

n

′λ−t
n log λn . (4.3.22)

To regularise the functional determinant, we analytically continue Z∆(t) to the
complex t-plane. The functional determinant of ∆ is then defined in terms of the
analytic continuation to the origin:

det ′∆ =
∞

∏
n=0

′λn = exp(−Z′
∆(0)) , (4.3.23)

where the product is over non-zero eigenvalues, as indicated by the prime. This is
called zeta-function regularisation.

The zeta-function is the Mellin transform of the trace of the heat kernel,2

Z∆(t) =
1

Γ(t)

∫︂ ∞

0
ds st−1(TrK(s; ∆)− n0

∆) , (4.3.24)

where n0
∆ is the number of zero modes of ∆, and

TrK(s; ∆) = ∑
n

e−sλn =
∫︂

ddx
√

g ⟨x|K(s; ∆)|x⟩ . (4.3.25)

Differentiating with respect to t and taking t → 0, one finds

W =
1
2

log det ′∆ = −1
2
Z′

∆(0) = −1
2

∫︂ ∞

ϵ2

ds
s

TrK(s; ∆) , (4.3.26)

where ϵ > 0 is a UV cut-off, and we have subtracted the zero modes of the Laplacian
to IR regulate the integral.3

To compute the EE via eq. (4.2.14), one also needs the form of the heat kernel on a
space with conical singularity. This is related to the heat kernel in the absence of
conical singularities via the Sommerfeld formula [181, 182]. Consider polar
coordinates around the entangling surface, writing τ = r sin ϕ and x1 = r cos ϕ with
0 ≤ ϕ ≤ 2π. In this coordinate system the conical singularity is introduced by making

2The following integral identity is useful:

λ−t =
1

Γ(t)

∫︂ ∞

0
ds st−1e−sλ .

3For a careful treatment of UV and IR divergences in simple examples, see e.g. [180].
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ϕ periodic with period 2πn. The heat kernel in the presence of such a conical
singularity is

Kn(s; ϕ, ϕ′; ∆) = K(s; ϕ − ϕ′; ∆) +
i

4πn

∫︂
Γ

dω cot
(︂ ω

2n

)︂
K(s; ϕ − ϕ′ + ω; ∆) , (4.3.27)

where the contour Γ is given by two vertical lines going from (−π + i∞) to (−π − i∞)

and from (π − i∞) to (π + i∞). It intersects the real axis twice between the poles of
cot ω/(2 n), once between −2πn and 0, and once between 0 and 2πn. As n → 1, the
integral is O(1 − n). Substituting eq. (4.3.27) into eq. (4.2.14) using the representation
eq. (4.3.26), one can explicitly compute the EE. We will present two examples in
chapter 7.

4.4 Entanglement in CFT

The EE is bounded by the dimensions of the subsystem Hilbert spaces. However, in
QFT, those are infinite, and indeed, the EE is typically divergent. Intuitively, the EE in
the vacuum of a QFT arises from virtual Bell pairs that are produced near the
(d − 2)-dimensional entangling surface Σ, with one spin on either side of Σ. Thus, one
expects the EE to grow with the (d − 2)-dimensional volume of Σd−2. In a CFT on flat
space, there are no other dimensionful constants, and so one expects that the leading
UV divergence of SCFT

A ∼ ϵ2−d as the short-distance cut-off ϵ → 0 [183, 184].4

We have expressed eq. (4.2.14) in terms of the effective action W whose UV divergent
structure is given in eq. (2.5.53). The leading divergence comes from a term
proportional to the volume of spacetime,

∫︁
Md

ddx
√

gϵ−d, where we are allowing for a
non-trivial metric background. Since∫︂

M(n)
d

ddx
√

g = n
∫︂
Md

ddx
√

g , (4.4.28)

the terms diverging as ∼ ϵ−d in Wn and nW cancel. The same argument does not
apply to the subleading divergences involving integrals of curvatures. These do not
cancel as we will see. Thus, the leading UV divergence of SCFT

A in a CFT is ∼ ϵ2−d, as
expected.

In even d, the coefficient of the log term in W is the Weyl anomaly. Thus, the
logarithmic part of the EE must be related to the CFT’s central charges. Consider a
rescaling of the characteristic length scale L of the entangling surface Σd−2. This is

4When d = 4, the volume of Σd−2 is two-dimensional. For this reason the leading divergence of the EE
is often called an area law, even in general d.
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equivalent to performing a Weyl transformation eq. (2.4.29). Thus, the EE changes as

L
∂

∂L
SCFT

A = lim
n→1

∂

∂n

(︃∫︂
M(n)

d

ddx
√

g ⟨Tµ
µ⟩ − n

∫︂
Md

ddx
√

g ⟨Tµ
µ⟩
)︃

. (4.4.29)

Away from the conical singularity, the two expressions cancel against each other. The
only contributions must be coming from the region near the tip, i.e. the entangling
surface Σd−2. By regularising the conical singularity, ref. [30] showed that as n → 1,

∫︂
M(n)

d

ddx
√

g R̃(k) − n
∫︂
Md

ddx
√

g R̃(k) ∼ (1 − n)
∫︂

Σd−2

dd−2σ
√︁

g ˜︂R(ℓ)II(m) (4.4.30)

to leading order in (1 − n), where ˜︂R(ℓ)II(m) is linear combination of scalars built out of
ℓ curvature tensors and m second fundamental forms IIµ

ab with 2ℓ+ m = 2k − 2.

The replica trick with this regularisation can then be used to compute the EE between
an interval and its complement in a 2d CFT. In 2d, the Weyl anomaly eq. (2.5.48) only
depends on the 2d Ricci scalar R, for which∫︂

M(n)
2

d2x
√

g R − n
∫︂
M2

d2x
√

g R = 4π(1 − n) . (4.4.31)

Taking limn→1
∂

∂n , one finds that

L
∂

∂L
SCFT

A =
c(2d)

3
, (4.4.32)

where the extra factor of 2 comes from the fact that there are two conical defects in 2d,
one at each end point of the interval. Integrating, one finds

SCFT
A =

c(2d)

3
log
(︃

L
ϵ

)︃
+ . . . , (4.4.33)

where ϵ is a UV cut-off and the ellipsis stands for scheme-dependent terms [27, 28].
This relation allows for an alternative proof of the c-theorem. Indeed, ref. [33] found a
c-function related to SCFT

A and showed that it monotonically decreases along an RG
flow using quantum information techniques.

In 2d, there exists a conformal map from the plane to the infinite cylinder whose base
has circumference β. Thus one would expect that the EE is related to the
thermodynamic entropy defined in eq. (2.5.62). This indeed turns out to be the case.
Consider an interval of length L extended along the axis of the cylinder. Applying the
replica trick, one finds an EE on the cylinder that interpolates between the flat space
result for the EE eq. (4.4.33) for β ≫ L and the thermodynamic entropy eq. (2.5.62) for
β ≪ L, where L is identified with the size of the system [28].
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Now consider EE in 4d CFT. Ref. [30] found for the 4d Euler density E4,∫︂
M(n)

4

d4x
√

g E4 − n
∫︂
M4

d4x
√

g E4 = 8π(1 − n)
∫︂

Σ2

d2σ
√︁

g R +O(1 − n)2 , (4.4.34)

and for the (Weyl)2 term∫︂
M(n)

4

d4x
√

g WµνρσWµνρσ − n
∫︂
M4

d4x
√

g WµνρσWµνρσ

= 8π(1 − n)
∫︂

Σ2

d2σ
√︁

g
(︂

Wab
ab + II̊

µ
abII̊

ab
µ

)︂
+O(1 − n)2 .

(4.4.35)

For the Pontryagin density, the appropriate computation was performed in [160],∫︂
M(n)

4

d4x
√

g ϵµνρσRµνλκRρσ
λκ − n

∫︂
M4

d4x
√

g ϵµνρσRµνλκRρσ
λκ

= π(1 − n)
∫︂

Σ2

d2σ
√︁

g ϵabnij(R⊥)ijab +O(1 − n)2 .
(4.4.36)

These are precisely the terms that appeared in the contribution of a 2d conformal
defect to the Weyl anomaly in eq. (3.4.38). The coefficient of the log term in the EE
takes the form of the integrated Weyl anomaly of a co-dimension 2 defect, with
coefficients fixed in terms of bulk central charges. Indeed, in 4d the coefficient of the
logarithm is [29]5

SCFT
A |log L

ϵ
=
∫︂

Σ2

d2σ
√︁

g
[︃

a(4d)

2π
R − c(4d)

2π

(︂
Wab

ab + II̊
µ
abII̊

ab
µ

)︂
+

4c̃(4d)

π
ϵabnij(R⊥)ijab

]︃
,

(4.4.37)
In particular, if the ambient geometry is conformally flat and Σ is a round sphere, then
the only contribution comes from the Euler density. For a 2-sphere, χ = 1

4π

∫︁
S2 R = 2,

and thus the universal part of the EE is SCFT
A |log L

ϵ
= 4a(4d)

M .

In d = 6, however, the relation between the universal part of the EE and the p = 4
defect Weyl anomaly is less understood, partly because the general form of the Weyl
anomaly was unknown until recently. The EE has only been determined in special
cases: an entangling surface Σ4 without extrinsic curvature [131] or with only extrinsic
curvature, i.e. a curved Σ4 in flat space [132]. Our result of the p = 4 defect Weyl
anomaly in section 6.1 allows for determination of the EE in a d = 6 standalone CFT
with Σ4 of arbitrary shape.

5It is clear from the effective action that UV divergences of EE must be of order ∼ ϵ2k−d for integer
0 ≤ k ≤ ⌊ d

2 ⌋. Naively, however, one would expect that divergences could appear in integer steps, since

local counter-terms on the entangling surface could take the form
∫︁

Σd−2

˜︂
∂(i)R(j)II(k). The integrand has

mass dimension i + 2j + k, which can be odd. However, the EE of region A must be equal to the EE of
region B = A. In both cases Σd−2 is the same but it must have opposite orientation. This implies that
the second fundamental forms have opposite sign, and therefore, the coefficient of a term with an odd
number of II’s must be zero.
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Finally, let us comment briefly on the relation of EE with two other physical quantities:
Firstly, when d is odd, the EE has no logarithmic term. In particular, if Md = Sd, the
renormalised sphere free energy F in eq. (2.5.53) is identified with the constant term in
the EE, which is now universal. As mentioned in section 2.5, F was conjectured to be
monotonic under RG flows. By employing the relation between F and EE, and using
quantum information techniques, ref. [140] proved a weak form of the F-theorem
when d = 3. To my knowledge, this EE based argument is the only proof of the 3d
F-theorem to date. Secondly, note that a conformal transformation maps Euclidean
space to S1

β ×Hd−1. The vacuum state of the CFT on Rd maps to a thermal state on
Hd−1 at temperature T = 1

β , where β is the circumference of S1
β. As a result, the EE of a

spherical ball in Rd can be shown to be equal to the thermal entropy onHd−1 [185].

4.5 Entanglement in DCFT

We now turn to the EE in the presence of boundaries and defects. In the case of a 2d
CFT on half-space, i.e. with a 1d boundary, ref. [28] computed the EE of an interval of
length L

2 with one endpoint on the boundary using eq. (4.2.14). The result is

SBCFT
A =

c(2d)

6
log
(︃

L
ϵ

)︃
+ c′ +O(ϵ) , (4.5.38)

where c′ is the finite piece. Like in the case of an interval of length L in a CFT without
boundary in eq. (4.4.33), the EE again depends on the central charge. The coefficient,
however, is half of that in eq. (4.4.33) since the interval in the BCFT case only has one
endpoint in the bulk. In eq. (4.4.33), we omitted the finite piece as we argued that it is
scheme-dependent. In the BCFT case, however, the finite piece does contain physical
information. Assuming that SBCFT

A and eq. (4.4.33) are computed in the same scheme,
then the scheme-dependence and the logarithmic divergence cancel,

Sbdy ≡ SBCFT
A − 1

2
SCFT

A = log g . (4.5.39)

The finite piece, log g, is commonly called the boundary entropy. By construction, it
only depends on boundary DOF. In 2d, one can conformally map a CFT on half-space
to the semi-infinite cylinder where the radial direction has circumference β.
Computing the EE of an interval of length L

2 along the axis and anchored on the
boundary, ref. [28] found an expression interpolating between the flat space EE
eq. (4.5.38) as β ≫ L and the thermodynamic entropy eq. (2.5.62) as β ≪ L, with the
replacement L → L

2 . Ref. [186] argued that the thermal entropy of a 2d CFT with
boundary has a finite piece that is independent of the size of the system. Let Z[S1

β × I]
be the thermal partition function on a finite interval I of length L

2 . Then the thermal
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entropy has a physical finite piece,

Sthermo =

(︃
1 − β

∂

∂β

)︃
log Z =

c(2d)π

6
L
β
+ log g . (4.5.40)

If one of the two boundary states is the vacuum, then log g only depends on the
non-trivial boundary condition at the other end. In that case log g can be identified
with the right-hand side of eq. (4.5.39).

Ref. [186] conjectured that log g decreases under boundary RG flows,
log gUV ≥ log gIR. A non-perturbative proof of the conjecture was given in ref. [187].
The authors showed that log g, defined through the thermal entropy, actually
decreases monotonically,

µ
∂

∂µ
log g ≤ 0 , (4.5.41)

where µ is the RG scale. This is called the g-theorem, in analogy to the c-theorem for
the 2d central charge c(2d). An entropic version of the g-theorem was proved in [188]
using quantum information techniques. There the authors show that log g, defined
through the EE, decreases monotonically along the boundary RG flow. Note that the
two proofs are logically independent: they prove monotonicity theorems for different
quantities, which only agree at the fixed points.

Conformal interfaces in 2d CFT can be mapped to the boundary case above using the
folding trick [189, 190]. A conformal interface between CFT1 and CFT2 is equivalent to
CFT1 ⊗ CFT2 on half-space joined together at the boundary, with the orientation of
one of the CFTs reversed. The discussion also applies to line defects in 2d CFTs
without boundaries. An interval with one endpoint on the defect has the form
eq. (4.5.38). If both endpoints are in the CFT, then the logarithmic part has an extra
factor of 2.

For line defects in higher-dimensional CFTs, ref. [191] argued that Sdef ≡ SDCFT
A − SCFT

A

for a spherical ball A receives an additional term from the stress tensor one-point
function eq. (3.1.13). As a result, the defect contribution to the EE is no longer required
to decrease along a defect RG flow, see e.g. ref. [49] for an example. However, one can
still define an analogue of the thermodynamic defect entropy. In a d ≥ 3 CFT, one can
conformally map Rd to the cylinder R× Sd−1, where the sphere has radius R and the
defect is located at the equator. Ref. [192] showed that the quantity(︃

1 − R
∂

∂R

)︃
(log ZDCFT − log ZCFT) , (4.5.42)

decreases monotonically under a defect RG flow, where ZDCFT and ZCFT are the
partition functions with and without defect insertion, respectively. Note that this
quantity no longer agrees with the defect contribution to the EE, not even at the fixed
points.
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Next consider a conformal boundary in a 3d CFT. When d = 3, the boundary Weyl
anomaly in eq. (3.4.38) fully determines the coefficient of the logarithmic divergence of
the effective action W . To compute the EE, one can again use the replica trick
eq. (4.2.14). Recall that the only contributions to the EE come from the tip of the
conical singularity, which is identified with the entangling surface. If it intersects the
boundary, then the EE will pick up logarithmic contributions from the boundary Weyl
anomaly. Otherwise, the logarithmic part vanishes. The boundary contribution to the
EE was determined in refs. [47, 48] for an arbitrary entangling surface intersecting the
boundary. Generically,

Sbdy
A ≡ SBCFT

A − 1
2

SCFT
A =

1
6

(︄
Na(2d)

Σ − d(2d)
1

N

∑
k=1

f (αk)

)︄
log
(︃

L
ϵ

)︃
+ . . . , (4.5.43)

where the entangling surface intersects the boundary N times, each time at an angle
αk, and f is a known function. a(2d)

Σ and d(2d)
1 are two of the defect central charges in

eq. (3.4.38). For a round half-disk centred on the boundary, this reduces to

Sbdy
A =

a(2d)
Σ
3

log
(︃

L
ϵ

)︃
+ . . . . (4.5.44)

The coefficient of the logarithm defines a function along a boundary RG flow that
coincides with a(2d)

Σ at the fixed points. Using quantum information theory arguments,
ref. [56] gave an entropic proof of the c-theorem for a(2d)

Σ , i.e. a(2d)
Σ,UV ≥ a(2d)

Σ,IR under a
boundary RG flow. It is equivalent to the proof of ref. [55] when d = 3, which we
discussed in section 3.4.

Consider the contribution to the EE of a flat p = 2 defect in a CFT on Rd, where d ≥ 4
and the entangling region is taken to be a sphere of radius L centred on the defect, see
figure 4.2. Ref. [49] argued that the coefficient of the logarithm has two contributions.
The first one is related to the defect contribution to the free energy on Sd of radius L
with the defect wrapping an equatorial S2. The second contribution is proportional to
the stress tensor one-point function eq. (3.1.13). Ref. [50] argued that these are in turn
related to the defect central charges a(2d)

Σ and d(2d)
2 via eqs. (3.4.39) and (3.4.40),

respectively, such that the defect’s contribution to the universal part of the EE is

Sdef
A |log L

ϵ
≡ (SDCFT

A − SCFT
A )|log L

ϵ
=

1
3

(︃
a(2d)

Σ +
d − 3
d − 1

d(2d)
2

)︃
. (4.5.45)

Again, the universal defect contribution to the EE no longer serves as a good
c-function. The appearance of the stress tensor one-point function spoils its
monotonicity. Indeed, refs. [49, 193] provides multiple examples where Sdef

A increases
along a defect RG flow. However, Fdef is always found to decrease, prompting the
authors to conjecture that it is a good c-function for any defect and ambient space
dimensions. This putative c-theorem reduces to the monotonicity theorems for log g
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Σ

FIGURE 4.2: A spherical entangling surface in d = 4 centred on the p = 2 defect at
time τ = 0. The defect’s contribution to the universal EE of the region enclosed is

given by eq. (4.5.45).

and a(2d)
Σ when the defect dimension is p = 1 and p = 2, respectively. It is the defect

version of the generalised F-theorem mentioned in section 2.5.6

More generally, ref. [49] argues that the universal part of the EE of a spherical region
centred on a defect of any dimension p is related to the universal part of the sphere
free energy and the stress tensor one-point function,

Sdef
A |univ. = −Fdef|univ. −

2(d − p − 1)π
d
2+1

sin
(︁ p

2 π
)︁

Γ
(︁ p

2 + 1
)︁

Γ
(︂

d−p
2

)︂h . (4.5.46)

When p is odd, the finite pieces of Sdef
A and Fdef are universal. When p is even, it is the

coefficients of log L
ϵ that appear in eq. (4.5.46). The pole in the second term for even p

arises from the choice of a dimensional regularisation scheme. It maps to a logarithmic
divergence in the UV cut-off ϵ in a short distance expansion around the intersection
∂A ∩ Σ. Explicitly in p = n − ε dimensions for integer n, 1

ε → log L
ϵ . In section 6.2.2.1

we will use eq. (4.5.46) to relate the logarithmic contribution to the EE of a p = 4
dimensional defect to two defect central charges.

6A boundary version of the F-theorem when d = 3 was originally proposed by refs. [170, 194]
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Chapter 5

Supersymmetry

In this chapter, we review several aspects of supersymmetry (SUSY) and
superconformal symmetry as well as defects preserving parts of these symmetries.

5.1 Flat space supersymmetry

In this section, we review relevant concepts of SUSY in flat space. Excellent
introductions can be found e.g. in refs. [195–197]. In flat space, SUSY is an extension of
the Poincaré algebra by fermionic, i.e. spinorial and Grassmann, generators QI , where
I = 1, . . . ,N . The integer N counts the number of minimal spinors-worth of
generators. By minimal spinor we mean the smallest irreducible spin representation of
the Lorentz group. These are dependent on the spacetime dimension d and the
signature. Commonly N refers to the number of minimal spinors of SO(d − 1, 1). The
number of real components of all of the QI combined is called the total number of
supercharges.1 The types of minimal SO(d − 1, 1) spinors and the corresponding
number of real supercharges are summarised in table 5.1.

1In Euclidean signature, it is customary to count the number of real supercharges using the same N
as in Lorentzian signature. This may seem misleading at first, since the irreducible spinor representa-
tions of SO(d − 1, 1) and SO(d) have different dimensions. In particular, a Majorana condition is typically
identified with a reality condition on the Clifford algebra basis. The spacetime dimensions d in which
such a condition can be imposed are different for Euclidean and Lorentzian signature. While this is tech-
nically correct, it misses the point. Often one considers Euclidean QFT as an arena to study questions
about Lorentzian physics in a more controlled setting. By the Osterwalder-Schrader reconstruction theo-
rem [82], reflection-positive Euclidean correlation functions can be Wick rotated to give unitary correlators
in Minkowski space. Rather than imposing an ordinary Majorana condition in Euclidean signature, one
should instead consider an alternative Majorana condition which ensures that the Euclidean path inte-
gral of Grassmann valued fermions computes correlation functions which, upon Wick rotation, coincide
with the correlation functions of (ordinary Lorentzian) Majorana spinors. Such a “physical” Majorana
condition can be shown to exist in the same spacetime dimensions as the ordinary Majorana condition in
Lorentzian signature [198]. The same applies to symplectic and pseudo-Majorana fermions [199], and, of
course, Weyl conditions are signature independent too.
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d minimal spinor # real components SUSY # real supercharges
2 MW 1 N = (p, q) p + q
3 M 2 N 2N
4 M 4 N 4N
5 SM 8 N 8N
6 SMW 8 N = (p, q) 8(p + q)

TABLE 5.1: Minimal spinors of SO(d − 1, 1) and SUSY for 2 ≤ d ≤ 6. The spinors
obey Majorana (M), Majorana-Weyl (MW), symplectic Majorana (SM), and symplectic
Majorana-Weyl (SMW) conditions depending on d as summarised in the second col-
umn. The number of real components of each minimal spinor is reported in the third
column. N ∈ Z counts the number of minimal spinors-worth of SUSY generators.
When d = 2, 6, minimal spinors are chiral. We write N = (p, q) for p, q ∈ Z to keep
track of chiralities. The number of real supercharges for given N is reported in the last

column.

Since spinorial representations of the Lorentz group depend on d and the signature,
the precise form of the algebra takes on slightly different forms across dimensions. In
our discussion we will encounter SUSY QFTs (SQFTs) in various dimensions and with
different amounts of SUSY. Schematically,

[P, QI ] = 0 , [M, QI ] ∼ QI , {QI , QJ} ∼ P +Z , (5.1.1)

where Pµ and Mµν are the Poincaré generators introduced in chapter 2, and Z is a
collection of c-numbers, which commute with all generators.

Representations of the SUSY algebra are often called multiplets. Since the
supercharges are fermionic, their action on a bosonic state results in a fermion, and
vice versa. States sit in highest-weight representations of the SUSY algebra. Half of the
supercharges act as raising, and half as lowering operators for spin or helicity. Acting
with lowering operators results in a finite-dimensional representation. It is finite
because the Q’s are Grassmann valued. In a SUSY multiplet, the number of bosonic
and fermionic states are equal. Assembling the states into the on-shell modes of single
particles, one finds that SUSY multiplets contain particles of different spins, which
must sit in the same representations of global and gauge symmetries. Their dynamics
can be described by Lagrangians whose field contents can be elegantly described
diagrammatically in so-called quiver diagrams. We will see examples of these in
chapter 8.

In a SQFT, flavour symmetry generators commute with all the generators of the SUSY
algebra eq. (5.1.1). However, not all global symmetries in SQFT are flavour
symmetries. The SUSY algebra has a non-trivial automorphism group, called the
R-symmetry, which acts non-trivially on the SUSY generators QI . In SQFT,
R-symmetry is partly optional: a given theory need not realise the full R-symmetry
group. However, if present, states in a SUSY multiplet must have different R-charges
since states are related by the action of Q’s.
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Let us briefly discuss some of the SQFTs that we will encounter later in this thesis.
Many of the SQFTs that we will study are gauge theories for some gauge group G.
SUSY gauge theories are built out of multiplets containing a gauge boson. The types
of accompanying fields depend on the amount of SUSY and the dimension. E.g. a 2d
N = (2, 2) vector multiplet contains a gauge boson, a Dirac fermion and a complex
scalar, all of which are in the adjoint of G. The simplest action for this multiplet is the
super-Yang-Mills (SYM) action, a SUSY version of ordinary YM theory. The simplest
N = (2, 2) matter multiplets are so called chiral multiplets, which contain one
complex scalar and a Weyl fermion. One can build 2d N = (2, 2) SUSY gauge theories
by taking chiral multiplets in a representation of G, coupling them to a vector
multiplet, and turning on a potential for the matter fields, called a superpotential,
often denoted by W. If G is reductive, i.e. it contains U(1) factors, one can also turn on
a twisted superpotential for each U(1). It is a deformation by two real parameters.
One of them is called a Fayet-Iliopoulos (FI) parameter, ξ, which corresponds to a
particular deformation of the scalar potential. The other one is a 2d θ-angle for the
Abelian part of the field strength. The resulting gauge theory is often called a gauged
linear sigma model (GLSM). See e.g. ref. [21, 200] for a detailed discussion. We will
meet examples of GLSMs in chapter 8.

Another set of examples are 4d N = 2 gauge theories. The most fundamental building
block is a 4d N = 2 vector multiplet, which contains one gauge boson, two Weyl
fermions, and one complex scalar. Again, one can write a SYM action for each vector
multiplet. N = 2 SUSY preserving matter must be in a so-called hypermultiplet,
which contains two Weyl fermions and two complex scalars. A simple example of a 4d
SUSY gauge theory is N = 2 supersymmetric QCD (SQCD) with G = SU(N) and 2N
flavours, i.e. two hypermultiplets in the fundamental representation of SU(N). It
turns out that for this theory, the YM coupling g2

YM is exactly marginal. Another
example is the case of a gauge theory consisting of a vector multiplet coupled to a
single hypermultiplet in the adjoint representation. In that case, the vector and
hypermultiplets combine into an N = 4 vector multiplet to form N = 4 SYM theory.
Again, g2

YM is exactly marginal and the theory is conformal.

It is an immediate consequence of the algebra eq. (5.1.1) that a vacuum state preserves
SUSY if and only if it has zero energy. Typically, SQFTs with R-symmetry have
multiple SUSY vacua. Sometimes, there can be infinitely many neighbouring vacua
corresponding to flat directions in the scalar potential. Such a vacuum manifold is
called a (classical) moduli space. Each flat direction in the potential corresponds to a
massless field, called a modulus. At energy scales below the mass of the lightest
massive particle, only moduli remain. Thus, the classical moduli space of vacua
describes the naïve IR dynamics of the SQFT. Moduli spaces are typically stable, i.e.
they are not lifted by quantum corrections. However, they do receive interesting
quantum corrections, both perturbatively and non-perturbatively. These corrections
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can alter the moduli space drastically, and e.g. lead to singularities. Nonetheless,
compatibility with SUSY requires the moduli space to admit certain geometric
structures which depend on the number of supercharges. The full quantum corrected
moduli space encodes the low energy dynamics of the theory. The moduli space can
be given a natural metric, and the IR dynamics is dictated by a non-linear sigma
model (NLSM) whose target space is the moduli space.

Generically, determining the IR phase of a QFT is difficult. SUSY, however, imposes
powerful constraints that can provide tools to study a given QFT. E.g.
non-renormalisation theorems heavily constrain the IR dynamics of theories with four
supercharges [201]. Where couplings do run, SUSY may still allow for computation of
the beta functions. E.g. in 4d N = 1 SUSY gauge theory, ref. [202, 203] derived a
compact formula for the beta function to all loop orders and non-perturbatively.
Gauge theories with eight supercharges have moduli spaces which typically have two
branches, where the IR gauge theory either exhibits long-range Coulomb interactions,
or the gauge group is fully higgsed. These are called Coulomb and Higgs branches,
respectively. The Higgs branch is classically exact, however, the Coulomb branch can
receive quantum corrections. E.g. in 4d N = 2 SYM, g2

YM is marginally relevant.
Non-renormalisation theorems imply that the coupling can only receive corrections at
one-loop in perturbation theory and non-perturbatively. The moduli space only
consists of a Coulomb branch, which receives quantum corrections. Nonetheless,
SUSY allows for exact determination of the theory’s IR dynamics. Ref. [19] argued for
the SU(2) theory that the moduli space has two singularities in the interior of the
moduli space, where additional DOF become light. The type of additional particles is
encoded in the monodromies around the points. By studying the monodromies, they
were able to construct holomorphic differentials on an auxiliary complex curve, whose
integrals along 1-cycles exactly determine the metric on the moduli space. This
auxiliary curve is often called the Seiberg-Witten (SW) curve. Similar curves and
differentials have been found for gauge theories with matter content, e.g. in ref. [20].
See ref. [204] for a review with many other examples.

5.2 Supersymmetric localisation

QFT in flat space suffers from IR divergences. These can be cured by putting the
theory on a compact manifold. In order to preserve SUSY on a curved background,
additional couplings to the background curvature need to be introduced. This lifts the
moduli space of vacua. Nonetheless, SUSY still allows for explicit computation of
various observables. These include the renormalised partition functions ZSd and the
ZS1×Sd−1 if the theory preserves enough SUSY.
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The technique that allows for these computations is SUSY localisation. See e.g.
ref. [205] for a pedagogical introduction, and ref. [24] for a comprehensive review. The
localisation principle was first formulated in ref. [13]. Let I[Φ] be the action of a SQFT,
and let Q be a fermionic symmetry of I, i.e. QI = 0. Q can be any Grassmann valued
charge that squares to a linear combination of bosonic spacetime, global and gauge
symmetry charges, Q2 = B. One may then consider the deformed action I + tQV, for
some fermionic functional V[Φ] that is invariant under B, i.e. BV = 0. The path
integral, with SUSY invariant measure DΦ, is unchanged by this deformation

∂

∂t
Z(t) =

∂

∂t

∫︂
DΦe−I−tQV = −

∫︂
DΦQV[Φ]e−I−tQV

= −
∫︂

DΦQ
(︂

Ve−I−tQV
)︂
= 0 ,

(5.2.2)

where the last equality holds because Q is a differential in field space, and we are
assuming that V[Φ] falls off sufficiently fast at infinity in field space. Thus, the path
integral can be computed at any value of t, Z(t) = Z(0) = Z. At large t, the path
integral is dominated by field configurations that extremise QV, and we can perform
a saddle-point approximation around these points. In the t → ∞ limit, this
approximation becomes exact. Note that the argument also applies to correlation
functions of observables O obeying QO = 0.

One choice of Q and V[Φ], reduces the path integral to a sum over the
Bogomol’nyi-Prasad-Sommerfield (BPS) locus of bosonic Q-invariant field
configurations, i.e. configurations for which all fermionic fields and their Q-variations
vanish. In the case of an N ≥ 2 gauge theory on S4, the sum over saddle points then
reduces to a finite-dimensional integral of the vacuum expectation value (VEV) of the
vector multiplet scalar, a, over the Cartan subalgebra t4d of the gauge algebra g4d.
Since a parametrises the Coulomb branch of the moduli space in flat space, this choice
of Q and V is often called Coulomb branch localisation. The localised partition
function takes the following schematic form [23]

ZS4 =
∫︂
t4d

da ZclassZ1-loop|Zinst|2 . (5.2.3)

It consists of a classical part Zclass, a 1-loop part Z1-loop, and an instanton part Zinst.
Each of these is parametrised by a, valued in the Cartan subalgebra.2 Often,
localisation is performed on a squashed sphere, S4

b, where b2 = ϵ1
ϵ2

are squashing
parameters. The round sphere partition function can be obtained by taking b → 1. We
will comment more on the squashed case in section 8.2.

2The instanton part will not play much of a role in this thesis. Let us just point out that it was first
determined by ref. [22] by deforming the theory on R4 in a way that preserves a U(1)2 subgroup of the
original SO(4) Lorentz group. This is called the Ω-background, R4

ϵ1,ϵ2
, where ϵ1,2 are the deformation

parameters. Using this deformation, ref. [22] was able to give a microscopic derivation of the full IR
dynamics of N = 2 SYM theory without resorting to an analysis of the moduli space via the SW curve.
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For a 2d GLSM, one can also localise onto the BPS locus, where field configurations
are parametrised by a quantised 2d gauge flux m = 1

2π

∫︁
S2 F and the VEV of one of the

two real vector multiplet scalars, σ. The Coulomb branch localised partition function
on S2 takes the schematic form [206, 207]

ZS2 =
1

|Wg2d |
∑

m∈tZ2d

∫︂
t2d

dσ ZclassZgauge
1-loopZmatter

1-loop , (5.2.4)

where Wg2d is the Weyl group of g2d, and tZ2d is the charge lattice.3

Another common choice of Q and V[Φ] exists when the gauge group is completely
higgsed in flat space by turning on a non-zero FI parameter. In this case the path
integral reduces to a discrete sum over BPS configurations which correspond to a
finite number of points on the Higgs branch. E.g. in 2d, the partition function again
depends on classical and 1-loop parts but now also receives contributions from vortex
and anti-vortex excitations. This choice is called Higgs branch localisation [206, 207].
The different localisation schemes all give the same answer, as they must.

5.3 Superconformal symmetry

In QFT in flat space, invariance under both SUSY and conformal symmetry typically
implies invariance under the larger superconformal group. For pedagogical
introductions to superconformal symmetry, see e.g. refs. [76, 208]. Importantly,
R-symmetry is no longer optional for superconformal field theories (SCFTs): it is part
of the superconformal algebra (SCA), which is a super-Lie algebra composed of
bosonic and fermionic generators. Its bosonic subalgebras are the conformal algebra
eq. (2.1.9) and the R-symmetry algebra. In addition to the fermionic supercharges QI ,
the SCA also contains an equal number of fermionic superconformal generators SI . A
subset of the non-trivial commutation relations is

[D, Q] = +
i
2

Q , [D, S] = − i
2

S , [K, Q] ∼ S , [P, S] ∼ Q

{Q, Q} ∼ P , {S, S} ∼ K , [Q, S] ∼ D + R + M ,
(5.3.5)

where R is an R-symmetry generator. Thus, Q and S have scaling dimension ∆ = + 1
2

and ∆ = − 1
2 , respectively. SCA have been classified under mild physical assumptions,

and have been shown to only exist for spacetime dimensions d ≤ 6 [209], i.e. there are
no SCFTs in d > 6.

In 6d, there are two SCAs: one with 6d N = (2, 0) and usp(4) R-symmetry, and the
other with N = (1, 0) SUSY and usp(2) R-symmetry. There is no SCA with N = (1, 1)

3In practical terms, one may think of m ∈ tZ2d as having integer eigenvalues on any representation of
the gauge group G2d.
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SUSY. The most famous interacting 6d SCFTs are the N = (2, 0) theories, which are
labelled by an ADE Lie algebra g6d [210, 211]. The low energy effective theory on a
generic point on the moduli space contains a two-form gauge field whose field
strength is self-dual. These SCFTs are believed to be the unique 6d SCFTs with
maximal SUSY. String and M-theory suggest that these SCFTs describe the IR
dynamics of certain extended objects, called branes. There is ample evidence that
these are healthy, local SCFTs (see e.g. ref. [212]) but an explicit QFT description is
lacking. There is no known Lagrangian description.

In 5d, the situation is even more restrictive: the unique SCA f(4) only has N = 1 SUSY
with su(2) R-symmetry. The only known examples of interacting 5d SCFTs come from
string theory constructions, including webs of intersecting branes [213] and geometric
engineering [214, 215]. Moreover, string theory suggests that all 5d SCFTs descend
from 6d N = (1, 0) SCFTs via compactification [216]. Conversely, compactifying the
6d N = (2, 0) theory on a circle gives 5d N = 2 SYM theory, which is not conformal.
The radius of the S1 is identified with the YM coupling g2

YM, which is irrelevant in
d ≥ 5.

In 4d, there is one SCA with maximal N = 4 SUSY and su(4) R-symmetry. N = 4
SYM theory is believed to be the unique 4d SCFT with that SCA, and indeed the only
SQFT with maximal SUSY. In addition to its large spacetime symmetry, N = 4 SYM
theory has an SL(2,Z) duality group, an generalisation of electromagnetic duality in
Maxwell theory. SCAs with N ≤ 3 have su(N )⊕ u(1) R-symmetry.4 A large class of
4d N = 2 SCFTs are the class S theories [217], which arise from the (partially twisted)
compactification of the AN−1 6d N = (2, 0) SCFT on punctured Riemann surfaces. We
will review them briefly in section 8.1.

In 3d, there exist SCAs with N ≤ 8 and so(N ) R-symmetry. A famous example is the
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [218]. ABJM theory is a
CS-matter theory which includes two non-dynamical U(N) gauge fields with CS
terms at levels k and −k as well as charged matter. For generic k ∈ Z, ABJM has
N = 6 SUSY, which enhances to the maximal N = 8 when k = 1, 2. Another class of
examples are the so-called class R theories of ref. [219]. They are 3d N = 2 SCFTs
obtained by compactifying the 6d N = (2, 0) SCFTs on a three-manifold.

The case of d = 2 is special: the conformal group factorises into chiral and anti-chiral
halves. The chiral halves can be invariant under different SCAs. In fact, there exist
three infinite families of chiral SCAs as well as three exceptional SCAs, one of which is
labelled by a continuous parameter.

Local operators in unitary CFTs sit in lowest-weight representations of the conformal
algebra. The lowest-weight is a conformal primary O, obeying [Kµ,O(0)] = 0. In

4When N = 4, the R-symmetry generator of the u(1) part becomes central and can be quotiented out,
giving the aforementioned SCA with su(4) R-symmetry.
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unitary SCFTs, local operators sit in lowest-weight representations of the SCA. Since
both Kµ and S lower the scaling dimension, a lowest-weight should obey

[Kµ,O(0)] = 0 , [SI ,O(0)} = 0 . (5.3.6)

Here, [·, ·} denotes the commutator if O is bosonic, and the anti-commutator if it is
Grassmann valued. Such a local operator O is called a superconformal primary.

Superconformal descendants are obtained by taking nested (anti-)commutators [Q, ·}
of O, each commutator raising the scaling dimension of O by 1

2 . E.g. the first
superconformal descendant of O, with scaling dimension ∆O, is O′ = [Q,O} whose
scaling dimension ∆O′ = ∆O + 1

2 . As the Q’s are Grassmann, there are finitely many
superconformal descendants. Note that all superconformal descendants are conformal
primaries. This can be seen by using [Kµ, Q] ∼ S, and using the Jacobi identity
repeatedly. Thus each superconformal descendant gives rise to an infinite family of
conformal descendants linked by the supercharges Q.

The representation theory of SCAs is much richer than their non-SUSY
counterparts [220–222]. As for ordinary CFTs, superconformal primaries in SCFTs
must obey unitarity bounds. Unitarity allows for scaling dimensions ∆ ≥ ∆A for some
∆A as well as ∆ = ∆B, ∆C, . . ., where ∆B,C,... < ∆A are a discrete set. Superconformal
primaries with ∆ = ∆A, ∆B, ∆C, . . . obey shortening conditions, i.e. at least one
superconformal descendant is annihilated by at least one supercharge Q. As
continuous parameters in the SCFT are varied, the scaling dimension of long
multiplets can reach the unitarity bound ∆A from above. At this point the long
multiplet splits into a short multiplet with ∆A and another short multiplet (of any
type) containing the null states of the former. Short multiplets that do not appear in
the fragmentation of long multiplets at the unitarity bound are said to be absolutely
protected. They must necessarily have ∆ = ∆B, ∆C, . . .. Conversely, some short
multiplets may recombine into long multiplets and leave the unitarity bound as
continuous parameters are tuned. This process is called recombination. See e.g.
ref. [222] for more details.

An important example of a superconformal multiplet is the stress tensor multiplet. It
is a protected multiplet that exists in any SCFT.5 On general grounds, this multiplet
consists of the stress tensor, the R-symmetry current and the supercurrents whose
charges are the fermionic generators of the SCA. The stress tensor is the

5The existence of a stress tensor multiplet imposes strong constraints on the admissible SCAs. Nahm’s
classification [209] allows for an arbitrary number of supercharges N in d = 3, 4, 6. A standard argument
states that theories with more than 16 real supercharges must necessarily include gravity. However, this
argument assumes the existence of weakly coupled one-particle states. Clearly, this requirement is not
met for non-Lagrangian SCFTs. The reason that any SCFT in d = 4, 6 can have no more than 16 real
supercharges is precisely the requirement of the existence of a suitable stress tensor multiplet. In d = 3,
theories with more than 16 supercharges admit a stress tensor multiplet but they are necessarily free [222].
We have implicitly assumed the existence of such a multiplet in our previous discussion, and we will
continue to do so in the remainder of this thesis.
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superconformal descendant with the largest scaling dimension ∆ = d in this multiplet.
Conserved flavour symmetry currents also sit in superconformal multiplets. Since a
flavour symmetry charge must commute with all the supercharges, the conserved
current must be the component which is annihilated by all further Q’s, and so it must
have the largest scaling dimension.

The BPS local operators in a SCFT, i.e. operators which are annihilated by at least one
Q, form an important subsector of the theory. One can define a formal index that
counts them graded by their quantum numbers. This is the superconformal index
(SCI), specified by a choice of supercharge Q. In radial quantisation, it is defined as

I(βi) = TrHQ(−1)Fe−∑j β jtj , (5.3.7)

where βi are real parameters called chemical potentials for each generator ti of the
Cartan subalgebra of the superconformal and flavour symmetry commuting with Q,
and HQ ⊂ H is the subspace of the radial quantisation Hilbert space that is
annihilated by Q and Q† = S.6 These states, or equivalently, operators via the
state-operator correspondence, sit in short representations which generically have
∆ = ∆A, ∆B, ∆C, . . .. SUSY indices should be invariant under continuous deformations
of the theory. For the SCI in eq. (5.3.7), one might worry that two short multiplets
could recombine and leave the unitarity bound, thus changing the index. However, it
turns out that contributions to the SCI from any such pair evaluate to zero, and it
indeed is invariant under continuous deformations of the theory that preserve
Q [223–225]. Thus, more precisely, the index counts BPS operators modulo
recombination.

Via a standard argument [226], the Hamiltonian {Q, Q†} ∼ D + R + M can be inserted
with some coefficient β in the exponential of eq. (5.3.7) at no cost. The modified SCI is
independent of β. This modification of the SCI suggests that one may be able to
compute it via a path integral. Studying a CFT on Rd in radial quantisation is
equivalent to placing the theory on R× Sd−1, where R is the (radial, Euclidean) time
direction: the Hilbert spaces are the same. By compactifying R to S1

β, where the
circumference β is identified with the coefficient of the Hamiltonian, one maps the SCI
to the path integral on S1

β × Sd−1, with anti-periodic boundary conditions along the S1
β

for the fermions. In fact, the path integral computes the SCI up to a factor,

ZS1×Sd−1(β, µj) = e−β Ec(µj)I(βµj) , (5.3.8)

where µj =
β j
β , and Ec(µj) is a polynomial in µj called the SUSY Casimir energy

(SCE) [227–229].

6Different Q’s have different commutants, and the exponent on the right-hand side changes accord-
ingly. The full SCI, however, turns out to be independent of this choice.



76 Chapter 5. Supersymmetry

In ordinary 2d CFT, one typically defines the Casimir energy as the ground state
energy on the circle

∫︁
S1

L
dx

√
g ⟨Tττ⟩ = − π

6L c(2d), where τ is the Euclidean time
coordinate along R, see e.g. ref. [84]. For higher-dimensional CFTs, the direct analogue∫︁

Sd−1 dd−1x
√

g ⟨Tττ⟩ turns out to be scheme-dependent [230]. For SCFTs, one can
define an alternative Casimir energy by reducing on the Sd−1 to obtain a SUSY QM
(SQM). The expectation value of the 1d theory’s Hamiltonian, ⟨HSQM⟩, turns out to be
scheme-independent, and can be identified with the SCE Ec appearing in eq. (5.3.8) by
taking the β → ∞ limit [230].

5.4 Weyl anomaly in SCFTs

In chapter 2 we discussed the CFT Weyl anomaly and briefly mentioned ’t Hooft
anomalies. Both anomalies correspond to non-conservation of currents (the dilatation
current for the stress tensor and the ordinary Noether current of a global symmetry) in
a non-trivial background.7 Weyl and ’t Hooft anomalies share some similarities, e.g.
both must obey the WZ consistency condition, however, they are fundamentally
different in QFT.

For ’t Hooft anomalies, imposing WZ consistency can be recast as a
Becchi-Rouet-Stora-Tyutin (BRST) cohomology problem, see e.g. refs. [88, 89, 237, 238]
for a pedagogical introduction.. Physical anomalies that cannot be removed by local
counter-terms correspond to BRST cohomology classes. A remarkably simple way to
solve the BRST problem is called the descent mechanism. ’t Hooft anomalies can be
obtained from (d + 2)-form characteristic classes, i.e. gauge invariant polynomials of
(background) field strength tensors that are closed under the exterior derivative d and
whose integrals are topological invariants. The sum of these characteristic classes is
called the anomaly polynomial Ad+2(Md). The ’t Hooft anomalies of the
d-dimensional QFT are obtained via the descent equations, which reduce the
(d + 2)-form to a BRST-closed d-form. The combinations of field strength tensors
appearing in each characteristic class determine the anomalous symmetries. The
Hodge dual of the BRST-closed d-form parametrises the non-conservation of the
anomalous symmetry’s current, like in eq. (2.5.44). The coefficients of the
characteristic classes descend to ’t Hooft anomaly coefficients. This is in contrast to
Weyl anomalies, for which it is believed that no anomaly polynomial exists.8 The ’t
Hooft anomaly coefficients are not fixed by descent, they need to be computed

7Our discussion will focus on continuous symmetries, however, ’t Hooft anomalies of discrete sym-
metries have received considerable interest recently, see e.g. refs. [231–233]. Further, various recent gen-
eralisations of symmetry typically involve discrete groups or more general algebraic structures, see e.g.
refs. [154, 234–236].

8Given the resemblance of the Euler anomaly to the chiral anomaly, as discussed in section 2.5, ref. [96]
speculated that it should satisfy a descent identity. Indeed, refs. [239, 240] proved somewhat recently that
the Euler anomaly is the unique density obeying a non-trivial descent mechanism.
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separately. Since ’t Hooft anomalies typically arise from 1-loop fermion
diagrams [241, 242], they can be straightforwardly computed. This is unlike Weyl
anomalies which are not one-loop effects and also exist in CFTs without fermions.
Moreover, ’t Hooft anomalies are invariant under RG flows, and may be computed at
any point along the flow. This is known as ’t Hooft anomaly matching [243]. This is in
stark contrast to Weyl anomalies, which only exist at the fixed points of RG flows, and
the c-theorems discussed in section 2.5.

Nonetheless, in SCFTs, the stress tensor and R-symmetry current sit in the same
superconformal multiplet, and one might wonder if there exists a relation between the
’t Hooft anomaly of the R-symmetry and the Weyl anomaly coefficients. Indeed, this
turns out to be the case. E.g. in 2d N = (2, 0) SCFTs, refs. [244, 245] found

c(2d) = 3k , (5.4.9)

where k is the pure ’t Hooft anomaly coefficient of the superconformal R-symmetry.
The proportionality factor is normalisation-dependent, and we have chosen the same
conventions as refs. [244, 245]. Similarly, the central charges a(4d)

M and c(4d) of 4d N = 1
SCFTs can be related to combinations of R-symmetry anomalies [106]. E.g. for N = 4
SYM theory, this implies that a(4d)

M = c(4d). The central charges are independent of
marginal couplings and are given by the free field result, see e.g. the review [246].
Similar statements hold for the central charges of N = 2 SCFTs with a Lagrangian
description, see e.g. the recent review [247]. For 6d N = (1, 0) SCFTs, SUSY imposes a
linear relation on the three B-type central charges in eq. (2.5.71), so that only two are
independent. N = (2, 0) SUSY imposes a second linear relation, so that only one is
independent [123, 248, 249].9 Similarly to the 4d case, refs. [249, 251] found linear
relations between 6d central charges and mixtures of R-symmetry and gravitational ’t
Hooft anomalies, which are consistent with the reduction in the number of
independent central charges.

Often when studying SCFTs, one only has access to a weakly coupled Lagrangian
description at some energy scale and would like to ask questions about its strongly
coupled IR fixed point. Given that ’t Hooft anomalies are RG invariants, one might
hope that computing the anomalies in the weakly coupled SQFT fixes the central
charges of the IR SCFT. However, the U(1) R-symmetry of the weakly coupled theory
can mix with other U(1) flavour symmetries along the flow to produce an equally
good R-symmetry in the IR. It is this superconformal R-symmetry that determines the
central charges. Refs. [244, 245, 252] showed that, provided there are no accidental
U(1) symmetries in the IR,10 the superconformal R-symmetry in d = 2 and d = 4 can

9SUSY has also been show to constrain RG flows in d = 6. E.g. RG flows triggered by non-zero
expectation values in a SUSY vacuum for scalars in the gauge multiplet obey a c-theorem for a(6d)

M [250,251].
10This is in fact a rather strong assumption. In particular, most 4d IR N = 2 SCFTs have accidental U(1)

symmetries, and one must resort to other techniques to compute a(4d)
M and c(4d). See e.g. ref. [253] for 4d

N = 2 SCFTs that can be reached via RG flow from N = 2 gauge theories.
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be determined by an extremisation principle: one first defines a trial central charge
a(dim)
M,trial by replacing the R-symmetry anomalies in eq. (5.4.9) and its

higher-dimensional analogues by the anomalies of a general admixture of R- and U(1)
flavour symmetries with arbitrary coefficients. The coefficients that extremise the
value of a(dim)

M,trial then correspond to the superconformal R-symmetry. A similar
extremisation principle was also proved for the sphere free energy F in 3d N = 2
SCFTs, which have an SO(2) ≃ U(1) R-symmetry [254].

In section 2.5, we argued that central charges control various observables in a given
CFT. In SCFTs, there are additional observables that depend on them. In particular, a
SUSY localisation computation on S1 times a squashed S3 showed that the SCE Ec

introduced in eq. (5.3.8) is proportional to the Weyl anomaly coefficients a(4d)
M and c(4d),

Ec(µj) ≡ − lim
β→∞

∂β log Z(β, µj)

=
4π

3
(|µ1|+ |µ2|)

(︃
(a(4d)

M − c(4d)) +
(|µ1|+ |µ2|)2

|µ1||µ2|
(3c(4d) − 2a(4d)

M)

)︃
,

(5.4.10)

where µ1,2 are chemical potentials for SO(2)1,2 rotations preserved in squashing the
S3 [227, 230]. Since Weyl anomalies in SCFTs are related to ’t Hooft anomalies,
ref. [229] conjectured, that the SCE is given by the equivariant integration of the
anomaly polynomial,

Ec =
∫︂

Ad+2(Md) , (5.4.11)

Indeed, ref. [255] demonstrated in 4d N = 1 examples on more general backgrounds
that the SCE depends on U(1) global and mixed gravitational ’t Hooft anomalies.
However, we reiterate that eq. (5.4.11) remains a conjecture, albeit one strongly
supported by evidence from a number of examples in various dimensions [229].

Finally, let us point out a peculiar feature of 4d N ≥ 2 and 6d N = (2, 0) SCFTs on flat
space: there exists a protected subsector of local operators that is isomorphic to a 2d
chiral algebra, also called vertex operator algebra (VOA) [256–258]. This VOA can be
identified by choosing a suitable admixture of supercharges and superconformal
generators Q and passing to its cohomology. The cohomology of these operators
consists of the so-called Schur operators, which are the operators appearing in a
certain limit of the SCI, called the Schur limit [259]. See e.g. ref. [260] for a pedagogical
discussion. The choice of supercharge picks out a 2d plane inside the 4d or 6d SCFT,
on which the anti-holomorphic 2d global conformal generators are Q-exact. In
particular the anti-holomorphic translation generator L−1 is Q-exact, and so the
anti-holomorphic coordinate dependence in correlation functions of operators in
cohomology drops out. Thus, the operators in cohomology are holomorphic and form
a VOA.
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In the case of a 4d N = 2 SCFT, the 2d global conformal symmetry can be shown to
enhance to Virasoro symmetry with central charge c(2d)

VOA ∝ −c(4d) ≤ 0, where c(4d) is the
B-type central charge of the 4d SCFT. Unitarity of the ambient SCFT can be used to
infer properties of the VOA. Conversely, certain properties of the VOA can be used to
learn about a subsector of the ambient SCFT and its correlation functions. See
e.g. [261] for a pedagogical review. For the 6d N = (2, 0) theories, 2d global conformal
symmetry enhances to W-symmetry, an enlargement of the Virasoro algebra by
holomorphic higher spin currents. In 6d N = (2, 0), there is only one independent
B-type central charge, and the Virasoro central charge c(2d)

VOA ≥ 0 is fixed in terms of
it [258]. Note that unlike in 4d, the VOA is unitary in 6d N = (2, 0) SCFTs.

