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Discover the force of the skies O Men: once recognised it can be put to use.

– Johannes Kepler





Abstract

Exploitation of Three-body Dynamics in Space Mission Design

by Jack Tyler

With renewed interest in space exploration, the question of designing efficient transfers between

celestial bodies is as relevant as ever. Combined with the rise of scientific computing in the

latter half of the 20th century, significant attention has been given to using modern computing

methods to design more efficient orbital transfers to reduce costs and improve overall mission

lifetime.

Preliminary mission design is often performed in simplified, time-independent models of motion.

In these, classical dynamical systems theory identifies dynamical structures which can be used

to create low-energy transfers between points in space, or used to create orbits that exist as

a delicate balance of gravity to achieve mission objectives. However, in more realistic, time-

dependent models such structures are not guaranteed to exist. Attention has thus been given

to techniques well-developed in fluid dynamics to identify similar structures in astrodynamics

systems, but numerical and computational difficulties have frustrated these efforts.

This PhD is separated into two parts. The first studies the use of time-independent dynamical

structures in space mission design in combination with high-performance computing techniques.

An intensive optimisation procedure is used to construct transfers that use the invariant mani-

folds to retrieve asteroids into two of the equilibrium points of the Sun-Earth system. This PhD

improves on the state of the art in this field by improving the methods used to find and construct

the retrieval transfers. As a result, 27 more asteroids that are considered ‘easily retrievable’ are

found, and the velocity required to compute the transfers is generally reduced for those already

considered easily retrievable. Moreover, it is revealed that these transfers exist across a range of

transfer times, allowing greater flexibility for mission designers.

The second part of this thesis uses techniques from fluidmechanics to find analogous structures to

those used in the asteroid retrieval study directly in time-dependent models of motion, rather than

needing to use simplified models. This thesis makes two improvements to the current body of

research: the first is the presentation of an improved numerical method to compute Lagrangian

Coherent Structures (LCS) in three-dimensional dynamical systems called DA-LCS. This nu-

merical method uses a direct computer implementation of an algebra of polynomials to compute

more accurate and less numerically noisy quantities that signal LCS in general dynamical sys-

tems, and greatly outperforms standard approaches in astrodynamics systems. Since the relevant

quantities are computed as polynomial expansions, the method also allows the computation of

all relevant quantities completely automatically.



This numerical method is then applied to a series of test cases from astrodynamics, where three-

dimensional LCS is constructed and shown to perform the role of generalised unstable manifolds

in astrodynamics systems by separating qualitatively different behaviour. The effect of orbit pa-

rameterisation and integration time is also elaborated in an effort to provide the space community

with in-depth knowledge of how to use LCS in astrodynamics in future studies.
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1
Introduction

The economics of access to space has been revolutionised in the past decade, with the cost of

launching to orbit dramatically decreasing as a result of rapid re-usability of launch vehicles and

growing commercial competition. As early as the latter half of the 1960s, NASA realised that

for access to space and the resources it offers to become commonplace, keeping costs low was

to be paramount. Amid a backdrop of a dwindling budget, NASA instigated the first studies

into the Space Transportation System (‘Space Shuttle’), a partially-reusable craft that would be

recycled between launches to avoid the costly need to construct one-time-use launch vehicles.

NASA designers believed that this would revolutionise access to space by dramatically reducing

the cost of launching a kilogram to low-Earth orbit to as low as $3100 / kg at 2022 values of the

dollar. The difficulty of designing for partial reusability, conflicting design requirements from

NASA’s various governmental partners, and a launch rate well below the 24 per year estimated

during the initial design phase, meant that the cost per kilogram ended up being $105041.36 [9].

When the Space Shuttle’s high costs became clear, President Ronald Reagan signed the Com-

mercial Space Launch Act in 1985, designed to formally encourage private, commercial entities

to enter the space launch sector. It was hoped that the introduction of free-market competition

would drive down prices to launch to orbit. The (now) Lockheed Martin Atlas II was introduced

in 1988, and the McDonnell (Boeing) Delta II rocket followed in 1989, which were workhorses

for the US government, US military, and commercial partners. In Europe, Arianespace became

the first commercial launch service provider in 1982. Later efforts from Orbital Sciences, who

launched their air-launch rocket Pegasus in 1991, further expanded the US launch market. The

Russian Soyuz and Proton rockets remained available for commercial launches in the 1980s and

1990s, respectively.

However, costs did not decrease below approximately $18000/kg to low-Earth orbit, and launch

rates remained low (Figure 1.1). In 2008, SpaceX launched the first privately-funded liquid-

fuelled rocket into orbit, with the long-term goal of partial reusability to reduce the cost of access

to space. In 2015, SpaceX performed the first landing of a first stage of a rocket. By doing so,
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Figure 1.1: Number of satellites deployed per year; recent years have seen a marked increase

in space missions, in part due to the reduction in launch costs. Figure adapted from Our World

in Data [1].

the first stage can be reused with minor reconditioning, rather than requiring the full manufacture

of a replacement. This has dramatically reduced the cost of access to space to below $2000/ kg.

Similar efforts at reusability are currently being emulated by United Launch Alliance, Arianes-

pace, and Rocket Lab, to remain financially viable. The latter is a New Zealand-based space

startup developing dedicated launch services for small, low-cost satellites. In parallel, compa-

nies such as Virgin Orbit and Blue Origin are also beginning to provide reusable launch vehicles

designed for small, low-cost satellites and CubeSats, which now form a key part of the space

launch market1. As a result of this dramatic reduction in cost of access to space, and a growing

numbers of operators conducting launches, the number of satellites being deployed per year has

increased sharply (Figure 1.1).

However, while getting into orbit is a key part of a successful space mission and certainly worthy

of significant research and development to reduce costs, it is only one part of the puzzle and in

some cases only 30-40% of the cost [10]. Most spacecraft will have to use on-board propulsion

at some point in their lifetime to transfer from the orbit the launch vehicle provided to its nom-

inal operational orbit, and also to maintain the nominal orbit after orbital perturbations. Since

space missions end when spacecraft are depleted of their fuel, fuel-efficient orbital transfers can

increase spacecraft lifetime for a given amount of propellant, delivering further returns on the ini-

tial investment. Alternatively, the operator can reduce the amount of propellant carried on-board

at launch, further reducing launch costs.

1SpaceX’s Transporter-1 mission in 2021 deployed 143 satellites from a single, 5-tonne launch.
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Designing fuel-efficient trajectories thus plays a key role in modern trajectory design. In pre-

liminary trajectory design, where the focus is on rapid exploration of the design space to find

feasible trajectories, mission designers often work in highly-simplified models of motion. The

simplest possible is the two-body problem, where the spacecraft moves under the influence of

a single gravitational body at any one time. In this formulation, analytical transfers and analyt-

ical expressions for motion exist which can be ‘patched’ together and optimised for minimum

total change in velocity (∆v) and thus the lowest fuel usage. Once the trajectory is known in the

simplified model, it can be ‘corrected’ into higher-fidelity models.

However, in search of more efficient transfers and mission plans, mission designers have begun

to use the dynamics of multiple planets and Moons to assist the spacecraft in its transfer, as

careful use of the system’s dynamics can reduce overall velocity requirements. This can either

be by exploiting the gravity of another body to assist in an orbital transfer or orbital insertion,

or alternatively the dynamics of multiple bodies can also assist in designing bespoke orbits that

only exist as a result of the delicate gravitational balance between them.

Since this relies on the gravitational balance of at least two planets, the simplest system for which

these techniques are valid is the three-body problem, a case of Newton’s n−body problem for

n = 3. This model of motion has a rich mathematical history, dating back to the works of Kepler,

Lagrange and Poincaré. Further assumptions on the orbit of the two planets can yield either an

autonomous dynamical system if the planets orbit each other in a circle (the ‘circular’ problem),

or a non-autonomous system if they orbit each other in an ellipse (the ‘elliptic’ problem). How-

ever, in these systems the equations of motion do not have an analytic solution, so trajectories

must be found numerically. Trajectories must also still be corrected into higher-fidelity, more

realistic models for final, ‘real-world’ mission plans.

The circular problem has received significant attention in preliminary trajectory design. As an au-

tonomous dynamical system, dynamical features such as equilibria, periodic orbits and invariant

manifolds exist which perform a key role in modern space mission design. These can dramati-

cally reduce overall propellant usage (chapter 3) by allowing propellant-free transfers and orbital

insertions about the Solar System, using only natural dynamics. These periodic orbits and their

characteristics can also provide significant advantages for some missions over more traditional

orbits.

Separately, the field of computing – and particularly scientific computing2 – has become in-

creasingly prevalent in modern society. Whereas the most powerful computer in the 1950s,

the IBM704, could perform 2.5×106 floating-point operations per second at maximum output,

2022 saw the first ‘exascale’ supercomputer become operational and capable of ∼ 1018 floating-

point operations per second. This availability of computational resources means that brute-force

searches for feasible trajectories can be performed, and significant databases of trajectories that

exploit dynamical features can be created and manipulated. This rise in computing has proved

2‘Scientific computing’ derives from ‘scientific computers’, a class of primarily IBM supercomputers that were

equipped with the optional extra of a floating-point arithmetic unit in the 1950s and 1960s.
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seminal in many fields, and actually motivated many numerical studies of periodic orbits and

transfers to-and-from them 1970s and 1980s. However, high-performance computing techniques

are not yet widespread in astrodynamics. The first question this motivates is: can modern, high-

performance techniques be used to generate additional insight in autonomous astrodynamics

systems?

However, even if additional insight is found, there is no guarantee that these trajectories can be

directly corrected into higher-fidelity models. Even when they can, the features being exploited

are not native to the higher-fidelity model, but rather a continuation of the behaviour of another

system. Working directly in the time-dependent models can be nontrivial and numerically chal-

lenging, and there is no guarantee on the existence of the invariant manifolds in systems with

arbitrary time-dependence, which are dynamical structures heavily used in mission design in

autonomous systems.

But not all is lost: finding time-dependent generalisations of the invariant manifolds is an ac-

tive area of research in fluid dynamics. This motivates a second question: can some of these

techniques be used in astrodynamics to find time-dependent generalisations of such structures

directly in the time-dependent models? Being able to construct similar trajectories to those in the

time-independent models directly in the time-dependent models would mean one could use the

underlying dynamics of the system directly, rather than relying on being corrected from lower-

fidelity models, respecting the intricacies of the system.

The structure of the thesis now follows. First, in chapter 2, I formally introduce and derive the

equations of motion for the circular and elliptic problems, as well as introduce their respective

reference frames. Next, in chapter 3, I reviewmany of the dynamical phenomena used in modern

mission design in the circular problem, highlighting the role that periodic orbits and stable and

unstable invariant manifolds play in the mission design process. The chapter then goes on to

examine techniques from the fluid dynamics community, who seek analogous structures to the

invariant manifolds in time-aperiodic dynamical systems. As part of this, the Lagrangian Coher-

ent Structure (LCS) is identified as a promising time-dependent generalisation of the stable and

unstable manifolds, but which has thus far proved numerically troublesome to calculate in space

mission design.

Three novel investigations follow that aim to answer the two key questions of this thesis.

In the first investigation in chapter 4, I use the classical invariant manifolds in combination with

high-performance computing to intensively optimise trajectories which transport asteroids into

periodic orbits in the circular problem. This chapter represents the most in-depth search for

such retrieval trajectories known to the author as of the writing of this thesis. Content from this

chapter has been published as Tyler and Wittig [11] and presented at a specialist astrodynamics

conference as Tyler and Wittig [12].
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Chapter 5 then uses Differential Algebra, a method for approximating functions directly in a

computer using high-order polynomials, to improve the numerical performance of finding three-

dimensional LCS. This method outperforms standard approaches for common fluid dynamics

test cases in the literature while reducing user involvement by computing relevant quantities

automatically. Content from this chapter has been published in the Journal of Computational

Science as Tyler and Wittig [13] and presented partly at an astrodynamics conference as Tyler

and Wittig [14].

I then apply this new algorithm to two examples from an astrodynamics system, where it con-

tinues to provide insight, in chapter 6. This allows mission designers to exploit the underlying

dynamics of the system without first needing to go via a simplified autonomous problem. The

aim of this chapter is to provide the mission design community with the tools to reproduce stud-

ies such as those found in chapter 4 in the future. I uncover the role that these structures play

in space mission design, and investigate in-depth many of the free parameters available in their

construction. This chapter also provides the community with mitigation strategies to avoid com-

mon numerical pitfalls. Content from this chapter has been submitted to Celestial Mechanics and

Dynamical Astronomy as Tyler and Wittig [15] and presented at the International Astronautical

Congress as Tyler and Wittig [16], along with some content presented as Tyler and Wittig [14].
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2
The Three-body Problem

This chapter presents a review of the three-body problem, a subset of Newton’s n-body prob-

lem for n = 3. A brief history of the problem is given, and the equations of motion for two

formulations of the three-body problem are derived for use in later chapters.

2.1 Introduction

Newton’s restricted n−body problem is one of the most general cases of purely gravitational

attraction in the solar system. It models the effect of n bodies of mass mi influencing the motion

of a small spacecraft with position vector r. If the bodies are at a position ri from the spacecraft,

in an inertial frame of reference the problem can be modelled using the differential equation

r̈ =−
n∑︂

i=0

Gmi

r 3
i

ri . (2.1)

For large n, in heavily perturbed environments, or when the spacecraft and the planet are very

close together, studying this system directly can be numerically difficult, computationally ex-

pensive, and time-consuming.

Thus, in the practical design of space missions, trajectory designers often seek to perform prelim-

inary analysis in simplified models of motion [17, 18, 19]. The simplest of these is the two-body

problem (n = 2), the movement of a mass under the gravitational influence of only one other

larger, more massive body that dominates the dynamics. In this system, spacecraft trace out

Keplerian motion where orbits exist analytically as conic sections under the solution of simple

equations, and analytic methods such as Lambert’s problem exist to construct transfers. Mission

designers can join segments of these trajectories under the influence of different bodies together

– a technique known as patched conics – to achieve good approximations to mission plans in the

full model [20].
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However, it has been shown that lower-∆v – and thus lower-cost – transfers can be achieved by

designing missions in systems for which n ≥ 3 [20]. The three-body problem, the specialisation

for n = 3, is a formulation of motion which has a rich theoretical background and the lowest

number of bodies for which such interesting dynamical phenomena first start to emerge. Leon-

hard Euler was the first to propose the three-body problem, and he discovered the first class of

periodic orbit in the general three-body problem in his 1767 work [21]: three bodies, placed on a

straight line, would stay on this line for certain initial conditions while rotating about their centre

of mass. Joseph-Louis Lagrange would later find another class of periodic motion in the three-

body problem, where objects located at the vertices of an equilateral triangle may, depending on

their initial conditions, retain their original positions relative to each other [22].

Both Euler and Lagrange then made significant contributions to the formulation of the Circular-

Restricted Three-body Problem (CR3BP), a specialisation of the three-body problem. Two fur-

ther assumptions are made: the first is that the mass of the third body is restricted, or considered

negligible. This is an assumption with great relevance to spaceflight problems given the relative

masses of spacecraft and the objects they orbit. The second assumption is that the remaining

two bodies, known as primaries, orbit each other in circles. Euler was the first to use a synodic

(rotating) co-ordinate system to describe the motion of the third mass where the distance between

the two massive bodies are set fixed on the x−axis with a distance of unity between them, which
greatly simplifies the equations of motion.

Lagrange showed that there are five equilibrium points in the CR3BP where the gravitational

influence of two bodies ‘cancels’. In 1836, Carl Gustav Jacob Jacobi used Euler’s synodic co-

ordinate system to formulate the Circular Problem’s only integral. The Jacobi integral, and the

related Jacobi constant were then used by Hill [23] to introduce zero-velocity surfaces and for-

bidden regions, where the motion of an object – in Hill’s case an asteroid – is bounded as a result

of its energy.

Henri Poincaré in his Les Méthodes Nouvelles de la Mécanique Céleste1 identified and stud-

ied periodic orbits in the restricted three-body problem, and defined several new methods for

studying motion in the system [24]. This work led to renewed interest in the problem, and was

swiftly followed by several publications which examined the existence and stability of several

new classes of periodic orbits in the CR3BP (on the existence: [25, 26, 27], on the stability: [28,

29]). More recent work used the advances in computing in the late 20th century to identify and

analyse yet more types of periodic orbits, including many which are used in modern mission

design (see chapter 4). New families are still being found to this day [30].

This thesis studies two specialisations of the restricted three-body problem, the Circular-Restricted

Three-body Problem (CR3BP), which has a key role in modern mission design, and the Elliptic-

Restricted Three-body Problem (ER3BP), a natural extension of the CR3BP that introduces a

time-dependency in the equations of motion. An in-depth introduction to the dynamical features

1In English: New Methods in Celestial Mechanics.
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and dynamical indicators used to perform mission design and analyse the behaviour of these

systems is presented in chapter 3; this chapter serves only to introduce their formulation, derive

their equations of motion, and highlight common reference frames used in mission design that

will be of use in the remainder of the thesis.

2.2 Derivation of the Equations of Motion

This section presents a derivation of the equations of motion for the Elliptic-Restricted Three-

body Problem, a time-dependent case of the three-body problem in which the two large masses

orbit each other on ellipses. The CR3BP is then introduced as a special case of the ER3BP.

The derivation begins by considering two-body (Keplerian) motion, since in the three-body prob-

lem the two large bodies orbit their common barycentre in two-body motion. Relevant quantities

to describe the positions and characteristics of the bodies on their respective orbits, are stated, and

this result is then used in defining the equations of motion for both the CR3BP and the ER3BP.

2.2.1 Keplerian Motion

If the only forces acting on an object as it proceeds around its orbit is the gravitation of a central

body, then the orbit is a Keplerian orbit. The solution for the motion of the object then follows

the equation of a conic section. In the following I give a brief review of Keplerian motion. Since

many of the relevant relations in Keplerian motion are standard in the literature (see, for example,

Curtis [17], Vallado [31] or Bate et al. [32]) and Keplerian motion does not form a key part of

this thesis, only the main results that will be required later are stated.

A Keplerian orbit can be represented using six parameters, a, e, i , Ω, ω, ν (Figure 2.1). The

semi-major axis a and eccentricity e determine the size and shape of the ellipse representing the

orbit, respectively (Figure 2.2). The inclination of the orbit i is the angle measured between the

reference plane and the plane of the orbit. This angle is measured at the ascending node, the

intersection of the orbit with the reference plane when the object is travelling ‘upwards’. The

angle Ω gives the location of the ascending node with respect to the reference direction, and the

angle ω gives the location of the periapsis from the ascending node. The reference direction

is typically the vernal equinox, often denoted by ⋎, and is the position of the Sun at the vernal

point. The true anomaly ν represents the angle of the spacecraft from periapsis. Other anomalies

are often used, such as the mean anomaly M and elliptic anomaly E . These hold applications

in wider space mission design; for more information on these, see Curtis [17]. Standard orbital

element conversion routines exist in Curtis [17], Vallado [31], and Bate et al. [32] that can be

used to convert between orbital elements and Cartesian position and velocity.

Only e < 1 is considered in this thesis, resulting in the orbit either transcribing an ellipse (e ̸= 0) or

a circle (e = 0). For completeness, the case of e = 1 transcribes a parabola, and e > 1 a hyperbola.

In purely Keplerian motion, the first five elements given above are constant, with ν periodic
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Figure 2.1: Graphical representation of a subset of the Keplerian orbital elements. Not pictured

are the semimajor axis a and the eccentricity e.

such that ν ∈ [0, 2π]. One can also obtain osculating Keplerian orbital elements, which are time-

varying but correspond to the equivalent Keplerian orbit for a spacecraft with a given position

and velocity at any instant. These are useful for describing the current motion of an object even

in perturbed environments (see chapter 4).

Some key relations for Keplerian motion are now given. Consider an object of mass m orbiting

about a central body with position vector r and velocity vector ṙ = v. This object has specific
angular momentum

h= r×v. (2.2)

The direction of the angular momentum vector ĥ is by definition normal to the orbital plane.

The magnitude of the angular momentum vector depends only on the component of the velocity

perpendicular to the to the radius, v⊥, and so the scalar angular momentum, h, is

h = r v⊥ = r 2 dν

dt
(2.3)

which will be required later in the derivation of the ER3BP equations of motion. The specific

angular momentum is constant along an orbit, i.e. ḣ = 0.

Given that the solution for the motion of the object in Keplerian motion is a conic section, stan-

dard ellipse relations can be used to determine the radius of the object at a given true anomaly ν.
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Figure 2.2: The geometry of an ellipse, as used in the solution of the orbit equation for 0 < e < 1.
a is the semi-major axis of the orbit, and e the eccentricity. The periapsis is the closest point

on the orbit to the central body, and the apoapsis the farthest.

The orbit equation is defined as

r (ν) = h2

GM

1

1+e cosν
. (2.4)

An alternative formulation of Equation 2.4 is

r = a
1−e2

1+e cosν
(2.5)

where p = h2/GM= a
(︁
1−e2

)︁
is the semi-latus rectum of the orbit. Equation 2.4 has a minimum

at ν = 0 and maximum at ν = 180◦. The minimum distance to the central body is known as

periapsis, and the maximum distance is known as apoapsis.

2.2.2 Derivation of the ER3BP Equations of Motion

The orbit equation and relations concerning the conservation of angular momentum are used

as part of the derivation of the equations of motion for both the Elliptic-Restricted Three-body

Problem and the Circular-Restricted Three-body Problem. The derivation begins by considering

two masses orbiting about their centre of mass under Keplerian motion, denoted m1 and m2,

about which the motion of a third mass, m3, is investigated. m1 and m2 are also known as

the primaries of the problem, and it is enforced that m1 ≥ m2 >> m3. The mass parameter

µ= m2/(m1 +m2) parameterises the system, andm2 would orbitm1 on an ellipse of eccentricity

ep .

The equations of motion for the ER3BP are defined in a rotating coordinate system defined at the

barycentre of m1 and m2, where the +x direction points from m1 to m2 and where the location

of m1 and m2 are fixed, as in Figure 2.3. The z-direction points normal to the orbital plane of m1

and m2, and the y−axis completes the right-handed orthonormal triad. The subscript R is used
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ν

m1

m2

Y

X

x̂

ŷ

m3

µ

1−µ

Figure 2.3: The coordinate systems considered in the derivation of the equations of motion of

the CR3BP. In grey is a fixed (inertial) system with its origin at the barycentre of m1 and m2;

in black is the rotating (synodic) frame with m1 and m2 set fixed.

to represent quantities in the rotating frame and the subscript I is used to represent quantities in

the inertial frame. Given an angular velocity ν̇ of the rotating frame about the z−axis, such that
dν/dt = ν̇êz and êz = (0, 0, 1) points along ẑ, the first derivative of the position vector r can be

transformed using
dr

dt I
= dr

dt R
+ dν

dt
×r. (2.6)

Differentiating Equation 2.6 yields

d2r

dt 2 I
= d

dt

(︃
dr

dt R

)︃
+ d2ν

dt 2 ×r+ dν

dt
× dr

dt I
. (2.7)

Combining Equations 2.6 and 2.7 with the equations of motion for the n−body problem about

the barycentre of m1 and m2

d2r

dt 2 I
=−Gm1r1

r 3
1

− Gm2r2

r 3
2

(2.8)

gives

d2r

dt 2 R
=−G

(︄
m1

r 3
1

r1 + m2

r 3
2

r2

)︄
−2

dν

dt
× dr

dt R
− dν

dt
× dν

dt
×r− d2ν

dt 2 ×r. (2.9)

The final three terms on the right-hand side of Equation 2.9 are the Coriolis acceleration, centrifu-

gal acceleration, and acceleration due to the angular acceleration due to the fact that the rotating

frame rotates at a variable rate (Euler force). Since the remaining analysis is only manipulations

of these terms, the subscripts are dropped for clarity.
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It is numerically beneficial to normalise distance, time and mass in Equation 2.9. The normalis-

ing variables are given by

r̄ (ν) =
a

(︂
1−e2

p

)︂
1+ep cosν

(2.10)

t̄ =
(︃

dν

dt

)︃−1

(2.11)

m̄ =m1 +m2 (2.12)

such that

r =r̄r∗ (2.13)

t =t̄τ (2.14)

m =m̄m∗. (2.15)

The variables a, ep and ν are the semi-major axis, eccentricity and true anomaly of the orbit of

m2 about m1, since they orbit each other in two-body motion. Since the time and radius are not

constant, the ER3BP is studied in a rotating coordinate system which is non-uniformly rotating

and pulsating. I note that the normalised time τ progresses at the same rate as the true anomaly.

Given Equation 2.11 it is possible to relate the normalised time to the dimensional time via

d

dt
= dτ

dt

d

dτ
= dν

dt

d

dτ
(2.16)

d2

dt 2 = d2ν

dt 2

d

dτ
+

(︃
dν

dt

)︃2 d2

dτ2 . (2.17)

Using Equations 2.13-2.15 and 2.16-2.17, each of the terms in Equation 2.9 can be rewritten:

dr

dt
= d

dt

(︃
r̄

dr∗

dt
+ dr̄

dt
r∗

)︃
= r̄

d2r∗

dt 2 +2
dr̄

dt

dr∗

dt
+ d2r̄

dt 2 r
∗ (2.18)

=r̄

(︃
d2ν

dt 2

dr∗

dτ
+

(︃
dν

dt

)︃2 d2r∗

dτ2

)︃
+2

dr̄

dt

dν

dt

dr∗

dτ
+ d2r̄

dt 2 r
∗ (2.19)

2
dν

dt
× dr

dt
=2

dν

dt
êz ×

(︃
r̄

dr∗

dt
+ dr

dt
r∗

)︃
(2.20)

=2
dν

dt
êz ×

(︃
r̄

dν

dt

dr∗

dτ
+ dr̄

dt
r∗

)︃
(2.21)

dν

dt
× dν

dt
×r =r̄

(︃
dν

dt

)︃2

êz × êz ×r∗ (2.22)

d2ν

dt 2 ×r =r̄
dν

dt
êz ×r∗ (2.23)

G

(︄
m1

r 3
1

r1 + m2

r 3
2

r2

)︄
=G (m1 +m2)

r̄ 2

(︄
1−µ
r∗3

1

r∗1 + µ

r∗3

2

r∗2

)︄
. (2.24)
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Substituting the above into Equation 2.9 and collecting terms yields

(︃
r̄

d2ν

dt 2 +2
dr̄

dt

dν

dt

)︃
dr∗

dτ
+

(︃
r̄

d2ν

dt 2 +2
dr̄

dt

dν

dt

)︃
êz ×r∗+ r̄

(︃
dν

dt

)︃2 d2r∗

dτ2 +2r̄

(︃
dν

dt

)︃2

êz × dr∗

dτ

(2.25)

=−Gm1 +m2

r̄ 2

(︄
1−µ
r∗3

1

r̄∗
1 +

µ

r∗3

2

r∗2

)︄
− d2r̄

dt 2 r
∗− r̄

(︃
dν

dt

)︃2

êz × êz ×r∗. (2.26)

Using some of the relations derived in the two-body problem, and recalling that the mass of the

spacecraft is restricted or negligible, the above can be simplified further. As per Szebehely and

Jefferys [33], first recall the conservation of angular momentum:

dh

dt
= d

dt

(︃
r̄ 2 dν

dt

)︃
= r̄

d2ν

dt 2 +2
dr̄

dt

dν

dt
= 0 (2.27)

and then the semi-latus rectum p and angular momentum:

h2 =
(︃
r̄ 2 dν

dt

)︃2

= pG (m1 +m2) =⇒
(︃
r̄ 2 dν

dt

)︃2

= a
(︁
1−e2)︁G (m1 +m2) . (2.28)

and its equation of motion

d2r̄

dt 2 − r̄

(︃
dν

dt

)︃2

=−G (m1 +m2)

r̄ 2 =− 1

a
(︁
1−e2

p
)︁ r̄ 2

(︃
dν

dt

)︃2

. (2.29)

Substituting these three relations into Equation 2.25 and fixing the location of m1 on the x−axis
at x1 = x −µ and m2 at x2 = x +1−µ by convention [34], one finds that the equations of motion
for the ER3BP can be written

x ′′−2y ′ = 1

1+ep cosν

(︄
x − 1−µ

r 3
1

(︁
x +µ)︁− µ

r 3
2

(︁
x −1+µ)︁)︄

(2.30)

y ′′+2x ′ = 1

1+ep cosν

(︄
y − 1−µ

r 3
1

y − µ

r 3
2

y

)︄
(2.31)

z ′′+ z = 1

1+ep cosν

(︄
−1−µ

r 3
1

z − µ

r 3
2

z

)︄
(2.32)

where □′ denotes derivatives with respect to true anomaly ν. Through the introduction of a

pseudopotential function Ω, the equations of motion can be rewritten in a more elegant form.

Ω= 1

1+ep cosν

[︃
1

2

(︁
x2 + y2 − z2 ep cosν

)︁+ 1−µ
r1

+ µ

r2

]︃
(2.33)
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such that

x ′′−2y ′ =∂Ω
∂x

(2.34)

y ′′+2x ′ =∂Ω
∂y

(2.35)

z ′′ =∂Ω
∂z

. (2.36)

The ER3BP is a time-periodic dynamical system; its uses in astrodynamics and attempts to profile

its dynamics are presented in chapter 3.

2.2.3 The Circular-Restricted Three-body Problem

If one assumes that the two primaries given in the derivation above orbit each other in a circle

rather than an ellipse (i.e. ep = 0), a further specialisation of the n−body problem – the Circular-

Restricted Three-body Problem (CR3BP) – is obtained. The CR3BP is a well-studied system

for preliminary mission design, since it is the simplest system for which dynamical phenomena

begin to exist.

By setting ep = 0 in the derivation above, the motion of m2 about m1 is no longer dependent

on true anomaly and thus the coordinate system no longer pulsates. Moreover, the equations of

motion become autonomous. The equations of motion have the form

ẍ −2ẏ =∂ΩC

∂x
(2.37)

ÿ +2ẋ =∂ΩC

∂y
(2.38)

z̈ =∂ΩC

∂z
. (2.39)

where

ΩC =
[︃

1

2

(︁
x2 + y2)︁+ 1−µ

r1
+ µ

r2

]︃
(2.40)

and □̇ signifies derivatives with respect to (non-dimensional) time. There is a wealth of literature

available on the CR3BP, which forms a large portion of the preliminary mission design process

for modern space missions. Its dynamical phenomena are also well-understood; I provide a

review in chapter 3.

The expression for Jacobi’s integral, the CR3BP’s single integral of motion derived by Carl Gus-

tav Jacob Jacobi, can be derived bymultiplying the equation of motion by ẋ, ẏ and ż, respectively

ẋ ẍ + ẏ ÿ + ż z̈ = ẋ
∂ΩC

∂x
+ ẏ

∂ΩC

∂y
+ ż

∂ΩC

∂z
. (2.41)
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ŷ

x̂

m2
m1

L3

L4

L5

L1 L2

Figure 2.4: The location of the Lagrangian (equilibrium) points in the CR3BP. L1 through L3

are known as the collinear points, and L4 and L5 the equilateral solutions.

Integrating the equation above gives

ẋ2 + ẏ2 + ż2 = 2ΩC −J (2.42)

where J is Jacobi’s constant, analogous to energy. This constant has a range of uses, such as

defining regions where particle can and cannot enter (see, for example, Koon et al. [35]), and in

reducing the degrees of freedom of the system to allow studying dynamics on a given section

(Short, Howell, and Tricoche [36]). The Jacobi constant is used extensively in chapter 4 to

identify asteroids which may be retrievable in the CR3BP.

