Supporting Data for "Does a Machine-Learnt Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Supporting Data for "Does a Machine-Learnt Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Supporting Data for "Does a Machine-Learnt Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Skylaris, Chris-Kriton
8f593d13-3ace-4558-ba08-04e48211af61
Dos Santos Morado, Joao Pedro
f83f0c26-bbe3-420c-9999-e22ab439c9c6
Mortenson, Paul N.
765f1d79-fcd6-4104-b033-b534d8d31f65
Essex, Jonathan
1f409cfe-6ba4-42e2-a0ab-a931826314b5
Nissink, J. Willem M.
54572021-91eb-4562-a80b-1b633bb94db5
Skylaris, Chris-Kriton
8f593d13-3ace-4558-ba08-04e48211af61
Dos Santos Morado, Joao Pedro
f83f0c26-bbe3-420c-9999-e22ab439c9c6
Mortenson, Paul N.
765f1d79-fcd6-4104-b033-b534d8d31f65
Essex, Jonathan
1f409cfe-6ba4-42e2-a0ab-a931826314b5
Nissink, J. Willem M.
54572021-91eb-4562-a80b-1b633bb94db5
(2022)
Supporting Data for "Does a Machine-Learnt Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins".
Zenodo
doi:10.5281/zenodo.7015273
[Dataset]
Abstract
Supporting Data for "Does a Machine-Learnt Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
This record has no associated files available for download.
More information
Published date: 28 November 2022
Identifiers
Local EPrints ID: 473146
URI: http://eprints.soton.ac.uk/id/eprint/473146
PURE UUID: 1f05d21c-e02c-41c3-9efc-bac7df57a2f7
Catalogue record
Date deposited: 10 Jan 2023 18:47
Last modified: 06 May 2023 01:42
Export record
Altmetrics
Contributors
Contributor:
Joao Pedro Dos Santos Morado
Contributor:
Paul N. Mortenson
Contributor:
J. Willem M. Nissink
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics