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A SEMI-EMPIRICAL JET-SURFACE INTERACTION NOISE MODEL

by Martin Dawson

The bypass ratio of modern turbofan engines continues to increase in order to improve

propulsive efficiency and to reduce the amount of fuel burned by aeroplanes. However,

the increase in bypass ratio has reduced the distance between jet and wing, increas-

ing jet-surface interaction noise. It is, therefore, important for the next generation of

‘Ultra-High-Bypass’ turbofan engines that the level of jet-surface interaction noise can

be predicted and mitigated during the preliminary design process.

In this thesis, a semi-analytical jet-surface interaction noise model has been created.

The model scales a database of experimentally measured isolated jet near-field pressure

spectra with jet velocity, flight velocity, core nozzle area and secondary nozzle area.

The near-field pressure is then propagated onto the surface using cylindrical harmon-

ics, whereupon Amiet’s theory is used to calculate the far-field noise scattered by the

surface trailing edge. The model has been validated against small scale laboratory mea-

surements of installed jet noise for flight Mach numbers less than 0.2. The scattering

solution has been further extended with back-scattering theory, improving the predic-

tion of the spectral shape for surfaces with chord to jet nozzle diameter ratios of 2.5

or less. However, at these chord to diameter ratios the amplitude of the laboratory

measurements are overpredicted at mid and rear polar angles, most noticeably for jet

Mach number of 0.6 or greater. Strip theory has also been used to model the cranked

planforms of modern airliners, accounting for the swept and unswept portions of more

realistic wing trailing edges. Finally, comparisons to measurements of large model-scale

installed jets have demonstrated that the model can scale to larger jet diameters.





“Don’t Panic.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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and Sergi Pallejà-Cabré), various societies and elsewhere: Thanks for putting up with

me!

xxxi





Chapter 1

Introduction

1.1 The Aircraft Noise Problem

Millions of people worldwide are exposed to aeroplane noise. For instance, approximately

260,000 people live within the 57 dBA (the onset Leq of significant community annoy-

ance) contour around Heathrow airport.[1] This noise can cause significant irritation to

those exposed. Studies have also shown that aeroplane noise can have a negative effect

on health; with correlations between increased noise levels and rates of hypertension

and cardiovascular disease, amongst other problems.[2] Aeroplane noise can also affect

children’s learning, for example, a 5 dB increase in aircraft noise exposure can result

in a 1-2 month delay in reading age.[2] In response the ICAO (International Civil Avi-

ation Organization) developed the EPNdB (Effective Perceived Noise) metric, in order

to characterise the annoyance of aeroplane noise to humans, accounting for the human

perception of tones and noise duration.[3]

1.1.1 Control Measures

Beginning with the FAA (Federal Aviation Administration) in 1972, aviation authorities

have implemented measures to limit aircraft noise, specifing noise limits that must be

met for aircraft types to be certified. For civil airliners, three noise measurements are

taken during the certification process. Two are taken during take-off: one along the

sideline, 450 m from the runway axis; and the other 6.5 km from the brake release point.

The third measurement is taken 2 km before the runway threshold during approach

(see Figure 1.1). The ICAO specifies limits for each measurement and for the sum

of all three, based on maximum take-off weight and number of engines.[3] Since their

inception the ICAO has lowered the limit values in a series of ‘chapters’,[4] the latest of

which (Chapter 14) came into effect on the 31st of December 2017 for aircraft with a

1
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Figure 1.1: Noise certification measurement locations
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Figure 1.2: ICAO cumulative noise limits[4]

maximum take-off mass greater than 55 tonnes[5] (see Figure 1.2). This puts the onus

directly on the manufacturers to make their aeroplanes quieter.

In order to combat the effect of aeroplane noise on local communities, some governments

and airports have taken further steps to reduce operational noise at airports in built

up areas. For instance, the UK government regulates noise at the London Airports

(Heathrow, Gatwick and Stansted), assigning Quota Counts (QC) to aeroplanes based

on their certificated noise levels (for both take off and landing)(see Table 1.1).[6] The

government then assigns a night noise quota to each airport (see Table 1.2), and bans

QC4 and above aeroplanes from taking off or landing between 23:30 and 06:00.[6] In order

to meet these quotas, increase capacity and reduce noise, these airports charge landing

fees based on aeroplane noise relative to Chapter 3 certification levels. At Heathrow this

leads to the noisiest aeroplanes paying more than ten times that of the quietest, and

charges increase by more than double at night.[7] This creates a monetary incentive for

airlines to buy and operate quieter aeroplanes.
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Table 1.1: Aeroplane Quota Count Classification[6]

Noise Level (dB) QC

>101.9 16

99-101.9 8

96-98.9 4

93-95.9 2

90-92.9 1

87-89.9 0.5

84-86.9 0.25

Table 1.2: London Airport Quota Count and Movement Limits[8]

Airport Heathrow Gatwick Stansted

Season Summer Winter Summer Winter Summer Winter

Movements 3250 2550 11200 3250 7000 5000

Quota Counts 5100 4080 6200 2000 4650 3310

Additionally, public bodies have set strategic targets for the aviation industry. As part of

Flightpath 2050, the European Commission have set the target of reducing the perceived

noise level due to aviation by 65%[9] (relative to new aircraft in 2000), which they plan

to achieve by funding research within industry and universities. NASA has also set noise

reduction targets, in order to focus research, with the more ambitious goal of reducing

perceived noise level by 75%[10] by 2035.

1.1.2 Aeroplane Noise Sources

Aeroplane noise can be split, at the highest level, into that created by the engines (here

turbofans are considered) and the airframe. Historically, the engines have been the dom-

inant source of noise from aeroplanes. However, increasing bypass ratio, combined with

noise reduction technologies, has reduced engine noise and increased the importance

of airframe noise, especially during approach/landing where the engine produces low

thrust.[11] Airframe noise is generated predominantly by the wing and surface discon-

tinuities in the ‘clean’ condition and by the landing gear, slats and flaps in the ‘dirty’

configuration.[3] The primary sources of engine noise are the fan, jet, compressors, tur-

bines and combustion. An example of the relative source levels is presented in Figure 1.3

for a chapter 4 aircraft with high-bypass-ratio engines. It can be seen that the jet is a

major contributor to departure noise, and should be decreased to ensure the continuing

reduction of aeroplane noise.
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Figure 1.3: Comparison of relative engine noise source levels at a) departures, and, b)
arrivals, for a Chapter 4 type aircraft (relative source levels courtesy of Rolls-Royce).

1.1.3 Jet Noise

A gas turbine engine generates thrust by accelerating air through a propelling nozzle,

producing a jet.[12] Figure 1.4 displays the development of a jet from a conical nozzle.

Downstream of a conical jet nozzle an annular mixing layer (or shear layer) forms around

a region of approximately uniform velocity, called the potential core. As the jet mixes

with the surrounding air the shear layer grows in thickness, while the potential core

reduces in diameter and disappears after approximately four to five jet diameters.[13]

Within the shear layer, the high vorticity drives instabilities and turbulent eddies that

generate acoustic waves[14, 15] that propagate away from the jet, creating jet-mixing

noise. Additionally, an irrotational hydrodynamic pressure field, made up of evanescent

pressure fluctuations that decay exponentially with distance, is generated in a region

close to the jet.[16]
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Figure 1.4: Illustration of the regions of a subsonic single-stream round jet

Starting in the 1950s, the use of turbojet engines, with their very high exhaust velocities,

to power commercial airliners meant that jet-mixing noise, which scales as jet velocity to

the eighth power,[15] was the dominant noise source.[3] During this time, much research

was conducted on the use of suppressors, which increased the mixing of the jet with the

surrounding air, to reduce mixing noise.[3] This method was used to some success,[17]

and is still used within small, low-bypass, turbofans. However, the introduction of tur-

bofans, to increase propulsive efficiency, is the reason that jet-mixing is no longer the

dominant noise source.[11] This is because turbofans divert some of the air through the

first compressor stage (the ‘fan’) such that it bypasses the core of the engine, allowing

for an increased mass flow rate and a reduction in jet velocity for a given thrust. How-

ever, as engine bypass ratio (ratio of air bypassing to entering the core) has increased

(see Figure 1.5), the distance between jet and wing has been reduced, increasing the

importance of installation effects on jet noise.[18]
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Figure 1.5: Civil large and medium engine bypass ratio. Based on data from Jane’s
Aero-Engines[19]

.

When a gas turbine engine in installed beneath a wing, the jet noise heard by an observer

in the far field is modified (see Figure 1.6) compared to a jet in isolation. For observers

on the same side of the wing as the jet, high frequency jet-mixing noise is increased by

reflection from the wing. For observers on the opposite side of the wing, high frequency

jet-mixing noise is reduced by the wing shielding the observer from the high frequency

noise sources (see Figure 1.7). If the wing is positioned very close to the jet, the jet

can be distorted, changing the jet-mixing noise produced. The trailing edge of the

wing can also scatter the non-propagating hydrodynamic pressure field of the jet into a

propagating acoustic field, creating jet-surface interaction noise.

Figure 1.6: Illustrations of jet-mixing noise (left), jet-surface reflection (centre) and
jet-surface interaction noise (right)
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Figure 1.7: Example of isolated and installed jet noise spectra. Jet-surface interaction
noise is apparent at low Strouhal numbers, while reflection/shielding is apparent at high

Strouhal numbers

Model-scale laboratory experiments have shown that jet-surface interaction noise is a

large component of low frequency jet noise in the forward arc,[20–23] and that its promi-

nence increases at approach conditions and when flaps are deployed.[22, 24] Measurements

have also shown that it scales with jet velocity to the fifth power.[18, 21,25] This means

that as bypass ratio continues to increase, and jet velocity decreases, jet-surface inter-

action noise could become an increasingly large component of jet noise. It is important,

therefore, for the development of future ultra-high-bypass turbofan engines that the

mechanism that produces jet-surface interaction noise is understood and tools devel-

oped to predict that produced by a given engine-wing configuration.
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1.2 Contributions of the Thesis

This thesis aims to further jet-surface interaction noise modelling towards producing a

semi-empirical model that could be used by industry. To this end, empirical scaling

methods have been produced for the hydrodynamic pressure field of jets created by ax-

isymmetric nozzles, extending existing methods to include the effect of nozzle diameter,

bullet diameter and flight velocity. This required taking near-field unsteady pressure

measurements within the flow of a co-flowing ‘flight stream’, which simulates the effect

of flight on a laboratory jet. Using these in-flow near-field pressure measurements as the

input, the jet-surface interaction model of Lyu & Dowling has been validated in flight.

The model has then been extended with Roger & Moreau’s back-scattering theory and

strip theory to model more realistic scattering surface planform geometries. Finally,

these models are combined to produce a semi-empirical jet-surface interaction noise pre-

diction tool. This tool is compared to large-model-scale measurements of installed jet

noise using realistic airframe and jet-nozzle geometries.

1.3 Thesis Outline

The following chapter, Chapter 2, presents a review of the relevant literature. This be-

gins with an introduction to jet noise modelling with Lighthill’s equation. The trailing-

edge scattering models of Ffowcs-Williams & Hall and Amiet are then introduced, both

fundamental to the jet-surface interaction noise models that are subsequently discussed.

Finally, several methods for modelling the unsteady hydrodynamic pressure field pro-

duced by a jet are introduced.

Next in Chapter 3 experiments are described to measure the near-field pressure and

far-field jet-surface interaction noise of a jet in simulated flight. These measurements

are used in the subsequent chapters to explore changes to the near-field pressure spectra

in flight, and to assess a jet-surface interaction noise model.

In Chapter 4 an empirical model is developed for the hydrodynamic pressure field of a jet.

At first, more evidence is presented for the pressure squared scaling of the hydrodynamic

field presented by various authors. This is then extended to include the effect of jet

diameter, including a bullet, and flight velocity. A comparison is then made of the axial

wavenumbers of the hydrodynamic field calculated using the method of Lyu & Dowling

and from k− ω decomposition. This is then used to develop an empirical model for the

axial wavenumber of the hydrodynamic pressure field of a jet.

Chapter 5 concerns jet-surface interaction noise. Firstly, the jet-surface interaction noise

model of Lyu & Dowling is validated against laboratory measurements utilising a co-

flowing ‘flight stream’ to simulate the effect of forward motion on jet-surface interaction
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noise. The model is then compared with measurements utilising scattering surfaces with

more realistic chords. Finally, the problems of modelling jet-airliner wing geometries

analytically are discussed, including the possible use of strip theory.

Within Chapter 6 the results of the previous two chapters are brought together, and a

semi-empirical tool for predicting jet-surface interaction noise is presented. This tool

is then compared against large-scale laboratory measurements of installed jet noise.

These measurements were taken with a model airframe representative of modern 150-

seat airliners, and nozzles with increasing realism, starting from a simple axisymmetric

un-bulleted nozzle up to a nozzle that matches the airframe. This is used to demonstrate

the areas in which the prediction tool works well, and its current limitations.

Finally, Chapter 7 draws together the conclusions of the thesis, including a discussion

of further work which could improve the prediction tool.





Chapter 2

Literature Review

In this chapter the literature on installed jet noise is explored, examining methods that

have been used to calculate jet-surface interaction (JSI) noise analytically, numerically

and experimentally. This is followed by a review of the literature on jet near-field

pressure spectra.

2.1 Isolated Jet Noise

Before looking at installed jet noise, it is useful to first introduce Lighthill’s equation,

being the first attempt to analytically describe jet noise and starting the field of aeroa-

coustics.

2.1.1 Lighthill

Lighthill,[14]in 1952, was the first to produce an analogy describing the aerodynamic

generation of sound. Starting with the continuity equation,

∂ρ

∂t
+
∂ρui
∂yi

= 0 (2.1)

and the momentum equation,

∂ρui
∂t

+
∂

∂yj
(ρuiuj) +

∂p

∂yi
− ∂σij

∂yj
= 0, (2.2)

Lighthill combined and rearranged them in such a manner as to produce a non-homogeneous

wave equation,

11
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∂2ρ

∂t2
− a2

0

∂2ρ

∂y2
i

=
∂2

∂yi∂yj
(ρuiuj − σij) +

∂2

∂y2
i

(p− a2
0ρ). (2.3)

This equation demonstrates how turbulence, viscous stress and enthalpy fluctuations can

produce noise with a quadrupole nature. However, by arbitrarily splitting the equation

into terms representing the wave equation and sources, the effect of the flow field on

wave propagation is ignored. The flow field is effectively replaced by a distribution of

quadrupoles, hence why Lighthill’s equation is an analogy.