5.5 Superconformal defects

A p-dimensional superconformal defect preserves a subalgebra of the ambient SCA
which is itself a SCA in p dimensions. More precisely, let G = Gs ⊕G f be the total
symmetry algebra of the ambient SCFT, where Gs is the SCA and G f is the flavour
symmetry algebra. Then a superconformal defect preserves g = gs ⊕ gb ⊕ g f ⊂ G,
where gs ⊂ Gs is the SCA preserved by the defect, gb ⊂ Gs is the bosonic subalgebra
generated by R-symmetry and transverse rotation generators that leave the defect
invariant and commute with gs, and g f ⊂ G f is the flavour symmetry preserved by
the defect.

Defect local operators sit in superconformal multiplets of gs. Given a superconformal
defect primary, i.e. a local operator annihilated by the Ka and SI generators preserved
by the defect, its defect superconformal multiplet is generated by acting with the
supercharges QI preserved by the defect. Such operators carry additional quantum
numbers of gb ⊕ g f . A number of theorems about the representation theory of defect
multiplets were proved in ref. [149]. The displacement operator Di is an example of a
defect local operator in DCFT. It is a defect conformal primary which arises from
broken translations in the transverse directions to the defect and therefore exists for
every (non-topological) defect. In an SCFT, a defect also breaks superconformal
generators, giving rise to additional defect primaries. Together, they form the
displacement supermultiplet, where the displacement operator is the superconformal
descendant with the highest scaling dimension. The coefficients of the two-point
functions of these additional primaries in the displacement multiplet are fixed in
terms of the displacement operator two-point function cDD. Similarly, any broken
flavour generator that commutes with the supercharges in gs gives rise to a defect
primary proportional to the non-conservation of the current at the defect. This
operator must sit in a defect superconformal multiplet.
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Let us now briefly comment on superconformal defects across dimensions. We begin
with p = 1, i.e. line defects. Ref. [149] recently classified the superconformal
subalgebras of line defects, and their unitary representations. One of their results is
that superconformal lines do not exist in 3d, 4d, and 6d N = 1 SCFTs because their
SCAs do not admit 1d superconformal subalgebras. Superconformal lines in the 6d
N = (2, 0), if they exist, must break the transverse rotational symmetry.

Superconformal line defects have been studied in a host of SCFTs. They include 3d
CS-matter theories and ABJM theory, see e.g. [262–268] and the review [269]. For line
defects in 4d SCFTs, see e.g. refs. [191, 270–274], and refs. [275–277] for investigations
without relying on a Lagrangian description. There has also been renewed interest
from the bootstrap and integrability communities, see e.g. [278–282] and refs. therein.

A famous example of a superconformal line defect is the round 1
2 -BPS

Wilson-Maldacena loop in 4d SU(N) N = 4 SYM theory

WR[A] =
1
N

TrRP exp
(︃

i
∮︂

dσ(ẋµ Aµ + θ IΦI |ẋ|
)︃

, (5.5.12)

where TrR denotes the trace in the representation R, P denotes path ordering, σ

parametrises the line, ẋµ = ∂σxµ, ΦI with I = 1, . . . 6 are the six real vector multiplet
scalars, and θ I is a constant SO(6) R-symmetry vector [270]. It is a stable IR fixed point
under a defect RG flow from an ordinary Wilson line in N = 4 SYM theory [283, 284].
Since it is BPS, the localisation argument in section 5.2 applies, and its expectation
value can be computed exactly [23]. The expectation values of similar line defects in
3d SUSY CS-matter theories were computed in [285].

A Wilson-Maldacena line with a sharp bend, or cusp, at one point can be viewed as a
quark that is made to accelerate at one point. In a medium with massless DOF,
accelerating charges emit bremsstrahlung. For a small cusp, the bremsstrahlung was
shown to be proportional to the coefficient of the displacement operator two-point
function cDD [273]. Since cDD is related to an energy, ref. [191] conjectured that, in an
SCFT, it is proportional to the coefficient of the stress tensor one-point function h.
Indeed ref. [286] proved that this relation is universal for 1

2 -BPS superconformal line
defects in 4d N = 2 SCFTs.

Superconformal defects of higher dimension are less explored. A novel feature of
p = 2 superconformal defects compared to line defects is that they have Weyl
anomalies that are not fixed by the bulk, see eq. (3.4.38). Ref. [287] argued that for a 2d
defect preserving at least N = (2, 0) SUSY, the A-type central charge a(2d)

Σ and the
defect superconformal R-symmetry ’t Hooft anomaly coefficient kΣ are proportional.
In particular,

a(2d)
Σ = 3kΣ (5.5.13)
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in the absence of gravitational anomalies. This is the same relation obeyed by
standalone 2d SCFTs, i.e. eq. (5.4.9), for the same choice of normalisation. Moreover,
there exists an extremisation principle that determines the defect superconformal
R-symmetry analogously to the ordinary 2d SCFT case of refs. [244, 245]. As explained
in section 6.1.1, WZ consistency implies that a(2d)

Σ is independent of defect marginal
couplings but for a generic surface defect it can depend on bulk marginal couplings. If
the defect preserves at least 2d N = (2, 0) SUSY, however, then the A-type anomaly
cannot depend on any, neither defect nor bulk, marginal couplings [169].

A relation between cDD and h was proved in [288] for a 2d defect with (at least)
N = (2, 0) SUSY preserving transverse rotations in a 4d N ≥ 1 SCFT. This is
completely analogous to the line defect case. For the Weyl anomaly coefficients, this
implies

d(2d)
1 = −d(2d)

2 (5.5.14)

via eqs. (3.4.40) and (3.4.41). The authors conjectured that this relation holds for a
surface defect in a SCFT in any d ≥ 4. Indeed ref. [289] showed that it holds for 1

2 -BPS
defects in d = 6 with N = (2, 0) SUSY. More generally, ref. [288] conjectured a general
relation between cDD and h for any defect dimension p and any co-dimension q

cDD =
2p+1(q + p − 1)(p + 2)

(q − 1)π
p−q+1

2

Γ( p+1
2 )

Γ( q
2 )

h . (5.5.15)

Note that the proportionality factor is manifestly positive for q ≥ 2. This relation
encompasses the line defect case and passes other consistency checks [72, 163].

A VOA perspective on 2d N = (2, 2) superconformal defects in 4d N ≥ 2 SCFTs was
given in refs. [288, 290]. A flat surface defect intersecting the chiral algebra plane at the
origin (and infinity) preserves the cohomological supercharge. The defect then defines
a local operator in the VOA whose scaling dimension is determined by h, or
equivalently d(2d)

2 . The superconformal primary of the displacement multiplet is a
Virasoro descendant of the defect identity in the VOA.

We now present a number of examples of superconformal surface defects. SUSY
boundary conditions of 3d SCFTs have been studied e.g. in refs. [287, 291, 292].
Superconformal surface defects in 4d SCFTs with varying amounts of SUSY have been
discussed e.g. in refs. [45, 293–300]. The best studied example of a surface defect in 4d
is the Gukov-Witten defect originally introduced in N = 4 SYM theory in ref. [293]. It
is a disorder-type defect where the singularity in the ambient fields determines the
amount of gauge symmetry preserved by the defect. We will discuss this type of
defect in detail in chapter 8. Order type defects in class S theories were discussed e.g.
in refs. [45, 296, 298]. Such defects will also be discussed in chapter 8. In 6d, interacting
SCFTs are non-Lagrangian and scarce. Most examples of surface defects in 6d theories
come from string theory arguments. They are difficult to study in QFT given the
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absence of a Lagrangian description in the interacting case. For the free case see e.g.
refs. [97, 158]. Importantly, string and M-theory arguments suggest that the 6d
N = (2, 0) SCFT with algebra g6d admits dimension two defects which are 1

2 -BPS, i.e.
they preserve half of the supercharges, and are labelled by representations of g6d.
Under dimensional reduction to 5d N = 2 SYM, they become 1

2 -BPS Wilson lines,
similar to eq. (5.5.12). For this reason, the 2d defects in the 6d SCFT are often called
Wilson surfaces. We will study these defects in chapter 8. Also, see refs. [289, 301] for
recent progress.

Most examples of 3d superconformal defects are either boundaries or interfaces of 4d
SCFTs. A simple example of a 3d superconformal defect is a SUSY version of
mixed-dimensional QED [302]. Another set of examples are the 1

2 -BPS superconformal
interfaces and boundary conditions of 4d N = 4 SYM theory constructed in
ref. [303, 304]. In studying the S-duality transformations of Dirichlet boundary
conditions, the authors discovered a class of 3d boundary SCFTs coupled to the bulk
gauge theory which allow for algorithmic determination of S-dual boundary
conditions [305]. Conformal domain walls in N = 4 SYM at large N have also been
studied using integrability techniques [306]. This allows for computation of one-point
functions of certain non-protected local operators. In the large N limit, these one-point
functions can be computed to all orders perturbatively [307] and
non-perturbatively [308] in the ’t Hooft coupling λ = Ng2

YM.11

We now move on to 4d boundaries and defects in higher-dimensional SCFTs. Ref. [57]
argued that for a defect with N ≥ 1, the defect analogous of a(4d)

M and c(4d) have the
same dependence on defect R-symmetry ’t Hooft anomalies as their counterparts in
standalone 4d SCFT [106]. Ref. [57] also extended the extremisation principle of
ref. [287] to 4d defects, analogously to the standalone 4d case [252].

String and M-theory arguments suggest that the 6d N = (2, 0) SCFTs admit
co-dimension two defects in addition to the surface defects mentioned above. They
are 1

2 -BPS, of disorder-type, and they are labelled by nilpotent orbits of g6d. They play
a crucial role in the construction of the 4d N = 2 class S theories, which are obtained
by compactification on a Riemann surface. However, the absence of a Lagrangian
description makes it prohibitively difficult to study them. Most results have been
obtained via their compactification to d ≤ 5, see e.g. [310, 311]. In particular, the
superconformal fixed point has not been explored using DCFT techniques.

Note that 4d is the largest defect dimension in SCFT: there are no superconformal
boundaries or interfaces in 6d SCFTs because the 5d SCA f(4) is not a subalgebra of
the 6d SCAs [149].

11A similar programme of study was recently initiated for the domain walls in ABJM theory [309].
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Chapter 6

Weyl Anomaly of 4d Conformal
Defects

This chapter is based on ref. [1], which I co-authored. Motivated by the co-dimension
two defects of the 6d N = (2, 0) SCFTs, we study conformal defects of dimension
p = 4 in an ambient CFT of dimension d ≥ 5. In section 6.1, we determine the form of
the defect Weyl anomaly of a conformal defect of dimension p = 4 in a d ≥ 5 CFT.
When the ambient space dimension d = 5, we extend the findings of ref. [312] by
parity-breaking terms. When d ≥ 6, our result eq. (6.1.1) is novel. We find 23
parity-even terms in the defect Weyl anomaly. The number of parity-odd terms is
co-dimension q dependent, and determined for all q.1 In section 6.2, we then
determine how the defect central charges appear in flat and curved space correlation
functions. In particular, we relate one defect central charge to the flat space
displacement operator two-point function in eq. (6.2.20), and a another one to the flat
space stress tensor one-point function in eq. (6.2.39). As a result, we argue that these
central charges must have definite sign. In the case of a flat boundary in curved space,
we determine the leading divergences of the stress tensor one-point function in
eq. (6.2.52). We also express the defect contribution to the EE of a spherical ball
centred on the defect in terms of two defect central charges, see eq. (6.2.45).

6.1 Defect Weyl anomaly

In this section we present our results for the Weyl anomaly of a p = 4 conformal defect
of arbitrary co-dimension q ≥ 1. We determine the anomaly through the three-step
algorithm discussed in sections 2.5 and 3.4. Applying the algorithm is
computationally involved, so we do not present all the details here. Typically, the

1Determining the full defect Weyl anomaly for all q was my main contribution to the paper.
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algorithm grows more difficult to implement as the defect’s dimension, p, increases.
In particular, the number of diffeomorphism and Lorentz invariant terms with p
derivatives increases sharply with p. Moreover, ensuring that the terms are linearly
independent becomes increasingly involved, because geometric relations can be
adorned with derivatives in numerous ways.

In appendix A.1, we illustrate the algorithm with the simple example of a p = 2 defect
in a d = 4 ambient CFT. For such a surface defect, there are 10 terms in step 1. After
step 2 there are 7 terms, of which 5 are scheme-independent and remain in the end. By
contrast, for a defect of dimension p = 4, those numbers are larger by an order of
magnitude, as we explain in the following subsections and in appendix B.1. We
employ the xAct package for Mathematica [313] to facilitate dealing with these large
numbers of terms. In a supplemental Mathematica notebook available from ref. [1],
we also derive many intricate geometric relations which ensure that our basis is
linearly independent.

6.1.1 Defect Weyl anomaly for d ≥ 6

Following the algorithm for arbitrary q, in step 1 we find a 101-dimensional basis of
terms. We report this basis of terms in appendix B.1.1. Step 2, WZ consistency, selects
linear combinations of these terms with 61 unfixed coefficients. In step 3, we find that
of these 61 contributions, 29 are scheme independent, and thus make up the Weyl
anomaly of a p = 4 conformal defect.

These 29 terms comprise the expected A-type anomaly of the induced connection on
the defect, E4, as well as 28 B-type terms. The Weyl variation of E4 is a total derivative
that cannot be removed by a counter-term, whereas the Weyl variations of the B-type
terms are either exactly zero or a total derivative that can be removed by a
counter-term2 Of the 28 B-type terms, 22 are of even parity. The remaining 6 break
parity along the defect because they contain a defect Levi-Civita tensor ϵabcd.

All of the terms mentioned above are admissible in any co-dimension q. The case
q = 1, however, is special as the symmetry properties of curvature tensors cause many
terms to vanish identically. Moreover, terms that are distinct for general q may reduce
to the same term when q = 1. The 23 parity-even terms in general q reduce to 9
different terms when q = 1, and of the 6 parity-odd terms, only 3 are non-zero when
q = 1.

In addition to the terms that exist for any co-dimension q ≥ 2, for special values of q
certain additional terms may appear that contain the totally anti-symmetric tensor in
the normal bundle, nµ1 ...µq . As explained in section 3.3, we refer to these terms as being

2We have checked this statement explicitly for the non-trivial conformal invariants I in eq. (6.1.10) and
J1 in eq. (6.1.1). However, we have not confirmed that this is true for J2.
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parity-odd in the normal bundle. We find that for q = 2, there is 1 additional such
term, and for q = 4 there are 8. For q = 3 and q ≥ 5, the index structure is too
restrictive, and rules out the existence of such terms.

We now present the full Weyl anomaly of a p = 4 defect. After implementing the
algorithm outlined above, and using the same normalisation as in eq. (2.5.57), we
arrive at

Tµ
µ

⃓⃓
Σ4

=
1

(4π)2

(︂
− a(4d)

Σ E4 + d(4d)
1 J1 + d(4d)
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(6.1.1)

The only A-type term is the first term, involving the intrinsic Euler density, whose
coefficient defines a(4d)

Σ . The next 22 terms, with coefficients (d(4d)
1 , . . . , d(4d)

22 ), are B-type
and parity-even. The final 6 terms, with coefficients (d̃(4d)

1 , . . . , d̃(4d)

6 ), are B-type and
parity-odd along the defect.

In what follows, for B-type central charges, d(dim) or d̃(dim)
with subscripts denote defect

central charges, as in eq. (6.1.1) above, and b(dim) or b̃(dim)
with subscripts denote

boundary central charges, as in eq. (6.1.10) below. A handy mnemonic device is then
“d for defect and b for boundary”.

As we noted in sections 2.5 and 3.4, solving WZ consistency can sometimes relate the
coefficients of the linearly independent terms in our basis to one another, which leads
to non-trivial conformal invariants built out of a linear combination of basis elements.
For a p = 4 defect, there are indeed two such WZ consistent non-trivial conformal
invariants, J1 and J2, which appear in the first line of eq. (6.1.1), with coefficients d(4d)

1

and d(4d)
2 , and take the form
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(6.1.2)
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J2 =
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(6.1.3)

where for example DiDiWab
ab = NµνhρτhσκDµDνWρστκ.

Also as noted above, even though our basis elements for the defect Weyl anomaly are
linearly independent, the basis is not unique. To illustrate this, consider the square of
the intrinsic Weyl tensor WabcdWabcd

. The Gauss eq. (3.3.32) implies
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= WabcdWabcd +
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(6.1.4)

Thus, in eq. (6.1.1), replacing any of the terms that appear on the right-hand side in
eq. (6.1.4) with WabcdWabcd

yields an equally admissible basis. One could also consider
replacing the intrinsic Euler density E4 with the scheme-independent part of the
defect’s intrinsic four-dimensional Q-curvature [314], which can be written as3

∫︂
d4σ

√︁
g Q δω =

1
4

∫︂
d4σ

√︁
g
(︂

E4 − WabcdWabcd
)︂

δω , (6.1.5)

where we have put a bar on Q to emphasise that it is constructed with intrinsic
curvatures of the submanifold. In eq. (6.1.1), the effect of replacing E4 with
Q-curvature and using eq. (6.1.4) amounts to scaling the A-type coefficient by a factor
of 4 and shifting several B-type anomaly coefficients. Specifically, replacing E4 with Q
in eq. (6.1.1) shifts

d(4d)
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Σ . (6.1.6)

3The full form of Branson’s Q-curvature in d = 4 contains a total derivative,

Q =
1
6
(R2 − 3RµνRµν −□R) .

The □R term linearises the Weyl variation, and ensures that δQ is a total derivative linear in δω, with all
terms at higher order in δω vanishing identically. Since the Weyl transformation of Q is a total derivative,∫︁

Q is Weyl invariant. In eq. (6.1.5), we consider the Q-curvature of a p = 4 submanifold obtained by
replacing R → R and □ → □. The □R term plays no role in our discussion as it can be removed by a local
counterterm on the defect.
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Note that a number of coefficients are unaffected by the change to Q-curvature.
Furthermore, several linear combinations of d(4d)

n in eq. (6.1.6) are invariant under the
change to Q-curvature.

In eq. (6.1.1), we emphasise the presence of the non-trivial parity-odd anomalies, with
coefficients (d̃(4d)

1 , . . . , d̃(4d)

6 ). The term whose coefficient is d̃(4d)

3 can be written as a linear
combination of a total derivative plus the terms whose coefficients are d̃(4d)

4 and d̃(4d)

5 .
The anomalous variation of W , however, includes an additional factor of δω. The d̃(4d)

3

term is not a total derivative in δW because the derivative does not act on δω. If one
were to try to absorb the d̃(4d)

3 term into a shift of the d̃(4d)

4 and d̃(4d)

5 terms via partial
integration, one would be left with a parity-odd Weyl invariant in δωW with
derivatives acting on the Weyl variation parameter δω. Concretely, that term is D41 in
eq. (B.1.3). This term is also WZ consistent and cannot be removed by a counterterm.
So, we find it convenient to write the anomaly with the d̃(4d)

3 term instead of D41.

Just as in the case for the parity-even anomalies, the basis of independent terms for the
parity-odd defect anomalies is not unique. To illustrate this, we could use the form of
the intrinsic Pontryagin density, which can be expressed as
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e f ϵcde f = WabcdWab

e f ϵcde f + 4WabcdII̊
ia

eII̊
b
i f ϵcde f − 4II̊

i
a

eII̊
j
beII̊ic

f II̊jd f ϵabcd , (6.1.7)

to rewrite the parity odd part of eq. (6.1.1). The net effect would again to be to shift
and possibly rescale d̃(4d)

1 , d̃(4d)

4 , and d̃(4d)

6 , depending on the term in eq. (6.1.1) that we
replace.

As mentioned above, additional parity-odd terms may appear in the defect Weyl
anomaly, for special values of the co-dimension q. More specifically, using our
definitions of parity in section 3.3, these terms are parity-odd in the normal bundle,
and their existence depends on q by construction, because the totally antisymmetric
normal tensor has q indices. The requirement that each term has p = 4 derivatives,
and the symmetry properties of the curvature tensors are so restrictive, that only when
q = 2 and q = 4 can eq. (6.1.1) pick up such parity-odd contributions. When q = 2, in
step 1 we find 41 parity-odd terms in the normal bundle. We list them
in appendix B.1.2. However, only one of these is WZ consistent and
scheme-independent:

Tµ
µ

⃓⃓
Σ4

⊃
δq,2

(4π)2 d̃(4d)

7 WajbkII̊
ac
i II̊c

bjnik . (6.1.8)



90 Chapter 6. Weyl Anomaly of 4d Conformal Defects

When q = 4, in step 1 the basis of parity-odd terms in the normal bundle is
6-dimensional. All 6 terms are WZ consistent and scheme-independent. They are
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(6.1.9)

To date, little to nothing is known about the p = 4 defect central charges we have
found in eqs. (6.1.1), (6.1.8), and (6.1.9). The one exception is the A-type central charge,
a(4d)

Σ . Indeed, ref. [57] showed that a(4d)
Σ obeys a c-theorem, for RG flows localised to the

defect. Furthermore, if the defect preserves at least 4d N = 1 SUSY, then there is an
extremisation principle for a(4d)

Σ which determines the defect superconformal
R-symmetry.

6.1.2 Boundary Weyl anomaly for d = 5

Here we employ the algorithm outlined above to construct the most general
expression for the boundary Weyl anomaly in d = 5. In doing so, we will recover the
expression for the parity even anomalies found in ref. [161].4 We also identify three
previously unknown parity odd anomalies, whose coefficients we denote
(b̃(4d)

1 , b̃(4d)

2 , b̃(4d)

3 ). The full anomaly is

Tµ
µ

⃓⃓
Σ4

=
1

(4π)2

(︂
− a(4d)

Σ E4 + b(4d)
1 I + b(4d)

2 (Tr K̊
2
)2 + b(4d)

3 Tr K̊
4
+ b(4d)

4 WabcdWabcd

+ b(4d)
5 WanbnWa

n
b

n + b(4d)
6 WabcdK̊

ac
K̊

bd
+ b(4d)

7 WanbnK̊
a

cK̊
cb

+ b(4d)
8 WnabcWn

abc + b̃(4d)

1 DaK̊b
eDcK̊deϵ

abcd

+ b̃(4d)

2 Wab
e f Wcde f ϵabcd + b̃(4d)

3 WabcdK̊
a

eK̊
b

f ϵcde f
)︂

,

(6.1.10)

where Wanbn = eµ
a nνeρ

bnσWµνρσ, and similarly for Wnabc. The conformal invariant I is

I = −2
3

RabK̊
a

cK̊
cb
+

1
4

R Tr K̊
2 − 1

3
RnnTr K̊

2
+

1
2

WanbnKK̊
ab
+

1
16

K2 Tr K̊
2

+ K̊
ab

DnWanbn −
1
2

K Tr K̊
3
+

2
9

DaK̊abDcK̊
bc

,
(6.1.11)

where DnWanbn = nτeµ
a nνeρ

bnσDτWµνρσ.

4The dictionary between our central charges and those in ref. [161] is (Here → There): −a(4d)
Σ → a/5760,

b(4d)
1 → c8/5760, b(4d)

2 →
(︂

c1 − 1
3 c8

)︂
/5760, b(4d)

3 → (c2 + c8)/5760, b(4d)
i → ci−1/5760 for i = 4, . . . , 6,

b(4d)
7 → (c6 + c8)/5760, and b(4d)

8 → c7/5760. Note the different sign convention for the A-type anomaly,
where here the a(4d)

Σ -theorem goes the usual way, a(4d)
Σ,UV ≥ a(4d)

Σ,IR.
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One can also deduce the form of eq. (6.1.10) from eq. (6.1.1) by setting q → 1. Most of
the terms in eq. (6.1.1) do not have analogous q = 1 structures: they vanish due to
various symmetry properties of the curvature tensors. Furthermore, some of the q > 1
structures have identical q = 1 analogues, and so a linear combination of their
coefficients end up determining the q = 1 anomaly coefficients. The exact dictionary
for mapping the B-type central charges is as follows, where → indicates taking q → 1:

d(4d)
1 → b(4d)

1 , d(4d)
21 + d(4d)

22 → b(4d)
2 , d(4d)

19 + d(4d)
20 → b(4d)

3 , d(4d)
3 → b(4d)

4 ,

d(4d)
5 + d(4d)

11 → b(4d)
5 , d(4d)

16 → b(4d)
6 , d(4d)

15 − d(4d)
17 → b(4d)

7 , d(4d)
10 → b(4d)

8 ,

d̃(4d)

3 → b̃(4d)

1 , d̃(4d)

1 → b̃(4d)

2 , d̃(4d)

4 → b̃(4d)

3

(6.1.12)

with all other q > 1 terms vanishing when q = 1.

6.2 Defect central charges from observables

In this section, we connect some of the coefficients that appear in the defect Weyl
anomaly in eq. (6.1.1) to various physical quantities. In subsection 6.2.1 we will find a
relation between the coefficient of the flat space two-point function of the
displacement operator, ⟨DD⟩ in eq. (3.1.17), and the defect central charge d(4d)

1 . In a
reflection-positive DCFT, we will then argue that d(4d)

1 is a negative semi-definite
c-number, by reflection positivity of ⟨DD⟩. In subsection 6.2.2 we will relate the
coefficient, h, in the flat space one-point function of the stress tensor in the presence of
a co-dimension q > 1 defect, ⟨Tµν⟩ in eq. (3.1.13), to the defect central charge d(4d)

2 .
Assuming that the defect ANEC is true, we then argue that d(4d)

2 must be negative
semi-definite. Further, we will be able to show that since h ∝ −d(4d)

2 , the defect
contribution to the universal part of EE for a spherical region centred on the defect, as
computed in ref. [49], contains a linear combination of a(4d)

Σ and d(4d)
2 , similar to the

p = 2 result in eq. (4.5.45) [50]. Finally, in subsection 6.2.2.2, for d = 5 BCFTs we
compute ⟨Tµν⟩ for a flat boundary of an ambient space with non-trivial curvature, and
relate the coefficients of the first two leading divergent terms to linear combinations of
the boundary central charges in eq. (6.1.10).

6.2.1 Displacement operator two-point function

In this subsection, we connect the anomalous scale dependence in the displacement
two-point function to a particular term in the Weyl anomaly. For a flat defect,
conformal invariance on the defect determines the two- and three-point functions of
defect primaries up to constants. In particular, the displacement operator two-point
function takes the form of eq. (3.1.17) with constant coefficient cDD. There is a variety
of techniques for isolating the scale dependence of the correlator in eq. (3.1.17), and
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hence matching to the Weyl anomaly in eq. (6.1.1) or eq. (6.1.10). In subsection 6.2.1.1
we use some of them to fix cDD in terms of the defect central charge d(4d)

1 in eq. (6.1.1),
or boundary central charge b(4d)

1 in eq. (6.1.10). In subsection 6.2.1.2 we check our result
in the case of the free scalar BCFT in d = 5. In subsection 6.2.1.3 we comment on other
correlators of Di and their possible relation to defect/boundary central charges.

6.2.1.1 Relating cDD to d(4d)
1 and b(4d)

1

Here we consider an infinitesimal shape perturbation of the flat defect, δXi(x∥). In this
subsection we will keep p generic, and at the end set p = 4. Up to second order in the
shape perturbation, the variation of the effective action reads

δXW = −1
2

∫︂
Σp

dpx∥ dpy∥ ⟨Di(x∥)Dj(y∥)⟩δXi(x∥)δX j(y∥) +O(δX3) , (6.2.13)

where by translational invariance along the flat defect, ⟨Di⟩ = 0. To isolate the
logarithmic divergence we first define s∥ ≡ x∥ − y∥ and substitute eq. (3.1.17) into
eq. (6.2.13) obtaining

δXW = − cDD
2

∫︂
Σp

dpx∥
∫︂

Σp

dps∥
1

|s∥|2p+2 δXi(x∥)δXi(x∥ − s∥) +O(δX3)

⊃ − cDD
2

∫︂
Σp

dpx∥
∫︂

Σp

dps∥
1

|s∥|2p+2
sa1 . . . sap+2

(p + 2)!
δXi(x∥)∂a1 . . . ∂ap+2 δXi(x∥) ,

(6.2.14)

where we are summing over the repeated i indices. In the second line, we Taylor
expanded δXi(x∥ − s∥) up to order p + 2 in s∥, and only kept the highest order to
isolate the logarithmic part. For even p, the integral over s∥ can be computed using the
identity

∫︂
dps∥

1
|s∥|2p+2 sa1 . . . sap+2 = vol(Sp−1)

(p − 2)!!
(2p)!!

∫︂ L

ϵ
ds

1
s
[δa1a2 . . . δap+1ap+2 + perm] ,

(6.2.15)
where ϵ and L are UV and IR cut-offs, respectively, and perm stands for permutations
of indices excluding pairwise exchange on each δab. For odd p, the integral over s∥
vanishes identically, so we will assume that p is even for the remainder of this
computation. Using the fact that the number of permutations is (p + 1)!!, we obtain
for the coefficient of log L

ϵ

δXW|log L
ϵ
= (−1)p/2 2−(p+2)π

p
2

p!Γ( p
2 + 2)

cDD

∫︂
Σp

dpx∥ ∂a1 . . . ∂ap/2+1 δXi∂a1 . . . ∂ap/2+1 δXi ,

(6.2.16)
where we have used vol(Sp−1) = 2π

p
2 /Γ

(︁ p
2

)︁
. Let us rewrite the above equation in

terms of the second fundamental form. At leading order we have δIIi
ab = ∂a∂bδXi. We
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thus find

δXW|log L
ϵ
= (−1)p/2 2−(p+2)π

p
2

p!Γ( p
2 + 2)

cDD

∫︂
Σp

dpx∥ ∂a1 . . . ∂ap/2−1 δIIicd∂a1 . . . ∂ap/2−1 δIIi
cd .

(6.2.17)

Taking p = 4, we find for the logarithmically divergent part of δXW ,

δXW|log L
ϵ
= −1

2
π2

4608
cDD

∫︂
Σp

dpx∥ δIIicd□δIIi
cd , (6.2.18)

where □ ≡ ∂a∂a.

The next step is to relate cDD to the coefficients in the defect or boundary Weyl
anomaly, eq. (6.1.1) or (6.1.10), respectively. By eq. (2.5.53), the logarithmic divergence
in the effective action needs to match the anomaly, so we should compute to second
order the shape deformation of eq. (6.1.1) around the configuration of a flat defect
embedded in a flat ambient space. Among all of the terms in the defect anomaly, only
J1 contains an appropriate structure to contribute at second order in the variation,
which reads

δX

∫︂
Σ4

d4x∥⟨Tµ
µ⟩ =

d(4d)
1

72π2

∫︂
Σ4

d4x∥ ∂bδII̊
i
ab∂cδII̊

a
ic +O

(︁
δII3)︁

=
d(4d)

1
72π2

∫︂
Σ4

d4x∥
9
16

∂a∂b∂cδXi∂a∂b∂cδXi +O
(︁
δX3)︁ .

(6.2.19)

Comparing eq. (6.2.19) to (6.2.16) then gives our main result of this subsection,

cDD = − 72
π4 d(4d)

1 . (6.2.20)

Performing an identical computation in the boundary case using eq. (6.1.10), we find

cDD = − 72
π4 b(4d)

1 . (6.2.21)

As a check of our methods, let us consider p = 2. In that case, eq. (6.2.17) reduces to

δXW|log L
ϵ
= − π

64
cDD

∫︂
Σ2

d2x∥ δIIicdδIIi
cd , (6.2.22)

and by direct comparison to the defect Weyl anomaly in eq. (3.4.38) we obtain
d(2d)

1 = 3π4cDD
4 , reproducing the known result for d = 4 in eq. (3.4.40). In fact, our

calculation shows that eq. (3.4.40) is valid for any d.
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6.2.1.2 Check of the result for the free scalar BCFT in d = 5

We can check our result for the boundary case, eq. (6.2.21), using a free, massless scalar
in d = 5, in the presence of a boundary. On the one hand, b(4d)

1 = − 1
256 was computed

in ref. [161] using heat kernel methods. This answer is in fact independent of the
boundary conditions, Neumann or Dirichlet. On the other hand, we can compute the
displacement operator two-point function in flat space using Wick’s theorem. The
displacement operator in the q = 1 case can be identified with the boundary limit of
the Tnn component of the stress tensor, see eq. (3.1.16). For a conformally coupled
scalar with action in eq. (2.4.39), the improved stress tensor takes the form

Tµν = (∂µϕ)(∂νϕ)− 1
2

δµν(∂ρϕ)(∂ρϕ)− d − 2
4(d − 1)

(∂µ∂ν − δµν□)ϕ2 ,

where we have set gµν = δµν. Using the scalar’s EOM, the displacement operator
follows from the boundary limit of Tnn:

DD =
1
2
(∂nϕ)(∂nϕ) , DN = −1

2
(∂aϕ)(∂aϕ) +

d − 2
4(d − 1)

∂a∂aϕ2 , (6.2.23)

with subscript D for Dirichlet and N for Neumann. If we normalise the two-point
function of the scalar to take the form

⟨ϕ(x∥, x⊥)ϕ(0, 0)⟩ = κ

(︄
1

(x2
⊥ + |x∥|2)(d−2)/2

± 1
(x2

⊥ + |x∥|2)(d−2)/2

)︄
,

with a plus sign for Neumann and minus sign for Dirichlet, then Wick’s theorem
yields

⟨D(x∥)D(0)⟩ = 2(d − 2)2κ2

|x∥|2d , (6.2.24)

in both cases. The standard normalisation, κ−1 = (d − 2)vol(Sd−1), with d = 5 then
gives cDD = 9

32π4 . Plugging this into eq. (6.2.21) then gives us b(4d)
1 = − 1

256 , in
agreement with the heat kernel result, as expected.

6.2.1.3 Comments on other correlators of the displacement operator

Having successfully established a relationship between cDD and the Weyl anomaly for
p = 4 defects, it is natural to wonder if additional relationships can be established
between the Weyl anomaly and other displacement operator correlation functions.
One natural candidate is the displacement operator three-point function,

⟨D(x∥)D(y∥)D(z∥)⟩ =
cDDD

|x∥ − y∥|5|y∥ − z∥|5|x∥ − z∥|5
, (6.2.25)
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with constant cDDD. In the d = 4 case with p = 3 dimensional boundary, such a
correlation function determines the coefficient of the Tr K̊

3
term in the Weyl

anomaly [52], as shown in eq. (3.4.48). However, in our p = 4 case, there are no terms
in the Weyl anomaly with an odd number of derivatives and extrinsic curvatures,
precluding the displacement three-point function from determining a piece of the
Weyl anomaly.

Another obvious correlation function to investigate is ⟨Tµν(x∥, x⊥)Di(y∥)⟩, which is
also determined by conformal symmetry, up to two constants [147]. In the
co-dimension q = 1 case, the tensor structures simplify and the correlation function is
determined by a single overall constant, which turns out to be cDD. After some work
in the q = 1 case, we were able to check that the scale anomaly in ⟨Tµν(x∥, x⊥)D(y∥)⟩
is consistent with the coefficients of the K̊

ab
DnWanbn and DaK̊abDcK̊

bc
terms in

eq. (6.1.11). In the higher co-dimension case, ref. [147] argued that ⟨Tµν(x∥, x⊥)Di(y∥)⟩
is determined by both cDD and aT. However, the tensor structures involved make the
analysis more complicated, and we leave this as an exercise for the future.

Other correlation functions involving the stress tensor and displacement operator tend
to involve undetermined functions of a cross ratio, as well as sums over tensor
structures. We have not found useful candidates to explore, except for ⟨Tµν⟩, which
we turn to next.

6.2.2 Stress-tensor one-point function

In this subsection, we compute the one-point function of the stress tensor, ⟨Tµν⟩, in
two cases. First, in subsection 6.2.2.1, we consider ⟨Tµν⟩ for a flat p = 4 defect in a
d ≥ 6 ambient CFT. Our results will be similar to those for a p = 2 defect in d > 3,
reviewed in sec. 3.4. By applying the method of ref. [162] (see also ref. [163]), we will
show that the coefficient h in eq. (3.1.13) and the defect Weyl anomaly coefficient d(4d)

2

in eq. (6.1.1) are related as h ∝ −d(4d)
2 . Using this result, we will then Wick-rotate to

Lorentzian signature and assume the ANEC applies in the presence of a defect to
argue that d(4d)

2 ≤ 0. By combining the relation between h and d(4d)
2 with a result of

ref. [49], we will also show that the defect contribution to the universal part of the EE
of a region centred on the defect is a linear combination of a(4d)

Σ and d(4d)
2 . Second, in

subsection 6.2.2.2, we will consider ⟨Tµν⟩ in a d = 5 BCFT with a curved boundary. In
that case the near-boundary expansion of ⟨Tµν⟩ has a number of free
coefficients [315, 316], which we determine in terms of some boundary central charges
from eq. (6.1.10).
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6.2.2.1 Relating h to d2 for a flat defect in flat space

In the context of computing Rényi entropies, where the defect is the co-dimension
q = 2 twist defect, the authors of ref. [162] consider the relation between ⟨Tµν⟩ and the
anomaly term □W ij

ij when d = 6.5 Here we repeat their analysis, now keeping the
co-dimension of the defect arbitrary, provided q > 1. We will focus on J2 in eq. (6.1.1),
the only term in the anomaly that contains □W ij

ij,

Tµ
µ ⊃ d(4d)

2
16π2

1
3

DiDiWab
ab δ

(q)
Σ4

+O(R2) , (6.2.26)

where we used tracelessness of Wµνρσ to swap freely between W ij
ij and Wab

ab. In
eq. (6.2.26), O(R2) stands for terms at least quadratic in the curvatures, which will not
be important to establish that h ∝ −d(4d)

2 .

The starting point for the computation is the ambient CFT on Md = Rd with metric
δµν and a flat defect wrapping Σ = R4 ↪→ Rd. We then perturb the flat ambient metric
so that δµν → gµν = δµν + δgµν. To first order in the metric perturbation, the effective
action changes as

δgW = −1
2

∫︂
ddx ⟨Tµν⟩ δgµν . (6.2.27)

Crucially, since we have assumed that the perturbation is about both a flat background
and flat defect, we can employ the form of the stress tensor given in eq. (3.1.13).

Since in curved space the Weyl anomaly is generically non-trivial, we expect that
eq. (6.2.27) will contain a logarithmic divergence of the form in eq. (2.5.53). In
particular, consistency between eq. (6.2.27) and eq. (2.5.53) implies

δg

∫︂
ddx

√
g ⟨Tµ

µ⟩ =
1
2

∫︂
ddx ⟨Tµν⟩ δgµν

⃓⃓⃓⃓
log L

ϵ

. (6.2.28)

In the anomaly eq. (6.1.1), J2 is the only conformal invariant that contains terms at
most linear in both the Weyl tensor and II̊

i
ab. The term in eq. (6.2.26) is the only one

that contributes to the first-order perturbation about the flat configuration.

Let us analyse the expressions on either side of eq. (6.2.28) separately, starting with the
left-hand side. The first order variation of the integral of eq. (6.2.26) over the defect’s
submanifold Σ4 may be written as

δg

∫︂
Σ4

d4σ
√︁

g ⟨Tµ
µ

⃓⃓
Σ4
⟩ = d(4d)

2
16π2

∫︂
Σ4

d4x∥
1
3

∂k∂kδWab
ab , (6.2.29)

5See also ref. [131], which considered EE in a d = 6 dimensional CFT, but which has an error in the
analysis of the contribution to the anomaly containing the □Wij

ij term. Specifically, in the third line of
eq. (2.28) of ref. [131], the variation of the term I3 = Wµρστ(□δµ

ν + 4Rµ
ν − 6

5 Rδµ
ν)Wνρστ in the ambient

Weyl anomaly does not result in a conformally invariant term along the entangling surface. Indeed, a
further Weyl variation vanishes up to terms that are total derivatives in the normal directions, but which
cannot be dropped in the integral over the entangling surface’s directions.
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where we dropped terms that are higher order in curvature, or subleading in the
perturbation such that the integral can be evaluated on R4 with coordinates x∥. This
short computation gives us all of the information that we will need about the left-hand
side of eq. (6.2.28).

The evaluation of the right-hand side of eq. (6.2.28) is slightly more involved. Using
the form of ⟨Tµν⟩ derived in section 3.1 leading to eq. (3.1.13), we can write the
right-hand side of eq. (6.2.28) as

∫︂
ddx ⟨Tµν⟩ δgµν = h

∫︂
ddx

[︄
(d − q + 1)

|x⊥|d
δijδgij −

(q − 1)
|x⊥|d

δabδgab −
d x̂j x̂i

|x⊥|d
δgij

]︄
, (6.2.30)

where x̂i = xi

|x⊥|
. The perturbed metric gµν = δµν + δgµν admits an expansion near the

defect of the form in eq. (2.16) of ref. [317]. We observe that log-divergent
contributions in eq. (6.2.30) can only arise from terms with near-defect behaviour like
1/|x⊥|d. Since d = q + 4, we will need the fourth order in the perturbed metric’s
near-defect expansion, which has

δgij ⊃ − 1
20

∂m∂nδRikjℓ
⃓⃓
Σ4

xmxnxkxℓ , (6.2.31)

where δRikjℓ
⃓⃓
Σ4

is the Riemann tensor of the metric perturbed around flat space, gµν,
and evaluated on the defect. Note that terms of the form O(R2) in the near defect
expansion of the metric vanish for a first order perturbation around flat space. Since
the orthogonal and transverse directions are independent, for computational ease we
can simply match terms that have only transverse components. Plugging eq. (6.2.31)
into eq. (6.2.30) and using the anti-symmetry of the Riemann tensor to eliminate the
xixjδgij term, we then adopt cylindrical coordinates (ρ, θi) around the defect, located
at ρ = 0, to write

∫︂
ddx ⟨Tµν⟩ δgµν ⊃− h

4

∫︂
Σ4

d4x∥ ∂r∂s δRikiℓ|Σ4

∫︂ L

ϵ
dρ

1
ρ

∫︂
dΩq−1 x̂r x̂s x̂k x̂ℓ , (6.2.32)

where we introduced a UV cut-off ϵ and an IR cut-off L to regulate the ρ-integral
around the location of the defect. The angular integral can easily be computed using
the following relation,

∫︂
dΩq−1 x̂i1 . . . x̂in =

(q + n − 2)!!
(q − 2)!!

vol(Sq−1)(δi1i2 . . . δin−1in + perm) , (6.2.33)

where perm denotes pairwise permutations in the in indices. Performing the angular
integral in eq. (6.2.32) then allows us to compute the ρ-integral easily, which produces
a logarithmic divergence in ϵ. The totally transverse part of the coefficient of log ϵ is

∫︂
ddx ⟨Tµν⟩ δgµν

⃓⃓⃓⃓
log L

ϵ ,⊥
= −h

4
vol(Sq−1)

q(q + 2)

∫︂
Σ4

d4x∥
[︁
∂2δRikik + 2∂k∂ℓδRikiℓ

]︁
. (6.2.34)
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Moreover, one can easily show that at first-order in the perturbation

2∂k∂ℓδRikiℓ = ∂2δRikik , (6.2.35)

so that eq. (6.2.34) becomes

∫︂
ddx ⟨Tµν⟩ δgµν

⃓⃓⃓⃓
log L

ϵ ,⊥
= − h

2 q(q + 2)
vol(Sq−1)

∫︂
Σ4

d4x∥ ∂2δRikik . (6.2.36)

In order to compare eq. (6.2.36) to eq. (6.2.29), we use that at first order in the metric
perturbation,

δWab
ab

⃓⃓⃓
⊥
=

12
6 + 5q + q2 δRijij , (6.2.37)

where we have used the fact that we are perturbing around flat space, and we have
only kept terms that solely have transverse components. Finally, by
plugging eq. (6.2.37) into eq. (6.2.29), and comparing to eq. (6.2.36) through the
relation eq. (6.2.28), we arrive at the generic relation between the coefficient h that
fixes ⟨Tµν⟩ and the defect Weyl anomaly coefficient d(4d)

2 , for a co-dimension q
conformal defect in a d = q + 4 CFT:

h = −
Γ
(︁ q

2 + 1
)︁

π
q
2+2 (q + 3)

d(4d)
2 . (6.2.38)

For the special case of q = 2, which will be useful for the monodromy defects
considered in chapter 7, eq. (6.2.38) becomes

h = − 1
5π3 d(4d)

2 , (6.2.39)

such that the conjecture for superconformal defects eq. (5.5.15) implies the following
relation between defect central charges

d(4d)
1 = 2d(4d)

2 . (6.2.40)

Upon taking into account the different conventions, this agrees with ref. [162].6

Following the example of a p = 2 defect in d ≥ 4 reviewed in section 3.4, we can use
our result for the p = 4 defect in eq. (6.2.38) to show that d(4d)

2 ≤ 0, if we assume that
the ANEC holds in the presence of the defect. We Wick-rotate to Lorentzian signature,
and take Σ4 to be a flat, static defect in d ≥ 6-dimensional Minkowski space. We
consider a null geodesic passing at a minimal distance ℓ away from Σ4 and oriented at

6The case of a p = 2 defect with Weyl anomaly in eq. (3.4.38) proceeds similarly. By the same argu-
ments, h must depend on the defect Weyl anomaly coefficients of terms at must linear in the intrinsic and
extrinsic curvature tensors. Since the Euler term is topological, it is invariant under metric perturbations.
Thus, only the Wab

ab term can contribute. The remaining argument proceeds as in the p = 4 case, the only
notable difference being that δgij ⊃ − 1

3 δRikjℓ|Σ2 xkxℓ suffices to obtain the logarithmic contribution.
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an angle ψ out of the plane. We take the following family of null geodesics
parametrised as

t = ℓu , x1 = ℓu cos ψ , x4 = ℓu sin ψ , x5 = ℓ , (6.2.41)

while all the other components are set to zero. Here t, x1 are coordinates parallel to the
defect and x4, x5 are orthogonal. By plugging eq. (6.2.41) and eq. (3.1.13) into the
ANEC and using eq. (6.2.38), we obtain

∫︂ ∞

−∞
du⟨Tµν⟩vµvν = −d(4d)

2

q Γ
(︂

d+1
2

)︂
Γ
(︁ q

2

)︁
(q + 3)Γ

(︂
d
2

)︂
π

q+3
2 ℓd−2

|sin ψ| ≥ 0 , (6.2.42)

and hence d(4d)
2 ≤ 0, as advertised.

Also following the example of a p = 2 defect in d > 3 in section 3.4, we can use our
result in eq. (6.2.38), combined with a result of ref. [49], to show that d(4d)

2 contributes to
the universal part of the EE of a spherical region centred on the defect. Wick-rotating
to Lorentzian signature and fixing the time, we consider a compact, spherical
entangling region A of radius L that is co-original with Σ4, such that the intersection
∂A ∩ Σ4 is an equatorial S2. The general expression for the universal part of the defect
EE for a p-dimensional conformal defect is given by eq. (4.5.46). When p is even, the
universal part is the coefficient of log L

ϵ , and the pole for even p (arising from
dimensional regularisation), maps to a logarithmic divergence in the UV cut-off ϵ. In
particular, for p = 4, the universal part of the defect EE is

SA,Σ4 = −4

⎡⎣a(4d)
Σ − (d − 5)πd/2

2 Γ
(︂

d
2 − 2

)︂ h

⎤⎦ log
(︃

L
ϵ

)︃
, (6.2.43)

where we used that

F(def)|log L
ϵ
=

a(4d)
Σ

(4π)2

∫︂
S4

d4σ
√︁

g E4 = 4a(4d)
Σ . (6.2.44)

Using our result in eq. (6.2.38), we thus find for the universal part of the EE

SA,Σ4 = −4
[︃

a(4d)
Σ +

1
4
(d − 5)(d − 4)

d − 1
d(4d)

2

]︃
log
(︃

L
ϵ

)︃
. (6.2.45)

This result highlights the key fact that the universal part of the defect EE is not
necessarily monotonic under defect RG flows. That is, in spite of the c-theorem for a(4d)

Σ

proven in ref. [57], and since no c-theorems are known for B-type anomalies, the
presence of d(4d)

2 means eq. (6.2.45) is not necessarily monotonic under defect RG flows.
Note that additional central charges may appear in the coefficient of the logarithmic
divergence if one considers entangling regions with a generic shape intersecting the
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defect, as discussed in refs. [47, 318] in the d = 4 case with a boundary. We leave the
study of this more general case to future work.

6.2.2.2 Boundary Weyl anomalies and ⟨Tµν⟩ with curved boundaries

In this subsection, we consider a d = 5 dimensional ambient CFT on a curved
background M5 with a boundary, ∂M5 ̸= ∅. Since we assume that M5 is not flat, the
stress-tensor picks up a non-trivial one-point function in the near-boundary
expansion. We will thus find a relation between some of the boundary central charges
in eq. (6.1.10) and the coefficients in the leading divergences of ⟨Tµν⟩.

Generically, when a CFT is defined on a background with a curved boundary, the
near-boundary expansion of ⟨Tµν⟩ has divergences of the form [315, 316]

⟨Tµν⟩ =
T(d)

µν

xd
⊥

+
T(d−1)

µν

xd−1
⊥

+
T(d−2)

µν

xd−2
⊥

+ . . . , (6.2.46)

where x⊥ is the geodesic distance from the boundary located at x⊥ = 0. The first three
divergences can be computed simply by requiring that Tµν is conserved and
traceless [315].

The residual conformal symmetry at the boundary is enough to constrain the leading
1/xd

⊥ divergence to vanish identically, T(d)
µν = 0. The subleading divergences, however,

have much richer structures determined by the Weyl and extrinsic curvatures:

(4π)2T(d−1)
µν = ATK̊µν , (6.2.47)

and

(4π)2T(d−2)
µν =

AT

d − 2

(︃
nµnν −

hµν

d − 1

)︃
trK̊

2 − 2
AT

d − 1
n(µhρ

ν)
DρK − 2AT

d − 2
n(µhρ

ν)
Rρn

− 2ATK̊
ρ

(µKν)ρ + β1Wµρνσnρnσ + β2KK̊µν + β3

(︃
(K2)µν −

hµν

d − 1
trK2

)︃
,

(6.2.48)

where parentheses indicate symmetrisation over the enclosed indices.7 In ref. [316],
the authors related the coefficients AT, β1, β2 and β3 to the boundary central charges
for dimensions d = 3 and 4. Below, we will find such relations for the case d = 5.

To relate the near-boundary data (AT, β1, β2, β3) to the coefficients in eq. (6.1.10), we
again employ eq. (6.2.28). We begin by evaluating the left-hand side of eq. (6.2.28),
which requires a first-order metric variation of the integrated Weyl anomaly. For ease

7In ref. [316] the authors allowed for a term of the form Rµν − 1/4 R gµν, which is argued to be incon-
sistent with conformal symmetry in ref. [315]. In addition, ref. [316] found that this term is absent both
when d = 3 and d = 4. The presence or absence of this term does not affect the calculation here.
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of computation, and to facilitate matching with the right-hand side, we write the
background metric in Gaussian normal coordinates,

ds2 = dx2
⊥ + gab(x⊥, σ)dσadσb. (6.2.49)

We next write the near-boundary expansion of the components gab(x⊥, σ) in
eq. (6.2.49) up to third order in the geodesic distance x⊥ from the boundary,

ds2 =dx2
⊥ +

[︂
gab − 2Kabx⊥ + (K2

ab − Ranbn)x2
⊥+

− 1
3
(∂nRanbn − RancnKc

b − RcnbnKc
a) x3

⊥ +O(x4
⊥)
]︂
dσadσb.

(6.2.50)

On the right-hand side, the variations δKab and δgab around the background
eq. (6.2.50) would contribute to the logarithmic divergence also at the orders
O
(︁
1/x2

⊥
)︁

and O (1/x⊥), respectively, corresponding to T(2)
µν and T(1)

µν . However, since
the form of the one-point function of the stress tensor is only known up to order
O
(︁
1/x3

⊥
)︁
, we need to restrict to metric perturbations that obey δKab = δgab = 0,

allowing only the variations δRanbn and δ∂nRanbn to be non-trivial. To simplify the
computation further, we assume without loss of generality that the boundary metric is
flat, gab = δab, and we use x∥ to denote the boundary coordinates. With these
assumptions, the left-hand side, i.e. the variation of the anomaly, gives

δg

∫︂
d5x

√
g ⟨Tµ

µ⟩ =
1

(4π)2

∫︂
∂M5

d4x∥

{︃
−b(4d)

1
2
3

K̊
ab

δ∂nRanbn +

[︃
2
3
(b(4d)

6 + b(4d)
7 − 2b(4d)

1 )KacKb
c

+
1
12
(︁
b(4d)

6 + b(4d)
7

)︁
K2δab +

1
6
(︁
3b(4d)

1 − 2b(4d)
6 − 2b(4d)

7

)︁
KKab

−1
6
(︁
b(4d)

1 + b(4d)
6 + b(4d)

7

)︁
trK2δab +

4
3
(2b(4d)

4 + b(4d)
5 )Wanbn

]︃
δRanbn

}︃
.