If one searches for solutions to

∂ΩC

∂x
= ∂ΩC

∂y
= ∂ΩC

∂z
= 0 (2.43)

onewill find five equilibria of the CR3BP, known as the Lagrange points (Figure 2.4). Numbered

L1 through L5, three of these lie on the line joining the primaries and two lie on the edges of an

equilateral triangle formed with the m1-m2 barycentre. The equilateral points are unstable for

ratios of mass of the smaller body to the larger less than 24.96, and have generally been less

well-studied in the literature and for practical uses. Overall, the Lagrangian points have been the

destination of choice for no fewer than 17 space missions as of the writing of this thesis.

The dynamics about the collinear points are of type saddle × saddle × centre, and each of the

equilibria admit periodic orbits about them. These orbits have long been classified into families

and are of great importance in modern mission design (chapter 3). Invariant manifolds also

emanate from many of these orbits, and these structures have been well-investigated in space
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mission design and form a core part of chapter 4. I give a review of these techniques in chapter

3.

The CR3BP readily admits variational equations which can be used to obtain linearised deriva-

tives of the final condition with respect to the initial condition. They can be found by solving a

differential equation of the form

Φ̇ (t0, t ) = A (t )Φ (t0, t ) (2.44)

where Φ (t0, t ) is the state transition matrix evaluated from an initial time t0 to a final time t and

A (t ) the Jacobian of the CR3BP equations of motion. From the above, two properties can be

defined. Namely,

Φ
(︁
t0, t f

)︁=Φ(︁
t , t f

)︁
Φ (t0, t ) (2.45)

Φ (0, 0) =I6×6 (2.46)

where I6×6 is the 6×6 identity matrix. The Jacobian takes the form

A (t ) =
[︄

03×3 I3×3

∇2ΩC U

]︄
(2.47)

where I3×3 is a 3×3 identity submatrix, 03×3 a 3×3 submatrix of zeros, and ∇2Ω andU are 3×3

submatrices of partial derivatives of the pseudo-potential and

U =

⎡⎢⎢⎣
0 2 0

−2 0 0

0 0 0

⎤⎥⎥⎦ . (2.48)

By augmenting the initial state vector in the numerical integrator with the additional differen-

tial equations that arise from the above ODE for Φ̇, the linear derivatives of a trajectory can

be computed; for a system with a phase space dimension of n, an additional n2 equations are

required.

2.3 Transforming between inertial and rotating reference frames

As mentioned in their respective derivations, the equations of motion for the CR3BP and the

ER3BP exist in a rotating (synodic) coordinate system. However, it can often bemore convenient

to investigate system behaviour in the inertial frame. Converting between the inertial frame and

the rotating frame is possible using standard Euler rotation matrices. Only the conversion from

inertial frames centred on m2 is considered in the below, but the process can be adjusted to begin

about an inertial frame centred on m1 through replacement of the relevant angles with those of

m1, and the replacement of the coefficient 1−µ with µ.
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Considering the geometry of the reference frames presented in Figure 2.3, and beginning with

some position xI =
(︁
x, y, z

)︁
and velocity vI = ẋI =

(︁
ẋ, ẏ , ż

)︁
in the inertial frame about m2, the

transformation has three steps:

1. Translate the initial position x from being about m2 to being about the m1−m2 barycentre

(BC).

2. Rotate x clockwise by an angle ν.

3. Normalise the dimensional position of x to match the normalised units of the rotating

frame.

The transformation is a composite translation, rotation and scaling:

xER3BP = Rz (ν)

r (ν)

(︁
x+xm2

)︁
(2.49)

where from inspection of Figure 2.3

xm2 = r (ν)

⎡⎢⎢⎣
cosν

sinν

0

⎤⎥⎥⎦(︁
1−µ)︁

(2.50)

where
(︁
1−µ)︁

is the portion of the distance between m1 and m2 that lies between the barycentre

and m2. Thus,

xER3BP =

rotation and scaling⏟ ⏞⏞ ⏟
Rz (ν)

r (ν)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x+ r (ν)

⎡⎢⎢⎣
cosν

sinν

0

⎤⎥⎥⎦(︁
1−µ)︁

⏞ ⏟⏟ ⏞
translation from m2 to BC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.51)

To simplify, I cancel the trivial r
r term in the translation and perform the rotation of ν to the

position vector of m2, such that

xER3BP = Rz (ν)x

r (ν)
+

⎡⎢⎢⎣
1

0

0

⎤⎥⎥⎦(︁
1−µ)︁

. (2.52)

To transform the velocity v into the rotating-pulsating frame, I take the derivative of Equation

2.52. Importantly, the velocity is defined with respect to time, but in the synodic frame the

derivatives are with respect to true anomaly ν. Via the chain rule the derivatives of Equation

2.52 are

x′
ER3BP = R ′

zx

r
+

(a)⏟ ⏞⏞ ⏟
Rzx

′

r
+Rzx

r ′ (2.53)
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where the dependence on ν has been dropped for r and Rz . Using the relationship between time

and true anomaly, term (a) can be represented as

Rzx
′

r
= Rzẋ

r ν̇
= Rzv

r ν̇
. (2.54)

and thus the transformation of the velocity is given by

x′
ER3BP = R ′

zx

r
+ Rzv

ν̇r
+ Rzx

r ′ . (2.55)

The rate of change of ν with dimensional time is given with respect to the angular momentum

of the system in combination with the orbit equation

ν̇= GM
1
2 (1+e)

1
2

r
3
2

= GM
1
2
(︁
1+ep cosν

)︁2

a
3
2
(︁
1−e2

p
)︁ 3

2

(2.56)

and also

d

dν

1

r (ν)
= −ep sinν

a
(︁
1−e2

p
)︁ . (2.57)

For ep = 0 (i.e. the CR3BP), one obtains

ν̇=
√︄
GM

a3 (2.58)

and
d

dν

1

r (ν)
= 0 (2.59)

which yields a transformation of

xC R3BP = R ′
zx

r
+ Rzv

r

√︄
a3

GM
. (2.60)

2.4 Conclusion

This chapter has introduced the circular- and elliptic-restricted three-body problems, special

cases of the n-body problem for n = 3 and which have received particular interest in space

mission design. The equations of motion have also been derived, and these systems are used in

later chapters as the underlying dynamical systems for various investigations.
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3
Dynamical Features and Dynamical

Indicators in Astrodynamics

This chapter presents a two-part overview of analysis methods used in the literature for the

Circular- and Elliptic-Restricted Three-body Problem. The first part introduces the structures

predicted by classical dynamical systems theory that have been used in the analysis of the time-

independent Circular problem and highlights their use in modern mission design in preparation

for their use in chapter 4. The second part highlights techniques used by the fluid dynamics

community to find similar structures to those used in the time-independent system in systems

with arbitrary time-dependence, which forms the key focus of chapters 5 and 6.

3.1 Introduction

In the analysis of dynamical systems, particularly in the field of space mission design, one often

wishes to answer several questions. Firstly, one often wishes to profile the dynamics by identify-

ing where trajectories are similar and where trajectories have qualitatively different outcomes. If

the regions where trajectories are all similar can be identified, one can begin to identify possible

sets of orbits that satisfy mission constraints. Next, it may be beneficial to learn what drives the

behaviour of the system and its trajectories in the short- and long-term.

In time-independent systems, the above role is performed by the stable and unstable manifolds

of the system, which act to separate phase space and govern nearby dynamics. This chapter

presents an overview of the use of the structures predicted by classical dynamical systems the-

ory in time-independent systems in astrodynamics: the role that periodic orbits and stable and

unstable manifolds play in modern mission design and practical, real-world missions is elabo-

rated.
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In hyperbolic1 time-periodic systems these structures become more numerically difficult to find,

as one now seeks surfaces invariant in the extended phase space of position and time. Often,

the invariant manifolds are found by finding fixed points on a Poincaré map over the system

period. In time-aperiodic systems, there is no guarantee of the existence of such structures as

flow features often do not exist over the lifetime of the flow, or the long-term behaviour of the

system is undefined. However, analysing time-dependent dynamical systems to examine what

is governing, promoting or inhibiting transport is common in the study of both experimental and

theoretical fluid dynamics. Some of these techniques have become widespread in the field of

fluid dynamics, and some have begun to be applied to astrodynamics problems to attempt to

find analogous structures to the manifolds used widely in space mission design directly in the

time-dependent models of motion.

The aim of this chapter is twofold: first, it seeks to motivate the reader that phenomena predicted

by dynamical systems theory hold relevance and provide advantages in modern space mission

design. It then seeks to provide an overview of dynamical indicators from fluid dynamics that

have been used to attempt to find generalised stable and unstable manifolds in astrodynamics

systems. In both cases, I do not attempt to highlight all studies known to the author. Rather, I

try to give an overview of the key studies that drove the development of such ideas forward, and

sufficient information to provide a solid theoretical foundation for the coming chapters and to

place this thesis in the context of the wider literature. More specific information required for

each investigation is included at the beginning of each chapter that follows.

3.2 Dynamical features in autonomous systems

It was seen in the previous chapter that the Circular-Restricted Three-body Problem is an au-

tonomous dynamical system which has five equilibria, the Lagrangian points. As predicted by

dynamical systems theory, these equilibria admit periodic orbits and associated stable and un-

stable manifolds about them. These play a significant role in modern mission design, which is

elaborated in the coming section.

I begin with a survey of the role of the periodic orbits. Initial mathematical analyses of the

periodic orbits of the CR3BP were motivated by Poincaré’s comprehensive study of the problem

in the late 19th and early 20th Century. In 1897, Darwin [25] performed a comprehensive, manual

search for periodic orbits and evaluated their stability. In 1912,Moulton [27] continuedDarwin’s

work by determining periodic orbits in the case where µ→ 0, with potential applications to triple

star systems. Lyapunov [29] performed further analysis of the periodic orbits after predicting

their existence 2.

1Hyperbolic systems are characterised by having everywhere expanding or contracting directions. Given that

Hamiltonian systems preserve area by Liouville’s theorem, one can generally regard Hamiltonian systems – and thus

the CR3BP and ER3BP – as hyperbolic systems.
2The vertical and planar Lyapunov orbits are a set of in- and out-of-plane orbits that are named after Aleksandr

Lyapunov.
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Figure 3.1: Example periodic orbits that exist about Sun-Earth L1 and L2. Pictured are the

vertical and planar Lyapunov family, and the quasiperiodic ‘Halo’ orbits. These families are

used as destinations for asteroids in chapter 4.

However, it was not until the rise of computing in the latter half of the 20th century that periodic

orbits began to be thoroughly investigated numerically. Hénon [37, 38, 39, 40] and Michalodim-

itrakis [41] performed in-depth numerical investigations into the construction and the stability

of planar and vertical families of orbits about the collinear Lagrange points in the late 1960s and

early 1970s; some example periodic orbits are provided in Figure 3.1.

In 1968, the doctoral thesis of Robert Farquhar studied the use of ‘Halo’ orbits about the Earth-

Moon L2, to act as destinations for communication gateways for the Apollo missions when they

went ‘behind’ the Moon where radio communication is not possible. The amplitude (the mag-

nitude of the out-of-plane motion) for such an orbit is sufficiently large it can maintain direct

line-of-sight with both the Apollo spacecraft and the Earth. In 1973, Farquhar computed a high-

order approximation to quasi-periodic motion near the Earth-Moon L1 and L2 points, and went

on to send the ISEE-3 spacecraft to a ‘Halo’ orbit about the Sun-Earth L1 point in 1978 to study

the relationship between the solar wind and Earth’s magnetosphere [42]3. By placing the probe

at Sun-Earth L1, ISEE-3 was offered a view of the solar wind that would be permanently ‘in

front’ of the Earth and was thus outside of the magnetosphere’s bow shock. As part of this

mission, Richardson [43] developed a high-order approximation for periodic motion about all

the collinear Lagrangian points which has since served ato generate initial guesses for design-

ing practical trajectories about these points. Howell [44] used this approximation to perform a

thorough numerical investigation of the ‘Halo’ orbits, which feature heavily in modern trajec-

tory plans. A more generic method to construct arbitrary quasiperiodic orbits was presented by

Howell in 1987 [45].

3This spacecraft was later renamed ICE and sent to study the tail of comet Giacobini-Zinner. The spacecraft was

designed to return to Earth in 2014, at which point a citizen science initiative (‘ISEE-3 reboot project’) attempted to

regain contact with it to place it back into a Halo orbit. The author saved £50 from his weekly pocket money to back

this project on Kickstarter in 2014.
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Using orbits about the Lagrange points as destinations for operational spacecraft can offer sig-

nificant advantages. For example, Sun-Earth L1 points offer uninterrupted views of the Sun and

the solar wind, exploited by missions such as SOHO (Solar and Heliospheric Observatory) [46],

ACE (Advanced Composition Explorer) and WIND. The Sun-Earth L2 point has the Sun perma-

nently blocked by the Earth, which makes it an excellent choice for observatories (e.g. DSCOVR

and the James Webb Space Telescope [47].) Moreover, some of the orbits about the collinear

Lagrange points have excellent stability properties, requiring minimal amounts of propellant to

keep the spacecraft in the desired orbit. This was one of the key drivers behind NASA selecting

a Near-Rectilinear Halo Orbit, a highly-stable quasiperiodic orbit about Earth-Moon L2. The

stability of these orbits means that SOHO has enough fuel on board to remain in service until at

least 2025, ACE at least 2024, and WIND until 2070, providing excellent mission lifetimes as a

result of leveraging structures predicted by dynamical systems theory.

One can also transfer between equilbrium points. Launched in 1994 to the Sun-Earth L1 point,

the WINDmission performed a transferfrom its nominal home at L1 to the vicinity of L2 in 2003-

2004 to further study variations in solar wind before being returned to L1. NASA’s GENESIS

mission performed a heteroclinic transfer – one that begins and ends at two different equilibrium

points – in 2003 to return to Earth from L1 via L2, a type of transfer first proposed by Canalias

and Masdemont [48] and Davis et al. [49]. Typically, these transfers exist along the intersection

of the stable and unstable manifolds of orbits which exist about each equilibrium point.

Stable and unstable manifolds are formed of the infinite set of trajectories which asymptotically

approach or depart an orbit as t →∞. Found by studying the eigenvalues and eigenvectors of the

state transition matrix evaluated from a point on a given periodic orbit for one full orbital period,

they play a key role in governing nearby dynamics by acting as separatrices in phase space and

allowing propellant-free transfers to-and-from periodic orbits [50]. Conley [51] was the first

to study structures around the Lagrange points. He classified trajectories near the Lagrange

points as ones which cross or do not cross the region, or which asymptotically approach the

periodic orbit. He also constructed a practical mission plan to show how one could transfer a

spacecraft from the Earth to the Moon using these orbits for lower cost than traditional methods

of directly injecting into a trans-Lunar orbit. To the author’s knowledge, this was the first ‘low-

energy transfer’ mission plan, a term given to a broad class of trajectories which consume far

less propellant than an otherwise direct transfer using traditional methods [52].

The first approach to explicitly use the invariant manifolds to compute a transfer from the Earth

to a Halo orbit was Gómez et al. [53]. In their paper, Gómez et al. integrate the structure of a

stable manifold associated with a Halo orbit about Sun-Earth L1 backward in time until points

on the manifold fulfil a criteria relating to its minimum distance to the Earth. These points then

form targets in an optimisation procedure from an orbit about the Earth onto the stable manifold,

and from there asymptotically about the Halo orbit using only the dynamics of the system.

This work was followed by Howell, Barden, and Lo [54] in 1997 who extended this notion to
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(a) Projection onto the X-Y plane. (b) Projection onto the X-Z plane.

(c) Projection onto the Y-Z plane.

Figure 3.2: Stable manifold associated to a Halo orbit about Sun-Earth L1, represented as its

projection onto spatial coordinates.

Earth-to-Halo and Halo-to-Earth transfers at Sun-Earth L2. This paper extended the previous

work by also including a return trajectory along the unstable manifold of the Halo about L2,

as well as by demonstrating its application to the preliminary trajectory design of Suess-Urey,

which later became the GENESIS mission. The full trajectory for the GENESIS mission re-

mained qualitatively similar, and in Howell, Barden, and Wilson [55] the designers remarked

that the trajectory provided ‘unique’ opportunities for recovering the solar wind particles about

Sun-Earth L1, while allowing a great deal of insight through the trajectory design process. Sim-

ilar methods were employed for the ISEE-3 and NEAR missions in Farquhar, Muhonen, and

Richardson [56] and Dunham, McAdams, and Farquhar [57].

Gómez et al. [50] used the invariant manifolds to determine a ‘Petit Grand Tour’ of the Jovian

Moons. A series of three-body sub-problems in the Jupiter-Europa-Ganymede-spacecraft system

were found to well approximate the overall dynamics and the resulting transfer consumed much

less propellant than the equivalent Hohmann transfer, and with more control over the ‘three-

dimensional details’ of the trajectory compared to standard approaches.

The ballistic capture mechanism, which emerged in 1990 after the orbiter ‘Hagoromo’ failed
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following separation from a parent spacecraft, Hiten, has also been linked with the intersections

between invariant manifolds [58, 59]. Hiten was sent on a transfer that used only system dynam-

ics to insert itself into orbit around theMoon following an unsolicited proposal to the spacecraft’s

operators by Edward Belbruno. Similar transfers have been used in the trajectory design for the

GRAIL [60], SMART-1 [61], CAPSTONE and KPLO missions. The use of the invariant man-

ifolds to achieve ballistic or nearly propellant-free transfers has featured heavily in preliminary

mission design studies to reduce overall capture ∆v [18, 19, 35, 48, 62, 63, 64, 65, 66, 67, 68,

69]. It has performed a particularly key role in the investigation of asteroids and other large bod-

ies, since their masses make traditional methods of orbital insertion difficult [70, 71, 72, 73, 74];

two asteroids, 2006 RH120 and 2020 CD3, have even been temporarily captured by the Earth.

An investigation into the use of the manifolds in this role is performed in chapter 4, which also

gives an overview into the practical construction of periodic orbits and their associated invariant

manifolds.

3.3 Dynamical features and flow heuristics in nonautonomous systems

While the periodic orbits and invariant manifolds of the Circular-Restricted Three-body Problem

have been well-studied in the literature, in some cases the assumption that the two primaries

orbit each other in circles is inappropriate (for example, the Sun-Mercury system has ep = 0.2).

When moving to the Elliptic-Restricted Three-body Problem, which is a more realistic model

for eccentric systems and relaxes the assumption that the primaries orbit each other in circles,

the system becomes time-periodic. As discussed earlier, the invariant manifolds – found by

studying trajectory behaviour as t → ±∞ in the CR3BP – become more numerically difficult

to find directly in the ER3BP due to this time-dependence. Often, mission designers correct

trajectories that use the time-independent dynamical structures to their counterparts in the elliptic

problem [75, 76, 77], but this relies on the dynamics of the simplified system rather than using

the ER3BP dynamics directly.

In systems with arbitrary time-dependence, there is no guarantee that these invariant manifolds

exist at all [78]. Locating similar structures to the invariant manifolds in systems with arbitrary

time-dependence has been, and remains, a great challenge in the field of dynamical systems

theory and fluid dynamics [79]. Recent literature has begun to use some of these fluid dynamics

techniques in the context of studying time-dependent systems in space mission design. A review

of the most common methods for finding these analogous structures in fluid dynamics, with an

emphasis on those which have already seen use in spaceflight problems, follows.

In lieu of the invariant manifolds, the fluid dynamics literature seeks coherent structures, which

are in their broadest sense structures in the flow which persist over long lifetimes and which

exert significant influence on nearby trajectories [80, 81, 82, 83, 84]. The search for coherent

structures begunwith simple, statistical methods. Mezić andWiggins [85] found approximations

to the finite-time invariant manifolds based on the average velocities of a grid of initial conditions.
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Figure 3.3: Example LD field on the Sun-Mars ER3BP (left) and the ‘separatrices’ obtained

after performing an edge detection algorithm with manually-determined behaviours overlaid in

different colours (right). The integrand used is ||v|| 1
2 , which highlights features well. However,

the choice of integrand is generally not known a priori and must practically be selected through

trial-and-error. Figure taken from Quinci, Merisio, and Topputo [2].

Regions with similar average velocities are taken to have similar finite-time behaviour, and thus

the boundaries of these regions could be said to approximate the invariant manifolds in globally

separating the phase space and thus separating qualitatively different behaviours.

This approach was developed in the following years in parallel with more principled techniques

related to flow properties. For example, in Mendoza and Mancho [86] and Mendoza, Mancho,

and Rio [87] the authors used the arc-length of individual fluid trajectories to profile the dy-

namical features of the flow in discrete ocean datasets. Again, the premise is that trajectories

that begin close but with significantly different arc lengths are likely separated by some form of

dynamical structure. In this case, the authors found good agreement between this heuristic and

known structures in the flow, including invariant manifolds and hyperbolic and non-hyperbolic

flow regions.

The Lagrangian Descriptor (LD) followed in 2013 as the extension of this concept to other bound,

positive quantities. In Mancho et al. [88] a variety of arclengths were introduced, such as the

sum of velocities and accelerations of trajectories, and investigated for their potential to simi-

larly highlight regions of qualitatively different behaviour. The authors show through several

examples that depending on the integrand chosen, one can identify different features in the flow.

The LD has seen widespread use in recent years, including in modelling ocean flows, oil spills

and the behaviour of Monsoons [86, 89, 90], cardiovascular flows [91] and wider dynamical

systems and classical mechanics applications [92, 93, 94]. In space mission design, two MSc

theses [95, 96] and related preprints4 [2, 97] used the LD to identify ballistic capture sets and

bounded motion in binary asteroid systems. In the former, different types of orbit exhibit signifi-

4These papers are still under review at the time of writing, 17 July 2022.
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cantly different values of LD, leading to discontinuities in their values. Standard edge detection

algorithms can then be used to extract the separatrices from the LD field. This approach yields

accurate separatrices between these orbits once the edge detection algorithm threshold has been

adjusted. In the latter, the LD scalar field was used to identify different families of periodic

orbits; the largest discontinuities in the field identified different families without a priori deter-

mination of individual orbits. However, the correct identification of integrand to use was crucial

in both cases, with some integrands not producing usable insight.

Several issues arise with the LD. Firstly, the selection of the integrand is nontrivial and must be

chosen without any a priori insight, often through trial and error. The LD is also non-objective,

which means that its result changes depending on the reference frame chosen [98]. Given the

range of reference frames used in mission design, this makes a reliable application of the LD

difficult. Nonetheless, the method is very simple to compute and implement and requires little

additional computational complexity compared to the integration of the reference trajectory. It

may thus serve a use as a metric for a ‘first guess’ [79].

There are other non-objective flow analysis techniques that are widely used in fluid dynamics but

not discussed in further detail here due to both their nonobjectivity, which has been identified as

a potential issue, and also due to their lack of use in astrodynamics. These include the Eulerian

Okubo-Weiss criterion [99], which can quantify the amount of deformation or rotation at a given

point in the flow and thus delineate hyperbolic and elliptic regions, the Q-criterion [100] and

λ−1 criterion [101] for vortex detection, Patchiness [102] for analyses similar to the LD, and

Mesochronic Analysis, which analyses the eigenstructure of the flow map of a given trajectory

[103] to determine broad flow characteristics.

Shortly after the original work of Mezić in 1999, Bowman [104] suggested the use of the linear

separation between trajectories that begin next to each other on a grid (a ‘finite strain map’) along

with the edge detection step of the LD to determine the location of coherent structures. Define

the finite strain map as
|x (t0,x0; T )2 −x (t0,x0; T )1|

|x0,2 −x0,1|
(3.1)

for two trajectories x0,2 and x0,1 that begin infinitesimally close and evaluated from time t0

to time T . For T < t0, maxima of the strain map highlight the stable manifolds, and for T > t0

maxima highlight the unstable manifolds. Lekien and Ross [105] praised this approach for being

able to determine coherent structures for even incredibly noisy datasets with a significant number

of features, as well as being numerically simple to evaluate and relatively simple to implement.

Improvement on this linear separation estimate however is relatively straightforward [106]. Two

modern indicators are often used to quantify separation, the finite-time Lyapunov Exponent

(FTLE) [81, 107] and the finite-size Lyapunov Exponent (FSLE) [108]. The former quanti-

fies the amount of separation between two trajectories which begin infinitesimally close after a

given time, and the latter measures how much time is required for the separation to grow to a

fixed size. The FTLE (and closely-related Fast Lyapunov Indicator) has been used in a variety of
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dynamical systems [78, 109, 110, 111] and astrodynamics roles [112, 113, 114, 115] for quanti-

fying chaoticity. While the FTLE is an objective measure, the following chapters highlight how

it can in some cases present false positives, and suggest an alternative structure defined by fluid

dynamics as a structure with no false positives.

3.4 Lagrangian Coherent Structures

Motivated by use of an FTLE as an improved separation metric on the finite strain map, an

influential series of papers by Haller [79, 81, 116, 117, 118] defined the Lagrangian Coherent

Structure (LCS), a set of structures which exert maximal influence on nearby trajectories. The

first LCS defined was the hyperbolic LCS, the locally most repelling or attracting surfaces in a

flow. This generalises the concept of the unstable and stable manifolds respectively to systems

with arbitrary time dependence and defined over a fixed time period of investigation. These

surfaces were defined to be necessarily ridges (maxima, repelling LCS) or trenches (minima,

attracting LCS) of the FTLE field.

Additional theoretical development soon followed. Shadden, Lekien, and Marsden [82] exam-

ined the flux across an LCS to quantify how effectively repelling LCS act as barriers to transport

in flows. They determined that even systems that are time-aperiodic have magnitudes lower flux

through the repelling LCS than surrounding surfaces, lending weight to the idea of ridges of

FTLE being indicators of such hyperbolic LCS. Lekien, Shadden, and Marsden [119] extended

this concept to n-dimensional systems based on the FTLE, finding codimension-1 surfaces that

maximise the FTLE in the system. These findings that FTLE necessarily implied the location

of such coherent structures were further reinforced by numerical [120, 121] and experimental

[122] studies.

As a result, hyperbolic LCS derived from the FTLE field quickly found use in many different

fields, particularly in datasets where position and velocities are only known at fixed points. Inves-

tigations were published in cardiovascular flows [123], tropical cyclone modelling and weather

forecasting [90, 124, 125, 126], aerodynamics studies [127], and the analysis of turbulent flows

and PIV data [128, 129, 130, 131]. However, in the early 2010s, publications began to assert

that the FTLE alone is not sufficient to identify hyperbolic LCS. Since the FTLE is simply a

measure of deformation, it cannot distinguish between stretch and strain (Figure 3.4a) and shear

(Figure 3.4b). The latter of these is deformation along the surface rather than orthogonal to it,

and is not associated with the behaviour of a hyperbolic LCS. Thus, the FTLE can yield mul-

tiple ‘false positives’ for hyperbolic LCS [98], but no false negatives. Haller and Sapsis [133]

presented several counterexamples where the FTLE ridges do not identify hyperbolic LCS. A

later paper, Haller and Beron-Vera [134], identified that any randomly chosen material surface

admits zero material flux, a key finding in the original theoretical study of Shadden, Lekien, and

Marsden [82]. Norgard and Bremer [135] identifies that second-derivative ridges of the FTLE

field, of which Shadden’s definition of repelling LCS relied upon, do not exist in generic fluid
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Repelling LCS

Surface repels nearby trajectories

orthogonally (strain)

(a) ‘Stretching’ deformation, the behaviour

sought in attracting or repelling Lagrangian

Coherent Structures.

Shearing surface

Surface shears nearby trajectories

(b) ‘Shearing’ deformation, which the FTLE

cannot distinguish from stretching behaviour.

This motivated the paper of Haller [132] to

add additional conditions to LCS derived

from the FTLE field.

Figure 3.4: Comparison between a surface that maximises repulsion and a surface that causes

trajectories to ‘shear’ across its surface. The former is the desired behaviour of a repelling

hyperbolic LCS, the second is the behaviour of a shearing surface, which can in some cases be

erroneously highlighted by the FTLE field.

flows. Despite Karrasch and Haller [136] finding that attracting hyperbolic LCS do, in fact, lie

along trenches of the FTLE field, the authors also remark that it is incredibly difficult to attain

the required numerical resolution in the FTLE field to be able to infer the result directly from

the FTLE field. In astrodynamics research, Parkash [8], Gondelach, Armellin, and Wittig [112],

and Pérez-Palau [137] have shown examples of the FTLE either being a false positive or being

affected by things other than the underlying dynamics.

In response, Haller released several publications that strengthen the definition of a hyperbolic

LCS, defining them directly from the variational theory of deformation. Haller [132] and Faraz-

mand and Haller [138] presented the mathematical conditions for n−dimensional LCS, along
with additional criteria that FTLE ridges must meet to signal a repelling or attracting LCS, tak-

ing into account the direction of maximal stretching of the flow. By considering the direction of

deformation as well as the magnitude, one can distinguish between stretch and shear. Around

the same time, two additional definitions of LCS were introduced. First introduced in Haller

and Beron-Vera [134], the elliptic LCS generalises the Kolmogrov-Arnold-Moser (KAM) tori

of time-independent dynamical systems (Figure 3.5). A discussion of the relevance of the KAM

torus to astrodynamics is outside the scope of this work, but here it suffices to describe the

KAM torus as a doughnut-shaped surface for which quasi-periodic orbits move upon even un-

der the presence of perturbation. For a more rigorous introduction on the KAM tori, the reader

is referred to one of many excellent overviews [139, 140, 141]. The parabolic LCS delineates
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Figure 3.5: Elliptic LCS, which produce time-dependent generalisations of the KAM torus.

Shown here is the elliptic LCS for the chaotically-forced Arnold-Beltrami Childress flow, taken

from Blazevski and Haller [3].

‘jet-type cores’, series of trajectories which neither stretch nor shear [142]. Such features are

typically only present in geophysical flows and are thus less well-studied in the literature.

Given the importance of the role the hyperbolic invariant manifolds have been seen to play in

space mission design in the preceding subsection, this thesis focuses only on the hyperbolic LCS.

To continue the introduction of hyperbolic LCS, its formulation is now introduced in more detail,

following the works of Haller [132] and Farazmand and Haller [138]. I first introduce a concep-

tual definition for hyperbolic LCS, then review the theoretical formulation for n−dimensional
flows, since these are well-studied in fluid dynamics and provide the main theoretical underpin-

ning of the variational theory. A specialisation of the method for n = 3 is then introduced based

upon the work of Blazevski and Haller [3].