Using the method of Stratton,[26] Lighthill’s equation can be cast into a general integral

form,

ρ′ =
1

4πa2
0

∫
V

1

r

∂2Tij
∂yi∂yj

|τ=t−r/a0 dy +
1

4π

∫
S

[
1

r

∂ρ

∂n
+

1

r2

∂r

∂n
ρ+

1

ra0

∂r

∂n

∂ρ

∂τ

]
τ=t−r/a0

dS,

(2.4)

where

Tij = ρuiuj − σij + (p− a2
0ρ)δij (2.5)

is the Lighthill stress tensor and

σij = −2

3
µ
∂uk
∂xk

δji + µ

(
∂uj
∂yi

+
∂ui
∂yj

)
(2.6)

is the viscous stress tensor for a Stokesian gas.[27] By casting Lighthill’s equation into

integral form, solutions and scaling laws can be found for a known source strength. If

the flow field is unbounded then the surface integral term disappears, leaving the volume

integral of the Lighthill stress tensor,

ρ′ =
1

4πa2
0

∫
V

1

r

∂2Tij
∂yi∂yj

|τ=t−r/a0 dy. (2.7)

Currently the divergence of the stress tensor is evaluated at a time dependent on the

time at the observer and the time required to travel from the source to the observer,

which is itself a function of the source location. The decay of the acoustic field is also

dependent on the distance from source to observer. It will become more convenient if

the entire term within the integral is also within the derivatives. Using the chain rule

this becomes
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ρ′ =
1

4πa2
0

∫
V

∂2

∂yi∂yj

Tij
r

dy + 2
1

4πa2
0

∂

∂xj

∫
V

∂

∂yi

Tij
r

dy +
1

4πa2
0

∂2

∂xi∂xj

∫
V

Tij
r

dy. (2.8)

By encapsulating the entire term within the integral within the derivatives the first two

integrals can be re-expressed using the divergence theorem as surface integrals, and in

our unbounded flow go to zero. In the final integral the derivatives are in terms of

observer position only, and hence can be removed from within the integral. This leaves

the integral form of Lighthill’s equation as derived by Lighthill,

ρ′ =
1

4πa2
0

∂2

∂xi∂xj

∫
V

Tij
r

dy (2.9)

whereby, for an observer in the far-field, the differential can be transformed into one

with respect to time,

ρ′ =
xixj

4πa4
0x

3

∂2

∂t2

∫
V
Tij dy. (2.10)

The source term, Tij , is comprised of three components: a Reynolds stress term, ρUiUj ;

a viscous stress term, σij ; and a term, (p−a2
0ρ)δij , related to fluctuations in entropy. For

jet flows of large Reynolds number there exists a region, called the shear layer, where

the Reynolds stress terms are significantly larger than the viscous stress terms. Outside

this region both the Reynolds stress terms and the viscous stress terms will be small

relative to those in the shear layer, and hence the viscous term can be ignored. If the

jet is also subsonic and isothermal then temperature fluctuations, and hence entropy

fluctuations, will also be small, allowing Tij to be simplified to ρ0uiuj .

In the form of Equation 2.10, and using the simplified stress tensor, dimensional analysis

can be used to estimate the noise produced by a jet. If one assumes that length scales

are proportional to jet diameter, D j, and time scales are proportional to D j/U j, then

ρ′ ∝
ρ0U

4
jD j

a4
0x

. (2.11)

As pressure fluctuations are related to density fluctuations via the square of the speed

of sound, and intensity is pressure squared divided by the specific acoustic impedance

of air, then total acoustic intensity scales with

I ∝
ρ0D

2
jU

8
j

x2a5
0

. (2.12)



14 Chapter 2 Literature Review

This expression shows how the acoustic intensity of a jet is proportional to jet velocity

to the 8th power and jet diameter to the 2nd power. This has been confirmed experi-

mentally for subsonic, cold jets at a polar angle, θ, of 90◦.[13, 28–31]

Lighthill’s Analogy has proved fundamental to the prediction of jet noise. It explains

why increasing bypass ratio, and hence decreasing jet velocity, reduces jet noise. It has

formed the basis of methods for scaling jet noise measurements from one condition to

another. Also, its simplicity, in relation to other acoustic analogies, has meant it sees

continued usage and success in the development of RANS based jet noise prediction

tools.[32–34]

2.2 Trailing-Edge Scattering

Several methods have been published for calculating the far-field noise scattered from

the trailing edge of a surface. In this section two of the most commonly used trailing-

edge scattering theories, at least for calculating jet-surface interaction noise, will be

described.

2.2.1 Ffowcs-Williams and Hall

Ffowcs Williams & Hall[35] derived an equation that describes the far-field acoustic

intensity produced by an eddy positioned very close to the edge of a half plane in a

turbulent fluid. Starting with Lighthill’s equation Equation 2.3, and assuming that

variations in density are due to variations in pressure, a Fourier transform is taken with

respect to time to produce an inhomogeneous Helmholtz equation,

∂2p̂

∂y2
i

+
ω2

a2
0

p̂ = − ∂2T̂ij
∂yi∂yj

. (2.13)

A solution to this equation is then sought using the Greens function method,

−
∫
V
p̂

(
∂2G

∂y2
i

+ k2G

)
dy =

∫
V
G
∂2T̂ij
∂yi∂yj

dy +

∫
S

(
G
∂p̂

∂yi
− ∂G

∂yj
p̂

)
· n ds, (2.14)

where the Greens function is found from the solution to

∂2G

∂y2
i

+ k2G = −4πδ(x− y) (2.15)
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with the boundary conditions on the surface

∂p̂

∂yi
· n = 0 (2.16)

and

∂G

∂yi
· n = 0. (2.17)

Application of the boundary conditions and Greens function definition reduces the so-

lution to

p̂ =
1

4π

∫
V
G
∂2T̂ij
∂yi∂yj

dy. (2.18)

The divergences can be applied to the Greens function, rather than the stress tensor, by

repeated application of integration by parts

p̂ =
1

4π

∫
S

(
G
∂T̂ij
∂yj

− ∂G

∂yi
T̂ij

)
· n ds+

1

4π

∫
V

∂2G

∂yi∂yj
T̂ij dy. (2.19)

If the Lighthill stress tensor is then approximated by only the turbulent stress term

ρuiuj , then the boundary conditions are such that the surface integral disappears. This

leaves Ffowcs-Williams & Hall’s equation

p̂ =
1

4π

∫
V

∂2G

∂yi∂yj
ρ̂uiuj dy. (2.20)

The Greens function for this problem has been solved for an observer in the far-field by

MacDonald[36] in cylindrical coordinates and is given by

G =
e

1
4

iπ

√
π

(
e− ikr

r

∫ Ur

−∞
e− iu2 du+

e− ikr′

r′

∫ Ur′

−∞
e− iu2 du

)
. (2.21)

The limits of the integrals are given by

Ur = ±[k(D − r)] (2.22)

and
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Ur′ = ±[k(D − r′)], (2.23)

where r′ is the distance from the image source in the half plane to the observer position,

and D is the shortest distance from source to observer position via the edge of the half

plane.

Ffowcs William & Hall have compared their solution with that of the unbounded solution

of Lighthill by sending the infinite half plane off to infinity. In this case r remains

constant while Ur and r′ also go to infinity. Thus the second term in the Greens function

goes to zero, while

e
1
4

iπ

√
π

∫ ∞
−∞

e− iu2 du→ 1. (2.24)

Thus the Greens function becomes

G =
e− ikr

r
, (2.25)

which if substituted into Equation 2.18 and the inverse Fourier transform taken, leads

to

p′ =
1

4π

∫
V

1

r

[
∂2Tij
∂yi∂yj

]
t−r/a0

dy (2.26)

which is identical to Equation 2.7. This demonstrates the equivalence of the solutions

by Ffowcs Williams & Hall and Lighthill for unbounded domains.

From Equation 2.20 Ffowcs Williams & Hall have demonstrated that the far-field noise

produced by an eddy positioned much less than a wavelength from the trailing edge

scales as

I =
k4 cos(φ) sin2(θ/2)ρ0U

4 sin2(ψ)(cos2 or sin2)(Ω2/2)ν2

π3a0R2(kr̄)3
, (2.27)

where the cosine is chosen for longitudinal quadrupoles and the sine for lateral quadrupoles.

It is found that maximum PSD scales as the 4th power of velocity, and intensity to the

5th power, lower than that predicted by Curle[37] for the sound produced by a surface in

a fluid. The polar directivity is seen to be a cardioid in shape, unlike the dipole shape

of an acoustically compact surface, but the azimuthal directivity still retains the dipole

form. Finally, the intensity of the noise produced is seen to depend on the orientation of
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the eddy relative to the edge. Those eddies aligned with the edge producing no sound

at all.

The equation developed by Ffowcs Williams & Hall does not include the Kutta condition,

which would prevent a singularity occurring at the trailing edge of the plate and thus

could significantly affect the scattered field. Jones[38] has derived a modification to the

2D edge diffraction problem to include a Kutta condition. The modification introduces

a wake, which travels downstream with the speed of the ambient flow, that removes the

trailing edge singularity. With fluctuations in the wake travelling slower than the speed

of sound, the wake does not contribute directly to the sound field; however, the creation

of vorticity in the wake draws energy from the acoustic field, while the interaction of the

vorticity with the edge can scatter an acoustic field.[39] Jones has demonstrated that for

an observer in the far field and in the limits as kr → 0 and R → ∞ the contribution

of the Kutta correction is proportional to M/kr. The Kutta correction could therefore

be important for JSI noise, being a low frequency phenomena, especially when flaps are

deployed, reducing the distance between the trailing edge and the shear layer.

Ffowcs Williams & Halls equation demonstrates how a surface with a sharp edge can

create an acoustic field from the pressure field of turbulent eddies. This is particularly

important for modern commercial airliners, where wings with sharp trailing edges are

positioned very close to the jet flow-field of their gas turbine engines.

2.2.2 Amiet

In 1976 Amiet[40] developed an analytical solution for the scattered pressure field gen-

erated by turbulence convecting past a trailing edge in uniform flow. This solution was

based on linearised acoustics and made use of Schwarzchild’s solution,[41] which states

that for a problem defined by the 2D Helmholtz equation

k2p′ +
∂2p′

∂x2
1

+
∂2p′

∂x2
3

= 0, (2.28)

with boundary conditions
∂p′

∂x3

= 0, x1 < 0 (2.29)

and

p′ = f(x1), x1 ≥ 0, (2.30)

the scattered pressure field on the surface of the plate (x1 ≤ 0, x3 = 0) is given by

p′ =
1

π

∫ ∞
0

√
−x1

ξ

e− ik(ξ−x1)

ξ − x1
f(ξ)dξ. (2.31)
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Amiet formulated the problem as one in which a rigid, infinitesimally thick and semi-

infinite, extending from y1 = −∞ to 0, plate is positioned in the y3 = 0 plane with a

uniform flow in the x1 direction. A fluctuating pressure is incident on the lower surface

of the plate, with one component of the pressure in the plane of the plate described by

p′I(ω, y1, y2) = p′I(ω, k1, k2) e− i(y1k1+y2k2), (2.32)

assuming that the incident pressure is unaffected by the presence of the trailing edge. As

this fluctuating pressure convects past the trailing edge the sudden change in boundary

conditions causes an acoustic pressure to be scattered, which propagates according to

the convected Helmholtz equation,

k2p′ − 2 ikM
∂p′

∂y1

+ (1−M2)
∂2p′

∂y2
1

+
∂2p′

∂y2
2

+
∂2p′

∂y2
3

= 0. (2.33)

and satisfies the non-penetration boundary condition,

∂p′

∂y3

= 0, (2.34)

on the surface of the rigid plate.

In order to make use of Schwarzchild’s solution to solve the scattering problem defined

by Amiet, the 3D convected Helmholtz equation needs transforming into a static 2D

form. Firstly the convected Helmholtz equation is transformed with

ỹ1 = y1, ỹ2 = y2 and ỹ3 = βy3, (2.35)

where β =
√

1−M2, into

k2p′ − 2 ikM
∂p′

∂ỹ1

+ β2∂
2p′

∂ỹ2
1

+
∂2p′

∂ỹ2
2

+ β2∂
2p′

∂ỹ2
3

= 0. (2.36)

Next the acoustic pressure, p′, has to be transformed so as to remove the first order

differentials, ∂p′

∂ỹ1
and ∂2p′

∂ỹ22
, this can be accomplished with

p′ = p̃′ e ikMỹ1/β2− ik2ỹ2 , (2.37)

to give

k̃2p̃′ +
∂2p̃′

∂ỹ2
1

+
∂2p̃′

∂ỹ2
3

= 0, (2.38)

a static 2D form the Helmholtz equation, where

k̃ =

√
k2 − β2k2

2

β2
(2.39)
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To transform the boundary conditions, the solution for the scattered surface pressure

is split into two parts, p S = p S1 + p S2. For the first solution, the plate is extended to

infinity downstream of the trailing edge. Then, using the method of images,

p S1 = p′I(ω, k1, k2) e− ik1y1− ik2y2 . (2.40)

This first solution satisfies the boundary condition of no flow through the plate, but

introduces a discontinuity in pressure across the trailing edge and imaginary downstream

extension. According to the Kutta condition the pressure at the trailing edge must be

finite and continuous, nor can the wake sustain a discontinuity in pressure. Hence the

second solution must fulfil the boundary conditions

∂p̃′S2

∂ỹ3

= 0, ỹ1 < 0 (2.41)

and

p̃′S2 = −p′I e− ik1ỹ1−ikMỹ1/β2
, ỹ1 ≥ 0. (2.42)

With these boundary conditions p̃ S2 on the lower surface of the plate, ỹ ≤ 0, can be

found using the Schwarzchild solution,

p̃′S2 = −
p′I e ik̃ỹ1

π

∫ ∞
0

√
− ỹ1

ξ

e− iξ(k̃+k1+kM/β2)

ξ − ỹ1
dξ. (2.43)

This can then be simplified to

p′S2 = p′I e− ik1y1− ik2y2 [(1 + i) E(−y1[k1 + k̃ + kM/β2])− 1], (2.44)

where

E =

∫ x

0

e− it

√
2πt

dt (2.45)

is a combination of Fresnel integrals. Combining p S1 and p S2 gives the full solution for

the scattered pressure on the lower surface of the plate to be

p′S = p′I e− ik1y1− ik2y2(1 + i) E(−y1[k1 + k̃ + kM/β2]). (2.46)

In order to come to this solution it has been assumed that the incident pressure at the

trailing edge extends over the entire domain. For the pressure induced by boundary layer

turbulence (as modelled by Amiet), the change in boundary layer characteristics along

the plate means that this is not the case, with the pressure spectra changing with y1.