(6.2.51)

On the right-hand side of eq. (6.2.28), we need the log-divergent part of the integral of
eq. (6.2.46) in the near-boundary expansion of the metric in eq. (6.2.50). A
straightforward computation as in the previous subsection yields the same structure
as in eq. (6.2.51), with the identifications

AT = 4b(4d)
1 , β1 = −8

3
(︁
2b(4d)

4 + b(4d)
5

)︁
,

β2 =
2
3
(︁
b(4d)

6 + b(4d)
7

)︁
+

13
3

b(4d)
1 , β3 = −4

3
(︁
2b(4d)

1 + b(4d)
6 + b(4d)

7

)︁
.

(6.2.52)

One interesting point to note about the relations in eq. (6.2.52) is that they are all
invariant under the change of basis that replaces the intrinsic Euler density with
Q-curvature. That is, the relations in eq. (6.2.52) are invariant under the shifts in
eq. (6.1.6), after using the map from defect to boundary central charges in eq. (6.1.12).
Specifically, under these shifts b(4d)

1 and b(4d)
8 are invariant, while all other boundary
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central charges are shifted non-trivially by multiples of a(4d)
Σ . This raises the question of

whether the invariance of eq. (6.2.52) under this change of basis is universal to all
orders, or if it is spoiled at fourth-order by contributions due to δKab and δgab. We
leave this question for future research.

6.3 Discussion

In this chapter, we determined the most general form of the Weyl anomaly for a
conformal defect of dimension p = 4 in an arbitrary CFT of dimension d ≥ 6. Our
main result for the Weyl anomaly of a p = 4 conformal defect with co-dimension q ≥ 1
is eq. (6.1.1), with 23 parity-even terms and 6 parity-odd terms, plus the additional
parity-odd terms in eqs. (6.1.8) and (6.1.9) for q = 2 and q = 4, respectively. Among
the 23 parity-even terms, one is A-type while all the others are B-type. The parity-odd
terms are all B-type. Each of these terms comes with a coefficient that defines a defect
central charge. For p = 4 conformal defects with q = 1, our result reduces to
eq. (6.1.10), which reproduces the 9 parity-even terms first obtained by ref. [161]. This
served as a non-trivial check of our results. Moreover, beyond the parity-even
anomalies, we found 3 parity-odd terms that were previously unknown. We
subsequently showed in section 6.2 how some of the defect central charges appear in
physical observables (besides the Weyl anomaly itself), namely the two-point function
of the displacement operator, the one-point function of the stress tensor, and the
universal contribution to EE of a spherical region centred on a flat defect.

Our results raise a host of questions, and suggest many directions for future research.
Many questions remain about how defect/boundary central charges appear in
physical observables. For example, in the calculation of EE in a standalone d = 6 CFT
for a region with arbitrary shape, the contribution to the universal part will have the
form of the Weyl anomaly in eq. (6.1.1), but with defect central charges fixed by the
ambient CFT’s central charges in eq. (2.5.71). Establishing the full map between
ambient and defect central charges remains an important open question.

Further, how do defect/boundary central charges appear in higher-point functions of
the displacement operator, mixed correlators like ⟨TDD⟩, not to mention thermal
entropy, heat capacity, conductivities, and so on? Answering these questions could be
especially enlightening for the many parity-odd defect/boundary central charges we
found, which remain particularly mysterious. More generally, answering these
questions could allow us to compute all the defect/boundary central charges in many
important examples, including free-field CFTs, like the monodromy defects discussed
in chapter 7, as well as interacting CFTs, such as p = 4 defects in d = 6 SCFTs.

If we can determine how defect/boundary central charges enter physical observables,
then we can ask whether any general principles provide bounds on them. In
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eq. (6.2.20) we found that the normalisation of the displacement operator’s two-point
function was ∝ −d1 for a defect and ∝ −b1 for a boundary, hence reflection positivity
requires d1 ≤ 0 or b1 ≤ 0, respectively. In eq. (6.2.38) we found that, for q ≥ 2, the
normalisation of the stress-tensor’s one-point function was ∝ −d2, so that if the ANEC
is valid in the presence of a defect, then d2 ≤ 0. Since the A-type central charge a(4d)

Σ

obeys a c-theorem for boundary/defect RG flows [57], we can ask whether it is
bounded from below. This bound cannot be zero, since a(4d)

Σ < 0 in explicit
(reflection-positive) examples, including a free scalar BCFT in d = 5 with Dirichlet
boundary conditions (see [161]). Perhaps defect/boundary central charges are
bounded by other defect/boundary central charges, in a similar fashion to the bounds
on a(4d)

M/c(4d) [108, 109].

Do any of the other defect and boundary central charges obey c-theorems, for either
defect/boundary or ambient RG flows? To date, c-theorems have only been proven
for A-type central charge. However, nothing a priori forbids B-type central charges
from also obeying c-theorems. Exploring more examples to identify candidate
defect/boundary central charges that could obey c-theorems, and developing
methods to prove them, remain important open questions.

Adding SUSY also raises a host of questions. For example, refs. [57, 287] showed for
superconformal defects with p = 2 and p = 4 that a(2d)

Σ and a(4d)
Σ are fixed by certain ’t

Hooft anomaly coefficients, and obey an extremisation principle. Are other
defect/boundary central charges fixed by ’t Hooft anomaly coefficients? Are defect
B-type central charges also extremised along RG flows to IR SCFTs? One of our main
motivations was to study the p = 4 superconformal defects in the d = 6 N = (2, 0)
SCFTs. Our main result for a p = 4 defect Weyl anomaly in eq. (6.1.1) provides a
starting point for constructing the full defect super-Weyl anomaly, which should be
crucial for characterising these important defects. More generally, fully characterising
both co-dimension two and four defects in d = 6 SCFTs through their defect central
charges will be crucial for exploring how, via (partially twisted) dimensional
reduction, these data determine lower dimensional superconformal defects in class S
theories in d = 4 [217, 296, 319] and class R theories in d = 3 [219].

Thinking more broadly, aside from the defect/boundary Weyl anomalies we reviewed
in sec. 8.1, and our novel results for p = 4 defects/boundaries in sec. 6.1, what other
defect/boundary Weyl anomalies are possible? Two obvious cases have yet to be
studied. The first is p = 3 in d > 4 (examples appear for instance in refs. [320, 321]). In
this case, our preliminary analysis suggests that a p = 3 defect in d > 4 has parity-odd
Weyl anomalies, whose form depends on the co-dimension, similar to what we found
for p = 4 in d ≥ 5. The second is p = 5 in d ≥ 6. Crucially, when d = 6 these must be
non-SUSY, since the d = 5 superconformal algebra does not embed in any d = 6
superconformal algebra.





105

Chapter 7

Monodromy Defects in Free Field
Theories

This chapter is primarily based on ref. [2] and partly on ref. [1], both of which I
co-authored. We consider monodromy defects in free CFTs in d-dimensions.
Monodromy defects are co-dimension q = 2 defects that can be introduced whenever
the theory has a global symmetry. As mentioned in section 3.2, their construction is
simple yet they may carry non-trivial dynamics, even in free CFTs. We provide more
detailed background material in section 7.1. The simple nature of these defects allows
us to obtain exact analytic results for certain one- and two-point correlation functions
without requiring SUSY. Specifically, we compute the one-point functions of the stress
tensor and flavour current, and the two-point function of the displacement operator
for a free scalar field and a free Dirac fermion in sections 7.2 and 7.3, respectively.1,2

Using their data, we extract the defect central charges of monodromy defects in d = 4
and d = 6, in the latter case determining parts of the p = 4 defect Weyl anomaly
discussed in chapter 6. Lastly, in section 7.4, we study the behaviour of monodromy
defects under defect RG flows. Some of the details of the computations in these
sections are expanded upon in appendix C.

7.1 Background

In section 3.2, we introduced monodromy defects as a disorder-type defect. The defect
is defined by prescribing boundary conditions on ambient fields as they are rotated
around the defect in the transverse plane, see eq. (3.2.26).

1The computation of correlation functions in section 7.3 was my main contribution to the paper.
2While in the process of finishing the writing of [2], ref. [322] appeared, which has overlap with some

of the computations of section 7.2. We will indicate which of our results also appeared there.
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We begin with an ambient free field CFT with a global flavour symmetry group G. In
what follows we will assume that G = U(1). Let ICFT be the action on Md = R1,d−1

with coordinates xµ = {t, x⃗∥, ρ, θ} and metric gµν,

ds2 = gµνdxµdxν = −dt2 + dx⃗2
∥ + dρ2 + ρ2dθ . (7.1.1)

In this chapter only, we will take µ = 0, 1, . . . , d − 1. In some computations, we will
need to Wick rotate to Euclidean signature, i.e. Rd, by taking t → −iτ. We insert a
monodromy defect along xa = {t, x⃗∥} located at ρ = 0 in the transverse {ρ, θ}-plane
by imposing monodromies on the field Ψ as in eq. (3.2.26).3 Equivalently, one can
introduce the defect by turning on a constant background gauge field for the U(1)
flavour symmetry along

A = α dθ . (7.1.2)

The gauge background eq. (7.1.2) is a closed but not an exact form since it is singular
at ρ = 0. In particular, we may perform a singular gauge transformation to gauge
away A. This transformation affects any field Φ(x) with ordinary periodic boundary
conditions and minimally coupled to A with unit charge in the following way

Φ(x) → Φ′(x) = e−iαθΦ(x) ≡ Ψ(x) . (7.1.3)

The gauge transformed field Ψ then behaves as in eq. (3.2.26). Thus, the introduction
of the potential (7.1.2) is equivalent to ascribing a non-trivial monodromy to Ψ(x), as
claimed above. Notice that for generic α, the defect breaks parity in the transverse
directions. The conserved current sourced by A, Jµ ≡ δICFT

δAµ , may thus acquire a
one-point function of the form in eq. (3.1.7). In polar coordinates this translates into

⟨Jθ(x)⟩ = aJ

ρd , (7.1.4)

with all other components vanishing and where the coefficient aJ is a function of the
monodromy parameter aJ ≡ aJ(α).

From the relationship between the generating functional and the Weyl anomaly
eq. (2.5.53), it is natural to expect that aJ in d = even is related to defect central charges
for monodromy defects. However, naively computing

− ∂

∂α
log ZDCFT[α] =

∫︂
ddx ⟨Jθ(x)⟩ , (7.1.5)

where ZDCFT[α] is the generating functional for Jθ , we find no log divergences, only
power law divergences. This is due to the fact that the defect we constructed above is
flat and the integrated trace anomaly vanishes identically.

3Note that the cylindrical coordinates eq. (7.1.1) make manifest the preserved SO(2) ≃ U(1) rotational
symmetry around the defect submanifold Σd−2 ↪→ Md.
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In order to obtain a non-trivial result in eq. (7.1.5), we can modify eq. (7.1.2) to include
a non-trivial shape function

Aµ = α fµ(x) , (7.1.6)

where fµ(x) are the components of a closed form that is singular on a co-dimension
q = 2 submanifold. Repeating the computation above, we have

− ∂

∂α
log ZDCFT

f [α] =
∫︂

ddx ⟨Jµ(x)⟩ f fµ(x) , (7.1.7)

where ⟨·⟩ f denotes the expectation value in the presence of a defect of generic shape.
A straightforward computation outlined in appendix C.1 shows that

∂

∂α
Fdef|univ. = −aJ(α)

2π
d
2+1

Γ
(︂

d
2

)︂
sin
(︁

π
2 d
)︁ , (7.1.8)

where Fdef ≡ − log ZDCFT
f [α] + log ZCFT is the defect sphere free energy. The above

equation was originally found in [168, 169] where the authors studied how the defect
free energy depends on bulk marginal couplings. The present case is slightly different
from theirs since here the marginal operator Jθ(x) has explicit space-time dependence.
We notice that eq. (7.1.8) has a simple pole when d is even. This reflects the fact that the
sphere free energy contains a logarithmic divergence which corresponds to the A-type
defect anomaly. In particular, in terms of the integrated anomaly A in eq. (2.5.51),

∂

∂α
A = (−1)d/2aJ(α)

4πd/2

Γ
(︂

d
2

)︂ . (7.1.9)

When d = 4 and d = 6, this reduces to

∂

∂α
a(2d)

Σ (α) = 12π2aJ(α) , (7.1.10)

∂

∂α
a(4d)

Σ (α) =
π3

2
aJ(α) , (7.1.11)

after using eqs. (3.4.39) and (6.2.44).

Due to the relatively simple construction of monodromy defects through eq. (7.1.2),
higher point correlation functions of Jµ will be related to other important physical
observables. Consider the stress tensor of a field theory coupled to A. With the
insertion of a monodromy defect, Tµν is no longer conserved at the location of the
defect, and

∇µTµν = JµFµν . (7.1.12)

From eq. (7.1.2), Fµν is proportional to a Dirac delta function at ρ = 0. This is most
clearly seen in Cartesian coordinates in the transverse space to the defect
x = ρ cos θ, y = ρ sin θ, where now Fxy = 2παδ2(x, y). Comparing eq. (7.1.12) to
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eq. (3.1.14), we identify the displacement operator as

Dx = −2παJy
⃓⃓
x,y=0 , Dy = 2παJx|x,y=0 . (7.1.13)

In the following sections it will be convenient to use complex coordinates z = x + iy,
z̄ = x − iy in the transverse space. In these coordinates we have

Dz = −2πiαJz|z,z̄=0 , Dz̄ = 2πiαJz̄|z,z̄=0 . (7.1.14)

This brief computation has demonstrated a second important use for correlators of Ji.
Since Di ∝ Ji, we see that the displacement operator two-point function eq. (3.1.17) is
computable through ⟨Ji Jj⟩. This in turn means that the defect limit of the current
two-point function is controlled by cDD, which is proportional to d(2d)

1 in d = 4 by
eq. (3.4.41) and to d(4d)

1 in d = 6 by eq. (6.2.39).

One important caveat to this statement arises when non-trivial sources for relevant
defect operators in the defect OPE are included. These modes will be central to the
analysis in the subsequent sections. When they are turned on, the relationship
between Ji and Di for monodromy defects no longer holds, and we will need to resort
to other techniques to compute cDD.

7.2 Free scalar

In this section, we study the monodromy defect in the theory of a free, conformally
coupled complex scalar field, φ(x), in d dimensions. As explained in section 7.1, we
engineer this defect by turning on a constant background gauge field for the U(1)
global symmetry. We take the Euclidean action of the theory to be

Iscalar =
∫︂

ddx
√

g
[︃
∇µ φ(∇µ φ)† +

d − 2
4(d − 1)

R |φ|2
]︃

, (7.2.15)

where the coupling to the scalar curvature R is needed to have a conformal and Weyl
invariant action. We also define the gauge covariant derivative ∇µ ≡ Dµ − ieAµ.

Varying I scalar with respect to the gauge field Aµ gives the conserved U(1) current

Jµ =
1
√

g
δIscalar

δAµ
= −i

(︂
φDµ φ† − Dµ φφ† + 2ieAµ |φ|2

)︂
, (7.2.16)

while the variation with respect to the metric gµν produces the stress tensor

Tµν =
2
√

g
δIscalar

δgµν

= ∇µ φ(∇ν φ)† + (∇µ φ)†∇ν φ − d − 2
2(d − 1)

[︃
DµDν +

gµν

d − 2
D2 − Rµν

]︃
|φ|2 ,

(7.2.17)
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where Rµν is the Ricci tensor for the background geometry.

7.2.1 Mode expansion and propagator

In order to introduce a monodromy defect, we set Aµ to be as in eq. (7.1.2), and for
simplicity we set the charge e = 1. In appendix C.2 we provide the detailed derivation
of the mode expansion and the propagator. Here we report and discuss the results. In
what follows we will restrict α ∈ (0, 1), and we will treat the limits α → 0, 1 carefully.
We will also adopt complex coordinates transverse to the defect, i.e. z = ρeiθ and
z̄ = ρe−iθ . The mode expansion can be written as

φ = φ−α z−α + φα−1 z̄α−1 +
∞

∑
m=1

φm−αzm−α +
∞

∑
m=0

φm+α z̄m+α . (7.2.18)

The modes φm+α are defined for m ≥ 0 and φm−α for m ≥ 1 as follows:

φm±α ≡
∫︂

dkρ

∫︂
dd−3k⃗∥

[︂
f (k)a∓m(k) + f ∗(k)b†

∓m(k)
]︂ Jm±α(kρρ)

ρm±α
, (7.2.19)

where Jν(ζ) is the Bessel function of the first kind, and

f (k) =
√︁

kρ

(
√

2π)d−2
√

2ω
e−iωt+i k⃗∥·x⃗∥ , (7.2.20)

with ω2 = k2
ρ + k⃗

2
∥. Throughout we use the shorthand k = (k⃗∥, kρ). The modes φα and

φ1−α are special because they are naturally paired with two singular modes φ−α and
φα−1, respectively. These modes can be included if one allows for divergences milder
than O

(︁
ρ−1)︁ as ρ → 0 such that the mode is square integrable at the origin.4 In

principle, we can introduce these four modes independently but the canonical
commutation relation for φ fixes their coefficients in terms of two free parameters
ξ, ξ̃ ∈ [0, 1] so that we have

φα =
√︁

1 − ξ
∫︂

dkρ

∫︂
dd−3k⃗∥

[︂
f (k)a(+)

0 (k) + f ∗(k)b(+)†
0 (k)

]︂ Jα(kρρ)

ρα
, (7.2.21a)

φ−α =
√︁

ξ
∫︂

dkρ

∫︂
dd−3k⃗∥

[︂
f (k)a(−)

0 (k) + f ∗(k)b(−)†
0 (k)

]︂ J−α(kρρ)

ρ−α
, (7.2.21b)

φ1−α =
√︂

1 − ξ̃
∫︂

dkρ

∫︂
dd−3k⃗∥

[︂
f (k)a(+)

1 (k) + f ∗(k)b(+)†
1 (k)

]︂ J1−α(kρρ)

ρ1−α
, (7.2.21c)

φα−1 =
√︂

ξ̃
∫︂

dkρ

∫︂
dd−3k⃗∥

[︂
f (k)a(−)

1 (k) + f ∗(k)b(−)†
1 (k)

]︂ Jα−1(kρρ)

ρα−1 . (7.2.21d)

4Physically, we require the integrals of energy density and charge density to be finite in a neighbour-
hood around the defect. Indeed, energy and charge density are quadratic in the field ϕ and do not involve
any radial derivatives. The measure of integration over the spatial directions involves a factor of ρ. Thus,
each field must have a divergence milder than O(ρ−1) for the integral to converge at the origin. As we
will see shortly, defect unitarity will impose exactly the same constraint.
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Similar modes have been already discussed from an abstract defect CFT perspective
in [155, 288]. In order to make contact with these works it is useful to match our mode
expansion with the defect OPE of the bulk field φ. The latter allows to expand any
bulk operator in terms of defect primaries Ôm and their descendants, as in eq. (3.1.21).
The coefficients of this expansion are the bulk-to-defect couplings bφÔm

. For a
monodromy defect, the allowed defect operators in the defect OPE of a bulk scalar in
our conventions must have orthogonal spin s ∈ Z− α. Furthermore, in a free theory,
the EOM for φ allow for two sets of defect operators in the defect OPE of φ. The
dimensions of these two sets of operators were denoted in [155] as ∆̂

+
s = d

2 − 1 + |s|
and ∆̂

−
s = d

2 − 1 − |s|. While the former are always allowed, the latter cannot be
allowed for all s. Indeed defect operators must obey the same unitarity bounds stated
below eq. (2.2.20) with d → p. The operators with ∆̂

−
s violate the unitarity bound for a

p = d − 2 defect in d > 4 unless |s| < 1. For d ≤ 4, unitarity requires |s| < d−2
2 . The

defect OPE then reads

φ = ∑
s∈Z−α

b
φÔ+

s
ρ|s|eisθC+

s (ρ2∂2
∥)Ô

+
s (x∥)

+ b
φÔ−

−α

e−iαθ

ρα
C−

s (ρ2∂2
∥)Ô

−
−α(x∥) + b

φÔ−
1−α

ei(1−α)θ

ρ1−α
C−

s (ρ2∂2
∥)Ô

−
1−α(x∥) ,

(7.2.22)

where ∂2
∥ = ∂a∂a. The differential operators C±

s (ρ2∂2
∥) resum the contribution of all the

conformal descendants, and are fixed by conformal invariance to be

C±
s (ρ2∂2

∥) ≡
+∞

∑
k=0

(−4)−k(ρ2∂2
∥)

k

k!(1 ± |s|)k
, (7.2.23)

where (a)k ≡ a(a + 1) . . . (a + k − 1) if k ̸= 0 and (a)0 ≡ 1 is the Pochhammer symbol.
Comparing this expression with the small ρ expansion of eq. (7.2.18) after Wick
rotation, one finds a one-to-one correspondence between the mode expansion and the
defect OPE, thus establishing that each mode in eq. (7.2.18) creates a conformal family
of defect operators. Including modes that are less singular than O(ρ−1) is equivalent
to allowing for defect operators with dimension ∆̂

−
s above the unitarity bound.

Conversely, any mode that diverges like O(ρ≤−1) at the origin would give rise to a
defect primary below the unitarity bound. We will determine the bulk-to-defect
couplings bφÔ by comparing the propagator with the defect block expansion.

The propagator is computed in appendix C.2 where we find that the result consists
precisely of a sum over defect blocks. A bulk two-point function can be expressed in
terms of two cross ratios: the relative angle θ and the combination

η ≡ 2ρρ′

ρ2 + ρ′2 + |x∥|2
, (7.2.24)
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where we have set x′∥ = 0 by translational invariance along the defect. Note that in the
coincident limit θ → 0 and η → 1. A defect block is a function of these cross ratios:

F∆̂,s(η, θ) =
(︂η

2

)︂∆̂s

2F1

(︄
∆̂s

2
,

∆̂ + 1
2

; ∆̂s + 2 − d
2

; η2

)︄
eisθ , (7.2.25)

where 2F1(a, b; c; z) is the ordinary hypergeometric function. The propagator then
takes the form⟨︂

φ(x)φ†(0, ρ′)
⟩︂

=

(︃
1

ρρ′

)︃ d
2−1

(︄
∑

s∈Z−α

c+s F∆̂
+

,s(η, θ) + c−−α F∆̂
−

,−α
(η, θ) + c−1−αF∆̂

−
,1−α

(η, θ)

)︄
,

(7.2.26)

with

c+s =
Γ
(︂

d
2 − 1 + |s|

)︂
4πd/2Γ (1 + |s|)

for s ̸= −α, 1 − α , (7.2.27)

and special cases

c+−α = (1 − ξ)
Γ
(︂

d
2 − 1 + α

)︂
4πd/2Γ (1 + α)

, c−−α = ξ
Γ
(︂

d
2 − 1 − α

)︂
4πd/2Γ (1 − α)

, (7.2.28a)

c+1−α = (1 − ξ̃)
Γ
(︂

d
2 − α

)︂
4πd/2Γ (2 − α)

, c−1−α = ξ̃
Γ
(︂

d
2 − 2 + α

)︂
4πd/2Γ (α)

. (7.2.28b)

In section 7.3, we will find it advantageous to adopt an alternative notation for the
scalar propagator in eq. (7.2.26), GS,α,ξ,ξ̃(x, x′) ≡

⟨︁
φ(x)φ†(0, ρ′)

⟩︁
. By applying the

defect OPE eq. (7.2.22) to each scalar in the propagator, and matching with the defect
block expansion eq. (7.2.26) using the normalisation

⟨︂
Ô±

s (x∥)Ô
†±
s′ (0)

⟩︂
=

δs,−s′

|x∥|d−2±2|s| (7.2.29)

for the defect operators, we immediately identify c±s = b
φÔ±

s
b

φ†Ô†±
s

. Reflection

positivity imposes that c±s > 0, which determines the range of the parameters ξ and ξ̃

to be
0 ≤ ξ, ξ̃ ≤ 1 . (7.2.30)

In d < 4, the unitarity bounds above eq. (7.2.22) impose further conditions on the
range of α at non-zero ξ or ξ̃. As an example consider d = 3, for which the unitarity
bound reads |s| < 1

2 . This requires that either α ∈
[︁
0, 1

2

)︁
if ξ ̸= 0 and ξ̃ = 0, or

α ∈
(︁ 1

2 , 1
]︁

if ξ = 0 and ξ̃ ̸= 0. Notice that since the two ranges of α don’t overlap, one
cannot turn on both deformations ξ, ξ̃ ̸= 0 without breaking unitarity.

At this point, we are ready to discuss what happens for the limiting values α → 0 and



112 Chapter 7. Monodromy Defects in Free Field Theories

α → 1. In the absence of the divergent modes, i.e. for ξ = ξ̃ = 0, the defect OPE of φ

simply reduces to the Taylor expansion of the free field φ around the co-dimension
two surface ρ = 0. In other words, the defect reduces to the trivial defect as one would
expect in the absence of a monodromy. The singular modes, instead, lead to a singular
behaviour of eq. (7.2.22) either at α = 0 or at α = 1. For ξ̃ = 0 and ξ ̸= 0 the limit
α → 0 is perfectly well-defined and leads again to the free field Taylor expansion,
while the limit α → 1 is singular. This seems to be in contrast with our definition of
the monodromy defect, which should reduce to the trivial defect for integer α.
Nevertheless, a glance at (7.2.28a) shows that, at least for d > 4, the singular mode
decouples from the bulk at α = 1 since c−−1 = 0. This leads to a two-dimensional
theory, which is decoupled from the bulk free scalar. This is still not enough to affirm
that the limit α → 1 is well-defined. Even though the singular mode decouples, the
remaining bulk propagator still depends on ξ as the contribution of the φα mode gives
a factor of 1 − ξ to one of the terms in the propagator. Thus, the propagator does not
reduce to that of a free complex scalar but has an extra term proportional to −ξ

consisting of a single defect block. This bulk two-point function is not crossing
invariant and therefore it does not lead to a consistent defect CFT. Therefore, we have
to conclude that the limit α → 1 cannot be smooth for a constant value of ξ. Either ξ is
a function of α or some discontinuous behaviour must be introduced at α = 1 so that
the periodicity in α is reinstated. In the following, we do not make any assumption on
ξ and we will mention explicitly the places where we will assume that it is not a
function of α. More generally, we keep an abstract point of view on this issue,
assuming there could be a dynamical mechanism which causes the decoupling of this
mode for α = 1. For the case of ξ = 0 but non-vanishing ξ̃ as α → 0 an identical
discussion applies.

We introduced ξ and ξ̃ as abstract parameters in the defect OPE. Any value in the
range eq. (7.2.30) gives rise to an admissible defect conformal block expansion.
However, the physical meaning of these parameters and the defects that they define is
less clear. The U(1) monodromy defect is closely related to an Aharonov-Bohm
solenoid, for which the gauge field outside has the same profile as eq. (7.1.2) [323–325].
By a similar computation to the one outlined here, one can solve the Klein-Gordon
equation both inside and outside the solenoid. Physical boundary conditions at the
solenoid correspond to continuity in the field and the first radial derivative. Then
taking the size of the solenoid to zero, one obtains the field configurations in
eqs. (7.2.19) and (7.2.21) with ξ = ξ̃ = 0. For non-zero ξ or ξ̃, the monodromy defect
does not describe a solenoid but a more general defect for which particles experience
the physics at the centre of the defect. In an Aharonov-Bohm-like experiment the
particles wouldn’t just acquire a phase but non-trivially scatter with the defect. To our
knowledge, the possibility of more general field configurations as a function of
continuous parameters ξ or ξ̃ was first noted in ref. [324].
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Another perspective on the modes with ξ = 1 or ξ̃ = 1 is given by a Weyl
transformation of the planar defect in Rd to S1 × Hd−1, where Hd−1 is the
(d − 1)-dimensional hyperbolic space (i.e. the Euclidean version of anti-de Sitter
space) [322]. The support of the defect is mapped to the boundary of Hd−1 while the
scalar field now has a monodromy around the S1. Performing a Kaluza-Klein
reduction on the S1, one obtains massive scalars on Hd−1 with masses m2

s = s2 − (d−2)2

4

in units of the hyperbolic radius, where s ∈ Z− α as before. Each bulk massive scalar
on Hd−1 is holographically dual to an operator on the boundary, which can be
identified with one of our defect primaries Ô±

s . The defect operator’s scaling
dimension ∆̂

±
s is related to the bulk scalar’s mass as follows m2

s = ∆̂
±
s (∆̂

±
s − d + 2).

The two possibilities ∆̂
±
s for fixed spin s correspond to the two possible boundary

conditions of a massive scalar in hyperbolic space. For m2
s above the

Breitenlohner-Freedman bound m2
s > − (d−2)2

4 and also m2
s ≤ − (d−2)2

4 + 1, both

solutions ∆̂
±
s = d−2

2 ±
√︂

(d−2)2

4 + m2
s are above the boundary theory’s unitarity bound.

For this range of m2
s , alternate quantisation is admissible, exchanging the usual role of

source and VEV for the dual field theory operator. The only values of s for which m2
s

lies in this range are s = −α and s = 1 − α. These are precisely the singular modes
with ξ = 1 and ξ̃ = 1, respectively.

7.2.2 Correlation functions and central charges

We start by computing some relevant one-point functions by taking a suitable
coincident limit of the propagator. A generic one-point function of a composite
operator can be found by Wick contracting the fundamental fields and then taking the
coincident limit, carefully regularising the short distance divergences. In the
following, we consider only one-point functions of operators quadratic in the
fundamental field φ. In this case, we only need to take the appropriate combinations
of derivatives of the propagator, and then take the coincident limit.

To this end, it is convenient to start from the non-singular propagator (ξ = ξ̃ = 0) for
which we can use the form in eq. (C.2.25), which after a change of variables
ζ = 2/(sρρ′) becomes

⟨︂
φ(x)φ†(x′)

⟩︂
ξ=ξ̃=0

=
1

2(2π)d/2
1

(ρρ′)d/2−1

∫︂ +∞

2ϵ2
ρρ′

dζ e−
1

ηζ ζ−d/2 ∑
m

ei(m−α)θ I|m−α|

(︃
1
ζ

)︃
,

(7.2.31)
where Iν(ζ) is the modified Bessel function of the first kind. The integral is divergent
in the coincident (η → 1) limit. For this reason we introduce the UV cut-off ϵ. The
one-point function will be a power expansion in terms of ϵ. If the divergent term is
independent of α, the divergences can be consistently removed by subtracting the
one-point function with α = 0. After computing the contribution from the regular
modes of φ, we will add the singular parts, which are proportional to ξ and ξ̃.
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7.2.2.1 One-point function of |φ|2

Let us start with the simplest case: the one-point function of |φ|2. Taking the
coincident limit of eq. (7.2.31) we obtain

⟨︂
φ(x)φ†(x′)

⟩︂
ξ=ξ̃=0

=
1

2(2π)d/2
1

ρd−2

∫︂ +∞

2ϵ2

ρ2

dζ e−
1
ζ ζ−d/2I (1)

α

(︃
1
ζ

)︃
, (7.2.32)

where we defined5

I (1)
α (ζ) ≡ ∑

m
I|m−α|(ζ) =

1
2α

[︃
eζ
∫︂ ζ

0
e−x I−α(x)dx − ζ I−α(ζ)− ζ I1−α(ζ)

]︃
+

1
2(1 − α)

[︃
eζ
∫︂ ζ

0
e−x Iα−1(x)dx − ζ Iα−1(ζ)− ζ Iα(ζ)

]︃
.

(7.2.33)

The integral over ζ in eq. (7.2.32) can be performed, and indeed one can see that it
diverges for ϵ → 0. However, the divergences are independent of α and can be
unambiguously subtracted. The final result is

⟨︁
|φ(x)|2

⟩︁
ξ=ξ̃=0 = −

Γ
(︂

d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d−1π
d+1

2 (d − 2)Γ
(︂

d−1
2

)︂ 1
ρd−2 . (7.2.34)

We observe that the one-point function vanishes both when α = 0 and α = 1. The
former is obvious since it corresponds to the absence of a defect, while the latter
reflects the fact that the flux is defined modulo integers. We now compute the
contribution of the singular modes. The part of the propagator proportional to ξ can
be deduced from eq. (7.2.26) and it reads

⟨︂
φ(x)φ†(x′)

⟩︂
ξ
= ξ

(︂
1

ρρ′

)︂ d
2−1

(︃
− Γ( d

2−1+α)
4πd/2Γ(1+α)

F∆̂
+

,−α
(η, θ) +

Γ( d
2−1−α)

4πd/2Γ(1−α)
F∆̂

−
,−α

(η, θ)

)︃
.

(7.2.35)
We are interested in the θ → 0 and η → 1 limit. The former simply eliminates the
exponential in eq. (7.2.25), while the latter gives a singular limit for the hypergeometric
function in eq. (7.2.25). Actually, each defect block is logarithmically divergent in the
limit η → 1. However, these logarithms cancel in the combination eq. (7.2.35), leaving
us only with power law divergences. After subtracting them we get

⟨︁
|φ(x)|2

⟩︁
ξ
= ξ

Γ
(︂

d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d−1π
d+1

2 Γ
(︂

d−1
2

)︂ 1
ρd−2 . (7.2.36)

5In the second equality we used eq. (C.4.43).
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The result proportional to ξ̃ can be simply obtained by replacing α → 1 − α:

⟨︁
|φ(x)|2

⟩︁
ξ̃
= ξ̃

Γ
(︂

d
2 + α − 2

)︂
Γ
(︂

d
2 − α

)︂
sin(πα)

2d−1π
d+1

2 Γ
(︂

d−1
2

)︂ 1
ρd−2 . (7.2.37)

Putting everything together we get the final result

⟨︁
|φ(x)|2

⟩︁
=

Γ( d
2 − α)Γ( d

2 + α − 1) sin(πα)

2d−1π
d+1

2 Γ
(︂

d−1
2

)︂ 1
ρd−2

(︄
− 1

d − 2
+

ξ
d
2 − α − 1

+
ξ̃

d
2 + α − 2

)︄
.

(7.2.38)

As a special case we note that when d = 4, the one-point function becomes

⟨︁
|φ(x)|2

⟩︁
= − (1 − α)α − 2ξα − 2ξ̃(1 − α)

8π2ρ2 . (7.2.39)

7.2.2.2 One-point function of Tµν

The one-point function of the stress tensor in the presence of a p = d − 2 dimensional
conformal defect is fixed by conformal symmetry to be of the form in eq. (3.1.13).
Thus, we only need to compute the coefficient h to determine the full stress tensor
one-point function. To do this, we can choose a particular component, and we pick

⟨︁
Tρρ

⟩︁
= 2

⟨︂
∂ρ φ∂ρ φ†

⟩︂
− 1

2(d − 1)

[︃
(d − 1)∂2

ρ +
1
ρ

∂ρ

]︃ ⟨︁
|φ|2

⟩︁
. (7.2.40)

Having already found
⟨︁
|φ|2

⟩︁
above, we only need to compute the first term in

eq. (7.2.40), i.e. the coincident limit of the propagator after taking derivatives with
respect to ρ. Once again, we start from the regular part of the propagator (ξ = ξ̃ = 0),
for which we use the representation eq. (7.2.31),

⟨︂
∂ρ φ(x)∂ρ φ†(x)

⟩︂
ξ=ξ̃=0

=
1

8(2π)d/2
1
ρd

∫︂ +∞

2ϵ2

ρ2

dζ e−1/ζ (d − 2)2ξ + 4

ζ
d
2+1

I (1)
α

(︃
1
ζ

)︃
. (7.2.41)

Just as above, we find that the divergences in ϵ are independent of α and can thus be
subtracted unambiguously. The finite part reads

⟨︂
∂ρ φ∂ρ φ†(x)

⟩︂
ξ=ξ̃=0

= −
((d − 2)d2 + 4(1 − α)α) sin(πα)Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
2d+1π

d+1
2 d (2d − 1) Γ

(︂
d−1

2

)︂ 1
ρd .

(7.2.42)
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Performing the same analysis for the singular contributions we find

⟨︂
∂ρ φ∂ρ φ†(x)

⟩︂
ξ
= ξ

((d − 2)2d − 8α2)Γ
(︂

d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+2π
d+1

2 ((d − 2)2 − 4α2)Γ
(︂

d+1
2

)︂ 1
ρd ,

(7.2.43)

⟨︂
∂ρ φ∂ρ φ†(x)

⟩︂
ξ̃
= ξ̃

((d − 2)2d − 8(1 − α)2)Γ
(︂

d
2 + α − 2

)︂
Γ
(︂

d
2 − α

)︂
sin(πα)

2d+2π
d+1

2 ((d − 2)2 − 4(1 − α)2)Γ
(︂

d+1
2

)︂ 1
ρd .

(7.2.44)

Thus, by plugging eqs. (7.2.38), (7.2.42), and (7.2.43) into eq. (7.2.40), we find the full
one-point function of the stress tensor

⟨Tρρ(x)⟩ = −
Γ
(︂

d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

(︃
α(1−α)

d + α2ξ
d
2−α−1

+ (1−α)2 ξ̃
d
2+α−2

)︃
2d−1π

d+1
2 Γ
(︂

d+1
2

)︂ 1
ρd ,

(7.2.45)

which is vanishing for α = 0 and α = 1 when d > 4, as expected. The contribution
with ξ = ξ̃ = 0 was previously computed in [326]. Comparing with eq. (3.1.13), we
find that h is expressed as

h =

Γ
(︂

d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

(︃
α(1−α)

d + α2ξ
d
2−α−1

+ (1−α)2 ξ̃
d
2+α−2

)︃
2d−1π

d+1
2 Γ
(︂

d+1
2

)︂ . (7.2.46)

Note that h ≥ 0 for the ranges α ∈ (0, 1), and ξ, ξ̃ ∈ [0, 1] in d ≥ 4. For d < 4, unitarity
requires that the range of α be restricted in the presence of singular modes, as
discussed below eq. (7.2.30). In that case h is manifestly non-negative.

Specialising to d = 4 and d = 6 in order to connect to defect central charges, we find
using eqs. (3.4.41) and (6.2.39)

d(2d)
2 = −3

2
(︁
(1 − α)2α2 + 4ξα3 + 4ξ̃(1 − α)3)︁ , (7.2.47)

d(4d)
2 = −α(1 − α2)(2 − α)

72

(︃
α(1 − α) +

6α2ξ

2 − α
+

6(1 − α)2ξ̃

1 + α

)︃
. (7.2.48)

Since h ≥ 0, then d(2d)
2 ≤ 0 and d(4d)

2 ≤ 0. This is in agreement with the expectation that
d(2d)

2 ≤ 0 and d(4d)
2 ≤ 0 if the ANEC holds in the presence of a p = 2 and p = 4

dimensional defect, respectively [50].
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7.2.2.3 One-point function of Jθ

In this subsection, we consider the one-point function of the current ⟨Jµ⟩. By
computing the coefficient aJ , we can leverage eq. (7.1.10) in d = 4 to compute the
defect central charge a(2d)

Σ and eq. (7.1.11) in d = 6 to compute a(4d)
Σ .

We start again from the regular part of the propagator in the form of eq. (7.2.31), and
consider the following expectation value

⟨Jθ⟩ξ=ξ̃=0 = −2i⟨φ ∂θ φ†⟩ = − 1
(2π)d/2

1
ρd−2

∫︂ +∞

2ϵ2

ρ2

dζ e−
1
ζ ζ−d/2I (2)

α

(︃
1
ζ

)︃
, (7.2.49)

where we have taken the coincident limit and defined the sum6

I (2)
α (ζ) ≡ ∑

m
(m − α) I|m−α| (ζ)

=
ζ

2
[I1−α(ζ) + I−α(ζ)− I1+α(ζ)− Iα(ζ)]− αIα(ζ) .

(7.2.50)

Inserting the result of the sum in eq. (7.2.50) into eq. (7.2.49), we find that the
ζ-integral is convergent in the limit ϵ → 0. For the regular modes, computing the
ζ-integral and removing the UV cut-off gives7

⟨Jθ⟩ξ=ξ̃=0 =
(1 − 2α)Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2dπ
d+1

2 Γ
(︂

d+1
2

)︂ 1
ρd−2 . (7.2.51)

We note that ⟨Jθ⟩ = 0 both for α = 0, 1, and for α = 1/2. The former cases are expected
as the monodromy becomes trivial, while the latter follows from symmetry
considerations. More specifically, the Lagrangian in eq. (7.2.15) is manifestly invariant
under the transformation θ → −θ provided that α → −α. If φ is regular in the limit
ρ → 0, then −α and 1 − α are identified by gauge invariance. This implies that ⟨Jθ⟩ is
odd under α → 1 − α in the range α ∈ [0, 1], and thus it vanishes when α = 1/2.
Equivalently, parity in the normal directions is restored at α = 1

2 , which forces the
one-point function of a vector to vanish as discussed in section 3.1. The contribution of
the singular modes is

⟨Jθ⟩ξ =2ξ
α Γ
(︂

d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d−1π
d+1

2 Γ
(︂

d−1
2

)︂ 1
ρd−2 , (7.2.52a)

⟨Jθ⟩ξ̃ =2ξ̃
(1 − α) Γ

(︂
d
2 + α − 2

)︂
Γ
(︂

d
2 − α

)︂
sin(πα)

2d−1π
d+1

2 Γ
(︂

d−1
2

)︂ 1
ρd−2 . (7.2.52b)

6This follows immediately from eq. (C.4.44).
7This one-point function was also computed by ref. [322].
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Summing all the contributions we have

⟨Jθ⟩ =
Γ
(︂

d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

(︃
1 − 2α + 2α(d−1)ξ

d
2−α−1

+ 2(1−α)(d−1)ξ̃
d
2+α−2

)︃
2dπ

d+1
2 Γ
(︂

d+1
2

)︂ 1
ρd−2 .

(7.2.53)
We observe that when ξ, ξ̃ ̸= 0 the current is not vanishing at α = 1/2. This is due to
the singular modes, which break the invariance of the theory under the shift
α → α +Z.

The integral of this function with respect to α leads to the universal part of the sphere
free energy.8 When d and p are even, it is controlled by the A-type defect central
charge. Setting d = 4 and d = 6, using eqs. (7.1.10) and (7.1.11) and integrating over
the flux α, we obtain

a(2d)
Σ =

(1 − α)2α2 + 4ξα3 + 4ξ̃(1 − α)3

2
, (7.2.54)

a(4d)
Σ =

α2

720
(1 − α)2(3 + α − α2) +

α3

360
(5 − 3α2)ξ − (1 − α)3

360
(3α2 − 6α − 2)ξ̃ . (7.2.55)

A few comments about this result are in order. First of all, when integrating the
current one-point function with respect to α, we assumed that ξ and ξ̃ are not
functions of α. Were ξ or ξ̃ function of α, the dependence of a(2d)

Σ and a(4d)
Σ on α would be

affected by the dynamical source of ξ and ξ̃ and this unknown source would
contribute to the derivative in eq. (7.1.10). Another important comment is that
eq. (7.1.10) involves an integration constant which can be a function of ξ and ξ̃. This
constant can be fixed by requiring that a(2d)

Σ and a(4d)
Σ vanish at α = 0 if ξ̃ = 0, and at

α = 1 if ξ = 0, together with the requirement that its dependence on ξ and ξ̃ be linear.
E.g. when d = 4, these requirements fix the integration constant to be −2ξ̃, giving
precisely eq. (7.2.54). As a check of eq. (7.2.54), we will compute in section 7.2.3 the EE
in the presence of the monodromy defect, and we will show that it vanishes for any

value of α, ξ and ξ̃. This implies, in particular, that a(2d)
Σ +

d(2d)
2
3 = 0, which is consistent

with eqs. (7.2.54) and (7.2.47).

7.2.2.4 Two-point function of Di

In this subsection we study the displacement operator of the monodromy defect of the
complex scalar. Our final goal will be to identify the coefficient of its two-point
function, which in d = 4 and d = 6 is related to the defect central charge d(2d)

1 and d(4d)
1 ,

respectively.

8When d = 3 we can compare with the results obtained in Appendix A of [327], finding perfect agree-
ment upon identification of the flux parameters (µ = 2πα).
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Given the defect OPE of the fundamental field φ eq. (7.2.22) and of its conjugate φ†,
we look for the displacement operator in the fusion of defect fields Ô±

m−α and Ô†±
m+α.

We are looking for an operator of dimension ∆̂D = d − 1 and spin s = 1. To be precise,
there are two operators Dz and Dz̄ with the same dimension and opposite spin
associated to the two broken translations in complex coordinates. The combination of
defect operators fulfilling these requirements is

Dz = A Ô+
1−αÔ

†+
α + B Ô−

−αÔ
†+
1+α + C Ô+

2−αÔ
†−
−1+α + D [Ô†−

α Ô−
1−α]2 , (7.2.56)

and their conjugates for the operator with spin s = −1. The last operator in eq. (7.2.56)
is the conformal primary built out of Ô†−

α , Ô−
1−α and two derivatives,

[Ô†−
α Ô−

1−α]2 ≡
(︃

1
2(d − 2)

− 1
4α

)︃
Ô†−

α ∂2
∥Ô

−
1−α +

1
d − 2

∂aÔ
†−
α ∂aÔ−

1−α

+

(︃
1

2(d − 2)
− 1

4(1 − α)

)︃
∂2
∥Ô

†−
α Ô−

1−α .
(7.2.57)

In eq. (7.2.56) the coefficients A, B, C and D are implicitly functions of α, ξ and ξ̃. We
denote their analogues for the spin s = −1 operator as A†, B†, C† and D†. Notice that
only the first operator is present for ξ = ξ̃ = 0. The second operator includes a mode
Ô−

−α so it must vanish for ξ = 0, the third one includes Ô†−
−1+α and it must not appear

for ξ̃ = 0. The last term appears only when both ξ and ξ̃ are non-vanishing. Using this
piece of information and consistency with the Ward identity eq. (2.3.21a)∫︂

dd−2x∥
⟨︁
|φ(0, z, z̄)|2Dz(x∥)

⟩︁
= −∂z

⟨︁
|φ(0, z, z̄)|2

⟩︁
, (7.2.58)

we can fix the form of the displacement operator. Indeed, the two-point function in
eq. (7.2.58) is fixed by conformal invariance to be of the form in eq. (3.1.20), which in
complex coordinates transverse to the defect becomes

⟨︁
|φ(0, z, z̄)|2Dz(x∥)

⟩︁
= bφ2D(α, ξ, ξ̃)

z̄(︁
|x∥|2 + zz̄

)︁d−1 . (7.2.59)

Thus by eq. (7.2.58),

bφ2D(α, ξ, ξ̃) = −
Γ( d

2 − α)Γ( d
2 + α − 1) sin(πα)

4πd

(︄
1 − (d − 2)ξ

d
2 − α − 1

− (d − 2)ξ̃
d
2 + α − 2

)︄
.

(7.2.60)
Inserting the ansatz eq. (7.2.56) into the two-point function eq. (7.2.59) we find an
equation for the coefficients in eq. (7.2.56), which has the solution

A = 4πα(1 − α)b
φ†Ô†+

α
b

φÔ+
1−α

, B = 4πα(1 + α)b
φ†Ô†+

1+α
b

φÔ−
−α

, (7.2.61)

C = 4π(1 − α)(2 − α)b
φ†Ô†−

−1+α
b

φÔ+
2−α

, D = 4πα(1 − α)b
φ†Ô†−

α
b

φÔ−
1−α

, (7.2.62)
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where the b coefficients are the bulk-to-defect couplings introduced in eq. (7.2.23).
Similar expressions hold for A†, B†, C† and D†, with the bulk-to-defect couplings
replaced by the ones for the conjugate operators. Using this data it is easy to see that
the displacement two-point function in complex coordinates

⟨Dz(x∥)Dz̄(0)⟩ =
cDD

2|x∥|2d−2 (7.2.63)

is determined by a linear combination quadratic in the coefficients in eqs. (7.2.27),
(7.2.28a) and (7.2.28b)9

cDD = AA† + BB† + CC† + DD† (
d
2 − 1 − α)( d

2 − 2 + α)

α(1 − α)

= 4π2−dΓ
(︂

d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

(︃
α(1 − α) + dα2ξ

d
2−α−1

+ d(1−α)2 ξ̃
d
2+α−2

)︃
.

(7.2.64)

Note that it satisfies the relation (5.5.15) for q = 2, when compared with the explicit
value of h in eq. (7.2.46), and so cDD ≥ 0 whenever h ≥ 0. Specialising to d = 4 and
d = 6 and using the normalisation eq. (3.4.40) and eq. (6.2.20), respectively, we find for
a monodromy defect created by α units of flux in the theory of a complex free scalar

d(2d)
1 =

3
2
(︁
(1 − α)2α2 + 4ξα3 + 4ξ̃(1 − α)3)︁ , (7.2.65)

d(4d)
1 = −α(1 − α2)(2 − α)

36

(︂
α(1 − α) +

6α2ξ

2 − α
+

6(1 − α)2ξ̃

1 + α

)︂
. (7.2.66)

As discussed in section 7.1, when ξ = ξ̃ = 0, the displacement operator Di can be
identified as the regular term in the defect OPE of the orthogonal components of the
current Ji. However, we emphasise that the relation eq. (7.1.12) is not gauge invariant
under the shift α → α +Z. Thus, expressing Di in terms of Ji makes sense only after
we fix a specific gauge, which reflects in the choice of the range of α. If we choose the
range to be α ∈ [0, 1) as above, we need to change the definition of the current to be

αJz → Jz ≡ i
(︂
(1 − α)φ∂z φ† + αφ†∂z φ

)︂
,

αJz̄ → Jz̄ ≡ −i
(︂
(1 − α)φ†∂z̄ φ + αφ∂z̄ φ†

)︂
.

(7.2.67)

The displacement operator for ξ = ξ̃ = 0 is then

Dz = −2πiJz|z,z̄=0 , Dz̄ = 2πiJz̄|z,z̄=0 . (7.2.68)

Inserting in these expressions the defect OPE of φ and φ†, one finds agreement with
the first term of eq. (7.2.56).

9The final expression for ξ = ξ̃ = 0 also appeared in ref. [322].
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7.2.3 Entanglement entropy

As a check of our computations, we will compute the EE contribution of the
monodromy defect in the free complex scalar theory when d = 4. In the following, we
assume that the defect is flat, and the region A is the half space orthogonal to the
defect. More precisely, we take the defect to extend along the τ and the x1,...,d−3

directions, and the entangling surface ∂A is defined by τ = x1 = 0 as depicted in
figure 7.1. This configuration is the most symmetric case, and it is conformally related
to a spherical entangling surface at τ = 0 centred on the flat defect, which was
discussed in section 4.5 and depicted in figure 4.2. When d = 4 the entangling surface
intersects the monodromy defect in a single point and the EE shows a logarithmic
divergence whose coefficient is given by [50]

Sdef
A |log L

ϵ
=

1
6

(︃
a(2d)

Σ +
d(2d)

2
3

)︃
. (7.2.69)

Note that this is half of eq. (4.5.45) since the defect only intersects the entangling
surface once.

Here we employ the heat kernel method following ref. [181] to show that the result is
in perfect agreement with eq. (7.2.69). See section 4.3 for an introduction to heat kernel
methods. As emphasised in [48, 191, 328–330], in the case of the conformal free scalar,
the EE consists of two contributions, one that can be computed from the heat kernel
and a second one coming from the coupling to the scalar curvature R. To show this,
we can consider the coupling to R as a deformation of the theory. The conical
singularity leads to a scalar curvature of the form R = 2(1 − n)δ(ρ)/(nρ) [30] which
implies the following contribution to the action

IR
scalar[n] = π

d − 2
d − 1

(1 − n)
∫︂

∂A
d2x⊥ dd−4 x̃∥ |φ|2 , (7.2.70)

where x⊥ denotes the coordinates transverse to the defect, and x̃∥ are the defect
directions shared with the entangling surface. The delta function coming from R
localised the integral over spacetime to the entangling surface ∂A. Thus the full
partition function may be written as

Zn = ZR=0
n

⟨︂
e−IR

scalar

⟩︂
, (7.2.71)

where ZR=0
n denotes the partition function of the theory without the coupling to R.