The Cauchy-Green Strain Tensor

Recalling that a hyperbolic LCS is the locally most attracting or repelling surface in a flow, then

the unit normal to the surface at every point must necessarily be aligned with the direction of

minimum or maximum deformation along a trajectory, respectively. To quantify this deforma-

tion, consider two curves x (s) andX (s) parameterised by some scalar parameter s ∈ [0, 1]. The

curve x (s) is an undeformed curve defined at some initial time t0, andX (s) is the same curve

at a later time T after deformation under a dynamical system f , such that

ẋ= f (x, t ) ,x ∈ D ⊂Rn , t ∈ [t0, t0 +T ] (3.2)

with flow map

F :

⎧⎨⎩D ↦→ D

x0 ↦→x (t0,x0;T )
(3.3)
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M (t )
Tx0M (t )

Nx0

Figure 3.6: Geometry of a surface M , including the definition of the normal N and tangent

spaces T to a point x0 on the surface used in definitions of LCS from an FTLE ridge.

where a trajectory of the system starting at position x0 at time t0 up to a time T is denoted as

x (t0,x0; T ). The length of the undeformed curve x is

∫︂ 1

0

⃓⃓⃓⃓
∂x

∂s

⃓⃓⃓⃓
ds =

∫︂ 1

0

√︄
∂x

∂s

∂x

∂s
ds =

∫︂ 1

0

√︄
∂x

∂s
· I · ∂x

∂s
ds (3.4)

where I is the identity matrix. On the other hand, the deformed curveX has length

∫︂ 1

0

⃓⃓⃓⃓
∂X

∂s

⃓⃓⃓⃓
ds =

∫︂ 1

0

√︄
∂X

∂s

∂X

∂s
ds =

∫︂ 1

0

√︄(︃
∂X

∂x

∂x

∂s

)︃
·
(︃
∂X

∂x

∂x

∂s

)︃
ds (3.5)

such that

∫︂ 1

0

⃓⃓⃓⃓
∂X

∂s

⃓⃓⃓⃓
ds =

∫︂ 1

0

√︄
∂x

∂s

⊤[︃(︃
∂X

∂x

)︃⊤
·
(︃
∂X

∂x

)︃]︃
· ∂X
∂s

ds =
∫︂ 1

0

√︄
∂x

∂s

⊤
·C T

t0
· ∂x
∂s

ds. (3.6)

The quantity in Equation 3.6 that replaced the identity matrix in Equation 3.4 is the right Cauchy-

Green Strain Tensor (CGST)

C T
t0

:= (︁∇F T
t0

)︁⊤ (︁∇F T
t0

)︁
(3.7)

where the subscript t0 and superscript T is used to quantify the times associated with the dy-

namical system that x (s) is subject to. The quantity ∇F T
t0
is the first derivative of the flow map,

∇F T
t0
= dX

dx , which is also known as the state transition matrix in astrodynamics.

By inspection of the integrand, it is evident that C T
t0
quantifies the deformation of the length of

the initial curve. By its definition, it is symmetric and positive definite and thus has all real

eigenvalues of magnitude greater than zero. The remainder of this thesis uses the notation that

its eigenvalues are λ1, λ2, . . . , λn and the associated eigenvectors are ζ1, ζ2, . . . , ζn such that λ1 ≤
λ2 ≤ ·· · ≤λn . The CGST is invariant under changes in coordinates and frames [136].
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The FTLE σT
t0
introduced earlier is also derived from C T

t0
as

σT
t0

:= 1

2(T − t0)
log(λn) . (3.8)

Since the attracting and repelling hyperbolic LCS are necessarily orthogonal to the minimum and

maximum directions of deformation, it is conceptually clear that they are necessarily orthogonal

to ζ1 or ζn , respectively. Mathematically, Haller defines the repelling and attracting LCS as

maximisers and minimisers of the repulsion ratio R, respectively

R = 1√︄⟨︃
n̂0,

[︂
C T

t0

]︂−1
n̂0

⟩︃ (3.9)

for a surface with initial unit normal n̂0.

For dimensions greater than two, it can be shown (Haller [132]) that for an eigenvector defined at

a given pointx0 to be amaximiser of the repulsion ratio it must necessarily satisfy four conditions

on a surface M (t0) at a given time t0 over a time T :

1. λn (x0) > 1, λn (x0) >λn−1 (x0) > ·· · >λ1 (x0)

2. 〈ζn (x0) , ∇2λn (x0)ζn (x0)〉 < 0

3. ∇λn (x0) ||M =⇒ ∇λn ∈ Tx0M

4. ζn (x0) ⊥ M =⇒ ζn (x0) ∈ Nx0M .

Condition (1) requires there to be a dominant eigenvalue of distinct magnitude to allow a unique

‘dominant direction’ of deformation to exist. Condition (2) is derived from the FTLE and en-

forces that the curve is on a ridge of the FTLE (maximal stretch or shear), and Condition (3) and

Condition (4) ensure the correct orientation of the surface to the required directions to resolve

between stretch and shear, where || is the common shorthand for ‘parallel to’, i.e. ∇λn lies in the

tangent space of M (Figure 3.6). Condition (3) and (4) are the additional variational criteria that

must be satisfied for a FTLE ridge to be a repelling hyperbolic LCS and enforce orthogonality to

ζn ; other equivalent forms of the conditions given above can be derived but the LCS as derived

from a FTLE ridge is used here to highlight the additional requirements for the FTLE that must

be satisfied. This method has no known false positives or negatives, unlike the FTLE.

The author does not know of any study which has applied the conditions given above directly

for n > 2. The work of Blazevski and Haller [3] defined a specific case of the formulation of the

LCS for n = 3, seeking surfaces that are orthogonal to ζn directly rather than applying Conditions

(1–4) given above. They find that, as per Palmerius, Cooper, and Ynnerman [143], points on

surfaces which are everywhere orthogonal to a given vector field ξ necessarily satisfy a zero
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helicity criterion H :

Hξ = 〈∇×ξ, ξ〉 = 0. (3.10)

This quantity is defined from Stoke’s theorem as follows.

Proposition 1. Let w be a vector field defined in R3, and S a surface orthogonal to w with unit

normal at every point n̂. For any ξ ∈ S, Hξ must vanish on S

Hw = 〈∇×w (ξ) , w (ξ)〉. (3.11)

Proof. Consider some open neighbourhood D ⊂ S of ξ in S. By Stoke’s theorem, we have:∫︂
D

(∇×w) · n̂ =
∫︂

C
w ·dr. (3.12)

Since w is orthogonal to S, then
∫︁

C w ·dr = 0. Consider also that w = 〈w, n̂〉n̂, which yields:

∫︂
D

1

〈w, n̂〉HwdA = 0. (3.13)

Since D was defined arbitrarily, then Hw must be zero on S.

The helicity will be used extensively in chapters 5 and 6. In the case of repelling LCS, one seeks

level sets of zero Hζn ; for attracting LCS, one seeks level sets of zero Hζ1 . It can be shown

(Appendix C of Blazevski and Haller [3]) that points which satisfy the zero helicity criterion on

reference hyperplanes placed in the domain are global maximisers or minimisers of repulsion5.

By orienting different hyperplanes in the flow, one can interpolate between the intersections

of the LCS with the reference plane to produce the full, three-dimensional structure. This three-

dimensional formulation has been applied in the literature directly to simple test cases from fluid

dynamics and shown to be effective.

While no LCS is known to the author to have been constructed for astrodynamics systems using

the variational theory of LCS in three dimensions, significant contributions have been made by

other authors that show the feasibility of LCS providing insight in time-dependent astrodynam-

ics systems. Early applications of the LCS to astrodynamics systems used LCS defined with

respect to the FTLE. The first known to the author was Gawlik et al. [144] who studied repelling

forward-time LCS in the Earth-Moon and Sun-Mercury planar ER3BP using ridges of the FTLE

to find LCS, motivated by early planning for the BepiColombo mission: since the eccentricity of

Mercury about the Sun is 0.2, the CR3BP is not a suitable assumption for its motion around the

Sun, and as a result similar structures to the invariant manifolds were sought in the ER3BP. Us-

ing the formula for flux across an LCS suggested by Shadden, Lekien, andMarsden [82], Gawlik

5The zero helicity points for the ‘middle’ eigenvector ζ2 define elliptic LCS, which maximise shear and generalise

the KAM torus or the parabolic jet.
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(a) LCS found (red) compared to the refer-

ence solution (black dots) in Ros Roca [7].

The LCS intersected the reference set and did

not follow the expected structure.

(b) LCS found (red) compared to the refer-

ence solution (black dots) in Parkash [8]. The

LCS followed the reference set but required

significant numerical refinement, with some

early terminations still present.

Figure 3.7: Previous attempts at computing LCS in the Elliptic-Restricted Three-body Problem.

Both authors cited numerical issues as preventing the construction of the full LCS.

showed that repelling hyperbolic LCS do indeed act analogously to invariant manifolds in sep-

arating regions of qualitatively different behaviour. Despite the FTLE not de facto highlighting

LCS, this study showed the potential effectiveness of the LCS in time-dependent astrodynamics

systems.

Later studies followed from Cody Short. In a series of papers released around the same time

the definition of the LCS was strengthened to include additional criteria from variational theory,

Short, Howell, and Tricoche [36] began by investigating the FTLE field on Poincaré sections

in combination with GPU parallelism. Again, it was shown that even on arbitrarily-oriented

sections of position space the LCS still continues to separate regions of qualitatively different

behaviour. A follow-up journal paper, Short and Howell [145], demonstrated that this also holds

in mixed position-velocity phase space, and that additional information derived from nearby

FTLE values can be used to aid the analysis of determining the stability of periodic orbits. A

later paper by Short et al. [113] collaborated with Daniel Blazevski and George Haller in the

construction of strainlines on a fixed section of phase space in four-dimensional mixed position-

velocity space, with the initial conditions sampled on regions of high FTLE rather than from the

variational theory. Nonetheless, this paper identified that the strainline approach holds relevance

in astrodynamics, later reinforced by a similar study by Oshima and Yanao [146] who applied the

same technique to the more complex planar bicircular-restricted four-body problem, and found

that the strainlines still separate qualitatively different behaviour in even higher fidelity models.

Additional work in categorising the LCS from the FTLE field in astrodynamics has been per-

formed since. Qingyu, Mingpei, and Ming [147] extracted the ridges of the FTLE field using a

Particle Swarm optimisation algorithm in the planar and hyperbolic restricted three-body prob-

lem. Onozaki, Yoshimura, and Ross [148] used the FTLE to determine tube-like structures that

mimic the invariant manifolds in the four-body problem. Pérez, Gómez, and Masdemont [149]
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used hyperbolic LCS to detect analogues to invariant manifolds from FTLE ridges, again finding

good agreement except in ‘spurious points’. Such points were later refined by applying some

of the additional criteria for LCS from the FTLE field following Haller [132], which removed

some of these spurious points, and another filter by comparing to the FTLE computed at a differ-

ent time. Additional dynamical indicators similar to LCS, based largely on polynomial algebra

(section 5.3.1, known as ‘Jet Transport’ in those works) were then introduced to mimic LCS

structures in Pérez, Gangnet, and Blake [150], but the author is not aware of the use of any of

these indicators beyond that investigation.

The only attempts known to the author to compute LCS from their variational theory directly in

astrodynamics systems are twoMSc theses. Ros Roca [7] was the first, attempting to use LCS to

provide automatic insight on the ballistic capture phenomenon. He found that identifying seed

points using divided differences was numerically very challenging, even when using variational

equations and analytic Jacobians to obtain the derivatives of the flow itself. As a result, the LCS

was very difficult to find, and even when it could be found to exist, it did not match expectations

from the literature (Figure 3.7). A follow-up thesis in 2019, Parkash [8], continued the study by

using an in-depth pointwise interpolation and refinement algorithm, and obtained better results,

but ones which seemed to terminate early.

In both cases, the authors cited numerical issues in preventing the construction of the LCS. Ad-

dressing these numerical issues may thus provide insight into LCS in space mission design, al-

lowingmissions to be constructed directly in time-dependent models of motion, as well as having

potential benefits for those outside of astrodynamics whom also experience numerical issues in

their construction [151, 152]. This apparent gap in the literature will be addressed in this thesis

in chapters 5 and 6.

3.5 Conclusion

This chapter has introduced the dynamical structures and dynamical indicators that have been

widely used in astrodynamics thus far. In time-independent systems, the equilibria of the system,

periodic orbits and their associated stable and unstable invariant manifolds have been widely

used to profile dynamical behaviour and to achieve propellant-free ‘ballistic’ captures in modern

mission design, as well as unique trajectories and orbits that help satisfy mission objectives.

It was then revealed that in time-dependent systems, there is no guarantee on the existence of

these structures, and analogous indicators originally developed for fluidmechanics have begun to

be adapted into spaceflight problems. An overview ofmany that have been used in astrodynamics

has been given, before identifying the Lagrangian Coherent Structure as a time-dependent gener-

alisation of the concept of the invariant manifolds. However, the use of these in astrodynamics

has been made difficult by numerical issues in previous investigations, even in two-dimensions.

Remedying these numerical difficulties could allow for these structures – well-established in

fluid dynamics – to be applied directly to time-dependent models of motion.
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The coming chapter will use the invariant manifolds of the time-independent CR3BP in the con-

text of asteroid retrieval missions. Given that these structures are well-established in space mis-

sion design, and the search space for asteroid retrieval trajectories can quickly become large,

these structures form a foundation onwhich to base the investigation as towhether high-performance

computing can provide additional insight in astrodynamics.
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4
Asteroid Retrieval Missions using the

Invariant Manifolds of the Circular

Problem

This chapter presents an investigation into the use of dynamical structures in the CR3BP re-

viewed in the previous chapter to retrieve asteroids and comets that pass close to the Earth.

This builds upon a body of research in the literature that examines retrieval with current propul-

sion technologies. The methodology used to find retrievable asteroids is modified to improve

their identification, and high-performance computing is used to improve the effectiveness of

the search for retrieval trajectories. The chapter goes on to analyse search strategies for these

transfers and identifies new characteristics which improve the robustness of asteroid retrieval

trajectories using such dynamical structures. Content from this chapter has been published as

Tyler and Wittig [11] and presented at the 31st AAS/AIAA Space Flight Mechanics Meeting in

2021 as Tyler and Wittig [12].

4.1 Background

In recent years, there has been significant interest in the investigation and exploration of Near-

Earth Objects (NEOs), asteroids and comets which pass within 1.3 Astronomical Units (AU) of

the Sun. Much of this is motivated by their composition, which mirrors the structure of the early

Solar System and thus offers unique, invaluable insight into the history of our stellar neighbour-

hood [153].

This interest is such that many major space agencies have either conducted or planned missions

to investigate asteroids, including multiple missions to return samples of asteroids back to the

Earth for further analysis. The National Aeronautics and Space Administration (NASA) sent

the first mission to investigate a NEO in 1985, with the International Cometary Explorer (ICE)
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spacecraft flying through the plasma tail of Giacobini-Zinner. The 1996 mission Near-Earth

Asteroid Rendezvous (NEAR), also designed by NASA, was the first spacecraft to orbit and land

on a NEO in 1997 and 2001, respectively. Five years later, the Stardust mission was the first to

return samples from aNEO. The Japanese Aerospace ExplorationAgency (JAXA) later followed

these missions with Suisei in 1986, a fly-by, and the Hayabusa-1 and Hayabusa-2 sample return

missions [154]. The European Space Agency launched the infamous Rosetta mission in 2004,

which performed the first soft-landing on a comet in 2014 [155]. NASA’s ongoing OSIRIS-REx

mission will return approximately 60 g of samples to the Earth in 2023 [156].

NEOs have long been classified into families, typically grouped by their orbital properties. Atens

are NEOs which cross the orbit of the Earth, with semi-major axes less than 1 AU (Astronomical

Units, 1AU = 149597870.7 km), and an aphelion1 distance greater than 0.983 AU. The Apollo

family also crosses the Earth, but their semi-major axes are greater than 1AU, and their perihelion

distance is less than 1.017 AU. Amors have orbits completely outside of the Earth, such that their

semi-major axes are greater than 1 AU, and their perihelion distance is between 1.017 and 1.3

AU.

These groups are relatively well-established, with their prototype asteroids discovered in 1976

for Aten-type asteroids, and 1932 for both Apollo- and Amor-type asteroids. A newer family of

NEOs was introduced in 2003 after the discovery of the first NEO of its kind. Known as Atiras,

the orbits of these NEOs are wholly within the Earth’s orbit, such that their semi-major axes are

less than 1 AU, and their aphelion distance is less than 0.983 AU.

While these families are the most commonly accepted, others have been proposed. Arjuna-type

objects, of which there are several hundred expected to exist, have semi-major axes between

0.985 and 1.013 AU, orbital eccentricities below 0.1, and inclinations less than 8.46 degrees

[157]. They are so defined to be similar to the orbit of the Earth, and are expected to be excellent

candidates for asteroid retrieval missions. However, few of these types of asteroids have been

discovered due to their small size [158].

A similar family of Small Earth-Approachers was suggested by Brasser and Wiegert [159]. The

definition is similar to the Arjuna-type asteroids, with 0.95 ≤ a ≤ 1.05 AU, 0 ≤ e ≤ 0.1 and

0◦ ≤ i ≤ 10◦. An additional requirement that asteroids have diameters less than 50 m is placed

on these objects.

Other authors have suggested classifying NEOs by the hazard they pose to the Earth. Potentially

Hazardous Objects (PHAs) have their distance between the NEO and the Earth at any given time

less than 0.05 AU. Their absolute magnitude must also be equal to or brighter than 22 [160].

As of June 2022, approximately 2000 PHAs are known to exist. They have demanded extra

attention in the years following the 2013 Chelyabinsk superbolide, an atmospheric air burst of a

1The suffix of ‘apoapsis’ and ‘periapsis’ are often changed to denote the host object. The -helion suffix implies

the Sun is the host object.
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Figure 4.1: The number of NEOs detected over time by the Centre for Near-Earth Object Studies

(CNEOS), grouped by diameter. Figure adapted from NASA JPL [4].

meteor in Russia caused by an asteroid just 20 metres wide and releasing energy equivalent to

500 kilotons of TNT [161].

Many organisations – both private and public – have thus become interested in the mitigation

of the dangers PHAs and generic NEOs pose in the event of a collision with the Earth, a field

known as planetary protection. NASA has a dedicated telescope, NEOWISE, to detect and cata-

logue NEOs, of which approximately 30000 have been found (Figure 4.1). The development of

vehicles for deflecting asteroids on a collision course with the Earth is currently ongoing for such

an event (for example, the B612 foundation2), and asteroid exploration provides both technol-

ogy demonstrations and crucial information as to material properties of potential threats. These

deflection methods are also of use in asteroid retrieval missions.

Several methods of deflection have been proposed for retrieval and planetary protection. The

‘simplest’ of these techniques, the use of traditional propulsion systems, provides a system for

deflection which requires relatively little technological development [162]. However, the total

impulses required for such objects are often too high for chemical propulsion, and constant low-

thrust systems may be more suitable [163]. The trajectory and attitude control requirements for

retrieval methods based on direct contact for low-thrust have been studied extensively [164].

Other methods that involve direct contact with the NEO, such as the ‘lasso’ method intended to

be used in the now-cancelled NASA Asteroid Redirect Mission [165, 166, 167], chained series

of nuclear explosions [168], and kinetic impacts [169], have been studied in the literature.

Methods that do not require direct contact have also been proposed, as such methods may not

be suitable for asteroids with unstable or weak surface composition. For example, the gravity

tractor, devised in 2005 by former Astronaut Ed Lu, uses the mutual gravitational attraction

between a ‘shepherding’ spacecraft and a NEO [170]. The spacecraft, ideally of relatively high

2https://b612foundation.org/

https://b612foundation.org/
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mass, maintains a close position to the asteroid using a set of electric propulsion systems to allow

station-keeping. The mutual gravitation between the NEO and the spacecraft then induces small

deflections in the trajectory of the NEO, the magnitude of which can be changed using the mass

of the spacecraft and the distance between the spacecraft and the NEO.

Some authors have argued several drawbacks for this idea. Firstly, the mass of the spacecraft

itself may be need to be impractically high, depending on both the deflection magnitude, and the

time over which the deflection can be performed [171]. The station-keeping can also be difficult

to control. A separate concept known as the Ion Beam Shepherd (IBS) has been proposed to

mitigate these drawbacks of the gravity tractor [172]. It uses a pair of identical ion propulsion

units: one is aimed directly at the NEO, and the other is aimed directly opposite to provide

stationkeeping capabilities. The force of the ion beam impinging on the NEO then provides the

necesary deflection. The magnitude of the deflection depends only on the power and propellant

available to the propulsion unit(s), which can also be used as part of the orbital transfer to the

NEO. This concept has also been studied for active debris removal [173].

However, the impulses required for retrieval can still be large. The retrieval must, therefore, be

into orbits which can be reached with minimal transfer velocity: these are the ‘low-energy trans-

fers’ mentioned earlier. In 2011, Sanchez andMcInnes [174] investigated the possibility of using

periodic orbits about the Sun-Earth L1 and L2 and their associated stable invariant manifolds to

retrieve NEOs. The study investigated the Jacobi energy of a set of pre-computed invariant man-

ifolds in the Sun-Earth system in combination with a Keplerian Kick Map, a function for rapidly

approximating the change in the orbital elements of a Keplerian orbit under (in this case) a third-

body perturbation [175]. The study concluded that approximately 0.1% of the then-known NEO

population lies on regions near portions of invariant manifolds of the Sun-Earth system. At this

point, no transfers were constructed, and the NEO population was estimated using a theoretical

distribution model provided in Bottke et al. [176].

In 2013, García Yárnoz, Sanchez, andMcInnes [71] performed the first quantitative search for as-

teroids retrievable using the invariant manifolds of the Sun-Earth CR3BP, using the then-known

NEO database. They proposed a new class of NEO, the ‘Easily Retrievable Object’ (ERO),

NEOs which can be retrieved using the invariant manifolds of the Sun-Earth CR3BP for a total

cost of less than 500 m/s. An optimisation procedure between NEOs and pre-computed invari-

ant manifolds is employed to find EROs, with the transfers modelled as impulsive two-impulse

Lambert arcs. The NEO database is also pre-filtered using a Hohmann transfer approximation

to remove NEOs unlikely to become EROs. Despite the relatively small NEO database size, 12

EROs were found.

This was followed by the use of low-thrust propulsion to assist the retrieval of EROs in Mingotti,

Sánchez, and McInnes [177]. An optimal control problem is formulated to use constant low-

thrust to transfer the NEO onto a point in a target manifold. The transfers that resulted were

typically of lower overall ∆v than those seen in García Yárnoz, Sanchez, and McInnes [71],
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and allowed for trajectories not possible with either a standard two-body transfer, or impulsive

transfers leveraging the invariant manifolds alone. Retrieval was only studied for the 12 EROs

identified in the 2013 study.

A study in 2016 examined the control implications for low-thrust retrieval trajectories, and its

implications for mission design [178]. Using a stochastic Monte Carlo method, the effect of

perturbations to the initial state of the asteroid, as well its estimated mass, were analysed. The

study found that some retrieval trajectories could not be controlled with low-thrust, and suggests

that the controllability of EROs also needs to be investigated when choosing targets for retrieval

missions.

A later study in 2016 from one of the authors of the controllability study, Sánchez and García

Yárnoz [179], established the state-of-the-art in the field before the publication of Tyler and

Wittig [11]. The analysis in 2013 was repeated with a more up-to-date NEO database, and the

trajectories were again continued into low-thrust. The controllability of the transfers was not con-

sidered. The low-thrust problem was converted from a time-continuous optimal control problem

to a non-linear programming problem. Its key advances on previous literature were the consid-

eration of NEO masses, based on their apparent magnitudes, in combination with increasing the

number of EROs to 17 from the approximately 16000 NEOs known at the time.

While these studies considered in detail the retrievability and controllability of these trajectories,

there has not yet been known to the author a study on the robustness of these trajectories: in the

event of deviations from a nominal mission plan, do these NEOs still remain easily retrievable for

different transfer times, for example? Moreover, some simplifying assumptions weremade in the

2016 study to limit computation time, which will be elaborated in the coming sections. If high-

performance computing techniques are used to lift these assumptions, can greater improvements

be made?

This chapter outlines extensions to the previous literature in this field based upon the work of

two research outputs completed as part of this PhD [11, 12]. To summarise this chapter’s find-

ings, it is revealed that the transfer cost for the majority of EROs is approximately constant, and

this extends to zero-time transfers, where many EROs can be captured with a single impulsive

manoeuvre at only marginally higher cost than the optimal two-impulse transfer. This greatly

increases flexibility for mission designers. In the process of this extension, 27 more EROs are

found, and as a result of leveraging high-performance computing, 17 new capture trajectories

with a retrieval cost of less than 100 m/s are identified.

The structure of this chapter is as follows: firstly, the methods used to construct periodic orbits

and their invariant manifolds in the Circular-Restricted Three-body Problem, which serve as

destinations for the retrieved NEOs, are reviewed. Then, the chapter outlines how the transfers

are constructed, including the assumptions made, and the optimisation procedure. Analysis of

the transfers then follows.
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4.2 The Methodology

The methodology for finding and analysing EROs is elaborated in this section. Conceptually, the

methodology is a three-step ‘pipeline’: firstly, information on the orbital characteristics of NEOs

is required (section 4.2.1), and sets of periodic orbits and their stable invariant manifolds must be

generated to serve as retrieval targets (section 4.2.2). Next, to reduce the computational expense

a fast approximator (pre-filter) must be developed and implemented to remove NEOs unlikely to

become EROs to ensure the computationally-expensive optimisation procedure is not performed

unnecessarily (section 4.2.3). NEOs which pass this filter are known as ‘retrieval candidates’.

Lastly, an optimisation procedure must be performed to identify the subset of EROs from the

NEO database (section 4.2.4). Each of these procedures is now discussed in more detail.

4.2.1 Obtaining Near-Earth Object Data

Two primary sources are commonly used for NEO orbital data: the International Astronomi-

cal Union’s Minor Planets Centre (MPC) database3, and the NASA Jet Propulsion Laboratory

HORIZONS system.

The MPC is responsible for the identification, designation and orbit computation for all minor

planets, comets and outer irregular natural satellites of the major planets. A ‘snapshot’ of the

orbital elements for each NEO are available as comma-separated value files, which are easily

downloaded, manipulated and interfaced with analysis codes in a variety of languages. However,

these elements are ‘frozen’ at the given time, and do not reflect changes in NEO orbits in the

future as a result of orbital perturbations from close approaches, for example.

As an alternative, NASA’s Jet Propulsion Laboratory provides ephemeris for most of these ob-

jects, made available via the JPL HORIZONS system4. Ephemeris files contain high-precision

positions of the NEO for, in this case, up to 100 years into the future. The HORIZONS system

is accessible via a Telnet interface, and NEO data can only be downloaded one object at a time.

Moreover, there is significant user interaction required, as options must be selected by the user

to determine the NEO desired, the time range of the ephemeris, and the coordinate system used.

An FTP transfer is then required to retrieve the ephemeris from a different server.

There were 22,406 NEOs in the Minor Bodies Database as of 24th February 2020. Manually

downloading the ephemeris for each of these objects from the HORIZONS system is not feasible,

and so previous studies on the topic used either only the ‘frozen’ orbital elements from the MPC

[71], or the ‘frozen’ orbital elements for the prefilter (section 4.4) on the entire Minor Bodies

Database, and downloaded the ephemeris only for the ∼ 102 retrieval candidates [179].

However, using the frozen orbital elements from the MPC assumes that the orbital elements

at the epoch of the study do not change throughout the investigation time-scale, or between

3https://www.minorplanetcenter.net/iau/mpc.html
4http://horizons.jpl.nasa.gov

https://www.minorplanetcenter.net/iau/mpc.html
http://horizons.jpl.nasa.gov
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the time the elements are downloaded and the time the prefilter is performed. It is not clear a

priori whether this assumption is valid (this is explored in section 4.4), or whether the change is

significant enough to dramatically change the retrievability of a NEO. Thus, a script was written

in Expect, an extension of the Tcl/k scripting language, to automatically download the high-

precision ephemerides from theHORIZONS system. Expect allows the automation of interactive

applications, such as FTP and Telnet. The script opens an interface with the NASA HORIZONS

system, requests information on eachNEO in theMBD in turn, and then opens an FTP connection

to the required server to download the ephemeris.

Approximately one ephemeris file can be generated and downloaded every two seconds with

the Expect script, which was extended to be executed by a multi-threaded computer to increase

throughput. However, this places significant stress on the public JPL HORIZONS system; the

time between transfers is extended to comply with access limits for JPL HORIZONS. Approxi-

mately two days is required to download all the ephemeris.

The ephemeris were requested between calendar dates Jan 1, 2025 and Jan 1, 2100, with the

default time-step. The coordinate system selected was the inertial ecliptic J2000 frame, centred

on the Sun. The upper calendar time of Jan 1, 2100 is selected to be consistent with previous

literature to provide a valid comparison. The lower bound in the literature is Jan 1, 2020, but

this was raised as it precedes the date of this study: the new bound was selected arbitrarily but

with consideration to the time between the start of this study and the publication of the previous

paper on this topic [179]. The NASA-internal Spacecraft and Planet Kernel (SPK) ID is used to

uniquely identify NEOs.

4.2.2 Orbit and manifold generation

Families of planar and vertical Lyapunov, and Northern and Southern Halo orbits about L1 and

L2 and their associated stable invariant manifolds are generated to serve as retrieval targets for

asteroids (Figure 4.2). The techniques used to do this are common in the literature, but are briefly

reviewed here for completeness [19, 35, 44, 180]. While other sets of orbit families exist, such

as the Near-Rectilinear Halo orbits planned to be used for the NASA Lunar Gateway [181], these

orbit families are chosen to match the literature exactly and provide a valid comparison.

One typically obtains a periodic orbit in two stages. First, an approximation to motion is used

to generate an initial guess for an initial condition on the orbit. When this initial guess is placed

into the full dynamics it is unlikely that the orbit will remain fully periodic, and so a correction

algorithm such as Newton’s method is used to enforce periodicity in the full dynamics.

The most common approximation to motion about the collinear Lagrangian points5 is due to

Richardson [43], who constructed an approximation when studying the reference orbit for the

5The problem of generating approximations to motion about the Lagrange points is still generating research in-

terest; Servadio, Arnas, and Linares [182] recently used the Koopman operator to design a new approximation as

recently as 2022.
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Figure 4.2: The families of periodic orbits studied in this investigation: planar and vertical Lya-

punov orbits and Northern and Southern ‘Halo’ orbits. Only the orbits about L2 are shown for

brevity, and only orbits used in previous literature are used to ensure a like-for-like comparison.

Highlighted in red are portions of the two retrieval trajectories for asteroids 2020 DW (pla-

nar Lyapunov) and 2006 RH120 (Northern Halo), and the nominal trajectory for 2006 RH120

(dashed blue).

ISEE-3 mission [183]. He provides relatively simple, variable-order approximations to motion

that practically depend on the user giving two parameters that represent the in- and out-of-plane

amplitudes of the orbit. These parameters here were either taken from reference software6 or

obtained through trial-and-error to find an appropriate initial guess.

Planar Lyapunov orbits are characterised by having no out-of-plane amplitude, existing entirely

in the x − y plane, and so to generate these one provides no out-of-plane amplitude. As per Kim

and Hall [184], Richardson’s linear approximation is typically sufficient for generating planar

Lyapunov orbits about these points. Halo orbits are characterised by equal out-of-plane and in-

plane frequencies, and vertical Lyapunov orbits are characterised by unequal out-of-plane and

in-plane frequencies. These orbits require a third-order approximation, also made available by

Richardson, to generate a suitable initial guess, avoiding secular terms in the approximation. I

note that one can also construct Halos and vertical Lyapunov orbits by progressively increasing

the amplitude of the planar Lyapunov until a critical amplitude is reached and the orbits bifurcate,

but this approach is not used in this work.

When placed into the full dynamics, the approximation often needs to be corrected to ensure it

forms a fully closed orbit that returns (at least very close to) its initial condition after one orbital

period. As per Bernelli Zazzera, Topputo, and Massari [183], given that the CR3BP equations

6Made available as part additional material for the book ‘Dynamical Systems, the Three-Body Problem and Space

Mission Design’ [35].
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of motion present the following symmetry

(︁
x, y, z, ẋ, ẏ , ż, t

)︁ ↦→ (︁
x, −y, z, −ẋ, ẏ , −ż, −t

)︁
(4.1)

then a periodic orbit that crosses the x −z plane twice and perpendicular to the plane is periodic.