To compensate for this, Amiet[42] includes a small real component, ε, in p′S1, effectively

allowing the strength of the incident pressure component to vary with chord-wise location
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(y1), thus

p′S = p′I e− ik1y1− ik2y2 [(1 + i) E(−y1[k1 +
√
k2 − (βk2)2/β2 + kM/β2])− 1]

+ p′I ek1y1(− i+ε)− ik2y2 (2.47)

To calculate the scattered pressure in the far-field Curle’s/Kirchoff’s theory is applied

to the scatted surface pressure,

p′ =

∫
S
p′
∂G

∂n
dS, (2.48)

where G is the free-field acoustic Greens function in a uniform flow. Given the anti-

symmetric nature of the scattered surface pressure and the negligible thickness of the

plate, it is possible to integrate the pressure difference across the plate

p′Sx =

∫ 0

−c

∫ d/2

−d/2
2p′S

∂G

∂y3

dy2 dy1, (2.49)

where c is the chord of the plate and d is the span. The scattered surface pressure, p S,

has been calculated for a plate with semi-infinite chord, however, completing the far-field

integral over a finite chord length has been shown by Roger & Moreau[43] to accurately

approximate the effect of finite chord lengths for kc > 1. In the frequency domain the

free-field Greens function in a uniform flow is given by

G =
e− ikr̃x−y/β+ ikM(x1−y1)/β2

4πβr̃x−y
, (2.50)

where

r̃x−y =
√

(x1 − y1)2/β2 + (x2 − y2)2 + (x3 − y3)2, (2.51)

the derivative of the Greens function with respect to the surface normal is then

∂G

∂y3

=
−(x3 − y3) e− ikr̃x−y/β+ikM(x1−y1)/β2

4πβr̃2
x−y

[
− i

k

β
− 1

r̃x−y

]
. (2.52)

Assuming that the observer is in the geometric far field, |x| >> |y|, and given that

y3 = 0 on the plate, several approximations can be made

r̃x−y ≈ r̃x −
y1x1

β2r̃x
− y2x2

r̃x
(2.53)

and
1

r̃2
x−y
≈ 1

r̃2
x

, (2.54)



Chapter 2 Literature Review 21

so the derivative of the Greens function simplifies to

∂G

∂y3

≈ ikx3

4πβ2r̃2
x

e− ik(r̃x−y1x1/r̃xβ2−y2x2/r̃x)/β+ ikM(x1−y1)/β2
, (2.55)

with which the integrals with respect to y1 and y2 in Equation 2.49 are separable. First,

the integral over the spanwise direction is∫ d/2

−d/2
e− iy2(k2−kx2/βr̃x) dy2 = 2

sin([k2 − kx2/βr̃x]d/2)

k2 − kx2/βr̃x
. (2.56)

In the limit of the plate span, d, extending from −∞ to ∞ this function simplifies to

lim
d/2→∞

2
sin([k2 − kx2/βr̃x]d/2)

k2 − kx2/βr̃x
= 2πδ(k2 − kx2/βr̃x), (2.57)

which demonstrates that a single spanwise wavenumber propagates to each azimuthal

location in the far-field, due to interference between the sources along the span. Next,

the integration is performed along the chord

∫ 0

−c
( E(−y1C1)− 1/(1 + i)) e− iy1C2 +

1

1 + i
e− iy1(C2−εk1/ i) dy1 =

1

iC2

[
e iC2c E(C1c)−

√
C1

C1 − C2
E(c[C1 − C2]) +

1− e iC2c

1 + i

]

− 1− e ic2c−εk1c

(1 + i)( iC2 − εk1)
= Γ(c, C1, C2), (2.58)

where C1 = k1 + k̃ + kM/β2 and C2 = k1 − kx1/β
3r̃x + kM/β2. In the limits that

kc→∞ and ε→ 0, the last factor becomes

1− e ic2c−εk1c

(1 + i)( iC2 − εk1)
→ 1

iC2(1 + i)
(2.59)

and so

Γ(c, C1, C2) = e iC2c E(C1c)−
√

C1

C1 − C2
E(c[C1 − C2])− e iC2c

1 + i
. (2.60)

Combining these results gives the scattered pressure in the far-field as

p′Sx(ω) = (1 + i)
kx3 e− ik(r̃x−Mx1/β)/β

C2β2r̃2
x

∫ ∫
p′Iδ(k2 − kx2/βr̃x)Γ(c, C1, C2) dk2 dk1.

(2.61)

Finally, completing the integral with respect to the spanwise wavenumber and assuming

the axial-wavenumber components are uncorrelated, the PSD in the far-field can be

found,

PSD Sx(ω) =

[
kx3

C2β2r̃2
x

]2 ∫
PSD I(ω, k1, k2) |Γ(c, C1, C2)|2 dk1, (2.62)
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where k2 = kx2/βr̃x.

Using the equation for far-field PSD and making some simplifications Amiet[40] draws

some conclusions on the directivity of the scattered acoustic field. Setting M equal

to zero, k2 = kx2/rx = k sin(θ) sin(φ), C1 = k1 + k
√

1− sin2(θ) sin2(φ) and C2 =

k1 − kx1/rx = k1 − k cos(θ). If then kc→∞, E(C1c) & E(c(C1 −C2))→ 0.5(1− i). In

these limits far-field PSD becomes a proportional to

PSD Sx ∝
k2 sin2(θ) cos2(φ)

r2
x[k1 − k cos(θ)]2

k1 + k
√

1− sin2(θ) sin2(φ)

k[cos(θ) +
√

1− sin2(θ) sin2(φ)]
, (2.63)

the first thing to notice is that PSD is proportional to 1/r2
x as is expected when the

observer is in the geometric far field. Next, to look at azimuthal directivity, the polar

angle, θ, is set to π/2, then

PSD Sx ∝
k2 cos2(φ)

r2
xk

2
1

k1 + k cos(φ)

k cos(φ)
, (2.64)

which demonstrates the directivity, approximately, of a dipole. The dipole directivity

comes from the fluctuating pressure on either side of the plate, which with opposing

phase leads to cancellation at angles close to the plane of the surface. However, the

azimuthal directivity displayed above differs from a true dipole due to the infinite span

of the surface which reduces the cancellation from opposing sides of the surface. The

directivity can also differ from a dipole if the amplitude of the incident pressure varies

with spanwise wavenumber, because only one wavenumber component propagates to

each azimuthal angle (for a surface of infinite span).

If instead the azimuthal angle, φ, is set to zero or π, the polar directivity can be assessed.

In this case

PSD Sx ∝
k2 sin2(θ/2)

r2
x[k1 − k cos(θ)]2

k1 + k

k
, (2.65)

displaying the cardioid directivity that has been seen in experiments[18] and shown an-

alytically by other methods.[35]

In order to make use of Schwarzchild’s solution Amiet has extended the turbulent pres-

sure spectra immediately adjacent to the trailing edge across the entire domain. Instead

the boundary layers modelled by Amiet, and their pressure fields, will grow from the

leading edge and continue to change in the wake of the aerofoil. The pressure field of a

jet originates in the shear layer, which grows from the lip line. The source strength of

each frequency component grows and decays[44, 45] across the finite extent of the jet, with

the frequency components peaking at different axial locations.[18, 44–46] Therefore the in-

cident pressure from a jet onto a closely positioned surface will also not be stationary,

but vary along the surface.
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To correct for the assumption that the incident pressure is stationary, Amiet includes

a small real component in the incident pressure field. Instead, a more precise method

would be to decompose the entire pressure field into axial wavenumber components,

which would then be said to extend over the entire domain. This is the approach taken

by Bychkov & Faranosov[47][48] for calculating JSI noise, and is possible due to the

relative ease of measuring the near-field pressure of jets, as well as the growth and decay

of each frequency component of the hydrodynamic field over a limited axial distance.

However, near-field measurements are taken on a cone about the jet, so some method

is required to get the pressure onto a cylinder to allow a spatial Fourier transform to

be taken along the jet axis. Many microphones are also required, currently limiting the

practicality of this method. In the future models for the jet hydrodynamic field may

be available that make the axial wavenumber decomposition of the jet near-field more

practical.

2.2.2.1 Roger & Moreau

If the scattering surface is not semi-infinite, i.e. it does not extend to y1 = −∞, then

Amiet’s theory leads to an, unphysical, pressure difference across y1 = ±0 upstream of

the leading edge of the surface. To remove this pressure difference, Schwarzchild’s solu-

tion can be applied iteratively,[49, 50] removing the pressure difference created ahead of the

leading edge/aft of the trailing edge by each previous iteration. Roger & Moreau[43][51]

have calculated the first leading-edge correction for Amiet’s trailing-edge theory, showing

that it has the largest effect for kc < 1 where it reduces the amplitude of the scattered

noise.

JSI occurs at low frequencies, and therefore the backscattering correction could be im-

portant. Assuming a 4 m chord for a generic modern 150-seater airliner[18] and a speed

of sound of 340 m/s, kc = 1 occurs at a frequency of approximately 15 Hz, below the

lower limit of frequencies used to calculate EPNL.[52] For the experiments described in

Chapter 5, kc = 1 occurs at a frequency of approximately 540 Hz for the mid-sized chord,

equivalent to a Strouhal number of 0.2 for the lowest jet velocity. While the effect of

backscattering is most pronounced for kc < 1 it can still affect directivity and, hence, the

spectral shape at higher values of kc. It could therefore be beneficial to include Roger

& Moreau’s backscattering correction when comparing Amiet’s theory with laboratory

measurements of JSI noise.

With the inclusion of a leading edge scattered term, p′S3, the solution for the scattered

pressure on the surface of the plate becomes, p′S = p′S1 + p′S2 + p′S3. p′S3 can then

be found using the Schwarzchild solution. Upstream of the leading edge the boundary

condition for the scattered field is[43, 49,53]

Φ = 0, (2.66)
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where Φ is velocity potential. This boundary condition has been variously described as:

1) stating that only the surface of the aerofoil can support lift;[49] 2) a simplification of

the Sommerfield condition;[43] or 3) ensuring the scattered field cannot produce noise

sources upstream of the surface. With the pressure on one side of the plane y3 = 0 for

y1 < 0 given by 2.44, then using

p′ = ρ0

(
∂Φ

∂t
+ U0

∂Φ

∂x1

)
(2.67)

the velocity potential that needs to be removed upstream of the trailing edge is

Φ S2 =
p′I e− iy1ω/U0− iy2k2

iρ0U0(ω/U0 − k1)

{
e iy1(ω/U0−k1)[(1 + i) E(−y1C1)− 1]

−

√
C1

C1 + ω/U0 − k1
[(1 + i) E(−y1[C1 + ω/U0 − k1])− 1]

}
(2.68)

In order to apply Schwarzchild’s solution, the variables need to be transformed using

y̆1 = −(y1 + c) (2.69)

and

Φ′ = Φ̃′ e− ik2y2− i(y̆1+c)kM/β2
. (2.70)

Which leads to

Φ̃′S3 = −
p′I e i(y̆1+c)ω/U0+ i(y̆1+c)kM/β2

iρ0U0(ω/U0 − k1)

{
e− i(y̆1+c)(ω/U0−k1)[(1 + i) E([y̆1 + c]C1)− 1]

−

√
C1

C1 + ω/U0 − k1
[(1 + i) E([y̆1 + c][C1 + ω/U0 − k1])− 1]

}
y̆1 ≥ 0 (2.71)

and
∂Φ̃′S3

∂y3

= 0 y̆1 ≤ 0 (2.72)

In order to get an analytical solution using Schwarzchild’s solution, Amiet’s Error func-

tion is transformed into an Error function and replaced with the asymptotic expansion

(1 + i) E(t)− 1 = Erf(
√

it)− 1 ∼ − e− it

√
iπt

. (2.73)

Further, the potential at the trailing edge is assumed to be stationary, leaving the

potential upstream of the leading edge as

Φ̃ S3 =
p′I e− ik̃(y̆1+c)

iρ0U0(ω/U0 − k1)
√

iπC1c

[
1− C1

C1 + ω/U0 − k1

]
y̆1 ≥ 0. (2.74)
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Applying Schwarzchild’s solution, the scattered potential becomes

Φ̃ S3 =
p′I e− ik̃c+ ik̃y̆1

iρ0U0(ω/U0 − k1)
√

iπC1c

[
1− C1

C1 + ω/U0 − k1

]{
e−2 ik̃y̆1

[
1− (1 + i) E(−2k̃y̆1)

]} c
,

(2.75)

where the imaginary component of the function surrounded by {} c is multiplied by the

correction factor ε =
(

1 + 1
2k̃c

)−1/2
. This correction was derived by a comparison to a

numerical calculation of Schwarzchild’s integral that did not assume that the velocity

potential incident on the leading edge is stationary.

Using Equation 2.67 the scattered pressure on the plate is calculated from the potential

p′S3 =
p′I e− ic(k̃+kM/β2)−ik2y2

iU0(ω/U0 − k1)
√

iπC1c

[
1− C1

C1 + ω/U0 − k1

]
(

i[ω + U0kM/β2 − U0k̃] e− iy̆1(kM/β2−k̃)
{

e−2 ik̃y̆1
[
1− (1 + i) E(−2k̃y̆1)

]} c

− U0 e− iy̆1(kM/β2−k̃) ∂

∂y̆1

{
e−2 ik̃y̆1

[
1− (1 + i) E(−2k̃y̆1)

]} c
)
. (2.76)

Once again applying Curle’s theory to find the far-field pressure, if the span of the plate

is infinite, the integral over the span again leads to a delta function

δ(k2 − kx2/βr̃x). (2.77)

The integral over the chord-wise dimension is complicated by the correction factor. In

order to include the correction, if the plate has infinite span, and hence k̃ remains real,

the corrected term can be rewritten as{
e−2 ik̃y̆1

[
1− (1 + i) E(−2k̃y̆1)

]} c
= cos(2k̃y̆1)− iε sin(2k̃y̆1)

− 1

2
(1 + ε)(1 + i) e−2 ik̃y̆1 E(−2k̃y̆1)

− 1

2
(1− ε)(1− i) e2 ik̃y̆1 E∗(−2k̃y̆1),

(2.78)

where

E∗ =

∫ x

0

e it

√
2πt

dt. (2.79)
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Completing the integral over y̆1, the scattered far-field pressure becomes

p′Sx3 =
p′Ikx3 e− ik(r̃x−Mx1/β)/β−2 ick̃

β2r̃2
x(k −Mk1)

√
iπC1c

[
1− MC1

MC1 + k −Mk1

]
[
M
{

e2 ik̃c
[
1− (1 + i) E(2k̃c)

]} c
−M e icC3 + i

{
k + kM2/β2 −Mk̃ +MC3

}{
1 + ε

C3 − 2k̃
e ic[2k̃+C3]/2 sin(c[C3 − 2k̃]/2) +

1− ε
C3 + 2k̃

e ic[C3−2k̃]/2 sin(c[C3 + 2k̃]/2)

+
(1− i)(1 + ε)

2(C3 − 2k̃)
e2 ick̃ E(2k̃c)− (1 + i)(1− ε)

2(C3 + 2k̃)
e−2 ick̃ E∗(2k̃c)

+
1

2
e icC3

√
2k̃

C3
E(cC3)

[
(1 + i)(1− ε)
C3 + 2k̃

− (1− i)(1 + ε)

C3 − 2k̃

]}]
(2.80)

with

C3 = k̃ − kx1

β3r̃x
(2.81)

k2 = kx2/βr̃x. (2.82)

When applying the above back-scattering theory it is important that the pressures are

summed with Amiet’s original theory, and not the PSDs, as the two are coherent.