Given this factorisation, the replica trick eq. (4.2.14) implies that the EE splits into two
contributions

SA = SR=0
A + SR

A , (7.2.72)
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Σ

FIGURE 7.1: Sketch of the configuration we employ to compute the defect contribution
to the EE in d = 4. The figure is an instance in time at τ = 0. The defect (red) extends
along the x1 direction, while the entangling surface (green) extends along the remain-
ing orthogonal directions and intersects the defect at x1 = 0. The defect’s contribution
to the universal EE of the region to either side of the entangling surface is given by

eq. (7.2.69).

where SR=0
A is the EE for the theory in the absence of the coupling to R, and SR

A is the
contribution of eq. (7.2.70) which reads [191, 328–330]

SR
A = −π(d − 2)

(d − 1)

∫︂
∂A

d2x⊥ dd−4 x̃∥
⟨︁
|φ(x)|2

⟩︁
. (7.2.73)

This last contribution is straightforward to compute. Setting d = 4 and using
eq. (7.2.39), we find

SR
A = (1−α)α−2ξα−2ξ̃(1−α)

12π

∫︂
∂A

d2x⊥
1
ρ2 = (1−α)α−2ξ−2ξ̃(1−α)α

12π

∫︂ 2π

0
dθ
∫︂ L

ϵ

dρ

ρ

=
(1 − α)α − 2ξα − 2ξ̃(1 − α)

6
log
(︁ L

ϵ

)︁
.

(7.2.74)

The first contribution to (7.2.72) can be computed with the heat kernel method as done
in [181] for the case of a real scalar in a BCFT. For simplicity we will illustrate the
computation only for the regular part of the propagator, namely for ξ = ξ̃ = 0, being
the generalisation to the singular part straightforward. Recall from section 4.3 that the
heat kernel for the Laplacian ∆ = −∇2 can be easily extracted from the propagator
using eq. (4.3.20). In our case we have

K(s; x, x′, α) =
1

(4πs)
d
2

∑
m

eimθe−(ρ2+ρ′2+(x∥−x′∥)
2)/(4s) I|m−α|

(︃
ρ ρ′

2s

)︃
+ c.c. , (7.2.75)
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where c.c. stands for complex conjugate, and we have replaced the ∆ label by α for
clarity. We now compute the trace of the heat kernel on a space with conical
singularity TrKn via the Sommerfeld formula eq. (4.3.27). By setting ρ = ρ′ and
x∥ = x′∥ the integrals become

TrKn =
4πn

(4πs)
d
2

∫︂ ∞

0
dρ
∫︂ 2π

0
dθ
∫︂ ∞

0
dr
∫︂

dd−4 x̃∥ ρ e−ρ2/(2s)I (1)
α

(︃
ρ2

2s

)︃
+

8π2n

(4πs)
d
2

i
4πn

∫︂
Γ

dω cot
ω

2n

[︃∫︂ ∞

0
dρ

∫︂ ∞

0
dr
∫︂

dd−4 x̃∥ ρ r e−ρ2/(2s)−r2 sin2(ω/2)/s I (1)
α

(︃
ρ2

2s

)︃]︃
,

(7.2.76)

where r is a radial coordinate along the defect directions orthogonal to ∂A,
r =

√︁
τ2 + (x1)2, and the function I (1)

α was defined in eq. (7.2.33). After a change of
variables we have

TrKn =
4πn Ld−2

(4πs)
d
2

s
∫︂ L2

2s

0
dζ e−ζI (1)

α (ζ)

+
8π2n Ld−4

(4πs)
d
2

s2

[︄
i

8πn

∫︂
Γ

dω cot
(︂ ω

2n

)︂ 1
sin2 ω

2

]︄ [︄∫︂ L2
2s

0
dζe−ζ I (1)

α (ζ)

]︄
,

(7.2.77)

where we introduced the cut-off L to regulate the IR divergence. The contour integral
over ω can be evaluated exactly, and it gives

i
8πn

∫︂
Γ

dω cot
(︂ ω

2n

)︂ 1
sin2 ω

2

=
1

6 n2 (1 − n2) . (7.2.78)

The heat-kernel contribution to the entanglement entropy SR=0
A can be found using

SR=0
A = lim

n→1
∂n(WR=0

n − nWR=0) . (7.2.79)

The term linear in n in eq. (7.2.77) does not contribute. Thus, the whole contribution to
the EE comes from the second line, and we find

SR=0
A =

1
6

∫︂ +∞

ϵ2
ds

[︄
8π2 Ld−4

(4πs)
d
2

s
∫︂ L2

2s

0
dζe−ζ I (1)

α (ζ)

]︄
, (7.2.80)

where we introduced the UV cut-off ϵ to regulate the small s behaviour of the integral.
The resulting integrals are quite cumbersome but their computation is
straightforward, and for d = 4 we find

SR=0
A =

L2

24ϵ2 − (1 − α)α

6
log
(︃

L
ϵ

)︃
+O(1) . (7.2.81)
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With the singular modes of φ we find instead

SR=0
A =

L2

24ϵ2 − (1 − α)α − 2ξα − 2ξ̃(1 − α)

6
log
(︃

L
ϵ

)︃
+O(1) , (7.2.82)

which precisely cancels eq. (7.2.74). Thus, in the theory of a free complex scalar the
contribution of the monodromy defect to the universal part of the EE vanishes in
d = 4. This is in agreement with the relation (7.2.69) proven in [50], and it confirms
our findings in eqs. (7.2.54) and (7.2.47).

When d = 6, we can use our computations of a(4d)
Σ and d(4d)

2 to make a prediction for the
defect contribution to the universal part of the EE of half-space orthogonal to the
defect. From eq. (6.2.45), we find that for monodromy defects in free scalar field
theories10

Sdef
A |log L

ϵ
= −

[︃
α2

360
(1 − α)2 +

α3ξ

90
+

ξ̃

90
(1 − α)3

]︃
. (7.2.83)

7.3 Free fermion

In this section, we compute h, aJ , and cDD for monodromy defects in a theory of free
Dirac fermions in arbitrary dimension d ≥ 3. As in the case of the free scalars, we will
eventually specialise to d = 4 and d = 6 in order to connect the results to the defect
Weyl anomaly coefficients. Lastly, we will compute defect EE as a check on a(2d)

Σ and
d(2d)

2 in d = 4.

Our starting point is the background geometry described in eq. (7.1.1) on which we
introduce frame fields eM with components eM = eM

µ dxµ for M = 0, . . . , d − 1 such
that

e0 = dt , e1 = dρ , e2 = ρdθ , eβ = dxβ−2
∥ , (7.3.84)

where β = 3, . . . , d − 1.

On this background, we place a single free Dirac fermion ψ, which in d dimensions
has 2⌊

d
2 ⌋ components. Turning on a background gauge field A for the vector U(1)V

symmetry eq. (2.5.43a), the Dirac action can then be written as

Ifermion = −i
∫︂

ddx |e|ψ†γ0∇/ ψ , (7.3.85)

where we denote the Dirac operator in the presence of a background gauge field Aµ as
∇/ = γµ(Dµ − iAµ). Here, Dµ = ∂µ + Ωµ with Ωµ = 1

8 ωµ
MN [γM, γN ] and ωµ

MN being

10We are grateful to J. S. Dowker for alerting us to a typo in an earlier version of ref. [1], where a variant
of this computation originally appeared.
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the spin-connection. We denote the γ-matrices in curvilinear coordinates by
γµ = eM

µγM, which obey the Clifford algebra γµγν + γνγµ = +2gµν. Finally, we
define the Dirac conjugate ψ ≡ iψ†γ0.

7.3.1 Mode expansion and propagator

The fermion propagator can be computed by employing the same methods as in
section 7.2 for the free scalar. We refer to appendix C.3 for a more detailed discussion.
In a suitable Clifford algebra basis, the Dirac equation can be solved by a spinor with
2⌊

d
2 ⌋−1 components proportional to J±(n−α) and the other 2⌊

d
2 ⌋−1 components

proportional to J±(n+1−α) with n ∈ Z. Note that for n ̸= 0 with 0 < α < 1, one choice
of sign results in a spinor with all components either regular or all divergent as ρ → 0.
For the divergent solutions at least one of the components diverges as O(ρ−1) or
worse, which makes them physically inadmissible.

For n = 0, both (±) solutions are admissible provided that α ̸= 0, 1. In this case, half
of the components are regular whereas the other half have divergent behaviour
between O(ρ−1) and O(1). This tamer behaviour makes both solutions acceptable.
Generally, one can introduce a parameter ξ ∈ [0, 1] which interpolates between these
two solutions, and study the theory’s correlation functions as a function of ξ.

In order to write down the fermion mode expansion, we adopt complex coordinates in
the directions normal to the defect z = ρeiθ and z̄ = ρe−iθ . We then perform a gauge
transformation A → A − αdθ in order to remove the background gauge field A from
correlation functions at the expense of introducing an extra factor of e−iαθ in the
fermion mode expansion. The mode expansion in this gauge can be written as

ψ = ψ−α

(︃
z
ρ

)︃−α+ 1
2

+ ψα

(︃
z̄
ρ

)︃α− 1
2

+
∞

∑
n=1

ψn−α

(︃
z
ρ

)︃n−α+ 1
2

+
∞

∑
n=1

ψn+α

(︃
z̄
ρ

)︃n+α− 1
2

,

(7.3.86)
where

ψn±α =
2⌊

d
2 ⌋−1

∑
s=1

∫︂ ∞

−∞
dd−3k⃗∥

∫︂ ∞

0
dkρ

(︂
f̃ (k)as

∓n(k)u
s
∓n,k + f̃ ∗(k)bs†

∓n(k)v
s
∓n,k

)︂
, (7.3.87)

and

f̃ (k) =
e−iωt+i k⃗∥·x⃗∥

(
√

2π)d−2

√︄
kρ

2⌊
d
2 ⌋ω

. (7.3.88)



126 Chapter 7. Monodromy Defects in Free Field Theories

At n = 0, there are two solutions ψ−α and ψα with ξ ∈ [0, 1] interpolating between
them:

ψ−α =
√︁

1 − ξ
2⌊

d
2 ⌋−1

∑
s=1

∫︂ ∞

−∞
dd−3k⃗∥

∫︂ ∞

0
dkρ

(︂
f̃ (k)a(+)s

0 (k)u(+)s
0,k + f̃ ∗(k)b(+)s†

0 (k)v(+)s
0,k

)︂
,

(7.3.89a)

ψα =
√︁

ξ
2⌊

d
2 ⌋−1

∑
s=1

∫︂ ∞

−∞
dd−3k⃗∥

∫︂ ∞

0
dkρ

(︂
f̃ (k)a(−)s

0 (k)u(−)s
0,k + f̃ ∗(k)b(−)s†

0 (k)v(−)s
0,k

)︂
.

(7.3.89b)

In the above equations, us
∓n,k and vs

∓n,k for n ≥ 1 are spinors whose components
involve Bessel functions Jn±α(kρρ) and Jn∓(1−α)(kρρ) and, in the frame we are using,

are purely functions of ρ. For n = 0, the spinors u(±)s
0,k and v(±)s

0,k have components
J∓α(kρρ) and J±(1−α)(kρρ). See appendix C.3 for more details. Explicit solutions for the
spinors in d = 4 are given in eqs. (C.3.33) and (C.3.34). Demanding that the defect
corresponds to the infinite limit of a physical solenoid singles out either ξ = 0 or
ξ = 1, depending on the sign of the flux α [324].

In order to compute the propagator, one can canonically quantise the mode
expansions. However, this is cumbersome in general dimensions, and we will not
present this method here. Instead, we will make use of the scalar propagator
eq. (7.2.31) to directly achieve the same result. It is well-known that in the absence of a
monodromy, one can write the fermion propagator GF(x, x′) = −⟨ψ(x′)ψ(x)⟩ in terms
of the scalar propagator GS(x, x′) = ⟨φ†(x)φ(x′)⟩. Schematically,
GF(x, x′) = −D/ GS(x, x′), where D/ ≡ γµDµ is explicitly with respect to the unprimed
coordinates.

In the presence of a monodromy, the relation between GF and GS is modified as
follows. Let P± = 1

2 (1± iγ1γ2), where 1 is the 2⌊
d
2 ⌋ × 2⌊

d
2 ⌋ dimensional identity matrix.

Then the fermion propagator in the presence of a monodromy defect takes the form11

GF,α,ξ(x, x′) = −D/
(︂

P−ei(θ−θ′)/2GS,α,1−ξ,0(x, x′) + P+e−i(θ−θ′)/2GS,α,0,ξ(x, x′)
)︂

, (7.3.90)

where GS,α,ξ,ξ̃(x, x′) is the scalar propagator with singular modes as defined in
eq. (7.2.26). The factors of e±i(θ−θ′)/2 are due to working in the rotating frame
eq. (7.3.84) and ensure that the modes in the scalar Green’s functions combine
correctly into modes of the spinor Green’s function. Notice that for any ξ ∈ [0, 1], one
always needs a singular mode in at least one of the two scalar Green’s functions
because both n = 0 modes of the fermion are singular.

11This is similar to the approach taken in [167]. We thank Christopher Herzog for pointing that out to
us, and suggesting to use such a relation.
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In computing h, aJ , and cDD we will only need to compute particular derivatives of GS

evaluated in either the coincident or defect limits, and so we will not display GF in full
detail. Notice that in writing eq. (7.3.90) in terms of eq. (7.2.26) we have implicitly
performed a Wick rotation to Euclidean signature t → −iτ.

7.3.2 Correlation functions and central charges

Equipped with the general form of the propagator in eq. (7.3.90), we now compute the
one-point functions of the stress tensor Tµν and the U(1)V current Jµ, as well as the
two-point function of the displacement operator Di.

7.3.2.1 One-point function of Tµν

We commence with an analysis of the components of the stress tensor one-point
function from which we will extract h in general d ≥ 3. Specialising to d = 4 and
d = 6, we will thus obtain the defect Weyl anomaly coefficients d(2d)

2 and d(4d)
2 ,

respectively.

In Euclidean signature, ψ and ψ are independent, and the action can be taken to be

IE
fermion =

∫︂
ddx e ψ∇/ ψ . (7.3.91)

The classical stress tensor can be computed by varying eq. (7.3.91) with respect to the
frame fields eM

µ as in eq. (2.4.33). The result is

Tµν =
1
2

ψγ(µ

↔
∇ν)ψ , (7.3.92)

where the parenthesis denotes symmetrisation over the indices, and

ψγµ

↔
∇νψ = ψγµ(∂ν + Ων − iAν)ψ − (∂νψ)γµψ + ψ(Ων − iAν)γµψ . (7.3.93)

The one-point function of the stress tensor can then be written in terms of the fermion
propagator GF,α,ξ as follows:

⟨Tµν(x)⟩ = −1
2

lim
x′→x

Tr
[︂(︂

γ(µ∂ν) − γ(µ∂′ν) + γ(µΩν) + Ω(µγν)

)︂
GF,α,ξ(x, x′)

]︂
, (7.3.94)

where ∂′ν denotes the derivative with respect to primed coordinates, and A has been
gauged away.

In order to compute h, it will suffice to analyse a single non-vanishing component of
⟨Tµν⟩ with others following from the tensor structures dictated by the remaining
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conformal symmetry. To that end, let us consider

⟨Tττ⟩ = −1
2

lim
x′→x

Tr
[︁
γ0 (∂τ − ∂τ′) GF,α,ξ(x, x′)

]︁
. (7.3.95)

To evaluate ⟨Tττ⟩, we need to substitute eq. (7.3.90) and compute the coincident limit
of various combinations of derivatives acting on the scalar propagator. Each term
contains at least one derivative of GS with respect to τ or τ′. Using the integral
representation given by eq. (7.2.31), it is easy to see that all the terms with a single
derivative with respect to τ or τ′ vanish in the coincident limit x → x′ due to the
appearance of η in the integrand. The only terms that survive are

⟨Tττ⟩ =
1
2 ∑

ς=±
Tr(γ0Pςγ0)(∂2

τ − ∂τ′∂τ)Gς , (7.3.96)

where we defined

Gς ≡

⎧⎨⎩ limx′→x GS,α,0,ξ(x, x′) , ς = +

limx′→x GS,α,1−ξ,0(x, x′) , ς = − .
(7.3.97)

Evaluating the traces using standard γ-matrix identities and utilising the fact that
∂τ′∂τG± = −∂2

τG±, one finds that

⟨Tττ⟩ = 2⌊
d
2 ⌋−1∂2

τ(G+ + G−). (7.3.98)

All that remains is to compute the ∂2
τGς, which can be done straightforwardly using

the integral representation of the scalar propagator eq. (7.2.31). Using the same
scheme as in section 7.2, one finds

∂2
τG+ = − 1

2(2π)d/2ρd

∫︂ ∞

0
dζ e−ζζ

d
2−1(I (1)

α (ζ) + ξ(I−1+α(ζ)− I1−α(ζ))

=
(2dξ − 2α − d)Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α

)︂
sin(πα)

2d+1π
1
2 (d+1)d Γ

(︂
d+1

2

)︂ 1
ρd .

(7.3.99)

Computing ∂2
τG− follows similarly,

∂2
τG− =

(2α − 2dξ + d − 2)Γ
(︂

d
2 − α + 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+1π
1
2 (d+1)d Γ

(︂
d+1

2

)︂ 1
ρd . (7.3.100)
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Combining ∂2
τG+ + ∂2

τG−, we thus arrive at12

⟨Tττ⟩ = −
((1 − 2α)dξ + α(2α + d − 2))Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+1−⌊ d
2 ⌋π

1
2 (d+1)d Γ

(︂
d+1

2

)︂ 1
ρd . (7.3.101)

Using eq. (3.1.13), we find

h =
((1 − 2α)dξ + α(2α + d − 2))Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+1−⌊ d
2 ⌋π

1
2 (d+1)d Γ

(︂
d+1

2

)︂ . (7.3.102)

It is clear from the functional form that h ≥ 0 for any value of α ∈ [0, 1] and ξ ∈ [0, 1]
in d ≥ 3, and h = 0 for all ξ ∈ [0, 1] at α = 0 and α = 1. Setting d = 4 and d = 6 to
extract d(2d)

2 and d(4d)
2 , respectively, we find using eqs. (3.4.41) and (6.2.39)

d(2d)
2 = −3α(1 − α) (α(1 + α) + 2ξ(1 − 2α)) , (7.3.103)

d(4d)
2 = −α(1 − α2)(2 − α)

18
(︁
α(α + 2) + 3(1 − 2α)ξ

)︁
. (7.3.104)

Note that d(2d)
2 and d(4d)

2 are negative, which is expected if the ANEC holds in the
presence of a p = 2 and p = 4 defect, respectively [50].

7.3.2.2 One-point function of Jθ

In this subsection, we will analyse the current one-point function in order to extract aJ

in general d ≥ 3 and then compute a(2d)
Σ and a(4d)

Σ when d = 4 and d = 6 by integrating
aJ . From the form of the U(1)V current

Jµ(x) = −iψγµψ(x) , (7.3.105)

and the fermion propagator in eq. (7.3.90), we can express ⟨Jθ⟩ as

⟨Jθ⟩ = i lim
θ→θ′

∑
ς=±

(︂
Tr[γµPςγθ ]∂µ(e−iς(θ−θ′)/2Gς) + Tr[γθΩθ Pςγθ ]Gς

)︂
, (7.3.106)

where ∂µ is again with respect to the unprimed coordinates. All other components of
⟨Jµ⟩ will turn out to vanish, so we do not display them here.

To evaluate eq. (7.3.106), we need to compute the coincident limit (η → 1) of the scalar
propagator GS and its first derivatives. This limit has already been computed for G+ in
section 7.2 and is given by the sum of eqs. (7.2.34) and (7.2.36). For convenience we

12The stress tensor one-point function for ξ = 0 was previously computed in [331].
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reproduce the result here:

G+ =
1

2(2π)d/2ρd−2

∫︂ ∞

0
dζ e−ζζ

d
2−2(I (1)

α (ζ) + ξ(I−1+α(ζ)− I1−α(ζ)))

=
(2α + (d − 2)(2ξ − 1))Γ

(︂
d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2dπ
1
2 (d+1)(d − 2)Γ

(︂
d−1

2

)︂ 1
ρd−2 .

(7.3.107)

The limit G− is again computed in the same manner as G+ with α → 1 − α and
ξ → 1 − ξ in the singular mode, which gives

G− =
(2α − 2(d − 2)ξ + d − 2)Γ

(︂
d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2dπ
1
2 (d+1)(d − 2)Γ

(︂
d−1

2

)︂ 1
ρd−2 . (7.3.108)

We also need the coincident limit of first derivatives of the scalar propagator. Due to
the appearance of η in the integral representation of the propagator in eq. (7.2.31), first
derivatives along the defect vanish in the coincident limit. Derivatives along the
transverse directions, however, are non-trivial. The ρ-derivative produces the same
integral as G± up to a factor of −(d − 2)/(2ρ).

The θ-derivative of G+ produces a new integral, which has also been computed in
section 7.2. It is proportional to eq. (7.2.49). With the singular mode we find

∂θG+ =
i

2(2π)d/2ρd−2

∫︂ ∞

0
dζ e−ζζ

d
2−2

[︂
I (2)

α (ζ)− ξ(1 − α)(I−1+α(ζ)− I1−α(ζ))
]︂

=
i((2α − 1)(2α + d − 4)− 4(α − 1)(d − 1)ξ)Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 2

)︂
sin(πα)

2d+2π
1
2 (d+1)Γ

(︂
d+1

2

)︂ 1
ρd−2 .

(7.3.109)

Finally, we also have

∂θG− =
i(4α(d − 1)ξ − (2α + 1)(2α + d − 2))Γ

(︂
d
2 − α − 1

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+2π
1
2 (d+1)Γ

(︂
d+1

2

)︂ 1
ρd−2 .

(7.3.110)

With these results we return to evaluating eq. (7.3.106). The γ-matrix traces can be
performed using standard Clifford algebra identities. Recalling that derivatives of G±

along the defect vanish in the coincident limit, we find

⟨Jθ⟩ = 2⌊
d
2 ⌋−1

(︂
ρ∂ρ(G+ − G− − i∂θ(G+ + G−

)︁)︁)︂
. (7.3.111)
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Now using eqs. (7.3.107) to (7.3.110), the one-point function of the U(1)V current
evaluates to

⟨Jθ⟩ = −
(2(1 − α)− d + 2ξ(d − 1))Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

2d+1−⌊ d
2 ⌋π

1
2 (d+1)Γ

(︂
d+1

2

)︂ 1
ρd−2 . (7.3.112)

Via eq. (7.1.4), we can read off aJ for the fermion monodromy defect directly from
eq. (7.3.112). Note that aJ does not have a definite sign. For all α ∈ [0, 1], aJ > 0 when
ξ = 0 whereas aJ < 0 for ξ = 1. Moreover, aJ → −aJ when α → 1 − α and ξ → 1 − ξ,
which implies that aJ = 0 when α = ξ = 1

2 , as expected.

Since derivatives along the defect vanish in the coincident limit, ⟨Ja⟩ = 0. The only
other non-trivial component to check is ⟨Jρ⟩ which also evaluates to zero.

At this point, we set d = 4 and d = 6, use eqs. (7.1.10) and (7.1.11) and integrate over
the flux α to obtain the A-type defect central charges

a(2d)
Σ = α2(2 − α2 − 2ξ(3 − 2α)) + ξ , (7.3.113)

a(4d)
Σ =

α2

360
(2α4 − 15α2 + 24) +

(1 − 2α)

360
(6α4 − 12α3 − 16α2 + 22α + 11)ξ , (7.3.114)

where we assumed that ξ is independent of α. To fix the integration constant c(ξ), we
assumed that it is linear in ξ, and required that a(2d)

Σ = a(4d)
Σ = 0 when α = ξ = 0 and

when α = ξ = 1. This sets c(ξ) = ξ when d = 4, and c(ξ) = − 11
360 ξ when d = 6.

In computing the defect EE when d = 4 in section 7.3.3, we will independently check
c(ξ) = ξ from the result for d(2d)

2 above. Note that non-vanishing of the central charge
at α → 0, 1 suggests the existence of a decoupled sector of defect fermionic modes
similar to the edge fermions in the (integer) quantum Hall effect. In fact we don’t
expect these fermions to be chiral for a monodromy generated by U(1)V and thus the
situation is more similar to the quantum spin Hall effect [332], where a pair of
fermions with opposite chirality emerges at the edge.

7.3.2.3 Two-point function of Di

In this subsection, we compute the displacement operator two-point function in
general d ≥ 3 and use its normalisation cDD in d = 4 and d = 6 to extract d(2d)

1 and d(4d)
1 ,

respectively. Working with the complex coordinates z, z̄ adopted above, the frame
fields become

eM
z =

e−iθ

2ρ
(ρeM

ρ − ieM
θ) , eM

z̄ =
eiθ

2ρ
(ρeM

ρ + ieM
θ) , (7.3.115)
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and we can thus write

γz =
z̄
ρ

γ1P− , γz̄ =
z
ρ

γ1P+ , (7.3.116)

with P± defined above eq. (7.3.90).

The form of the displacement operator can be found by the same arguments as in
section 7.2. Using the mode expansion in eqs. (7.3.86)–(7.3.89), we make the ansatz

Dz = c1
[︁
ψ1+αγ1P−ψ−α

]︁
+ c2

[︁
ψαγ1P−ψ1−α

]︁
, (7.3.117a)

Dz̄ = c3
[︁
ψ−αγ1P+ψ1+α

]︁
+ c4

[︁
ψ1−αγ1P+ψα

]︁
, (7.3.117b)

where the coefficients c1,...,4 are arbitrary complex numbers and the square brackets
denote the defect operator defined by taking the defect limit ρ → 0. We can fix the
coefficients by checking the Ward identity

∫︂ ∞

−∞
dd−2x′∥ ⟨ψγz̄ψ(0, z, z̄)Dz(x′∥)⟩ = −∂z⟨ψγz̄ψ(0, z, z̄)⟩ = −∂z

(︃
1
2z̄

⟨Jθ⟩
)︃

. (7.3.118)

The correlator on the left-hand side can be written as

⟨ψγz̄ψ(z, z̄, 0)Dz(x′∥)⟩ = − c1Tr
[︂

G−α
F,α (x′, x)γ1P+G1+α

F,α (x, x′)γ1P−
]︂

− c2Tr
[︂

G1−α
F,α (x′, x)γ1P+Gα

F,α(x, x′)γ1P−
]︂

,
(7.3.119)

where x = {0, z, z̄}, x′ = {x′∥, 0, 0}, and Gν
F,α denotes the two-point function of the

defect operators labeled by ν, i.e. the Wick contraction of ψ̂ν and ψ̂ν. The two-point
function can be evaluated explicitly after performing the traces over γ-matrices. By
then taking the result for ⟨ψγz̄ψ(0, z, z̄)Dz(x′∥)⟩ and comparing to the right-hand side
of eq. (7.3.118), which can be easily computed from eq. (7.3.112), c1,2 are fixed
uniquely. A similar analysis can be performed for Dz̄ such that eqs. (7.3.117a)
and (7.3.117b) become

Dz = 2πα
[︁
ψ1+αγ1P−ψ−α

]︁
− 2π(1 − α)

[︁
ψαγ1P−ψ1−α

]︁
, (7.3.120a)

Dz̄ = −2πα
[︁
ψ−αγ1P+ψ1+α

]︁
+ 2π(1 − α)

[︁
ψ1−αγ1P+ψα

]︁
. (7.3.120b)

Having found Dz and Dz̄ in the presence of singular modes with ξ ̸= 0, we can now
proceed with computing their two-point function, which takes the form

⟨Dz̄(x∥)Dz(0)⟩ = 4π2α2(1 − ξ)Tr
[︂

G−α
F,α (0, x∥)γ1P+G1+α

F,α (x∥, 0)γ1P−
]︂

+ 4π2(1 − α)2ξ Tr
[︂

G1−α
F,α (0, x∥)γ1P+Gα

F,α(x∥, 0)γ1P−
]︂

.
(7.3.121)

The γ-matrix traces can again be performed easily with Clifford algebra identities, and
one is left with derivatives of the scalar propagator along the defect. Taking the defect
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limit, we find

⟨Dz̄(x∥)Dz(0)⟩ =
((1 − 2α)dξ + α(2α + d − 2))Γ

(︂
d
2 − α

)︂
Γ
(︂

d
2 + α − 1

)︂
sin(πα)

22−⌊ d
2 ⌋πd−1

1
|x∥|2d−2 ,

(7.3.122)
where cDD can be read off using eq. (7.2.63). Setting p = d − 2, one can see that cDD

and h computed in eqs. (7.3.122) and (7.3.101), respectively, obey the conjectured
relation (5.5.15).

Finally to compute d(2d)
1 and d(4d)

1 , we set d = 4 and d = 6, respectively, which gives

d(2d)
1 = 3(1 − α)α (α(1 + α) + 2ξ(1 − 2α)) , (7.3.123)

d(4d)
1 = −2

9
α(1 − α2)(2 − α)

(︁
α(2 + α) + 3(1 − 2α)ξ

)︁
, (7.3.124)

after using eqs. (3.4.40) and (6.2.20). Note that d(2d)
1 ≥ 0 and d(4d)

1 ≤ 0, as expected by
unitarity.

7.3.3 Entanglement entropy

In this subsection, we will compute the EE for the free fermion in d = 4 in the presence
of a monodromy defect following the same methods used in section 7.2.3. In fact, most
of the results for the scalar EE can be directly brought to bear. That is, since ∇/ 2 = ∇2

on R4, the complex scalar and fermion heat kernels are directly related by

KF(s; x, x′; α) =
1
2

KS(s; x, x′; α)14 , (7.3.125)

where the factor of 1/2 arises because we are considering a complex scalar. Thus, we
will proceed with the computation by noting the relevant places where the approach
for the free fermion differs slightly from the free scalar.

We start by partitioning the background into a region A and its complement A. We
take A to be the half-space orthogonal to the defect with the entangling surface ∂A at
τ = x1 = 0. We will adopt polar coordinates in the (τ, x1)-plane as τ = r cos ϕ and
x1 = r sin ϕ. Rotations around the entangling surface are generated by
U(ϕ) = exp( 1

2 γ0γ3ϕ). In these new polar coordinates the fermionic heat kernel takes
the form KF = 1

2U(ϕ)KS. Note that now the heat kernel is anti-periodic around the
entangling surface i.e. KF(s; x(ϕ + 2π), x′; α) = −KF(s; x(ϕ), x′; α). Placing the system
on the cone, the asymptotic expansion of the fermion heat kernel is modified as
compared to the asymptotic expansion of the scalar heat kernel due to this
anti-periodicity. The heat kernel for the Dirac fermion in the presence of the conical
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singularity has been found in [333] (see also [334]) and it reads

KF,n(s; x, x′; α) = KF(s; x, x′; α) + i
∫︂

Γ

dω

8πn
csc

ω − ∆ϕ

2n
U(ω)KS(s; x(ω), x′; α) ,

(7.3.126)

where ∆ϕ ≡ ϕ′ − ϕ. The contour Γ is the same as in the scalar heat kernel as discussed
below eq. (4.3.27).

In order to proceed, we will need to compute the trace

TrKF,n(s; x, x′; α) =
L2

16π2s

∫︂ L2
2s

0
dζ ∑

m
e−ζ I|m−α|(ζ)

∫︂ 2πn

0
dϕ TrU(ϕ)

+
i

32π

∫︂
Γ

dω
TrU(ω)

sin ω
2n sin2 ω

2

∫︂ L2
2s

0
dζ ∑

m
e−ζ I|m−α|(ζ) .

(7.3.127)

From the form of U(ω) above, Tr U(ω) = 4 cos
(︁

ω
2

)︁
. The contour integral then

evaluates to

i
8π

∫︂
Γ

dω cos
(︂ω

2

)︂
csc

ω

2n
csc2 ω

2
=

n2 − 1
12n

. (7.3.128)

Plugging this into eq. (7.3.127), we thus need to compute

TrKF,n(s; x, x′; α) =

(︃
L2 sin(nπ)

2π2s
+

n2 − 1
12n

)︃ ∫︂ L2
2s

0
dζ ∑

m
e−ζ I|m−α|(ζ) . (7.3.129)

All of these sums and integrals were already encountered in eq. (7.2.80), and so the
rest of the computation of the fermion EE mirrors exactly the scalar computation.
From eq. (7.3.90), we see that the contribution of a single Dirac fermion with
monodromy α to the defect EE contains terms coming from the regular modes and the
two divergent n = 0 modes coupled with (1 − ξ) and ξ. The result is

Sdef
A = . . . +

α2 + (1 − 2α)ξ

6
log

L
ϵ
+O(1), (7.3.130)

where . . . contain the non-universal terms. From eqs. (7.3.103) and (7.3.113), we find
(a(2d)

Σ + d(2d)
2 /3) = α2 + (1 − 2α)ξ. This is precisely 6 times the coefficient of the log-term

in eq. (7.3.130), again in agreement with eq. (7.2.69). Note that the defect EE did not
rely on any integration in parameter space and so confirms that the constant of
integration c(ξ) = ξ in eq. (7.3.113).

When d = 6, we can use our results in eq. (7.3.114) and (7.3.104) to make a prediction
for the EE via eq. (6.2.45). Indeed, we find for a monodromy defect in a theory of free
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Dirac fermions in d = 6,

Sdef
A |log L

ϵ
= −

[︃
α2

90
(︁
16 − 5α2)︁+ ξ

90
(︁
20α3 − 30α2 − 12α + 11

)︁]︃
. (7.3.131)

7.4 Defect RG flows

The singular modes encountered in sections 7.2 and 7.3 allow one to consider
deformations by relevant defect operators, triggering a defect RG flow. We study these
flows for the scalar and fermion in turn, and provide evidence for the existence of an
IR fixed point which we characterise.

7.4.1 Scalar monodromy flows

Let us begin with the monodromy defect in the free scalar theory introduced in
section 7.2. As discussed there, only two singular modes are allowed to appear in the
φ defect OPE: Ô−

−α and Ô−
1−α. Here, we consider the case where only the operator Ô−

−α

is present (i.e. ξ̃ = 0 and ξ ̸= 0), and we show that the IR fixed point corresponds to
the DCFT with ξ̃ = ξ = 0. The other case will be completely analogous, and the IR
fixed point is again the DCFT with ξ̃ = ξ = 0. Switching on both ξ and ξ̃ would not
make any conceptual difference in this derivation.

Using the singular mode Ô−
−α(x∥) we can construct the relevant quadratic

deformation13

λ
∫︂

dd−2x∥ Ô
−
−α(x∥)Ô

†−
−α(x∥) . (7.4.132)

Here, λ is a relevant parameter with mass dimension 2α. In terms of a dimensionless
coupling λ̄ and an UV energy scale Λ, λ = λ̄Λ2α. Notice that this deformation is
present only for ξ ̸= 0. We would like to analyse the IR fixed point of the defect RG
flow triggered by this deformation. Thus, we compute the correlator

⟨︂
φ(x)φ†(x′)

⟩︂
λ
≡

⟨︃
φ(x)φ†(x′)e−λ

∫︁
dd−2y∥ Ô

−
−α(y∥)Ô

†−
−α(y∥)

⟩︃
⟨︃

e−λ
∫︁

dd−2y∥ Ô
−
−α(y∥)Ô

†−
−α(y∥)

⟩︃ , (7.4.133)

where without loss of generality we set x = {x∥, ρ, θ} and by normal rotational and
defect translational symmetries x′ = {0, ρ′, 0}. Expanding the exponential, performing

13Note that there exist other more general relevant deformations which are not quadratic. We will
comment more on these operators in the discussion section 8.4.
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the Wick contractions and the combinatorics we get⟨︂
φ(x)φ†(x′)

⟩︂
λ
=
⟨︂

φ(x)φ†(x′)
⟩︂

+
∞

∑
n=1

(−λ)n
∫︂ n

∏
i=1

dd−2yi,∥

⟨︂
φ(x)Ô†−

−α(y1,∥)
⟩︂ ⟨︂

φ†(x′)Ô−
−α(yn,∥)

⟩︂
∏n−1

j=1 |yj,∥ − yj+1,∥|d−2−2α
,

(7.4.134)

where the denominator comes from the defect propagator
⟨︂
Ô−

−α(yk,∥)Ô
†−
−α(yk+1,∥)

⟩︂
in

eq. (7.2.29), the propagator
⟨︁

φ(x)φ†(x′)
⟩︁

is eq. (7.2.26) evaluated at ξ̃ = 0, and the
bulk-to-defect propagator is

⟨︂
φ(x)Ô†−

−α(y1,∥)
⟩︂
=

(c−−α)
1/2eiαθ

ρα(ρ2 + (x∥ − y1,∥)2)
d
2−1−α

, (7.4.135)

with c−−α given in eq. (7.2.28a).

In order to resum eq. (7.4.134), it is useful to Fourier transform to momentum space in
the directions along the defect. Consider the following Fourier representation

1

(ρ2 + x2
∥)

d
2−1−α

=
∫︂ dd−2k∥

(2π)d−2 f (kρ)k−2αeik∥·x∥ , (7.4.136)

where we slightly abuse notation by writing k ≡ |k∥| =
√︁

δabkakb to avoid any further
cluttering of equations, and the function f (kρ) is given by

f (kρ) = k2α
∫︂

dd−2x∥
e−ik∥·x∥

(ρ2 + x2
∥)

d
2−1−α

=
2π

d
2−1

Γ( d
2 − 1 − α)

(2kρ)αKα(kρ) , (7.4.137)

with Kν(ζ) denoting the modified Bessel function of the second kind. Inserting this
into eq. (7.4.134) we get⟨︂
φ(x)φ†(x′)

⟩︂
λ
=
⟨︂

φ(x)φ†(x′)
⟩︂
+ (7.4.138)

c−−αeiαθ

ραρ′α

∞

∑
n=1

(−λ)n
∫︂ n

∏
i=1

dd−2xi,∥

n+1

∏
j=1

dd−2k j,∥ k−2α
j

(2π)d−2 f (k1ρ) f (0)n−1 f (kn+1ρ′)ei ∑l kl,∥·(xl−1,∥−xl,∥) ,

where it is understood that x0,∥ ≡ x∥ and xn+1,∥ = 0. The integration over the n
positions xi,∥ gives n delta functions which we use to perform n momentum
integrations. Finally, we perform the sum over n leading to

⟨︂
φφ†

⟩︂
λ
=
⟨︂

φφ†
⟩︂
−
∫︂ dd−2k∥

(2π)d−2 eik∥·x∥ λk−2α

1 + λ f (0)k−2α
c−−α

f (kρ)

(kρ)α

f (kρ′)

(kρ′)α
eiαθ , (7.4.139)
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where for brevity we have suppressed the coordinate dependence in the correlation
functions and

f (0) =
4απ

d
2−1Γ(α)

Γ( d
2 − 1 − α)

. (7.4.140)

The integral in eq. (7.4.139) must be cut off to include only momenta below the UV
scale Λ. To probe the IR, we expand the integrand for momenta k ≪ Λ and keep only
the leading term,

⟨︂
φφ†

⟩︂
IR

=
⟨︂

φφ†
⟩︂
− ξ

eiαθ sin πα

π2

∫︂ dd−2k∥
(2π)d−2 eik∥·x∥Kα(kρ)Kα(kρ′) . (7.4.141)

The integral can be performed and the final result is

⟨︂
φφ†

⟩︂
IR

=
⟨︂

φφ†
⟩︂
− ξ

Γ
(︂

d
2 − 1 − α

)︂
4πd/2Γ (1 − α)

F∆̂
−

,−α
(η, θ) + ξ

Γ
(︂

d
2 − 1 + α

)︂
4πd/2Γ (1 + α)

F∆̂
+

,−α
(η, θ)

(7.4.142)
with the defect blocks defined in eq. (7.2.25).14 The two-point function thus exhibits
conformal behaviour at large distances. Had we kept the subleading terms in the
expansion of eq. (7.4.139), we would have obtained corrections that are suppressed by
an additional factor of (ρΛ)−2α at large distances. Comparing this result with the
propagator eq. (7.2.26) and the coefficients eq. (7.2.28a), one easily sees that the last
two terms on the right-hand side of eq. (7.4.142) precisely cancel the implicit ξ

dependence of the first term, leaving only the F∆̂
+

,−α
block with the coefficient

expected for a ξ = 0 monodromy defect. In particular, starting with a ξ = 1 defect in
the UV, the second term on the right-hand side removes the block corresponding to
Ô−

−α while the last term adds in a new block for Ô+
−α. This suggests that starting with

any value of ξ in the UV, the RG flow triggered by the relevant deformation in
eq. (7.4.132) leads to the ξ = 0 defect in the IR.

The arguments presented above were rather heuristic as they do not involve a
thorough RG analysis. We will present further evidence for our claimed IR structure of
the defect shortly. Let us first briefly consider the implications of such a defect RG
flow in d = 4. Starting in the UV with arbitrary ξ ∈ [0, 1] and comparing to the IR with
ξ = 0, one can see that a(2d)

Σ , as given in eq. (7.2.54), satisfies a(2d)
Σ,UV ≥ a(2d)

Σ,IR for any
starting value of ξ. The inequality is saturated only for the trivial case of ξ = 0 in the
UV. Thus, this flow obeys the defect c-theorem of ref. [55]. Similarly, looking at the
behaviour of a(4d)

Σ in eq. (7.2.55) when d = 6 under this flow, we see that a(4d)
Σ,UV ≥ a(4d)

Σ,IR

for all values of ξ ∈ [0, 1], consistent with the defect c-theorem of ref. [57]. In arbitrary
d, the RG flows for monodromy defects in free scalar CFTs can be analogously studied
on the boundary ∂Hd−1 ofHd−1 × S1 as in [322] where a general defect c-theorem [156]
was verified.

14Since the modified Bessel function Kα falls off exponentially at large arguments, one makes only an
exponentially small mistake by extending the integral beyond the cut-off to infinity.



138 Chapter 7. Monodromy Defects in Free Field Theories

Having passed the checks of various c-theorems across dimensions, we present as
further evidence numerical results for the variation of the one-point function
∆
⟨︁
|φ|2

⟩︁
≡
⟨︁
|φ|2

⟩︁
λ
−
⟨︁
|φ|2

⟩︁
λ=0 induced by the relevant quadratic perturbation. This

requires the coincident limit of the propagator eq. (7.4.139). For simplicity, let us
restrict our attention to d = 4, where

∆
⟨︁
|φ|2

⟩︁
= − 2−1+2α

πΓ(1 − α)2
ξ

ρ2

∫︂ +∞

0
dζ

ζ ρ2αλ

ζ2α + ρ2αλ f (0)
Kα(ζ)Kα(ζ) . (7.4.143)

We notice that the deformation correctly goes to zero at short distances, ρ → 0, and it
saturates to a constant value in the IR, ρ ≫ 1/Λ, or ρλ

1
2α ≫ 1. In the IR limit, the

integral can be solved analytically to give

∆
⟨︁
|φ|2

⟩︁
−→
IR

− αξ

4π2ρ2 , (7.4.144)

which is exactly the difference between the one-point functions in eq. (7.2.39) with the
values at ξ = 0 and ξ.

For generic values of ρλ
1

2α the integral must be solved numerically. In figure 7.2 we
show the behaviour of

ρ2 ⟨︁|φ|2⟩︁
ξ
− ρ2 ⟨︁|φ|2⟩︁

ξ=0 = ρ2∆
⟨︁
|φ|2

⟩︁
+

αξ

4π2 (7.4.145)

for different values of ξ. In the UV regime ρλ
1

2α ≪ 1 the curves depend on ξ but they
all reduce to zero in the IR limit ρλ

1
2α ≫ 1. This is again consistent with having an IR

fixed point corresponding to ξ = 0.

Another perspective on the defect RG flow is provided by studying the two-point
function of defect operators. Since the relevant deformation is quadratic in Ô−

−α,
Wick’s theorem and orthogonality imply that only correlation functions involving
Ô−

−α can be non-trivially affected. Consider the two-point function of Ô−
−α. A similar

computation as above gives

⟨Ô−
−α(x∥)Ô

†−
−α(x′∥)⟩λ = ⟨Ô−

−α(x∥)Ô
†−
−α(x′∥)⟩

−λ f 2(0)
∫︂ dd−2k∥

(2π)d−2
k−4α

1 + λ f (0)k−2α
eik∥·(x∥−x′∥) .

(7.4.146)

Expanding the integrand for k ≪ Λ, one finds

⟨Ô−
−α(x∥)Ô

†−
−α(x′∥)⟩λ ∝

1
λ2

1
|x∥ − x′∥|d−2+2α

(7.4.147)

to leading order, where the proportionality factor is a strictly positive function of α for
values in the allowed range. The higher order terms are suppressed by additional
factors of (|x∥ − x′∥|Λ)−2α. Thus, the two-point function at large distances again
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FIGURE 7.2: The quantity ρ2 ⟨︁|φ|2⟩︁
ξ
− ρ2 ⟨︁|φ|2⟩︁

ξ=0 as a function of the dimensionless

quantity ρλ
1

2α for d = 4, α = 0.75, and different values of ξ. While in the UV the
quantity depends on ξ, in the IR limit all the curves go to zero.

exhibits conformal behaviour, however, the defect operator’s scaling dimension
changes from ∆̂

−
−α in the UV to ∆̂

+
−α in the IR. This suggests that Ô−

−α acquires a large
anomalous dimension, effectively turning into Ô+

−α at large distances.15

One can check this expectation in the regime where α ≪ 1 and λ̄ ≪ 1 using conformal
perturbation theory. The leading order beta function can be obtained by the standard
methods used in bulk CFTs (see e.g. refs. [35, 335])

βλ̄ = Λ
∂λ̄

∂Λ
= −2αλ̄ +

π
d
2−1

Γ
(︂

d
2 − 1

)︂COλ
OλOλ

λ̄
2
+O(λ3, α2) , (7.4.148)

where COλ
OλOλ

is the OPE coefficient of the composite operator Oλ = Ô−
−αÔ

−
−α with

itself. We can find this OPE coefficient by using the Wick contractions of Ô−
−α inside

15Ref. [5] observed very similar behaviour for boundary RG flows in free BCFTs. The BCFTs studied
there include an ordinary massless free scalar field ϕ with Neumann boundary conditions ∂⊥ϕ|∂ = 0.
Here, ∂⊥ is a derivative along the direction normal to the boundary, and |∂ denotes the restriction of an
operator to the boundary. This BCFT allows for a boundary relevant quadratic deformation c

∫︁
∂ ϕ2, where

c = c̄Λ is a relevant coupling and c̄ is dimensionless. The two-point function ⟨ϕ(0, x∥)ϕ(0, x′∥)⟩ at large

separations |x∥ − x′∥|Λ ≫ 1 is again conformal to leading order, scaling like c−2|x∥ − x′∥|
−d. The boundary

scalar ϕ|∂, which has scaling dimension ∆ = d−2
2 in the UV, behaves as if it had ∆ = d

2 at large distances.
This is precisely the scaling dimension of ∂⊥ϕ|∂, which was set to zero by the boundary conditions in
the UV. This is consistent with the IR fixed point being described by a free massless scalar with Dirichlet
boundary conditions. Under the boundary RG flow, ϕ|∂ is removed from the spectrum while ∂⊥ϕ|∂ is
added in the IR.
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Oλ, which gives COλ
OλOλ

= 2. Inserting this value for the OPE coefficient gives the
perturbative beta function

βλ̄ = −2αλ̄ + 2
π

d
2−1

Γ
(︂

d
2 − 1

)︂ λ̄
2
+O(λ̄

3, α2) . (7.4.149)

This beta function admits a fixed point

λ̄
∗
= α

Γ( d
2 − 1)

π
d
2−1

+O(α2) . (7.4.150)

Since COλ
OλOλ

> 0, the location of the fixed point only receives corrections at O(α2) from

the O(λ̄
≥3
) terms of the beta function. We expect this fixed point to persist for the

entire permissible range of α. A full all-orders computation of the beta function,
however, lies beyond the scope of this thesis. Such a computation together with a full
RG analysis is essential to rigorously establish the existence of an IR fixed point. We
leave this important computation for future investigation.

Using the first non-trivial contribution to the beta function eq. (7.4.149), one obtains
the anomalous dimension of Oλ,

γ∗
λ = 2γ∗

Ô−
−α

=
∂βλ̄

∂λ̄

⃓⃓⃓⃓
λ̄=λ̄

∗
= +2α , (7.4.151)

where the anomalous dimension is defined as the deviation from the α = 0 point.
Thus, the scaling dimension of Ô−

−α becomes that of Ô+
−α at the fixed point λ̄

∗. This is
effectively equivalent to the operator Ô−

−α not existing at the IR fixed point. Note that
these results were derived in conformal perturbation theory to leading order in α, yet
our discussion around eq. (7.4.142) suggests that the beta function and anomalous
dimension are exact. This one-loop exactness is reminiscent of SUSY theories.

7.4.2 Fermion monodromy flows

In this subsection, we consider the defect RG flow on a monodromy defect in a theory
of free Dirac fermions. In this case, we can construct two separate defect operators:
Ô−α ≡ ψ̂−αψ̂−α with dimension ∆̂ = d − 1 − 2α and Ôα ≡ ψ̂αψ̂α of dimension
∆̂ = d − 3 + 2α. Here, ψ̂−α ≡ limρ→0 ψα ρα/

√
ξ and ψ̂α ≡ limρ→0 ψα ρ1−α/

√
1 − ξ are

the defect operators associated to the divergent components of the modes ψ−α and ψα

defined in eq. (7.3.89). The operator Ô−α is relevant when α > 1/2, while Ôα is
relevant for α < 1/2, and both are marginal at α = 1/2.

The goal is then to show that, for α > 1/2, Ô−α triggers an RG flow toward a defect
theory with ξ = 1, while, for α < 1/2, Ôα triggers a flow to ξ = 0. In the following we
will focus on 1/2 < α < 1 and 0 < ξ < 1, and consider a flow triggered by Ô−α. We
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repeat some of the analysis performed above for the RG flow in the scalar theory to
obtain the corresponding deformed propagator. Finally, we will argue that at large
distances the fermion propagator corresponds to ξ = 1. The other case follows
completely analogously.

To study the desired defect RG flow, we need to compute

G(λ)
F,α,ξ(x, x′) ≡

⟨︁
ψ(x)ψ(x′)

⟩︁
λ
=

⟨︂
ψ(x)ψ(x′)eλ

∫︁
dd−2x∥ ψ̂−αψ̂−α

⟩︂
⟨︂

eλ
∫︁

dd−2x∥ ψ̂−αψ̂−α

⟩︂ , (7.4.152)

where again without loss of generality we take x = {x∥, ρ, θ} and by symmetry
transformations set x′ = {0, ρ′, 0}. Ultimately, we want to obtain the variation of the
propagator ∆G(λ)

F (x, x′) ≡ G(λ)
F,α,ξ(x, x′)− G(0)

F,α,ξ(x, x′). By following the same steps as
in the scalar case, we find

G(λ)
F,α,ξ(x, x′) =

⟨︁
ψ(x)ψ(x′)

⟩︁
+

∞

∑
n=1

λn
∫︂ n

∏
i=1

dd−2xi,∥

⟨︂
ψ(x)ψ̂−α(x1,∥)

⟩︂
×

×
n−1

∏
k=1

⟨︂
ψ̂−α(xk,∥)ψ̂−α(xk+1,∥)

⟩︂ ⟨︁
ψ̂−α(xn,∥)ψ(x′)

⟩︁
.

(7.4.153)

As in the previous section, we need both the defect-defect propagator and the
bulk-defect propagator. These can be found by taking the defect limit of the fermion
propagator eq. (7.3.90). First of all, we observe that a mode of the scalar propagator
labelled by ν may be written in the following form

G(ν)
S (x, x′) =

∫︂ dd−2k∥
(2π)d−1 eik∥·x∥Kν (k ρ) Iν

(︁
k ρ′
)︁

, ρ > ρ′ > 0 , (7.4.154)

and the normalisation for the m = 0 and m = 1 modes adopted in eq. (7.2.21) is
understood. The above integral follows straightforwardly from performing the
kρ-integral in equation eq. (C.2.22).

The defect-defect propagator can be found by first taking the coincident limit in the
orthogonal directions and then extracting the singular term proportional to ρ−2α in the
defect limit. Taking this ordered pair of limits gives

⟨︂
ψ̂−α(x∥)ψ̂−α(0)

⟩︂
= − 22α−1Γ(α)

2πΓ(1 − α)

∫︂ dd−2k∥
(2π)d−2 eik∥·x∥k−2αikaγaP− . (7.4.155)
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The bulk-defect propagator can be similarly obtained by extracting the term in the
propagator eq. (7.3.90) which diverges as ρ′−α in the ρ′ → 0 limit. The result is

⟨︂
ψ(x)ψ̂−α(0)

⟩︂
=

2α
√

1 − ξ

2πΓ(1 − α)

∫︂ dd−2k∥
(2π)d−2 eik∥·x∥ei( 1

2−α)θk−α×

×
{︃
[ikaγaK−α (kρ) P−] + kK1−α (kρ) γ1 (P+ − P−)

}︃
.