This means the desired state vector at the x − z plane is

x= (x,0, z, 0, v, 0) (4.2)

for an arbitrary x and z position and velocity v . If, when integrating to the x − z plane, there

are additional non-zero terms of velocity in the x−direction ẋ∗ and z−direction ż∗, i.e. the state
vector is of the form

x∗ = (︁
x,0, z, ẋ∗, ẏ∗, ż∗)︁

(4.3)

then by considering a first-order expansion of this state, and recalling from section 2.2 the state

transition matrix gives the linear relationship between final and initial conditions, one can derive

the following relationship between the correction to the initial condition δx0 = (δx, 0, δz, 0, δv, 0)

required to remove a perturbation δxd = (0, 0, 0, ẋ∗, 0, ż∗)

δx0 =Φ (0, τ/2)−1δxd (4.4)

where Φ (0, τ/2) is the state transition matrix evaluated over the half-orbital period τ that it takes

to achieve the x − z crossing. If the time τ/2 is not known, the events functionality of modern

numerical integrators (e.g. SciPy or Matlab) can be used to terminate integration on reaching the

x − z plane.

The above equation has three initial states available to target two final states. One of the correc-

tion terms is thus held to zero to produce an iterative technique. In this case, δx is set to zero

and δz and δv are varied to produce the desired periodicity at the plane crossing.

Since the CR3BP is a Hamiltonian system no periodic orbit exists in isolation. Once one orbit

is known, the x−coordinate held fixed in the correction procedure can be adjusted to find a

nearby periodic orbit, and so on until an entire family of orbits has been found. The orbits that

exist within set bounds of Jacobi constant given in Table 4.2 are used as retrieval targets in this

chapter; while these bounds are arbitrary, they match previous literature on the topic to provide a

like-for-like comparison. The increment δx is selected to give 1000 orbits between the bounds of

Jacobi constant for each family. Individual orbits are identified using a unique index K across all

8 families, such that 1 ⩽ K ⩽ 8000 (Table 4.1). This number of orbits was selected to correspond

approximately to those found in the previous literature to enable a fair comparison.

By evaluating the state transition matrix from any point on a periodic orbit for one full orbital

period, the monodromy matrix is obtained, which can be used to quantify local stability. In

six-dimensional motion, the eigenvalues of M for the periodic orbits studied here exist as two

complex conjugate pairs, two unity eigenvalues and two non-unity reciprocal eigenvalues. The
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cone, full CR3BP dynamics are used.

Range of K Orbit type

[1, 1000] Planar Lyapunov about L1

[1001, 2000] Planar Lyapunov about L2

[2001, 3000] Northern Halo about L1

[3001, 4000] Southern Halo about L1

[4001, 5000] Northern Halo about L2

[5001, 6000] Southern Halo about L2

[6001, 7000] Vertical Lyapunov about L1

[7001, 8000] Vertical Lyapunov about L2

Table 4.1: Unique identifiersK used to identify periodic orbits and the orbit types they represent.

largest real eigenvalue corresponds to the unstable direction, and the smallest the stable direction.

By perturbing a position and velocity on the orbit in the direction of the corresponding stable or

unstable eigenvector vs or vu at that point, one obtains an initial condition for a trajectory that

lies on the stable xs
0 or unstable manifold x

u
0 , respectively

xs
0 =x0 ±εvs (4.5)

xu
0 =x0 ±εvu (4.6)

where ε = 10−6 is used to limit the magnitude of the perturbation to remain in the local space;

10−6 is used by convention [18, 20, 179, 185]. The above procedure is performed for each of

the 8000 periodic orbits found previously. 360 points per periodic orbit are used to determine

initial conditions on the stable manifold. The seed points are located at regular time intervals
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Orbit Family Jacobi Energy Ranges Shorthand

L1 Planar [3.0003, 3.00087] L1P

L2 Planar [2.99985, 3.00087] L2P

L1 Halo [3.00042, 3.00082] L1N/L1S

L2 Halo [3.00025, 3.00082] L2N/L2S

L1 Vertical Lyapunov [3.0002,3.00087] L1V

L2 Vertical Lyapunov [2.99935, 3.00087] L2V

Table 4.2: The ranges of Jacobi energy for which orbits were generated, inclusive. 1000 orbits
were generated per family with equi-spaced x-coordinates between the extrema given above.

The energy ranges for Halo orbits extend to both the Northern (L1N and L2N for L1 and L2)

and Southern types (L1S and L2S for L1 and L2).

around the periodic orbit. These points are assigned an index nmnfd for each periodic orbit, with

1 ⩽ nmnfd ⩽ 360. This gives 2888000 points across all periodic orbits.

The points that form initial conditions for the stable manifold are integrated backwards in time to

a fixed π/8 section (Figure 4.3) about the Sun-Earth line using the 7th/8th order Dormand-Prince

numerical integrator made available as part of the Boost ODEINT C++ package with absolute

and relative tolerances of 10−13. The +π/8 plane is used for manifolds belonging to orbits about

L2 and the −π/8 plane is used for manifolds belonging to orbits about L1. The rationale for this

is as follows: in later stages of the optimisation, it is beneficial to be able to use simpler, analytic

approximations to motion. The±π/8 plane was chosen in previous literature to bound conditions

on the manifold away from regions where three-body dynamics dominates. At the ±π/8 section

and beyond (away from Earth), the dynamics can be assumed to be solely two body with no

significant loss in accuracy [71]. It will be seen later the role this plane plays in simplifying the

optimisation procedure by being able to assume analytic relationships between the initial and

final states.

The intersection points are transformed from the synodic frame of the CR3BP into a Sun-centred

inertial frame using the Sun-Earth (ecliptic) plane as the reference x−y plane to simplify further

analysis and allow easier interfacing with the data from the HORIZONS system.

4.2.3 Filtering Unsuitable NEOs

It is unnecessary and computationally infeasible to perform a full optimisation procedure on

each of the 22406 NEOs included in the Minor Bodies Database. Therefore, the MBD is filtered

using a prefilter to the optimal transfer cost, which is designed to be cheap to evaluate and which

resonably approximates the optimal transfer cost to rapidly reduce a list of 105 NEOs to a list of

102 retrieval candidates.

The earliest investigation into EROs used a prefilter based on the Jacobi constant of the NEO.

Through the Tisserand parameter [186], one can use the orbital elements of the NEO to obtain
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Figure 4.4: The Hohmann transfers considered in the pre-filtering methodology; the blue orbit

is the orbit of the NEO; the green orbit is the orbit defined by the equivalent Keplerian elements

of the manifold target point at the chosen fixed section; and the red arc is the Hohmann transfer.

Since the orientation of the semimajor axes of the orbits is ignored, four possible combinations

of transfer exist as one of the inclination change combinations may be discarded as more expen-

sive.

an approximation to its Jacobi constant

J ≈ 1

a
+2

√︂
a

(︁
1−e2

)︁
cos i (4.7)

with the semi-major axis expressed in AU7. Any NEO whose Jacobi constant lies within the

ranges of J for which orbits were constructed previously is deemed to be a retrieval candidate.

However, this method does not consider the geometry of the NEO orbits, only their Jacobi con-

stant. Orbits with very similar Jacobi constant may have very different orbital properties, making

a transfer expensive. Thus, in Sánchez and García Yárnoz [179], the prefilter was modified to

use an idealised Hohmann transfer between the orbit of the NEO and each of the points in the

target manifold data set. The equivalent position and velocity of the manifolds in the inertial

frame is converted into its equivalent Keplerian elements at that point and used to calculate the

Hohmann transfer cost. This implicitly assumes that the transfer happens at either aphelion or

perihelion of both the NEO’s and target point’s orbits, ignoring any phasing between the two.

The Hohmann transfer is a method for transferring between two circular, co-planar orbits of

radius r1 and r2 about a common central body in two-body dynamics. The transfer comprises

two impulses, transferring on to and off of an intermediate transfer arc (Figure 4.5). The ∆v

required to perform the Hohmann transfer may be derived from the conservation of energy in a

two-body system [17]. Using an energy balance equation (the vis-viva equation) on the initial and

final orbits, and substituting in expressions for the semi-major axis of the initial a0, intermediate

7This formulation is originally due toKresák [187] and is a special case for whichµ<< 1. A derivation is presented

in Appendix A.
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Initial orbit

Hohmann transfer arc
Final orbit

r1

r2

Figure 4.5: Schematic of the Hohmann transfer between two circular, coplanar orbits. The

initial orbit has radius r1 and the final orbit radius r2.

aint, and final orbits a f , leads to the relation for the two impulses

∆v1 =
√︄

GM

(︃
2

r1
− 1

aint

)︃
−

√︄
GM

(︃
2

r1
− 1

a0

)︃
(4.8)

∆v2 =
√︄

GM

(︃
2

r2
− 1

af

)︃
−

√︄
GM

(︃
2

r2
− 1

aint

)︃
(4.9)

aint =
r1 + r2

2
(4.10)

where GM is the standard gravitational parameter of the host body, in this case the Sun. Since

these orbits are not necessarily co-planar, differences in inclination between the two orbits are

removed using an impulse which performs an instantaneous, pure rotation of the velocity vector

of the orbit at the aphelion or perihelion of the transfer orbit (the orbital speed before and after

the manoeuvre is unchanged). The pure rotation is assumed to take place only once – i.e. the

inclination change manoeuvre is not split between aphelion or perihelion – and is performed

such that the total capture ∆v is minimised. Considering the geometry of the initial and final

velocities of NEO at the relevant point of inclination change (Figure 4.6), the angle ∆i can be

inferred to be

sin
∆i

2
= ∆vi /2

v
(4.11)

and knowing that the velocity change occurs at either apoapsis or periapsis only, one can rear-

range to find

∆vi = 2

√︄
GM

a
r∗ sin(∆i /2)



60 Section 4.2: The Methodology

Orbit 1

Orbit 2

v1

v2 = v1

∆vi

∆i

Figure 4.6: Geometry of the inclination change problem between two orbits with the same

orbital speed. The inclination change is assumed to be a pure rotation about a common point

on the two orbits.

with a the semi-major axis of the orbit at the point the transfer is made, and i0 and i f the initial

and final inclinations, respectively. The variable r∗ is

r∗ =
⎧⎨⎩ra/rp if the inclination change is at perihelion

rp /ra if the inclination change is at aphelion
(4.12)

with ra and rp the aphelion and perihelion distance for the given orbit, respectively.

The total cost of the transfer is then computed using

∆vt =
√︂
∆v2

a, 1 +∆v2
i , 1 +

√︂
∆v2

a, 2 +∆v2
i , 2.

The inclination change is only performed once, such that one of ∆vi , 1, ∆vi , 2 is zero. In total,

there are 8 possible combinations of transfer: 4 combinations of orienting the semi-major axes

of the NEO and the target manifold point, and 2 combinations per orientation corresponding to

whether the inclination change occurs at the beginning or end of the intermediate transfer arc.

However, one of the locations of the inclination changes can always be identified as being more

expensive based on the radial distance to the Sun. This leaves only four transfers per NEO and

target manifold to be considered, as shown in Figure 4.4. In total, this means that for each of the

2888000 target points generated previously, 4 sets of transfers must be calculated for a total of

11552000 trial computations.

At this point, the literature is extended. Since the Hohmann transfer approximation depends

on the radius, semimajor axis and inclination of both the osculating NEO orbit and the target

manifold point, there is the possibility that the pre-filter output may vary with time as the NEOs
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Figure 4.7: Pre-filter cost (black), Jacobi energy (blue) and semi-major axis (red) for asteroid

3410533. Preliminary analysis shows the potential for pre-filter cost to vary with time as a

result of changing orbital elements from close approaches to planets, for example. In this case

the asteroid does not pass the pre-filter when run after a certain date. Even filters used in prior

works and based on the Jacobi energy (blue) would vary with time.

do not move on purely Keplerian orbits8. A preliminary analysis that shows the occurrence of

this time-dependency for asteroid 3410533 is presented in Figure 4.7, where the semi-major axis

of the orbit of the asteroid changes as a result of close approaches with the Earth with time.

This changes the estimated pre-filter cost when using the Hohmann transfer approximation. The

Jacobi constant is also changed, which means this phenomenon also occurs for the previous pre-

filters based on Jacobi constant. The pre-filter is thus repeated once every 28 days in the time-

span January 1, 2025 and January 1, 2100, with 28 days selected arbitrarily. The time ranges

were chosen to match those used in the optimisation procedure (section 4.2.4). This requires 978

evaluations of the pre-filter for a total of 11297856000 transfers to be constructed. While this

greatly increases computation time, it is necessary to ensure no NEOs are excluded prematurely.

The pre-filter is implemented in Fortran and interfaced with the SPICE library [189] to access the

high-precision ephemerides. To reduce computation time – particularly for when repeating the

pre-filter at regular intervals – parallelisation is implemented via theMPI and OpenMP libraries9.

The program is written to support vectorisation of many of quantities automatically on relevant

processors. Following the vectorisation efforts, approximately one week of CPU time is required

to run the asteroid pre-filter at an interval of 28 days on 2.0 GHz Intel Xeon E5-2670 processors.

By use of 120 cores, the pre-filter can be computed in 1.5 days of wall time.

8While not considered in their original paper, this time dependency is also acknowledged by one of the original

authors of Sánchez and García Yárnoz [179] in a later publication [188].
9The small time required to evaluate each transfer and the need to evaluate the solution in double-precision meant

that GPU parallelism did not provide a major advantage over CPU parallelism.
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Figure 4.8: Intersections of stable manifolds and the π/8 plane for selected periodic orbits from
the planar Lyapunov family (green), Northern Halo family (blue), and vertical Lyapunov family

(red). Design variables nmnfd ∈ [1, 360] and K ∈ [1,8000] are indicated.

Previous literature used 700 m/s as the threshold for the idealised Hohmann transfer to designate

a NEO as a retrieval candidate. However, this chapter uses a higher threshold of 3 km/s to

classify a NEO as a retrieval candidate to ensure that no EROs are excluded prematurely. This

chapter also uses the ephemeris files rather than the MBD. An analysis into the behaviour of

the prefilter for various transfer thresholds is presented along with the results of applying the

prefilter in section 4.4.

4.2.4 Finding optimal transfers

Once the list of retrieval candidates is known, an optimisation procedure is performed to de-

termine whether any transfers exist between the retrieval candidate and any point in any target

manifold below the ERO threshold.

By leveraging that the dynamics outside of the ±π/8 plane can be assumed to be Keplerian, a

Lambert arc is used to model the transfer between a point on the NEO’s orbit and a point in the

target manifold. A Lambert arc constructs an equivalent orbit that passes through two known

positions with a known time to move from the first position to the next. The method essentially

solves a boundary value problem for the differential equation that describes Keplerian motion,

and uses a two impulses to perform the transfer: one impulse at the beginning of the arc, ∆vstart,

and one at the end of the Lambert arc ∆vend. For more information on the derivation and uses of

Lambert’s problem, the reader is referred to Curtis [17]. To ensure correctness in the assumption

of Keplerian dynamics, the transfers are constructed only to-and-from points which lie outside

of the ±π/8 plane discussed previously: ensuring that simpler and quicker to evaluate two-body

transfers can be used is the motivation behind the use of this plane.

To parameterise the transfer for use in an optimisation routine, five variables are used (Table

4.3). The epoch of the first impulsive manoeuvre t0 determines the position of the NEO from
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its ephemeris, and the transfer duration tt determines the length of the Lambert arc. The three

remaining variables tend, nmnfd and K determine the target (final) point: tend is the time in non-

dimensional, CR3BP units to arrive at the ±π/8 plane from the target point. The variable nmnfd

and K carry the same meaning as in section 4.2.2, and identify a point in a target manifold on a

target periodic orbit (Figure 4.8).

To improve the possible set of final orbits, provided the underlying dataset is dense enough

one can interpolate between points on adjacent manifolds and across adjacent periodic orbits to

greatly increase the number of possible target states [185]. For this purpose, a cubic B-spline

is used whenever the optimiser selects non-integer values of nmnfd or K to determine a local

approximation to the manifold at that point on the relevant ±π/8 plane. To avoid errors in the

numerical approximation, the interpolant is not allowed to span two different types of orbital

families. Non-zero values of tend are numerically integrated backwards from the pre-computed

points on the ±π/8 plane ‘on-demand’ to further increase the set of possible points. Since there

is no guarantee that each orbital transfer now targets an exact discretisation of the manifold in

the dataset, all transfers are manually validated in a separate Python script.

The constraints on these variables are given in Table 4.3. The constraint on t0 was used so it

corresponds to the same bounds used in the previous literature, although the lower bound here

is raised from Jan 1, 2020, for practical reasons. The constraint on tt was chosen to be any valid

transfer length up to the longest transfer found in other literature, at 1500 days. Similarly, tend

was constrained to be approximately equal, in non-dimensional units, to the longest ‘coast’ phase

after inserting onto the manifold found in other literature. An additional constraint was placed

on t0 in the previous literature to reduce the search space and computational cost by limiting t0

to the first astronomical synodic period of the NEO and the Earth. This constraint is lifted here

to promote exploration of the full parameter space, at the cost of increased computation time.

Two objectives are included in the optimisation problem: the first is the total ∆v cost of the two-

impulse Lambert transfer, which was considered in the literature and is required to designate a

NEO as an ERO. The transfer time tt is also considered, which is an extension to the literature

and aims to answer questions regarding the robustness of the retrieval trajectory with changing

mission plans. Including the transfer time allows a trade-off between transfer time versus cost,

as shown in the Pareto fronts in section 4.5.

The optimisation problem is solved using the off-the-shelf software MIDACO (Mixed-Integer

Distributed Ant Colony Optimiser) [190]. MIDACO can perform both global and local opti-

misation by altering the update parameters for the solver. MIDACO was selected after testing

its performance against other off-the-shelf optimisers. The Boender-Rinnooy-Stougie-Timmer

(BRST) optimisation algorithm uses a stochastic search in combination with sampling, cluster-

ing, and local searches, and is particularly effective for objective functions where the gradient

is unavailable or otherwise difficult to compute [191]. A range of optimisers made available

in the C++ PaGMO package [192] were also tested, including another ant colony optimisation
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Design

variable

Definition Constraint

t0 The epoch of the first manoeuvre of

the transfer.

2025/01/01 ≤ t0 ≤ 2100/01/01

tt Duration of the Lambert arc, in days. 0 ≤ tt ≤ 1500 days.
tend Time in non-dimensional units to ar-

rive at the ±π/8 plane.
−25 ≤ tend ≤ 0

nmnfd Identifies a trajectory in the stable

manifold of the periodic orbit.

1 ≤ nmnfd ≤ 360

K Identifies a periodic orbit. 1 ≤ K ≤ 8000

Table 4.3: Definitions of the five design variables used in the optimisation procedure. Taken

together, nmnfd and tend uniquely specify the insertion point in the stable manifold of the K th

target orbit. Dates are given in the form YYYY/MM/DD.

implementation and Particle Swarm Optimisation (PSO) algorithm. MIDACO was found to out-

perform all other algorithms tested when applied to this problem, although the PSO algorithm

from the PaGMO package was used to ensure that the solutions found by MIDACOwere at least

local minima.

The optimisation is very computationally intensive, and requires dedicated computing facilities

to complete in reasonable time. OpenMP and MPI are again used to reduce computation times.

The cubic B-spline interpolants are evaluated using the Fortran B-spline library [193], and the

Lambert arcs are computed using the Fortran Astrodynamics Toolkit [194]. Numerical integra-

tion is performed with the 7th/8th-order Dormand-Prince numerical integration scheme provided

by the ODEINT C++ library used previously, again interfaced to Fortran. The relative and ab-

solute tolerances in the integration are set to 10−13. Approximately 2.5 days of CPU time is

required to run the initial global search on a 2.0 GHz Intel Xeon E5-2670 processor for all the

retrieval candidates found by the pre-filter. This corresponds to approximately 10 minutes of

global optimisation per candidate, which was found to be sufficient for MIDACO to identify a

suitably close solution to the global minimum.

4.3 Implementation ‘tips’

This section covers some additional implementation ‘tips’ for many of the concepts introduced

previously.

The software developed for this investigation is written in mixed Fortran and C. The latter lan-

guage is used for the MIDACO C optimiser and to interface with the Boost ODEINT library

for numerical integration. NASA’s SPICE library is used to interface with the high-precision

ephemerides.

To reduce computation time, the code is written with support for the OpenMP and MPI parallel

programming paradigms, along with additional support for vectorisation on Intel CPUs which
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is specialised by the compiler for the processor architecture being used. I found the pre-filter to

be best parallelised by assigning each worker (core) a single NEO to estimate the transfer cost

of at any time. This ensures that the database of target points, which is very large in memory, is

traversed in an order amenable to keeping some data in CPU caches. It also makes the problem

trivially parallelisable. The pre-filter is terminated at the first instance of an object passing below

the 3km/s threshold set to avoid unnecessary computations. Since this can lead to unbalanced

workloads, it is best to allow cores to ‘steal work’ from others by keeping a central pool of NEOs

that are still to be evaluated which can be sampled from at any time. This minimises the number

of workers idling waiting for others to finish unnecessarily.

The optimisation procedure is numericallymore intensive and requiresmore care in its implemen-

tation. Several options for parallelism are available at this point. MIDACO includes parallelism

inside the optimiser, automatically evaluating many different calls to the objective function in

parallel. However, since the objective function is relatively cheap to compute, the overheads

associated with the data sharing to do this dominate compute time. Instead, for maximum per-

formance one should spawn a MIDACO process on each worker, and evaluate the optimisation

in serial on each worker.

4.4 Results

The pre-filter identifies 792 retrieval candidates when applied to the NEO catalogue. The number

of candidates that are obtained for a given ∆v threshold can be seen in Figure 4.9: while the

number of candidates increases with pre-filter threshold, there are diminishing returns in terms

of the number of EROs found. No additional EROs are found between thresholds of 3 km/s and

5 km/s, which motivated the use of 3 km/s as the limit for this work.

Only 46 of these candidates (5.8%) are retained when lowering the threshold to 0.7 km/s as in

[179], an increase of 13 relative to their result. This increase is to be expected, since the NEO

database has grown in size by approximately 40% since that study. Discarding all candidates

discovered after the publication date yields 36 candidates, an increase of only 3.

Five candidates that pass the pre-filter in the previous literature – 3332535, 3339082, 3520667,

3634612, and 3719226 – are not recovered here, even when running the pre-filter specifically at

the date of the previous study. These missing candidates do not become EROs in the previous

literature, so this does not affect the resulting list of EROs.

The time-dependency described previously yields an additional two candidates. This shows that

while a more comprehensive list of candidates can be achieved by considering the changing

NEO orbits over time, the significant increase in computing time may not justify the result: a

reasonable approximation to the full list of candidates can be found by running the pre-filter just

once.
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Figure 4.9: Number of retrieval candidates (light blue) and EROs (dark blue) for a given pre-

filter ∆v threshold. While 66% of EROs are found for 700 m/s (dashed line), a higher threshold
of 3000 m/s ensures no EROs are excluded prematurely, albeit at significant computational cost

in the pre-filter.

Of the 792 retrieval candidates, 44 go on to become EROs after the full optimisation procedure.

The details of the ∆v-optimal transfers for each ERO identified are given in Table 4.4. The

lowest ∆v found is 13.97 m/s, and the highest 445.35 m/s.

With the exception of a single ERO, 2011 BL45, the full list of EROs in Sánchez and García

Yárnoz [179] are reproduced, with an average retrieval∆v improvement of 176.7m/s (σ= 147.63

m/s). This investigation also finds 17 new capture trajectories with a ∆v of less than 100 m/s.

Such objects may be interesting for future study, as they represent significant improvements over

the previously-known capture ∆v .

Why 2011 BL45 could not be recovered as an ERO (lowest ∆v = 636 m/s) is not immediately

clear, but could be explained by revisions to the orbital data of the NEO since the previous study.

Only 31 of these EROs are recoverable with a pre-filter threshold of 0.7 km/s, which suggests

that the threshold used in previous literature limits the final number of EROs by 34%. Note that

this still represents an improvement over previous literature of 14 EROs.

The additional constraint was placed on t0 in the previous literature to reduce the search space

and computational cost by limiting t0 to the first astronomical synodic period of the NEO and

the Earth was found to increase the optimal ∆v by approximately 50 m/s, as the behaviour of the

NEO is not perfectly periodic between astronomical synodic periods.
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SPK ID ∆v[m/s] Transfer epoch Transfer end Arrival at ±π
8 plane Orbit

3405338 13.97 2083/08/31 16:46:35 2086/11/12 16:46:35 2089/06/27 14:38:03 L1S

3843865 15.25 2093/06/22 11:37:34 2096/06/08 11:37:34 2096/08/01 04:44:51 L2S

3733264 23.68 2037/10/07 12:46:09 2040/08/23 12:46:09 2044/02/08 23:50:25 L1V

3698849 23.89 2091/05/27 20:52:28 2095/07/05 20:52:28 2096/02/06 05:44:02 L1S

3054374 27.39 2029/02/04 02:42:50 2030/10/05 02:42:50 2032/08/04 16:14:46 L1N

3315004 27.55 2074/09/30 11:54:17 2075/03/22 11:54:17 2078/05/17 22:15:21 L1S

3843512 33.06 2087/07/16 05:05:26 2090/04/14 05:05:26 2092/06/05 09:31:46 L1V

3076774 41.60 2091/09/26 03:41:05 2093/06/06 03:41:05 2095/07/07 12:39:19 L1V

3435539 42.23 2029/06/16 05:53:13 2030/07/20 05:53:13 2030/08/04 15:16:37 L1V

3405189 50.94 2087/10/22 15:41:02 2091/06/26 15:41:02 2093/01/24 07:46:57 L1N

3836857 51.52 2049/01/24 00:51:25 2051/10/17 00:51:25 2052/11/10 00:13:14 L2V

3702319 56.93 2080/12/13 23:13:48 2084/01/05 23:13:48 2085/03/28 03:06:42 L1V

3403148 63.83 2025/03/19 08:05:03 2027/03/11 08:05:03 2027/03/13 20:43:40 L2N

3696401 69.84 2073/11/14 22:32:44 2076/03/14 22:32:44 2079/12/15 16:03:31 L1N

3840784 81.52 2083/02/05 15:22:51 2086/04/24 15:22:51 2089/10/10 05:13:44 L1V

3759358 89.76 2048/06/09 21:15:26 2051/07/02 21:15:26 2052/04/18 09:36:45 L2N

3610175 90.82 2097/06/19 02:55:06 2100/12/02 02:55:06 2103/11/20 14:56:24 L2V

3893945 94.96 2099/10/21 08:33:59 2103/02/09 08:33:59 2106/12/15 20:49:44 L1N

3726012 108.25 2047/04/27 02:52:56 2051/01/14 02:52:56 2053/06/13 02:13:48 L1N

3582145 111.98 2039/11/11 04:56:22 2040/07/18 04:56:22 2040/07/18 08:34:39 L1V

3991650 112.27 2073/12/06 05:09:00 2076/11/03 05:09:00 2079/12/29 17:58:33 L2P

3697803 115.13 2038/07/11 09:56:29 2040/03/31 09:56:29 2041/03/09 15:04:05 L1V

3989308 116.72 2082/08/03 00:48:08 2086/07/09 00:48:08 2088/11/26 02:02:44 L2V

3735181 123.71 2064/12/07 21:54:01 2068/09/14 21:54:01 2071/12/06 08:15:26 L1P

3879383 128.16 2051/07/27 05:54:09 2053/12/07 05:54:09 2057/07/19 05:53:24 L1N

3444297 136.52 2074/07/15 01:23:25 2076/10/29 01:23:25 2080/04/03 12:48:42 L1N

3618493 140.38 2085/10/31 13:57:51 2089/08/16 13:57:51 2090/11/08 03:07:06 L1S

3519518 140.95 2057/09/13 00:43:54 2060/12/01 00:43:54 2061/09/02 11:08:22 L1P

3549639 146.66 2092/11/17 04:32:51 2095/12/09 04:32:51 2098/08/30 16:03:43 L2V

3005816 162.60 2084/12/21 20:46:39 2085/07/06 20:46:39 2086/02/01 10:31:22 L1V

3390109 166.09 2090/01/13 14:48:27 2091/02/27 14:48:27 2092/02/19 22:39:48 L2V

3556127 169.01 2073/01/15 19:47:19 2073/10/30 19:47:44 2073/11/24 15:04:24 L2V

3825158 170.93 2095/05/25 09:19:32 2099/04/20 09:19:32 2102/08/26 09:36:23 L1P

3551168 180.83 2035/02/16 23:00:39 2036/08/25 23:00:39 2037/05/30 06:05:40 L2V

3550232 195.40 2059/10/03 05:07:28 2062/03/25 05:07:28 2065/01/24 03:42:44 L1N

3625129 203.01 2090/12/27 06:25:33 2092/02/26 06:25:33 2092/05/11 15:40:21 L1S

3781983 245.83 2099/06/01 04:29:49 2102/07/12 15:22:23 2105/07/20 03:40:37 L1P

3826850 254.37 2069/08/12 23:03:50 2071/04/19 23:03:50 2074/05/24 00:54:36 L2V

3745994 301.71 2030/01/29 13:28:25 2033/10/17 13:28:25 2035/07/21 02:59:40 L2S

3781977 305.79 2072/12/16 21:24:12 2073/07/23 21:24:12 2075/01/11 19:26:12 L2V

3748467 332.02 2045/07/11 09:31:04 2047/07/20 09:31:04 2049/07/17 15:15:49 L1P

3648046 355.29 2041/11/26 12:08:11 2045/09/23 12:08:11 2049/04/05 01:23:13 L2V

3568303 418.53 2063/03/19 15:57:36 2065/12/08 15:57:36 2067/12/16 17:26:46 L2V

3719859 445.35 2036/03/14 17:07:21 2039/03/02 17:07:21 2040/11/08 13:58:20 L2N

Table 4.4: List of ∆v-optimal solutions found for all of the EROs in this work; I find 17 new

trajectories with retrieval costs under 100 m/s. Note that while these transfers may be optimal in

terms of ∆v , many more solutions exist for other transfer times with similar retrieval velocities.
All dates are given in the form YYYY/MM/DD HH:MM:SS.
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Figure 4.10: Distribution of retrievable NEOs over the range of optimal capture ∆v . The dark
blue bars correspond to EROs, but many more NEOs have very similar capture ∆v . EROs are
subject to more rigorous optimisation, causing the gap between dark blue and light blue bars.

Attention must be paid to the 500 m/s threshold used for defining a candidate, which was orig-

inally selected in [71]. There is no obvious engineering constraint to set the ERO threshold at

that value. Figure 4.10 shows the number of NEOs in discrete bins of optimal capture ∆v . By

increasing the threshold by as little as 20%, the number of EROs increases by 50%. Note that

in Figure 4.10, the dark blue region corresponds to EROs subjected to the more rigorous optimi-

sation procedure to generate the Pareto fronts. This explains why these solutions exhibit much

lower ∆v , and the apparent gap in the distribution. It is expected that the solutions in the light-

blue regions would similarly improve when subjected to the same, more rigorous optimisation

procedure.

Instead of using an arbitrary fixed cutoff, a mission-by-mission approach could be used. The

maximum retrieval ∆v for a given mission profile may be used in combination with Figures

4.9–4.10 to identify the population of EROs for that mission and available computational re-

sources. Such an approach would allow a more flexible and practical definition of an ERO:

transfer costs of 499 m/s and 501 m/s are functionally the same, but the latter is deemed un-

retrievable by using a fixed cutoff.

All identified transfers are validated in the full CR3BPmodel through another local optimisation,

including the influence of the dynamics of the third body. There is little difference (O (m/s))

between the Keplerian approximation used in the optimisation and the full CR3BP transfers,

further validating the choice of the ±π/8 planes.
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Figure 4.11: Pareto front for 2011 BL45 computed by MIDACO’s in-built Pareto front genera-

tion and MIDACO’s PlotTool. Only the points that define the front are included, and interme-

diate information on the dominating solutions is lost.