2.3 Jet-Surface Interaction Noise

In this section different jet-surface interaction noise models are discussed; starting with

a model for the directivity of JSI noise and continuing on to discuss different semi-

analytical JSI noise models.

2.3.1 Miller

In 1983, Miller[54] presented a semi-empirical model for jet-airframe interaction noise,

developed from the theory of Curle,[37] Yildiz & Mawardi[55] and Ffowcs-Williams &

Hall,[35] together with laboratory measurements of installed jet noise.

First, Miller defines a peak Strouhal number for jet airframe interaction noise, based

on the shear layer width at the trailing edge, rather than jet diameter (Equation 2.83).

As the shear layer width isn’t known Miller suggests it scales with the distance of the

trailing edge from the nozzle and the change in potential core length with flight.

St =
fl

3U j

(
U j − U f

U j

)C1

(2.83)



Chapter 2 Literature Review 27

To scale the magnitude of the far-field acoustic pressure Miller uses the equation devel-

oped by Curle for the far-field acoustic pressure created by a fluctuating pressure on a

rigid surface. This involves first scaling the dynamic pressure on the surface near the jet

using Equation 2.84 and then inserting this into Curle’s equation to give Equation 2.85,

where K is the acoustic pressure coefficient.

Cp =
P

0.5γP0M2
j

= MC4
j

(
1− U f

U j

)C2

C3K (2.84)

p = C5M
3+C4
j

(
1− U f

U j

)C6
∫
K(y1, t− r/a0)

rjnj
r2

dS (2.85)

To derive a directivity Miller starts with the cardioid shape for sound produced by a

semi-infinite surface in a turbulent flow as derived by Yildiz & Mawardi and Ffowcs-

Willams & Hall, among others. This is then extended to account for the interference of

sound waves diffracted at the leading edge of a finite chord wing. Miller’s directivity is

given by

p ∝
√

1− (C7 cos(πC8))2 cos

(
θ + β

2

)
(2.86)

where

C7 =

(
1− θ

π

)0.25

exp[− c

2πλ
(θ + β)], (2.87)

C8 =

(
rTE − rLE − c

1−M f

)
λ

, (2.88)

θ is measured to the upstream axis, and rLE and rTE are the distances from leading edge

and trailing edge, respectively, to the observer. Additionally, a (1 −M cos(θ))4 dipole

Doppler amplification factor is assumed for sound pressure level.

The measurements of installed jet noise used by Miller were taken of an 1/13th-scale

half-body 757 model within an acoustic wind tunnel. The measurements were taken

with surface pressure transducers on the flaps in the cut-out region, while acoustic mea-

surements were taken with two microphones 3 ft from the model. The microphones were

protected from the flow using nose cones and their position along the wing tunnel could

be varied using a linear traverse. The microphone and surface pressure measurements

were used to determine the proportion of far-field power radiated form each surface

pressure location.
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Using these measurements, Miller found the overall directivity of the jet-surface inter-

action noise from the main flap to appear as a half baffled dipole in the rear arc, but

to deviate from this in the forward arc. The directivity of a specific third octave band

was found to be dependent on flight speed, which was attributed to the change in phase

speed with flow speed and emission angle in a moving medium. The effect of leading

edge diffraction and flight speed are captured in Miller’s directivity model, which was

demonstrated to match well with the measured JSI noise from the main flap. Other ex-

periments have also shown good agreement between Miller’s directivity and JSI noise.[18]

Using the measurements Miller found found values of C1 between 0.1 and 0.6 a value of

approximately 2 for C2, and found C4 to vary between -0.3 and 0.25 depending on the

surface location

2.3.2 Cavalieri et al.

In 2014 Cavalieri et al. published[56] a method for calculating JSI noise using the Tailored

Greens Function (TGF) method of Ffowcs-Williams & Hall[35] in combination with a

wavepacket source model. The solution for the far-field pressure due to scattering from

the trailing edge of a semi-infinite surface is given by Ffowcs-William & Hall as

p̂ =
1

4π

∫
V
G
∂2T̂ij
∂yi∂yj

dy, (2.89)

where the Greens function, G, is specific to the trailing-edge scattering problem. Cava-

lieri et al. model the Lighthill stress tensor using a wavepacket model[57]

T̂ij = 2ρ0U1(r)u′1(r,m, ω) e− ik1y1−y21/L2
corr , (2.90)

where the stress tensor has been simplified to contain only the axial velocity components.

For this model, U1 is found from velocity profile measurements at the axial location of

interest. Using this profile, instability analysis is used to find k1 and u′1, leaving a

constant in the solution of u′1 and Lcorr to be found. These are found by comparison of

isolated jet noise measurements, at polar angles far into the rear arc, with wavepacket

predictions.

The edge-scattering method of Ffowcs-Williams & Hall assumes a semi-infinite plate. In

reality there will be conditions where the assumption of a semi-infinite plate does not

provide a good approximation for the scattered field, such as when the chord and span

is not large relative to the wavelength. Therefore, Cavalieri et al.[56] have produced a

numerical solution, accounting for finite span and chord, using the Boundary Element

Method (BEM). This method is found to converge on the analytical solution as the chord

and span go to infinity.[56] For scattering surfaces of finite chord and span, a lobed polar

directivity is found, with a change in chord affecting the number, position and strength
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of the lobes, while increasing the span for a given chord suppresses the peaks and troughs

of the lobes. For each of the different spans used in the BEM calculations the azimuthal

directivity remains similar to that of a dipole.

Piantanida et al.[58, 59] have compared the directivity predicted with the TGF and BEM

models to laboratory measurements of installed jet noise, using surfaces with varying

degrees of trailing-edge sweep. The BEM model directivity is shown to be in good

agreement with the experimental measurements, capturing lobes that the TGF does

not.

Additionally, the measurements, and models, of Piantanida et al. show that as sweep

increases the peak angle of JSI noise shifts towards the sideline. Nogueira et al.[60, 61]

have shown, using the TGF model, that this is because the spanwise wavenumber dis-

tribution of the pressure incident on the plate forms a Gaussian, and, as sweep angle

increases, the peak spanwise wavenumber shifts from k2 = 0, with an increasing amount

of the distribution falling into the non-propagating region. Nogueira et al. have also

used this model to demonstrate the rotation of the cardioid directivity pattern of JSI

noise as the scattering surface is inclined.

Huber et al.[62] have used this model to try to deduce the effect of flight on JSI noise.

This was achieved via the inclusion of ambient flow velocity in the TGF, and via the

stretching of the wave packet source using

1 + 0.4
U f

U j − U f
, (2.91)

where 0.4 has been found from measurements. They conclude that the effect of flight

on jet noise is to reduce rear arc wavepacket noise much more than the JSI noise.

With reported reductions of 25 dB and 7 dB respectively for M f = 0.3. However,

no comparison is made with experimental measurements, to validate the model and

predictions in flight.

2.3.3 Vera

Vera[63–65] has used the Wiener-Hopf method to calculate far-field scattered noise pro-

duced by a pressure field convecting past the trailing edge of a static semi-infinite surface.

Vera has shown that the solution generated using the Wiener-Hopf method is equivalent,

in the far-field, to that of Amiet’s theory, and so will not be discussed further here.

To calculate the incident pressure along the trailing edge of the plate, Vera starts with the

near-field pressure about an isolated jet calculated by LES. The pressure data is taken

from the LES in cones of probes about the jet, to which the Ffowcs-William Hawking

(FWH) equation would otherwise be applied to calculate the far-field noise created by
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the jet. To calculate the incident pressure on the surface, the free-field conical Greens

function of Reba et al.[66] is applied

Gm =
i

4
√
ryrx

∑
µ

1

Aµ
Hµ+0.5(krx) Jµ+0.5(kry) Pmµ (cos(θx)) Pmµ (cos(θy)), (2.92)

where Pmµ is the Lengendre polynomial of order m and degree µ, m is the azimuthal

mode, and Aµ is the integral of the Lengendre function

Aµ =

∫ θ0

0
|Pmµ (cos(θ))|2 sin(θ) dθ. (2.93)

The CPSD between the incident pressures at two points on the plate is then given by

integrating over the cone

CPSD(x1, x2) = 4π2 sin2(α)
∑
m

e im(φy1−φy2)

∫ ∫
CPSDy

∂Gm
∂θ ry1

∂Gm
∂θ ry2

dry1 dry2.

(2.94)

Once the CPSD between points along the span of the trailing edge has been found, a

Fourier transform is taken along the span so as to give spanwise-wavenumber spectra

at each frequency. The Wiener-Hopf solution also requires the axial wavenumber of the

incident pressure; this is calculated using a convection velocity of 0.6Uj .

Comparison of the calculated far-field JSI noise with measurements show good agree-

ment. The advantages to this method are: Firstly, no assumptions have been made

concerning the properties of the near-field pressure of jets, keeping the solution quite

general, and bypassing the debate on the source of the incident pressure field; secondly,

by using a solution equivalent to Amiet’s theory, the effect of finite chord can be ap-

proximated; thirdly, the method could be extended to more realistic geometries, such

as swept wings, by continuing to calculate the wavenumber components perpendicular

and parallel to the trailing edge; and, fourthly, for additional computational cost, the

axial wavenumber could be calculated by propagating the near-field pressure to various

chordwise locations along the plate and taking a Fourier transform along the chord.

However, the disadvantages to the method are: Firstly, the prediction is dependent on

having an LES solution for the near-field pressure of an isolated jet; secondly, the fre-

quency resolution is limited by the LES, which usually has limited resolution (compared

to experiment) by the run time required; thirdly, the conical propagation method is

quite slow and it takes a significant amount of time to calculate the eigenvalues required

for a new FWH surface with a new cone angle; and, fourthly, the conical Greens function

used requires the plate to be situated outside the conical FWH surface, with empirical

corrections required for surfaces positioned closer to the jet.
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In order to reduce the dependency on LES, Vera has created an semi-empirical model

for the near-field pressure along a cone, based on that of Reba et al.,[66]

CPSD(ry1, ry1, ω,m) =
√

PSDry1,ω,m PSDry2,ω,m e−(
ry1−ry2
2Lcor

)2 e− ik(ry1−ry2), (2.95)

where k is the axial wavenumber and Lcor is the correlation length, both defined at the

midpoint between y1 and y2. Lcor is found with a simple linear model,

Lcor = C1y + C2, (2.96)

and the PSD along the cone is modelled using a Glegg[45] style distribution,

PSD(y) = C3

(y
λ

)C4−1
exp(−2πC5

y

λ
). (2.97)

Then, to run cases in which the jet parameters do not match the LES, the near-field

pressure amplitude is scaled by (D/Dref)
2(M/Mref)

3.5 and the frequency with Strouhal

number St = fD/(U j−U f). If the plate is positioned within the FWH surface, then the

solution is calculated with the plate positioned just outside the surface, with the far-field

scattered pressure scaled to account for the actual plate locations using (h/href)
6. In

flight the Strouhal number St = fD/(U j − U f) and amplitude scaling,
(

U j

U j−U f

)−4−l/D
,

are used. These scaling methods go some way to extending the model beyond its initial

capabilities, however, further work is needed to extend the propagation and Wiener-

Hopf solution used to include ambient flow, decrease the reliance on LES and to allow

the plate to be positioned within the FWH surface.

2.3.4 Lyu & Dowling

Lyu[67][68][69][70][71] has used Amiet’s theory to calculate the JSI noise produced by the

interaction of the evanescent hydrodynamic pressure field of a jet with the trailing edge

of a plate.

Lyu suggests that, as the hydrodynamic field is coherent and slowly varying over a large

length of the jet axis, the evanescent hydrodynamic field can be decomposed into modes

and axial wavenumber components to be propagated using cylindrical harmonics

p′I(ω, y1, r, φ) =
∞∑

m=−∞
e imφ

∫ ∞
−∞

p′(ω, k1,m) H2
m(krr) e− ik1y1 dk1, (2.98)

where kr =
√
k2 − (k1β2 + kM)2/β. For an evanescent decay kr is imaginary, so

H2
m(krr) can instead be replaced with Km(ιrr), where ιr =

√
(k1β2 + kM)2 − k2/β.

Lyu assumes that at each frequency and axial location the hydrodynamic pressure is
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dominated by a single convection velocity, and hence axial wavenumber, which simpli-

fies 2.98 to

p′I(ω, y1, r, φ) =

∞∑
m=−∞

e imφp′(ω,m) Km(ιrr) e− ik1y1 . (2.99)

The validity of this assumption is demonstrated by Lyu with LES by plotting wavenum-

ber versus frequency about a given axial location. With this assumption, measurements

of the spectra of the hydrodynamic field at two different radial locations can be collapsed

using
PSD(ω,m)

K2
m(ιrr)

(2.100)

from which the axial wavenumber for each frequency can be found. This removes the

reliance on costly LES, allowing the input to come from experimental measurements

using few microphones. Also, the plate is no longer required to remain outside an

arbitrarily positioned FWH surface, allowing the plate to be positioned closer to the jet.

However, the propagation method is not valid if the plate is within the flow field of the

isolated jet from which the near-field pressure measurements were taken.