(7.4.156)

By plugging eqs. (7.4.155) and (7.4.156) into eq. (7.4.153), and following the same steps
as in the scalar case, we find

∆G(λ)
F (x, x′) = − 22α(1 − ξ)

4π2Γ(1 − α)2 λ
∫︂ dd−2k∥

(2π)d−2 eik∥·x∥ei( 1
2−α)θ1

k−2α

1 + C2k2−4αλ2×

×
(︂
[ikaγaK−α (kρ) P−]− kK1−α (kρ) γ1P−

)︂ (︁
1 − Ck−2αλikaγa)︁×

×
(︂[︁

−ikaγaK−α

(︁
kρ′
)︁

P−
]︁
− kK1−α

(︁
kρ′
)︁

γ1P+
)︂

,

(7.4.157)

where C ≡ 22α−1Γ(α)/(2πΓ(1 − α)). The contribution of eq. (7.4.157) to the fermion
propagator corresponds to a non-conformal defect where the scale invariance of the
defect is broken by the dimensionful coupling λ.

We will now provide some evidence that the IR fixed point corresponds to ξ = 1. A
complete justification of this claim involves a full computation of the beta function,
which is beyond the scope of this thesis. Instead, we will show that to leading order at
large distances the propagator corresponds to a conformal monodromy defect with
ξ = 1. Namely, we need to prove that

∆GIR
F (x, x′) = GF,α,1(x, x′)− GF,α,ξ(x, x′) , (7.4.158)

where the left-hand side is defined by expanding the integrand of eq. (7.4.157) for
k ≪ Λ to leading order. Indeed, the left-hand side reads

∆GIR
F (x, x′) =

(1 − ξ) sin πα

π2

∫︂ dd−2k∥
(2π)d−2 eik∥·x∥ei( 1

2−α)θ×

×
{︃ [︂

ikaγaK−α (kρ)K−α

(︁
kρ′
)︁
− kK1−α(kρ)K−α(kρ′)γ1

]︂
P−

−
[︂
ikaγaK1−α (kρ)K1−α

(︁
kρ′
)︁
− kK−α(kρ)K1−α(kρ′)γ1

]︂
P+

}︃
.

(7.4.159)

At this point, it is straightforward to check that eq. (7.4.158) holds by computing the
difference GF,α,1 − GF,α,ξ directly from eq. (7.3.90). In the difference, only the modes
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n = 0, 1 contribute and we are left with

GF,α,1(x, x′)− GF,α,ξ(x, x′) =
sin πα(1 − ξ)

π2 D/
{︃ ∫︂ dd−2k∥

(2π)d−2 eik∥·x∥ei( 1
2−α)θ×

×
[︁
K1−α(kρ)K1−α(kρ′)P+ − Kα(kρ)Kα(kρ′)P−

]︁ }︃
,

(7.4.160)

which gives exactly eq. (7.4.159) after performing the derivative D/ , thus proving
eq. (7.4.158).

As a consistency check, we compute the change in the expectation value of the current
⟨Jθ⟩ from the propagator eq. (7.4.157) at a generic value of λ

∆
⟨︂

Jθ(ρ)
⟩︂
= − i

ρ
lim
ϵ→0

Tr
[︂
∆G(λ)

F,α,ξ(ρ + ϵ, ρ)γ2
]︂

, (7.4.161)

where all other coordinate dependence in ∆G(λ)
F,α,ξ(x, x′) is suppressed as we set all but

ρ to 0. As in the case of computing ∆
⟨︁
|φ|2

⟩︁
for the scalar RG flow above, we restrict

our attention to d = 4 where most of the contributions vanish, and we are left to
compute the following integral

∆
⟨︂

Jθ(ρ)
⟩︂
=

22α+1(1 − ξ)

4π3Γ2(1 − α)

C
ρ4

∫︂ +∞

0
dζ

ζ4−4α

ρ2−4αλ−2 + ζ2−4αC2 K−α(ζ)K1−α(ζ) , (7.4.162)

whose IR limit ρλ
1

2α−1 → +∞ gives

∆
⟨︂

Jθ(ρ)
⟩︂
=

(1 − ξ)(1 − α)α

π2
1
ρ4 . (7.4.163)

As expected, this is exactly the difference ∆aJ ≡ aJ(ξ = 1)− aJ(ξ). Here, aJ is the
coefficient of the one-point function of the current found in eq. (7.3.112), which in
d = 4 reduces to aJ = (α − 1)α(α − 3ξ + 1)/(3π2).

For generic values of ρλ
1

2α−1 we need to solve the integral numerically. In figure 7.3 we
show the quantity

ρ4
⟨︂

Jθ
⟩︂

ξ
− ρ4

⟨︂
Jθ
⟩︂

ξ=1
= ρ4∆

⟨︂
Jθ
⟩︂
− (1 − ξ)(1 − α)α

π2 (7.4.164)

as a function of ρλ
1

2α−1 for different values of ξ. In the UV regime ρλ
1

2α−1 → 0 the
curves depend on ξ while they all go to zero in the IR limit ρλ

1
2α−1 → +∞, suggesting

that the IR of all those cases corresponds to ξ = 1.

Let us briefly take note of how a(2d)
Σ and a(4d)

Σ behave under defect RG flows. From
eqs. (7.3.113) and (7.3.114), we find that for any UV value ξ ̸= 1 the A-type defect
central charges satisfy a(2d)

Σ,UV > a(2d)
Σ,IR and a(4d)

Σ,UV > a(4d)
Σ,IR, where in both cases the IR has
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FIGURE 7.3: The quantity ρ4 ⟨︁Jθ
⟩︁

ξ
− ρ4 ⟨︁Jθ

⟩︁
ξ=1 as a function of ρλ

1
2α−1 for d = 4, α =

0.75, and different values of ξ. While in the UV the quantity depends on ξ, in the IR
limit all the curves go to zero.

ξ = 1. Thus the defect c-theorems of refs. [55, 57] are obeyed. Further, when
0 < α < 1/2, the relevant operator Ôα drives the flow. Following the same
computations as above, one finds a conformal defect with ξ = 0 at the IR fixed point.
Again for any UV value of ξ ̸= 0 flowing to ξ = 0, the defect RG flow obeys the defect
c-theorems.

We conclude this section with a comment on the limit α → 1/2, where both relevant
deformations Ô−α and Ôα become marginal. The marginal case can be studied directly
starting from eq. (7.4.157) for the deformation by Ô−1/2. The result is a well-defined
propagator without any scale, for any value of λ. By a direct computation, it is not
difficult to check that for α = 1/2, the perturbation does not affect the one-point
function of the stress-tensor leading to the same value of h for any value of λ, while
the A-type defect central charge is obviously invariant since the defect deformation is
marginal. In addition, we observe that the coefficients h in eq. (7.3.102), a(dim)

Σ in
eqs. (7.3.113) and (7.3.114), and cDD in eq. (7.3.122) are in fact independent of ξ

precisely at α = 1/2. A similar discussion applies to the deformation by Ô1/2.

7.5 Discussion

In this chapter, we presented an extensive study of the behaviour of monodromy
defects in d-dimensional free CFTs. In particular, we studied a monodromy defect in
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the theories of a complex free scalar and a free Dirac fermion. By utilising the analytic
methods available in free field theories, we computed various important correlation
functions of the stress tensor, conserved U(1) currents, and the displacement operator.
When d = 4 and d = 6, these correlation functions are related to the Weyl anomaly
coefficients of a p = 2 and p = 4 DCFT, respectively, which we then extracted. Further,
we leveraged heat kernel methods to compute the universal part of the defect EE in
d = 4. In doing so, we provided an explicit check on the A-type and one of the B-type
defect central charges.

By considering the mode expansions of the ambient fields in the presence of the
defect, we showed that certain modes are allowed which are mildly singular at the
location of the defect. For the scalar, these are parametrised by ξ, ξ̃ ∈ [0, 1] whereas
the fermion just allows for a single parameter ξ ∈ [0, 1]. By matching the mode
expansions with the defect OPE, we identified the singular modes with certain defect
operators that had previously been discussed in refs. [155, 288, 322]. ξ (and ξ̃) descend
to parameters whose existence in the defect OPE had been argued for from an abstract
DCFT point of view. The correlation functions that we computed are functions of the
monodromy parameter α ∈ (0, 1), and ξ (and ξ̃). Intriguingly, the A-type defect
central charges a(2d)

Σ and a(4d)
Σ depend on ξ (and ξ̃), suggesting that they cannot be

associated with defect marginal couplings. Rather, they may be related to a
combination of defect relevant or bulk marginal parameters [168, 169].

Beyond characterising defects through their central charges, we also investigated their
behaviour under defect RG flows. In particular, the defect operators corresponding to
the mildly singular modes can be used to build relevant quadratic deformations that
trigger defect RG flows. In the case of scalar monodromy defects, we presented
evidence that no matter what the values of ξ and ξ̃ are in the UV, the IR fixed point of
the defect flow is always a DCFT with ξ = ξ̃ = 0. Thus, the IR theory only retains the
regular modes.

For the case of monodromy defects in the free fermion CFT, the IR values of ξ depend
on α ∈ (0, 1). In the fermionic theory, there are always two paired singular modes ψ−α

and ψα characterised by a O(ρ−α) and O(ρα−1) behaviour as ρ → 0 respectively. When
0 < α < 1

2 , the flow to the putative IR fixed point takes ξ → 0, i.e. the mode ψα

disappears from the spectrum, whereas for 1
2 < α < 1, the theory flows to a DCFT

with ξ = 1, i.e. the one without ψ−α. Similarly to the scalar case, the IR theory always
retains the least singular mode. Both scalar and fermion defect RG flows obey the
c-theorems of refs. [55, 57].

If the flux is set to α = 1
2 , the fermionic defect allows for two exactly marginal

deformations. This is a rather interesting feature as non-trivial conformal manifolds
without SUSY are not common. We leave a more extensive study of this manifold for
future work.
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Although in this work we only considered quadratic relevant deformations, this is not
the only possibility. For instance, in the scalar theory it is possible to construct more
general operators of the type

(︂
Ô−

−αÔ
†−
−α

)︂n
where n ≥ 1 is an integer. A

straightforward dimensional counting shows that these operators are relevant
provided α > (n−1)(d−2)

(2n) . Thus, we find non-quadratic relevant deformations if
2 < d < 6. Interestingly, when d = 3 or d = 4 one can always restrict the range of α

such that the operator is relevant for any n > 1. In the fermionic case instead we find
non-quadratic relevant deformations only if 2 < d < 4. This kind of operators may
provide a dynamical mechanism for having non-trivial interacting fixed points with
ξ ̸= 0, 1. We leave a systematic study of such flows to future work.
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Chapter 8

Central Charges of 2d
Superconformal Defects

This chapter is based on ref. [3], which I co-authored. In chapter 6, we derived
universal results about defect central charges of a large class of defects. In chapter 7,
we then computed correlation functions and defect central charges in non-trivial
examples. We used our results from chapter 6 and exact techniques available in free
field CFTs. In this chapter, we are interested in interacting CFTs, for which defect
central charges are hard to compute. Prior to our work in ref. [3], they had only been
computed in holographic CFTs [50, 71–73, 295, 336–344], which a priori are only valid at
large N.

In this chapter, we will develop exact methods for the computation of defect central
charges, without any limits or approximations. To make the problem tractable, we
impose SUSY in addition to conformal symmetry, which provides us with tools to
compute certain observables exactly. In particular, we will make use of SUSY
localisation which was reviewed in section 5.2. This allows us to compute partition
functions on backgrounds of the type Sd and S1 × Sd−1. We will then argue how to
extract defect central charges from these partition functions. Since our methods don’t
rely on any approximations, our answers are exact and non-perturbative. Along the
way, we illustrate our methods with numerous examples.

In section 8.1, we review key facts about certain 2d superconformal defects of SCFTs,
which were introduced in section 5.5. In section 8.2 we demonstrate that the A-type
central charge of a p = even dimensional defect can be obtained from the localised
partition function on Sd, with the defect wrapping an equatorial Sp.1 In section 8.3 we
argue that a linear combination of B-type central charges can be extracted from
localised partition functions on S1

R × Sd−1 with the defect wrapping S1
R × Sp−1, where

1My main contribution was to demonstrate how the A-type defect central charge can be extracted, and
its explicit computation in many examples.
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R is the radius of the circle. When p = 2, we can identify the defect central charge
obtained this way. Whenever our results overlap with computations in holographic
CFTs, we find exact agreement with our results, demonstrating that the holographic
computations are not merely large-N approximations. In section 8.4 we conclude with
a summary, and discuss possible directions for future research. In appendix D.1, we
collect some technical results that we will need along the way.

8.1 Review: 2d superconformal defects

8.1.1 2d Levi type-L defects

In section 3.2, we presented a broad partitioning of defects as order- or disorder-type.
The latter are constructed by prescribing boundary, or singularity conditions, on
ambient fields. In section 5.5, we briefly introduced a SUSY example of a
disorder-type defect in 4d N = 4 SYM theory, which was constructed by
refs. [293, 345], and is often called a Gukov-Witten defect.

Consider N = 4 SYM theory on M4 = R4 with coordinates {xµ} (µ = 1, . . . , 4), and a
1
2 -BPS surface operator supported on Σ2 = R2 with coordinates {x1, x2}. Let us write
the coordinates on the normal bundle NΣ = C as x3 + ix4 = z = ρ eiθ . To define the
surface defect, one needs to prescribe a singularity in the normal component of the
gauge field A and one of the complex scalars in the adjoint N = 2 hypermultiplet φ.
In preserving 2d N = (4, 4) SUSY along Σ2, A and φ have to satisfy a set of simple
BPS conditions that take the form of Hitchin’s equations (after a GL
twist) [17, 293, 346]. The leading singular behaviour of the BPS solutions that
additionally preserve defect conformal symmetry is given by

A → α dθ, φ → 1
2z

(β + iγ) (8.1.1)

for constants (α, β, γ). Relaxing the constraint that the defect preserves conformal
symmetry would allow for non-trivial dependence on the radial coordinate ρ.2 Note
that this defect is very similar to the monodromy defect studied in chapter 7, however,
for the Gukov-Witten defect, the gauge field is dynamical.

If the ambient 4d theory has only N = 2 SUSY rather than N = 4, one constructs a
1
2 -BPS surface defect by prescribing a singularity in the 4d gauge field only. In these
cases the BPS conditions do not allow for a singularity in any scalar fields, so no
analogue of β or γ exists—those are special to N = 4 SYM theory.

2Due to the simple pole in φ, such a defect is often called “tame”. By allowing for a higher-order
singularities, one can construct “wild” surface operators [347], which we will not consider here.
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The data (α, β, γ) describing the 1
2 -BPS defect are valued in the Cartan subalgebra t

corresponding to the maximal torus T of the gauge group G. Thus, quantisation of the
2d-4d system requires the preserved gauge symmetry consistent with solving the BPS
equations to be a subgroup of G containing T, called the Levi subgroup L ⊂ G. There
are a number of ways to construct L, and choosing a particular L ⊂ G is part of
defining the defect. For this reason we refer to these defects as Levi type-L defects
here. Unless otherwise specified, we will only consider G = U(N) or SU(N) and Levi
subgroups of the form L = S

[︂
∏n+1

i=1 U(Ni)
]︂

with the constraint that ∑n+1
i=1 Ni = N.

There are two types of 2d Levi type-L defects commonly encountered in the literature
that are given special names and will be considered below. For gauge group
G = SU(N), if L = S[U(N − 1)× U(1)] then the surface defect is called simple, and if
L = T = U(1)N−1 then the surface defect is called full.

Lastly, in addition to L and (α, β, γ), one can turn on a quantum 2d theta angle
parameter, η, along the defect for each U(1) factor in T. The importance of η can be
seen in studying the behaviour of Levi type-L defects under dualities. Under
electromagnetic duality, α and η are exchanged, and so for a generic 2d N = (4, 4)
superconformal defect in 4d N = 4 SYM theory, specifying (L; α, β, γ, η) completely
describes the defect. The parameters (β, γ) are together valued in the L-invariant part
of t, while α is valued in the L-invariant part of T and η is valued in the LL-invariant
part of the maximal torus LT of the Langlands dual LG of G. All of the parameters
grouped together transform in the part of (T× t2 × LT) invariant under the Weyl
group of L [293, 345].

Unless otherwise stated, the Levi type-L surface defect examples considered below
will have β = γ = 0. This is particularly relevant for the computation of SCIs for
N ≥ (2, 2) defects. The parameter β + iγ being non-zero is generally incompatible
with the necessary symmetries for computing the defect index. In particular, non-zero
β and/or γ breaks rotational symmetry in the plane normal to Σ2.

Having set the basis to describe Levi type-L defects, it is useful to understand the
physical meaning of the parameters (α, β, γ, η). 2d N = (4, 4) superconformal
defects defined by eq. (8.1.1) are elements of the moduli space of singular solutions to
Hitchin’s equations, MH. As mentioned, the η parameter is a 2d theta angle, but the
other “classical” parameters (α, β, γ) encode geometric information about MH. MH is
constructed by a hyper-Kähler quotient [348], and as such there are both complex
structure — one of three labelled I, J, K — and Kähler parameters that describe the
local geometry. By making a choice of which parameters go into the solution for φ in
eq. (8.1.1), we are in effect picking a complex structure, while the parameter
controlling the singular behaviour of the 4d gauge field A is the Kähler parameter. In
ref. [293], the combination β + iγ was identified with complex structure I, and in this
complex structure α was the Kähler parameter. Cyclicly permuting the roles of the
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FIGURE 8.1: Linear quiver diagram corresponding to a 2d N = (2, 2) GLSM. Its
field content consists of U(Ki) 2d vector multiplets for i = 1, . . . , n, N fundamental
ϕfund

n and N anti-fundamental ϕ̃
anti-fund
n chiral multiplets coupled to the U(Kn) vector,

one chiral multiplet ϕbif
i(i+1) in the bifundamental representation of (Ki, Ki+1), and one

chiral multiplet ϕbif
(i+1)i in the bifundamental representation (Ki, Ki+1) for each 1 ≤ i ≤

n − 1. Additionally, depending on the particular details of the 2d N = (2, 2) gauge
theory, there can be one adjoint chiral Xi of U(Ki) for each node. This quiver diagram
can be used to construct a surface operator whenever the 4d N = 2 gauge theory has

at least an S[U(N)× U(N)] flavour or gauge symmetry group.

parameters, one may identify γ + iα and α + iβ with complex structures J and K with
Kähler parameters β and γ, respectively.

8.1.2 2d defects from 2d QFTs

An order-type defect is engineered by adding DOF on the support of the defect, and
coupling them to the ambient fields. We will consider cases where the latter are a
GLSM or a NLSM, which we introduced in section 5.1. The 4d and 2d DOF can be
coupled in various ways, e.g. by superpotential couplings and/or by gauging a
shared symmetry group [293, 298, 345, 349, 350].

In the present chapter we consider 4d SCFTs that enjoy at least N ≥ 2 SUSY. To
engineer a 1

2 -BPS surface defect, consider the GLSM with N ≥ (2, 2) SUSY and gauge
group G2d described by the quiver in figure 8.1. The ith circular node denotes a 2d
gauge multiplet with gauge group U(Ki), the directed edges connecting the ith and
(i + 1)th node represent chiral multiplets in the bifundamental representation
(Ki, Ki+1) or (Ki, Ki+1) of U(Ki)× U(Ki+1) — depending on the direction of the
arrow. We collectively denote the fields in the bifundamental by ϕbif

i(i+1) and ϕbif
(i+1)i,

respectively. The dashed directed edges starting and ending on the same node are
adjoint chiral multiplets Xi. In what follows our quivers will always have the
bifundamental fields, but may or may not have the adjoint chirals, depending on the
type of defect we wish to study. For each gauge node, we may also turn on an FI
parameter and a 2d theta angle for its U(1) factor. The square nodes on the left
indicate the number of flavours of the (anti-)fundamental chiral multiplets under the
U(Kn) gauge group. We denote these fundamental and anti-fundamental chiral
multiplets by ϕfund

n and ϕ̃
anti-fund

n , respectively.
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The fields in a chiral multiplet can be given a real (twisted) mass in a SUSY preserving
way, see e.g. ref. [207]. If we set the masses of all matter fields to zero, and provided
that the FI parameters do not run, such a GLSM may flow to an interacting IR fixed
point [351]. To the best of our knowledge, it is unknown whether an IR fixed point
exists for a given such GLSM. However, whenever it does exist, the 2d SCFT has
central charge c(2d) given by

c(2d)

3
= ∑

R
(1 − qR)dimR− dim G2d, (8.1.2)

where R are the 2d fields’ representations of G2d and qR are their R-charges. The
representation data and dim G2d can be expressed in terms of the ranks of the gauge
groups, Ki. We will compute several explicit examples in section 8.2, but important
illustrative examples are the GLSMs engineering 1

2 -BPS surface defects in N = 4
SU(N) SYM. In this case c(2d) can be written more usefully in terms of the difference of
adjacent ranks, Ni = Ki − Ki−1, with K0 ≡ 0 and Kn+1 ≡ N. In particular, for an
N = (4, 4) GLSM,

c(2d)

3
= N2 −

n+1

∑
i=1

N2
i , (8.1.3)

a result that we will find again in several different ways in the following.

To obtain a 1
2 -BPS superconformal defect, one couples the ambient theory to a GLSM,

and flows to the IR fixed point, if it exists. Typically, the VEVs of the 4d fields enter as
(twisted) mass parameters in the 2d partition function [350, 352, 353]. A planar 1

2 -BPS
superconformal defect then breaks the 4d SCA to a subalgebra:
su(2, 2|2) → su(1, 1|1)⊕ su(1, 1|1)⊕ u(1) for an N = 2 SCFT, or for an N = 4 SCFT,
psu(2, 2|4) → psu(1, 1|2)⊕ psu(1, 1|2)⊕ u(1).

An alternative description of a 1
2 -BPS surface defect can be obtained by coupling a 2d

NLSM to the ambient field theory [45,293,345,349]. The NLSM description is obtained
from the GLSM above by a defect RG flow: at a generic point on the Higgs branch of
the moduli space the gauge group is Higgsed, and the 2d vector multiplets become
massive. As the relevant gauge coupling in the GLSM becomes parametrically large,
the massive modes decouple and one obtains the NLSM as an effective theory. The
Higgs branch of the GLSM maps to the target space of the NLSM.

As mentioned in section 3.2, under certain conditions order- and disorder-type defects
are equivalent. One may suspect that integrating out the 2d DOF produces the
delta-function singularities in the 4d fields on the support of the defect. Indeed, this
does turn out to be the case for a 1

2 -BPS surface defect in 4d N = 4 SYM theory with
gauge group G [293, 345, 349]. In order to obtain a Levi type-L defect from coupling a
GLSM to the ambient theory, the GLSM needs to have N = (4, 4) SUSY, and global
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symmetry G. Moreover, the Levi subgroup L is captured by the gauge symmetry in
the linear quiver: Consider the linear quiver of figure 8.1 whose gauge group
U(K1)× . . . × U(Kn) is such that Ki > Ki−1 for all i = 2, . . . , n. Then, the Levi
subgroup is L = S[∏n+1

i=1 U(Ni)] where Ni = Ki − Ki−1 with K0 ≡ 0 and Kn+1 ≡ N. The
parameters (α, β, γ, η) are encoded in the GLSM as follows. The linear combination
αk + iηk (for k = 1, . . . , n + 1) in the Levi type-L defect corresponds to the complexified
FI parameters of the GLSM, and the complex structure moduli βk + iγk characterise
the 2d superpotentials.

In the NLSM description, the requirement of N = (4, 4) SUSY and global symmetry G
translate to requiring the target space to be hyper-Kähler and to admit a G-action. In
terms of the NLSM description, (α, β, γ) are encoded in the moduli of the target
space, whereas η is associated with a 2-form B-field on moduli space whose periods
give ηk. For the NLSM to engineer a Levi type-L defect, the target space must be
T∗(G/L), which agrees with the moduli space MH of the defect [349]. The complex
dimension of the target space is

dimC T∗(G/L) = N2 −
n+1

∑
i=1

N2
i , (8.1.4)

which holds for general values of the parameters (α, β, γ, η). Note that the complex
dimension of the target space agrees with c(2d)/3 of the IR fixed point of the associated
N = (4, 4) GLSM in eq. (8.1.3).3

In the case of an ambient N = 2 gauge theory there is a similar but weaker statement.
A 4d N = 2 theory coupled to a 2d GLSM with N = (2, 2) SUSY, or NLSM whose
target space admits a Kähler structure, is IR dual to the N = 2 theory with prescribed
singularities in the gauge field on the support of the defect [354].

8.1.3 2d defects in theories of class S

A large class of N = 2 SCFTs are the so-called class S theories of ref. [217], which were
introduced in section 5.3. The starting point is the 6d N = (2, 0) SCFT of type AN−1

on a product manifold M4 × Cg,n where M4 is a four-manifold and Cg,n is a genus-g
Riemann surface with n punctures. A puncture corresponds to a co-dimension two
defect of the 6d N = (2, 0) SCFT inserted at a point on the Riemann surface and
wrapping all of 4d space. Each defect carries additional data which determine the
behaviour of the 6d fields near it. In order to preserve SUSY, one needs to mix part of
the R-symmetry with some of the Lorentz generators. This is called a partial
topological twist, or a SUSY twist. See e.g. ref. [355] for a review in the present

3The factor of 1
3 comes from the well-known fact that each pair of a real 2d boson and a fermion

contributes 3
2 to c(2d).
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context. In the compactification to the 4d theory, the co-dimension two defects give
rise to hypermultiplets with some flavour symmetry depending on the type of
puncture. E.g. a simple puncture encodes a U(1) flavour symmetry whereas a full
puncture gives an SU(N) flavour symmetry.4

As a result of the SUSY twist, the corresponding partition function is independent of
the size of both M4 and Cg,n (though still dependent on their shape). Thus, one can
shrink either M4 or Cg,n to zero without affecting the value of the partition function on
M4 × Cg,n. Taking the area of Cg,n to zero produces a 4d N = 2 SCFT labelled by Cg,n.
These theories have a moduli space of vacua (along which conformal symmetry is
spontaneously broken). The SW curve is identified with an N-sheeted cover of
Cg,n ⊃ T∗Cg,n. Class S theories include a large variety of N = 2 SCFTs of varying
complexity, however, we will only discuss the theory of N2 free hypermultiplets (from
the compactification on C0,3 with two full punctures and a simple one), SU(N) SQCD
with 2N flavours (from C0,4 with two full punctures and two simple ones) and N = 4
SYM theory (from C1,0). These theories all have Lagrangian descriptions. Thus, when
M4 = S4, the partition function can be computed exactly via SUSY localisation [23],
which we reviewed in section 5.2. However, the class S construction allows for more
general SCFTs which are inherently strongly coupled and non-Lagrangian. E.g. by
allowing for more general punctures [356–358], one finds the theories of ref. [359] and
many previously unknown SCFTs.

Alternatively, compactifying on M4 gives rise to a non-SUSY 2d CFT on Cg,n. When
the 6d SCFT is labelled by g6d = AN−1, the resulting 2d CFT on Cg,n is AN−1 Toda
theory. When N = 2, this is just the Liouville CFT [319]. However, when N > 2, Toda
theory has N − 2 holomorphic higher spin currents in addition to the stress tensor,
enlarging the Virasoro algebra to a WN algebra [360]. The Alday-Gaiotto-Tachikawa
(AGT) correspondence is the statement that the S4 partition function of the class S
theory is equivalent to a Toda correlator on Cg,n [319, 360].

Class S theories admit defect operators which descend naturally from the
co-dimension four and two defects of the parent 6d N = (2, 0) theory, which are
described by representations and nilpotent orbits of g6d = AN−1, respectively. The
co-dimension four, or Wilson surface, defects localised at a point on Cg,n were
discussed in detail in ref. [298] and refined in ref. [350]. In the 4d SCFT, they descend
to a surface defect described by the n-node quiver GLSM of figure 8.1 with Ki < Ki+1,
an adjoint chiral multiplet on every node except the nth one, and non-vanishing
complexified FI parameter only for the nth node, which corresponds to the position of
the defect on Cg,n. The information encoded in the quiver can be summarised by a

4Note that these flavour symmetry groups arise from a partition of N, which is why the same termi-
nology as for the Levi type-L defect is used. In the 6d AN−1 = su(N) SCFT, a (tame) simple puncture
corresponds to fields acquiring a pole with residue determined by the partition [1, N − 1], preserving a
U(1) symmetry. A full puncture corresponds to a pole with residue determined by [1N ], which preserves
the full SU(N) symmetry. See e.g. ref. [355] for a pedagogical discussion.
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Young tableau of width n which labels a representation of AN−1. The length of the jth

column is the difference in the ranks of the jth and (j − 1)th node, i.e. Kj − Kj−1.
Furthermore, the authors of refs. [298, 350] show that in the AGT correspondence to
Toda theory on Cg,n, this surface defect corresponds to the insertion of a degenerate
Toda primary labelled by the Young tableau, and whose position on Cg,n is specified
by the FI parameter of the nth node.

In addition to the co-dimension two defects wrapping M4 giving rise to the punctures
of Cg,n, one can introduce co-dimension two defects wrapping Cg,n and a 2d surface in
M4. These defects were studied in refs. [361, 362]. Since the defect wraps Cg,n, it alters
the dictionary of AGT. Indeed, the surface defect in a 4d N = 2 SCFT was found to be
described by a Wess-Zumino-Novikov-Witten (WZNW) model on Cg,n, rather than
Toda theory.

In the 4d SCFT, the authors of ref. [293, 345, 354] proposed a duality between the 2d
defects that arising from the co-dimension two and four defects of the parent 6d SCFT.
More specifically, the duality is a particular type of integral transform between the
partition functions of the Toda and WZNW theories living on Cg,n in the two cases. We
will not need any details of this duality except that, like any duality, it is a mapping
between physical observables of the two cases. Of importance to us is the fact that
under the duality the metric on M4 and the submanifold Σ2 are invariant, and the
stress tensor maps to itself. As a result, the Weyl anomaly is invariant under the
duality, and hence the defect central charges are also. We will see that this is indeed
the case in our examples below.

8.1.4 Holographic results

As reviewed in chapter 4, the defect contribution to the EE of a spherical region
centred on a 2d conformal defect in a higher-dimensional CFT includes a logarithmic
term with a universal coefficient given by a linear combination of a(2d)

Σ and d(2d)
2 , see

eq. (4.5.45). Furthermore, as discussed in chapter 3, d(2d)
2 determines the stress tensor’s

one-point function eq. (3.1.13) in the presence of the defect. By calculating this EE and
the stress tensor one-point function holographically, calculations of a(2d)

Σ and d(2d)
2 have

been performed for Levi type-L defects in 4d N = 4 SU(N) SYM [50, 363, 364] and for
p = 2 defects in the 6d N = (2, 0) AN−1 SCFT [50, 73, 193, 363]. One of our goals is to
reproduce these results using purely field theory means, so let us review them in
detail.

For the Levi type-L surface defect in 4d N = 4 SU(N) SYM theory, the holographic
results for a(2d)

Σ and d(2d)
2 are

a(2d)
Σ = 3(N2 −

n+1

∑
i=1

N2
i ), (8.1.5a)
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d(2d)
2 = −3(N2 −

n+1

∑
i=1

N2
i )−

24π2N
λ

n+1

∑
i=1

Ni|β2
i + γ2

i |, (8.1.5b)

where λ is the ’t Hooft coupling of N = 4 SYM theory, λ = Ng2
YM.

As discussed in section 5.5, ref. [288] proved that d(2d)
2 = −d(2d)

1 if transverse rotations
are preserved, so in fact the holographic calculations provide all three defect central
charges when β = γ = 0. As also mentioned in section 5.5, these defects preserve
enough SUSY that a(2d)

Σ cannot depend on defect or ambient marginal couplings, while
d(2d)

1 and d(2d)
2 can. The a(2d)

Σ in eq. (8.1.5a) indeed does not depend on defect or ambient
marginal couplings, and in fact depends only on the choice of Levi subgroup L. On
the other hand, d(2d)

2 manifestly depends on the ambient marginal parameters βi and
γi. It also appears to depend on the ambient marginal coupling λ, however this is a
choice of convention, since this dependence can be absorbed into a redefinition of the
scalar φ in eq. (8.1.1) [293], or equivalently of βi and γi.

In fact, this must be possible because of S-duality. Under S-duality, N/λ → λ/N, so
naïvely d(2d)

2 appear to change under S-duality. However, as mentioned at the end of
the previous sub-section, Weyl anomaly coefficients are invariant under any duality
that leaves the metric on M4 and the submanifold Σ2 invariant, and maps the stress
tensor to itself. This includes the S-duality of 4d N = 4 SYM theory. Indeed, after
accounting for the S-duality transformations of βi and γi [293], the combination of N,
λ, βi, and γi in eq. (8.1.5b) is invariant under the S-duality of N = 4 SYM theory.

Our first result is simply the observation that a(2d)
Σ from eq. (8.1.5a) agrees exactly with

c(2d) of the GLSM in eq. (8.1.3) that engineers a 2d Levi type-L defect, and thus also
with the complex dimension of the target space of the NLSM construction, eq. (8.1.4).
Moreover, the expression in eq. (8.1.4) was conjectured to hold for arbitrary values of
the parameters (α, β, γ, η), which strongly suggests that we can uniquely identify
c(2d)

3 = dimC X with a(2d)
Σ
3 and not − d(2d)

2
3 or d(2d)

1
3 , since the latter depend on βi and γi.5

For the Wilson surface defects in the 6d N = (2, 0) AN−1 SCFT, we will be able to
clearly distinguish a(2d)

Σ from −d(2d)
2 since in that case generically a(2d)

Σ ̸= −d(2d)
2 . A Wilson

surface defect is labelled by a Young tableau corresponding to a representation of
su(N) with highest weight ω. The holographic results for a(2d)

Σ and d(2d)
2 for a Wilson

surface are [50, 73, 193, 363]

a(2d)
Σ = 24(ρ, ω) + 3(ω, ω), (8.1.6a)

d(2d)
2 = −24(ρ, ω)− 6(ω, ω), (8.1.6b)

5Strictly speaking, we do not know if d(2d)
1 depends on βi and γi but it is expected to generically depend

on marginal parameters. As we will see, the discussion in the following sections strongly supports the
identification of c(2d) with a(2d)

Σ .
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where ρ is the Weyl vector of su(N) and (·, ·) denotes the inner product on the dual
space of the Cartan subalgebra given by the inverse of the Killing form. Clearly in
these cases a(2d)

Σ + d(2d)
2 = −3(ω, ω), so that generically a(2d)

Σ ̸= −d(2d)
2 . In section 8.3 we

will extract a defect central charge from the SUSY partition function of the 6d
N = (2, 0) AN−1 SCFT on S1

R × S5 with a Wilson surface along S1
R × S1, where R is the

radius of the circle. Since a(2d)
Σ ̸= −d(2d)

2 , we can unambiguously say that the defect
central charge we obtain is ∝ d(2d)

2 . However, in this case ref. [288] provided compelling
evidence, though not a rigorous proof, that d(2d)

2 = −d(2d)
1 , so the defect central charge

we obtain could in fact be a linear combination of d(2d)
2 and d(2d)

1 .

8.2 Partition function on S4

In this section, we extract defect central charges from partition functions of N ≥ 2
SCFTs on M4 = S4 with 1

2 -BPS superconformal defects along an equatorial Σ2 = S2.
The full integrated Weyl anomaly, including the defect contribution eq. (3.4.38), takes
the following form

δω log Z = − 1
16π2

∫︂
M4

d4x
√

g
(︁
a(4d)
M E4 − c(4d) WµνρσWµνρσ

)︁
δω

+
1

24π

∫︂
Σ2

d2σ
√︁

g
(︂

a(2d)
Σ E2 + d(2d)

1 II̊
µ
abII̊

ab
µ + d(2d)

2 Wab
ab

+ ϵabnij(d̃
(2d)

1 (R⊥)ij
ab + d̃(2d)

2 II̊
i
acII̊

j
b

c)
)︂

δω ,

(8.2.7)

where E4 and E2 are the Euler densities for M4 and Σ2, respectively, and a(4d)
M and c(4d)

are the central charges of the 4d CFT. As explained in section 3.4, when M4 = S4 and
the defect wraps an equatorial Σ2 = S2, all the B-type terms above vanish. Thus, the
full integrated Weyl anomaly reduces to a linear combination of the A-type anomaly
coefficients a(4d)

M and a(2d)
Σ ,

δω log Z = −4a(4d)
M +

a(2d)
Σ
3

. (8.2.8)

In other words, under a global Weyl rescaling δgµν = 2gµν of M4 = S4,
Z → exp

(︁(︁
−4a(4d)

M + a(2d)
Σ /3

)︁
δω
)︁

Z. Hence, we may extract the linear combination of
central charges in eq. (8.2.8) from the transformation of the partition function Z under
a global Weyl re-scaling, and if we know a(4d)

M for the 4d CFT, then we can identify a(2d)
Σ .

If the DCFT preserves enough SUSY, one can use existing results for Z computed via
SUSY localisation [22, 23] to extract novel results for a(2d)

Σ . As reviewed in section 5.2,
SUSY localisation is performed on the Ω-background, R4

ϵ1,ϵ2
, or by putting the theory

on an S4
b deformed by the ratio of equivariant parameters ϵ2/ϵ1 ≡ b2. The

dimensionless parameter b determines how the sphere is “squashed,” which we
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denote as S4
b. Viewed as a hypersurface in R5, S4

b is defined by

x2
0 + (rϵ1)

2 (x2
1 + x2

2) + (rϵ2)
2 (x2

3 + x2
4) = r2 , (8.2.9)

where {xi} with i = 0, . . . 4 are the Euclidean coordinates on R5, and r is the equatorial
radius. Note that the mass dimensions of ϵ1,2 are 1, which we denote by [ϵ1,2] = 1. In
section 5.2, we took the round sphere limit rϵ1 = rϵ2 = 1 but since in the literature
results are stated for generic ϵ1,2, we introduce them here. The deformation parameters
ϵ1,2 break the isometry group of the 4-sphere to U(1)× U(1). An N = 2 theory on this
background preserves an su(1|1) ⊂ osp(2|4) SUSY subalgebra of the round S4.

The localised partition function of a 4d N ≥ 2 gauge theory without a defect factorises
into three contributions [23]: a classical part Zclass, a 1-loop part Z1-loop, and an
instanton part Zinst. Each of these is parametrised by the VEV of the adjoint scalar
⟨Φ⟩ = a which is valued in the Cartan subalgebra t ⊂ g. The full partition function is
obtained by integrating with respect to a over h, as in eq. (5.2.3).

We implement global Weyl re-scalings by taking rϵ1 = rϵ2 = 1 and then re-scaling
r → λr, in which case the 4d Weyl anomaly implies ZS4 → λ−4a(4d)

M ZS4 . The only
contributions to a(4d)

M come from the integration measure da and Z1-loop, since the other
factors are Weyl-invariant. More specifically, Z1-loop is a product of one-loop
determinants of Laplacians for fields of different spins. Each such one-loop
determinant is an infinite product of eigenvalues that diverges, and needs to be
regulated. We use zeta-function regularisation, which was introduced in section 4.3.
Crudely speaking, it results in the replacement of each infinite product with special
functions, usually combinations of (higher) Gamma functions, as illustrated in
appendix D.1. From that point of view, the “quantum” contribution to the Weyl
anomaly of ZS4 comes from the “anomalous” scaling properties of these special
functions, while the “classical” contribution comes from da. We provide more details
of this in appendix D.1, and we will see explicit examples below.

Now consider a surface defect wrapping Σ2 = S2
ϵ1
⊂ S4

b located at x3 = x4 = 0 in R5

such that it preserves the U(1)× U(1) isometry. Its embedding into R5 is

x2
0 + (rϵ1)

2 (x2
1 + x2

2) = r2 . (8.2.10)

A 2d N = (2, 2) theory on Σ2 preserves the same su(1|1) ⊂ osp(2|2) SUSY subalgebra
as above. Thus one can introduce couplings between the 2d N = (2, 2) theory and the
ambient 4d N = 2 theory on Σ2 without breaking any further SUSY. To do so, we can
introduce superpotential couplings on Σ2 to couple the 2d and 4d matter multiplets
and/or by gauge a global symmetry on Σ2 and identify it with an ambient 4d
global/gauge symmetry [298, 350].
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Some of the examples of 2d superconformal defects considered below are constructed
from 2d N = (2, 2) GLSMs in the UV before flowing to the putative IR
superconformal fixed point. As reviewed in section 5.2, the S2 partition function of a
purely 2d GLSM, ZS2 , can also be computed through SUSY localisation, and is most
conveniently done on the Coulomb branch of the moduli space [206, 207]. The field
configurations on the locus are parametrised by a charge-quantised 2d gauge flux
m = 1

2π

∫︁
F on S2

ϵ1
and the VEV of a real vector multiplet scalar σ. The localised

partition function is the integral over σ and sum over m of three contributions, a
classical piece Zclass, and two one-loop determinants, Zgauge

1-loop and Zmatter
1-loop , as in

eq. (5.2.4), which we restate here for convenience:

ZS2 =
1

|Wg2d |
∑

m∈tZ2d

∫︂
t2d

dσ ZclassZgauge
1-loopZmatter

1-loop , (8.2.11)

Note that the kinetic term of σ in the vector multiplet action is normalised such that
[σ] = 1. We emphasise that the localised partition function is independent of the 2d
Yang-Mills coupling, and only depends on the S2 (or S2

ϵ1
) through its equatorial radius.

We will again implement a global Weyl re-scaling by re-scaling r → λr, in which case
the 2d Weyl anomaly implies ZS2 → λc(2d)/3ZS2 . Similarly to ZS4 , the quantum
contribution to the 2d Weyl anomaly comes from zeta-function regularisation of the
infinite products in Zgauge

1-loopZmatter
1-loop , while the classical contribution comes from dσ. We

will also see explicit examples in the following.

Our aim in this section is to extract a(2d)
Σ from the Weyl anomaly of the localised

partition function of 2d-4d coupled systems. For such systems many SUSY localised
partition functions have been computed, but we will focus on cases where the 4d
ambient theory is conformal, e.g. N2 free massless hypermultiplets, N = 4 SU(N)

SYM theory, and N = 2 SU(N) SQCD with 2N flavours, with 1
2 -BPS N = (2, 2)

surface operators (enhanced to N = (4, 4) for N = 4 SYM).

8.2.1 Free massless hypermultiplets with a generic surface defect

To start, we consider the theory of N2 free massless hypermultiplets on S4
b. This theory

enjoys global USp(2N2) flavour symmetry. Now, to this ambient theory we couple the
2d GLSM in Fig. 8.1, including adjoint chirals for all nodes, which we put on Σ2 = S2

ϵ1
.

The GLSM enjoys the an SU(N)× SU(N) symmetry which acts on the
(anti-)fundamental chirals, whereas the bifundamental and adjoint chirals enjoy a
U(1) symmetry. We couple the ambient free hypers to the GLSM via cubic and quintic
superpotential couplings that identify the shared 2d-4d flavour symmetry
SU(N)× SU(N)× U(1) ⊂ USp(2N2).
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Absent an ambient 4d vector multiplet to couple to the GLSM, the saddle points of the
2d-4d theory are parametrised by independent contributions from decoupled 2d and
4d loci, and so the SUSY localised partition function of this theory factorises [298, 350]

ZΣ2↪→S4
b
= Zfree

S4
b

ZΣ2 . (8.2.12)

We denote ZΣ2 as the partition function of the GLSM on S2
ϵ1

, and

Zfree
S4
b

=

(︃
Υ
(︃

ϵ1 + ϵ2

2

⃓⃓⃓⃓
ϵ1, ϵ2

)︃)︃−N2

(8.2.13)

is the partition function of the N2 free massless hypers in zeta-function regularisation.
The Upsilon function is defined as

Υ(z|a, b) ≡ 1
Γ2(z|a, b)Γ2(a + b − z|a, b)

, (8.2.14)

where Γ2(z|a, b) is the double Gamma function. For more details about these special
functions, see appendix D.1. However, the only information we currently need about
the Upsilon function is its behaviour under re-scaling of its arguments, eq. (D.1.17),

Υ
(︃

z
r

⃓⃓⃓⃓
a
r

,
b
r

)︃
= r−2ζ2(0;z|a,b)Υ(z|a, b), (8.2.15)

where ζ2(t; z|a, b) is the Barnes double zeta-function defined in eq. (D.1.1).

Since the 2d-4d partition function factorises, it is sufficient to just consider the scaling
of ZΣ2 in order to compute a(2d)

Σ . Hence, a(2d)
Σ is identified with c(2d).

However, to be clear, we hasten to add that this c(2d) is not (necessarily) the central
charge of a 2d CFT, because the 2d stress tensor of our defect DOF is not necessarily
conserved, due to the coupling to the ambient 4d fields. This implies various
differences from a 2d CFT: no lower bound on our a(2d)

Σ = c(2d) is currently known, the
usual 2d c-theorem does not necessarily apply (although the defect c-theorem of
ref. [55] does), and so on. In practical terms, however, the upshot is that we still
compute c(2d) from eq. (8.1.2), which in particular requires identifying the
representations and R-charges of the 2d fields.

It is illustrative to re-derive eq. (8.1.2) by studying the scaling behaviour of the three
contributions to eq. (8.2.11) separately. We do so following ref. [351]. The strategy will
be to write the localised partition function in terms of the dimensionless combination
rσ. The scalar VEV σ parametrises the BPS locus, and thus the localised path integral
becomes a finite-dimensional integral over the Cartan subalgebra t2d of the 2d gauge
algebra g2d with measure

∫︁
t2d

dσ = r−rank G2d
∫︁
t2d

d(rσ). In the last step we wrote the
integral over the BPS locus in terms of the dimensionless combination rσ, which is just
a dummy variable in the integration. This gave us a factor of r−rank G2d in units of the
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UV cut-off. As a result, the measure contributes a scaling weight of −rank G2d under
r → λr.

If G2d has n U(1) factors, the classical part of the localised partition function takes the
form

Zclass =
n

∏
j=1

zj
Trj(irσ+m

2 )z̄j
Trj(irσ−m

2 ) , (8.2.16)

where zj ≡ e−2πξ j+iθj , ξ j are FI parameters, θj are theta-angles, and Trj denotes a
projection to the jth U(1) factor [351]. Clearly, the behaviour of eq. (8.2.16) under Weyl
re-scaling is trivial.

The 1-loop contribution coming from the gauge sector takes the form

Zgauge
1-loop = e2πiρ2d(m) ∏

α∈∆+

[︃
1
r2

(︃
α(m)2

4
+ α(rσ)2

)︃]︃
, (8.2.17)

where ∆+ is the set of positive roots and ρ2d is the Weyl vector of g2d, the Lie algebra
associated to G2d. Collecting the overall factors of r, and using that
|∆+| = 1

2 (dim G2d − rank G2d), we see that under Weyl re-scalings eq. (8.2.17)
transforms with weight −dim G2d + rank G2d.

After zeta-function regularisation, the 1-loop partition function of the matter sector —
composed of massless chiral multiplets in the R representation of G2d — becomes

Zmatter
1-loop = ∏

R
∏
{hR}

Γ
(︂

qR
2 − ihR(rσ)− hR(m)

2

)︂
Γ
(︂

1 − qR
2 + ihR(rσ)− hR(m)

2

)︂ r1−qR+2ihR(rσ) , (8.2.18)

where qR is the 2d R-charge of the multiplet, and {hR} denotes the set of weights of
R. Counting the factors of r that appear in eq. (8.2.18), we see that Zmatter

1−loop transforms
with weight ∑R(1 − qR)dim R under Weyl re-scaling. For semi-simple g2d, the
remaining ∑R ∑{hR} 2ihR(rσ) reduces to a sum over the charges under the U(1)
factors of G2d, and gives rise to the renormalisation of the complexified FI parameters.
If the sum does not vanish, one can tune it to zero by the addition of appropriate
auxiliary DOF such that the FI parameters do not run.6

Combining the weights from the gauge sector, the matter sector, and the measure, one
finds that the partition function is scale invariant up to an overall factor of rc(2d)/3,
where c(2d) is given in eq. (8.1.2). This factor is identified with the central charge of the
2d SCFT at the fixed point. Hence, a(2d)

Σ = c(2d) in the round sphere limit ϵ1 = ϵ2 = 1
r , as

argued above.

6Supposing ∑R ∑{hR} 2ihR(rσ) does not vanish immediately, one may add a massive spectator chiral
multiplet with 2d R-charge q = 0 that precisely cancels that term. By taking their masses to be large and
integrating out the spectator chiral multiplets, one recovers the original theory without the sum over U(1)
charges [207].



8.2. Partition function on S4 161

Even though the 4d theory is very simple, considering the case of N2 free massless
hypers with a surface defect illustrates the important point that the non-trivial
contribution to the central charge comes from the scaling of the 1-loop partition
function. The simplicity of the above example stems from the factorisation in
eq. (8.2.12), which immediately led to identifying a(2d)

Σ = c(2d).

For a more generic 2d-4d system, one might suspect that matter charged under both
2d and 4d gauge groups would spoil the factorisation of ZΣ2↪→S4 and possibly alter
a(2d)

Σ . However, that is not the case if the system enjoys enough SUSY. It is now
understood that a 1

2 -BPS surface defect engineered in a generic 4d N = 2 gauge theory
by gauging symmetries [353] or through Higgsing [352] mixes ambient and defect
DOF in only two ways. Firstly, any 4d adjoint hypermultiplet scalars frozen at their
VEVs enter as twisted mass parameters in ZΣ, while keeping its functional form
unchanged. Secondly, any coupling of 2d and 4d DOF leads to an extra factor in the
partition function that is entirely non-perturbative: it arises from the interactions of
instantons and vortices, and has no scale-dependence. The 1-loop part of the partition
function receives no modifications. Hence, central charges extracted from Weyl
re-scalings of the partition function are unchanged. In other words, we expect
a(2d)

Σ = c(2d) to be the case always. Indeed, we will see examples of this below.

Let us point out that the scaling behaviour of the partition function can often be
obtained in a more straightforward, yet ad hoc way by using three facts: only the
1-loop partition function (and the measure of the integration over the VEV of the
adjoint scalar) contributes, factors of 1

r arise in the evaluation of 1-loop determinants,
and special functions are the result of zeta-function regularisation. This is important
because often the dependence on the scale r is left implicit. If one was given the
partition function ZΣ without any scale factors, one could still deduce the scaling
behaviour by re-instating the correct r-dependence, dealing with special functions
appropriately and accounting for the measure. For example, if one encounters the
Euler Gamma-function Γ

(︂
qR
2 − ihR(σ)− hR(m)

2

)︂
, one first needs to insert appropriate

factors of r to make its argument dimensionless, i.e. σ → rσ. The natural function that
appears in the zeta-function regularisation of the matter sector 1-loop partition
function is the Barnes single Gamma-function Γ1(z|a, b) defined in eq. (D.1.2). To
obtain the scaling behaviour one should interpret the Euler Gamma-function as
Γ1

(︂
1
r

(︂
qR
2 − ihR(rσ)− hR(m)

2

)︂⃓⃓⃓
1
r

)︂
. Using the properties

Γ1

(︃
z
r

⃓⃓⃓⃓
1
r

)︃
= r

1
2−z Γ1 ( z| 1) , Γ1(z|1) =

1√
2π

Γ(z) , (8.2.19)

one correctly recovers the partition function ZΣ with appropriate scale factors. We
refer to appendix D.1 for more details and definitions of these special functions.
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8.2.2 Examples of defects coupled to free massless hypermultiplets

Having determined a(2d)
Σ = c(2d) for superconformal surface defects coupled to 4d free

massless hypers, we can now consider some specific defect models. All that needs to
be done to compute a(2d)

Σ is to determine the 2d R-charges qR of the matter fields.

Due to the su(1|1)-invariant coupling between the 2d N = (2, 2) GLSM and the
hypermultiplets, the 2d R-symmetry generators are linear combinations of the U(1)N

generator of rotations in the normal bundle to Σ2 and U(1)R ⊂ SU(2)R of the ambient
R-symmetry [350]. The coefficients determining the exact 2d R-symmetry depend on
b. The 2d R-charges of the 4d hypermultiplet scalars restricted to Σ2 can be found in
terms of their 4d charges under U(1)N × U(1)R. Requiring that the 2d-4d
superpotentials have 2d R-charge q = 2 together with constraints from the identified
flavour symmetry then fixes the R-charges of the 2d fields and sets their twisted
masses to zero.

The precise superpotential terms depend on the particular quiver diagram, and were
found in refs. [298, 350]. In particular, they depend on whether the jth node has an
adjoint chiral Xj. If it does, we define ηj ≡ +1, and if it does not, ηj ≡ −1. Further let
us define ε i ≡ ∏n

j=i ηj. One finds that the hypermultiplet scalars restricted to Σ2 have
2d R-charge qhyper = 1 + b2, the fundamental and anti-fundamental chirals have
qfund

n + qanti-fund
n = 1 − b2, the adjoint chirals have

qXj =

⎧⎨⎩ 2 + 2b2 if ε j+1 = ε j = −1

−2b2 if ε j+1 = ε j = +1 ,
(8.2.20)

and the bifundamentals have R-charges

qbif
j(j−1) + qbif

(j−1)j =

⎧⎨⎩−2b2 if ε j = −1

2 + 2b2 if ε j = +1 ,
(8.2.21)

where we have a total of n nodes and εn+1 ≡ +1. Notice that in a 2d SCFT, with a
conserved stress tensor, unitarity and the BPS bound require positive R-charges. In
contrast, our 2d defect fields do not have a conserved 2d stress tensor, and so can have
negative R-charges.