4.5 Pareto Front Generation

The previous sections of this chapter outlined the identification of single, ∆v-optimal retrieval

trajectories. However, such trajectories are not of great practical use in space mission design.

Firstly, there may be mission design requirements that constrain the maximum time between

trajectories, such as solar incidence, the availability of on-board propellant over time, or even

mission urgency in the case of planetary protection. Secondly, a∆v-optimal may not be as robust

to perturbations in either the manoeuvres or general control of the asteroid.

Recall that the case of asteroid retrieval trajectory control feasibility and sensitivity has been as-

sessed in detail in the literature [73, 74, 164, 188]. What has not been considered, however, is the

flexibility of such transfers. The remaining content of this chapter investigates how flexible these

EROs are for practical mission design purposes by studying the Pareto frontier of the retrieval

trajectories, trading off transfer time tt and transfer cost. A series of strategies for searching for

low-∆v transfers in the space of tt were analysed and are discussed in the following. The results

from the final strategy are also analysed in detail.

4.5.1 Naïve MIDACO

The MIDACO optimiser used to identify optimal-∆v transfers earlier in the chapter stores all the

dominant solutions it finds during the optimisation process, and this can be extracted after the

optimisation is complete. The number of points collected, and how points are collected, can be
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Figure 4.12: Preliminary transfer time tt vs. capture ∆v space for 2011 BL45, found by contin-

uing the solution at each value of tt from the optimal solution at the previous tt . This produces

an approximately periodic cost across the range of tt , with large differences between the lowest

and highest capture ∆vs.

adjusted within the solver. MIDACO also provides PlotTool, a tool for plotting the Pareto fronts

of the dominating solutions thatMIDACO finds [195]. An example Pareto front for asteroid 2011

BL45 (SPK ID 3556125) is given in Figure 4.11. However, the dominating solutions returned

are clustered around the lower and upper end of the tt range. While this is similar to the Pareto

front for transfer times larger than about 200 days as the points between the solutions in Figure

4.11 are dominated, the transfer cost for shorter transfers is vastly overestimated in these results,

as will be shown later. The Figure also provides no insight as to why the Pareto front has the

resulting structure.

To combat this, denser Pareto fronts are generated using a series of successive optimisations with

the transfer time tt fixed to an integer number of days between 0 and 1500, with all the other

parameters introduced previously (t0, tend, nmnfd,K ) left free. Since all other parameters are left

free, transfers for subsequent values of tt may not be just continuations of each other, but instead

spread widely around the parameter space. Careful implementation of the optimisation method

is required to find the solutions across the full range of parameters.

Several techniques are used to alter the structure of the Pareto fronts, and are discussed here with

the example of 2011 BL45, which is not actually an ERO but exhibits the same behaviour. This

is discussed in more detail later.
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Figure 4.13: Preliminary structure of the ∆v vs. transfer time space for asteroid 2009 BD,

when only the optimal solution at the previous transfer time is used as an initial guess for the

parameters in the optimisation. The orbit of the NEO is in black, in red is the equivalent orbit

of the manifold target point, and in blue is the transfer orbit between those points.

4.5.2 Naïve scanning

The first attempt at Pareto front generation simply continued the search at each successive value

of tt from the optimal solution at the previous value of tt . On the first iteration, the optimal

solution found in the initial global search was used. The Pareto fronts are then ‘grown’ in two

directions – increasing and decreasing transfer time – from this optimal solution. MIDACO was

also configured such that its update rules are set to prioritise the currently best-known solution.

The results from this initial method are given in Figure 4.12, which displays a range of solu-

tions between approximately 1000 m/s and 5000 m/s. The solution repeats almost periodically

approximately every 200 days, or half an orbital period of the NEO. However, the transfer costs

between different values of tt are a priori expected to be similar, as the dense pre-computed grid

of manifolds should contain a range of nearby points for which transfers exist with comparable

∆v .

This is an issue with the use of a two-impulse Lambert arc in the optimiser cost function. As

the transfer angle of the Lambert arc approaches ±180 degrees, the Lambert arc approaches a

singularity, where small changes in the start and end point of the arc yield very large changes in

its inclination, potentially altering the cost of the transfer dramatically. This is shown graphically

in Figure 4.13, which shows a preliminary Pareto front for asteroid 2009 BD (SPK ID 3444297)

with the transfers themselves shown in blue in insets.
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For 2011 BL45, this instability causes the optimiser to discover a new family of Lambert arcs

at approximately tt = 100 days, which are themselves relatively unstable. These solutions are

then continued down to a transfer time of zero days. This instability can be avoided by seeding

the optimiser with multiple initial guesses in order to examine regions away from the instability,

and potentially through use of a three-impulse transfer.

4.5.3 Global scanning

To prevent premature convergence to local minima, and to avoid instabilities caused by the Lam-

bert transfer, multiple initial guesses for each tt are now included to promote exploration of the

parameter space by the optimiser. The guesses and subsequent sets of design variables are eval-

uated in parallel, such that the total number of guesses and design variable sets is equal to the

total number of cores.

One of these guesses is set to the previous optimal solution at the previous time-step (or the

optimal solution from the initial global search if this is unavailable). The remaining guesses are

initialised randomly throughout the parameter space. Subsequent sets of design variables are

also evaluated simultaneously. The parameters for MIDACO are adjusted to force the solver to

be less ‘greedy’, and place less emphasis on the currently best-known solution.

Figure 4.14 shows the resulting Pareto front, again for asteroid 2011 BL45, using this modified

strategy of including multiple initial guesses. Solutions are included with transfer costs between

625 m/s and 2650 m/s. With this strategy, there is a pronounced ‘floor’ in the Pareto front around

the optimal capture ∆v of approximately 625 m/s. However, there is also significant variance in

the solutions identified, and solutions close to each other in terms of transfer time are often very

different in both transfer cost and the values of the design variables.

This is a result of the optimiser no longer converging at every time step due to the larger search

space. In this figure, each value of tt is generated using 60 seconds of wall-time on 48 cores, or

approximately 70×103 function evaluations. Further analysis shows that approximately 500×
103 function evaluations gives convergence for the majority of candidates. The strategy was

modified to run for 10 minutes per value of tt . While MIDACO does provide the ability to

terminate based upon an estimation of convergence, it was found to be simpler to interface the

codes with the IRIDIS HPC scheduling system when fixed times were used.

4.5.4 Fully converged global scan

The final Pareto fronts for asteroids 2011 BL45 and 2012 TF79 (SPK ID 3610175) are given as

representative examples in Figures 4.15 and 4.16, respectively. 2012 TF79 admits an optimal

capture∆v of 90.82 m/s, but is actually retrievable for any transfer time between 0 and 1500 days,

including a zero-time, single-impulse transfer. In fact, 34 of the 44 EROs identified remain

EROs for a zero-time, single impulse transfer, and these remain generally low-cost solutions.
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Figure 4.14: Pareto front for 2011 BL45 when generated using multiple initial guesses for each

value of tt . There is a pronounced ‘floor’ in the optimisation but transfers with similar tt can

have significantly different ∆v .

Figure 4.15: Pareto front for NEO 2011 BL45. While not an ERO, with an optimal capture ∆v
of approximately 625 m/s, it still displays the same behaviour. Non-EROs may, therefore, offer

similar flexibility to the mission designer as EROs.
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Figure 4.16: Pareto front for 2012 TF79, an ERO with all transfers below the ERO threshold,

including a zero-time, single impulse transfer. The Pareto front is shown as a black line.

The ∆v−optimal solutions, and the ratio between the single-impulse ∆v and the optimal two-

impulse ∆v , is given in Table 4.5 for all the EROs identified. Note that the table of ∆v-optimal

solutions in Table 4.4 was updated if the Pareto front search yielded a lower-cost solution than

the initial global search.

One object, SPK ID 3648046, has a single-impulse transfer far higher than the optimal ∆v . This

was found to be due to an unstable Lambert arc – as discussed previously – affecting convergence

at the previous value of tt = 1 day. Given that there are only relatively few points in the manifold

suitable for capture with a single impulse, the optimiser is dependent on continuing the solution

from a transfer time of 1 day to 0 days. The optimiser was then unable to converge for the zero-

impulse transfer. This solution could be improved significantly by ‘manual’ optimisation and

thus represents an outlier.

In general, the optimal capture ∆v for a given ERO is not unique and is approximately constant

through the tt vs. ∆v space. This offers significant flexibility to the mission designer. These

NEOsmay also be more promising as retrieval targets, since they are more resilient to changes or

to disruptions affecting mission timelines. These objects may also allow for material samples to

be returned over a longer span of time without the need for full capture, a strategy which would

see samples returned at regular intervals via the invariant manifolds of the Sun-Earth system,

and return to a Lagrange point of the system using only natural dynamics10. The single-impulse

10This was later investigated in Ionescu, McInnes, and Ceriotti [74] and found to be a feasible method of sample

return.



Chapter 4: Asteroid Retrieval Missions using the Invariant Manifolds of the Circular Problem 75

SPK ID Optimal ∆v [m/s] Optimal ∆v orbit
Single-impulse ∆v

Optimal ∆v Single-impulse orbit

3405338 13.97 L1S 25.00 L2V

3843865 15.25 L2S 30.62 L2S

3733264 23.68 L1V 2.40 L1V

3698849 23.89 L1S 18.27 L2P

3054374 27.39 L1N 2.27 L1P

3315004 27.55 L1S 3.18 L1S

3843512 33.06 L1V 3.13 L1V

3076774 41.60 L1V 15.48 L2N

3435539 42.23 L1V 8.76 L2P

3405189 50.94 L1N 4.48 L1P

3836857 51.52 L2V 1.66 L2V

3702319 56.93 L1V 3.24 L1N

3403148 63.83 L2N 1.83 L2N

3696401 69.84 L1N 1.74 L1P

3840784 81.52 L1V 7.80 L1P

3759358 89.76 L2N 3.82 L2V

3610175 90.82 L2V 1.27 L2V

3893945 94.96 L1N 3.64 L1P

3726012 108.25 L1N 3.95 L2P

3582145 111.98 L1V 1.74 L1V

3991650 112.27 L2V 1.81 L2S

3697803 115.13 L1V 1.35 L1V

3989308 116.72 L2V 2.54 L1P

3735181 123.71 L1P 2.03 L1P

3879383 128.16 L1N 2.02 L1S

3444297 136.52 L1N 2.98 L2P

3618493 140.38 L1S 2.17 L1P

3519518 140.95 L1P 2.36 L1P

3549639 146.66 L2V 2.42 L1P

3005816 162.60 L1V 3.86 L1P

3390109 166.09 L2V 2.48 L2P

3556127 169.01 L2V 1.54 L2P

3825158 170.93 L1P 3.20 L1P

3551168 180.83 L2V 1.30 L2V

3550232 195.40 L1N 1.71 L1N

3625129 203.01 L1S 1.60 L1N

3781983 245.83 L1P 1.65 L1P

3826850 254.37 L2V 2.20 L1P

3745994 301.71 L2S 1.76 L1P

3781977 305.79 L2V 1.09 L2V

3748467 332.02 L1P 2.02 L1P

3648046 355.29 L2V 2032 L2V

3568303 418.53 L2V 1.23 L2V

3719859 445.35 L2N 1.35 L2N

Table 4.5: Table of the∆v-optimal solutions for the EROs found, and the ratio of single-impulse
(S.I.) ∆v to the optimal ∆v ; many single-impulse transfers exist at similar or less cost than two-
impulse transfers. 24 EROs are retrieved into different periodic orbits for the single-impulse

transfer.
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transfers also often have different transfer properties, including the final periodic orbit, than the

optimal two-impulse transfer.

This behaviour is to be expected from the use of the invariant manifolds to facilitate NEO capture.

In backwards time, the structure of the stable manifold ‘stretches’ and spans large regions of

space in the Sun-Earth system. Thus, for any possible target point, there exists other points

in the set of pre-computed manifolds that are retrievable for similar ∆v . A dense underlying

grid of manifolds and target points that can be interpolated between increases the likelihood of

discovering low-cost transfers for all possible transfer times, provided the parameter space is not

too large for the optimiser.

The near-constant transfer cost also extends to objects that do not meet the traditional definition

of an ERO. 2011BL45, the NEO introduced earlier to discuss the preliminary tuning of optimiser

behaviour is not an ERO, but exhibits the same behaviour as the EROs identified. In fact, the

zero-time transfer and optimal capture ∆v for this object differ by only 2.5%.

The orbit family used for capturing the NEO for minimum cost and the single-impulse transfer

differ for 24 of the 44 EROs found in Table 4.5. While this could be enforced in the optimi-

sation procedure if a specific final periodic orbit is desired, the optimiser was left free to find

the minimum capture ∆v . The transfer epoch and insertion point onto the manifold can also be

significantly different from the ∆v-optimal solutions.

Note also the ‘flat’ Pareto front as a result of the optimisation strategy and optimiser parameter

tuning, when contrasted to the first approach to the Pareto front generation in Figure 4.12. Based

on this work, with further computation time the lowest transfer ∆v for some NEOs could be

improved even further, which would also help ‘flatten’ the structure of their Pareto fronts. This

includes the case of the single-impulse transfer for 3648046, introduced previously.

4.6 Conclusion

This chapter has shown how structures predicted by dynamical systems theory in time-independent

astrodynamics systems can be used to enable the retrieval of asteroids in the CR3BP. In combina-

tion with high-performance computing, many of the limitations placed on the analysis pipeline

to limit computational expense have been lifted, significantly raising the number of asteroids

thought retrievable using this method.

To summarise, 27 more EROs, including 17 new capture trajectories below 100 m/s, have been

identified, and previous solutions are improved by an average of 176.7 m/s. The Pareto fronts

in the ∆v versus transfer time space have been studied for the first time, and I identify that the

optimal transfer cost for these EROs is not unique. A key result is the existence of single-impulse

transfers for similar cost to their two-impulse counterparts, which could provide significant flex-

ibility to mission designers.
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However, it was noted that the invariant manifolds that underpin this work are not guaranteed to

exist in systemswith arbitrary time-dependence. The remaining chapters will aim tomake the use

of Lagrangian Coherent Structures more straightforward in astrodynamics systems to perform

investigations similar to that performed in this chapter directly in time-dependent models of

motion.
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5
An improved numerical method for

three-dimensional hyperbolic

Lagrangian Coherent Structures

This chapter presents a novel use of Differential Algebra (DA), a method for storing, manipulat-

ing and evaluating polynomials in a computer directly, to improve the numerical performance of

the algorithm for determining hyperbolic Lagrangian Coherent Structures in dynamical systems.

This replaces the need to alter the parameters used for approximating relevant quantities with an

automatic approach that requires no parameter tuning but which determines these quantities to

higher accuracy. The chapter shows that the method reproduces and outperforms the results of

standard approaches on a series of test cases from the literature. Content from this chapter has

been accepted for publication in the Journal of Computational Science as Tyler and Wittig [13],

and presented at the 2022 Space Flight Mechanics Meeting in Charlotte, North Carolina [14].

5.1 Background

The previous chapter has shown how the invariant manifolds of the CR3BP can be used to de-

sign practical space missions, in this case dramatically reducing the transfer cost of performing

asteroid retrieval into periodic orbits about the Sun-Earth L1 and L2 points. The flexibility these

structures offered was also elaborated. However, recall from chapter 3 that for time-independent

systems the invariant manifolds are well-defined and partition the phase space. In systems with

time-periodic behaviour, such structures become far more difficult to find. In time-aperiodic

systems, there is no guarantee of their existence at all.

It was noted in chapter 3 that the fluid dynamics community has approached the challenge of find-

ing similar structures as the invariant manifolds in flows with arbitrary time-dependence through

a range of flow heuristics and definitions. One such type, the hyperbolic Lagrangian Coherent
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Figure 5.1: The approximation of divided differences to computing derivatives across a two-

dimensional grid on which the values of the function values are known. In practice, the offsets

δx0, δx1 are often determined through trial-and-error, but are a key parameter in the approxi-

mation.

Structure (LCS) (henceforth just LCS) was shown to be an effective theoretical grounding for

such structures as yielding no false positives whilst generalising the behaviour of the hyper-

bolic invariant manifolds to systems with arbitrary time-dependence. Being able to use such

structures would mean that missions such as those introduced in the previous chapter would be

able to be constructed directly in higher-fidelity, time-dependent models rather than in simpler

time-independent approximations to motion and then successively continued into higher-fidelity

models.

Despite formulating a solid theoretical foundation for a global, objective approach to the compu-

tation of LCS in three dimensions in Blazevski and Haller [3], there are several computational

complexities associated with computing LCS using this approach [138], such as the need to ac-

count for degenerate points (such as where λ3 =λ2) and orientation discontinuities in the eigen-

vector field ofC T
t0
, since the eigenvector is only defined up to a sign. In wider dynamical systems,

Sánchez-Martín, Masdemont, and Romero-Gómez [152] who used two-dimensional LCS in a

galactic bar model, remarked that accurately approximating derivatives for the required quanti-

ties was ‘crucial’, but required great care. Allshouse [196] who studied coherent structures in

ocean flows found that the numerical accuracy required was such that estimating the quantities

from experimental data was prohibitive, and only high-density velocity information from analyt-

ical equations of motion or regions with detailed radar measurements could be used. Even when

Ghosh et al. [197] had these high-density measurements, only the FTLE could be used to signal

LCS due to the loss in accuracy associated to recasting unstructured data to a structured grid for

use in taking derivatives.
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This numerical difficulty comes from needing to approximate high-order derivatives of flows.

The additional criteria that must be satisfied in arbitrary n−dimensional flows involve the deriva-
tives of the dominant eigenvalues and eigenvectors of the Cauchy-Green Strain Tensor, which

is in effect a second derivative of the flow since one derivative is already required to compute

the Cauchy-Green Strain Tensor. This quantity is very numerically difficult to compute, and is

often approximated using finite-differences [98, 132, 152, 198, 199, 200]. That is, for a given

quantity Ξ (x) defined at some position grid position xi , j , ..., z , if Ξ is known at neighbouring grid

points with some position offset ∆= (δx0, δx1, . . . , δxn), then ∇Ξ can be approximated as

∇Ξ (x) ≈

⎡⎢⎢⎢⎢⎢⎣
Ξi+1, j , ..., z−Ξi−1, j , ..., z

2δx0

Ξi+1, j , ..., z−Ξi−1, j , ..., z

2δx1
. . .

Ξi+1, j , ..., z−Ξi+1, j , ..., z

2δxn
Ξi , j+1, ..., z−Ξi , j−1, ..., z

2δx0

Ξi , j+1, ..., z−Ξi , j−1, ..., z

2δx1
. . .

Ξi , j+1, ..., z−Ξi , j−1, ..., z

2δxn
...

...
. . .

...
Ξi , j , ..., z+1−Ξi , j , ..., z−1

2δx0
. . . . . .

Ξi , j , ..., z+1−Ξi , j , ..., z−1

2δxn

⎤⎥⎥⎥⎥⎥⎦ (5.1)

which is presented graphically for a 2D grid in x and y in Figure 5.1.

The approximation of divided differences can be troublesome. Firstly, one needs to determine

the offset ∆ carefully, such that no information is lost by choosing a step-size that is too large,

but ensuring that enough information is captured by not choosing a step-size that is too small. In

practice, this offset is chosen through trial-and-error, which requires multiple trial computations.

This consumes both computation time and user time and is generally difficult to determine a

priori. It may also be necessary to use different grid offsets for computing different derivatives

if derivatives of multiple parameters are required, or if behaviour exists at different length scales

at different portions in the flow.

Moreover, near the separatrices the derivatives of the flow will necessarily become large. This

can lead to the Cauchy-Green Strain Tensor becoming ill-conditioned, and exacerbate any nu-

merical inaccuracies in the method. However, this is the exact location at which one would

expect a hyperbolic LCS, which means accurate evaluation of the relevant quantities is essential

for accurate numerical determination of the LCS.While other methods for approximating deriva-

tives exist, such as the use of variational equations which yields derivatives as accurate as the

propagation along the reference trajectory, this approach requires the derivation, implementation

and integration of n2 additional equations for the first derivatives of an n dimensional flow, and

another n2(n +1)/2 equations for the second flow derivatives.

Needing to integrate the trajectories required for LCS can increase computation time signifi-

cantly. As a result, various techniques have been used to attempt to reduce the computational

complexity. Lipinski and Mohseni [201] used a ridge-tracking algorithm that prevented the

computation of trajectories away from the LCS, instead constructing each portion of the struc-

ture iteratively. Many different approaches to adaptive mesh refinement have also been used to

decrease run-times and improve accuracy near complex features in the flow [202]; some of these
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methods may reduce computing times by another order of magnitude [203]. All of these meth-

ods work in tandem with standard approaches to program parallelism on CPUs. Recently, Lin,

Xu, and Fu [204] published work that details the parallelism of LCS computation on Graphics

Processing Units (GPUs) using NVIDIA’s CUDA programming paradigm. However, this work

used a simple geometrical approach to extract LCS directly from FTLE fields, an approach that

parallelises trivially but with the same pitfalls that FTLE fields alone do not necessarily indicate

LCSs.

Motivated by authors of previous studies that attempted to apply the variational theory of LCS

to astrodynamics systems citing numerical difficulties [7, 8], this chapter reports on an investiga-

tion to determine whether modern numerical methods well-established in astrodynamics could

be used to improve the numerical performance of algorithms designed to find LCS in dynamical

systems with arbitrary time-dependence. It focuses on improving the numerical performance

of the three-dimensional LCS formulation in Blazevski and Haller [3] rather than the n−dimen-
sional formulation. This choice had two main motivators: firstly, parts of this method have

been successfully applied to spaceflight problems in Short et al. [113]. Moreover, sampling a

six-dimensional phase space with only three variables has shown to be possible in other inves-

tigations into ballistic capture [205, 206, 207, 208]. Nonetheless, the techniques outlined in the

following maintain applicability to n−dimensional flows in the future.

The outcome of this chapter is a new numerical method for computing LCS using Differential

Algebra, calledDA-LCS, and the structure of this chapter now follows. First, section 5.3.1 briefly

recapitulates how polynomial expansions of arbitrary flows of an ordinary differential equation

(ODE) can be calculated, with applications to obtaining flow derivatives of arbitrary systems

to machine precision. Next, section 5.3.2 introduces a novel use of DA to construct algebraic

expansions of the leading eigenvector of a matrix of polynomials. Both of these techniques are

then combined to form the DA-LCS algorithm for computing LCS in three-dimensional flows.

In section 5.5, I demonstrate that this method works well in reproducing and improving upon

results for commonly-used ‘toy’ problems from the literature.

5.2 A review of the mathematical background and notation

The mathematical background required to study LCS in dynamical systems is now reviewed

to aid clarity after being first introduced in chapter 3. To summarise, the method studies the

behaviour of a dynamical system

ẋ= f (x, t ) ,x ∈ D ⊂Rn , t ∈ [t0, t0 +T ] (5.2)

where f is a smooth vector field considered over some time T starting at time t0. Denoting a

trajectory of the dynamical system starting at position x0 at time t0 as x (t0,x0; T ), the flow map
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of Equation 5.2 is given by

F T
t0

:

⎧⎨⎩D → D

x0 ↦→x (t0,x0; T )
(5.3)

which is assumed to be at least twice continuously differentiable. The Jacobian of this flow map,

∇F T
t0
, defines the right Cauchy-Green Strain Tensor C T

t0
, which describes the local deformation

of the flow at the end of a given trajectory.

C T
t0
= (︁∇F T

t0

)︁⊤ (︁∇F T
t0

)︁
(5.4)

with ⊤ denoting the matrix transpose. C T
t0
is positive-definite and symmetric, with real eigenval-

ues λ1 ≤λ2 ≤ ·· · ≤λn and associated real eigenvectors ζ1,ζ2, . . . ,ζn .

The dominant eigenvalue λn can be used to calculate the finite-time Lyapunov exponent (FTLE),

a measure of maximum separation of two particles advected forward under Equation 5.2 that start

out infinitesimally close to each other:

σT
t0
= 1

2

logλn

T
. (5.5)

Many previous studies have leveraged the FTLE field as a heuristic indication of high regions of

separation in the flow. While the FTLE has been shown to be insufficient to indicate LCS alone

[132], the FTLE is a commonly-used metric and is thus used to preliminarily highlight system

behaviour.

5.3 Differential algebra

Given that approximating the derivatives required for the LCS has been shown in the literature

to be numerically difficult and time-consuming in both user time and computation time when

using standard approaches of divided differences, I now seek a way of taking more accurate

derivatives of functions automatically1.

Three options present themselves from the literature. The first is symbolic mathematics, where

the floating-point numbers are replaced with a symbolic algebra and the computer directly ma-

nipulates algebraic expressions and symbols. Packages such as Python’s SymPy or Matlab’s

symbolic math toolbox can make the implementation of these straightforward. This approach

can yield high-order derivatives readily, but for long, complex functions, needing to manipulate

these algebraic expressions directly can be computationally very expensive, and the LCS itself

has already been shown to be computationally intensive itself.

Secondly, one could use a standard numerical automatic differentiation package. By using a cus-

tom datatype, one can record all the operations performed on a given input (stored on a ‘gradient

tape’) and evaluate its derivative using a chain rule by traversing along the recorded operations

1This is a relatively new field known as Differentiable Programming.
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Figure 5.2: Comparison between computing 1/(2+1) in the field of real numbers R and the the

field of floating-point approximations to R, F. Each operation in R has an adjoint operation in

F. Figure taken from [5].

when the derivative is requested. This is common in machine learning packages, such as Ten-

sorFlow or PyTorch, for determining Jacobians to use in gradient descent methods. While this

is quicker than the approach of symbolic math since it relies on numerical manipulation of rele-

vant quantities rather than an algebraic one, the majority of automatic differentiation packages

that implement the above method only function to first order. This is because the number of

arithmetic rules and data to store is quadratic in the desired order of the derivative.

As a middle ground between the speed of numeric automatic differentiation and the capabil-

ity of symbolic mathematics, Differential Algebra (DA) is a technique that is becoming more

widespread in the field of astrodynamics for the study and propagation of uncertainties [5, 209,

210, 211, 212, 213, 214] and as a tool for automatic differentiation using truncated Taylor poly-

nomials. Originally designed to bridge the gap between numerical integration-based method and

approximations using standard relations in modelling the optics of particle beams [215], DA is

a technique for approximating functions directly in a computer environment, and is built on the

founding principle that it is possible to extract more information from a function than just its

mere values. Where the floating-point numbers F approximate the field of real numbers R, DA

allows the approximation of the k-differentiable functions using high-order Taylor polynomials

represented natively in a computer environment.

Consider two real numbers a and b ∈ R. The approximation to a and b in a computational

environment is their floating-point representation ā, b̄ ∈ F, which essentially stores a set number
of digits of its binary expansion. Any operation defined in R, □, has a corresponding operation

in F, ⊠, defined such that the result is another floating-point approximation of the operation on

the real numbers a and b, i.e. ā × b̄ commutes with the floating-point representation of a ×b,

a ×b.

Similarly, now consider two functions, c and d , which are sufficiently smooth, k−differentiable
functions of n variables: c, d : Rn → R. In the DA framework, a computer operates on the

multivariate Taylor expansion of c and d , [c] and [d ], with corresponding operations to those
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Figure 5.3: Comparison of the manipulation of k−times differentiable functions in C r and DA

using the example of 1/(x +1); operations in C k have adjoint operations in the DA space P .

The final result of the manipulation in DA is a Taylor polynomial which locally approximates

the function in C k up to a given expansion order. Figure taken from [5].

#include<iostream>
#include<dace/dace_s.h>
auto main() -> int {

// 10th order in one variable
DACE::DA::init(10, 1);
DACE::DA x = DACE::DA(1);
std::cout << sin(1 + x) << std::endl;
return 0;

}

I COEFFICIENT ORDER  EXPONENTS
1 8.4147098480789650e-01 0  0
2 5.4030230586813977e-01 1  1
3 -4.2073549240394825e-01 2  2
4 -9.0050384311356632e-02 3  3
5 3.5061291033662352e-02 4  4
6 4.5025192155678318e-03 5  5
7 -1.1687097011220783e-03 6  6
8 -1.0720283846590076e-04 7  7
9 2.0869816091465686e-05 8  8
10 1.4889283120263995e-06 9  9
11 -2.3188684546072984e-07 10 10

Figure 5.4: Example of C++ code using DA via the DACE [6] (left) and the output (right) to

show how operator overloading makes using DA in modern codes straightforward, and how the

output is a high-order truncated Taylor polynomial of sin(1+x).

defined in the real function space, such that the operation of [c] · [d ] commutes with the DA

representation of the product [c ·d ].

An example to demonstrate how real numbers are approximated in a computer environment is

provided in Figure 5.2 for the evaluation of the expression 1/(x +1) for x = 2 in F and R. In

Figure 5.2, one begins with x = 2, performs the operation +1 to obtain three, and then perform

the operation 1/ to compute the final expression. In R, the user obtains the solution 1/3, and in

F the user obtains the solution 0.333. . . up to the limit of precision of the type. The final result

of the evaluation in floating-point arithmetic is an approximation of the real computation.

Analogously, in Figure 5.3 the expression 1/(1+x) is evaluated in the space C k (0) of real func-

tions, and a DA representation of expansion order 2. Beginning with the function c (x) = x, the

operations +1 and 1/ are performed, yielding 1/(x +1) in the real function space, and 1−x +x2

in the DA arithmetic. The result of the DA arithmetic is the Taylor expansion of 1/(x +1) which

represents the function exactly at x = 0, and approximates the function locally near x = 0 with

an error of O
(︁
x3

)︁
. The coefficients of the expansion are computed automatically without any

further input from the user (Figure 5.4).
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Differential Algebra contains all the necessary operations to store, manipulate and evaluate poly-

nomials in a computer environment [216]. This includes operations for common intrinsic func-

tions such as division, square roots, trigonometric functions, and exponentials, as well as oper-

ations for differentiation and integration [5]. Some classically floating-point algorithms have

been reformulated to make use of the DA framework [217]. Since the algebra includes a deriva-

tive operator – hence Differential Algebra – and the coefficients of the expansion are computed

automatically, DA can be considered a form of automatic forward differentiation.

5.3.1 Flow expansion using DA

A key advantage of using DA is that the derivatives of flows with respect to the initial conditions

can be obtained automatically and without any further effort from the user, beyond implementing

the system’s governing equations and the numerical integration scheme in DA arithmetic. This

is a technique that has been widely used in the literature [137, 214, 218, 219, 220, 221, 222], and

is known as flow expansion.

To illustrate this concept of flow expansion, a demonstration is now performed using the simplest

of the Runge-Kutta family of numerical integrators, the forward Euler scheme. Suppose one

wants to solve the following initial value problem (IVP) numerically:

⎧⎨⎩ẋ= f (x, t )

x (ti ) =xi .
(5.6)

A single step in the forward Euler scheme at the i−th point on the trajectory is given explicitly
by

xi =xi−1 +∆t f (xi−1) (5.7)

which can be expressed as a function of the initial condition x0,

x f =x0 +
n∑︂

i=0
∆t f (x0 + i ·∆t ) (5.8)

i.e. the initial condition is simply a sequence of operations on the initial condition. The above is

straightforward to extend to any other explicit integration scheme, where the solution at the next

time-step is a simple function of the solution at the current time. It is in theory possible to also

extend the above to implicit methods where one must solve an equation at every time-step, but

care must be taken to ensure the equation is solved in all orders of expansion.

If the initial condition x0 is set to be a DA representation of the initial condition by substituting

the initial value with the DA identity, [x (t0)] =x (t0)+δx, thenx f becomes a DA representation

of the final condition as a function of the initial condition,
[︁
x f

]︁
. Applying the partial derivative

operator made available as part of the DA arithmetic, ∂ j , means the polynomial representing the

final condition as a function of the initial condition can be differentiated completely automati-

cally. Since the coefficients of the polynomial are stored to machine precision, the derivatives
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will also be available to machine precision without the need for any further effort from the user,

such as deriving and implementing the variational equations for the flow.