For a plate positioned in a plane parallel to and a distance h above the jet axis, the

position of a point on the span is given in cylindrical coordinates by

r =
√
h2 + y2

2, cos(φ) =
h√

h2 + y2
2

, sin(φ) =
y2√
h2 + y2

2

, (2.101)

where the coordinate system of Lyu & Dowling has been used (φ = 0◦ is in the direction

of y1 and φ = 90◦ in the direction of y2). Using De Moivre’s and Euler’s formulae, the

pressure at a point on the span is given by 2.99 with

e imφ =

b|m|/2c∑
n=0

(−1)n
(
|m|
2n

)
h|m|−2ny2n

2

(h2 + y2
2)|m|/2

+ i

b(|m|−1)/2c∑
n=0

(−1)n
(
|m|

2n+ 1

)
m

|m|
h|m|−(2n+1)y2n+1

2

(h2 + y2
2)|m|/2

 . (2.102)

In order to utilise Amiet’s theory the incident pressure on the plate needs to be decom-

posed into axial and spanwise wavenumbers. Therefore, a Fourier transform is taken
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with respect to y2,

p′I(ω,m, k2) =
p′(ω,m)

2π

∫ ∞
−∞

Km

(
ιr

√
h2 + y2

2

)
e imφ e ik2y2 dy2 =

p′(ω,m)√
2π

b|m|/2c∑
n=0

(
|m|
2n

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
(ι2r + k2

2)|m|/2−1/4 K|m|−1/2

(
h
√
ι2r + k2

2

)]

− m

|m|

b(|m|−1)/2c∑
n=0

(
|m|

2n+ 1

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
k2(ι2r + k2

2)|m|/2−3/4 K|m|−3/2

(
h
√
ι2r + k2

2

)]
(2.103)

(see Appendix A for the full derivation). The pressure along the span of the plate can

then be written as

p′I(ω, y1, y2) =
∞∑

m=−∞

∫ ∞
−∞

p′I(ω,m, k2) e− ik1y1−ik2y2 dk2. (2.104)

Lyu & Dowling have then extended Amiet’s theory to account for a swept trailing edge

using the transforms of Roger & Carazo.[72]

Starting with the convected Helmholtz equation

k2p′ − 2 ikM
∂p′

∂y1

+ (1−M2)
∂2p′

∂y2
1

+
∂2p′

∂y2
2

+
∂2p′

∂y2
3

= 0, (2.105)

the first part of the solution for the scattered surface pressure is, as before,

p′S1 = p′I(ω, k1, k2) e− ik1y1− ik2y2 . (2.106)

However, the boundary conditions for the second part of the solution are now given by

∂p′S2

∂y3

= 0, y1 < y2 tan(ψ) (2.107)

and

p′S2 = −p′I e−ik1y1− ik2y2 , y1 ≥ y2 tan(ψ). (2.108)

The boundary conditions and Helmholtz equation are then transformed using the trans-

formations[72]

ỹ1 = y1 − y2 tan(ψ), (2.109)

ỹ2 = y2, (2.110)

ỹ3 =
√
β2 + tan2(ψ)y3 (2.111)

and

p = p̃ e− ik̃2ỹ2− i(k̃2 tan(ψ)−kM)/(β2+tan2(ψ)))ỹ1 , (2.112)
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where

k̃2 = k2 + k1 tan(ψ). (2.113)

This gives a static form of the Helmholtz equation

k̃2p̃′ +
∂2p̃′

∂ỹ2
2

+
∂2p̃′

∂ỹ2
3

= 0, (2.114)

where

k̃ =

√
k2 − k̃2

2 + [k̃2M − k tan(ψ)]2

β2 + tan2(ψ)
, (2.115)

along with the boundary conditions

∂p̃′S2

∂ỹ3

= 0, ỹ1 < 0 (2.116)

and

p̃′S2 = −p′I e− i(k1−(k̃2 tan(ψ)−kM)/(β2−tan2(ψ)))ỹ1 , ỹ1 ≥ 0. (2.117)

Applying Schwarzchild’s solution

p′S2 = e− ik2y2− ik1y1 [(1 + i) E(−[y1 − y2 tan(ψ)]C1)− 1], (2.118)

where

C1 = k̃ + k1 −
k̃2 tan(ψ)− kM
β2 + tan2(ψ)

. (2.119)

The far-field pressure is given by Curle’s theory

p′Sx =

∫ d/2

−d/2

∫ y2 tan(ψ)

y2 tan(ψ)−c
2p′S2

∂G

∂y3

dy1 dy2. (2.120)

It is more convenient to complete this integral in the transformed coordinates, therefore,

∂G

∂y3

≈ ikx3

4πβ2r̃x
e− ik/β(r̃x−Mx1/β)− i(k/β)(ỹ1[M/β−x1/(β2r̃x)]+ỹ2[tan(ψ)M/β−x2/r̃x−x1 tan(ψ)/(β2r̃x]).

(2.121)

Completing the integral along the spanwise direction∫ d/2

−d/2
e− iỹ2C2dỹ2 = 2

sin(C2d/2)

C2
, (2.122)

which in the limit d/2→∞ becomes

2
sin(C2d/2)

C2
→ 2πδ(C2) (2.123)

where

C2 = k̃2 +
k

β

(
tan(ψ)

[
M

β
− x1

β2r̃x

]
− x2

r̃x

)
. (2.124)
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Next, integrating along the chordwise direction

∫ 0

−c
e− iỹ1C3 [ E(−ỹ1C1)− 1/(1 + i)] dỹ1 =

1

iC3

[
e iC3c E(C1c)−

√
C1

C1 − C3
E(c[C1 − C3]) +

1− e iC3

1 + i

]
, (2.125)

where

C3 = k1 + (k/β2)(M − x1/βr̃x). (2.126)

Applying Amiet’s correction,

Γ(c, C1, C3) = e iC3c E(C1c)−
√

C1

C1 − C3
E(c[C1 − C3])− e iC3

1 + i
, (2.127)

the solution for the scattered far-field pressure becomes

p′Sx = (1 + i)
kx3 e− i(k/β)(r̃x−Mx1/β)

β2r̃2
xC3

p′IΓ(c, C1, C3), (2.128)

where

k2 = −k1 tan(ψ)− (k/β)(tan(ψ)[M/β − x1/(β
2r̃x)]− x2/r̃x). (2.129)

For JSI noise it is more convenient to work in terms of the statistical quantity power spec-

tral density. Combining the equations for the spanwise wavenumber spectrum and the

far-field trailing-edge-scattered noise, and assuming that the different near-field modes

are independent, the far-field PSD becomes

PSDx(ω) =
2k2x2

3

β4C2
2 r̃

4
x

∞∑
m=0

PSD(ω,m, k̃x̃2/r̃x)
∣∣∣Γ(c, C1, C2|k2=k̃x̃2/r̃x

)
∣∣∣2 , (2.130)

where

PSD(ω,m, k2) =

PSD(ω,m)

2π


b|m|/2c∑

n=0

(
|m|
2n

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
(ι2r + k2

2)|m|/2−1/4 K|m|−1/2

(
h
√
ι2r + k2

2

)]2

+

b(|m|−1)/2c∑
n=0

(
|m|

2n+ 1

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
k2(ι2r + k2

2)|m|/2−3/4 K|m|−3/2

(
h
√
ι2r + k2

2

)]2
(2.131)

and PSD(ω,m) is a one-sided PSD of the jet near-field pressure.

In the case where no modal information is available for the near-field spectrum (such
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as where near-field pressure measurements were taken with a single microphone), the

solution can be approximated by computing that for mode 0 only, but with PSD(ω,m)

and k1 based on the total PSD

PSDx(ω) =
2k2x2

3

β4C2
2 r̃

4
x

PSD(ω, k̃x̃2/r̃x)
∣∣∣Γ(c, C1, C2|k2=k̃x̃2/r̃x

)
∣∣∣2 , (2.132)

with

PSD(ω, k2) =
PSD(ω)

2π

h√
ι2r + k2

2

K2
−1/2

(
h
√
ι2r + k2

2

)
(2.133)

This approximation is possible because, for axi-symmetric jets, modes 0 and 1 dominate

the hydrodynamic spectra. These modes have similar axial wavenumbers, and propagate

in a similar manner over the small distance from jet to surface.

Lyu & Dowling’s method for calculating JSI noise is relatively quick and simple. The

input comes from jet near-field pressure measurements using single rings of microphones.

With access to a laboratory with a jet, these measurements can be very quick to take.

Once these measurements have been taken, and the axial wavenumber found, the solution

is fully analytic. However, this method currently assumes that the incident pressure is

stationary. This may be a pitfall when the scattering surface has a very short chord

and/or a swept trailing edge. However, it could become the basis of a quick JSI noise

prediction tool useful for industry.

2.3.5 Bychkov & Faranosov

Bychkov & Faranosov[47, 48,73] have produced a model for JSI noise incorporating the

change in amplitude of the jet hydrodynamic pressure field along the jet axis.

In order to account for the variation in amplitude along the jet, near-field measurements

are taken, either experimentally or with LES, on a cone about the jet. At each axial

location the measured hydrodynamic pressure is decomposed into frequency and mode

and propagated onto a cylinder using a similar method to Lyu & Dowling. A Gaussian

distribution is then fitted to the amplitude of the hydrodynamic field along the cylinder,

p′(ω,m, x1) =
p′(ω,m)

C1
√
π

e−(x1−C2)2/C2
1+ iω(x1−C2)/U j , (2.134)

where C1 defines the width of the distribution and C2 the centre. Finally, a Fourier

transform is taken of the Gaussian distribution, giving axial wavenumber spectra that

describe the variation in amplitude.

Once the axial wavenumber spectra have been found, each component of the pressure

field can be propagated on to the surface of the plate using cylindrical harmonics. Using

the Wiener-Hopf method, the far-field scattered pressure is then calculated from the

incident surface pressure. The results have been validated against installed jet noise
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measurements taken at TsAGI, with a flat plate positioned in close proximity to the

laboratory jet.

Not assuming the pressure incident on the trailing edge could improve the predictions.

However, the choice of distribution could be improve; as pointed out by Bychkov, the

Gaussian distribution does not fit the measured amplitudes very well. A Glegg dis-

tribution could perhaps have been used instead, as has already been used by Vera to

model the hydrodynamic field. The axial wavenumber is also assumed to be constant,

while Vera’s results also show that the axial wavenumber of the hydrodynamic field does

slowly vary along the jet axis. Unfortunately, by propagating the each axial measure-

ment independently from the cone onto a cylinder the phase between the axial locations

is lost. This method of propagating from the cone to a cylinder does at least mean that

the measurements at the different axial locations do not need to be taken synchronously.

Finally, comparison to calculations where the incident pressure on the trailing edge is

assumed to be stationary has shown that the assumption of a Gaussian wavepacket is

unnecessary, with both methods giving the same result.[48]

2.3.6 Afsar

Another model is that presented by Afsar,[74, 75] for calculating the scattered pressure

created by the interaction of a planar jet with a trailing edge.

The pressure generated on the trailing edge due to this interaction is calculated using

Rapid-Distortion Theory (RDT), which requires the trailing edge to be positioned well

inside the jet flow field, due to the assumptions that u′ << Ū . This, however, means

that it is not well applicable to configurations where the plate is positioned outside or

on the edge of the jet flow-field, where it is possible that u′ > Ū , which may be more

closely related to current aeroplane configurations. One advantage, though, is that the

model is able to use RANS solutions for turbulent kinetic energy and dissipation, along

with empirical models relating these values to turbulent length scales, as an input. This

allows the model to be used for more general cases than those previously mentioned.

To calculate the scattered pressure due to the trailing edge the Wiener-Hopf method

is again used. However, while the model results follow the general spectral shapes

seen in experiment, it does not capture the interference patterns typically found using

the Wiener-Hopf method, or Amiet’s theory, and in the experimental measurements.

Several of the cases used also display large differences in the measured and calculated

peak amplitudes. This method may, therefore, be useful for extreme cases in which the

scattering surface is heavily wetted, such as for strongly deployed flaps, but less so for

un- or lightly-wetted cases.
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2.3.7 Summary

Five published models for predicting JSI noise have been reviewed. Four of these use the

Wiener-Hopf technique, or equivalent theory of Amiet, for calculating the trailing-edge

scattering. The other uses both the Green’s function of Ffowcs-Williams & Hall and

BEM. These methods have been shown by the authors to be capable of predicting the

directivity of JSI noise for static jets with straight and swept wings. Of these methods

the Wiener-Hopf technique/ Amiet’s theory appears the most suitable for a theoretical

scattering model, as, unlike the TGF, it can approximate the effect of finite chord length

and span. For more complicated geometries, the numerical BEM may be more suitable,

however, the time and effort required to mesh/run a solution may make this impractical

for industry.

The majority of the authors consider plate locations outside the flow-field of the equiva-

lent isolated jet, with an apparent consensus that the irrotational hydrodynamic pressure

field of the jet is the source of JSI noise, and is comprised of coherent structures that can

be described either by wavepackets or cylindrical harmonics. These two descriptions are

essentially the same, for example the models of Bychkov and Cavalieri both assume a

Gaussian wave envelope. The difference is that the wavepacket model is propagated us-

ing a point Green’s function, and is based on far-field data, while the other is propagated

with cylindrical harmonics and based on near-field measurements. There are, however,

exceptions: the model of Afsar, which considers a plate within the jet flow field, uses

RDT; and the model of Vera, which makes no assumptions about the hydrodynamic

pressure field, relying solely on LES data.

Discounting the model of Afsar, as it is solely for a plate which greatly distorts the jet

flow and so will not be considered further. The models of Vera, Bychkov and Lyu have

been shown by the authors to accurately predict the spectra of JSI noise for static jets.

However, they all require jet hydrodynamic pressure spectra, either from experiment or

numerical calculation, as an input. They have also not been validated against installed

jet noise measurements either in flight (except for that of Bychkov & Faranosov[76]), or

using realistic wing geometries. As for the model of Cavalieri et al., the amplitude and

directivity have been well validated at a several Strouhal numbers, and has already been

used to estimate possible changes to JSI noise in flight. It can also be calibrated using

far-field data, which may be advantageous, as it removes the need for separate near-field

measurements. However, it still has to overcome the same issues as the other models,

and no comparisons of frequency spectra been published.

Of the four methods for predicting JSI noise, that of Lyu & Dowling appears most suited

towards producing a method for calculating JSI noise that can be used by industry.

However, before it can be used some of the aforementioned short comings need to be

addressed.
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2.4 Jet Near-Field Modelling

In the previous section methods were presented for calculating JSI noise. One of the

limitations of these methods were that they relied on LES or experimental measurements

of the near-field pressure of jets. In this section published work is presented that aims

to understand the near-field pressure of isolated jets, the source of the JSI noise.

2.4.1 Harper-Bourne

Harper-Bourne[46, 77–79] has created a semi-empirical model for the near-field spectra of

isolated jets. The model was based on measurements taken of the near-field unsteady

pressure of isolated jets within QinetiQ’s Noise Test Facility (NTF), with the aim of

improving acoustic fatigue prediction capability for modern fast jets.

The model consists of a shape function describing the spectral shape, with the param-

eters varying with location and jet velocity, and semi-empirical equations for the peak

amplitude and frequency.

The shape function is described by Equation 2.135, with C1 and C2 based on fits to

measured spectra. This shape factor is similar in form to that developed by Tam[80] for

the far-field noise generated by large scale structures for which there is growing evidence

that they are the source of the hydrodynamic pressure field.

W =

C2
C2−C1

(
f

f peak

)C1

1 +
(

C1
C2−C1

)(
f

f peak

)C2
(2.135)

The peak frequency of the hydrodynamic pressure spectra was found to vary with

Strouhal number and an inverse power of the radial distance from the jet axis. The

power with which the peak frequency varies along the jet axis and the characteristic

Strouhal number were both found to be dependent on axial position.

Finally, the peak amplitude of the near-field third-octave-band spectra was found to

scale with jet velocity between the fourth and fifth power, and decay with distance from

the edge of the shear layer as a power law. At a distance greater than 0.5 jet diameters

from the shear layer the amplitude decayed as radial distance to the power of -3.7, very

similar to the decay of the mid-field of a quadrupole.