Example 1: N = (2, 2) SQCD. As a first example consider N = (2, 2) SQCD with
gauge group G2d = U(K) and N fundamental and N anti-fundamental chiral
multiplets coupled to N2 ambient free massless hypers. Note that qfund

n + qanti-fund
n = 0 in

the round sphere limit b = 1. Thus, using eq. (8.1.2) we find

a(2d)
Σ
3

= 2NK − K2 = K(2N − K) . (8.2.22)



8.2. Partition function on S4 163

Example 2: N = (2, 2) SQCDA. We now add an adjoint chiral to the previous
example, where qX = −2 in the limit b = 1. Using eq. (8.1.2), this “extra” field thus
contributes an additional (1 − qX)dimR = 3K2 to the value of a(2d)

Σ of the previous
example,

a(2d)
Σ
3

= 2NK − K2 + 3K2 = 2K(N + K) . (8.2.23)

These two examples clearly obey the c-theorem of ref. [55]. If we start in the UV with
SQCDA, with a(2d)

Σ in eq. (8.2.23), and deform the theory by a mass term for the adjoint
chiral, then in the IR we will find SQCD [298], with a(2d)

Σ in eq. (8.2.22). In this case,
a(2d)

Σ,UV − a(2d)
Σ,IR = 9K2 ≥ 0.

Example 3: N = (2, 2) quiver with n adjoint chirals. We can also consider more
general quiver gauge theories. For example, consider the n-node quiver depicted in
figure 8.1 with gauge group G2d = U(K1)× . . . × U(Kn), N fundamental and N
anti-fundamental chirals of U(Kn) and adjoint chirals on each node, coupled to N2

free hypers. Using qXj = −2, qbif
j(j−1) + qbif

(j−1)j = 4 and qfund
n + qanti-fund

n = 0, and eq. (8.1.2)
we find after a bit of algebra that

a(2d)
Σ
3

= 2
n

∑
i=1

(Ki − Ki−1)Ki + 2KnN , (8.2.24)

where we have defined K0 ≡ 0.

Example 4: N = (2, 2) quiver with (n − 1) adjoint chirals. Consider the same
quiver as the previous example, but with adjoint chirals on all nodes but the nth one.
When the FI parameters of all nodes vanish except for possibly the nth one, this defect
has a 6d origin. As discussed in section 8.1.3, it descends from a Wilson surface defect
in the 6d AN−1 N = (2, 0) SCFT at a point on C0,3. In this case, qXj = 4,
qbif

j(j−1) + qbif
(j−1)j = −2, and qfund

n + qanti-fund
n = 0, so that

a(2d)
Σ
3

= −4
n

∑
i=1

(Ki − Ki−1)Ki + 2KnN + 3K2
n . (8.2.25)

These two examples also obey the defect c-theorem of ref. [55]. If we start in the UV
with an N = (2, 2) quiver with n adjoint chirals, with a(2d)

Σ in eq. (8.2.24) and deform by
a mass term for the nth adjoint chiral, then in the IR we will find an N = (2, 2) quiver
with n − 1 adjoint chirals [298], with a(2d)

Σ in eq. (8.2.25). We thus have

a(2d)
Σ,UV

3
−

a(2d)
Σ,IR

3
= −3K2

n + 6
n

∑
i=1

(Ki − Ki−1)Ki = 3
n

∑
i=1

(Ki − Ki−1)
2, (8.2.26)

where the final equality holds because K0 ≡ 0. Clearly in this case a(2d)
Σ,UV − a(2d)

Σ,IR ≥ 0,
and so the defect c-theorem is satisfied.
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To our knowledge all four of the examples above, and indeed the general statement
a(2d)

Σ = c(2d), are novel results for a(2d)
Σ of 2d superconformal defects. Notice that in all of

our examples a(2d)
Σ ≥ 0: for eqs. (8.2.22), (8.2.23), and (8.2.24) this is manifest, while for

eq. (8.2.25) this can be checked straightforwardly, e.g. by considering limiting cases.

8.2.3 N = 4 SYM with a generic surface defect

To construct a 1
2 -BPS superconformal surface defect in N = 4 SYM theory, one can

couple a 2d N = (4, 4) GLSM to the ambient theory [349]. N = (4, 4) SUSY requires
the ith node in figure 8.1 to have an adjoint chiral multiplet Xi for all i. The N = (2, 2)
adjoint chiral recombines with the N = (2, 2) vector multiplet into an N = (4, 4)
vector multiplet. Similarly, the bifundamentals ϕbif

i(i+1) and ϕbif
(i+1)i regroup into

bifundamental hypers, and the N (anti-)fundamental chirals ϕfund
n and ϕ̃

anti-fund

n

recombine into N fundamental hypermultiplets. The N hypers enjoy SU(N) flavour
symmetry such that the GLSM can be coupled to 4d N = 4 SU(N) SYM theory by
gauging the 2d flavour group. As argued in the previous subsection, a(2d)

Σ = c(2d) as
there is no perturbative 2d-4d contribution to the partition function. We may thus
calculate a(2d)

Σ through yet another counting exercise.7

Assuming the GLSM flows to an IR fixed point, the central charge of the 2d SCFT is
given by eq. (8.1.2). To determine the 2d R-charges, one considers the allowed
superpotential terms which schematically look like W = ϕXϕ̃ in N = (2, 2) language.
The R-charge assignments are easily deduced by looking at the U(1)R action on the
mesons built from fundamental chirals, which combine into non-compact scalars at
the IR fixed point. The exact low-energy U(1)R symmetry cannot act as a rotation on
the mesons due to chiral factorisation of the R-symmetry in a CFT. This gives the
assignment that matter sector chiral multiplets in the (anti-)fundamental and
bifundamental representations have q = 0, while the adjoint chiral multiplets carry
q = 2, such that the superpotential has R-charge q = 2. Thus, eq. (8.1.2) gives

a(2d)
Σ
3

=
c(2d)

3
= 2

n

∑
i=1

Ki(Ki+1 − Ki) = N2 −
n+1

∑
i=1

N2
i , (8.2.27)

as quoted in eq. (8.1.3), which is in agreement with the complex dimension of the
moduli space of the Levi type-L defect in eq. (8.1.4), and with the holographic result in
eq. (8.1.5a), thus proving that the latter is not merely the large-N limiting value.

7We thank B. Le Floch for pointing this out to us, and for discussions directly related to this computa-
tion.
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8.2.4 N = 4 SYM with a full Levi defect

A useful check of the previous result eq. (8.2.27) can be performed in special cases. In
refs. [365, 366], the authors consider N = 2∗ SYM with gauge group G = SU(N), i.e.
the field content of N = 4 SYM theory but with a mass deformation for the adjoint
hypermultiplet which breaks N = 4 to N = 2. In this theory, refs. [365, 366] placed a
full surface defect (L = T) engineered by putting the theory on the orbifold
C×C/ZN .8 By taking the mass of the 4d adjoint hyper to zero, the N = 2∗ SUSY
enhances to N = 4.

Let us now compute a(2d)
Σ for this system. The non-trivial contribution comes from the

1-loop partition function,

ZN=4
1-loop[1

N ] =
N

∏
i,j=1
i ̸=j

Υ
(︂

ai − aj +
⌈︂

j−i
N

⌉︂
ϵ2|ϵ1, ϵ2

)︂
Υ
(︂

ai − aj +
ϵ1+ϵ2

2 +
⌈︂

j−i
N

⌉︂
ϵ2|ϵ1, ϵ2

)︂ , (8.2.28)

where ai are the components of the VEV of the 4d adjoint scalar
⟨Φ⟩ = diag(a1, . . . , aN), and ⌈x⌉ denotes the ceiling of x.

The arguments of the Upsilon-functions in eq. (8.2.28) have mass dimension one. To
make the overall scale factor explicit, we should factor out 1

r from their arguments.
Define the dimensionless quantities ϵ̃1,2 ≡ rϵ1,2 and Q ≡ ϵ̃1 + ϵ̃2. Under a re-scaling,
the Upsilon-function transforms according to eq. (8.2.15), which means eq. (8.2.28)
becomes

ZN=4
1-loop[1

N ] =
N

∏
i,j=1
i ̸=j

Υ
(︁
xij|ϵ̃1, ϵ̃2

)︁
Υ
(︁
xij + Q/2|ϵ̃1, ϵ̃2

)︁ rκij , (8.2.29)

where

xij = r
(︃

ai − aj +

⌈︃
j − i
N

⌉︃
ϵ2

)︃
,

κij = −2 ζ2(0; xij|ϵ̃1, ϵ̃2) + 2 ζ2(0; xij + Q/2|ϵ̃1, ϵ̃2) ,
(8.2.30)

and ζ2(t; z|a, b) is the Barnes double zeta-function defined in eq. (D.1.1). Using
eq. (D.1.3) and taking b → 1, one finds

N

∑
i,j=1
i ̸=j

κij =
N

∑
i,j=1
i ̸=j

(2xij − 1) = 2
N2 − N

2
− (N2 − N) = 0 . (8.2.31)

8Ref. [365] observed that the instanton moduli space of a 4d N = 2 gauge theory with full surface
defect matches the instanton moduli space without the defect but with the theory on the orbifold C ×
C/ZN . This allows one to compute the instanton partition function of the coupled 2d-4d system by
instead working on the orbifold. It was then conjectured in ref. [366] that this equivalence should hold
more generally for the full partition function. Indeed, ref. [366] computes the 1-loop determinants on
the orbifold and goes on to check that the partition function obtained in this way correctly encodes the
coupled 2d-4d and 2d DOF.
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In other words, the 1-loop determinant in the presence of the full Levi defect is
scale-invariant. Hence, by eq. (8.2.8),

−4a(4d)
M +

a(2d)
Σ
3

= −(N − 1) . (8.2.32)

The right-hand side is the contribution of the measure in eq. (5.2.3). Indeed,
expressing the (N − 1) dimensional integral over the Cartan subalgebra in terms of
the dimensionless combination ra produces an overall factor of r−(N−1), giving rise to
the right-hand side.

The central charge a(4d)
M for N = 4 SU(N) SYM theory is well-known, 4a(4d)

M = N2 − 1,
and so we find

a(2d)
Σ
3

= N2 − N , (8.2.33)

which agrees with eq. (8.2.27) in this special case, as advertised.

This agreement may seem surprising, given the different 6d origins of this surface
defect and the defects that lead to eq. (8.2.27). This full surface defect comes from the
compactification on a torus of the 6d N = (2, 0) theory with a co-dimension two
defect [365, 366]. On the other hand, the surface defects that lead to eq. (8.2.27),
namely the GLSM quivers reviewed in section 8.1, come from a co-dimension four
defect in the 6d theory, i.e. a Wilson surface defect localised at a point on the torus. In
these two descriptions a(2d)

Σ agrees because of the duality of refs. [293, 345, 354, 367],
mentioned in section 8.1, which leaves invariant the S4, the Σ2 = S2 wrapped by the
defect, and the stress tensor, and hence leaves invariant a(2d)

Σ . Of course, also crucial is
the fact that a(2d)

Σ depends only on the Levi subgroup of each defect: if a(2d)
Σ depended

on more detailed information, then the equivalence would not be possible.

8.2.5 N = 2 SQCD with 2N flavours and a full Levi defect

Another simple, yet non-trivial example of a class S theory is massless N = 2 SQCD
with 2N flavours. A full surface defect in this theory is considered in ref. [366].

The 1-loop determinant with a full surface defect is

ZSQCD
1-loop[1

N ] (8.2.34)

=
∏α∈∆+ Υ(α(a) + ϵ2|ϵ1, ϵ2)Υ(−α(a)|ϵ1, ϵ2)

∏N
i,j=1 Υ

(︂
hi(a) + ϵ1+ϵ2

2 +
⌈︂

N−i−j+1
N

⌉︂
ϵ2|ϵ1, ϵ2

)︂
Υ
(︂
−hi(a) + ϵ1+ϵ2

2 +
⌈︂

i−j
N

⌉︂
ϵ2|ϵ1, ϵ2

)︂ ,

where hi are the weights of the fundamental representation of SU(N).

Following the same strategy as above, we factor out 1
r to write the arguments of the

special functions in terms of dimensionless quantities ϵ̃1,2. Let us consider the
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numerator first. The scaling behaviour of the Upsilon-functions in eq. (8.2.15) in the
b → 1 limit gives a scaling weight of the numerator of the form

− (N2 − N)

3
− 4ρ(ra)− ∑

α∈∆
(α(ra))2 , (8.2.35)

where ρ is the Weyl vector, and ∆ is the set of all (positive and negative) roots. The
denominator contributes a factor

2
3

N2 − N + 4ρ(ra) + 2N
N

∑
i=1

(hi(ra))2 (8.2.36)

to the overall scaling weight. A vanishing beta function implies (see e.g. ref. [23])

∑
α∈∆

(α(a))2 = 2N
N

∑
i=1

(hi(a))2 . (8.2.37)

Hence, upon summing the contributions of the numerator and denominator one finds
that all terms that depend on the VEV a cancel, giving an overall scaling weight
for eq. (8.2.34) of the form

1
3

N2 − 2
3

N . (8.2.38)

Finally, to account for a(4d)
M , we normalise by the partition function without the defect:

ZSQCD
1-loop =

∏α∈∆+ Υ(α(a)|ϵ1, ϵ2)Υ(−α(a)|ϵ1, ϵ2)

∏N
i,j=1 Υ

(︁
hi(a) + ϵ1+ϵ2

2 |ϵ1, ϵ2
)︁

Υ
(︁
−hi(a) + ϵ1+ϵ2

2 |ϵ1, ϵ2
)︁ , (8.2.39)

which scales with weight

−7
6

N2 +
5
6

N , (8.2.40)

where we have again used eq. (8.2.37). Subtracting eq. (8.2.40) from eq. (8.2.38), and
since the measure contributions cancel, we find that a(2d)

Σ for a full Levi type-L defect in
N = 2 conformal SQCD is given by

a(2d)
Σ
3

=
3
2
(N2 − N) . (8.2.41)

8.3 SUSY partition function on S1 × Sd−1

In section 5.3, we considered the partition function Z of a SCFT on Md = S1
R × Sd−1

and argued that it is identified with the SCI [224], up to a normalisation factor. Here
S1

R is the temporal circle with radius R around which the fermions have periodic
boundary conditions. In this section we will first argue for the appearance of the
central charge d(2d)

2 in Z in the presence of a 2d superconformal defect wrapping
Σ2 = S1

R × S1. After setting the general framework in section 8.3.1, we will examine a
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model where d(2d)
2 has been calculated holographically [50]: the Wilson surface

operator in the 6d N = (2, 0) AN−1 SCFT (section 8.3.2). We will see that upon
deformation of Z by these specific 2d defects the exponent in the normalisation, i.e.
the SCE [227, 229, 230], changes by a factor proportional to d(2d)

2 .

The logic of the construction that computed d(2d)
2 in this example is straightforward to

extend to superconformal defects of arbitrary co-dimension. In the final part of this
section, we will propose the form of a B-type anomaly coefficient (or possibly a linear
combination thereof) of a 1

2 -BPS co-dimension two defect wrapping S1
R × S3 in the 6d

N = (2, 0) AN−1 SCFT, our eq. (8.3.60) below. However, we have not been able to
identify which of the 22 parity-even B-type defect central charges in eq. (6.1.1) we
computed.

8.3.1 Anomalies and SUSY Casimir energy

In this subsection we argue that the change of the SCE due to a defect on Σ2 is
proportional to d(2d)

2 . To begin, consider the partition function of a SCFT, Z(R, µj), on
Md = S1

R × Sd−1 for even d, where µj are chemical potentials for superconformal
Cartan generators that commute with the supercharge used to define the index, I , as
in eq. (5.3.8). The main argument in refs. [227–229] is that by utilising SUSY
localisation to compute Z(R, µj), one finds a general form proportional to the SCI. The
proportionality factor defines the SCE, Ec. The understanding here is that, as an object
counting protected operators starting from the identity operator, I is an ascending
polynomial in non-negative powers of fugacities, qj, starting at one, i.e.
I = 1 + q#

j + . . ., with # > 0.

In the presence of a defect preserving the supercharge used to define the index, I will
generically pick up negative powers in an expansion in q, which will need to be
compensated in order to maintain the normalisation that the index begins counting
with the identity operator [290, 368]. That is, the SCI in the presence of a surface defect
is still counting states, in a similar sense as in the ambient theory, but now including
defect states in radial quantisation around the defect.

As reviewed in section 5.4 around eq. (5.4.11), the SCE in a SCFT has been conjectured
to be given by the equivariant integration of the anomaly polynomial [229]. To our
knowledge this conjecture has not been rigorously proven, however, there is
compelling evidence for its validity.

Now, we would like to outline how we conjecture a p-dimensional defect wrapping
Σp ↪→ Md modifies Ec. One line of reasoning starts from eq. (5.4.11), and requires that
we make two assumptions from the start: (i) the deformed anomaly polynomial
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factorises into ambient and defect localised contributions

Ad+2(Σ ↪→ Md) → Ad+2(Md) + δ
(q)
Σp

Ap+2(Σp) , (8.3.42)

(ii) there is a sufficient amount of superconformal symmetry preserved by the defect
such that the defect Weyl anomaly sits in a multiplet with other global defect localised
anomalies, e.g. defect chiral anomalies. In addition to finding a general proof of Ec

being given by
∫︁
Ad+2(M), proving the validity of these assumptions is the focus of

on-going work.

If both assumptions (i) and (ii) hold, then the result of the equivariant integration of
Ap+2(Σp) is related to the integrated defect Weyl anomaly for even p. That is, the
anomaly coefficients that can appear in

∫︁
Ap+2(Σ) are controlled by coefficients

appearing in the non-vanishing contributions to the integrated defect Weyl anomaly.

When p = 2, it is immediately clear from the form of the defect Weyl anomaly
eq. (3.4.38) that the A-type term will not contribute: the Euler characters of
Σ2 = S1

R × S1 and its squashings vanish. However, the integrated B-type contributions
coming from II̊2 and Wab

ab do not necessarily vanish on a squashed sphere. Moreover,
for our 2d superconformal defects d(2d)

2 = −d(2d)
1 has been proven in d = 4 and

conjectured in other d > 4 [288]. Thus, if assumptions (i) and (ii) hold, then the change
in Ec due to the presence of a superconformal defect wrapping Σ2 must be
proportional to d(2d)

2 when d = 4, at least for a parity-preserving defect. Supported by
evidence in the following subsections, we conjecture that it is proportional to d(2d)

2 in
other d as well.

Finally, while not directly related to anomalies, a different line of reasoning also
suggests the appearance of d(2d)

2 in the SCE. From the point of view of constructing
VOAs from 4d SCFTs [256, 257] and 6d SCFTs [258], the Schur limit of the SUSY
partition function of an N ≥ 2 SCFT on S1 × S3 or N = (2, 0) SCFT on S1 × S5 is the
character of the vacuum module of the VOA, see e.g. ref. [369]. As shown in ref. [290],
the 4d SCI in the presence of a superconformal surface defect inserted normal to the
VOA plane instead computes in the Schur limit the character of some non-vacuum
module. As mentioned in section 5.5, the dimension of the defect identity in the
module is given by d(2d)

2 [288]. This is precisely the statement that introducing the
defect shifts Ec by a term ∝ d(2d)

2 .

8.3.2 6d SUSY Casimir energy

In this subsection, we consider the partition function of the 6d N = (2, 0) AN−1 SCFT
on the squashed S1

R × S5 in the presence of 2d or 4d superconformal defects.9 The 2d

9The metric on the squashed S1
R × S5 can be found in, e.g. appendix B in ref. [311]. Our calculations,

however, will not require specific details about the ambient geometry.
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defect (co-dimension four), i.e. a Wilson surface operator, is placed along
Σ2 = S1

R × S1. The 4d defect (co-dimension two), is placed along S1
R × S3. Ref. [311]

carried out a systematic study of the twisted partition function of this 6d SCFT with
both types of defects. Using the results of ref. [311] and our arguments from
section 8.3.1, we will calculate central charges for both types of defects. For the Wilson
surfaces, we will unambiguously find d(2d)

2 in the SCE. For the 4d defects, however, we
cannot say exactly which central charge(s) we are computing. Our result serves as a
prediction for such putative central charge(s).

Let us briefly review the 6d N = (2, 0) SCI and its unrefined limit. Let ϵi be the
squashing parameters of the S5. In contrast to section 8.2, we will take the squashing
parameters ϵ1,2,3 to be dimensionless, i.e. they come with appropriate factors of the
equatorial radius of the S5, which we take to be the identity in this section. The bosonic
part of the SCA of the theory is so(6, 2)⊕ usp(4)R ⊂ osp(8∗|4) with Cartan generators
(E, R1, R2, h1, h2, h3). The generators hi rotate the planes R2

ϵi
⊂ R6 into which the

squashed S5 is embedded. Among the SUSY generators QR1R2
h1h2h3

, where the indices are
all ± 1

2 , the privileged supercharge used to construct the index is Q ≡ Q++
−−−. The

states contributing to the SCI obey the shortening condition in saturating the bound

E ≥ 2(R1 + R2) + h1 + h2 + h3 . (8.3.43)

Assuming saturation of eq. (8.3.43), the index can be expressed as

I = TrHQ(−1)F pR1−R2
3

∏
i=1

qhi+
R1+R2

2
i , (8.3.44)

where HQ is the subspace of the Hilbert space annihilated by Q and Q†. The fugacities
are qi ≡ e−Rϵi and p ≡ e−Rµ, where µ is the chemical potential for the R-symmetry
generator R1 − R2. The unrefined limit of I is defined by µ → 1

2 (ϵ1 + ϵ2 − ϵ3). In this
limit, an additional supercharge Q′ ≡ Q+−

++− commutes with the Cartan generators,
and so the unrefined index collapses to

Iunref = TrHQ, Q′ (−1)FqE−R1 sh1+R2 , (8.3.45)

where q ≡ q3 and s ≡ q1/q2. Note the privileged status of rotations in the plane R2
ϵ3

,
which is identified with the VOA plane of the 6d theory [258]. The index Iunref is then
interpreted as the character of the vacuum module of the VOA, and the SCE is
identified with the central charge of the VOA, c(2d)

VOA, up to a factor [229].

Famously, the 6d N = (2, 0) AN−1 SCFT does not have a known Lagrangian
description. However, its circle reduction on S1

R gives 5d N = 2 SU(N) SYM theory
with coupling g2

YM = 2πR. It is a long-standing conjecture that the full path integral of
5d N = 2 SYM theory captures the full 6d N = (2, 0) theory, where instanton particles
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are identified with Kaluza-Klein modes of the 6d theory on the circle [370–372]. Using
this conjecture, the authors of refs. [373, 374] argue that both the perturbative and
non-perturbative contributions to the localised partition function of N = 2 SYM
theory on the squashed S5 are sufficient to count the states contributing to the 6d
index. The co-dimension four and two defects wrapping S1

R in 6d reduce to Wilson
lines or certain 3d defects in the 5d SYM theory on the squashed S5. Ref. [311] argues
that the localised partition functions with these defects are sufficient to compute the
deformations of the SCI. Although this is far from a proven fact about the dimensional
reduction to 5d, we will adopt the same working assumption. The fact that for Wilson
surfaces we will recover precisely the holographic result for d(2d)

2 provides some
evidence for this assumption.

In the absence of defects, the localised partition function of the 5d U(N) N = 2 SYM
theory on a squashed S5 takes the form

ZS5 =
∫︂ dN−1a

N!
iN−1e

2π2
ϵ1ϵ2ϵ3

Tra2
Z1Z2Z3 , (8.3.46)

where Z1 is the Nekrasov partition function [22, 375] on S1
1 ×R4

ϵ2, ϵ3
, with Z2 and Z3

obtained from Z1 by cyclic permutation of the labels {1, 2, 3}, and a is a constant
adjoint-valued scalar parametrising the BPS locus.

Without any defects, the localised partition function of the 6d N = (2, 0) AN−1 theory
in the unrefined limit computes, in the VOA, the character of the vacuum module of
the WN algebra. Defining 2πiτ = −Rϵ3 so that q = e2πiτ, and defining ϵ1ϵ2 = 1 and
b2 = ϵ1/ϵ2, the partition function sees contributions in the unrefined limit from the
three fixed points on the S1

i of the form [311, 374, 376]

Z1 = ∏
e∈∆+

2 sin
π

b
(e, a) , Z2 = ∏

e∈∆+

2 sin bπ(e, a) , Z3 = η
(︂
−τ−1

)︂1−N
, (8.3.47)

where η(·) is the Dedekind η function. Let Q = ρ(b+ b−1) with ρ being the Weyl
vector of su(N), and let Wg be the Weyl group of g = AN−1. After integrating over a,
eq. (8.3.46) becomes

ZS5 =
q−

1
2 (Q,Q)

η(τ)N−1 ∑
σ∈Wg

ε(σ)q−(σ(ρ),ρ)+(ρ,ρ) , (8.3.48)

where ε(σ) = (−1)ℓ(σ) and ℓ(σ) is the length of the Weyl group element σ. See e.g.
eq. (3.4) of ref. [311]. The exponent of the prefactor is related to the central charge c(2d)

VOA

of the VOA as q−
c(2d)
VOA
24 . Recalling that η(τ) ∝ q1/24, we thus have

c(2d)
VOA = (N − 1) + 12(Q, Q) = (N − 1) + N(N2 − 1)(b+ b−1)2 , (8.3.49)
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where we identify c(2d)
VOA/24 as the 6d SCE of the unrefined SCI [229].

8.3.2.1 2d defects

Adding a surface operator wrapping S1
R × S1

1 deforms the index to compute the
character of a degenerate module of the associated WN-algebra in the VOA plane. The
reduction to 5d yields a Wilson loop operator on S1

1 carrying an irreducible
representation of su(N) with highest weight ω1. The fixed point contributions on S1

1

are modified from those in eq. (8.3.47). In ref. [311] they were found to be (see their
section 3.2 for more details)

Z1 = ∏
e∈∆+

2 sin
π

b
(e, a)Trω1 e

2πia
b , (8.3.50)

where Trω is a trace over the representation specified by ω. Z2 and Z3 remain
unchanged compared to eq. (8.3.47). Note that we could have just as well inserted the
Wilson loop on S1

2. However, since the plane R2
ϵ3

is designated as the VOA plane, the
Wilson loop cannot wrap S1

3 and also preserve the necessary nilpotent charge needed
to define the VOA.10 Plugging Z1 from eq. (8.3.50) into the partition function and
integrating over a gives [311]

Zω1
S5 = q−Cω1 /24 ∑

σ∈W(g)

ε(σ)e−(σ(ρ),ρ+ω1)+(ρ,ρ+ω1) , (8.3.51)

where the new “central charge” is

Cω1 = (N − 1) + 12(Q + b−1ω1, Q + b−1ω1) . (8.3.52)

To isolate the defect contribution to the partition function, we divide eq. (8.3.51) by the
ambient theory result in eq. (8.3.48), which gives the change in the central charge,

Cω1 − c(2d)
VOA =

24
b

(Q, ω1) +
12
b2 (ω1, ω1) . (8.3.53)

To compare to the holographic result for a Wilson surface in section 8.1, we take
b → 1, so that Q = ρ(b+ b−1) → 2ρ, and use d(2d)

2 = −24(ρ, ω1)− 6(ω1, ω1) from
eq. (8.1.6b), such that

Cω1 − c(2d)
VOA = 48 (ρ, ω1) + 12 (ω1, ω1) = −2 d(2d)

2 . (8.3.54)

We have thus shown that a single defect changes the normalisation factor from
q−c(2d)

VOA/24 to q−Cω1 /24, or recalling that q = e2πiτ = e−Rϵ3 , the defect shifts the SCE from

10It is also true for 2d N = (4, 4) defects in 4d N = 4 SYM theory that the surface operators must be
inserted orthogonal to the chiral algebra plane. Note, though, that a 2d chiral (e.g. N = (0, 8) or (0, 4))
superconformal defect could be inserted along the chiral algebra plane while preserving the nilpotent
supercharge used to define the VOA. We thank W. Peelaers for pointing this out.
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Ec = − c(2d)
VOA
24 ϵ3 to Ec = −Cω1

24 ϵ3. Our result eq. (8.3.54) then shows that the change in Ec

is ∝ d(2d)
2 , as advertised.

Crucially, for a Wilson surface in the 6d N = (2, 0) theory at large N we can
distinguish −d(2d)

2 and a(2d)
Σ , namely a(2d)

Σ + d(2d)
2 = −3(ω1, ω1). The comparison thus

leaves no doubt: d(2d)
2 controls the defect contribution to the SCE. The calculation here

involved no approximations, relying only on SUSY and the assumptions about the
reduction on S1

R mentioned above. Our result eq. (8.3.54) thus provides strong
evidence that the holographic result for d(2d)

2 in eq. (8.1.6b) is in fact exact, and not just
the leading large-N limiting value.

In the above discussion, we contented ourselves with the study of a single Wilson
surface on S1

R × S1
1. A more general BPS configuration involving two non-intersecting

Wilson surfaces on S1
R × S5 was studied in ref. [3], upon which this chapter is based.

The second Wilson surface is taken to wrap S1
R × S1

2, which also preserves the
necessary nilpotent supercharge needed to define the VOA. Ref. [311] computed the
localised partition function of the compactification on S1

R in the presence of both
defects. Inclusion of the second defect leads to a modification of eq. (8.3.53) [3].
Interestingly, the result is not merely the sum of d(2d)

2 for each of the two defects but it
involves a cross term which depends on the inner product (ω1, ω2), where ω2 is the
highest weight of the representation labelling the second Wilson surface. We speculate
that this cross term arises from the interaction energy between the two loops on
S1

R × S5.

8.3.2.2 4d defects

In the 6d N = (2, 0) AN−1 SCFT, there is another class of superconformal defects that
one could construct: 4d defects. The authors of ref. [311] also constructed the index for
these 4d defects, using arguments similar to the 2d case.

Co-dimension two operators in 6d N = (2, 0) AN−1 SCFTs, in particular, are labelled
by nilpotent orbits of AN−1, or equivalently, by homomorphisms ϱ : su(2) → AN−1. In
the unrefined limit they correspond to a deformation of the VOA by the insertion of a
semi-degenerate operator labelled by a partition of N, i.e. [N1, . . . , Nn+1] where

∑n+1
i=1 Ni = N. That is, 4d superconformal operators preserve the Levi subalgebra

l = s
[︂⨁︁n+1

i=1 u(Ni)
]︂
.

In the reduction along S1
R, which the co-dimension two defect wraps, it has an

equivalent description as a prescribed singularity in the gauge field of the resulting 5d
N = 2 SYM theory. Given a Levi subalgebra l, the monodromy parameters are
m⃗ = ⊕n+1

i=1 m⃗i with each m⃗i being a rank Ni vector whose components are all identically
mi, and the Weyl vector of l is ρl = ⊕n+1

i=1 ρNi with each ρNi being the Weyl vector of
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su(Ni). The BPS locus is parametrised by the adjoint scalar VEV a and σ ∈ Wg/Wl —
where Wg and Wl are the Weyl groups of g = AN−1 and l, respectively — which also
labels a permutation of the monodromies, i.e. different inequivalent choices of
embeddings of l in AN−1.

To compute the index in the presence of the defect, we need to use the form of the
localised partition function in eq. (8.3.46) supplemented by the classical action from
the monodromies given by e−2πi(σ(m⃗),a) and the Nekrasov partition functions
corresponding to the particular ϱ and choice of σ

Zϱ,σ
1 =

n+1

∏
i=1

∏
e∈∆+

i

2 sin
π

b
(e, σ(a)) , Zϱ,σ

2 =
n+1

∏
i=1

∏
e∈∆+

i

2 sin πb(e, σ(a)) , (8.3.55)

where ∆+
i is the space of positives roots of the ith summand of l and as above

Z3 = η(−τ−1)1−N . See section 3.3 of ref. [311] for further details. Summing over all σ

and integrating over the locus parametrised by a gives

Zϱ

S5 = q−Cϱ/24 ∑
σ

ε(σ)q−(σ(ρl)−ρl, ρl) . (8.3.56)

Dividing Zϱ

S5 by the ambient theory partition function changes the normalisation

factor to q−(Cϱ−c(2d)
VOA)/24, where

Cϱ − c(2d)
VOA = −24(Q, µϱ) + 12(µϱ, µϱ) , (8.3.57)

and
µϱ = Q + m⃗ − (b+ b−1)ρl . (8.3.58)

Using Q = ρ(b+ b−1) and (m⃗, ρl) = 0, we find

Cϱ − c(2d)
VOA = 12(b+ b−1)2 [(ρl, ρl)− (ρ, ρ)] + 12(m⃗, m⃗) . (8.3.59)

We can easily compute (ρl, ρl) =
1

12 (∑
n+1
i=1 (N3

i − Ni)) by considering each individual
su(Ni) summand in l. In the limit b → 1 we thus find

Cϱ − c(2d)
VOA = −4

(︄
N3 −

n+1

∑
i=1

N3
i − 3(m⃗, m⃗)

)︄
. (8.3.60)

As mentioned above, we do not know which B-type defect central charge(s) in
eq. (6.1.1) we have computed. For now, eq. (8.3.60) serves as a prediction for 4d
superconformal defects in the 6d N = (2, 0) AN−1 SCFT.

Our result in eq. (8.3.60) bears a resemblance, modulo overall sign and powers of N
and Ni, to d(2d)

2 for the N = (4, 4) Levi type-L surface operator in 4d N = 4 SYM
theory in eq. (8.1.5b). Given the connection between the two constructions via
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dimensional reduction, this superficial resemblance is perhaps not surprising. Beyond
the scope of the current work, but the focus of on-going investigation, is finding the
behaviour of the defect Weyl anomaly of the 4d Levi type-L defect in 6d under
dimensional reduction to a 2d Levi type-L defect in 4d N ≥ 2 SCFTs.

8.4 Discussion

In this chapter, we illustrated techniques for computing the central charges a(2d)
Σ and

d(2d)
2 of 2d superconformal defects in SCFTs. Our methods rely only on a sufficient

amount of SUSY, and involve no approximations. In particular, we used existing
results for SUSY localisation and SCIs to extract new results for a(2d)

Σ and d(2d)
2 .

Whenever our results overlapped with existing holographic results, they agreed
perfectly, proving that the latter were not merely large-N or strong-coupling limits,
but were in fact exact.

Our results pave the way for many fruitful generalisations. Obviously, a variety of
other existing results for SUSY partition functions on Sd and S1 × Sd−1 could be mined
for further novel results for a(2d)

Σ and d(2d)
2 . This includes twist field defects relevant for

calculations of SUSY Rényi entropy [377–379], where information theoretic constraints
may imply bounds on the defect’s central charges [380]. Additionally, to our
knowledge a variety of 2d superconformal defects have yet to be described using any
of the SUSY methods we have discussed. A prominent example is chiral defects, such
as defects with 2d N = (0, 4) SUSY. Chiral defects break parity, producing parity-odd
terms in the trace anomaly. These in turn define the two parity-odd central charges
d̃(2d)

1 and d̃(2d)

2 in eq. (8.2.7). In principle, these could be calculated using the methods we
have described. Furthermore, as deformations of the SCI, 2d N = (0, 4) defects can
preserve the nilpotent supercharge used in the cohomological construction of VOAs
from 4d SCFTs [256], and so their central charges may appear in the vacuum character
of a deformed VOA.

Other approaches to computing SUSY partition functions on Sd and S1 × Sd−1 could
also be developed along similar lines as useful tools to extract defect central charges in
novel systems. Examples include geometric engineering [381, 382], or computing a 5d
SUSY partition function on S1 × S4 with a 3d SUSY defect along S1 × S2 [383] and then
reducing on the common S1 to obtain a 4d SUSY partition function on S4 with a 2d
defect along S2 ↪→ S4 [45]. More importantly, studying how the defect trace anomalies
and associated central charges behave under dimensional reduction could provide a
new window into how defect physics changes under RG flows across
dimensions [384].

All the above methods could also be straightforwardly generalised to defects of other
dimensions. For example, in 4d SCFTs various 1

2 -BPS interfaces and domain walls
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have been studied using holography [385–387], SUSY localisation [388], and other
methods [219]. In these cases the interface contribution to the trace anomaly defines
two central charges, b(3d)

1 and b(3d)
2 in eq. (3.4.45), that could in principle be calculated

from existing results. In 5d and 6d SCFTs, higher-dimensional defects are possible,
such as the 4d defect in the 6d N = (2, 0) AN−1 theory that we discussed at the end of
section 8.3. However, it is unclear what (linear combination) of central charges the
SUSY methods could compute. Finding the precise relation between the defect
contribution to the SCE and defect anomalies across dimensions is an important
question that we are eager to settle in future work.
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Chapter 9

Concluding Remarks

In this thesis, we studied conformal defects through their contributions to the Weyl
anomaly. The coefficients of each term, the defect central charges, encode valuable
physical information about the defect. They enter in various physical observables, and
have a host of interesting properties. Importantly, some defect central charges must
decrease under defect RG flows by certain monotonicity theorems. These give rise to a
notion of irreversibility along defect RG flows and provide order in the space of
admissible defects. This makes them crucial for characterising and classifying defects
and perhaps QFTs more generally.

Our emphasis in this work was on exact methods to study defects via their central
charges. We derived novel universal results, applied existing exact methods to
compute defect central charges, and developed new non-perturbative tools. In doing
so, we made use of a wide range of concepts, including DCFT methods, information
theory, and SUSY. Although not reviewed explicitly in this work, much of the
inspiration was drawn from string and M-theory. In particular, string theory
arguments imply the existence of SCFTs in dimensions d = 5 and d = 6 for which no
conventional Lagrangian formulation can exist. These theories are inherently strongly
coupled and the local operator spectrum of these SCFTs is shrouded in mystery.
However, string theory suggests that these SCFTs admit defects of various defect
dimensions p.

Motivated by the co-dimension two defects of the 6d N = 2 SCFTs, we studied p = 4
defects in chapter 6. Our main result was the full form of the defect Weyl anomaly for
any co-dimension, including parity-breaking terms, in eq. (6.1.1). In addition to the
Euler density, it consists of 22 parity-even terms which are allowed for any
co-dimension. The number of parity-breaking terms is dependent on the
co-dimension. Importantly, we showed how some of the defect central charges appear
in correlation functions of universal DCFT operators. They include the displacement
operator two-point function, and the stress tensor one-point function in flat space
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when d ≥ 6 and curved space when d = 5. Through their appearance in correlation
functions, we are able to derive bounds on these defect central charges stemming from
unitarity and the ANEC. Further, we argued that the defect’s contribution to the
universal part of EE of a spherical region centred on the defect depends on two of its
central charges.

In chapter 7, we studied monodromy defects in the theories of a free complex scalar
and a free Dirac fermion. Monodromy defects are simple, yet non-trivial,
co-dimension two defects which one can introduce whenever the theory has a global
symmetry. Using existing techniques available in free field theories, we were able to
compute various correlation functions exactly. We then showed that we can extract
some of the defect central charges when d = 4 and d = 6. In the latter case we applied
many of our results of chapter 6. As a check of our results in d = 4, we computed the
EE using heat kernel methods. In our analysis of monodromy defects, we observed
that the defect OPE contains special defect local operators with low scaling
dimensions. Using these operators, we constructed quadratic relevant deformations,
triggering an RG flow. Our results are consistent with the defect c-theorems of
refs. [55, 57]. Interestingly, we observed that for special values of the monodromy
parameter in the free fermion CFT, there exist exactly marginal defect operators,
signalling the existence of a non-SUSY defect conformal manifold.

Finally in chapter 8, we studied a set of conformal defects in interacting CFTs. To
make the problem tractable, we imposed superconformal invariance. We then devised
new non-perturbative methods to compute defect central charges, which rely on SUSY
localisation. In particular, using the fact that A-type central charges appear in sphere
partition functions, we explained how the exact value of the A-type defect central
charge can be extracted from the localised partition function of a defect wrapping an
equatorial Sp ↪→ Sd, with p = 2Z. We illustrated our methods in numerous examples
of p = 2 defects in 4d SCFTs. We then argued that a linear combination of B-type
defect central charges appears in the SCE, a part of the localised partition function on
S1

R × Sd−1, with the defect wrapping S1
R × Sp−1. For the co-dimension four defects of

the 6d N = (2, 0) AN−1 SCFT, we were able to identify the precise defect central
charge computed in this way. Our methods are broadly applicable to a large class of
superconformal defects across dimensions, and open up many new possibilities for
characterising and classifying defects, boundaries, and CFTs with various p and d.

Many of the possible immediate extensions of our results and further directions were
discussed at the end of chapters 6, 7, and 8. Here we conclude with a few general
remarks related to our main motivation of classifying, or mapping out the space of
QFTs, which led us to defects in the first place.

As argued in chapter 1, the detailed study of defect Weyl anomalies is an important
step towards this goal. Since conformal defects occupy a privileged position in the
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space of admissible defects, they are a natural starting point for the exploration of
defects and their role in QFT. This makes our result of the 4d defect Weyl anomaly in
chapter 6 so essential. It provides us with previously unknown parameters that
characterise a large class of defects, from which others may be reached by appropriate
deformations. Moreover, we initiated the detailed study of these parameters, deriving
novel universal results. Indeed, determining how these parameters appear in
correlation functions is a key step in identifying and deriving monotonicity theorems,
which provide order in the space of defects. As shown for some of these coefficients of
the 4d defect Weyl anomaly, physical principles can impose further bounds on them.
It is tempting to speculate that identifying all such constraints would carve out the
space of physically admissible conformal defects.

Our computations of defect central charges in numerous examples in chapters 7 and 8
are just as important. Examples often reveal patterns which may in fact be general
features. These properties may be amenable to a rigorous proof. Conversely, examples
can rule out the possibility of certain bounds or monotonicity theorems for some
central charges. As such, our computations provide crucial data points to explore the
space of defects in QFT. Moreover, given a pair of examples of defects in a CFT,
existing monotonicity theorems reveal whether they can possibly be connected by a
defect RG flow from one to the other, providing a relative hierarchy between them.

For defects in interacting CFTs, performing exact computations of these quantities is
typically challenging. This underscores the importance of the methods for interacting
SCFTs developed and outlined in chapter 8. To our knowledge, these methods
allowed us to perform the first exact computations of examples of defect central
charges in interacting theories. Previously, only holographic results at large N were
known whereas our computations do not involve any approximations and are
non-perturbative. Moreover, for theories with a holographic dual, our methods give
results that contain implicit statements about quantum gravity. Indeed, by virtue of
being exact in N, they must encode quantum gravitational effects on anti-de Sitter
spacetimes in the dual frame.

One particular example of such a theory is the 6d N = (2, 0) SCFT, which describes
the low energy limit of branes in M-theory. From a purely field theoretic perspective,
however, the absence of a Lagrangian in the interacting case makes it prohibitively
difficult to study using conventional QFT methods. Since co-dimension two and four
defects are some of the few superconformal operators known to exist in this theory, it
is essential to characterise them. Our computations in chapter 8 for the co-dimension
four defects provide new pieces of data and additional constraints on this SCFT. The
theory’s co-dimension two defects have proven harder to investigate. Our results for
the Weyl anomaly of 4d conformal defects discussed in chapter 6 provide another
angle on these defects. Indeed, one now has concrete parameters at one’s disposal that
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are computable in principle. Pinning down this exotic theory will presumably reveal
general features about strongly coupled QFTs.

As mentioned in section 8.4, understanding defect RG flows across dimensions
constitutes an integral part of mapping out the space of defects. The theories of class S
are an ideal starting point to study these flows. As discussed in chapter 8, they are a
rich yet highly constrained set of 4d SCFTs which arise from (twisted) compactification
of the 6d N = (2, 0) SCFT on a Riemann surface. These compactifications can be
enriched with defects: a defect in the 6d theory extending along some of the
non-compact directions descends to a defect in class S . By allowing defects to
(partially or fully) wrap the Riemann surface, one can further engineer defects in 4d
with a different dimension than their parent defect. Our methods of chapter 8 will be
vital for understanding these types of flows, and, in particular, how the central
charges of the parent defect determine the central charges of the compactified defect.

Still closer to our objective of classifying QFTs through the defects that they admit, one
could imagine using our methods to study RG interfaces. Starting with a CFT, say, on
flat space, one can integrate a relevant deformation over half of space. This triggers an
RG flow on one half whereas the other half stays unaffected. If the endpoint in the IR
is another CFT, this flow engineers a conformal interface between two CFTs connected
by an RG flow. A classification of conformal interfaces would then reveal which
ordinary bulk CFTs may be connected by an RG flow. If the endpoint of the flow on
half-space is gapped, this engineers a conformal boundary condition for the theory on
the other side. A classification of conformal boundary conditions would then reveal
the gapped vacua that a CFT may admit. In either case, the resulting DCFT or BCFT is
likely to be much simpler to study than the corresponding bulk flows because CFT
methods are available. Restricting ourselves further to SUSY-preserving flows, our
methods developed in chapter 8 can be directly brought to bear.

In this thesis, we imposed highly restrictive spacetime symmetries for tractability. One
may wonder to what extend global symmetries can help with the classification
problem of QFTs and their admissible defects. Recently, the traditional notions of
global symmetry were extended to include various generalisations that lead to a
paradigm shift. Rather than characterising symmetry through the presence of
conserved currents and charges, ordinary global symmetries from a modern point of
view are associated with topological co-dimension one defects, called symmetry
defects, which have a group-like fusion product. Their action on charged local
operators realises the symmetry in the QFT. One advantage of this approach is that it
provides a natural language to discuss discrete symmetries. Moreover, this new
description can be generalised in a number of ways: Firstly, one can relax the
assumption that the symmetry defects are co-dimension one, and consider topological
defects of higher co-dimension [154]. These encode so-called higher-form symmetries.
Secondly, one may further relax the assumption of a group-like fusion law to a more
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general fusion ring, giving rise to the notion of non-invertible symmetries [234, 389].
In both cases, the objects charged under these symmetries are p ≥ 0 defects that need
not be topological.

These generalisations of symmetry may seem exotic at first but they have been
demonstrated to appear in many QFTs of various spacetime dimensions. E.g.
higher-form symmetries appear in d = 4 gauge theory, including theories as simple as
pure Maxwell and YM theory [154]. Non-invertible symmetries, which were originally
observed in low-dimensional examples, have recently been identified in many
ordinary QFTs in d = 4 [390–393]. This makes it rather surprising that they have
eluded our attention for more than half a century.

From this modern point of view, local and extended charged operators are treated on
the same footing. The study of defects has been central to the discovery of these new
symmetries, and may perhaps lead to further generalisations of symmetry.
Conversely, these symmetries may suggest a way towards a classification of
admissible defects in QFT. E.g. line defects and flavour Wilson lines in class S theories
have recently been shown to fall into equivalence classes of certain categorical
generalisations of symmetry, called 2-group symmetries [236, 394]. Whether similar
classification schemes exist for higher-dimensional defects in SCFTs remains to be
seen.

As with ordinary symmetries, these generalisations of symmetry constrain a given
QFT in various ways, e.g. through an analogue of ’t Hooft anomaly matching along
RG flows or through selection rules on correlation functions. Remarkably, the study of
higher-form symmetries has led to some progress on the YM mass gap problem. By
analysing a mixed anomaly between a higher-form symmetry and an ordinary
discrete symmetry in YM theory, ref. [395] showed that at theta angle θ = π YM
theory cannot be trivially gapped. Moreover, ’t Hooft anomaly matching for 2-group
symmetries allowed ref. [396] to prove that in 6d SCFTs the A-type central charge
a(6d)
M > 0 provided the theory has a vacuum manifold parametrised by VEVs of scalars

in the gauge multiplet. Non-invertible symmetries have been explored to a lesser
extent. A systematic analysis of their constraints on QFTs will undoubtedly lead to a
better understanding of what QFT is.

In view of these recent developments involving symmetries, it is tempting to
speculate that QFT may be due for a reformulation in a perhaps more algebraic
language. Such a reformulation should naturally allow for the description of strongly
coupled physics, and treat local and extended operators on an equal footing. Ideally, it
should suggest new computational strategies in strongly coupled QFTs but that may
be too much to wish for. SCFTs would be the ideal theoretical laboratories to explore
such ideas. On the one hand, they exhibit some of the interesting features of strongly
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coupled physics observed in nature. On the other hand, the vast amount of symmetry
makes their analysis tractable.

Ultimately, however, one wants to move away from (super)conformal symmetry. In
fact, many physical systems that can be probed in a real laboratory are not even
Lorentz-invariant. An interesting class of lattice spin models considered in the
condensed matter literature describes fractons. These models are characterised by a
large and robust ground state degeneracy, and their massive excitations, i.e. the
fractons, have restricted mobility. See e.g. ref. [397] for a review. The continuum limit
of these lattice models gives rise to exotic QFTs breaking Lorentz invariance. Fractonic
excitations are modelled by defects in these QFTs.

A peculiar feature of these models is that they can be shown to exhibit yet another
type of symmetry, called subsystem symmetry, whose symmetry defects are not
topological but conserved in time [398]. They are called subsystem symmetries
because their symmetry defects can only be supported on certain submanifolds.
Remarkably, some low energy observables receive contributions from large momenta,
giving rise to a mixing of UV and IR DOF [399]. These models violate the Wilsonian
paradigm, and call into question what is meant by QFT. A reformulation of QFT
should also encapsulate these phenomena.

In recent years, there has been significant interest in condensed matter systems that
have topological order, a gapped phase of matter characterised by a protected ground
state degeneracy and dependent on the topology of space. Such matter has been
suggested as a medium for fault-tolerant quantum computation [400]. See e.g.
ref. [401] for a review. Curiously, topological order does not fit the ordinary Landau
paradigm which states that phases of matter are classified by spontaneously broken
global symmetries. The discussion in the previous paragraphs suggests an enlarged
Landau paradigm that incorporates generalisations of symmetry. Importantly, defects
play the role of order parameters classifying phases in which higher-dimensional
objects condense. Whether all phases of matter can be described in this way remains
to be seen.

Boundaries can have interesting dynamics and transport properties in condensed
matter systems. These include systems with topological order, e.g. (integer and
fractional) quantum Hall states have gapless boundary excitations [402], but are not
limited to them. One system that has received considerable interest in recent years is
graphene, a (2 + 1)d sheet of carbon atoms whose bonds form a (bipartite) hexagonal
lattice. Different boundary conditions can be introduced by cutting the sheet at an
angle [403]. In the continuum, graphene is described by free fermions. Ref. [404]
showed that one of the possible boundary conditions corresponds to a BCFT. Since
BCFTs are partially characterised by their boundary central charges, strips of graphene
could be studied with techniques similar to the ones discussed in this thesis. If
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boundary central charges can be related to transport coefficients, one would perhaps
be able to measure them in a laboratory. This would allow one to experimentally
verify or falsify theoretical bounds, and may lead to the discovery of new ones.
Moreover, ref. [404] showed that graphene has a boundary condition that is scale but
not conformally invariant. It would be interesting to explore the constraints of scale
invariance alone on boundaries and defects in QFT.

We intend to explore many of these directions in future research.
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Appendix A

Chapter 3

A.1 Isolating the anomaly: p = 2 conformal defect in a d = 4
CFT

In this appendix we illustrate the algorithm discussed in sections 2.5 and 3.4 with a
simple example: the case of a p = 2 defect in a d = 4 ambient CFT. We will reproduce
the known result of refs. [50, 71, 72, 97, 98, 158–160], stated in eq. (3.4.38). The structure
of this section follows that of the supplemental Mathematica notebook available from
ref. [1], and we use notation that mirrors the notation in the notebook. Readers
interested in reproducing our results for p = 4 defects may wish to consult this
appendix first, as a warm-up exercise, before diving into our notebook.

Step 1: We begin by finding a basis of terms for the defect Weyl anomaly. The terms
need to be scalars built out of the metric gµν, the pullback eµ

a , the Weyl variation
parameter δω, and two derivatives. There are 10 of them.