To implement the above practically, the numerical integrator must support DA operations and

be supplied with a DA initial condition. One can either write their own numerical integrator

designed exclusively for DA, or exploit modern templated C++ libraries such as Boost C++. The

latter’s 7th/8th order Dormand-Prince method is used throughout this thesis, and requires only

one modification to support DA compared to native double-precision types1. When computing

the estimated error in a given step, the L2 norm is usually evaluated. Evaluating the usual L2

norm of a vector |x| =
√︂∑︁n

i=0 x2
i in DA yields another DA object representing a polynomial.

As there is no ordering on the space of polynomials, this cannot be directly compared to some

tolerance. Instead, an additional definition of the norm of a DA object is made which maps it

into the non-negative real numbers. In this thesis, the norm of a DA object is taken to be the

largest absolute value of any coefficient of the expansion in any order. Considering all orders

in the norm allows the usual step-size control algorithms of embedded Runge-Kutta methods to

control the error in all orders of the expansion, rather than just the constant part.

DA has also been applied to numerous other astrodynamics problems, such as the Two-Point

Boundary Value Problem; spacecraft guidance and state estimation; trajectory optimisation; and

orbital conjunctions [220, 223, 224, 225, 226].

5.3.2 Computing expansions of leading eigenvectors of C T
t0
to arbitrary order

Since derivatives of polynomials are straight forward to compute, one can apply the partial deriva-

tive operator to differentiate the j−th variable of an expansion, ∂ j , making it particularly easy

to assemble an expansion of C T
t0
. This means the Jacobian can be evaluated directly as

[︁∇F T
t0

]︁
i j
= ∂ j [x]T

t0, i (5.9)

from which a polynomial expansion of C T
t0
can be assembled

[︁
C T

t0

]︁= [︁∇F T
t0

]︁⊤ [︁∇F T
t0

]︁
. (5.10)

Note that the constant part of
[︂
C T

t0

]︂
is the CGST at the expansion point accurate to machine

precision, that is it is the same as would be approximated with via divided differences or varia-

tional equations. The remaining higher order terms represent an expansion of the CGST in the

neighbourhood around the expansion point2.

To compute the LCS, the derivatives of the leading eigenvector of C T
t0
with respect to position

are required. While divided differences can in principle again be used to obtain these derivatives,

1This was motivated by the recommendation made by Løken [151], who performed an excellent review of numer-

ical integration schemes for propagating strainlines.
2Investigations as part of this thesis has shown the convergence radius to generally only be accurate with a radius

of O (metres) and so it is not used directly here.
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the method is susceptible to numerical noise and it is difficult to determine the most appropriate

grid sizes to use. Moreover, eigenvectors are only defined up to a sign, and thus care must be

taken when taking the derivatives that nearby eigenvectors have ‘smooth’ changes in orientation.

It is possible, in combination with a backward propagation pass, to compute derivatives of eigen-

vectors and eigenvalues directly with an automatic differentiation framework using gradient

tapes (see, for example, Xie, Liu, and Wang [227]). However, this requires manual differen-

tiation of some of the relations a priori to ensure that only the derivatives of the desired eigen-

values/eigenvectors are obtained and not the derivatives of the full spectrum. Moreover, I seek

derivatives of the leading eigenvector, and using automatic differentiation will necessarily also

include information on the eigendecomposition process.

The use of analytic relations to compute eigenvalues and eigenvectors is also possible in the-

ory for positive symmetric-definite matrices [228]. One can recast the characteristic polynomial

of det (A− Iλ) into a form where it can be solved using Cardano’s formula, a general solution

for roots of cubic equations. Once the eigenvalues are known, it is straightforward to find the

eigenvectors. However, deriving the relations required is non-trivial, and the derivatives of the

eigenvector require further manipulation and derivations. Importantly, one of the coefficients in

the solution can become very large as the relative magnitudes of the eigenvalues in the spectrum

increase, which leads to significant error in the calculation [229]. This is worsened when using

this result to compute eigenvectors. Thus, while mathematically accurate, its numerical imple-

mentation can lead to significant errors. Kopp [228] attempted to tackle this to use the analytical

approach more widely by suggesting an eigendecomposition routine that first attempts to use

Cardano’s formula, falling back to a QR decomposition if the estimated error exceeds a certain

bound3. However, the QR decomposition would need to be differentiated using the gradient tape

approach given above, at which point the advantages of using the analytical approach are lost.

Kopp actually recommends against the use of Cardano’s formula in practical applications due to

accuracy concerns.

Instead, a novel application of DA is used to obtain an expansion of the leading eigenvector

of a matrix of DAs, which then can once again be differentiated directly in DA. Given that

only the derivatives of the dominant eigenvector of C T
t0
are required, a modified power (von

Mises) iteration [230] is performed, which is a well-established algorithm in standard floating-

point operations [231] for obtaining leading eigenvectors. This avoids the need for any a priori

knowledge and avoids derivatives associated with the decomposition being present in the final

result, negating the downside of standard automatic differentiation approaches. It also obtains the

eigenvectors to machine precision, retaining much of the accuracy of the analytic formulation.

Power iteration performs the repeated evaluation of an arbitrary starting vector b0 through a

matrix A to obtain an approximation to its dominant unit eigenvector b through the recurrence

3The error bound is ||ζn ||2 ≤ 28εΛ2, where ε is the machine precision, Λ2 = max
(︁
λ2

n , λn
)︁
, and ζn is the unnor-

malized eigenvector.
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Figure 5.5: Relative error across all polynomial orders in successive applications of
[︂
C T

t0

]︂
to

an initial guess containing only the floating-point dominant eigenvector at the expansion point

as the constant part. Higher expansion orders (black) can all be seen converging at around the

expected convergence rate λn/λn−1 (dashed red) towards the floating-point floor.

relation

bm+1 = Abm

||Abm || (5.11)

where ||·|| represents a vector norm, here taken to be the L2 norm, the vector b0 is an arbitrary

initial vector, and m is the number of iterations. The vector b will converge provided that the

starting vector b0 has a nonzero component in the direction of the dominant eigenvector, and A

has a unique largest eigenvalue by absolute value. The theoretical convergence rate of themethod

between successive iterations is the ratio of the dominant eigenvalue to the second dominant

eigenvalue. Practically, the recurrence relation is iterated until the stopping condition ||bm+1 −
bm || ≤ ε is valid, where ε> 0 is a pre-set tolerance and the norm is again taken to be an L2 norm.

To convert this algorithm to DA, let A now be a DA matrix with DA objects in each entry,

[A]. Iterating it on a DA vector [b0] will yield a DA vector [b] corresponding to the dominant

eigenvector of [A] with a polynomial expansion in each entry, that is it is the recurrence relation

[b]m+1 =
[A] [b]m

||[A] [b]m || . (5.12)

Note that here the norm in the denominator is simply a DA evaluation of the L2 (Euclidean) norm

[|x|] =
√︂∑︁n

i=0 [x]2
i . The stopping condition is generalised from floating-point computation such

that iteration is performed until there is no change in any order in any entry of ([b]m+1 − [b]m)

above a pre-set tolerance ε> 0. ε is set to be 10−12 in this thesis.

To speed up convergence, and because eigenvector solvers for floating-point computations are

readily available and highly efficient, the initial guess for [b0] is set to have a constant part equal

to the dominant eigenvector of the constant part of [A], since by construction this will be the
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constant part of [b]. This is not required for the method to converge, but is included since the

eigendecomposition of the constant part is performed anyway to find the FTLE in this chapter.

An example of the convergence of this method is illustrated in Figure 5.5, which shows the

maximum relative change of coefficients in [b] separated by their expansion order over repeated

application of
[︂
C T

t0

]︂
to the initial guess of the dominant eigenvector of a trajectory in the periodic

ABC flow (section 5.5.2). The theoretically expected rate of convergence λn/λn−1 can be seen

in the plot as a dashed red line. All orders converge at approximately the expected rate and the

floating-point portion of the expression converges instantly as it was already set to the double-

precision representation of the leading eigenvector.

Once the eigenvector
[︁
ζn

]︁
is expanded to at least first order, the curl ∇×ζn of the eigenvector

field, which is used in the LCS construction (section 5.4), can be computed by simply applying

the DA partial derivative operator ∂ j again. To obtain the value of ∇×ζn at the expansion point,

the flow map F T
t0
must be computed at least to order 2. This is because one derivative is taken in

the construction of C T
t0
(section 5.3.1), and another is then taken in ∇×ζn , both of which reduce

the order of the expansion by one.

5.4 Lagrangian Coherent Structures

In this section I give the method for computing hyperbolic LCS in three-dimensional systems.

I begin by formally reviewing their mathematical construction following [3] and highlight how

this is implemented algorithmically and practically following the literature [3, 132, 138]. I then

highlight how DA is used to enhance the algorithm in DA-LCS.

The full, three-dimensional hyperbolic LCS, which is the locally maximally repelling or attract-

ing surface over a given time interval [t0, t0 +T ], is constructed from its intersections with a

family of hyperplanes S . These intersections are called reduced strainlines or reduced stretch-

lines. Interpolating between these intersections yields the full, three-dimensional structure of

the LCS. In the following, I give the mathematical formulation and perform all the analysis for

repelling LCS, whose structure is derived from the dominant eigenvector ζ3 and whose inter-

sections with S are the reduced strainlines. The selection of the repelling LCS compared to

attracting LCS was motivated by two factors. First, the repelling LCS has already been shown to

highlight regions of qualitatively different behaviour in preliminary applications to spaceflight

problems [7, 8, 36, 113, 145]. Secondly, the original literature for LCS in three dimensions –

Blazevski and Haller [3] – does not provide any results for the attracting LCS, only repelling and

elliptic. Thus, there is no known data to compare the implementation against. Nonetheless, a

similar procedure applies to ζ1 (reduced stretchlines) to obtain attracting LCS by following the

procedure below after inverting C T
t0
using the algorithm made available in Appendix B.

Mathematically, at any point s on a hyperplane, one can define the reduced strainline that passes

through that point from the definition of the repelling LCS as being necessarily orthogonal to ζ3
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and of course lying within the hyperplane. This is true for any point on the strainline, allowing

their parameterisation to be described by the ODE

s′ = n̂S ×ζ3 (5.13)

where n̂S is the unit normal to the surface at s. Points with zero helicity Hζ3 lie on surfaces

which are maximisers of repulsion

Hζ3 = 〈∇×ζ3, ζ3〉, (5.14)

where 〈·, ·〉 is the inner product. Reduced strainlines which begin from points with zero helicity

are thus the intersection of the LCS with that hyperplane. The strainlines forming part of the

LCS on each hyperplane are then interpolated to produce the full 3D structure of the LCS.

Practically, Algorithm 1 is used to solve for the two quantities above following the literature [3,

132, 138]. First, points s are sampled on each hyperplane in S on a uniformly-spaced grid, and

the derivative of the flow map the derivative of the flow map ∇F T
t0
and thus C T

t0
are computed at

each point (Lines 3 and 4). The dominant eigenvector of C T
t0
, ζ3, and its curl, ∇×ζ3, is obtained

and then used to compute the helicity (Lines 5 and 6).

Numerically, the selection of zero-helicity initial conditions for the strainline ODE in Equation

5.13 is relaxed by allowing them to begin from points where the helicity Hζ3 is below some

tolerance α > 0 (Line 7). The ODE in Equation 5.13 is then rewritten in discretised form and

solved numerically as

s′i = sign
(︁
ζi ,3 ·ζi−1,3

)︁
n̂S ×ζi ,3 (5.15)

where si is the i−th point on the strainline L and the term sign
(︁
ζi ,3 ·ζi−1,3

)︁
is introduced to

enforce continuity in the vector field by selecting the direction most closely aligned with the

previous tangent vector. Since the eigenvector is only defined up to the sign, the strainline is

integrated in both directions corresponding to ±ζ3 to capture the entire strainline structure. The

numerical integration of the ODE along the strainline continues until the sum of the helicity at

each si divided by the number of steps performed (i ) rises above α (Line 10).

The trajectories obtained through the strainline ODE are segments of strainlines forming the LCS.

However, since different initial points can belong to the same strainline, the trajectories often

overlap. They must, therefore, be filtered to provide a single, continuous curve. Given a suitable

metric dF of how close two strainline segments are, the shorter of the two strainlines is discarded

whenever dF is below some threshold δ> 0 (Line 15).

I now highlight the additions to the algorithm in DA-LCS. In previous literature, divided dif-

ferences was used to numerically approximate ∇F T
t0
in Line 3, and the quantity ∇×ζ3 in Line

5 [98, 113, 147, 232]. This can lead to significant numerical error, particularly when comput-

ing the second derivative required for ∇×ζ3. Divided differences can either be applied on the
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Algorithm 1 High-level algorithm for computing three-dimensional LCS

Require: S , α, δ, t0, T
1: for hyperplane S in S do

2: for point s on hyperplane S do

3: Compute ∇F T
t0
at s

4: C T
t0
←

(︂
∇F T

t0

)︂⊤ (︂
∇F T

t0

)︂
5: ζ3 ← dominant eigenvector of C T

t0

6: |Hζ3 |← 〈∇×ζ3, ζ3〉
7: if Hζ3 ≤α then

8: L ← new strainline starting at s
9: while average of Hζ3 along L ≤α do

10: Extend L via ODE 5.13

11: end while

12: Add L to set of strainlines on S, LS

13: end if

14: end for

15: Filter LS for duplicate strainlines L using distance metric and threshold δ

16: end for

17: Interpolate strainlines in LS and LS′ for all adjacent hyperplanes S and S′ in S

Algorithm 2 Computation of
[︂
C T

t0

]︂
Require: x0, t0, T, f
1: [x0] ←x0 +δx ▷ Supplement initial condition with DA identity

2: [x] ← Integration of [x0] from t0 to t0 +T under f
3: for element [x] in [x] do
4: for DA variable j do

5:

[︂
∇F T

t0

]︂
i j
← ∂ j [x]i

6: end for

7: end for

8:

[︂
C T

t0

]︂
←

(︂[︂
∇F T

t0

]︂)︂⊤ (︂[︂
∇F T

t0

]︂)︂
▷ C T

t0
is the constant part of

[︂
C T

t0

]︂

same grid on which points are sampled, or on a finer grid used solely for the purpose of ap-

proximating the derivatives. In DA-LCS, the technique of flow expansion described in section

5.3.1 is used to compute ∇F T
t0
as an expansion at each grid point and around each grid point,

as given in Algorithm 2. This provides an automatic representation of this quantity accurate to

machine precision, and without the need to alter grid sizes through trial-and-error. It thus also

provides C T
t0
and ζ3 in Lines 4 and 5 to high accuracy for use in the strainline ODE. To improve

the numerically-challenging computation of ∇×ζ3, Line 6 is computed to machine precision us-

ing the power iteration described in section 5.3.2, and again without the need to alter grid sizes

through trial-and-error. A detailed algorithm for the computation of ∇×ζ3 is given in Algorithm

3.

In [3], the distance metric used was the Hausdorff distance, a measure of similarity between two

curves. Despite the Fréchet distance being recognised as a better measure of similarity than the
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Algorithm 3 Computation of ∇×ζ3

Require:
[︂
C T

t0

]︂
, ε

1: C T
t0
← constant part of

[︂
C T

t0

]︂
2: ζ3 ← dominant eigenvector of C T

t0
▷ Solved using standard floating-point techniques

3: [b0] ← ζ3 in constant part ▷ Initial guess

4: n ← 0 ▷ Number of iterations

5: E ←∞ ▷ Error

6: while E ≥ ε do

7: [bn+1] =
[︂
C T

t0

]︂
[bn]/||

[︂
C T

t0

]︂
[bn]|| ▷ ||·|| is the L2 norm evaluated in DA

8: E ←max relative change of coefficient in [bn+1]− [bn] w.r.t. [bn+1]
9: [bn] ← [bn+1]
10: n ← n +1
11: end while

12:
[︁
ζ3

]︁← [bn]
13: for i−th element in ζ3 do

14: for j−th DA variable do

15: Append ∂i
[︁
ζ3

]︁
j −∂ j

[︁
ζ3

]︁
i to C ▷ Stores ∇×ζ3

16: end for

17: end for

18: return C

Hausdorff distance in trajectory clustering problems [233, 234], we find we obtain qualitatively

better strainlines through use of the Hausdorff distance. It is defined as follows: given two curves

A and B , the Hausdorff filtering distance dF between A and B is then defined such that

dF = max

{︃
max
x∈A

(︃
min
y∈B

dE
(︁
x, y

)︁)︃
, max

x∈B

(︃
min
y∈A

dE
(︁
x, y

)︁)︃}︃
(5.16)

where dE is the Euclidean distance. As per other investigations into computing LCS [138], we

also enforce a minimum strainline length of δ; the rationale behind this is given in section 5.5.1.

5.5 Application to Arnold-Beltrami-Childress Flows

To show the numerical performance of DA-LCS and ensure it reproduces the results from the

literature, I now apply the standard approach of divided differences and the DA-LCS method

to several variations of the Arnold-Beltrami-Childress (ABC) flow, a relatively straightforward

system studied in Blazevski andHaller [3] as test cases. For each example, I present the equations

of motion, the FTLE field using DA-LCS and divided differences, and the relative error of the

application of the approximation of divided differences to the FTLE field, using DA-LCS as the

baseline. I also present the helicity fields for each method and the resulting strainlines. The

results obtained using divided differences each use the manually determined optimal grid size

that produces the qualitatively ‘best’ results, to allow for a fair comparison. Grid sizes between

0.1 and 5 times the nominal grid size were analysed. No such adjustments are needed when using

DA-LCS.
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Figure 5.6: Poincaré section (return map) for the steady ABC flow on the z = 0 plane; generated
using a 15×15 grid of initial points with integration time T = 1500.

5.5.1 Steady Arnold-Beltrami-Childress flow

The first system considered is the steadyArnold-Beltrami-Childress flow, as presented in Blazevski

andHaller [3]. TheABC flow is an exact solution to Euler’s equation, and its equations ofmotion

in Cartesian coordinates are

ẋ = A sin z +C cos y (5.17)

ẏ = B sin x + A cos z (5.18)

ż = C sin y +B cos x (5.19)

with parameter values A =⎷
3, B =⎷

2, C = 1.0 as in Blazevski and Haller [3]. To illustrate the

behaviour of this system, the Poincaré section in the x-y plane is shown in Figure 5.6, computed

from a regular 15×15 grid of initial points and an integration time of T = 1500.

For the LCS computation, matching previous literature the set of reference planes are taken to

be

S = {︁(︁
x, y, z

)︁ ∈ [0, 2π]3 : z ∈ {0,0.005,0.01. . . ,0.1}
}︁

,

that is the x-y plane evenly spaced along the z axis. However, within each plane I alter the grid

size used. Blazevski and Haller [3] use a 500×500 grid on which to compute the underlying

helicity field, and then sample seed points for the ODE in Equation 5.13 on a reduced grid of

600× 10. While sampling every point on a dense grid is numerically inefficient, to simplify

analysis, ensure all of the flow’s behaviour is captured, and to work off of the assumption of no

a priori knowledge all stages of the analysis are performed on a 1000×1000 grid defined for

each hyperplane in S . In practice, additional information about the system may be available to
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(a) FTLE field obtained using DA-LCS.

(b) FTLE field obtained using divided differences with auxiliary grid spacing of

0.05 of the nominal grid spacing in all directions.

(c) Relative error in the FTLE field between DA-LCS and divided differences.

Figure 5.7: Finite-time Lyapunov fields for the steady ABC flow from t = 0 to T = 3 using DA-
LCS and divided differences. The relative error is below 3×10−5, suggesting that computing

the FTLE associated with C 3
0 using divided differences is not a major source of error in this

example.
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(a) − log Hζ3
obtained using DA-LCS.

(b) − log Hζ3
obtained using divided differences with auxiliary grid spacing of 0.05

of the nominal grid spacing in both x and y . The same grid is used in computing
both C 3

0 and ∇×ζn .

(c) Relative error between the helicity fields obtained using DA-LCS and divided

differences.

Figure 5.8: Helicity fields for the steady ABC flow from t0 = 0 to T = 3 using DA-LCS and di-
vided differences. Again both strongly agree, showing that DA-LCS is working. The DA-LCS

structure is a little smoother along the main ridge on the right compared to divided differences,

making the identification of seed points more robust.
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Figure 5.10: Final, filtered strainlines for the steady ABC flow on the z = 0 plane computed

using DA-LCS. The structure is formed of approximately 53 strainline segments.

search more efficiently for LCS seed points, such as searching on a fixed line or only in a certain

region of flow.

The system defined by Equations 5.17-5.19 is integrated forward for 3 non-dimensional time

units using the DA-compatible numerical integrator introduced previously, with an integration

tolerance of 10−13. A helicity tolerance of α = 10−4 is applied to determine seed points and

terminate the numerical integration. A minimum distance of dF = 0.04 is used in the strainline

segment filtering. Both of these parameters are chosen from visual examination of the helicity

field and resulting strainline structure for all of the examples in this chapter.

The FTLE fields on the z = 0 plane for this flow, computed using DA-LCS and divided differ-

ences, are shown in Figure 5.7a and 5.7b, respectively. I show the relative error between the

use of DA-LCS and the use of divided differences on the manually-determined ‘optimal’ grid-

size in Figure 5.7c. The relative error is very low throughout the field, which suggests that the

computation of C 3
0 and its dominant eigenvalue agrees across the two methods.

In the DA-LCS and divided difference helicity fields on the z = 0 plane, shown in Figures 5.8a

and 5.8b respectively, some first differences can be seen. The quantitative differences are high-

lighted in a plot of the relative error between them in Figure 5.8c. The two methods qualitatively

agree on the structure of the field, showing that DA-LCS is working. However, the DA-LCS

method produces smoother peaks and ridges in the field for the primary features in the flow. This

is particularly visible on the main ridge in the bottom right corner around X = 4 and Y = 1. This

makes the identification of seed points in the flow more straightforward and more robust when

using DA-LCS.
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Method Time to compute

Hζ3 field [s]

Time to compute

100 strainlines [s]

Average function

evaluations per

unit length

Divided differ-

ences

224.902 4684.689 7498.171

DA-LCS 611.360 1108.571 78.392

Table 5.1: Core time required to compute the LCS on one reference plane for the steady ABC

flow using divided differences andDA-LCS on Intel Xeon E5-2670 processors. While DA-LCS

is slower to determine the initial Hζ3
field, it is quicker at the integration of a representative set

of strainlines and can grow much longer strainlines with the same number of evaluations of

Equation 5.13 as divided differences. Importantly, divided differences requires significant grid

size tuning, which may make the time required to determine Hζ3
slower overall when used

practically.

(a) The main portion of the strainline struc-

ture overlaid on a quiver plot of the velocity

field for the steady ABC flow.

(b) The main portion of the strainline struc-

ture overlaid on the Poincaré section given

in Figure 5.6.

Figure 5.11: The strainline structure found for the steady ABC flow overlaid on two plots

highlighting the underlying dynamics.

To highlight the differences between the results of DA-LCS and the literature, the effect of chang-

ing the helicity threshold α for the steady ABC flow and the reference set of strainlines from

Blazevski and Haller [3] is given in Figure 5.9 with the example of the z = 0 plane. The result-

ing strainlines on the z = 0 plane for this flow are shown in Figure 5.10, and follow the expected

structure from the helicity field presented in Figure 5.8a using 53 strainline segments. The main

structure of the strainlines are also given in Figure 5.11 overlaid on the velocity field for the

steady ABC flow and the Poincaré section computed previously. Interestingly, there are no im-

mediately visible features in either of these plots that would suggest the existence of an LCS at

these points, though I note that the Poincaré section is computed over a significantly longer time

period than the strainlines.

While the strainlines match in identifying parts of the ‘wishbone’-like structure on the right-hand

side of the plot, there are differences to reference set in the literature. I now provide several

suggestions on where these differences may arise.

Firstly, there is not as much of the main wishbone structure contained in the strainlines in Figure
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5.10 as in the reference. However it can be seen that adjusting α in Figure 5.9, which is a key

parameter in determining the LCS, can signal more of the wishbone structure as the LCS on the

z = 0 plane and match the literature more closely. Further detail on how I choose the threshold

is given in the following test case. I note that the lower peaks of helicity when using divided

differences, with reference to the relative error in the helicity field in Figure 5.8c, means that

a given threshold also encompasses more of this structure automatically when using divided

differences.

Next, I note the existence of several ‘loops’ in the helicity field computed using DA-LCS, par-

ticularly in the left-hand side of the field, that are not present in the literature. The strainline

segments at these points often grow transverse to the ridges at certain points and do not track

along the ridge as would be expected. This behaviour is also present when computing the helic-

ity with divided differences and so can be assumed to be the behaviour of the underlying system

rather than DA-LCS. Given this, and the existence of similar structure in the helicity field in

Palmerius, Cooper, and Ynnerman [143], I do not investigate this issue further.

I believe these small strainline segments are not present in Blazevski and Haller [3] due to a

combination of three reasons. First, much of this structure will have been missed by the largely

reduced 600×10 grid resolution used there. Secondly, in many of Haller’s investigations [132,

138, 199, 235] aminimum length on the LCS is enforced to keep only those surfaceswhich exert a

maximal influence on flow behaviour. This would remove all of these small loopswhile retaining

only the main wishbone-like structure. While this is not explicitly mentioned in Blazevski and

Haller [3], a combination of this approach with adjustment of the helicity threshold could yield

the structure from the literature exactly. Lastly, many of the loops arise from seed points that are

at the top of ‘spikes’ in the helicity field. It can be the case that if the numerical integrator used

to integrate the strainline ODE takes too large of a step due to an improper step size or too high

an error tolerance, then it immediately leaves the low-helicity region in both directions of ±ζn ,

and the integration is immediately terminated without taking a single valid step below α. This

also explains why some seed points do not yield strainlines.

The ‘spiky’ nature of these loops, found partially as a result of the dense sampling of initial

conditions, alsomeans that those strainline segments that do grow are of exceedingly small length

rather than being a continuous, low-helicity structure, as numerical integration of the strainline

ODE is terminated immediately upon leaving the ‘tip’ of the spike. Ensuring that only strainlines

which form part of a larger structure which exerts maximal influence on nearby flow are captured,

as per the definition of an LCS, motivates the use of a minimum strainline length equal to the

filtering distance. In practice, one may wish to only filter the subset of longest strainlines, or

only those with minimal average helicity. The use of a reduced grid, or a more sophisticated

search strategy for low-helicity points, would also avoid the inclusion of such spurious points.

The computational and numerical performance of DA-LCS is now discussed, using the steady

ABC flow as an example. The total time to compute the full LCS on 48 2.0GHz Intel Xeon
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(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences with auxiliary grid spacing of

0.05 of the nominal grid spacing in all directions.

(c) Relative error between the FTLE fields obtained using DA-LCS and divided

differences.

Figure 5.12: Finite-time Lyapunov exponent fields for the periodic ABC flow from t0 = 0 to

T = 4.0, obtained usingDA-LCS and divided differences. Again, the FTLE field agrees between
divided differences and DA-LCS, suggesting divided differences on the correct auxiliary grid

in this case accurately approximates the FTLE associated with C 4
0 .
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E5-2670 processors is given in Table 5.1, broken down by the time required to obtain the initial

Hζ3 field and then a representative set of 100 strainlines. The set of 100 strainlines is chosen to

be the 100 points with lowest Hζ3 , integrated until the running average of helicity rises above 10

times the initial value. Visual inspection of the initial conditions confirms that the seed points are

sufficiently ‘close’ in both divided differences and DA-LCS that they are assumed to represent

the same behaviour.

I find that DA-LCS is slower than divided differences for computing the initial helicity field since

two orders are computed, requiring more CPU instructions per operation, and because fewer op-

timisations can be made by the compiler compared to native double-precision types. However,

since DA-LCS requires no tuning of grid size, this computational deficit is eliminated as soon

as more than two trial computations of the LCS using divided differences has to be performed

to obtain the ‘optimal’ grid size in every dimension. Moreover, owing to better numerical per-

formance, the strainline integration is approximately four times faster using DA-LCS than using

divided differences, since the integrator can take larger steps than with divided differences while

still controlling the error in the integration of Equation 5.13. I also find that the strainlines ob-

tained with DA-LCS are on average 10 times longer than when using divided differences for the

representative set here; this may mean that more sophisticated search methods for identifying

seed points, such as the method of searching on a fixed line mentioned earlier, would be more

feasible in DA-LCS. Both improvements in strainline integration are due to the elimination of

the numerical noise introduced by divided differences, which is not present in DA-LCS.

5.5.2 Periodic Arnold-Beltrami-Childress Flow

A time-periodic version of theArnold-Beltrami-Childress flow is now considered, with equations

of motion

ẋ = (A+0.1sin t )sin z +C cos y (5.20)

ẏ = B sin x + (A+0.1sin t )cos z (5.21)

ż = C sin y +B cos x. (5.22)

The hyperplanes S and grids are the same as in the case of the steady ABC flow, but now with

integration times t0 = 0 and T = 4.

Mirroring the analysis in the steady case, the FTLE fields for both DA-LCS and divided differ-

ences are shown in Figures 5.12a and 5.12b, respectively, with the relative error presented in

Figure 5.12c. Again, there is little qualitative difference between the two fields. The differences

in smoothness in the helicity fields are, however, more pronounced between Figures 5.13a and

5.13b. The main wishbone-like structure is particularly ‘spiky’ when using divided differences,

which conceptually requires the strainline integration to track a numerically noisy ridge. With

DA-LCS, there is a smooth, well-defined ridge of consistently low helicity for the algorithm to

track with much lower numerical noise; in fact, the helicity threshold here is approximately two
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(a) − log Hζ3
computed using DA-LCS.

(b) − log Hζ3
obtained using divided differences with auxiliary grid spacing of 0.05

of the nominal grid spacing in all directions. The same grid is used in computing

both C 4
0 and ∇×ζn .

(c) Relative error in the helicity field obtained using DA-LCS and divided differ-

ences.

Figure 5.13: Helicity fields for the periodic ABC flow computed using DA-LCS and divided

differences from t0 = 0 to T = 4.0. Here DA-LCS highlights in particular the main ridge on the
right more clearly and smoothly than divided differences.
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Figure 5.14: Final strainlines for the periodic ABC flow on the z = 0 plane computed using

DA-LCS, after filtering. The strainline structure is composed of approximately 50 strainline

segments.

orders of magnitude lower than used in literature but recovers qualitatively similar structures,

and divided differences reports a relative error to DA-LCS of up to 104 on the main ridge. This

means that the identification of seed points and the tracking of low-helicity ridges is again more

robust in DA-LCS, which comes without the need to adjust grid sizes or derive and implement

variational equations.

The effect of changing α for the periodic ABC flow is given in Figure 5.15 with the reference

set of strainlines from the literature. A helicity tolerance of α= 5×10−5 is used, with a distance

threshold dF = 0.04. In general, I select the helicity threshold to uncover the first emergence of a

continuous structure, in this case the wishbone-like structure on the right-hand side of the Figure.

While the threshold could have been raised to encompass more of this structure, the repelling

LCS is necessarily the most repelling structure and thus lowest-helicity structure in a flow. I

therefore choose not to include this structure in the LCS on the z = 0 reference plane.

Finally, the strainlines on the z = 0 plane for this system computed using DA-LCS are shown in

Figure 5.14. Approximately 50 strainline segments determine the full strainline structure on the

z = 0 plane for this example.