The model of Harper-Bourne provides a simple manner in which to describe the unsteady

near-field pressure of the jet, in a not dissimilar manner to how semi-empirical models

are used for far-field jet noise prediction. Very good agreement was found when validated

against measurements of a full-scale jet.
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2.4.2 Lawrence

A parametric study of the near-field pressure of an isolated jet has also been under-

taken by Lawrence[18] in the University of Southampton’s Doak Laboratory. The study

assessed changes with jet velocity and microphone location, both radial and axial.

Analysing the peak frequency of the jet’s hydrodynamic field, Lawrence found that, for

a given axial microphone location, peak frequencies could be collapsed using a Strouhal

number based on jet velocity and radial microphone location, relative to the jet lip line.

For a constant radial location and jet velocity, the peak Strouhal number was found to

decrease with the log of axial position.

For peak SPL, Lawrence found it to scale with jet velocity to a power between 3.5 and

4.4, dependent on axial and radial location. The peak SPL was also found to increase

with the log of axial position, while it was found to reduce as radial location to the

power of -0.13. This radial decay is similar to the linear decay that would be expected

of an exponentially decaying hydrodynamic field. Combining the measured spectra

at varying radial locations, the envelope of all the spectra displays the (fr/U j)
20/6 and

(fr/U j)
2 decay predicted for the hydrodynamic pressure and acoustic fields, respectively,

by Arndt.[81]

Another parametric study was conducted on the effects of jet velocity and trailing-edge

location on far-field installed jet noise. Far-field noise measurements were then taken

on flyover and azimuthal arrays. The results display a U5
j relationship for the JSI noise

OASPL, and U4
j relationship for the peak amplitude. Logarithmic relationships are

found between the peak SPL and both radial and axial trailing-edge positions. Miller’s

directivity is shown to be in very good agreement with that measured on the flyover

array. Finally, while the resolution is insufficient to give a good comparison, the OASPL

measured on the azimuthal array appears to be consistent with the dipole suggested by

theory.

Additionally, the installed jet noise study included unsteady surface pressure measure-

ments on the plate. At a constant transducer location, the peak frequency of the surface

pressure was found to scale with U j and the peak amplitude with U3
j . This is at odds

to the isolated near-field pressure measurements, but agrees with other measurements

in the literature.[82]

2.4.3 Vera

Vera,[65] starting from the work of Miller,[83] has extended Lighthill’s model to produce

an analytical model for the cross power spectral density of the near-, mid- and far-fields

of an isolated jet. With the aim being to be able to remove the dependence on LES

from the JSI noise model.
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Starting from Lighthill’s equation in integral form,

ρ′ =
1

4πa2
0

∂2

∂xi∂xj

∫
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Tij |τ=t−r/a0
r

dy (2.136)

the derivatives are then expanded without the use of the far-field approximation,
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(where ri = xi−yi), which is Equation 2.10 with the near-field terms included. The three

terms are the same as for a quadrupole, representing the far, mid and near fields respec-

tively. The first term is the usual solution to Lighthill’s equation, it is the propagating

acoustic field in which pressure and velocity are in phase. The last term represents the

hydrodynamic component of the pressure field, which is the solution to the incompress-

ible component of the wave equation, which can be demonstrated by setting a0 =∞.

Next, a cross correlation is then taken between two observer locations (a and b) and

times (t and t+ τ), which is indicative of acoustic power,

p(xa, t)p(xb, t+ τ) =

∫ ∫
rirjrlrm
r(ij)r(lm)[

C1a
∂2Tij
∂t2

+ C2a
∂Tij
∂t

+ C3aTij

] [
C1b

∂2Tlm
∂t2

+ C2b
∂Tlm
∂t

+ C3bTlm

]
dya dyb (2.138)

As ∂2T
∂t2

∂T
∂t = ∂T

∂t T = 0 and
∂Tij
∂t

∂Tlm
∂t = ∂2

∂τ2
TijTlm, this equation then becomes

p(xa, t)p(xb, t+ τ) =
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rirjrlrm
rarb[
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∂4

∂τ4
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Finally the cross power spectral density is calculated as

CPSD =

∫ ∞
−∞

p(xa, t)p(xb, t+ τ) exp(−iωτ +
ra − rb
a0

) dτ, (2.140)

which reverts to the auto power spectral density when xa = xb.
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From Equation 2.140 dimensional analysis is used to generate scaling laws for the power

spectral density of the near field,

PSDNF ∼
U3

jD
7
j

r6
, (2.141)

mid field,

PSDMF ∼
U5

jD
5
j

a2
0r

4
, (2.142)

and far field,

PSDFF ∼
U7

jD
3
j

a4
0r

2
, (2.143)

of an isolated jet. It can be seen that each component of the pressure field decays as a

power law. This contradicts two of the JSI noise models, which use Hankel functions for

the propagation, as well as experimental results[84] that show an exponential decay of the

near-field. Although, it is feasible that over a short distance a power law decay and an

exponential decay could appear similar. Additionally, individual coherent sources could

combine to give an exponential decay; however, this would require knowing the phase

difference between the sources, something that would have to be modelled separately.

A comparison of far-field installed jet noise measurements by Lawrence suggest with two

different nozzle diameters suggests the amplitude of JSI noise scales with D2, which is

also used by Vera’s JSI noise model. Rather the near-field is found by Vera to scale with

D7; measurements should therefore be taken to determine whether this is correct.

In order to predict the spectra of the near, mid and far fields of a jet from RANS

data, the cross-correlation of the Lighthill stress tensor is modelled using a method

proposed by Ribner, which has been used successfully in far-field models. The RANS

model is then compared with near-field measurements taken in the Doak Laboratory.

The empirical coefficients were set by matching the predicted far-field spectrum with

measured data at a polar angle of 90◦. The calculated near-field spectra compares very

well with the measured spectra with the microphone at an axial location of 4 - 5D, but

less well elsewhere. This could be due to the length scale coefficients being dependent

on location in the jet. This model could therefore be improved by trying to account for

these changes, and further still if it could be made to predict the phase along the jet,

which, for the near-field, has been shown to be coherent over a large distance along the

jet axis.
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2.4.4 Stability Analysis

Measurements taken in the near field of jets, starting back in the 1960s,[85] have shown

that the near-field pressure can be coherent over large distances along the jet axis. Not

only was the pressure coherent over a large distance but it also showed alternating phase,

suggesting that the pressure field is created by a train of structures in the velocity field of

the jet, not simply a large eddy. More recently, measurements of the near-field pressure

on cones about jets, both from experiment and LES, have shown the amplitude of these

structures to behave like a Glegg style distribution along the jet axis,[64–66] with phase

speeds ≈ 0.6U j. Despite the subsonic phase speeds of these ‘large coherent structures’,

and therefore evanescent decay perpendicular to the jet axis, they play an important

role in jet noise at low polar angles, as shown for instance by the results of Reba.[66]

This is because a Fourier transform taken of the entire envelope results in a wavenumber

spectrum, a proportion of which falls in the region which allows acoustic propagation.[16]

The pressure field of these large coherent structures are also likely to be important for

JSI noise, which, as shown in the previous section, is created by the scattering of a

non-propagating pressure field into an acoustic field by a trailing edge.

Due to the importance of these structures to noise at low polar angles and near-field

pressure, much work has been focussed on trying to model them. The velocity and

pressure fields of these large coherent structures can be captured using LES. However,

as with jet noise, the large amount of time required to mesh a geometry, and the huge

amount of computing power required to calculate a solution, makes this method un-

suitable for general engineering problems. Attempts to produce simpler models have

focussed on stability analysis of jets. Initially Linearised Stability Equations (LSE) were

used, starting with a cylindrical vortex sheet description of the jet,[86] but extended

to later to include more realistic shear layer profiles[87] and spreading jets.[88] Later,

the introduction of the Parabolic Stability Equations (PSE) allowed for the inclusion of

non-linear effects.

Stability analysis has been shown to be capable of predicting the amplification and atten-

uation of instability waves of low Strouhal numbers over the length of the potential core

of the jet (for example[89]). However, there are several problems with their use. For one

thing, the amplitudes calculated by linear stability analysis are highly dependent on the

amplitude of the initial disturbance, and so the initial conditions are usually calibrated

against experimental data. Also, if the amplitude of the instability wave is too high then

non-linear effects, not included in linear-stability analysis, will dominate. Experiments

have shown that for low Reynolds number jets the instability waves quickly form into

eddies that interact with one another, rolling around each other or breaking apart.[90]

For high Reynolds number jets the spreading rate is assumed to be great enough that

the instability waves grow and decay with negligible non-linearity.[16] Finally, for this

discussion, a base flow is required as an input to the LSE/PSE. This base flow will likely
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come from RANS calculations, as it is much quicker than LES but can still be used for

general geometries. However, RANS tends to underestimate the spreading rate of jets,

which, as previously mentioned, is an important factor in stability analysis.

2.4.5 Summary

Ideally, a jet near-field pressure model would be generic enough that it would be able

to predict the amplitude and wavenumbers of the near-field pressure of a jet for any

nozzle geometry, jet velocity, temperature and flight velocity. If that were the case then

a true prediction could be made for JSI noise. Stability models and near-field Lighthill

extensions come some way to achieving this, however, they still need to be calibrated

against experimental data to get the correct amplitudes. Even LES should be validated

against experimental measurements, often with hot-wire or PIV measurements of the

flow field. Even for far-field Jet Mixing (JM) noise such a generic model does not yet

exist. Current RANS based models for JM noise still need parameters, describing the

structure of the turbulence, to be calibrated using LES or measured data and are in any

case considered too complex for industrial use. Therefore, industry standards for JM

noise tend to be methods which scale databases of measured jet noise to the required

parameters,[91] such as those by ESDU,[92, 93] SAE[94] and Stone,[95, 96] for example. It

therefore seems logical to try to extend the near-field scaling models of Harper-Bourne

and Lawrence to include the effects of flight and different nozzle geometries. Combining

such an empirical model with an analytical scattering model could generate reasonable

predictions useful to industry.



Chapter 3

Experimental Methodology

This chapter describes the measurements of the jet near-field unsteady pressure, far-

field isolated jet noise and far-field installed-jet noise that will be used in subsequent

chapters. It begins with a description of the laboratory facility in which the experiments

were conducted. The experiments themselves are then described, first the near-field

pressure measurements, and secondly the far-field jet-mixing and jet-surface interaction

noise measurements. Finally, the procedure used to process the measured time series

signals is outlined.

3.1 Facility

The experiments described in this chapter were conducted in the University of Southamp-

ton’s Doak Laboratory - an anechoic chamber for the measurement of the noise produced

by jets and handling bleed valves. The anechoic chamber is 15 m long, by 7 m wide and

5 m high, and is anechoic down to approximately 400 Hz. For the measurement of jet

noise, the chamber contains a jet nozzle with a diameter of 40 mm fed by compressed

air, and a co-axial ‘flight-stream’ nozzle with a diameter of 300 mm, fed by a fan, for

simulating the effect of forward engine motion on installed jet noise. To ensure stable

propagation paths, by reducing flow recirculation within the chamber, the exhaust air

from the two jets pass through a collector before being passively vented outside the

building via a series of louvres.

45
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Figure 3.1: Doak Laboratory with jet and flight stream. Also shown is the aerofoil
support structure and, at the top of the figure, the flyover microphone array used to

measure far-field jet noise

The flight stream in the Doak laboratory is sized for the simulation of forward-flight

effects on installed jet noise. As such, the size of the flight-stream minimises the effect

of the flight-stream shear layer on the development of the jet across axial trailing-edge

positions of interest. The size of the flight-stream also ensure that a spanwise portion

of the aerofoil/plate is within the potential core of the flight-stream at trailing-edge

positions of interest.

A boundary layer will form on the outside of the jet pipe and nozzle when the flight-

stream is active. To prevent the separation of this boundary layer, the jet nozzle, and

pipework immediately upstream of the nozzle, has a shallow conical angle of 3◦.

3.2 Near-field Measurements

Near-field pressure measurements of static jets have been made multiple times in the

past, however, several complications occur when performing similar measurements in

flight: 1) the microphone diaphragm needs to be protected from the flow when positioned

within the flow field of the flight stream; 2) the microphone will generate self-noise; and

3) the microphone will measure the near-field pressure of both the jet and the flight

stream. These problems are common to all in-flow pressure measurements in open-

jet wind tunnels, and are overcome by: 1) protecting the microphone diaphragm with

a nose cone, here a G.R.A.S. RA0022 nose cone was used (see Figure 3.2); 2) align

the microphone with the flow to minimise separation around the microphone, this was
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done in conjunction with a thin B & K Type 2670 pre-amplifier; and, 3) tailoring the

microphone location, as well as the jet and flight stream velocities, to ensure that the

hydrodynamic pressure spectra of the jet is apparent over the near-field pressure of the

flight stream.

Figure 3.2: Jet near-field pressure measurements were taken using a microphone
protected by a nose cone (left) and positioned using a three axis traverse (right)

Microphones measure the change in position, relative to a backing plate, of a diaphragm

due to the pressure difference across it. The pressure difference should be due to the

unsteady pressure being measured, with a steady difference in pressure causing an offset

in initial diaphragm position and affecting the sensitivity of the microphone. To equalize

the steady pressure across the diaphragm the cavity behind the diaphragm is vented,

either from the rear, front or side. The position of the vent could, therefore, be important

when taking measurements within a flow with a nose cone, as the static pressure varies

around the nose cone.

For the near-field pressure measurements a G.R.A.S. 40BF rear-vented microphone cap-

sule was used. The rear vent being located away from the nose cone inlet screens could

cause a pressure difference across the diaphragm. However, the G.R.A.S. RA0022 is

based on the NLR-DNW AMF[97] (Aerodynamic Microphone Forebody) which has been

designed using panel methods to have zero pressure gradient at the screen position, with

static pressure at the start of the screen equal to ambient. This would help prevent a

steady pressure difference across the diaphragm, though a vent closer to the nose cone

screen (front or side) would increase confidence that this is the case.

To locate and support the microphone within the flow of the flight stream, a three-axis

traverse was used (see Figure 3.2). To ensure accurate positioning of the microphone,

the traverse had to be aligned with the jet axis and a reference location set.

To align the near-field microphone with the jet axis, first the traverse was positioned on

and aligned with beams on the floor of the chamber running parallel to the jet axis. Next,

a laser level was positioned downstream of the nozzle point towards the jet along the jet

axis (Figure 3.3). Linear scales were then attached to the microphone and centred on the
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laser beam. The microphone was then traversed along the traverse axis set nominally

parallel to the jet axis, during which time any movement of the microphone relative to

the laser beam could be measured. Corrections could then be derived to apply to the

other traverse axes to keep the microphone traversing parallel to the jet axis.