It is convenient to separate the terms into three categories. The first one involves
scalars with a non-trivial Weyl transformation. There are three such terms:

B1 = R , B2 = R , B3 = IIiIIi . (A.1.1)

The second category involves scalars that are trivially Weyl invariant. There are four
linearly-independent such terms:

B̃1 = II̊
i
abII̊

ab
i , B̃2 = gacgbdWabcd , B̃3 = (R⊥)ij

ab , B̃4 = nijϵ
abII̊

i
acII̊

jc
b . (A.1.2)
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Finally, we list terms with derivatives acting on the variation parameter. There are
three of them:

D1 = IIiDiδω , D2 = NijDiDjδω , D3 = nijIIiDjδω . (A.1.3)

In general, these will all appear in the anomaly as

δωW (1) =
∫︂

Σ2

√︁
g

(︄
3

∑
i=1

biBiδω +
4

∑
i=1

b̃iB̃iδω +
3

∑
i=1

diDi

)︄
. (A.1.4)

A few comments are in order. In constructing this basis, and making sure that it is not
over-complete, we have used a number of geometric relations. Since the Weyl tensor
Wµνρσ is a linear combination of Riemann tensor, Ricci tensor and Ricci scalar, we are
free to disregard any terms built out of Rµνρσ. Similarly, we have traded in a IIµ

ab for its
traceless part II̊

µ
ab and its trace IIµ. Moreover, any term containing two copies of either

ϵab or nij can be re-written without any epsilon symbols using ϵabϵcd = δc
aδd

b − δc
bδd

a ,
and similarly nijnkℓ = Nk

i Nℓ
j − Nk

j Nℓ
i . Further, we only consider quantities that do not

need to be extended into the bulk. An example is NijDiIIj, which crucially depends on
how IIj is extended into the ambient geometry. Since there is no canonical way to do
so, we do not consider such terms here. In general, we don’t expect such terms be part
of the physical Weyl anomaly. In the present 2d case, WZ consistency eliminates them.
One may have also expected the following terms:

C1 = gabRab , C2 = NijRij , C3 = NikN jℓWijkℓ , C4 = gabNijWaibj ,

C5 = R⊥
ijabnijϵab , C6 = Ea

µDaIIµ , C7 = Eb
µDaII̊

µ
ab , (A.1.5)

where R⊥ is the normal bundle curvature, i.e. the curvature associated with the
connection induced from D that maps normal vectors to normal vectors by parallelly
transporting them along the submanifold. However, these are not linearly
independent. Firstly, C1 = B2 − C2. We can use this relation to eliminate C1. Now, C2

appears in the twice contracted Gauss eq. (3.3.32c). Trading the Riemann tensor for the
Weyl tensor, it reads

3C2 = −B1 + B2 − B̃1 + B̃2 +
3
4
B̃3 . (A.1.6)

Thus we can use it to eliminate C2. Furthermore, the fact that the trace of any two
indices of Wµνρσ with the ambient metric gµν vanishes implies that C3 = −C4 = B̃2. C5

can be removed by the Ricci identity eq. (3.3.34). Finally, C6 = −B3 using Ea
µIIµ = 0

and the definition of II, and similarly C7 = −B̃1. This leaves us with the terms in
eqs. (A.1.1), (A.1.2) and (A.1.3).

Step 2: WZ consistency reduces the number of terms to 7. To compute [δ1, δ2]W (1)

we take a second Weyl variation of the above basis. We anti-symmetrise in the
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variation parameters, δω1 and δω2, which generates linear combinations of the
following terms

DWZ
1 = δω2IIiDiδω1 − (1 ↔ 2) , DWZ

2 = δω2NijDiDjδω1 − (1 ↔ 2) ,

DWZ
3 = δω2nijIIiDjδω1 − (1 ↔ 2) , DWZ

4 = nijDjδω2Diδω1 − (1 ↔ 2) . (A.1.7)

The second Weyl variations are

(
√︁

g)−1δ1(
√︁

gB1δω2)− (1 ↔ 2) = 0,

(
√︁

g)−1δ1(
√︁

gB2δω2)− (1 ↔ 2) = 4
(︂
DWZ

1 −DWZ
2

)︂
,

(
√︁

g)−1δ1(
√︁

gB3δω2)− (1 ↔ 2) = −4DWZ
1 ,

(
√︁

g)−1δ1(
√︁

g B̃1δω2)− (1 ↔ 2) = 0 ,

(
√︁

g)−1δ1(
√︁

g B̃2δω2)− (1 ↔ 2) = 0 ,

(
√︁

g)−1δ1(
√︁

g B̃3δω2)− (1 ↔ 2) = 0 , (A.1.8)

(
√︁

g)−1δ1(
√︁

g B̃4δω2)− (1 ↔ 2) = 0 ,

(
√

γ)−1δ1(
√︁

gD∂
1δω2)− (1 ↔ 2) = 0 ,

(
√︁

g)−1δ1(
√︁

gD∂
2δω2)− (1 ↔ 2) = 0 ,

(
√︁

g)−1δ1(
√︁

gD∂
3δω2)− (1 ↔ 2) = −4DWZ

4 ,

where (1 ↔ 2) only exchanges the subscripts on the Weyl variation parameters, and
D∂

i denotes the operator version of Di in eq. (A.1.3) with the variation parameter δω

omitted. In the above we have dropped total derivatives along the submanifold D(. . .)
since the above terms appear in [δ1, δ2]W under an integral.

Solving WZ consistency reduces to a simple problem in linear algebra. Let
(BWZ)T = (B1, . . . ,B3, B̃1, . . . , B̃4,D∂

1 , . . . ,D∂
3) and (DWZ)T = (DWZ

1 , . . . ,DWZ
4 ). Let

MWZ be the 10 × 4 matrix that implements the transformation,

(︂
MWZ

)︂T
=

⎛⎜⎜⎜⎜⎝
0 4 −4 0 0 0 0 0 0 0
0 −4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −4

⎞⎟⎟⎟⎟⎠ , (A.1.9)

i.e. S2BWZ = MWZDWZ, where the operator S2 acts like
S2 A = (

√︁
g)−1δ1(

√︁
g Aδω2)− (1 ↔ 2) for some A. The (right) null space of (MWZ)T

is the general solution to the condition [δ1, δ2]W (1) = 0. In this example, the solutions
are particularly simple: they just correspond to B1δω, B̃1δω, B̃2δω, B̃3δω, B̃4δω, D1

and D2, each added with an arbitrary coefficient in the anomaly polynomial, i.e.

δωW (2) =
∫︂

Σ2

√︁
g

(︄
b1B1δω +

4

∑
i=1

b̃iB̃iδω +
2

∑
i=1

diDi

)︄
. (A.1.10)
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The other coefficients must vanish, i.e. b2 = b3 = d3 = 0.

More generally, the solutions to WZ consistency may involve a linear combination of
terms with fixed relative coefficients, i.e. WZ consistency forces the coefficients of
some terms to be determined by one another up to a single overall number. Each such
linear combination would appear in δωW with this unfixed coefficient. For example,
for a p = 4 defect, WZ consistency fixes the relative coefficients appearing in
eqs. (6.1.2) and (6.1.3) up to a single overall coefficient for each of them, d(4d)

1 and d(4d)
2 ,

respectively.

One sometimes also finds linear combinations of D’s at this stage. Indeed, this is the
case for a p = 4 defect. As we explain in appendix B.1, however, they are typically not
genuine solutions of WZ consistency, but can be made inconsistent by addition of
local counterterms.

Step 3: Finally, we introduce local counterterms in W . By adjusting their coefficients
we can set to zero some of the remaining coefficients in eq. (A.1.10). We find 5
scheme-independent terms in the anomaly which cannot be removed by such
counterterms.

Let WCT be the counterterm action. We cannot add any of the D’s as counterterms
because WCT does not involve the variation parameter δω. In principle, we could
introduce the B̃’s. However, they are Weyl invariant and, therefore, cannot remove
any terms from the anomaly. We are thus left with the B’s. The counterterm action
reads

WCT =
∫︂

Σ2

√︁
g

(︄
3

∑
i=1

ciBi

)︄
. (A.1.11)

The first Weyl variation of these terms is

(
√︁

g)−1δ
(︂√︁

gB1

)︂
= 0 ,

(
√︁

g)−1δ
(︂√︁

gB2

)︂
= 4 (D1 −D2)δω , (A.1.12)

(
√︁

g)−1δ
(︂√︁

gB3

)︂
= −4D1δω ,

where we have again dropped total derivatives D(. . .).

Determining the terms in the anomaly that cannot be removed by local counterterms
reduces again to a linear algebra problem. Let B = (B1, . . . ,B3)T and
D = (D1, . . . ,D3)T. We introduce the 3 × 3 matrix M,

M =

⎛⎜⎝0 4 −4
0 −4 0
0 0 0

⎞⎟⎠ , (A.1.13)
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which implements the first Weyl variation with appropriate factors of
√︁

g, i.e.
SB = MD, where S acts like SA = (

√︁
g)−1δ

(︁√︁
g A
)︁
. The terms that cannot be

removed by local counterterms are given by the (right) null space of M. Generally, a
null vector is a linear combination of D’s, and one must choose a scheme in which one
of the terms in that linear combination cannot be set to zero.

In the present case, however, the null space is just the span of D3. Therefore, all but D3

can be removed unambiguously by adjusting the values of the coefficients ci. In
particular,

δωW = δωW (2) + δωWCT (A.1.14)

with arbitrary c1, c2 = 1
4d2, and c3 = 1

4 (d1 + d2) sets the coefficients of D1 and D2 to
zero. Since WZ consistency requires that the coefficient of D3 vanishes, the
scheme-independent part of the anomaly is therefore

δωW =
∫︂

Σ2

√︁
g
(︁
b1B1 + b̃1B̃1 + b̃2B̃2 + b̃3B̃3 + b̃4B̃4

)︁
δω . (A.1.15)

After appropriately relabelling the coefficients, we find eq. (3.4.38) with q = 2.





193

Appendix B

Chapter 6

B.1 4d defect Weyl anomaly basis

In this appendix, we present some details of the algorithm discussed in sections 2.5
and 3.4 applied to the case of a p = 4 conformal defect. For the complete workings we
refer to our supplemental Mathematica notebook available from ref. [1].

B.1.1 Arbitrary co-dimension

We begin with the part of the anomaly that is admissible in any co-dimension q ≥ 2.
The q = 1 case is a simple adaptation of the q ≥ 2 case.

Step 1: First, we determine the basis of terms. There are 36 scalars that transform
non-trivially under Weyl transformations, and that do not have any derivatives acting
on δω. They are

B1 = R2 , B2 = RabRab , B3 = (NijRij)
2 ,

B4 = Wab
abNijRij , B5 = RWab

ab , B6 = RNijRij ,

B7 = RabWc
acb , B8 = RijW iaj

a , B9 = RijRij ,

B10 = RIIiIIi , B11 = Wab
abIIiIIi , B12 = N jkRjkIIiIIi ,

B13 = RII̊
i
abII̊

ab
i , B14 = N jkRjkII̊

i
abII̊

ab
i , B15 = RijIIiIIj ,

B16 = RijII̊
i
abII̊

abj
, B17 = RabII̊

i
abIIi , B18 = Ra

bII̊
i
b

cII̊ic
a ,

B19 = Wa
i
b

jII̊
(i
abIIj) , B20 = Wacb

cII̊
i
abIIi , B21 = Wiaj

aIIiIIj , (B.1.1)

B22 = Wic
acDbII̊

i
ab , B23 = Wic

acDaIIi , B24 = IIiDiR ,

B25 = II̊
abi

DiWacb
c , B26 = IIiDiWab

ab , B27 = DiDiR ,
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B28 = DiDiWab
ab , B29 = IIiTrII̊iII̊

j
II̊j , B30 = IIiIIiTrII̊

j
II̊j ,

B31 = IIiIIjTrII̊iII̊j , B32 = (IIiIIi)
2 , B33 = DaII̊

ab
i DbIIi ,

B34 = DaIIiD
aIIi , B35 = DaII̊

i
bcDaII̊

bc
i , B36 = DbII̊

i
baDcII̊

i
c

a ,

where DaII̊
ab
i DbIIi = NµνDaII̊

abµ
DbIIν, and similarly for the other terms of the form

(DII)2. There are 24 trivial Weyl invariants without derivatives on δω:

B̃1 = WabcdWabcd , B̃2 = (Wab
ab)2 , B̃3 = WabcdWab

e f ϵcde f ,

B̃4 = WijcdW ij
e f ϵcde f , B̃5 = WiajbW iajb , B̃6 = Wabi

bWaci
c ,

B̃7 = WijkℓW ijkℓ , B̃8 = WaijkWaijk , B̃9 = WabjkWabjk ,

B̃10 = Wacb
cWadb

d , B̃11 = Wiaj
aW ibj

b , B̃12 = Wab
abII̊

i
cdII̊

cd
i ,

B̃13 = Wa
b

ijII̊
i
b

cII̊
j
c

a , B̃14 = WaibjII̊
ibc

II̊
j
c

a , B̃15 = WabcdII̊
i
acII̊bdi , (B.1.2)

B̃16 = Wab
a

dII̊
b

f
iII̊

d f
i , B̃17 = Wicj

cII̊
i
abII̊

abj
, B̃18 = WabcdII̊a

eiII̊b
f
iϵcde f ,

B̃19 = TrII̊
i
II̊iII̊

j
II̊j , B̃20 = TrII̊

i
II̊

j
II̊iII̊j , B̃21 = TrII̊

i
II̊i TrII̊

j
II̊j ,

B̃22 = TrII̊
i
II̊

j
TrII̊iII̊j , B̃23 = II̊

i
a

eII̊
j
beII̊c

f
iII̊d f jϵ

abcd , B̃24 = WijcdII̊
bi

eII̊
j
b f ϵcde f .

Finally, there are 41 terms with derivatives acting on δω

D1 = Wic
acII̊

i
abDb

δω , D2 = Wic
acIIiDaδω , D3 = II̊

i
abRabDiδω ,

D4 = IIiRDiδω , D5 = IIiN jkRjkDiδω , D6 = II̊
abi

Wacb
cDiδω ,

D7 = II̊
abi

WiajbDjδω , D8 = IIiWab
abDiδω , D9 = IIiRi

jDjδω ,

D10 = IIiWiaj
aDjδω , D11 = R□δω , D12 = NijRij□δω ,

D13 = Wacb
cDaDb

δω , D14 = DiRDiδω D15 = RDiDiδω ,

D16 = NijRijDkDkδω , D17 = Wab
ab□δω , D18 = Wab

abDiDiδω ,

D19 = DiWab
abDiδω , D20 = Waci

cDaDiδω , D21 = Wicj
cDiDjδω ,

D22 = RijDiDjδω , D23 = TrII̊
i
II̊iII̊

j
Djδω , D24 = IIjTrII̊

i
II̊iDjδω , (B.1.3)

D25 = IIiTrII̊iII̊
j
Djδω , D26 = IIiIIiIIjDjδω . D27 = II̊

ab
i DaIIiDbδω ,

D28 = II̊
ab
i IIiDaDbδω , D29 = IIiDaIIiDa

δω , D30 = II̊
i
abII̊

ab
i □δω ,

D31 = II̊
ab
i DcII̊

i
cbDaδω , D32 = II̊

ac
i II̊c

biDaDbδω , D33 = TrII̊
i
II̊

j
DiDjδω ,

D34 = TrII̊
i
II̊i DjDjδω , D35 = IIiIIjDiDjδω , D36 = IIiIIiDjDjδω ,

D37 = IIiDiDjDjδω , D38 = IIi□Diδω , D39 = II̊
i
abDaDbDiδω ,

D40 = (DiDi)2δω , D41 = II̊
i
b f DcII̊d

f
iϵ

abcdDaδω .

In total, our basis is 101-dimensional. For q = 1 the basis is over-complete because
some terms that are distinct in q ≥ 2 may reduce to the same term in q = 1. Moreover
some terms vanish identically when q = 1.
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Step 2: Next, we find solutions to WZ consistency. Computing a second Weyl
variation produces terms of the form DWZ

i = δω2D∂
i δω1 − (1 ↔ 2) for i = 1, . . . 41,

where D∂
i corresponds to the operator version of Di in eq. (B.1.3) with the variation

parameter δω omitted. In addition, there are the following terms

DWZ
42 = Waci

cDa
δω1Diδω2 − (1 ↔ 2) , DWZ

43 = IIiDiδω1□δω2 − (1 ↔ 2) ,

DWZ
44 = IIiDaDiδω1Da

δω2 − (1 ↔ 2) , DWZ
45 = II̊

i
abDiδω1DaDb

δω2 − (1 ↔ 2) ,

DWZ
46 = II̊

i
abDaDiδω1Db

δω2 − (1 ↔ 2) , DWZ
47 = IIiDiδω1DjDjδω2 − (1 ↔ 2) , (B.1.4)

DWZ
48 = IIiDjDiδω1Djδω2 − (1 ↔ 2) , DWZ

49 = □δω1DiDiδω2 − (1 ↔ 2) ,

DWZ
50 = DiDiδω1DjDjδω2 − (1 ↔ 2) , DWZ

51 = Diδω1DiDjDjδω2 − (1 ↔ 2) .

The 24 B̃’s trivially solve WZ consistency. In addition, one also finds four non-trivial
linear combinations of B’s. Three of them correspond to E4, J1, J2. The final one can
be written as a linear combination of other invariants and WiabcW iabc. In eq. (6.1.1), we
redefine our basis to include WiabcW iabc instead of this extra conformal invariant.

Step 3: We also find 33 linear combinations of D’s that naively solve WZ
consistency. However, 32 of them can be rendered WZ inconsistent by a choice of
scheme. One can introduce counterterms that remove at least one of the constituent
terms of the linear combination such that the remainder is inconsistent. The anomaly,
however, must be WZ consistent in any scheme. Thus, we must insist that the overall
coefficients of these 32 linear combinations of D’s must be zero in any scheme.
Therefore, they are absent in the anomaly. The one remaining linear combination of
D’s, which just consists of the single term D41 in eq. (B.1.3), is unaffected by local
counterterms. It is related to the term in eq. (6.1.1) whose coefficient is d̃(4d)

3 . As we
comment in the main body, it is a genuine anomaly coefficient.

This leaves us with 23 parity-even contributions to the trace anomaly. One of them is
A-type and the remaining 22 are B-type. There are 6 terms that are parity-odd along
the defect that are admissible in any co-dimension q, although 3 of them vanish
identically when q = 1.

B.1.2 Parity-odd terms in the normal bundle when q = 2

In addition to the terms that are parity-odd along the defect, there are terms that break
parity in the normal bundle. First, consider the co-dimension q = 2 case.

Step 1: The extra parity-odd terms in the normal bundle are

B(6)
1 = Ri

jnjkIIiIIk , B(6)
2 = Ri

jnjkII̊
i
abII̊

abk
, B(6)

3 = RabIIiII̊
j
abnij ,
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B(6)
4 = WaibjII̊

abi
IIknjk , B(6)

5 = WaibjII̊
ab
k IIinjk , B(6)

6 = Wic
acnijDbII̊abj ,

B(6)
7 = Wic

acnijDaIIj , B(6)
8 = IIinijDjR , B(6)

9 = II̊
abi

nijDjWacb
c , (B.1.5)

B(6)
10 = IIinkjDjRki , B(6)

11 = IIinijTrII̊
k
II̊kII̊

j
, B(6)

12 = IIiIIjnjkTrII̊
k
II̊i ,

B(6)
13 = nijD

aIIiDbII̊
j
ab ,

and

B̃(6)
1 = WajbkII̊

ac
i II̊c

bjnik , (B.1.6)

as well as

D(6)
1 = Wic

acII̊abjnijDb , D(6)
2 = Wic

acIIjnijDa , D(6)
3 = II̊abjRabnijDi ,

D(6)
4 = IIinijRDj , D(6)

5 = II̊
ab
k nikWiajbDj , D(6)

6 = II̊
abi

WiajbnjkDk ,

D(6)
7 = IIknkiWiaj

aDj , D(6)
8 = IIiRiknjkDj , D(6)

9 = nkiIIkRi
jDj ,

D(6)
10 = nijDiRDj , D(6)

11 = Waci
cnijDaDj , D(6)

12 = RijnjkDkDi ,

D(6)
13 = nijDjRiaDa , D(6)

14 = njkDkRijDi , D(6)
15 = TrII̊

i
II̊iII̊

j
njkDk , (B.1.7)

D(6)
16 = njkIIjTrII̊

i
II̊iDk , D(6)

17 = njkIIiTrII̊iII̊
j
Dk , D(6)

18 = njkIIiIIiIIjDk ,

D(6)
19 = nijD

aIIiII̊
j
abDb , D(6)

20 = nijIIiII̊
j
abDaDb , D(6)

21 = nijIIiDaIIjDa ,

D(6)
22 = nijII̊

i
abDcII̊

cbj
Da , D(6)

23 = TrII̊
i
II̊

j
njkDkDi , D(6)

24 = IIiIIjnjkDkDi ,

D(6)
25 = nikIIiDkDjDj , D(6)

26 = nikIIi□Dk , D(6)
27 = nikII̊

i
abDaDbDk .

Note that the identity nijnkℓ = Nk
i Nℓ

j − Nk
j Nℓ

i is very restrictive in combination with
various symmetry properties of tensors, and it sets to zero many candidate terms.

Step 2: In addition to D(6),WZ
i = δω2D(6),∂

i δω1 − (1 ↔ 2) for i = 1, . . . , 27, the
following terms are generated when computing a second Weyl variation:

D(6),WZ
28 = WaibjnijDa

δω1Db
δω2 − (1 ↔ 2) , D(6),WZ

29 = Wai
ajnkjDkδω1Diδω2 − (1 ↔ 2) ,

D(6),WZ
30 = Wac

ajnijDiδω1Dc
δω2 − (1 ↔ 2) , D(6),WZ

31 = RnijDiδω1Djδω2 − (1 ↔ 2) ,

D(6),WZ
32 = RijnkjDiδω1Dkδω2 − (1 ↔ 2) , D(6),WZ

33 = II̊
j
cdII̊

cdk
nijDkδω1Diδω2 − (1 ↔ 2) ,

D(6),WZ
34 = IIiIIjnjkDiδω1Dkδω2 − (1 ↔ 2) , D(6),WZ

35 = II̊a
cjII̊

i
cbnijD

a
δω2Db

δω1 − (1 ↔ 2) ,

D(6),WZ
36 = II̊

j
abnijD

bDiδω1Da
δω2 − (1 ↔ 2) , D(6),WZ

37 = II̊
cdi

nkiDkδω2DdDcδω1 − (1 ↔ 2) ,

D(6),WZ
38 = IIinijDjδω2DkDkδω1 − (1 ↔ 2) , D(6),WZ

39 = IIinijDjδω2□δω1 − (1 ↔ 2) ,

D(6),WZ
40 = IIinjkDkDiδω1Djδω2 − (1 ↔ 2) , D(6),WZ

41 = IIinijD
aDjδω2Daδω1 − (1 ↔ 2) ,

D(6),WZ
42 = nijDjDkDkδω1Diδω2 − (1 ↔ 2) , D(6),WZ

43 = nijDiδω2□Djδω1 − (1 ↔ 2) ,

D(6),WZ
44 = nijDiDkδω1DjDkδω2 − (1 ↔ 2) . (B.1.8)
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There are no solutions of WZ consistency involving B’s. Only B̃(6)
1 and linear

combinations of D’s (naively) solve WZ consistency.

Step 3: All of the linear combinations of D’s are scheme-dependent. There is only
one genuine scheme-independent solution to WZ consistency that is parity-odd in the
normal bundle: the trivial Weyl invariant B̃(6)

1 which appears in eq. (6.1.8).

B.1.3 Parity-odd terms in the normal bundle when q = 4

The co-dimension q = 4 case is more restrictive. The only new terms that one can
write down are trivial Weyl invariants:

B̃(8)
1 = ϵabcdnijkℓWabijWcdkℓ , B̃(8)

2 = nijkℓWaibjWa
k

b
ℓ ,

B̃(8)
3 = nijkℓWpiqjWp

k
q
ℓ , B̃(8)

4 = nijkℓWaipjWa
k

p
ℓ , (B.1.9)

B̃(8)
5 = nijkℓϵabcdWabijII̊ f

ckII̊
f dℓ

, B̃(8)
6 = nijkℓWabijII̊

k
acII̊b

cℓ .

These trivially solve WZ consistency and cannot be removed by counterterms. They
appear in eq. (6.1.9).
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Appendix C

Chapter 7

C.1 Spherical defects

In this section we outline the derivation of eq. (7.1.10) for a spherical defect in Rd. Our
strategy will be to apply a conformal transformation on flat space Rd that maps the
support of the defect from the sphere Sd−2 of radius R to the plane Rd−2. This relates
the spherical defect to the flat defect for which J · A = αJθ .

More concretely, let Xµ with µ = 1, . . . , d be coordinates in flat space. We take the
support of the defect to lie on XµXνδµν = R2 and X2 = 0. The following
transformation maps the sphere to the flat defect

X1 = R
4xµxµ − R2

R2 + 4xµxµ + 4R x1 , Xk = 4R2 xk

R2 + 4xµxµ + 4R x1 , (C.1.1)

with inverse

x1 =
R
2

R2 − XµXµ

(R − X1)
2 + XkXk

, xk = R2 Xk

(R − X1)
2 + XkXk

, (C.1.2)

where k = 2, . . . , d, and x1 and x2 are the transverse directions to the defect in the new
coordinates. Under this transformation, the Jacobian factor is

∂xµ

∂Xν
= Ω(X)× (rotation)µ

ν , Ω(X) =
R2

[(R − X1)2 + XkXk]
, (C.1.3)

where we won’t need the rotation part. In order to show eq. (7.1.10), we need to
compute the integral on the right-hand side of eq. (7.1.7) when the defect is spherical.
Namely, we need to evaluate the following integral

IJ ≡
∫︂

ddX ⟨Jµ (X)⟩spherical fµ (X) , (C.1.4)
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where the shape function fµ(X), whose precise form we do not need, is the one of a
spherical defect. Under the conformal transformation,

⟨Jµ (X)⟩spherical fµ (X) = ⟨Jµ (x(X))⟩flat fµ (x(X))Ωd(X) , (C.1.5)

where we used that ∆J = d − 1 and ∆A = 1. Finally, we are left with the following
integral

IJ = aJ

∫︂
ddX

[︄
2R√︁

(R2 − XµXµ)2 + 4R2(X2)2

]︄d

. (C.1.6)

To perform the integration, it is convenient to employ spherical coordinates. We
choose

X2 = r cos ϕ1 , X1 = r sin ϕ1 cos ϕ2 , . . . Xd = r sin ϕ1 sin ϕ2 . . . cos ϕd−1 , (C.1.7)

which gives

IJ = aJ vol(Sd−2)
∫︂ +∞

0
dr
∫︂ π

0
dϕ1 rd−1 sind−2 ϕ1

[︄
2R√︁

(R2 − r2)2 + 4R2r2 cos2 ϕ1

]︄d

=
2d√π Γ

(︂
d−1

2

)︂
Γ
(︂

d
2

)︂ vol(Sd−2)aJ

∫︂ +∞

0
dr Rd rd−1

(R2 + r2) |R2 − r2|d−1 .

(C.1.8)

The integral over r converges in the range 0 < d < 2 while is divergent for d ≥ 2. We
will adopt dimensional regularisation to obtain the value in our range of interest
d ≥ 2. Performing the integral is straightforward and we obtain

IJ = aJ
2π

d
2+1

Γ
(︂

d
2

)︂
sin
(︁

π
2 d
)︁ . (C.1.9)

We note that the above result is well-defined for any value of d > 0 with d ̸= even,
while when d is an even number the expression has a simple pole. This pole is
expected since the free energy acquires an additional divergence due to the trace
anomaly. In our case this corresponds to the derivative with respect to α of the A-type
defect anomaly. We can extract the coefficient of the divergence by replacing d → d − ε

where now d is assumed to be a positive even integer and 0 < ε ≪ 1. Thus we find,

IJ = −(−1)d/2aJ
4πd/2

Γ
(︂

d
2

)︂ 1
ε
+O(ε) , d = even . (C.1.10)

The pole in the dimensional regularisation maps to a logarithmic divergence when the
integral eq. (C.1.8) is regularised by a UV cut-off ϵ, i.e. 1/ε → log(R/ϵ). More
precisely, the integral diverges at the location of the defect r = R, and we must divide
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the integration region as follows r ∈ (0, R − ϵ) ∪ (R + ε,+∞), where ϵ is a UV cut-off.
Thus,

− d
dα

log Z[α] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

aJ
2π

d
2+1

Γ
(︂

d
2

)︂
sin
(︁

π
2 d
)︁ d ̸= even ,

−(−1)d/2aJ
4πd/2

Γ
(︂

d
2

)︂ log
(︃

R
ϵ

)︃
d = even .

(C.1.11)

This straightforwardly gives the results in eqs. (7.1.8), and (7.1.9).1

C.2 Scalar propagator

Below we study the mode expansion and the propagator of a scalar field in the
presence of a non-trivial monodromy in Lorentzian signature (−,+, . . . ,+). In the
Minkowski space-time with metric eq. (7.1.1), the EOM for φ reads

1
ρ

∂ρ(ρ∂ρ φ) +

[︃
−∂2

t +
1
ρ2 (∂θ − iα)2 + D2

∥

]︃
φ = 0 , (C.2.12)

where D2
∥ is the spatial part of the Laplacian in the direction parallel to the flux α. To

find the general solution to the EOM, we use the cylindrical symmetry of the problem
and write the ansatz

φ = e−iωtei k⃗∥·x⃗∥einθh(ρ) . (C.2.13)

Plugging eq. (C.2.13) into eq. (C.2.12), we obtain an equation for h(ρ)

ρ2h′′ + ρ h′ +
[︂(︂

ω2 − k⃗
2
∥

)︂
ρ2 − (m − α)2

]︂
h = 0 , (C.2.14)

whose solutions are the Bessel functions

h = J±(n−α)

(︁
kρ ρ

)︁
, kρ =

√︃
ω2 − k⃗

2
∥ . (C.2.15)

While the large ρ behaviour of the functions Jβ is physically reasonable for any β, their
behaviour near ρ = 0 needs to be discussed carefully. Expanding the Bessel function
near zero, one finds

Jβ(ζ) = ζβ

(︃
2−β

Γ(β + 1)
− 2−β−2ζ2

(β + 1)Γ(β + 1)
+O

(︁
ζ3)︁)︃ . (C.2.16)

1In principle one might worry about other α-dependent terms contributing to the partition function.
Indeed in the presence of a bulk trace anomaly one gets a logarithmically divergent term proportional to∫︁

F ∧ ⋆F, where F is the curvature of background gauge field eq. (7.1.6). This term, however, is quadratic
in delta functions and hence doesn’t contribute.
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Depending on β, the function may be divergent as ζ → 0.

If one asks for regularity of the scalar field in the limit ρ → 0, one must require the
order of the Bessel function to be non-negative, i.e. ±(n − α) ≥ 0. This leads to the
following solution

φ =
∞

∑
n=−∞

∫︂
dkρ

∫︂
dd−3k⃗∥

[︄
ãn(k)einθ J|n−α|

(︁
kρ ρ

)︁
e−iωt+i k⃗∥·x⃗∥

+ b̃∗n(k)e
−inθ J|n+α|

(︁
kρ ρ

)︁
eiωt−i k⃗∥·x⃗∥

]︄
,

(C.2.17)

where ãn(k) and b̃n(k) are undetermined functions of k = (k⃗∥, kρ). This choice of
boundary conditions has been argued to correspond to a monodromy defect
engineered by an infinitely thin and infinitely long solenoid carrying a magnetic flux
α [323–325].

To quantise the theory, we impose the canonical equal-time commutation relation
[φ(t, x), φ̇†(t, x′)] = iδ(d−1)(x − x′). After the quantisation, the coefficients ãn(k) and
b̃n(k) become operators, which are proportional to the canonical creation and
annihilation operators an(k) and bn(k) which satisfy2

[an(k), a†
n′(k′)] = [bn(k), b†

n′(k′)] = δ(d−3)(k⃗∥ − k⃗
′
∥)δ(kρ − k′ρ)δn,n′ . (C.2.18)

In terms of these, the correctly normalised mode expansion for φ reads

φ =
∞

∑
n=−∞

∫︂
dkρ

∫︂
dd−3k⃗∥

√︁
kρ

(
√

2π)d−2
√

2ω

[︄
an(k)einθ J|n−α|

(︁
kρ ρ

)︁
e−iωt+i k⃗∥·x⃗∥

+ b†
n(k)e

−inθ J|n+α|
(︁
kρ ρ

)︁
eiωt−i k⃗∥·x⃗∥

]︄
.

(C.2.19)

More generally, we can relax the assumption that the defect corresponds to a solenoid.
In this case we just require that the integral of the charge density Q ∼

∫︁
ϕϕ̇

† is finite
near ρ ∼ 0, and one can allow for a mild singular behaviour φ ∼ ρ−1+ϵ with ϵ > 0. In
particular, restricting the range of α to lie in the interval α ∈ (0, 1), we can allow for the
Bessel function J−α (for the n = 0 mode) in addition to J+α, and Jα−1 (for n = 1) in
addition to J1−α. In the most general case there will be a specific ladder operator
corresponding to each Bessel J, i.e. we will have a(−)

0 , a(+)
0 , a(−)

1 , a(+)
1 and analogously

for the ladder operators b. The modes with the + sign correspond to the regular
modes while the − sign to the mildly divergent ones. The only non-trivial

2We found the following orthogonality property useful:
∫︁ ∞

0 dρ ρJα(ρv)Jα(ρu) = δ(u−v)
u .



C.2. Scalar propagator 203

commutators are

[a(±)
0 (k), a(±)†

0 (k′)] = [a(±)
1 (k), a(±)†

1 (k′)] = δ(d−3)(k⃗∥ − k⃗
′
∥)δ(kρ − k′ρ) , (C.2.20)

and similarly for the b ladder operators. In order to respect the commutation relation
[φ(t, x), φ̇(t, x′)] = iδ(d−1)(x − x′), we need to introduce a specific normalisation for
the modes n = 0, 1 described by two free parameters ξ, ξ̃ ∈ [0, 1] as in eq. (7.2.21). In
particular, if we choose ξ = 0, only the regular mode Jα will occur, while for ξ = 1 we
will have only the singular one. The same happens for the mode n = 1 and ξ̃.

From the mode expansion eq. (C.2.19) and the modification due to the singular mode,
it is straightforward to write down eq. (7.2.18).

Massless scalar propagator

From the field solution eq. (C.2.19) we can easily compute the propagator. The
Euclidean two-point function can be written as

GS,α,ξ,ξ̃(x, x′) =
+∞

∑
m=1

ei(m−α)(θ−θ′)G(m−α)
S (x, x′) +

+∞

∑
m=0

e−i(m+α)(θ−θ′)G(m+α)
S (x, x′)

+ ξ e−iα(θ−θ′)
[︂

G(−α)
S (x, x′)− G(α)

S (x, x′)
]︂
+ ξ̃ ei(1−α)(θ−θ′)

[︂
G(α−1)

S (x, x′)− G(1−α)
S (x, x′)

]︂
,

(C.2.21)

where we defined

G(ν)
S (x, x′) ≡

∫︂
dd−3k⃗∥ dkρ dkτ

kρ

(2π)d−1
e−ikτ(τ−τ′)+i k⃗∥·(x⃗∥−x⃗′∥)

k2
ρ + k⃗

2
∥ + k2

τ

Jν

(︁
kρ ρ

)︁
Jν

(︁
kρ ρ′

)︁
.

(C.2.22)

By employing the identity

1
κ2 =

∫︂ ∞

0
ds e−κ2s , κ2 > 0 , (C.2.23)

and performing the Gaussian integration over k⃗∥ and kτ, we obtain

G(ν)
S (x, x′) =

∫︂ +∞

0
ds
∫︂ +∞

0
dkρ

kρ

2d−1πd/2
1

sd/2−1 e−
(x⃗∥−x⃗′∥)

2+(τ−τ′)2

4s e−k2
ρs

×Jν

(︁
kρ ρ

)︁
Jν

(︁
kρ ρ′

)︁
.

(C.2.24)

Now, we integrate over kρ by using the identity eq. (C.4.42), which gives

G(ν)
S (x, x′) =

1
2dπd/2

∫︂ ∞

0
ds sd/2−2e−s(ρ2+ρ′2+(x∥−x′∥)

2)/4 Iν

(︃
s ρ ρ′

2

)︃
. (C.2.25)
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This is the form of the propagator that we employ in section 7.2.2 to obtain the desired
correlation functions. Further, note that the propagator is precisely in the form of
eq. (4.3.20) such we can identify the heat kernel as the integrand of eq. (C.2.25) and use
it to compute the EE in section 7.2.3. Nonetheless, the integral over s can be performed
analytically by noting the following relation

Iα(z) = e∓iαπ/2 Jα

(︂
ze±iπ/2

)︂
. (C.2.26)

Using the identity eq. (C.4.41), the result is

G(ν)
S (x, x′) =

Γ
(︂

d
2 − 1 + ν

)︂
4πd/2Γ (1 + ν)

(︃
1

ρρ′

)︃ d
2−1 (︃ ρρ′

ρ2 + ρ′2 + (σ − σ′)2

)︃ d
2−1+ν

× 2F1

(︄
d − 2

4
+

ν

2
,

d − 2
4

+
ν

2
+

1
2

; ν + 1;
4ρ2ρ′2

(ρ2 + ρ′2 + (x∥ − x′∥)
2)2

)︄
.

(C.2.27)

It is straightforward to show that this reproduces exactly (up to the θ dependence) the
defect blocks (7.2.25) with the coefficients cs defined in eqs. (7.2.27), (7.2.28a) and
(7.2.28b).

C.3 Fermion propagator

In this appendix we provide concrete expressions for the fermion mode expansion in
d = 4, and explicitly compute the propagator eq. (7.3.90). We will do so by imposing
that the components of the Dirac fermion obey the canonical equal-time
anti-commutation relations

{︁
ψA(t, x), ψ†

B(t, x′)
}︁
= δ(d−1)(x − x′)δAB, where

A, B = 1, . . . , 4 are spinor indices.

It will be convenient to use the following Clifford algebra representation

γ0 =

(︄
iσ3 0
0 −iσ3

)︄
, γ1 =

(︄
0 i12

−i12 0

)︄
, γ2 =

(︄
−σ2 0

0 σ2

)︄
, γ3 =

(︄
σ1 0
0 −σ1

)︄
,

(C.3.28)

where σ1,2,3 are the Pauli matrices and 12 is the 2 × 2 identity matrix. To solve the
Dirac equation, we make the ansatz

ψ = e−iωteimθeik∥x∥

(︄
Ψ(ρ)

±Ψ(ρ)

)︄
, (C.3.29)
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where Ψ is a two-component spinor with ρ-dependence only, m ∈ Z+ 1
2 , and

ω, k∥ ∈ R.3 The Dirac equation in the basis eq. (C.3.28) reduces to two coupled
first-order ordinary differential equations for the components of Ψ

−i(ω ± k∥)Ψ2 +

(︃
d

dρ
− ν

ρ

)︃
Ψ1 = 0 , (C.3.30a)

−i(ω ∓ k∥)Ψ1 +

(︃
d

dρ
+

ν + 1
ρ

)︃
Ψ2 = 0 , (C.3.30b)

where ν = m − α − 1
2 . These two equations can be combined into Bessel’s equations

for Ψ1 and Ψ2, and their solutions can be written in terms of Bessel functions of the
first kind, J, as follows

Ψ = c1

(︄
Jν(ρ kρ)

iB± Jν+1(ρ kρ)

)︄
+ c2

(︄
J−ν(ρ kρ)

−iB± J−(ν+1)(ρ kρ)

)︄
, (C.3.31)

where kρ =
√︂

ω2 − k2
∥, B± ≡ kρ

ω±k∥
, and c1,2 are arbitrary integration constants. A field

configuration is physically admissible if it is less divergent than ρ−1 as we approach
the defect at ρ = 0. This requires setting either c1 = 0 or c2 = 0 for all
n ≡ m − 1

2 ∈ Z \ {0}. In the case of n = 0, both solutions are admissible. For the
solution with coefficient c1, the first component Ψ1 ∼ ρ−α as ρ → 0, whereas Ψ2 is
regular. For the solution with coefficient c2, the second component Ψ2 ∼ ρ−1+α,
whereas Ψ1 is regular. Note that both solutions have one component that diverges at
the defect. As shown in [324], it is the former that corresponds to an infinitely long
and infinitely thin solenoid. The most general solution keeps both modes with a
parameter ξ ∈ [0, 1] interpolating between them as in eq. (7.3.89).

Taking a linear combination, one obtains the general solution to the Dirac equation

ψ =
∞

∑
n=−∞

′ 2

∑
s=1

∫︂ ∞

−∞

dk∥
2π

∫︂ ∞

0
dkρ

√︃
kρ

4ω
e−iωte+ik∥x∥e+inθeiθ/2as

n(k)u
s
n,k

+
∞

∑
n=−∞

′ 2

∑
s=1

∫︂ ∞

−∞

dk∥
2π

∫︂ ∞

0
dkρ

√︃
kρ

4ω
e+iωte−ik∥x∥e+inθeiθ/2bs ∗

n (k)vs
n,k ,

(C.3.32)

where now ω is understood to be a function of k = (k∥, kρ). The spinors are

u1
n,k =

⎛⎜⎜⎜⎜⎝
C+ Jςn(n−α)(ρ kρ)

iςnC− Jςn(n+1−α)(ρ kρ)

C+ Jςn(n−α)(ρ kρ)

iςnC− Jςn(n+1−α)(ρ kρ)

⎞⎟⎟⎟⎟⎠ , u2
n,k =

⎛⎜⎜⎜⎜⎝
C− Jςn(n−α)(ρ kρ)

iςnC+ Jςn(n+1−α)(ρ kρ)

−C− Jςn(n−α)(ρ kρ)

−iςnC+ Jςn(n+1−α)(ρ kρ)

⎞⎟⎟⎟⎟⎠ , (C.3.33)

3In this subsection only we will use x∥ to denote the single spatial coordinate along the defect in d = 4

(rather than x⃗∥). Similarly, the momentum along x∥ will be denoted by k∥ (rather than k⃗).
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and

v1
n,k =

⎛⎜⎜⎜⎜⎝
C+ Jςn(n−α)(ρ kρ)

−iςnC− Jςn(n+1−α)(ρ kρ)

C+ Jςn(n−α)(ρ kρ)

−iςnC− Jςn(n+1−α)(ρ kρ)

⎞⎟⎟⎟⎟⎠ , v2
n,k =

⎛⎜⎜⎜⎜⎝
C− Jςn(n−α)(ρ kρ)

−iςnC+ Jςn(n+1−α)(ρ kρ)

−C− Jςn(n−α)(ρ kρ)

iςnC+ Jςn(n+1−α)(ρ kρ)

⎞⎟⎟⎟⎟⎠ , (C.3.34)

where C± ≡
√︂

ω ± k∥. In the above, ςn = +1 for n ≥ 1 and ςn = −1 for n ≤ −1, and

∑′ is an instruction to sum over both n = 0 modes. More concretely, denote the
spinors with ς0 = ±1 by u(±)s

0,k and v(±)s
0,k , and the ladder operators by a(±)s

0 (k) and

b(±)s∗
0 (k). As in the scalar case, one can introduce a parameter ξ ∈ [0, 1] which

interpolates between the two n = 0 modes. Then ∑′ means: sum the ς0 = +1 mode
with an extra overall factor of

√
1 − ξ, and the ς0 = −1 mode with an extra factor of

√
ξ. Promoting a1,2

n (k) and b1,2
n (k) to operators whose non-zero anti-commutators are{︂

as
n(k), as′ †

n′ (k′)
}︂
=
{︂

bs
n(k), bs′ †

n′ (k′)
}︂
= δ(k∥ − k′∥)δ(kρ − k′ρ)δnn′δss′ , (C.3.35)

the components of the Dirac spinor then obey the canonical equal time commutation
relations.

Using the explicit mode expansions, the fermion propagator

GF,α,ξ(x, x′)AB =

⎧⎨⎩ ⟨ψA(t, x∥, ρ, θ)ψ̄B(t
′, x′∥, ρ′, θ′)⟩ if t > t′ ,

−⟨ψ̄B(t
′, x′∥, ρ′, θ′)ψA(t, x∥, ρ, θ)⟩ if t′ > t ,

(C.3.36)

can be straightforwardly computed. Assuming t > t′,

GF,α,ξ(x, x′)AB = i ∑
n

′
∫︂ dk∥

2π

∫︂ dkρ

2π

kρ

4ω
e−iω(t−t′)eik∥(x∥−x′∥)ein(θ−θ′)ei(θ−θ′)/2

(︂
(u1

n,k)A(u1†
n,kγ0)B + (u2

n,k)A(u2†
n,kγ0)B

)︂
, (C.3.37)

and similarly for t < t′. Using the scalar mode expansion. It is straightforward to
verify that

GF,α,ξ(x, x′)AB = −γµ(∂µ + Ωµ − iAµ)(︄
P− ∑

n

′′Iςn(n−α)e
in(θ−θ′) + P+ ∑

n

′′Iςn(n+1−α)e
in(θ−θ′)

)︄
, (C.3.38)

where

Iν =
∫︂ dk∥

2π

∫︂ dkρ

2π

kρ

2ω
Jν(ρkρ)Jν(ρ

′kρ) e−iω(t−t′)eik∥(x∥−x′∥)ei(θ−θ′)/2 , (C.3.39)

and ∑′′ is an instruction to sum over both n = 0 modes, one with ς0 = +1 and an
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extra overall factor of 1 − ξ, and the other with ς0 = −1 and an extra factor of ξ.
Comparing with eq. (C.2.21), one identifies

∑
n

′′Iςn(n−α)e
in(θ−θ′) = ei(θ−θ′)/2GS,α,1−ξ,0(x, x′) , (C.3.40a)

∑
n

′′Iςn(n+1−α)e
in(θ−θ′) = e−i(θ−θ′)/2GS,α,0,ξ(x, x′) , (C.3.40b)

which gives precisely eq. (7.3.90) after applying the gauge transformation eq. (7.1.3).

C.4 Useful formulae

In this appendix, we collect identities that were used in the main body of the text. The
following integral identity involving a single Bessel-J function

∫︂ ∞

0
ds sλ−1 e−ps Jα(as) =

(︃
a

2p

)︃α Γ(λ + α)

pλΓ(α + 1) 2F1

(︃
λ + α

2
,

λ + α + 1
2

; α + 1;− a2

p2

)︃
,

(C.4.41)

which is valid for Re(α + λ) > 0 and Re(p ± ia) > 0 was used in the evaluation of the
scalar propagator. In the same computation, we also encountered integrals involving
products of Jα(as), which required the following integral identity

∫︂ ∞

0
ds s e−p2s2

Jα(as)Jα(bs) =
1

2p2 e
− a2+b2

4p2 Iα

(︃
ab
2p

)︃
, (C.4.42)

where Iα(s) = eiπα/2 Jα(is) is the modified Bessel function of the first kind.

Finally, we used the following identities involving sums of Bessel functions:

∑
k=0

Ik+ν(z) =
1

2(1 − ν)

(︂
ez
∫︂ z

0
dt e−t Iν−1(t)− z(Iν−1(z) + Iν(z))

)︂
, (C.4.43)

and

∞

∑
k=1

(k + ν)Ik+ν(z) =
z
2
(Iν+1(z) + Iν(z)) . (C.4.44)
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Appendix D

Chapter 8

D.1 Special functions and zeta-function regularisation

In this appendix, we give a quick overview of the special functions appearing in
chapter 8 and explain how they arise from zeta-function regularisation of infinite
products. For more details on some of these functions we refer to refs. [405, 406].

By meromorphic continuation to the complex s-plane the Barnes multiple-zeta
function ζN(t; z|a1, . . . , aN) and the multiple Gamma-function are defined

ζN(t; z|a1, . . . , aN) ≡ ∑
n1,...,nN≥0

(z + n1a1 + . . . nNaN)
−t , (D.1.1)

ΓN(z|a1, . . . aN) ≡ exp (∂tζN(t; z|a1, . . . , aN)|t=0) . (D.1.2)

The cases of particular interest to us are N = 1, 2, which include the single ζ1(t; z|a)
and double zeta-function ζ2(t; z|a, b). In particular, we will need their values at s = 0

ζ1(0; z|a) = 1
2
− z

a
,

ζ2(0; z|a, b) =
1
4
+

1
12

(︃
a
b
+

b
a

)︃
− z

2

(︃
1
a
+

1
b

)︃
+

z2

2ab
.

(D.1.3)

From the definition above, the single Gamma-function Γ1(z|a) is related to the
ordinary Euler Gamma-function Γ(z) via

Γ1(z|a−1) =
a

1
2−az
√

2π
Γ(az) . (D.1.4)

Further, the double Gamma-function is used in defining the special function

Υ(z|a, b) ≡ 1
Γ2(z|a, b)Γ2(a + b − z|a, b)

, (D.1.5)
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which frequently appears in Liouville/Toda theory. This Upsilon-function obeys

Υ(z + b|a, b) = γ1(z|a)Υ(z|a, b) , (D.1.6)

where
γ1(z|a) ≡

Γ1(z|a)
Γ1(a − z|a) , (D.1.7)

and a similar relation for the shift Υ(z + a|a, b) replacing a → b. This can be recast in
the more familiar form

Υ(z + b|a, b) = a2z/a−1γ(z/a)Υ(z|a, b) , (D.1.8)

where
γ(z) ≡ Γ(z)

Γ(1 − z)
. (D.1.9)

The special functions above appear in the evaluation of 1-loop determinants in
section 8.2. One usually encounters infinite products that diverge and require
regularisation. As explained in section 4.3, zeta-function regularisation instructs us to
replace a diverging product

∞

∏
k=0

λk → exp (− ∂tZ(t)|t=0) , (D.1.10)

where Z(t) is the associated zeta-function defined as the meromorphic continuation to
the complex t-plane of the series

∞

∑
k=0

λk
−t . (D.1.11)

For divergent products of the form

∞

∏
k=0

(︃
k
r
+ z
)︃

, (D.1.12)

the associated zeta function is ζ1
(︁
t; z
⃓⃓
r−1 )︁, and hence zeta-function regularisation

gives
∞

∏
k=0

(︃
k
r
+ z
)︃
→ 1

Γ1(z|r−1)
=

√
2π rrz− 1

2

Γ(rz)
. (D.1.13)

Most importantly for our analysis, we need to understand the behaviour of the
multiple Gamma-function appearing in 1-loop determinants under a constant Weyl
rescaling. Generically,

ΓN

(︂ z
r

⃓⃓⃓ a1

r
, . . . ,

aN

r

)︂
= rζN(0;z|a1,...,aN) ΓN(z|a1, . . . , aN) . (D.1.14)
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For N = 1 this reduces to
Γ1

(︂ z
r

⃓⃓⃓ a
r

)︂
= r

1
2−

z
a Γ1(z|a) , (D.1.15)

such that
γ1

(︂ z
r

⃓⃓⃓ a
r

)︂
= r1− 2z

a γ1(z|a) . (D.1.16)

For N = 2 one finds
Υ
(︃

z
r

⃓⃓⃓⃓
a
r

,
b
r

)︃
= r−2ζ2(0;z|a,b)Υ(z|a, b) . (D.1.17)
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surface anomalies and correlation functions on conical defects, 1503.06196.

[161] A. Faraji Astaneh and S. N. Solodukhin, Boundary conformal invariants and the
conformal anomaly in five dimensions, Phys. Lett. B 816 (2021) 136282, [2102.07661].

[162] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Renyi
entropy, JHEP 01 (2015) 080, [1407.8171].

[163] L. Bianchi, M. Meineri, R. C. Myers and M. Smolkin, Rényi entropy and conformal
defects, JHEP 07 (2016) 076, [1511.06713].

[164] T. Faulkner, R. G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for
Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038,
[1605.08072].

[165] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from
Causality, JHEP 07 (2017) 066, [1610.05308].

[166] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory,
JHEP 11 (2018) 102, [1805.00098].

[167] C. P. Herzog and I. Shamir, On Marginal Operators in Boundary Conformal Field
Theory, JHEP 10 (2019) 088, [1906.11281].

[168] C. P. Herzog and I. Shamir, How a-type anomalies can depend on marginal couplings,
Phys. Rev. Lett. 124 (2020) 011601, [1907.04952].

[169] L. Bianchi, Marginal deformations and defect anomalies, Phys. Rev. D 100 (2019)
126018, [1907.06193].

https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://doi.org/10.1007/JHEP01(2021)060
https://arxiv.org/abs/2005.02413
https://arxiv.org/abs/2101.02399
https://arxiv.org/abs/2202.09180
https://doi.org/10.1088/1126-6708/2003/12/059
https://arxiv.org/abs/hep-th/0310037
https://doi.org/10.1088/0264-9381/25/14/145013
https://doi.org/10.1088/0264-9381/25/14/145013
https://arxiv.org/abs/0801.1469
https://arxiv.org/abs/1503.06196
https://doi.org/10.1016/j.physletb.2021.136282
https://arxiv.org/abs/2102.07661
https://doi.org/10.1007/JHEP01(2015)080
https://arxiv.org/abs/1407.8171
https://doi.org/10.1007/JHEP07(2016)076
https://arxiv.org/abs/1511.06713
https://doi.org/10.1007/JHEP09(2016)038
https://arxiv.org/abs/1605.08072
https://doi.org/10.1007/JHEP07(2017)066
https://arxiv.org/abs/1610.05308
https://doi.org/10.1007/JHEP11(2018)102
https://arxiv.org/abs/1805.00098
https://doi.org/10.1007/JHEP10(2019)088
https://arxiv.org/abs/1906.11281
https://doi.org/10.1103/PhysRevLett.124.011601
https://arxiv.org/abs/1907.04952
https://doi.org/10.1103/PhysRevD.100.126018
https://doi.org/10.1103/PhysRevD.100.126018
https://arxiv.org/abs/1907.06193


224 REFERENCES

[170] M. Nozaki, T. Takayanagi and T. Ugajin, Central Charges for BCFTs and
Holography, JHEP 06 (2012) 066, [1205.1573].