There are again differences in the strainline structure compared to the literature. As before,

adjustment of α, the use of divided differences which signals more of the ridge as being at the

same helicity than DA-LCS (Figures 5.13b and 5.13c), or the enforcement of a minimum length

for strainlines would yield structures closer to the literature.



Chapter 5: An improved numerical method for three-dimensional hyperbolic Lagrangian

Coherent Structures 107

(a
)
α
=

1
×1

0−
7

(b
)
α
=

1
×1

0−
6

(c
)
α
=

1
×1

0−
5

(d
)
α
=

1
×1

0−
4

(e
)
α
=

1
×1

0−
3

(f
)
R
ef
er
en
ce
ca
se
fr
o
m
B
la
ze
v
sk
i
an
d
H
al
le
r
[3
];
h
e-

li
ci
ty
an
d
fi
lt
er
in
g
th
re
sh
o
ld
u
n
k
n
o
w
n
.

F
ig
u
re
5
.1
5
:
T
h
e
se
ed

p
o
in
ts
(b
la
ck
)
fo
r
th
e
st
ra
in
li
n
e
O
D
E
o
b
ta
in
ed

fo
r
d
if
fe
re
n
t
v
al
u
es

o
f
h
el
ic
it
y
th
re
sh
o
ld
s
fo
r
p
er
io
d
ic
A
B
C
fl
o
w
o
n
th
e

z
=

0
p
la
n
e.

T
h
e

h
el
ic
it
y
th
re
sh
o
ld
s
in
th
is
p
ap
er
ar
e
ch
o
se
n
to
g
iv
e
g
o
o
d
co
v
er
ag
e
o
f
th
e
fi
rs
t
‘c
o
n
ti
n
u
o
u
s’
st
ru
ct
u
re
th
at
em

er
g
es
.
In
th
e
b
o
tt
o
m
-r
ig
h
t
is
th
e
re
fe
re
n
ce
fr
o
m
B
la
ze
v
sk
i

an
d
H
al
le
r
[3
].



108 Section 5.5: Application to Arnold-Beltrami-Childress Flows

(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences with auxiliary grid spacing of

0.1 of the nominal grid spacing in all directions.

(c) Relative error between the FTLE field obtained using DA-LCS and divided

differences.

Figure 5.16: Finite-time Lyapunov exponent field for the chaotically-forced ABC flow and

an integration time from t0 = 0 to T = 5.0. Differences are beginning to become visible on

the ‘ends’ of the main wishbone-like structure when using divided differences due to the spiky

FTLE values.
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(a) − log Hζn
computed using DA-LCS.

(b) − log Hζn
obtained using divided differences with auxiliary grid spacing of 0.1

of the nominal grid spacing in all directions. The same grid is used for computing

both C 5
0 and ∇×ζn .

(c) Relative error between the helicity obtained using DA-LCS and divided differ-

ences.

Figure 5.17: Helicity fields for the chaotically-forced ABC flow from t0 = 0 to T = 5.0. DA-
LCS produces visibly better-defined ridges, helping to robustly identify seed points. However,

the relative errors are very high due to the spiky nature of the ridges in both DA-LCS and divided

differences.
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5.5.3 Chaotically-forced Arnold-Beltrami-Childress flow

Following Blazevski and Haller [3], I now demonstrate that DA-LCS is robust under perturba-

tions from a chaotic forcing function g (t ). The motion is forced by a chaotic Duffing oscillator,

with equations of motion given by

ẋ = (A+0.1sin t )sin z +C cos y (5.23)

ẏ = B sin x + (︁
A+0.1g (t )

)︁
cos z (5.24)

ż = C sin y +B cos x (5.25)

where g (t ) is the x−coordinate of the solution to the Duffing equation

ẍ =−δẋ −βx −αx3 +γcos(ωt ) . (5.26)

with parameters α= 1, β=−1, γ= 0.3, δ= 0.2, ω= 1.

The computational grid is again the same as for the previous test cases involving the ABC flow,

including the hyperplanes S = {︁(︁
x , y , z

)︁ ∈ [0, 2π]3 : z = s1
}︁

, s1 = 0.0,0.005,0.01, . . . ,0.1, but a

longer integration time of T = 5 is used to match the literature. Again, a helicity tolerance of

α = 5×10−5 is used with a filtering distance of dF = 0.05; the effect of changing the helicity

threshold is presented in Figure 5.18.

The FTLE fields computed using DA-LCS and divided differences are again shown in Figure

5.16a and Figure 5.16b, respectively, with the relative error shown in Figure 5.16c. Some differ-

ences in the FTLE are beginning to emerge in portions of the main wishbone-like structure. The

helicity fields are shown in Figures 5.17a and 5.17b, respectively, and the relative error is shown

in Figure 5.17c. The helicity field in particular now exhibits a significant difference compared to

the two previous cases. Using DA-LCS, I am able to resolve a relatively smooth ridge, whereas

the use of divided differences leads to noticeable numerical noise throughout the field as well

as an overall much higher helicity. Note that the relative error in the helicity field is high in

part due to the spiky nature of the ridge, rather than just the relative performance of DA-LCS

compared to divided differences. Thus, for this example no claims are made as to the robustness

or performance of DA-LCS, other than that it is also able to resolve the LCS under a chaotic

forcing function.

The strainlines for this system on the z = 0 plane computed using DA-LCS are presented in

Figure 5.19. A total of 57 strainline segments give the full structure on the z = 0 plane.

I note significant differences in the strainlines for this example compared to the reference set,

which do not disappear even when increasing α to the levels shown in this thesis. However, if

the LCS is to be robust under a forcing function it should match closely the result of the periodic

ABC flow, which the strainlines recovered using DA-LCS do. This discrepancy is thus not

investigated further.
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Figure 5.19: Final strainline structure on the z = 0 plane for the chaotically-forced ABC flow

computed using DA-LCS. The structure is formed of 57 individual strainline segments.

5.6 Conclusion

This chapter has introducedDA-LCS, an improved numerical method for determining hyperbolic

Lagrangian Coherent Structures in time-dependent dynamical systems. I introduced Differential

Algebra, which uses the algebra of polynomials to approximate functions directly in a computer

environment, and showed how it can be used to directly construct high-order Taylor expansions

of the flow and its derivatives. I have shown that in combination with a modified power law one

can construct a highly-accurate LCS based solely on the underlying dynamics of the system. The

effectiveness of the method has been demonstrated through applications to common variations

of the Arnold-Beltrami-Childress flow from the literature, highlighting more robust low-helicity

regions and more accurately determining FTLE fields in the more complex examples. DA-LCS

also constructs the LCS automatically and without any a priori information, requiring no addi-

tional implementation beyond the dyxnamics of the system.

In the following chapter, I apply DA-LCS to astrodynamics problems to assess its performance

and whether it can reveal similar insight in the numerically challenging astrodynamics examples

found in the literature.
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6
Lagrangian Coherent Structures in the

Elliptic-Restricted Three-body

Problem

This chapter presents a deeper investigation into the use of Lagrangian Coherent Structures in

the Elliptic-Restricted Three-body Problem. Following the last chapter, where it was shown that

DA-LCS can accurately determine three-dimensional LCS on ‘toy’ problems from the literature,

the method is applied to the ER3BP to examine whether it can provide insight in astrodynamics

systems. As part of this investigation, the effect of integration time and orbit parameterisation

is discussed, and mitigating strategies to avoid common numerical pitfalls as a result of limits

of floating-point arithmetic are given. Parts of this chapter have been accepted for publication

as Tyler and Wittig [13], submitted for publication as Tyler and Wittig [15] and presented at the

2022 Astrodynamics Specialist Conference in Charlotte, North Carolina in August 2022 [14]

and the 73rd International Astronautical Congress in Paris, France in September 2022 [16].

6.1 Introduction

The new DA-LCS numerical method outlined in the previous chapter has been shown to accu-

rately reproduce test cases from the literature without any a priori knowledge. More importantly,

it has improved the ability to identify seed points and regions of consistently low-helicity on

which the strainlines that form part of the LCS track, improving robustness, and greatly reduced

the presence of numerical noise in the FTLE field in the most complex of examples. The equiv-

alent quantities to the ‘helicity’ in the two-dimensional formulation of LCS were the terms that

weremost troublesomewhen attempted in the literature [7, 8]. Thus, this chapter now seeks to ap-

ply DA-LCS to three-dimensional astrodynamics systems to assess its performance in providing

insight similar to the invariant manifolds used to perform the investigation in chapter 4.
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This chapter is formed of two applications of DA-LCS to problems from astrodynamics. Both

applications study the three-dimensional Sun-Mars Elliptic-Restricted Three-body Problem (sec-

tion 2.2.2), mimicking the system investigated in Ros Roca [7] and Parkash [8]. The first inves-

tigation is designed to be a proof-of-concept to ascertain the suitability of DA-LCS in astro-

dynamics, making several simplifications about the initial velocity of the orbits to reduce the

complexity of the problem while still providing an appropriate benchmark for the method. The

second investigation builds on the first by aiming to determine the ‘operating envelope’ of the

method, greatly increasing the numerical complexity by a more challenging and more physical

choice of initial velocity. It then goes on to investigate practically what the effect of the repelling

hyperbolic LCS is on neighbouring trajectories and how the definition of initial position changes

the result found.

The structure of this chapter now follows. I first elucidate how the three-dimensional LCS algo-

rithm can be used to sample the six-dimensional phase space of the ER3BP and introduce differ-

ent ways of parameterising the initial condition in section 6.2. How the full, three-dimensional

LCS is constructed from the strainlines is introduced in section 6.3, before a single parameteri-

sation is used in a proof-of-concept study of the LCS in astrodynamics in section 6.4 to assess

whether DA-LCS can provide insight and its relative performance to standard approaches. The

more numerically complex example is shown in section 6.5, and a detailed analysis of the be-

haviour of the LCS in three dimensions, the effect of orbit parameterisation, and the integration

time, is performed. Lastly, the common numerical pitfalls are presented in section 6.5.3.

6.2 Definition of Initial Conditions

The ER3BP lives in a phase space defined in R6. However, the DA-LCS method is explicitly

designed for a CGST that is 3×3 in dimension and hence represents the behaviour of a three-

dimensional system. To simplify visualisation and enable analysis of the ER3BP, I seek a way of

sampling the six-dimensional phase space with only three free variables. To achieve this, a three-

dimensional sub-manifold is embedded in the six-dimensional phase space on which the LCS

is computed. Using a sub-manifold to reduce the dimensionality of the problem is a technique

used in both the MSc Theses and investigations into ballistic capture [205, 206, 236].

I arrive at this embedding by first parameterising a region of interest in three dimensions in a non-

rotating frame about Mars, and then defining a transformation Ψ : R3 ↦→ R6 to complete the full

phase space and transform the initial condition into the ER3BP rotating-pulsating frame. After

propagation under the ER3BP equations of motion, the inverse transformation Π :R6 ↦→R3 takes

the final condition back into the original parameterisation. This process is shown below for an

arbitrary starting parameterisation
(︁
κ,β, ς

)︁ ∈R3:



Chapter 6: Lagrangian Coherent Structures in the Elliptic-Restricted Three-body Problem 119

Ω

ω

i
Vernal equinox
⋎

Equatorial plane

rp

Figure 6.1: Graphical depiction of the parameterisation of an initial condition using standard

Keplerian elements. The light green plane represents an example hyperplane of fixed i .

(︁
x, y, z, x ′, y ′, z ′)︁ (︁

x, y, z, x ′, y ′, z ′)︁
F

(︁
κ, β, ς

)︁ (︁
κ, β, ς

)︁
F

f

Ψ◦ f ◦Π
Ψ Π

where the subscript F implies final states. In the non-rotating frame, the distance unit is chosen

such that the Sun-Mars distance is unity; the rationale behind this is given in section 6.5.3. I refer

to
(︁
κ, β, ς

)︁
as the parameterisation of the manifold and the map Ψ◦ f ◦Π as the transformation.

It must be noted that each choice of Π and Ψ introduced above induces a new dynamical sys-

tem,Ψ◦ f ◦Π. While after sufficient time the time-dependent derivatives of f will dominate the

time-independent derivatives Π and Ψ, it is not mathematically correct to compare the parame-

terisations to study f alone. Thus, comparisons given in the following sections are made with

respect to the ability for each Π−Ψ pair to highlight features of f useful for LCS computation

in astrodynamics.

Three pairings ofΨ andΠ are explored in this chapter and are elaborated in the following. A key

advantage of DA-LCS is that for all Ψ and Π given below, provided the operations are coded

using DA arithmetic the derivatives are computed fully automatically and so there is no need

to manually derive or implement derivatives. This is particularly useful when considering that

these transformations are in some cases non-trivial and otherwise very difficult to differentiate

manually.
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6.2.1 Orbital elements

In this transformation, the initial position and velocity are given by standard Keplerian orbital

elements in the non-rotating frame, following their use in the literature to define initial conditions

for ballistic capture in three dimensions [205].

The sub-manifold is parameterised by the radius of periapsis rp , inclination i and argument

of periapsis ω of a purely Keplerian orbit around Mars. The hyperplanes S are given by fixed

values of i (Figure 6.1). The full element set is obtained by fixing the remaining orbital elements.

The full orbital element set at each point is converted to equivalent Cartesian position and veloc-

ity in the non-rotating frame (subscript I ), which is then transformed into the ER3BP rotating-

pulsating frame (subscript R ) and propagated under the full equations of motion (Equation 6.1).

ΨOE :

⎧⎪⎪⎨⎪⎪⎩
rp

i

ω

⎫⎪⎪⎬⎪⎪⎭
I

↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rp

e

i

Ω

ω

M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
I

↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
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z

ẋ

ẏ

ż
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I

↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

y

z

x ′

y ′

z ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
R

(6.1)

ΠOE :
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. (6.2)

ΠOE is as in Equation 6.2, and takes the final condition in the rotating-pulsating frame of the

ER3BP, transforms it back into the non-rotating frame, and converts this position and velocity

into its equivalent instantaneous orbital elements. The radius of periapsis, inclination and ar-

gument of periapsis of the final condition are then isolated from the full set for computing C T
t0
.

The conversion to-and-from orbital elements and Cartesian position is performed using standard

conversion algorithms presented in Curtis [17] modified to support DA arithmetic.

I note that this parameterisation is not valid at i = 0 or i = 180◦ due to singularities in the orbital
elements. At these values, the motion is planar and ω is undefined, often arbitrarily set to zero.

This means thatC T
t0
does not have three distinct, real eigenvalues and thus the helicity is no longer

a valid measure of orthogonality. The reference hyperplanes must thus be selected to avoid these

values of inclination.
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Figure 6.2: Graphical depiction of the spherical parameterisation of an initial condition. The

light green ‘cone’ represents an example hyperplane of fixed φ.

6.2.2 Spherical coordinates

In this transformation, the sub-manifold is parameterised using spherical coordinates in the non-

rotating frame ψ = (︁
ρ, θ, φ

)︁
where hyperplanes are given by fixed φ. I include a graphical

depiction of this parameterisation in Figure 6.2 to aid clarity. This is a natural extension of the

use of polar coordinates to compute ballistic capture sets in two dimensions in the literature [236].

The phase space is completed by uniquely associating a velocity with each point in physical

space.

The velocity v = (︁
ẋ, ẏ , ż

)︁
used in this transformation should match the velocity attached at each

equivalent Cartesian position in the orbital element transformation, to provide a valid comparison.

To ensure a fair test, this velocity should be defined independently of an knowledge of any of the

orbital elements. This velocity will be selected differently in each application, and the specific

formulation for each is presented later.

Once the velocity is known and the full phase space is complete, it is converted into the ER3BP

rotating-pulsating frame and propagated under the equations of motion

ΨS :
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. (6.3)
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Figure 6.3: Graphical depiction of the Cartesian parameterisation of an initial condition. The

light green planes represent example hyperplanes of fixed z.

The spatial dimensions are then converted back into spherical coordinates in the non-rotating

frame to compute C T
t0

ΠS :
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. (6.4)

6.2.3 Cartesian coordinates

The final transformation examined in this chapter defines an initial condition in the non-rotating

frame using Cartesian coordinates x = (︁
x, y, z

)︁
with hyperplanes given by fixed values of z

(Figure 6.3). It is investigated here since it is conceptually simpler to visualise than the previous

two approaches, but has not yet been investigated in the literature.



Chapter 6: Lagrangian Coherent Structures in the Elliptic-Restricted Three-body Problem 123

Reference plane 1

Reference plane 2

Discretised output of numerical integrator

Line joining nearest neighbours on each strainline

(a) The first step in reconstructing the full

LCS structure is finding the nearest neigh-

bours to points on adjacent reference planes

by computing the Euclidean distance be-

tween them in parameter space.

Reference plane 1

Reference plane 2

Discretised output of numerical integrator

Triangles that form LCS surface

(b) Triangles are formed between nearest

neighbours in each reference plane, which

can be written directly to a STL file and dis-

played and manipulated as a surface.

Figure 6.4: Diagrams to show how the full LCS surface is reconstructed by interpolating be-

tween strainlines on neighbouring reference planes.

The velocity to complete the full phase space is specified in the same manner as for spherical

coordinates and elaborated later. Overall, this parameterisation is the Ψ−Π pair

ΨC :
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ẏ

ż
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(6.5)
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ẏ

ż
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(6.6)

6.3 Producing the three-dimensional surface

The process for constructing the full structure of the LCS from its intersections with the reference

planes is now elucidated in preparation for the coming subsections. Once the strainlines for each

of these planes are computed, the full structure of the LCS is produced as a STL file, which is

a common file format in 3D modelling applications. The STL file format contains a sequence

of sets of three vertices that form triangles, and the collection of faces of the triangles are then
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displayed as a full structure by freely-available viewers, such as Blender1 or Meshlab2.

Since this file format is relatively straightforward to create, the STL file and thus the full structure

is created using a triangulation algorithm. The full structure is first separated into a collection of

strainlines on each reference plane in parameter space and, by leveraging that I expect there to be

a nearby strainline in a nearby reference plane, the nearest neighbour to each point on a strainline

in the neighbouring reference plane is found (Figure 6.4a). This is performed by considering the

Euclidean distance between points in adjacent reference planes in the parameter space of the

submanifold.

Now the two points that should be interpolated between are known, a triangle is formed using the

original point, its nearest neighbour in the next reference plane, and a point next to the original

point in the same strainline (Figure 6.4b). This procedure is then repeated for every point in

every strainline in the reference plane, and then repeated across all reference planes. By doing

so, a triangulation of the full structure of the LCS can be constructed for use in visualisation

software.

To avoid false reconstructions and to allow the structure to ‘end’ where required, a distance

cutoff is used: nearest neighbours with Euclidean distances above the cutoff are not interpolated

between. The choice of which hyperplane to begin the interpolation from can also be adjusted

to provide the best results. These free parameters were adjusted by trial-and-error to produce the

structures presented later in this chapter.

In some cases, it may still be necessary to remove reconstruction artefacts that occur as a result

of the interpolation. This refinement is performed in Blender prior to rendering.

6.4 A proof-of-concept

The first application in this chapter is via a simplified selection of the initial velocity. I first

parameterise a region of interest in three dimensions in an inertial frame about Mars where the

Sun-Mars distance is unity using spherical coordinates. For this test case, given the Cartesian

position x= (︁
x, y, z

)︁⊤
corresponding to ψ

x = ρ cosθ sinφ (6.7)

y = ρ sinθ sinφ (6.8)

z = ρ cosφ (6.9)

1https://blender.org
2https://meshlab.net

https://blender.org
https://meshlab.net
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(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences with auxiliary grid spacing of

0.05 of the nominal grid spacing in r and θ and the nominal grid spacing in φ.

Figure 6.5: Finite-time Lyapunov exponent field for the Elliptic-Restricted Three-body Problem

on the φ = 115◦ plane from t0 = ν0 = 0 to T = ν = 2π. While the structure is qualitatively the

same, the ridges in the FTLE field are more well-defined with DA-LCS.

the velocity at this point v (x) is chosen to be

v (x) =
√︄
GM

(1+e)

ρ3

⎡⎢⎢⎣
⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠×

⎛⎜⎜⎝
0

0

1

⎞⎟⎟⎠
⎤⎥⎥⎦ , (6.10)

where the problem parameters GM = 1.50499×10−14 and e = 0.9 are the gravitational parame-

ter of Mars and the eccentricity of orbits about Mars, respectively, defined in the non-rotating

frame with Sun-Mars unity length. Conceptually, this fixes the velocity direction tangential to a

cylinder around the z-axis, while the magnitude corresponds to the periapsis of a Keplerian orbit

of eccentricity e. This choice of velocity vector reveals a ‘dynamically interesting’ region of be-

haviour about Mars where small changes in initial condition can lead to orbits escaping, or being
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(a) Computed using DA-LCS.

(b) Helicity field obtained using divided differences with auxiliary grid spacing of

0.05 of the nominal grid spacing in r and θ and the nominal grid spacing in φ. The
same grid is used for computing both C 2π

0 and ∇×ζn.

Figure 6.6: − log Hζn
for the Elliptic-Restricted Three-body Problem on the φ = 115◦ plane

from t0 = ν0 = 0 to T = ν = 2π. No defined ridges of low helicity are visible with divided

differences, but DA-LCS can extract well-defined ridges on which the strainline integration

can be performed without stopping prematurely.

temporarily or permanently captured. At the same time, it generalises the choice of velocity in

Ros Roca [7] and Parkash [8] by being the velocity of an object on the periapsis of an ellipse

of eccentricity e, straightforwardly extended to three dimensions. It is also a simple-to-visualise

velocity to aid understanding of LCS behaviour.

The above velocity attachment would not produce a valid LCS with the spherical parameterisa-

tion at φ= 90◦, or the Cartesian parameterisation at z = 0 as the motion is purely planar and there

would not be three distinct, real eigenvalues in C T
t0
. The hyperplanes are thus selected to avoid

these regions1.

1I note informally that interpolating between hyperplanes placed closely either side of these ‘troublesome’ hyper-

planes yields a very good approximation to the LCS on the φ= 90◦ and z = 0 hyperplanes.
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The set of reference hyperplanes is defined as

S = {︁
ψ ∈ [r,rs]× [0,2π]× [︁

5◦, 15◦, . . . ,175◦]︁}︁ .

with hyperplanes given by fixed φ with a 600×600 equi-spaced grid in the remaining two vari-

ables per plane. The variables r = 1.641×10−5 and rs = 0.00513 are the radius and the Hill sphere

of Mars, respectively; the latter is the maximum distance from Mars at which it still dominates

gravitational attraction. The initial integration time is set equal to t0 = ν0 = 0 and the final time

is T = ν= 2π.

To reduce computational expense in computing the helicity field, I terminate integration of a

given trajectory if the distance to Mars passes below 10% of the Mars radius, as the numerical

integration of trajectories becomes exceedingly slow at these points. This is due to a combination

of the integrator taking incredibly small time-steps as a result of needing to conserve errors in all

orders of expansion, and the coefficients of the expansion becoming very large at distances close

to Mars which is then carried through the rest of the integration, keeping these step-sizes small2.

This approach is also taken in the ballistic capture literature and the MSc theses, as trajectories

which crash into the host planet are also generally unsuitable for space missions and can lead to

numerical difficulties [7, 8, 205, 206, 236]. For correctness, while these points are typically of

very low helicity, I do not consider these points valid seed points as they are not associated with

the same integration time as the rest of the field. Strainlines are also terminated if they reach one

of these points.

I use a helicity tolerance of α = 4×10−6 on the φ = 115◦ hyperplane. To reduce the computa-
tional expense, and motivated by the fact that DA-LCS produced longer strainlines for the steady

ABC flow than divided differences, I use a reduced grid to sample seed points. This grid was

selected with consideration to computing limits on IRIDIS and test runs of the strainline inte-

gration procedure and is varied per plane. The variable step size adjustment in the numerical

integrator is also adjusted to increase the step size more slowly than the default settings for this

test case by simply dividing the change in step size by 10 whenever it is increased, and multiply-

ing the change in step size by 10 whenever it is decreased. Ideally, a very small fixed step size

consistent with advancing the position by a fraction of the width of the low-helicity regions in

ER3BP units would be used, but this is computationally infeasible if one wishes to sample every

strainline. An idea for a more principled strategy to improve strainline integration is suggested

in the conclusions of this thesis.

6.4.1 Results

The numerical performance of DA-LCS in an example astrodynamics system is now shown.

The FTLE fields computed using DA-LCS and divided differences on the φ= 115◦ plane is pre-
sented in Figures 6.5a and 6.5b, respectively. The structure found using DA-LCS agrees with

2In some cases, a single trajectory starting close to Mars has taken up to twelve hours to compute when allowed

to go to 0.1% of the Mars radius.
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Figure 6.7: Strainlines on the φ = 115◦ plane for the Elliptic-Restricted Three-Body Problem
computed using DA-LCS. Divided differences is unable to generate any strainlines, but with

DA-LCS the structure of the LCS can be deduced readily and with only 8 strainlines.

what would be expected from previous literature, with the structures in the two ‘arms’ being

consistent with the transition between orbits that escape and are permanently or temporarily cap-

tured about m2 [206]. Similar performance, albeit with poorer definition of the FTLE ridges, can

be obtained using divided differences after tuning the grid sizes used to generate the derivatives.

While the ER3BP does admit variational equations that can be integrated with the equations of

motion which may improve the quality of the derivatives used to compute C 2π
0 , these variational

equations cannot be used to compute ∇×ζ3, which must still be approximated using divided dif-

ferences and appear to produce the majority of the error for this test case. This is to be expected,

as the estimation of second order derivatives using divided differences is more numerically dif-

ficult than first order.

Figure 6.6a presents the helicity field on the φ= 115◦ plane for the ER3BP computed using DA-
LCS. Like the FTLE field, the helicity highlights the ‘arms’ as being influential portions of flow.

However, using divided differences to compute the helicity, given in Figure 6.6b, produces no

meaningful insight into the helicity field even after tuning the grid sizes used; the numerical

noise in the determination of the helicity reveals no distinct ridges along which the numerical

integration can begin. This numerical improvement comes completely automatically, without

the need to tune grid sizes.

The focus of this investigation is to determine the improvement in computing the helicity for

astrodynamics systems. However, for completeness the final set of strainlines for this example

computed using DA-LCS on the φ= 115◦ plane are shown in Figure 6.7, and largely follow from

the helicity field given earlier. A posteriori analysis of the strainlines show that they do indeed

perform the role of LCS in separating regions of qualitatively different behaviour, validating the
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(a) Strainline structure with sample points

highlighted. (b) Point 1.

(c) Point 2. (d) Point 3.

(e) Point 4. (f) Point 5.

Figure 6.8: Strainlines with the origins of sample trajectories in the rotating frame overlaid.

Mars is highlighted in red in the centre of the Figure. The LCS is acting as expected in separating

regions of qualitatively different behaviour, validating the strainlines found.
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Figure 6.9: Rendering of the full 3D LCS for the ER3BP test case. The main structure is the

two large curving ‘arms’, which previous literature has struggled to reproduce [7, 8].

choice of α (Figure 6.8) and their computation. A representative rendering of the full 3D LCS

for this test case is shown in Figure 6.9.

6.5 Pushing the envelope

Now that it has been seen that DA-LCS can produce insight in example astrodynamics systems by

improving the computation of Hζn , I turn to a more principled example based on a more physical

choice of velocity to examine its practical uses. I select the initial conditions to correspond to the

orbital elements transformation ΠOE ,ΨOE (Figure 6.1) for a more common definition of initial

conditions, and increase the numerical complexity of the problem by increasing the rate at which

orbits escape fromMars by selecting the eccentricity e = 0.95,Ω= 118◦, and initial true anomaly
of ν= 0. This choice ofΩ has been shown to maximise ‘interesting’ dynamical behaviour across

all inclinations [205, 206], and the high eccentricity leads to orbits which escape into heliocentric
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orbits rapidly. This presents a numerically very challenging test case to use to benchmark the

LCS method against as the high rates of repulsion lead to large derivatives everywhere, not just

at the separatrices. Being able to function even in such a challenging test case would highlight

the numerical performance and robustness of DA-LCS.

I also wish to examine the effect of transformation on the LCS. To allow a valid comparison

across transformations, I again require a way to associate a velocity with each point in the spher-

ical and Cartesian transformations without information on the orbital elements. One can define

this velocity in the non-rotating frame with respect to the initial Cartesian position x= (︁
x, y, z

)︁⊤
as

v (x) =
√︄
GM

1+e

ρ3

⎡⎢⎢⎣
⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠× n̂ (x)

⎤⎥⎥⎦ (6.11)

where GM is the standard gravitational parameter of Mars in the non-rotating frame, and e has

the same meaning and values as before. The quantity n̂ (x) is the normal to the orbital plane

at that point and can be computed by considering the vector that points along the line of nodes

Ω̂= (cosΩ, sinΩ, 0)⊤

n̂ (x) = sign (z)
Ω̂×x

||Ω̂×x|| . (6.12)

The value of Ω used is the same as in the orbital elements transformation, and the sign (z) term

is required to ensure the correct orientation of the unit normal. Equation 6.11 is well defined

everywhere except on the line of nodes, where Ω̂×x=0. Since there is no one unique inclination

passing through these points, additional information from the orbital elements transformation

would be required to attach an equivalent velocity at these points. The reference hyperplanes are

thus selected or sampled in such a way to avoid these ill-defined points.

6.5.1 The LCS Structure

For this example, I analyse the Sun-Mars ER3BP from an initial integration time of t0 = ν0 = 0

to a final integration time of T = ν= 2π (1 full Martian year). Ψ and Π are the orbital elements

transformationΨOE andΠOE , selected to highlight the ability for DA-LCS to use highly complex

mappings that would be impractical to derivemanually and still obtain insight automatically. The

set of reference planes S are defined such that

SOE =
{︁
rp ∈ [r,rs] , ω ∈ [0,2π] , i ∈ [︁−85◦, −75◦, . . . ,85◦]︁}︁ .

The variables r = 1.641×10−5 and rs = 0.00513 have the same meaning as before.

A 100×2500 grid in rp and ω is used on each plane in S on which to compute the helicity fields.

As will be seen later, the width of the low-helicity region is approximately 40 km: accurately

sampling transverse to this region motivated the use of this dense grid in ω. On the i = 35◦

hyperplane, a helicity threshold of 10−8 is used for the numerical integration, but to limit the
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Figure 6.10: The full structure of the LCS obtained, which is comprised of an inner section and

two large ‘arms’ which emanate from the inner section. The region in red is the point-of-view

of the section plot shown in more detail in Figure 6.12.

computational expense the integration begins from points with helicity less than or equal to 10−9.

These thresholds are varied per plane based on visual examination of the helicity field.

A representative rendering of the full repelling LCS structure is given in Figure 6.10. To show

more clearly how the LCS is constructed from the strainlines on the reference hyperplanes, an

example set of strainlines is shown on a section view of the full LCS in Figure 6.11. The LCS is

formed of two distinct sections: the ‘inner’ portion that encloses Mars (Figure 6.12) and the two

extending arms that emanate from the inner structure (Figure 6.13); these two regions are now

investigated in more detail.

In Figure 6.12 the inner structure is presented with the extending arms removed and example

trajectories corresponding to some initial conditions inside and outside of the LCS are shown.

In red a generic trajectory that begins inside the inner section is shown, which continually orbits
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Figure 6.11: A section view of one of the hyperplanes of fixed inclination with points that form

the strainlines shown in black to highlight more clearly how the surface is reconstructed.

Figure 6.12: Inner section of the LCS (highlighted in red in Figure 6.10) with the ‘arms’ re-

moved and three sample trajectories overlaid to show how it is acting as a separatrix. The

trajectory taken from inside the LCS (red) remains orbiting Mars while the two trajectories that

begin nearby but outside the inner section (blue) both immediately escape.
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Figure 6.13: Trajectories in the synodic frame of points taken from different parts of the LCS

arms. Each trajectory is qualitatively different and the LCS is again acting as a separatrix.