To ensure that the microphone was positioned correctly relative to the nozzle a paper

target was affixed to the nozzle, and the microphone traversed such that the tip of

the nose cone was touching the centre of the paper target. At the end of each set of

measurements the traverse instructions were reversed to ensure the microphone returned

to this reference location. When taking measurements the microphone was positioned

such that the centre of the diaphragm was in the desired measurement location.

Figure 3.3: Traverse is aligned with the jet axis using a laser

Prior to the installation of the flight stream within the Doak laboratory, an experimen-

tal campaign was conducted by Lawrence in which the near-field pressure of a static

jet was measured. This involved spacing eight microphones equidistantly around the

circumference of a steel-ring array, the axis of which was aligned with that of the jet

nozzle (Figure 3.4). The array was then traversed along the jet axis, and the radii of the

microphones varied such that the near-field pressure was measured on two virtual cones

spaced one jet diameter apart (Table 3.1). At each measurement location, the jet was

run at the following acoustic Mach numbers: Mj = 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 &

0.9. Each measurement was taken over a ten second interval with a sampling frequency

of 100 kHz.
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Figure 3.4: The azimuthal near-field measurement campaign of Lawrence placed eight
microphones in a ring surrounding the jet

Table 3.1: Axial and radial measurement locations in the azimuthal near-field pressure
measurement campaign of Lawrence

x/D 0 1 2 3 4 5 6 7

r/D
0.75 0.91 1.06 1.22 1.38 1.53 1.69 1.85

1.75 1.91 2.06 2.22 2.38 2.53 2.69 2.85

With the installation of the new flight stream rig, the jet diameter increased from 38.1

to 40 mm, and the cone angle changed from 14◦ to 2.3◦. However, these changes were

considered small enough that a comparison of measurements could be used to validate

the use of the nose cones and the alignment of the traverse, by comparing trends in

amplitude and spectral shape with microphone radial and axial position. Therefore, the

first measurements were taken at some of the same axial locations as Lawrence (x/D =

3, 4, 5 & 6) with jet acoustic Mach numbers of 0.3 and 0.6.

It was hypothesised that the jet hydrodynamic pressure spectra would display similarity

when the microphone axial location was scaled with potential core length. To test this

hypothesis, measurements were taken of the near-field pressure over a range of flight

velocities with the axial position relative to the potential core length of the jet, x/xp,

with the radial position, r, kept constant. The potential core length of the 40 mm Doak

laboratory jet has been measured by Proenca,[98] and is defined empirically as

x p

D j
= 16M f + 4.6. (3.1)

Using this equation, the axial locations for each flight velocity were chosen as shown in

Table 3.2. At each axial location, measurements were taken at radial locations r/D j =

1.22, 1.72 & 2.22.

Table 3.2: Axial measurement locations for velocity scaling

M f 0.0 0.1 0.2 0.3

x/D 3 4 5 6
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Next, unsteady pressure measurements were taken to assess the effect of jet diameter

the on the hydrodynamic pressure spectra. This involved placing the microphone at

x/D = 2 and r/D = 1.1 relative to the jet nozzle and then the flight stream nozzle.

This location was chosen as it was the only location the traverse could reach, due to the

placement of the traverse, that matched measurement locations used with the previous,

38.1 mm, jet nozzle. At these locations the jet/ flight stream was run at acoustic Mach

numbers of M j = 0.1, 0.2 & 0.3. When taking the flight-stream measurements, the

jet was run at the same velocity as the flight stream to prevent separation of the flight

stream flow around the jet nozzle.

Finally, measurements were taken to be used as inputs to the scattering model. This

required the microphone to be placed at x/D = 3 (the axial location of the trailing edge

in Chapter 5) and measurements taken with a range of jet velocities, flight velocities and

radial locations. The radial locations used are given in Table 3.3. The static locations

are the same as that used in the near-field measurements of Lawrence, with an additional

location at r/D = 1.72. This point was added to ensure that, at high jet Mach numbers,

the jet hydrodynamic pressure would dominate the jet acoustic pressure at more than

one radial location. With the flight stream active, the flight stream shear layer also

generates noise, which contaminates the measurement of the jet near-field pressure.

The flight stream also reduces the shear on the jet, which serves both to stretch the

jet, increasing the distance of the microphone from the edge of the shear layer, and to

reduce the amplitude of the noise created by the jet. Taking this into consideration, the

microphone radial distances were reduced, ensuring though that the microphone did not

enter the jet flow field, and reducing the radial interval between measurements.

Table 3.3: Radial near-field measurement locations

Mf 0.0 0.1 0.2 0.3

r/D

1.22 1.15 1.11 0.98

1.72 1.65 1.36 1.08

2.22 2.15 1.61 1.33

3.3 Far-field Measurements

Two experimental campaigns were undertaken to measure installation noise in the far

field. The first, aimed to validate the model of Lyu in flight and to assess the effect

of chord on JSI noise. The second aimed to repeat the validation of Lyu & Dowling’s

extension of Amiet’s theory to swept wings, using both near-field and far-field data from

the same jet, and to assess the effect of finite span.

During the first campaign, measurements were taken with 10 1/4” free-field B & K

Type 4939 microphones positioned on a linear fly-over array, parallel to the jet axis
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(Figure 3.5), at a distance of approximately 50 jet diameters from the axis. The mi-

crophones were spaced approximately 10◦ apart at polar angles from 40◦ to 130◦. The

fly-over array consists of a quad truss that can be winched up into position. To minimise

any reflections from the truss, the microphones were placed at a distance of 250 mm

from the structure.

Figure 3.5: Fly over array before being winched into position

To start the campaign, far-field pressure measurements were taken of the jet in isolation

both statically and in flight. The jet was run at acoustic Mach numbers of M j = U j/a0 =

0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.875 & 0.9, while the flight-stream was run at acoustic

Mach numbers of M f = 0, 0.1, 0.2 & 0.3. Before each set of static jet measurements

an electronic background noise measurement was taken. For in-flight cases, background

measurements were taken with the jet and flight-stream velocities matched at the desired

flight velocity. The purpose of taking isolated jet noise measurements was to compare

with the installed measurements, thus making the installation effects discernible.

Far-field pressure measurements were then taken with flat plates positioned parallel to

the jet axis. Three plates were already available for installed jet noise measurements

in the Doak laboratory, with chords of 300 mm, 200 mm and 100 mm, or c/D =

7.5, 5.0 & 2.5 respectively. The c/D = 7.5 and c/D = 2.5 were chosen for the installed

jet noise measurements; the c/D = 7.5 plate as it gave the longest chord against which

to compare the trailing-edge scattering theory, which assumes a semi-infinite chord; and

the c/D = 2.5 plate as it is at the lower end of the range of commercial airliner jet-

diameter to crank-chord ratios. Additionally, a rule with c/D = 0.7 was used to give a

very short c/D against which to compare. The rule could also be considered to represent

a wing tip, or flap, though it is possibly also on the short side of either of these.

Each of the plates had a thickness of 0.03D, the trailing edges were un-tapered, and each

had a span of d/D = 15. The trailing edge of each flat plate was located at l/D = 3

and h/D = 1, measured to the surface of the plate facing the jet. The radial location

was set just outside the flow field of the isolated jet since the model of Lyu & Dowling

assumes that the jets hydrodynamic pressure spectra is unaffected by the presence of
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the plate. This location has also been used previously, as part of the SYMPHONY

(SYstem Manufacturing and Product design tHrough cOmponent Noise technologY)

project, in measurements taken both in the Doak Laboratory[18] and in QinetiQ’s Noise

Test Facility (NTF),[137] allowing for direct comparison between several test campaigns.

Using flat plates means that the thickness is constant across the chord, there is no cam-

ber, and no lift is generated (at zero incidence), in contrast to aerofoil sections that would

expected for an aeroplane wing. For jet-surface interaction noise, the low frequencies,

and hence low thickness-to-wavelength ratio, mean that differences in thickness and

camber are unlikely to have a significant effect. In flight, the change in thickness of

an aerofoil will cause the local velocity around the aerofoil to vary, and lift, caused

by incidence or camber, will cause the local velocity to vary between the upper and

lower aerofoil surfaces. This could potentially affect the far-field interference pattern,

in comparison to a flat plate at zero incidence, by changing the phase and amplitude

relationship between the trailing-edge scattered wave and leading-edge diffracted waves.

The far-field interference pattern may then not be symmetric for observers above and

below the wing.

To enable the accurate positioning of the plates, they are attached to a support structure

(Figure 3.6) that could be traversed parallel to the jet and positioned vertically using

spacers. The flat plates with chords c/D = 7.5 & 2.5(Figure 3.6a) were connected to

the structure via a mounting that includes tension bolts to prevent excessive bending or

vibration of the plates. The c/D = 0.7 plate was an aluminium metre rule which was

clamped in place between the spacers used to set vertical position (Figure 3.6b). This

proved to be adequate in the static case, when there is no flight-stream flow. However,

with the flight stream active, the rule bent towards the jet, reducing the distance from

trailing edge to the jet axis by an unknown amount. Therefore, in-flight measurements

with the metre rule were discounted, and have not been subject to any further analysis.

Figure 3.6: Far-field jet-surface interaction noise measurements were acquired by
positioning a plate next to the jet and within the nominally laminar potential core of

a flight stream. Left) c/D = 2.5 plate, and, right) c/D = 0.7 metre rule
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With the flat plates installed, the jet was run at acoustic Mach numbers M j = 0.3, 0.6,

0.75, 0.8, 0.875 & 0.9. These jet velocities were chosen to cover the typical range of

approach, cut-back and take-off jet velocities; and to match those used within previous

installed jet noise measurement campaigns.

The aim of the second campaign was to provide further validation evidence for the swept

wing model of Lyu & Dowling, with matched near-field and far-field measurements. For

this reason, ten microphones were placed on an azimuthal array at a distance of 45 jet

diameters from the jet axis (Figure 3.7). Seven microphones were positioned between

φ = −67.5◦ and 67.5◦ at 22.5◦ intervals, with the remainder were placed at 80◦, −60◦

and 34◦. These locations were chosen to give good resolution around the peak azimuthal

angles of the unswept and swept plates. The array was kept at a polar angle θ = 90◦, as

the model of Lyu & Dowling predicted the biggest difference between the swept and un-

swept plates at this angle. As with the fly-over array, the microphones were positioned

approximately 250 mm from the supporting structure to prevent excessive reflections in

the measured spectra.

Figure 3.7: Azimuthal array positioned at a polar angle of 90◦ to the jet nozzle exit

With the microphones and plate support structure in place, isolated jet noise measure-

ments were taken at jet acoustic Mach numbers M j = 0.5, 0.6, 0.75, 0.8 & 0.9, and

at flight acoustic Mach numbers M f = 0, 0.1, 0.2 & 0.3. Again, background noise

measurements were taken at each flight-stream velocity with a matched jet velocity.

In the second campaign, three plates were again used: 1) the c/D = 7.5 plate, to assess

the effect of finite span; 2) a swept plate, with c/D = 2.5 and sweep angle ψ = 20◦; and,

3) the c/D = 2.5 plate to compare with the swept plate. The planform of the swept

plate (Figure 3.8) was chosen to allow direct comparison with the unswept c/D = 2.5

plate, and to fit within the constraints of the support structure. The trailing edge of

each plate was positioned at l/D = 3 and h/D = 1, so as to allow comparison with the

measurements taken in the previous campaign. With the plates installed, the jet and

flight stream were run at acoustic Mach numbers matching the isolated measurements.
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Figure 3.8: Swept plate with a chord of 2.5D and sweep angle of 20◦

Lastly, a series of installed jet noise measurements were taken to demonstrate the effect

of a nozzle centre body (“bullet”) on JSI noise. To do so, a plate with chord c/D = 5

was placed at l/D = 3 and h/D = 1 relative to the 40 mm metal nozzle used thus far.

The location of the plate was then held constant while the nozzle was replaced, with

far-field measurements taken with each nozzle at an acoustic Mach number M j = 0.3.

In total, four nozzles were used: 1) the standard 40 mm nozzle; 2) a 40 mm nozzle

with bullet; 3) a 36 mm nozzle with bullet; and, 4) a 32 mm nozzle without a bullet

(nozzles courtesy of Proenca and Lawrence[99]). Despite the different diameters, all but

the original 40 mm nozzle had the same nozzle-exit flow area.

Figure 3.9: Left) Three nozzles of constant flow area were used to demonstrate the
effect of a bullet. Right) The 40 mm nozzle with bullet installed

3.4 Signal Processing

All microphone pressure measurements were recorded using a 24-bit National Instru-

ments PXIe-4497, with the signals first passed through GRAS 12AQ amplifiers. A

sample frequency of 100 kHz was used for the near-field measurements and 200 kHz

for the far-field measurements. Each recording was taken for 10 s, with the 10 far-field

microphones recorded simultaneously.



Chapter 3 Experimental Methodology 55

Prior and subsequent to the test campaigns the microphones were calibrated using a

pistonphone-type calibrator. The calibration sensitivities and amplifier gains were used

to convert the recorded signal from Volts to Pascals.

After converting the time series from Volts to Pascals, the spectral density of the mea-

sured data has been estimated using Welch’s[100] modified periodogram method. This

method splits the signal into segments, computes the periodogram of each segment and

then averages the periodograms, reducing the variance of the final spectra. The com-

putation of a periodogram requires taking the Discrete Fourier Transform (DFT), or

FFT, of the measured signal, or segment thereof. Due to the finite length of the signal,

and the DFT assuming the signal is periodic, spectral leakage can occur. Therefore,

a window whose amplitude reduces towards each end of the signal is typically applied

to the segments, reducing the discontinuity between the ends of the signal.[101] As the

application of a window effectively reduces the contribution of each end of the signal

segment to the periodogram, the segments can be overlapped. For both the near-field

and far-field measurements a bandwidth of 10 Hz has been used along with the Hamming

window with 50% overlap.

The presence of the microphone distorts the pressure field about the microphone. There-

fore, free-field corrections are applied as a function of frequency and incidence angle. For

the far-field microphones, which were attached perpendicular to the fly-over array, the

incidence angle was calculated from the jet nozzle to the microphone, and varied from

approximately 0◦ to 50◦. While for the near-field microphone, with attached nose cone,

the pressure is incident at approximately 90◦ due to the microphone axis being parallel

to the jet axis. The individual microphone capsules have also been calibrated for their

frequency sensitivity, and these calibrations have been applied to the measured spectra.

At the start of each set of measurements a background noise measurement was taken.

This was especially important for in-flight cases, where the flight stream, being a large

jet, can contribute significantly to the measured spectra. Background noise measure-

ments with the flight stream were taken with the velocity of the jet and flight stream

matched. Matching the jet and flight velocity prevents recirculation around the jet noz-

zle distorting the flight stream and the noise it produces. For a flight-stream acoustic

Mach number of 0.1 a jet Mach number of 0.15 was used, due to limitations in the jet

valve control systems preventing a lower jet Mach number. The impact of this discrep-

ancy on the background noise measurement was deemed insignificant due to the much

larger size of the flight stream. The background measurements were then subtracted

from the test cases, with any test points less than 1 dB greater than the background

spectra removed.