[171] J. S. Dowker and J. P. Schofield, Conformal Transformations and the Effective Action
in the Presence of Boundaries, J. Math. Phys. 31 (1990) 808.

[172] D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP 12 (2015) 112,
[1510.01427].

[173] S. N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016)
131–134, [1510.04566].

[174] J. Melmed, Conformal Invariance and the Regularized One Loop Effective Action, J.
Phys. A 21 (1988) L1131–L1134.

[175] I. G. Moss, Boundary Terms in the Heat Kernel Expansion, Class. Quant. Grav. 6
(1989) 759.

[176] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.
A 42 (2009) 504005, [0905.4013].

[177] H. Casini and M. Huerta, Lectures on entanglement in quantum field theory,
2201.13310.

[178] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on
entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003,
[1803.04993].

[179] D. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003)
279–360, [hep-th/0306138].

[180] M. Mariño, Instantons and Large N: An Introduction to Non-Perturbative Methods in
Quantum Field Theory. Cambridge University Press, 9, 2015.

[181] C. Berthiere and S. N. Solodukhin, Boundary effects in entanglement entropy, Nucl.
Phys. B910 (2016) 823–841, [1604.07571].

[182] D. V. Fursaev, Spectral geometry and one-loop divergences on manifolds with conical
singularities, Physics Letters B 334 (1994) 53–60.

[183] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666–669,
[hep-th/9303048].

[184] C. G. Callan, Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994)
55–61, [hep-th/9401072].

[185] H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic
entanglement entropy, JHEP 05 (2011) 036, [1102.0440].

https://doi.org/10.1007/JHEP06(2012)066
https://arxiv.org/abs/1205.1573
https://doi.org/10.1063/1.528814
https://doi.org/10.1007/JHEP12(2015)112
https://arxiv.org/abs/1510.01427
https://doi.org/10.1016/j.physletb.2015.11.036
https://doi.org/10.1016/j.physletb.2015.11.036
https://arxiv.org/abs/1510.04566
https://doi.org/10.1088/0305-4470/21/23/005
https://doi.org/10.1088/0305-4470/21/23/005
https://doi.org/10.1088/0264-9381/6/5/017
https://doi.org/10.1088/0264-9381/6/5/017
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://arxiv.org/abs/2201.13310
https://doi.org/10.1103/RevModPhys.90.045003
https://arxiv.org/abs/1803.04993
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1016/j.physrep.2003.09.002
https://arxiv.org/abs/hep-th/0306138
https://doi.org/10.1016/j.nuclphysb.2016.07.029
https://doi.org/10.1016/j.nuclphysb.2016.07.029
https://arxiv.org/abs/1604.07571
https://doi.org/https://doi.org/10.1016/0370-2693(94)90590-8
https://doi.org/10.1103/PhysRevLett.71.666
https://arxiv.org/abs/hep-th/9303048
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0370-2693(94)91007-3
https://arxiv.org/abs/hep-th/9401072
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440


REFERENCES 225

[186] I. Affleck and A. W. W. Ludwig, Universal noninteger ’ground state degeneracy’ in
critical quantum systems, Phys. Rev. Lett. 67 (1991) 161–164.

[187] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum
systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402, [hep-th/0312197].

[188] H. Casini, I. S. Landea and G. Torroba, The g-theorem and quantum information
theory, JHEP 10 (2016) 140, [1607.00390].

[189] I. Affleck and A. W. W. Ludwig, Exact critical theory of the two impurity Kondo
model, Phys. Rev. Lett. 68 (1992) 1046–1049.

[190] E. Wong and I. Affleck, Tunneling in quantum wires: A Boundary conformal field
theory approach, Nucl. Phys. B 417 (1994) 403–438, [cond-mat/9311040].

[191] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the
energy radiated by a quark, JHEP 05 (2014) 025, [1312.5682].

[192] G. Cuomo, Z. Komargodski and A. Raviv-Moshe, Renormalization Group Flows on
Line Defects, 2108.01117.

[193] R. Rodgers, Holographic entanglement entropy from probe M-theory branes, JHEP 03
(2019) 092, [1811.12375].

[194] D. Gaiotto, Boundary F-maximization, 1403.8052.

[195] M. Bertolini, Lectures on supersymmetry, .

[196] P. C. Argyres, “An Introduction to Global Supersymmetry.” Available at
https://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/susy2001.pdf.

[197] M. J. Strassler, An Unorthodox introduction to supersymmetric gauge theory, in
Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2001):
Strings, Branes and EXTRA Dimensions, pp. 561–638, 9, 2003, hep-th/0309149,
DOI.

[198] C. Wetterich, Spinors in euclidean field theory, complex structures and discrete
symmetries, Nucl. Phys. B 852 (2011) 174–234, [1002.3556].

[199] M. Stone, Gamma matrices, Majorana fermions, and discrete symmetries in Minkowski
and Euclidean signature, J. Phys. A 55 (2022) 205401, [2009.00518].

[200] E. Witten, Phases of N=2 theories in two-dimensions, Nucl. Phys. B 403 (1993)
159–222, [hep-th/9301042].

[201] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys.
Lett. B 318 (1993) 469–475, [hep-ph/9309335].

https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1103/PhysRevLett.93.030402
https://arxiv.org/abs/hep-th/0312197
https://doi.org/10.1007/JHEP10(2016)140
https://arxiv.org/abs/1607.00390
https://doi.org/10.1103/PhysRevLett.68.1046
https://doi.org/10.1016/0550-3213(94)90479-0
https://arxiv.org/abs/cond-mat/9311040
https://doi.org/10.1007/JHEP05(2014)025
https://arxiv.org/abs/1312.5682
https://arxiv.org/abs/2108.01117
https://doi.org/10.1007/JHEP03(2019)092
https://doi.org/10.1007/JHEP03(2019)092
https://arxiv.org/abs/1811.12375
https://arxiv.org/abs/1403.8052
https://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/susy2001.pdf
https://arxiv.org/abs/hep-th/0309149
https://doi.org/10.1142/9789812702821_0011
https://doi.org/10.1016/j.nuclphysb.2011.06.013
https://arxiv.org/abs/1002.3556
https://doi.org/10.1088/1751-8121/ac61b7
https://arxiv.org/abs/2009.00518
https://doi.org/10.1016/0550-3213(93)90033-L
https://doi.org/10.1016/0550-3213(93)90033-L
https://arxiv.org/abs/hep-th/9301042
https://doi.org/10.1016/0370-2693(93)91541-T
https://doi.org/10.1016/0370-2693(93)91541-T
https://arxiv.org/abs/hep-ph/9309335


226 REFERENCES

[202] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Exact
Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton
Calculus, Nucl. Phys. B 229 (1983) 381–393.

[203] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, The beta
function in supersymmetric gauge theories. Instantons versus traditional approach,
Phys. Lett. B 166 (1986) 329–333.

[204] Y. Tachikawa, N=2 supersymmetric dynamics for pedestrians. 12, 2013,
10.1007/978-3-319-08822-8.

[205] S. Cremonesi, An Introduction to Localisation and Supersymmetry in Curved Space,
PoS Modave2013 (2013) 002.

[206] F. Benini and S. Cremonesi, Partition Functions of N = (2, 2) Gauge Theories on S2

and Vortices, Commun. Math. Phys. 334 (2015) 1483–1527, [1206.2356].

[207] N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D=2 Supersymmetric
Gauge Theories, JHEP 05 (2013) 093, [1206.2606].

[208] L. Eberhardt, Superconformal symmetry and representations, J. Phys. A 54 (2021)
063002, [2006.13280].

[209] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149.

[210] E. Witten, Some comments on string dynamics, in STRINGS 95: Future Perspectives
in String Theory, pp. 501–523, 7, 1995, hep-th/9507121.

[211] A. Strominger, Open p-branes, Phys. Lett. B383 (1996) 44–47, [hep-th/9512059].

[212] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions,
Phys. Lett. B 390 (1997) 169–171, [hep-th/9609161].

[213] O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field
theories and grid diagrams, JHEP 01 (1998) 002, [hep-th/9710116].

[214] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string
dynamics, Phys. Lett. B 388 (1996) 753–760, [hep-th/9608111].

[215] K. A. Intriligator, D. R. Morrison and N. Seiberg, Five-dimensional supersymmetric
gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997)
56–100, [hep-th/9702198].

[216] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d
SCFTs, JHEP 04 (2018) 103, [1801.04036].

[217] D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034, [0904.2715].

https://doi.org/10.1016/0550-3213(83)90338-3
https://doi.org/10.1016/0370-2693(86)90810-5
https://doi.org/10.1007/978-3-319-08822-8
https://doi.org/10.22323/1.201.0002
https://doi.org/10.1007/s00220-014-2112-z
https://arxiv.org/abs/1206.2356
https://doi.org/10.1007/JHEP05(2013)093
https://arxiv.org/abs/1206.2606
https://doi.org/10.1088/1751-8121/abd7b3
https://doi.org/10.1088/1751-8121/abd7b3
https://arxiv.org/abs/2006.13280
https://doi.org/10.1016/0550-3213(78)90218-3
https://arxiv.org/abs/hep-th/9507121
https://doi.org/10.1016/0370-2693(96)00712-5
https://arxiv.org/abs/hep-th/9512059
https://doi.org/10.1016/S0370-2693(96)01424-4
https://arxiv.org/abs/hep-th/9609161
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://doi.org/10.1016/S0550-3213(97)00279-4
https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://doi.org/10.1007/JHEP04(2018)103
https://arxiv.org/abs/1801.04036
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715


REFERENCES 227

[218] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008)
091, [0806.1218].

[219] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds,
Commun. Math. Phys. 325 (2014) 367–419, [1108.4389].

[220] F. A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the
operator product expansion, Nucl. Phys. B 629 (2002) 3–73, [hep-th/0112251].

[221] F. A. Dolan and H. Osborn, On short and semi-short representations for
four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41–89,
[hep-th/0209056].

[222] C. Cordova, T. T. Dumitrescu and K. Intriligator, Multiplets of Superconformal
Symmetry in Diverse Dimensions, JHEP 03 (2019) 163, [1612.00809].

[223] C. Romelsberger, Counting chiral primaries in N = 1, d=4 superconformal field
theories, Nucl. Phys. B 747 (2006) 329–353, [hep-th/0510060].

[224] J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional
super conformal theories, Commun. Math. Phys. 275 (2007) 209–254,
[hep-th/0510251].

[225] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for
Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064,
[0801.1435].

[226] E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253.

[227] B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014)
123, [1405.5144].

[228] L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and
d = 6, JHEP 12 (2014) 031, [1407.6061].

[229] N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the
Anomaly Polynomial, JHEP 09 (2015) 142, [1507.08553].

[230] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli,
The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP 07
(2015) 043, [1503.05537].

[231] X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and
classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013)
045013, [1303.1803].

[232] A. Kapustin, Symmetry Protected Topological Phases, Anomalies, and Cobordisms:
Beyond Group Cohomology, 1403.1467.

https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://doi.org/10.1007/s00220-013-1863-2
https://arxiv.org/abs/1108.4389
https://doi.org/10.1016/S0550-3213(02)00096-2
https://arxiv.org/abs/hep-th/0112251
https://doi.org/10.1016/S0003-4916(03)00074-5
https://arxiv.org/abs/hep-th/0209056
https://doi.org/10.1007/JHEP03(2019)163
https://arxiv.org/abs/1612.00809
https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://arxiv.org/abs/hep-th/0510060
https://doi.org/10.1007/s00220-007-0258-7
https://arxiv.org/abs/hep-th/0510251
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://doi.org/10.1016/0550-3213(82)90071-2
https://doi.org/10.1007/JHEP08(2014)123
https://doi.org/10.1007/JHEP08(2014)123
https://arxiv.org/abs/1405.5144
https://doi.org/10.1007/JHEP12(2014)031
https://arxiv.org/abs/1407.6061
https://doi.org/10.1007/JHEP09(2015)142
https://arxiv.org/abs/1507.08553
https://doi.org/10.1007/JHEP07(2015)043
https://doi.org/10.1007/JHEP07(2015)043
https://arxiv.org/abs/1503.05537
https://doi.org/10.1103/PhysRevD.88.045013
https://doi.org/10.1103/PhysRevD.88.045013
https://arxiv.org/abs/1303.1803
https://arxiv.org/abs/1403.1467


228 REFERENCES

[233] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various
dimensions and group cohomology, 1404.3230.

[234] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Topological Defect Lines
and Renormalization Group Flows in Two Dimensions, JHEP 01 (2019) 026,
[1802.04445].

[235] C. Córdova, T. T. Dumitrescu and K. Intriligator, Exploring 2-Group Global
Symmetries, JHEP 02 (2019) 184, [1802.04790].

[236] F. Benini, C. Córdova and P.-S. Hsin, On 2-Group Global Symmetries and their
Anomalies, JHEP 03 (2019) 118, [1803.09336].

[237] M. Nakahara, Geometry, topology and physics. 2003.

[238] A. Bilal, Lectures on Anomalies, 0802.0634.

[239] N. Boulanger, General solutions of the Wess-Zumino consistency condition for the
Weyl anomalies, JHEP 07 (2007) 069, [0704.2472].

[240] N. Boulanger, Algebraic Classification of Weyl Anomalies in Arbitrary Dimensions,
Phys. Rev. Lett. 98 (2007) 261302, [0706.0340].

[241] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969)
2426–2438.

[242] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60
(1969) 47–61.

[243] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,
NATO Sci. Ser. B 59 (1980) 135–157.

[244] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and
c-extremization, Phys. Rev. Lett. 110 (2013) 061601, [1211.4030].

[245] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and
c-extremization, JHEP 06 (2013) 005, [1302.4451].

[246] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS / CFT
correspondence, in Theoretical Advanced Study Institute in Elementary Particle
Physics (TASI 2001): Strings, Branes and EXTRA Dimensions, pp. 3–158, 1, 2002,
hep-th/0201253.

[247] M. Akhond, G. Arias-Tamargo, A. Mininno, H.-Y. Sun, Z. Sun, Y. Wang et al., The
Hitchhiker’s Guide to 4d N = 2 Superconformal Field Theories, 12, 2021, 2112.14764,
DOI.

[248] M. Beccaria and A. A. Tseytlin, Conformal anomaly c-coefficients of superconformal
6d theories, JHEP 01 (2016) 001, [1510.02685].

https://arxiv.org/abs/1404.3230
https://doi.org/10.1007/JHEP01(2019)026
https://arxiv.org/abs/1802.04445
https://doi.org/10.1007/JHEP02(2019)184
https://arxiv.org/abs/1802.04790
https://doi.org/10.1007/JHEP03(2019)118
https://arxiv.org/abs/1803.09336
https://arxiv.org/abs/0802.0634
https://doi.org/10.1088/1126-6708/2007/07/069
https://arxiv.org/abs/0704.2472
https://doi.org/10.1103/PhysRevLett.98.261302
https://arxiv.org/abs/0706.0340
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1103/PhysRevLett.110.061601
https://arxiv.org/abs/1211.4030
https://doi.org/10.1007/JHEP06(2013)005
https://arxiv.org/abs/1302.4451
https://arxiv.org/abs/hep-th/0201253
https://arxiv.org/abs/2112.14764
https://doi.org/10.21468/SciPostPhysLectNotes.64
https://doi.org/10.1007/JHEP01(2016)001
https://arxiv.org/abs/1510.02685


REFERENCES 229

[249] C. Córdova, T. T. Dumitrescu and K. Intriligator, N = (1, 0) anomaly multiplet
relations in six dimensions, JHEP 07 (2020) 065, [1912.13475].

[250] C. Cordova, T. T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal
Compactification, and Weyl Anomalies in Six-Dimensional (2,0) Theories, 1505.03850.

[251] C. Cordova, T. T. Dumitrescu and K. Intriligator, Anomalies, renormalization group
flows, and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080,
[1506.03807].

[252] K. A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a,
Nucl. Phys. B 667 (2003) 183–200, [hep-th/0304128].

[253] A. D. Shapere and Y. Tachikawa, Central charges of N=2 superconformal field
theories in four dimensions, JHEP 09 (2008) 109, [0804.1957].

[254] D. L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012)
159, [1012.3210].

[255] C. Closset, L. Di Pietro and H. Kim, ’t Hooft anomalies and the holomorphy of
supersymmetric partition functions, JHEP 08 (2019) 035, [1905.05722].

[256] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees, Infinite
Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359–1433,
[1312.5344].

[257] C. Beem, W. Peelaers, L. Rastelli and B. C. van Rees, Chiral algebras of class S,
JHEP 05 (2015) 020, [1408.6522].

[258] C. Beem, L. Rastelli and B. C. van Rees, W symmetry in six dimensions, JHEP 05
(2015) 017, [1404.1079].

[259] A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, Gauge Theories and Macdonald
Polynomials, Commun. Math. Phys. 319 (2013) 147–193, [1110.3740].

[260] A. Gadde, Lectures on the Superconformal Index, J. Phys. A 55 (2022) 063001,
[2006.13630].

[261] M. Lemos, Lectures on chiral algebras of N ⩾ 2 superconformal field theories,
2006.13892.

[262] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP
08 (2007) 056, [0704.3740].

[263] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N=6
supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008)
019, [0809.2787].

https://doi.org/10.1007/JHEP07(2020)065
https://arxiv.org/abs/1912.13475
https://arxiv.org/abs/1505.03850
https://doi.org/10.1007/JHEP10(2016)080
https://arxiv.org/abs/1506.03807
https://doi.org/10.1016/S0550-3213(03)00459-0
https://arxiv.org/abs/hep-th/0304128
https://doi.org/10.1088/1126-6708/2008/09/109
https://arxiv.org/abs/0804.1957
https://doi.org/10.1007/JHEP05(2012)159
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://doi.org/10.1007/JHEP08(2019)035
https://arxiv.org/abs/1905.05722
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://doi.org/10.1007/JHEP05(2015)020
https://arxiv.org/abs/1408.6522
https://doi.org/10.1007/JHEP05(2015)017
https://doi.org/10.1007/JHEP05(2015)017
https://arxiv.org/abs/1404.1079
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://doi.org/10.1088/1751-8121/ac42ac
https://arxiv.org/abs/2006.13630
https://arxiv.org/abs/2006.13892
https://doi.org/10.1088/1126-6708/2007/08/056
https://doi.org/10.1088/1126-6708/2007/08/056
https://arxiv.org/abs/0704.3740
https://doi.org/10.1088/1126-6708/2008/11/019
https://doi.org/10.1088/1126-6708/2008/11/019
https://arxiv.org/abs/0809.2787


230 REFERENCES

[264] B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N=6 Super
Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38–51, [0809.2863].

[265] S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal
Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual,
JHEP 03 (2009) 127, [0809.3786].

[266] N. Drukker and D. Trancanelli, A Supermatrix model for N=6 super
Chern-Simons-matter theory, JHEP 02 (2010) 058, [0912.3006].

[267] N. Drukker, M. Tenser and D. Trancanelli, Notes on hyperloops in N = 4
Chern-Simons-matter theories, JHEP 07 (2021) 159, [2012.07096].

[268] N. Drukker, Z. Kong, M. Probst, M. Tenser and D. Trancanelli, Conformal and
non-conformal hyperloop deformations of the 1/2 BPS circle, 2206.07390.

[269] N. Drukker et al., Roadmap on Wilson loops in 3d Chern–Simons-matter theories, J.
Phys. A 53 (2020) 173001, [1910.00588].

[270] J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998)
4859–4862, [hep-th/9803002].

[271] K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157–171,
[hep-th/0205160].

[272] J. Gomis, T. Okuda and D. Trancanelli, Quantum ’t Hooft operators and S-duality in
N=4 super Yang-Mills, Adv. Theor. Math. Phys. 13 (2009) 1941–1981, [0904.4486].

[273] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of
a moving quark in N=4 super Yang Mills, JHEP 06 (2012) 048, [1202.4455].

[274] B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in
N = 2 Superconformal Field Theories, Phys. Rev. Lett. 116 (2016) 081601,
[1510.01332].

[275] D. Gaiotto, G. W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math.
Phys. 17 (2013) 241–397, [1006.0146].

[276] C. Córdova and A. Neitzke, Line Defects, Tropicalization, and Multi-Centered
Quiver Quantum Mechanics, JHEP 09 (2014) 099, [1308.6829].

[277] C. Cordova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur
Indices, JHEP 11 (2016) 106, [1606.08429].

[278] P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP
10 (2018) 077, [1806.01862].

[279] A. Gimenez-Grau and P. Liendo, Bootstrapping line defects in N = 2 theories, JHEP
03 (2020) 121, [1907.04345].

https://doi.org/10.1016/j.nuclphysb.2009.09.015
https://arxiv.org/abs/0809.2863
https://doi.org/10.1088/1126-6708/2009/03/127
https://arxiv.org/abs/0809.3786
https://doi.org/10.1007/JHEP02(2010)058
https://arxiv.org/abs/0912.3006
https://doi.org/10.1007/JHEP07(2021)159
https://arxiv.org/abs/2012.07096
https://arxiv.org/abs/2206.07390
https://doi.org/10.1088/1751-8121/ab5d50
https://doi.org/10.1088/1751-8121/ab5d50
https://arxiv.org/abs/1910.00588
https://doi.org/10.1103/PhysRevLett.80.4859
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://doi.org/10.1016/S0550-3213(02)00693-4
https://arxiv.org/abs/hep-th/0205160
https://doi.org/10.4310/ATMP.2009.v13.n6.a9
https://arxiv.org/abs/0904.4486
https://doi.org/10.1007/JHEP06(2012)048
https://arxiv.org/abs/1202.4455
https://doi.org/10.1103/PhysRevLett.116.081601
https://arxiv.org/abs/1510.01332
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://arxiv.org/abs/1006.0146
https://doi.org/10.1007/JHEP09(2014)099
https://arxiv.org/abs/1308.6829
https://doi.org/10.1007/JHEP11(2016)106
https://arxiv.org/abs/1606.08429
https://doi.org/10.1007/JHEP10(2018)077
https://doi.org/10.1007/JHEP10(2018)077
https://arxiv.org/abs/1806.01862
https://doi.org/10.1007/JHEP03(2020)121
https://doi.org/10.1007/JHEP03(2020)121
https://arxiv.org/abs/1907.04345


REFERENCES 231

[280] L. Bianchi, G. Bliard, V. Forini, L. Griguolo and D. Seminara, Analytic bootstrap
and Witten diagrams for the ABJM Wilson line as defect CFT1, JHEP 08 (2020) 143,
[2004.07849].

[281] J. Barrat, P. Liendo, G. Peveri and J. Plefka, Multipoint correlators on the
supersymmetric Wilson line defect CFT, 2112.10780.

[282] A. Cavaglià, N. Gromov, J. Julius and M. Preti, Integrability and conformal
bootstrap: One dimensional defect conformal field theory, Phys. Rev. D 105 (2022)
L021902, [2107.08510].

[283] J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10
(2011) 059, [1104.5077].

[284] M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in N = 4
SYM and defect 1d CFT, JHEP 03 (2018) 131, [1712.06874].

[285] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in
Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089,
[0909.4559].

[286] L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in N = 2
Conformal Theories, Phys. Rev. Lett. 121 (2018) 141601, [1805.04111].

[287] Y. Wang, Surface Defect, Anomalies and b-Extremization, 2012.06574.

[288] L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, JHEP 06
(2020) 056, [1911.05082].

[289] N. Drukker, M. Probst and M. Trépanier, Defect CFT techniques in the 6d
N = (2, 0) theory, JHEP 03 (2021) 261, [2009.10732].

[290] C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defects and Chiral Algebras, JHEP
05 (2017) 140, [1704.01955].

[291] T. Dimofte, D. Gaiotto and N. M. Paquette, Dual boundary conditions in 3d SCFT’s,
JHEP 05 (2018) 060, [1712.07654].

[292] M. Bullimore, S. Crew and D. Zhang, Boundaries, Vermas, and Factorisation, JHEP
04 (2021) 263, [2010.09741].

[293] S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands
Program, hep-th/0612073.

[294] J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP 06 (2007)
025, [0704.1657].

[295] N. Drukker, J. Gomis and S. Matsuura, Probing N=4 SYM With Surface Operators,
JHEP 10 (2008) 048, [0805.4199].

https://doi.org/10.1007/JHEP08(2020)143
https://arxiv.org/abs/2004.07849
https://arxiv.org/abs/2112.10780
https://doi.org/10.1103/PhysRevD.105.L021902
https://doi.org/10.1103/PhysRevD.105.L021902
https://arxiv.org/abs/2107.08510
https://doi.org/10.1007/JHEP10(2011)059
https://doi.org/10.1007/JHEP10(2011)059
https://arxiv.org/abs/1104.5077
https://doi.org/10.1007/JHEP03(2018)131
https://arxiv.org/abs/1712.06874
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://doi.org/10.1103/PhysRevLett.121.141601
https://arxiv.org/abs/1805.04111
https://arxiv.org/abs/2012.06574
https://doi.org/10.1007/JHEP06(2020)056
https://doi.org/10.1007/JHEP06(2020)056
https://arxiv.org/abs/1911.05082
https://doi.org/10.1007/JHEP03(2021)261
https://arxiv.org/abs/2009.10732
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.1007/JHEP05(2017)140
https://arxiv.org/abs/1704.01955
https://doi.org/10.1007/JHEP05(2018)060
https://arxiv.org/abs/1712.07654
https://doi.org/10.1007/JHEP04(2021)263
https://doi.org/10.1007/JHEP04(2021)263
https://arxiv.org/abs/2010.09741
https://arxiv.org/abs/hep-th/0612073
https://doi.org/10.1088/1126-6708/2007/06/025
https://doi.org/10.1088/1126-6708/2007/06/025
https://arxiv.org/abs/0704.1657
https://doi.org/10.1088/1126-6708/2008/10/048
https://arxiv.org/abs/0805.4199


232 REFERENCES

[296] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface
operators in N=2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113,
[0909.0945].

[297] D. Gaiotto, Surface Operators in N = 2 4d Gauge Theories, JHEP 11 (2012) 090,
[0911.1316].

[298] J. Gomis and B. Le Floch, M2-brane surface operators and gauge theory dualities in
Toda, JHEP 04 (2016) 183, [1407.1852].

[299] N. Drukker, I. Shamir and C. Vergu, Defect multiplets of N = 1 supersymmetry in
4d, JHEP 01 (2018) 034, [1711.03455].

[300] S. S. Razamat, Flavored surface defects in 4d N = 1 SCFTs, Lett. Math. Phys. 109
(2019) 1377–1395, [1808.09509].

[301] N. Drukker, M. Probst and M. Trépanier, Surface operators in the 6d N = (2, 0)
theory, J. Phys. A 53 (2020) 365401, [2003.12372].

[302] C. P. Herzog, K.-W. Huang, I. Shamir and J. Virrueta, Superconformal Models for
Graphene and Boundary Central Charges, JHEP 09 (2018) 161, [1807.01700].

[303] D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The
theta-Angle in N=4 Super Yang-Mills Theory, JHEP 06 (2010) 097, [0804.2907].

[304] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N=4 Super
Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789–855, [0804.2902].

[305] D. Gaiotto and E. Witten, S-Duality of Boundary Conditions In N=4 Super
Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721–896, [0807.3720].

[306] M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT
and Integrability, JHEP 08 (2015) 098, [1506.06958].

[307] T. Gombor and Z. Bajnok, Boundary states, overlaps, nesting and bootstrapping
AdS/dCFT, JHEP 10 (2020) 123, [2004.11329].

[308] S. Komatsu and Y. Wang, Non-perturbative defect one-point functions in planar
N = 4 super-Yang-Mills, Nucl. Phys. B 958 (2020) 115120, [2004.09514].

[309] C. Kristjansen, D.-L. Vu and K. Zarembo, Integrable domain walls in ABJM theory,
JHEP 02 (2022) 070, [2112.10438].

[310] O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two
defects of 6d N=(2,0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006, [1203.2930].

[311] M. Bullimore and H.-C. Kim, The Superconformal Index of the (2,0) Theory with
Defects, JHEP 05 (2015) 048, [1412.3872].

https://doi.org/10.1007/JHEP01(2010)113
https://arxiv.org/abs/0909.0945
https://doi.org/10.1007/JHEP11(2012)090
https://arxiv.org/abs/0911.1316
https://doi.org/10.1007/JHEP04(2016)183
https://arxiv.org/abs/1407.1852
https://doi.org/10.1007/JHEP01(2018)034
https://arxiv.org/abs/1711.03455
https://doi.org/10.1007/s11005-018-01145-9
https://doi.org/10.1007/s11005-018-01145-9
https://arxiv.org/abs/1808.09509
https://doi.org/10.1088/1751-8121/aba1b7
https://arxiv.org/abs/2003.12372
https://doi.org/10.1007/JHEP09(2018)161
https://arxiv.org/abs/1807.01700
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://doi.org/10.1007/s10955-009-9687-3
https://arxiv.org/abs/0804.2902
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://doi.org/10.1007/JHEP08(2015)098
https://arxiv.org/abs/1506.06958
https://doi.org/10.1007/JHEP10(2020)123
https://arxiv.org/abs/2004.11329
https://doi.org/10.1016/j.nuclphysb.2020.115120
https://arxiv.org/abs/2004.09514
https://doi.org/10.1007/JHEP02(2022)070
https://arxiv.org/abs/2112.10438
https://doi.org/10.1142/S0217751X1340006X
https://arxiv.org/abs/1203.2930
https://doi.org/10.1007/JHEP05(2015)048
https://arxiv.org/abs/1412.3872


REFERENCES 233

[312] A. Faraji Astaneh and S. N. Solodukhin, Boundary conformal invariants and the
conformal anomaly in five dimensions, Phys. Lett. B 816 (2021) 136282, [2102.07661].

[313] J. M. Martin-Garcia, “xAct, Efficient Tensor Computer Algebra for
Mathematica.” http://www.xact.es, 2004.

[314] T. P. Branson and B. Ørsted, Explicit functional determinants in four dimensions,
Proceedings of the American Mathematical Society 113 (1991) 669–682.

[315] D. Deutsch and P. Candelas, Boundary effects in quantum field theory, Phys. Rev. D
20 (Dec, 1979) 3063–3080.

[316] R.-X. Miao and C.-S. Chu, Universality for Shape Dependence of Casimir Effects from
Weyl Anomaly, JHEP 03 (2018) 046, [1706.09652].

[317] L. Alvarez-Gaume, D. Z. Freedman and S. Mukhi, The Background Field Method
and the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals
Phys. 134 (1981) 85.

[318] A. Faraji Astaneh, C. Berthiere, D. Fursaev and S. N. Solodukhin, Holographic
calculation of entanglement entropy in the presence of boundaries, Phys. Rev. D 95
(2017) 106013, [1703.04186].

[319] L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from
Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167–197, [0906.3219].

[320] D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP 10
(2016) 012, [1412.2781].

[321] M. Gutperle and C. F. Uhlemann, Surface defects in holographic 5d SCFTs, JHEP 04
(2021) 134, [2012.14547].

[322] S. Giombi, E. Helfenberger, Z. Ji and H. Khanchandani, Monodromy Defects from
Hyperbolic Space, 2102.11815.

[323] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum
theory, Phys. Rev. 115 (Aug, 1959) 485–491.

[324] M. Alford, J. March-Russell and F. Wilczek, Enhanced baryon number violation due
to cosmic strings, Nuclear Physics B 328 (1989) 140–158.

[325] P. de Sousa Gerbert and R. Jackiw, Classical and Quantum Scattering on a Spinning
Cone, Commun. Math. Phys. 124 (1989) 229.

[326] J. S. Dowker, Casimir Effect Around a Cone, Phys. Rev. D 36 (1987) 3095.

[327] A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R. C. Myers and T. Sierens,
Holographic Charged Renyi Entropies, JHEP 12 (2013) 059, [1310.4180].

https://doi.org/10.1016/j.physletb.2021.136282
https://arxiv.org/abs/2102.07661
http://www.xact.es
https://doi.org/10.1103/PhysRevD.20.3063
https://doi.org/10.1103/PhysRevD.20.3063
https://doi.org/10.1007/JHEP03(2018)046
https://arxiv.org/abs/1706.09652
https://doi.org/10.1016/0003-4916(81)90006-3
https://doi.org/10.1016/0003-4916(81)90006-3
https://doi.org/10.1103/PhysRevD.95.106013
https://doi.org/10.1103/PhysRevD.95.106013
https://arxiv.org/abs/1703.04186
https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://doi.org/10.1007/JHEP10(2016)012
https://doi.org/10.1007/JHEP10(2016)012
https://arxiv.org/abs/1412.2781
https://doi.org/10.1007/JHEP04(2021)134
https://doi.org/10.1007/JHEP04(2021)134
https://arxiv.org/abs/2012.14547
https://arxiv.org/abs/2102.11815
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/https://doi.org/10.1016/0550-3213(89)90096-5
https://doi.org/10.1007/BF01219196
https://doi.org/10.1103/PhysRevD.36.3095
https://doi.org/10.1007/JHEP12(2013)059
https://arxiv.org/abs/1310.4180


234 REFERENCES

[328] C. P. Herzog, Universal Thermal Corrections to Entanglement Entropy for Conformal
Field Theories on Spheres, JHEP 10 (2014) 028, [1407.1358].

[329] J. Lee, A. Lewkowycz, E. Perlmutter and B. R. Safdi, Rényi entropy, stationarity,
and entanglement of the conformal scalar, JHEP 03 (2015) 075, [1407.7816].

[330] C. P. Herzog and T. Nishioka, The Edge of Entanglement: Getting the Boundary
Right for Non-Minimally Coupled Scalar Fields, JHEP 12 (2016) 138, [1610.02261].

[331] J. Dowker, Vacuum Averages for Arbitrary Spin Around a Cosmic String, Phys. Rev.
D 36 (1987) 3742.

[332] B. A. Bernevig and S.-C. Zhang, Quantum spin hall effect, Phys. Rev. Lett. 96 (Mar,
2006) 106802.

[333] R. Bergamin and A. A. Tseytlin, Heat kernels on cone of AdS2 and k-wound circular
Wilson loop in AdS5 × S5 superstring, J. Phys. A 49 (2016) 14LT01, [1510.06894].

[334] D. Fursaev and D. Vassilevich, Operators, Geometry and Quanta: Methods of
spectral geometry in quantum field theory. Theoretical and Mathematical Physics.
Springer, Berlin, Germany, 2011, 10.1007/978-94-007-0205-9.

[335] A. M. Polyakov, Gauge Fields and Strings, vol. 3. 1987.

[336] J. Garriga and A. Vilenkin, Holographic Multiverse, JCAP 0901 (2009) 021,
[0809.4257].

[337] J. Garriga and A. Vilenkin, Holographic Multiverse and Conformal Invariance, JCAP
0911 (2009) 020, [0905.1509].

[338] B. Fiol, Flavor from M5-branes, JHEP 1007 (2010) 046, [1005.2133].

[339] B. Fiol, Defect CFTs and Holographic Multiverse, JCAP 1007 (2010) 005,
[1004.0618].

[340] K. Jensen and A. O’Bannon, Holography, Entanglement Entropy, and Conformal
Field Theories with Boundaries or Defects, Phys. Rev. D 88 (2013) 106006,
[1309.4523].

[341] Y. Korovin, First Order Formalism for the Holographic Duals of Defect CFTs, JHEP
1404 (2014) 152, [1312.0089].

[342] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On Holographic Defect
Entropy, JHEP 05 (2014) 084, [1403.6475].

[343] D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement
entropy in AdS4/BCFT3, JHEP 11 (2017) 076, [1708.05080].

https://doi.org/10.1007/JHEP10(2014)028
https://arxiv.org/abs/1407.1358
https://doi.org/10.1007/JHEP03(2015)075
https://arxiv.org/abs/1407.7816
https://doi.org/10.1007/JHEP12(2016)138
https://arxiv.org/abs/1610.02261
https://doi.org/10.1103/PhysRevD.36.3742
https://doi.org/10.1103/PhysRevD.36.3742
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1088/1751-8113/49/14/14LT01
https://arxiv.org/abs/1510.06894
https://doi.org/10.1007/978-94-007-0205-9
https://doi.org/10.1088/1475-7516/2009/01/021
https://arxiv.org/abs/0809.4257
https://doi.org/10.1088/1475-7516/2009/11/020
https://doi.org/10.1088/1475-7516/2009/11/020
https://arxiv.org/abs/0905.1509
https://doi.org/10.1007/JHEP07(2010)046
https://arxiv.org/abs/1005.2133
https://doi.org/10.1088/1475-7516/2010/07/005
https://arxiv.org/abs/1004.0618
https://doi.org/10.1103/PhysRevD.88.106006
https://arxiv.org/abs/1309.4523
https://doi.org/10.1007/JHEP04(2014)152
https://doi.org/10.1007/JHEP04(2014)152
https://arxiv.org/abs/1312.0089
https://doi.org/10.1007/JHEP05(2014)084
https://arxiv.org/abs/1403.6475
https://doi.org/10.1007/JHEP11(2017)076
https://arxiv.org/abs/1708.05080


REFERENCES 235

[344] D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in
AdS4/BCFT3 and the Willmore functional, JHEP 08 (2018) 164, [1805.11551].

[345] S. Gukov and E. Witten, Rigid Surface Operators, Adv. Theor. Math. Phys. 14 (2010)
87–178, [0804.1561].

[346] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91–114.

[347] E. Witten, Gauge theory and wild ramification, 0710.0631.

[348] N. J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyperkahler Metrics and
Supersymmetry, Commun. Math. Phys. 108 (1987) 535.

[349] A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080,
[1305.0266].

[350] J. Gomis, B. Le Floch, Y. Pan and W. Peelaers, Intersecting Surface Defects and
Two-Dimensional CFT, Phys. Rev. D96 (2017) 045003, [1610.03501].

[351] F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, J. Phys.
A50 (2017) 443003, [1608.02955].

[352] Y. Pan and W. Peelaers, Intersecting Surface Defects and Instanton Partition
Functions, JHEP 07 (2017) 073, [1612.04839].

[353] A. Gorsky, B. Le Floch, A. Milekhin and N. Sopenko, Surface defects and
instanton–vortex interaction, Nucl. Phys. B920 (2017) 122–156, [1702.03330].

[354] E. Frenkel, S. Gukov and J. Teschner, Surface Operators and Separation of Variables,
JHEP 01 (2016) 179, [1506.07508].

[355] B. Le Floch, A slow review of the AGT correspondence, 2006.14025.

[356] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the
WKB Approximation, 0907.3987.

[357] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099,
[1008.5203].

[358] D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100, [1204.2270].

[359] P. C. Argyres and M. R. Douglas, New phenomena in SU(3) supersymmetric gauge
theory, Nucl. Phys. B 448 (1995) 93–126, [hep-th/9505062].

[360] N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal
N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002, [0907.2189].

[361] L. F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories,
Lett. Math. Phys. 94 (2010) 87–114, [1005.4469].

https://doi.org/10.1007/JHEP08(2018)164
https://arxiv.org/abs/1805.11551
https://doi.org/10.4310/ATMP.2010.v14.n1.a3
https://doi.org/10.4310/ATMP.2010.v14.n1.a3
https://arxiv.org/abs/0804.1561
https://doi.org/10.1215/S0012-7094-87-05408-1
https://arxiv.org/abs/0710.0631
https://doi.org/10.1007/BF01214418
https://doi.org/10.1007/JHEP03(2014)080
https://arxiv.org/abs/1305.0266
https://doi.org/10.1103/PhysRevD.96.045003
https://arxiv.org/abs/1610.03501
https://doi.org/10.1088/1751-8121/aa77bb
https://doi.org/10.1088/1751-8121/aa77bb
https://arxiv.org/abs/1608.02955
https://doi.org/10.1007/JHEP07(2017)073
https://arxiv.org/abs/1612.04839
https://doi.org/10.1016/j.nuclphysb.2017.04.010
https://arxiv.org/abs/1702.03330
https://doi.org/10.1007/JHEP01(2016)179
https://arxiv.org/abs/1506.07508
https://arxiv.org/abs/2006.14025
https://arxiv.org/abs/0907.3987
https://doi.org/10.1007/JHEP11(2010)099
https://arxiv.org/abs/1008.5203
https://doi.org/10.1007/JHEP01(2013)100
https://arxiv.org/abs/1204.2270
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062
https://doi.org/10.1088/1126-6708/2009/11/002
https://arxiv.org/abs/0907.2189
https://doi.org/10.1007/s11005-010-0422-4
https://arxiv.org/abs/1005.4469


236 REFERENCES

[362] C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N) conformal blocks
from N=2 SU(N) gauge theories, JHEP 01 (2011) 045, [1008.1412].

[363] S. A. Gentle, M. Gutperle and C. Marasinou, Entanglement entropy of Wilson
surfaces from bubbling geometries in M-theory, JHEP 08 (2015) 019, [1506.00052].

[364] S. A. Gentle, M. Gutperle and C. Marasinou, Holographic entanglement entropy of
surface defects, JHEP 04 (2016) 067, [1512.04953].

[365] H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the
chain-saw quiver, JHEP 06 (2011) 119, [1105.0357].

[366] S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with
surface operator, Adv. Theor. Math. Phys. 19 (2015) 1277–1338, [1408.4132].

[367] S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, R. R. John and A. Lerda, Modular
and duality properties of surface operators in N=2* gauge theories, JHEP 07 (2017) 068,
[1702.02833].

[368] D. Gaiotto, L. Rastelli and S. S. Razamat, Bootstrapping the superconformal index
with surface defects, JHEP 01 (2013) 022, [1207.3577].

[369] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular
differential equations, JHEP 08 (2018) 114, [1707.07679].

[370] M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M theory on T**4 and
T**5, Phys. Lett. B 408 (1997) 105–110, [hep-th/9704089].

[371] M. R. Douglas, On D=5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011)
011, [1012.2880].

[372] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes,
D4-Branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083, [1012.2882].

[373] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative
Topological Strings, JHEP 10 (2018) 051, [1210.5909].

[374] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,
1211.0144.

[375] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog.
Math. 244 (2006) 525–596, [hep-th/0306238].

[376] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05
(2013) 144, [1206.6339].

[377] T. Nishioka and I. Yaakov, Supersymmetric Renyi Entropy, JHEP 10 (2013) 155,
[1306.2958].

https://doi.org/10.1007/JHEP01(2011)045
https://arxiv.org/abs/1008.1412
https://doi.org/10.1007/JHEP08(2015)019
https://arxiv.org/abs/1506.00052
https://doi.org/10.1007/JHEP04(2016)067
https://arxiv.org/abs/1512.04953
https://doi.org/10.1007/JHEP06(2011)119
https://arxiv.org/abs/1105.0357
https://doi.org/10.4310/ATMP.2015.v19.n6.a4
https://arxiv.org/abs/1408.4132
https://doi.org/10.1007/JHEP07(2017)068
https://arxiv.org/abs/1702.02833
https://doi.org/10.1007/JHEP01(2013)022
https://arxiv.org/abs/1207.3577
https://doi.org/10.1007/JHEP08(2018)114
https://arxiv.org/abs/1707.07679
https://doi.org/10.1016/S0370-2693(97)00800-9
https://arxiv.org/abs/hep-th/9704089
https://doi.org/10.1007/JHEP02(2011)011
https://doi.org/10.1007/JHEP02(2011)011
https://arxiv.org/abs/1012.2880
https://doi.org/10.1007/JHEP01(2011)083
https://arxiv.org/abs/1012.2882
https://doi.org/10.1007/JHEP10(2018)051
https://arxiv.org/abs/1210.5909
https://arxiv.org/abs/1211.0144
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://doi.org/10.1007/JHEP05(2013)144
https://doi.org/10.1007/JHEP05(2013)144
https://arxiv.org/abs/1206.6339
https://doi.org/10.1007/JHEP10(2013)155
https://arxiv.org/abs/1306.2958


REFERENCES 237

[378] X. Huang and Y. Zhou, N = 4 Super-Yang-Mills on conic space as hologram of STU
topological black hole, JHEP 02 (2015) 068, [1408.3393].

[379] S. Yankielowicz and Y. Zhou, Supersymmetric Rényi entropy and Anomalies in 6d
(1,0) SCFTs, JHEP 04 (2017) 128, [1702.03518].

[380] Y. Zhou, Information Theoretic Inequalities as Bounds in Superconformal Field Theory,
1607.05401.

[381] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B577
(2000) 419–438, [hep-th/9912123].

[382] T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian
3-manifolds, Lett. Math. Phys. 98 (2011) 225–287, [1006.0977].

[383] M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten
Geometry, JHEP 05 (2015) 095, [1412.6081].

[384] N. Bobev and P. M. Crichigno, Universal RG Flows Across Dimensions and
Holography, JHEP 12 (2017) 065, [1708.05052].

[385] O. DeWolfe, D. Z. Freedman and H. Ooguri, Holography and defect conformal field
theories, Phys. Rev. D66 (2002) 025009, [hep-th/0111135].

[386] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I.
Local solution and supersymmetric Janus, JHEP 06 (2007) 021, [0705.0022].

[387] N. Bobev, K. Pilch and N. P. Warner, Supersymmetric Janus Solutions in Four
Dimensions, JHEP 06 (2014) 058, [1311.4883].

[388] N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories
and 2D CFTs, JHEP 06 (2011) 025, [1003.1112].

[389] L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two
dimensions, JHEP 03 (2018) 189, [1704.02330].

[390] J. Kaidi, K. Ohmori and Y. Zheng, Kramers-Wannier-like Duality Defects in (3+1)D
Gauge Theories, Phys. Rev. Lett. 128 (2022) 111601, [2111.01141].

[391] Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam and S.-H. Shao, Noninvertible duality
defects in 3+1 dimensions, Phys. Rev. D 105 (2022) 125016, [2111.01139].

[392] L. Bhardwaj, L. Bottini, S. Schafer-Nameki and A. Tiwari, Non-Invertible
Higher-Categorical Symmetries, 2204.06564.

[393] Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam and S.-H. Shao, Non-invertible
Condensation, Duality, and Triality Defects in 3+1 Dimensions, 2204.09025.

https://doi.org/10.1007/JHEP02(2015)068
https://arxiv.org/abs/1408.3393
https://doi.org/10.1007/JHEP04(2017)128
https://arxiv.org/abs/1702.03518
https://arxiv.org/abs/1607.05401
https://doi.org/10.1016/S0550-3213(00)00118-8
https://doi.org/10.1016/S0550-3213(00)00118-8
https://arxiv.org/abs/hep-th/9912123
https://doi.org/10.1007/s11005-011-0531-8
https://arxiv.org/abs/1006.0977
https://doi.org/10.1007/JHEP05(2015)095
https://arxiv.org/abs/1412.6081
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://doi.org/10.1103/PhysRevD.66.025009
https://arxiv.org/abs/hep-th/0111135
https://doi.org/10.1088/1126-6708/2007/06/021
https://arxiv.org/abs/0705.0022
https://doi.org/10.1007/JHEP06(2014)058
https://arxiv.org/abs/1311.4883
https://doi.org/10.1007/JHEP06(2011)025
https://arxiv.org/abs/1003.1112
https://doi.org/10.1007/JHEP03(2018)189
https://arxiv.org/abs/1704.02330
https://doi.org/10.1103/PhysRevLett.128.111601
https://arxiv.org/abs/2111.01141
https://doi.org/10.1103/PhysRevD.105.125016
https://arxiv.org/abs/2111.01139
https://arxiv.org/abs/2204.06564
https://arxiv.org/abs/2204.09025


238 REFERENCES

[394] L. Bhardwaj, 2-Group symmetries in class S, SciPost Phys. 12 (2022) 152,
[2107.06816].

[395] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal,
and Temperature, JHEP 05 (2017) 091, [1703.00501].

[396] C. Cordova, T. T. Dumitrescu and K. Intriligator, 2-Group Global Symmetries and
Anomalies in Six-Dimensional Quantum Field Theories, JHEP 04 (2021) 252,
[2009.00138].

[397] R. M. Nandkishore and M. Hermele, Fractons, Ann. Rev. Condensed Matter Phys.
10 (2019) 295–313, [1803.11196].

[398] N. Seiberg, Field Theories With a Vector Global Symmetry, SciPost Phys. 8 (2020) 050,
[1909.10544].

[399] N. Seiberg and S.-H. Shao, Exotic Symmetries, Duality, and Fractons in
2+1-Dimensional Quantum Field Theory, SciPost Phys. 10 (2021) 027, [2003.10466].

[400] A. Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003)
2–30, [quant-ph/9707021].

[401] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian
anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083–1159,
[0707.1889].

[402] X.-G. Wen, Topological orders and edge excitations in FQH states, Adv. Phys. 44
(1995) 405–473, [cond-mat/9506066].

[403] A. R. Akhmerov and C. W. J. Beenakker, Boundary conditions for dirac fermions on
a terminated honeycomb lattice, Phys. Rev. B 77 (Feb, 2008) 085423.

[404] S. Biswas and G. W. Semenoff, Massless Fermions on a half-space: The curious case of
2+1-dimensions, 2208.06374.

[405] S. Ruijsenaars, On barnes’ multiple zeta and gamma functions, Advances in
Mathematics 156 (2000) 107 – 132.

[406] M. Spreafico, On the barnes double zeta and gamma functions, Journal of Number
Theory 129 (2009) 2035 – 2063.

https://doi.org/10.21468/SciPostPhys.12.5.152
https://arxiv.org/abs/2107.06816
https://doi.org/10.1007/JHEP05(2017)091
https://arxiv.org/abs/1703.00501
https://doi.org/10.1007/JHEP04(2021)252
https://arxiv.org/abs/2009.00138
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://arxiv.org/abs/1803.11196
https://doi.org/10.21468/SciPostPhys.8.4.050
https://arxiv.org/abs/1909.10544
https://doi.org/10.21468/SciPostPhys.10.2.027
https://arxiv.org/abs/2003.10466
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1103/RevModPhys.80.1083
https://arxiv.org/abs/0707.1889
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://arxiv.org/abs/cond-mat/9506066
https://doi.org/10.1103/PhysRevB.77.085423
https://arxiv.org/abs/2208.06374
https://doi.org/https://doi.org/10.1006/aima.2000.1946
https://doi.org/https://doi.org/10.1006/aima.2000.1946
https://doi.org/https://doi.org/10.1016/j.jnt.2009.03.005
https://doi.org/https://doi.org/10.1016/j.jnt.2009.03.005

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Declaration of Authorship
	I Introduction
	1 Motivation
	2 Conformal Field Theory in d>2
	2.1 Conformal symmetry
	2.2 States and operators
	2.3 Correlation functions and CFT data
	2.4 Curved background
	2.5 Weyl anomaly

	3 Conformal Defects
	3.1 Correlation functions and DCFT data
	3.2 Examples of conformal defects
	3.3 Submanifold geometry
	3.4 Defect Weyl anomaly

	4 Entanglement Entropy
	4.1 Entanglement in finite quantum systems
	4.2 Entanglement in QFT
	4.3 Entanglement in free QFTs and the heat kernel
	4.4 Entanglement in CFT
	4.5 Entanglement in DCFT

	5 Supersymmetry
	5.1 Flat space supersymmetry
	5.2 Supersymmetric localisation
	5.3 Superconformal symmetry
	5.4 Weyl anomaly in SCFTs
	5.5 Superconformal defects


	II Research
	6 Weyl Anomaly of 4d Conformal Defects
	6.1 Defect Weyl anomaly
	6.2 Defect central charges from observables
	6.3 Discussion

	7 Monodromy Defects in Free Field Theories
	7.1 Background
	7.2 Free scalar
	7.3 Free fermion
	7.4 Defect RG flows
	7.5 Discussion

	8 Central Charges of 2d Superconformal Defects
	8.1 Review: 2d superconformal defects
	8.2 Partition function on S4
	8.3 SUSY partition function on S1×Sd-1
	8.4 Discussion

	9 Concluding Remarks

	III Appendices
	Appendix A Chapter 3
	Appendix A.1 Isolating the anomaly: p=2 conformal defect in a d=4 CFT

	Appendix B Chapter 6
	Appendix B.1 4d defect Weyl anomaly basis

	Appendix C Chapter 7
	Appendix C.1 Spherical defects
	Appendix C.2 Scalar propagator
	Appendix C.3 Fermion propagator
	Appendix C.4 Useful formulae

	Appendix D Chapter 8
	Appendix D.1 Special functions and zeta-function regularisation

	References