Mars over the integration period considered. Mars lies at the centre of the inner section. In blue

are two trajectories that begin nearby but outside of the inner section, which both immediately

escape fromMars’ sphere of influence. The LCS here is acting as separator between trajectories

which have qualitatively very different behaviour. This matches the expected structure from

investigations into ballistic capture where the desired behaviour is defined beforehand [206],

and again validates the helicity threshold used.

A more detailed presentation of one of the two ‘arms’ is given in Figure 6.13, again with exam-

ple trajectories highlighted and the respective initial conditions indicated by spheres. In green

are two trajectories which begin outside of the LCS structure and are qualitatively similar in

immediately escaping the sphere of influence of Mars, as was the case in Figure 6.12. More

significantly, the remaining blue and red trajectories that are taken from different parts of the

arms are also qualitatively different to both themselves and the two green trajectories outside of

the LCS, highlighting how effectively the LCS is partitioning dynamical behaviour. In general,

these ‘arms’ separate orbits which complete a different number of revolutions from each other,

including those which immediately escape from Mars. This again matches expectations from

the literature [206], which identifies these as ‘stable sets’.

There are other advantages to determining separators of qualitatively different behaviour than

simply finding orbits that differ in forward time. For example, a mission designer could make

a mission more robust by targeting the ‘middle’ of one of the regions of the LCS. Since all the

trajectories in the region are now known to have qualitatively the same behaviour in forward time,
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any nearby points may be likely to continue to satisfy the mission plan in the event of deviations

from a nominal trajectory. Moreover, the structure of the repelling LCS in backward time could

be used in a similar manner to construct a full, and potentially robust, arrival procedure to the

host planet.

I note differences from the LCS structure presented in the previous section and the LCS structure

presented here. These are predominantly due to the different selection of velocity attachment,

which in the previous section corresponds to selecting ω= 90◦ and allowing Ω to vary such that

Ω ∈ [0, 2π]. The velocities associated with each Cartesian position are only the same between

the two LCS structures at zero inclination, and ω= 90◦ and ω= 270◦; everywhere else, there is a
non-zero velocity in z. At higher inclinations, the effect of non-zero z−velocities becomes more
clear and the difference between the two structures becomes starker. Since the choice of orbital

elements for the initial conditions, as per Luo and Topputo [206], maximises ballistic capture

across all inclinations, far more structure is seen at progressively higher inclinations.

6.5.2 Effect of orbit parameterisation and integration time

In the previous subsection, I showed the result of DA-LCS to the Sun-Mars ER3BP with a single

choice of transformation ΨOE and ΠOE and a single prescribed time period of investigation.

However, there are many free choices available to the mission designer when using LCS, such

as the initial and final times to consider, and the choices of Ψ and Π. This subsection presents

the effect of the choice of orbit transformation and integration time on the helicity field found.

The structure of the LCS can then be inferred by regions of consistently low helicity, which are

coloured dark blue in these plots to improve visualisation. An advantage of DA-LCS is that it

makes the implementation of other transformations straightforward via automatic differentiation.

I compare each Ψ−Π pair introduced in section 6.2 for two integration times. The integration

starts at t0 = ν0 = 0 and ends at the true anomaly corresponding to T = ν = π/4 (68 days) and

T = 2π (1 Martian year) on the same set of initial conditions, to enable a fair comparison. The

grid of initial conditions is chosen to be those which lie on the i = 35◦ hyperplane in the orbital
elements transformation, again sampled on a 100×2500 grid with the same parameters as used

in the construction of the full LCS. For each point on the hyperplane in the orbital elements

transformation, I also compute the equivalent Cartesian position. This Cartesian position forms

the initial condition for the Cartesian transformation, and converting this Cartesian position to

spherical coordinates gives the equivalent initial condition in the spherical transformation. In

this way, one can ensure that each transformation samples the same points to ensure a valid com-

parison. However, by choosing to replicate the points on the i = 35◦ plane exactly the points will
necessarily pass through the line of nodes, at which point the velocity attachment for spherical

and Cartesian coordinates is not valid (section 6.2.2). To avoid ill-defined results, points within

2◦ of the line of nodes are not evaluated. By use of the nominal hyperplanes inφ or z as discussed

in sections 6.2.2 and 6.2.3 this problem does not arise.
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Figure 6.14 presents the helicity fields for each of the transformations for both integration times.

I find that the integration time T must be chosen to be sufficiently large to allow the time-

dependent derivatives associatedwith the dynamical system in∇F T
t0
to dominate the time-independent

derivatives associated with the transformationsΨ and Π and obtain a system that closely resem-

bles f . For T = π/4, sufficient time has not passed for the derivatives associated with the dy-

namics to dominate, and the result is inconsistent between the different transformations. For

T = 2π, however, the results are consistently representing the behaviour of the dynamical sys-

tem. For this example, T = π is sufficient to ensure domination of the dynamics for all points

in the domain for the examples shown here, though I note that many of the points farthest from

Mars have orbital periods of thousands of days and much lower integration times are required

for points closer to Mars.

The helicity fields signal qualitatively the same points as LCS, identifying the arms and the inner

section as among the lowest helicity points for each transformation, despite differences in the

actual value of helicity. The orbital elements and spherical transformations also quantitatively

agree in both signalling the ‘arms’ and inner section as the strictly lowest regions of helicity in

each case, as is to be expected. However, there is additional structure in the spherical transforma-

tion at this low helicity which does not agree with that predicted by the literature or the orbital

elements case. With the Cartesian transformation this additional structure is signalled before

the structure of the arms is completed. This structure is also discontinuous, despite the helicity

being a continuous expression. By choosing a numerically challenging test case to benchmark

DA-LCS on, a numerical error has been exposed that arises as a limit of floating-point arithmetic

and manifests as ‘false positives’ in the helicity field. This error and mitigating strategies are

discussed in section 6.5.3.

There is also other structure at higher helicities in the orbital elements case, which arises as a

result of the transformation also including some information on the final velocity in the three

variables that parameterise the submanifold. Since obtaining i and ω depends on the velocity,

additional information on direction of escape and direction of final velocity is present compared

to ΠS and ΠC . In those, all final velocity information is discarded (Equations 6.4 and 6.6). This

additional structure extends that found in ballistic capture [205, 206], but these points do not

feature in the full LCS: to be consistent with the original definition of the LCS, the helicity

threshold is chosen to find only the most repelling structures. This yields the inner section and

the ‘arms’ before any additional structure.

I now discuss another advantage of choosing a higher threshold to terminate the numerical in-

tegration than used to select seed points. Because the width of low-helicity regions is only 40

km, it means that strainlines exceed the helicity threshold and terminate quickly if the integrator

obtains the next step with an error of more than approximately 1.2×10−7 in ER3BP units in posi-

tion. This is already numerically sensitive, made worse by the fact that the integrator is adjusting

its step size based on the error in evaluating an ODE involving only ζn , and is ‘unaware’ that

it should instead be attempting to remain in the low-helicity regions defined by ∇×ζn . With
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reference to Figure 6.14d, the lowest-helicity regions are surrounded by points with helicities ap-

proximately six orders of magnitude higher. By increasing this threshold by less than six orders

of magnitude (in the case of this plane, only one), the integrator is allowed to make small, recov-

erable errors to aid the integration procedure by slightly widening this ridge, but still terminate

the integration immediately when it departs the low-helicity region that signals the LCS. The

adjustment to the step size control mechanism used in the previous test case is also used here.

6.5.3 Implementation considerations

A potential numerical pitfall exists when numerically constructing LCS in astrodynamics prob-

lems and is elaborated in this subsection. I also provide guiding considerations on how to avoid

these errors practically. I stress that since DA gives derivatives accurate to floating-point preci-

sion, the numerical difficulties given below are not as a result of DA-LCS, any particular software

package or the mathematical definition of an LCS. Rather, they are a result of the finite preci-

sion of floating-point numbers and the large derivatives that arise in numerically challenging test

cases.

Since computers approximate the field of real numbers using floating-point numbers, and these

floating-point numbers have finite storage associated with them, there is a limit on the precision

of numbers they can represent. Double-precision numbers have 64 bits of storage, which pro-

vides a maximum of 16 significant digits that can be represented accurately [237, 238]. As a

result, in floating-point arithmetic, 1+1×10−16 = 1. Any error arising from this finite-precision

representation compared to the evaluation in real numbers is known as round-off error [239].

Round-off error can occur in the evaluation of the helicity and construction of the LCS when

∇F T
t0
, C T

t0
or ∇ζn become sufficiently ill-conditioned that the ratio of maximum to minimum

absolute values of entries in those quantities approach 1016 in any relevant orders of the expan-

sion. At this point, when the user requests a manipulation of these quantities, information on the

smaller numbers is lost as a result of the finite precision. This error presents as false positives

(false low values) in the helicity field.

I find that there are two mitigating strategies to prevent the ill-conditioning of these terms and

prevent false positives in the helicity field in challenging test cases. The first is to ensure the

proper conditioning of relevant quantities by adjusting the magnitude of the terms of the orbit

parameterisation. In Figure 6.15, I present the helicity fields computed for each of the transfor-

mations with two different unit lengths: Mars radius and Sun-Mars distance at Mars periapsis to

deliberately induce this round-off error. When usingMars radius as unit length for the orbital ele-

ments transformation (Figure 6.15a) and the spherical coordinates transformation (Figure 6.15b)

which are both formed of a radius term and two angles, the helicity field is ‘inverted’, with

low-helicity values in trajectories which all have qualitatively similar behaviour in immediately

escaping, and higher values in the arms and inner section. A trajectory that immediately escapes

from Mars will have a large final radius and associated derivatives, but with the angle terms still
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bounded in [0, 2π). The terms in C T
t0
associated with the radius will thus dominate those associ-

ated with derivatives of the angles. When the helicity at this point is then evaluated, it becomes

small not because of system dynamics, but because of a loss of precision of the arithmetic. Small

numbers that would have otherwise contributed to the helicity have been lost to round-off error.

Condition numbers C for ∇ζn of up to 1040 have been observed when using Mars radius as the

unit length with the orbital elements transformation.

However, this only occurs in regions of large final radius, i.e. points which immediately escape.

Where the final radius is lower, such as in the arms where orbits complete several revolutions

before escaping, the relevant terms are sufficiently well-conditioned and thus helicity values are

sufficiently free of round-off errors that the ‘correct’ order of magnitude of helicity is obtained at

this point. Thus, lower helicities are present in regions of trajectories which all have qualitatively

similar behaviour (immediately escaping) rather than in regions that separate the behaviour of

trajectories, giving rise to the apparent inversion.

I find I can aid the conditioning of relevant terms in transformations where some of the variables

that parameterise the submanifold remain bounded, as is the case for angles in the orbital ele-

ments and spherical coordinates transformations. For these, the distance units should be chosen

such that the entries of C T
t0
are all of similar magnitude. This was achieved in this chapter by

using the Sun-Mars distance as unit length. Changing only the length unit in the orbital elements

transformation from Mars radius in Figure 6.15a to the Sun-Mars distance in Figure 6.15d re-

duces the condition number to approximately C = 1014 such that the helicity can be accurately

represented and yields the expected result. I stress that these numerical effects are not specific

to DA-LCS, any particular software package, or the mathematical definition of LCS. Rather, it

is inherent to floating-point arithmetic and has been highlighted by the choice of a numerically

challenging test case. A potential automatic mitigation strategy is to sample a greatly reduced

grid of initial conditions and examine the mean or median condition number. If that condition

number is above 1016, the unit distance should be increased. This would allow a relatively rapid

and ‘hands-off’ method for identifying a suitable unit length.

Scaling units to ensure the Jacobian is well-conditioned is more difficult in systems where all

variables that parameterise the submanifold are unbounded, such as the Cartesian transformation.

Here, where trajectories typically escape in the direction of x and y but stay close to the plane

in z, terms in z can be dominated. Scaling the length unit uniformly will affect all terms equally

and not change the condition number, which is above 1016 after even 68 days. This causes the

poor numerical resolution in the Cartesian transformation observed earlier: scaling all terms of

the parameterisation does not affect round-off error in regions of escape, causing the additional

structure in trajectories that immediately escape to persist.

The second mitigating strategy is to use a transformation that is naturally more robust to ill-

conditioning. Even when using Sun-Mars distance as the unit length in spherical coordinates

(Figure 6.15e) there remains sufficient ill-conditioning in the trajectories which escape (C ∼
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1017) that false positives are present at the same helicity as the arms and inner section. However,

for the orbital elements transformation the helicity can be evaluated accurately at all points in

the field. The numerical stability of orbital elements has been noted by other authors in similar

situations (for example, Martin and Schaub [240]).

I therefore recommend against the use of the Cartesian transformation, except in isotropic sys-

tems or where one scales each term in the parameterisation non-uniformly using different unit

lengths. In challenging test cases, I recommend the use of orbital elements to define initial condi-

tions, which have produced usable insight even for the challenging problem parameters selected

here. They also provide a more natural expression of defining initial conditions in the context of

mission design. Nonetheless, other transformations may still yield better results depending on

the system being studied.

I again stress that since DA provides derivatives accurate to machine precision, the above numer-

ical difficulties are a result of double precision floating-point arithmetic. The use of quadruple

precision (allowing up to 36 significant digits) would prevent round-off errors until approaching

condition numbers of 1036. However, quadruple precision is not currently implemented natively

on most CPUs, and software solutions are generally computationally very intensive and do not

necessarily guarantee reproducibility between platforms [237, 238].

6.6 Conclusion

This chapter has presented the the results of the application of DA-LCS, a new numerical method

suggested earlier in this thesis for the computation of Lagrangian Coherent Structures in three

dimensional astrodynamics systems. Two three-dimensional LCS in the Sun-Mars ER3BP have

been constructed, corresponding to a proof-of-concept test case and a numerically challenging

test case designed to benchmark themethod against. Detailed analysis of the hyperbolic repelling

LCS highlighted how it in this case acts as a separator between regions of qualitatively differ-

ent behaviour, generalising the concept of the unstable manifold to systems with arbitrary time-

dependence. This enables similar investigations to those in chapter 4 directly in time-dependent

models of motion.

It was discovered that sufficient integration time is required to ensure the LCS found reflects

the system dynamics, and that care must be taken in defining initial conditions to avoid regions

of particularly poor numerical numerical performance due to limitations in floating-point arith-

metic. While the LCS was determined here for ER3BP, there is no obstacle to computing it in

other systems provided the arithmetic can be readily replaced by DA operations; high-fidelity

ephemeris models have been tested with DA-LCS and shown to yield similar insight as for the

ER3BP case studied here.
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7
Conclusions

The initial goals of this thesis were to answer the following questions:

1. Can modern, high-performance computing methods give greater insight into dynamical

structures in time-independent approximations to motion?

2. Is there a way in which we can perform this analysis directly in the time-dependent models

of motion?

After reviewing the literature in chapter 3, the importance of the invariant manifolds in modern

space mission design was highlighted. Chapter 4 used these invariant manifolds to assist with

the retrieval of asteroids into periodic orbits about the Sun-Earth L1 point. A gap in the literature

was identified, in that significant assumptions about the properties of the transfer were made,

potentially as a result of limited computational resources.

By using high-performance computing techniques – and thus providing an answer for the first

goal of this thesis – many of the constraints these assumptions placed on the retrieval trajectories

were lifted, expanding the search space for which valid retrieval missions could be constructed.

Techniques for handling the increased search space were also introduced. As a result of this

investigation, the number of asteroids retrievable using this method was increased by 147%.

Moreover, additional properties about their transfer characteristics were revealed, including that

many of the asteroids are retrievable across a range of transfer times, including a single impulse.

The analysis approach presented in this thesis also holds wider applications, as disposal or de-

flection missions using the unstable manifolds can be constructed using the sample three-step

‘pipeline’.

Since this study relies on dynamical phenomena that is more numerically difficult to find in

time-periodic systems – and which is not guaranteed to even exist in time-aperiodic systems

– two investigations were performed to assess whether techniques that fluid dynamicists have
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designed to tackle this problem could reasonably be applied to space flight problems. An im-

proved numerical method that is usable for sufficiently-differentiable dynamical systems was

introduced, which was found to reproduce and outperform sample cases from fluid dynamics

that use divided differences, before greatly outperforming standard approaches on an example

test case from astrodynamics.

Lastly, an in-depth investigation was performed to confirm that the hyperbolic repelling LCS

does indeed perform the desired role in astrodynamics test cases in separating regions of quali-

tatively different behaviour, generalising the role of the hyperbolic manifolds. Implementation

considerations and guiding principles for how to choose the parameterisations to use with LCS

were outlined for use in future studies that may wish to work directly in time-dependent models

of motion.

7.1 Limitations and future work

Suggestions for follow-up work and the limitations of the investigations that perform this thesis

are now discussed.

Asteroid Retrieval

The asteroid retrieval work has provided an updated optimisationmethodology for finding Easily-

Retrievable Objects using high-performance computing techniques. However, there are several

limitations in the method. The first is that the ranges of Jacobi constant used for generating

periodic orbits and their associated manifolds were based on previous literature. However, it is

possible to extend the lower bound of the Jacobi constant further, corresponding to orbits that

move further away from the equilibrium points. This would yield more target periodic orbits

and invariant manifolds, and with it more possible targets for retrieval. Additional families of

periodic orbits other than the planar and vertical Lyapunov and ‘Halo’ orbits could be considered,

as many other orbits have been investigated in mission design.

The stability of these orbits could also be investigated, as it may be favourable to place an aster-

oid on an unstable orbit such that ‘post-mission disposal’ also occurs naturally using the system

dynamics. This would aid concerns raised around planetary protection, and the dangers associ-

ated with moving large and massive asteroids closer to the Earth. It may be possible to bias the

optimisation procedure toward trajectories which have more desirable post-capture characteris-

tics through the definition of a heuristic measure which considers post-capture dynamics. This

heuristic could be based on the minimum distance to the Earth after completing a set number of

revolutions in the orbit at the equilibrium point.

The 500 m/s threshold for labelling an object as an ERO and the threshold for labelling an object

a ‘retrieval candidate’ were also set arbitrarily by García Yárnoz, Sanchez, and McInnes [71].

Preliminary analysis as part of this thesis showed that the latter was set too high and restricted

some retrieval candidates from becoming full EROs in the optimisation procedure, suggesting
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instead 3 km/s. However, there has been no reconsideration of the 500 m/s retrieval limit. A

reassessment of this threshold based on current technology readiness levels may be appropriate to

confirm that 500 m/s is still an appropriate threshold, or whether it can be raised. The possibility

of providing an impulse transfer of 500 m/s to objects which could weigh hundreds of tonnes

may also not be feasible. Repeating this analysis using some of the retrieval technologies present

in the literature, such as the gravity tractor or ion beam shepherd, would be a worthwhile pursuit.

Moreover, one could return only small samples of the asteroid, rather than the entire object; this

was investigated in Ionescu, McInnes, and Ceriotti [74].

The use of the impulsive transfer approximation is noted as a potential limitation, as the high

mass of many of the EROs found makes impulsive transfers physically impossible. However,

given that many of the transfers presented here have transfer times on the order of hundreds of

days, constant low-thrust propulsion may be able to replace the two impulses for similar ∆v , as

performed in Sánchez andGarcía Yárnoz [179]. Given that this thesis has identified that transfers

exist for similar cost across a range of transfer times, there should now be more transfers for

which this is possible for each ERO.

Lastly, the asteroid investigation performed here found significant improvements on many of the

transfers found in the literature when performing the full scan along transfer time. It is expected

that similar improvements would be possible for objects that are classified as a retrieval candidate

but do not become full EROs. This may mean the population of EROs could increase if such

objects are subjected to the full optimisation procedure.

Lagrangian Coherent Structures

The study of LCS is more theoretical and less mature than the optimisation of asteroid retrieval

trajectories, and because this is the first time known to the author that LCS have been constructed

in three-dimensional astrodynamics systems, there are many avenues to take the work.

The most immediate investigation that should be performed is the extension of the concepts intro-

duced as part of DA-LCS to n−dimensional LCS, i.e. the construction of LCS in the full phase
space. Where this previously relied on quantities and derivatives that were numerically very dif-

ficult (such as ∇2λn), the methods in DA-LCS make the computational of these straightforward.

A preliminary extension of DA-LCS to six-dimensional flows in the ER3BP was performed

with little implementation overhead to show that the concepts in DA-LCS extend to the required

expressions in n−dimensional LCS. However, there is significant difficulty that comes with stor-
ing, computing and visualising six-dimensional structures. While storage could take place as a

series of n−dimensional points, it may also be possible to use a DA representation of the sur-

face to store a more exact version by directly representing the surface as a series of ‘patches’

described by polynomials rather than by interpolating between known points. The computation

of these structures will not likely require much more computational effort as the integration of a

n−dimensional system is still performed in this thesis and C T
t0
is still ‘small’. Nonetheless, the

visualisation of n−dimensional surfaces, particularly for n ⩾ 4, will prove challenging.



148 Section 7.1: Limitations and future work

In chapter 6, in the second test case I sampled the helicity on a regular 100×2500 grid to find

seed points for the strainlines. However, the major advantage of an LCS is that strainlines can be

propagated forward once a seed point is known, avoiding the computation of trajectories that do

not otherwise correspond to the structure of the LCS. It would be a worthwhile pursuit to exam-

ine whether more sophisticated grid search strategies would reduce computation time, potentially

exploiting a DA expansion of the helicity in combination with a gradient descent method to iden-

tify minima. Moreover, the extension of LCS to n−dimensions would avoid the need to define
the mappings introduced in this thesis, and is numerically more simple to undertake than stan-

dard approaches if one follows the same methods used in DA-LCS. However, the visualisation

of n−dimensional structures remains a challenge, and so significant effort would be required to
store, manipulate and visualise these structures.

The above gradient descent method could also be used to improve the robustness of the strainline

integration. It was mentioned in chapter 6 that the numerical integration of the strainlines can be

difficult. This is because the numerical integration is being judged on its ability to track a ridge

defined with respect to ∇×ζn , when the integrator is attempting to control the error using an

ODE defined with respect to ζn . Moreover, when evaluating the strainline ODE using a standard

numerical integrator with variable step size, an estimate of the error is made by comparing the

error in the obtained solution at two different orders of stepper (the truncation error), which

is then used to refine the step size according to an update rule internal to the integrator. For

the strainline ODE, outside of the low-helicity regions the eigenvectors are very ‘slowly’ and

smoothly varying, which may lead to low truncation error and the step size being increased

accordingly. Thus, once one step exceeds the low-helicity regions and enters the slowly-varying

region, the integrator is likely to make even larger steps and further move away from the desired

low-helicity points, terminating the integration. This can lead to very difficult and user-intensive

integrations of the relevant strainlines as the update rule may need to be adjusted, or a fixed step-

size used.

Instead, given that one knows the next point on the strainline should be on the local minimum

of helicity, it would be interesting to see if the error between the solution predicted by the inte-

grator and the local helicity minimum could be used to estimate the integrator error and perform

step size adjustments1, exploiting the gradient descent described above. This could also be ex-

tended to the relevant quantities for the n−dimensional formulation. This avenue of research
may improve how ‘automatic’ the LCS determination method is.

The next avenue that could be taken is the application of DA-LCS to the attracting hyperbolic

LCS in three dimensions. Preliminary investigations as part of the course of this PhD have

shown that attracting LCS can be determined in the ER3BP, but it is currently unclear exactly

what the surfaces are indicating. Moreover, the condition numbers associated with the relevant

terms are orders of magnitude higher than required for the repelling LCS, which makes their

1By way of analogy, this is akin to how Physics-informed Neural Networks penalise their error function with a

known quantity about the underlying dynamics.
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accurate computation more difficult. However, libraries such as CADNA [241] can monitor

and compensate for the presence of round-off in common scientific computing languages, and

the use of quadruple-precision rather than double-precision numbers would aid the avoidance

of round-off errors until condition numbers as high as 1036. The use of such techniques in LCS

would enable its application to systems where the required terms are currently too ill-conditioned

to provide accurate results; these techniques may also hold relevance to other analysis methods,

since it is largely the derivatives of the underlying system that cause numerical difficulties rather

than the analysis method itself.

Another topic of interest should be the extension of the methods made available in DA-LCS to

other types of LCS. The elliptic LCS and parabolic LCS may hold some relevance to spaceflight

problems, and exist in three dimensions as the zero-helicity points of the middle eigenvector of

C T
t0
.

Lastly, while this thesis has outlined the requisite tools to make the application of LCS to three-

dimensional astrodynamics systems possible, I must acknowledge themethod’s limitations. These

are generally grouped into two areas: the computational expense, and the requirement for the

user to choose a threshold to denote “low-helicity” points.

Firstly, the LCS can be incredibly computationally expensive to compute in full for astrodynam-

ics systems. While the helicity field is relatively quick to evaluate for the ER3BP shown here –

on the order of hours for a single plane on a modern, high-performance desktop for the examples

shown here – the computation of strainlines accurately is computationally very demanding as the

LCS is defined on very narrow ridges of helicity, and the grid of seed points had to be limited in

this thesis even with access to dedicated computing clusters. The use of the FTLE or LD, while

not guaranteed to highlight only system dynamics, is computationally much quicker to evaluate

as the former only requires first-order expansions, and the latter requires evaluation in the con-

stant part only. If variational equations are known – which is often the case if one knows the

equations of motion – or the user is willing to tune grid sizes to use divided differences, the use

of DA can be removed, and massively parallel techniques on Graphics Processing Units (GPUs)

can be used to greatly improve computational performance.

Secondly, the need to determine a helicity threshold is a major limitation of the method. While

the helicity itself is objective and now free from errors due to tuning grid sizes, once the helicity

threshold is chosen it is generally then the opinion of the user as to what constitutes the LCS. In

extremis, I could select none or all of the helicity field to classify as an LCS, and either introduce

false negatives by removing these points, or introduce false positives by erroneously including

them. Indeed, in a paper released in 2020, George Haller himself recognised that incorporating

tuneable parameters and thresholds is frustrating the efforts of coherent structure detection [235]2.

In the case of this thesis, a posteriori analyses of the behaviour of the LCS and examinations of

2He goes on to derive LCS as now also blocking diffusive transport in fluids, which is objective in terms of the

mathematics without need for tuneable parameters. Unfortunately, this method relies on a vector field that follows

the Cauchy momentum equation, which is not valid for astrodynamics systems.
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the literature were used to show that the strainlines obtained were indeed an LCS by separating

regions of different behaviour, but the endeavour would be made much more difficult if this

information was unavailable.

However, there is in many fields a trade-off between accuracy and computational complexity,

and the LCS, the FTLE and the LD have still emerged as effective tools in both the fluid dynam-

ics and astrodynamics communities. Overall, the author sees the LCS as providing an analysis

technique that can be trusted to produce usable insight based on intrinsic, mathematical prop-

erties of the underlying system at the cost of computational complexity. Of course, only the

mission designer can decide how to determine the run-time versus accuracy trade-off based on

the problem at hand, but this thesis makes available all the foundational methods, required prior

information and implementation considerations required to use LCS in astrodynamics systems.
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A
Appendix A: Derivation of the

Tisserand parameter from Keplerian

elements

This Appendix derives the Jacobi energy as a function of the osculating (instantaneous) orbital

elements. This was used extensively in previous asteroid retrieval research to filter unsuitable

NEOs from further optimisation procedures.

I begin from the expression for the Jacobi constant in an inertial frame due to Szebehely and

Jefferys [33]. For a body with Cartesian position
(︁
x, y, z

)︁
in the Circular-Restricted Three Body

Problem with mass parameter µ, this reads

ẋ2 + ẏ2 + ż2 −2
(︁
x ẏ − y ẋ

)︁= 2

r1
− 2µ

r1
+ 2µ

r2
−C (A.1)

where r1 and r2 are, as before, the distance between the particle and the masses m1 and m2.

Under the unit normalisations in the CR3BP, one also has

G (m1 +m2) = 1. (A.2)

If one makes the assumption that µ<< 1, then in the inertial reference frame it can be assumed

that the centre of the system can be taken to be the centre of mass of m1, and thus from the

vis-viva equation

ẋ2 + ẏ2 + ż2 = 2

r
− 1

a
(A.3)

since r1 ∼ r if µ∼ 0. Moreover, at every instant of time the angular momentum of the particle is

given by its instantaneous orbital elements about m1 as

h2 = a
(︁
1−e2)︁ (A.4)
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and the quantity x ẏ − y ẋ relates to the orbital inclination by

x ẏ − y ẋ = h cos i . (A.5)

Substituting these into Equation A.1 yields

2

r
− 1

a
−2

√︂
a

(︁
1−e2

)︁
cos i = 2

r1
− 2µ

r2
−C (A.6)

and since r ≈ r1 and any term that has µ as a coefficient can be deemed approximately zero.

Thus,

C ′ = 1

2
a +

√︂
a

(︁
1−e2

)︁
cos i ≈ J (A.7)

as was used in the literature.
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B
Appendix B: Inverting a matrix of DA

objects

It was noted in chapter 5 that the attracting LCS can be constructed by a similar procedure to the

repelling LCS. By inverting the expansion of the Cauchy-Green Strain Tensor
[︂
C T

t0

]︂
to obtain[︂

C T
t0

]︂−1
, the dominant eigenvector now signals the attracting LCS.

Standard double-precision inversion algorithms or algorithms designed to invert the constant part

of
[︂
C T

t0

]︂
do not respect that the expansion has higher-order terms. Instead, one needs to invert

the constant portion of
[︂
C T

t0

]︂
and then successively correct the higher-order terms to yield the

full expansion of the inverse
[︂
C T

t0

]︂−1
.

To derive this iterative technique, consider that
[︂
C T

t0

]︂
is comprised of a constant part C T

t0
, and

higher-order terms δC T
t0
. Its inverse is therefore

[︂
C T

t0

]︂−1 =
(︂
C T

t0

)︂−1 +δ
(︂
C T

t0

)︂−1
, such that

[︁
C T

t0

]︁−1 [︁
C T

t0

]︁=I (B.1)

=
(︂(︁

C T
t0

)︁−1 +δ(︁
C T

t0

)︁−1
)︂(︁

C T
t0
+δC T

t0

)︁
(B.2)

=I + (︁
C T

t0

)︁−1
δC T

t0
+δ(︁

C T
t0

)︁−1
C T

t0
+δ(︁

C T
t0

)︁−1
δC T

t0
(B.3)

where I is the identity matrix. Cancelling the identity matrix on both sides and rearranging some

terms gives

δ
(︁
C T

t0

)︁−1
C T

t0
= (︁

C T
t0

)︁−1
δC T

t0
+δ(︁

C T
t0

)︁−1
δC T

t0
. (B.4)

Bymultiplying by the constant part of the inverse of the Cauchy-Green Strain Tensor, one obtains

the relation

δ
(︁
C T

t0

)︁−1 = (︁
C T

t0

)︁−1
δC T

t0

(︁
C T

t0

)︁−1 +δ(︁
C T

t0

)︁−1
δC T

t0

(︁
C T

t0

)︁−1
. (B.5)
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The first term in Equation B.5 is constant, and the second is contracting with an infinitely-small

contraction factor δC T
t0
. This suggests the iterative scheme

δ
(︁
C T

t0

)︁−1

i
= (︁

C T
t0

)︁−1
δC T

t0

(︁
C T

t0

)︁−1 +δ(︁
C T

t0

)︁−1
δC T

t0

(︁
C T

t0

)︁−1

i−1
. (B.6)

The above scheme is superconvergent, requiring k iterations to correct k orders of δ
(︂
C T

t0

)︂−1
.
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