Finally, the far-field spectra have been corrected to ‘loss less’ by correcting for atmo-

spheric attenuation and spherical spreading. The spherical spreading correction simply

requires the addition of 20 log10(r/rref), where in this case rref = 1 m. To correct for
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the atmospheric attenuation of air the method of Bass et al.[102] has been used. For

the microphone-source distances used (≈2-3 m), frequencies of interest and ambient

conditions the atmospheric attenuation corrections are less than 1 dB.

Using a flight stream to simulate flight introduces a shear layer between the noise source

and the microphones. This shear layer can refract the acoustic waves, changing the

amplitude and spectral shape of the noise measured by the microphones relative to

the case of a homogenous flow. Therefore, a correction is commonly applied to the

measured spectra to counteract the effect of the shear layer, with the angle and amplitude

corrections calculated with geometrical acoustics.[103–105]

The vorticity thickness of the flight-stream shear layer above the trailing edge of the plate

was estimated from LES[106,107] of the Doak laboratory jet, scaling to the diameter of the

flight stream. This vorticity thickness was found to be the same length as the shortest

peak wavelength of the measured JSI noise spectra, with M j = 0.9 and M f = 0.3.

Geometrical acoustics is applicable when the properties of the medium through which

the sound waves are propagating vary slowly over a wavelength. Therefore, a shear layer

correction has not been applied.

The analytical trailing-edge scattering model assumes that the surface and observer are

within a homogeneous flow. Therefore, to compare the analytical solution with the

measured spectra, the observer is positioned in the analytical solution such that the

emission angle and propagation distance (θ and R respectively in Figure 3.10) match

the experimental case. The reception angle and distance (θR and RR respectively in

Figure 3.10), which define the observer position in the analytical solution, are calculated

from the emission angle and distance using[108,109]

tan(θR) = sin(θ)/[M f + cos(θ)] (3.2)

and the reception distance from

RR = R
√

1 +M2
f + 2M f cos(θ). (3.3)
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Figure 3.10: The position of the observer in the model needs to be chosen such that
the emission angle and distance match the position of the microphone relative to the

source in the experiment

Examples of the measured far-field spectra are displayed in Figure 3.11 along with the

estimated Signal-to-Noise Ratio (SNR). The test cases are those as measured, without

background noise subtracted, and the estimated SNR is the ratio of the test spectra,

minus background noise, to the background spectra. Statically, with the flight stream

off, the background noise in the anechoic chamber is very low and contributes negligibly

to the measured jet spectra. With the addition of a flight-stream flow, the flight stream

essentially being a second larger-diameter jet, the background noise increases signifi-

cantly, especially in the installed case where leading and trailing-edge noise will also

be generated. As the flight-stream velocity increases the flight-stream spectra comes

to dominate the test spectra at low frequencies, and the SNR becomes very low by a

flight Mach number of 0.3. The separation between the jet and flight-stream noise levels

can be increased by increasing the jet velocity, which increases the amplitude of the jet

noise, but also increases the peak frequency. Decreasing the distance between the plate

and the jet centreline as the flight velocity is increased could also help in increasing the

amplitude of the jet installation noise. If the plate were also moved closer to the jet

nozzle, then the peak frequency of the JSI noise would be increased, also helping to

separate it from the background noise - though one would still have to contend with the

low SNR of the isolated jet noise when trying to discern the JSI noise from jet-mixing

noise.

Figure 3.12 displays a similar comparison for the measured spectra for the near-field

microphone. As with the far-field measurements the background flight-stream noise

increases as the flight-stream velocity is increased, reducing the estimated signal-to-

noise ratio. The sharpness of the peaks in the spectra and the separation between the

jet and flight stream leads to a rapid increase in SNR from low frequencies and a higher

SNR at the highest flight-stream velocity than for the far-field case.
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Figure 3.11: Examples of measured far-field spectra - test cases are the measured jet
noise uncorrected for background levels. c/D = 7.5, l/D = 3, h/D = 1 and M j = 0.75.

a) M f = 0.0; b) M f = 0.1; c) M f = 0.2; and, d) M f = 0.3.

For both the near-field and far-field cases using a separation of 1 dB leads to a large

amount of uncertainty/large confidence limits at low frequencies. This will decrease

with increasing frequency as SNR increases, as displayed in Figure 3.11 and Figure 3.12.

Using a value greater than 1 dB would have helped improve the interpretation and

confidence in the measured jet near-field and far-field spectra.

In Figure 3.11a JSI noise is still just apparent above the isolated jet noise below the

laboratory’s anechoic limit of ≈ 400 Hz (fD j/U j ≈ 0.06). In Chapter 5 a jet Mach

number of M j = 0.3 will be used extensively, due to the increased separation between

JSI and JM noise, with a greater amount of JSI noise apparent below the anechoic limit

(fD j/U j ≈ 0.16). Below the anechoic limit of the laboratory the sound field will depart

from the free-space spherical spreading rule. Hence, the amplitudes of the spectra below

the anechoic limit can no longer be directly compared to the model, which assumes free-

field conditions, or to frequencies above the anechoic limit. However, by first comparing

trends with frequency between the installed and isolated spectra, trends with changing

plate dimensions/flight velocity/etc in this frequency range can be deduced.

In Figure 3.12a the hydrodynamic field of the jet is also apparent above the background

noise below the anechoic limit of the chamber. As these measurements aim to measure
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Figure 3.12: Examples of measured near-field spectra - test cases are the measured
jet noise uncorrected for background levels.x/D = 3 and M j = 0.75. a) M f = 0.0 &
r/D = 1.72; b) M f = 0.1 & r/D = 1.65; c) M f = 0.2 & r/D = 1.36; and, d) M f = 0.3

& r/D = 1.08.

the amplitude of the hydrodynamic field of the jet, which decays exponentially with dis-

tance, and is positioned very close to the source, the anechoic limit is less of a constraint

than in the far field.





Chapter 4

Scattered Source

Jet-surface interaction noise is created by the scattering of the non-propagating compo-

nent of the pressure field surrounding a jet by the trailing edge of a surface positioned

close to the jet. Therefore, to correctly predict the amplitude and spectral shape of far-

field JSI noise it is important that the amplitude and spectrum of the non-propagating

pressure field of the jet is known.

As has been discussed in Chapter 2, semi-empirical models have been created for the

irrotational hydrodynamic field of a jet, by placing microphones in close proximity to

static laboratory jets. These measurements have, mainly, shown peak PSD to scale as

jet velocity to the third power, in line with theory. Additionally, while JSI noise mea-

surements between different facilities have been used to determine that the amplitude

of JSI noise scales with jet diameter squared, it appears that no direct comparison has

been made of the hydrodynamic fields of jets of different diameters. Knowing how the

hydrodynamic pressure, both the frequency and amplitude, scales with diameter is im-

portant to producing semi-empirical JSI noise models, with the hydrodynamic pressure

as the input. Similarly, with current models limited to static jets, near-field pressure

measurements are required of jets in flight. Extending the scaling laws/hydrodynamic

pressure models to include the effect of flight will be important to understanding how

flight effects JSI noise.

In this chapter, near-field isolated jet pressure measurements will be taken for a lab-

oratory jet, including a flight stream to simulate the effect of flight on a jet. The

measurements are then used to generate scaling laws for the hydrodynamic pressure

spectra of a jet, including the effects of flight, nozzle diameter and jet velocity. The

measurements will also be used as the input to trailing-edge scattering predictions in

subsequent chapters.

61
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4.1 Data Quality

Measurements of the near-field pressure of static jets have previously been taken us-

ing arrays of microphones perpendicular (i.e. at 0◦ incidence to) the jet axis. This

microphone orientation is used to ensure maximum dynamic range/sensitivity of the

microphone. However, to take measurements in flight a nose cone was attached to the

microphone, which was then oriented parallel to the jet axis. To ensure that the addi-

tion of the nose cone and change in orientation did not adversely affect the accuracy of

the location of the microphone and the pressure reading, a comparison was made with

previous near-field measurements (Figure 4.1). The measurements used for comparison

come are those taken by Lawrence using the ring array. There is, therefore, a slight

difference in the nozzle diameter, 40 mm versus 38.1 mm, however it is small enough

that any large errors due to the nose cone or microphone placement should be apparent.

In Figure 4.1, there is a very good agreement in the sur-peak spectra, giving confident

in the equivalence of the two measurement techniques. There is some disagreement with

the sub-peak spectra, maybe due to differences in the upstream boundary conditions,

which could perhaps be the subject of further research. The sudden decrease in the am-

plitude of the 40 mm nozzle below 20 Hz comes from the subtraction of the background

noise, as this frequency is well below the anechoic limit of the chamber.
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Figure 4.1: Comparison of measured near-field spectra between the 38.1 mm Doak
jet nozzle (solid lines) and the 40 mm Doak nozzle (dotted lines). M j = 0.3. a) x/D =

3; b) x/D = 4; c) x/D = 5; and, d) x/D = 6.
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Figure 4.2 demonstrates the effect of the flight stream on the near-field pressure spectra.

The microphone has been held at the same location and the jet velocity is also constant

at an acoustic Mach number of M j = 0.6. At M f = 0, there is a single broadband

hump with its peak at a frequency of ≈1.5 kHz, which is the hydrodynamic field of

the jet. At frequencies above the peak, the amplitude decays rapidly until the acoustic

field of the jet dominates the near field of the jet, at which point the rate of decay

reduces significantly. When the flight stream is turned on, it makes several changes to

the spectra. Firstly, a new broadband hump appears, with a peak initially at ≈ 40 Hz.

This is the hydrodynamic field of the flight stream, which is essentially just a larger jet.

This increases significantly in amplitude and peak frequency as the flight stream velocity

increases. Secondly, the amplitude of the jet hydrodynamic pressure spectra reduces in

amplitude with flight stream velocity. This is due to both the reduction in shear across

the jet shear layer, and the accompanying stretching of the jet, which increases the

distance from the edge of the shear layer to the microphone. This change in shear also

causes a slight change increase in the peak frequency. Finally, at the high frequency end

of the spectrum the acoustic pressure of the jet is also shown to reduce with the addition

of the flight stream. However, the reduction is less than for the hydrodynamic pressure.

This is in part because the evanescent hydrodynamic pressure is much more sensitive to

the microphone distance from the jet shear layer.

The rapid increase in peak amplitude and frequency of the flight stream hydrodynamic

field combined with the reduction in amplitude of the jet hydrodynamic field creates a

problem for taking jet hydrodynamic pressure measurements in flight. This is because

the hydrodynamic pressure spectra of the jet can be masked by that of the flight stream

either if the microphone is too far from the jet or if the jet velocity is too low relative

to the flight-stream velocity. Furthermore, if the microphone is too far from the jet or if

the jet velocity too high, the acoustic field of the jet can also dominate. This is why the

position of the microphone and the jet and flight stream velocities need to be carefully

chosen. More specifically, as the flight velocity increases the microphone has to move

closer to the jet axis. The velocity of the jet also needs to be increased, both to increase

the amplitude of the jet hydrodynamic field and to increase the frequency separation

between the two hydrodynamic fields of the jet and flight stream.
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Figure 4.2: Comparison of near-field pressure spectra as flight velocity is increased,
keeping jet velocity and microphone location constant. M j = 0.6, x/D = 3 and r/D =

1.22.

At a flight Mach number of M f = 0.3, two very large tones appear in the near-field

pressure spectrum (Figure 4.3), at frequencies of 22.28 kHz and 44.59 kHz. Given that

the frequency of the second tone is almost exactly double that of the first, it would

appear that they both have a common origin. Using a shedding Strouhal number of 0.2,

the length dimension of the first tone is 1 mm. This is much smaller than the diameter

of the rods making up the support arm and the diameter of the cable, therefore they

are unlikely to be the source. Further testing ruled out the possibility of any cavities

in the supporting rods and clamps. Another possibility is that the flow over the nose

cone, which consists of a series of small openings, with an aspect ratio of approximately

three, into an approximately cylindrical cavity, is generating cavity noise. These tones

are at frequencies above that of interest for the jet hydrodynamic field, however, the

tonal frequency that may be produced was estimated quickly using Rossiter modes; in

which the downstream travelling disturbance in the shear layer interacts with the edge

of the cavity to produce an upstream travelling acoustic wave that interacts with the

upstream edge to produce a disturbance in the shear layer. This gave a frequency of

23.8 kHz, not far from the measured 22.28 kHz of the fundamental tone, and remains a

possible mechanism for its generation.
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Figure 4.3: Flight-stream spectra captured with the inflow microphone inside the
flight-stream potential core, very high amplitude tones appear when M f = 0.3

A similar tone was also seen during the design and testing of the NLR-DNW Aerody-

namic Microphone Forebody[97] (on which the G.R.A.S. RA0022 is based). Theoretical

and experimental investigations of the tones did not conclusive determine the origin.

However, evidence pointed to cavity shear layer oscillations across the openings in the

nose cone. The tone was not detected with far-field microphones, suggesting that they

are not due to acoustic cavity resonances.

4.2 Scaling with Velocity

Both experiments[18, 65,66,82] and theoretical models[35, 65] have suggested that jet hydro-

dynamic spectra scale according to either jet velocity to the 3rd or 4th power. Figure 4.4

demonstrates the hydrodynamic spectra collapsing with jet velocity to the 3rd power,

matching the theory of Vera,[65] the surface pressure measurements of Lawrence[18] and

the isolated near-field pressure measurements of Guitton.[82] This does not necessarily

contradict the scaling with jet velocity to the fourth power, which is seen for OASPL,

found by integrating over the frequency range dominated by the hydrodynamic pressure

(see Figure 4.5), and has also been found when looking at the peak along the length of

the jet.[66]
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Figure 4.4: Comparison of near-field spectra at x/D = 3, r/D = 1.22 over a range of
jet acoustic Mach numbers. M f = 0.
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Figure 4.5: Scaling of the hydrodynamic pressure spectra at x/D = 3. A Strouhal
number cut-off of 0.9 has been used for computing the OASPL. M f = 0.

Figure 4.6 displays the collapse of the measured spectra from a single microphone on

the array over a range of axial and radial locations, providing further evidence for the

scaling of the hydrodynamic pressure field. Likewise, Figure 4.7 displays the relationship

between jet velocity and the OASPL of the hydrodynamic pressure field over the range

of axial locations measured. This clearly shows OASPL scaling with approximately U4
j ,

as expected.
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Figure 4.6: Scaling of the narrow band spectra of the hydrodynamic field measured
in Lawrence’s ring-array measurements. a) l/D = 1, r/D = 0.91; b) l/D = 3, r/D =

1.22; c) l/D = 5, r/D = 1.53; d) l/D = 7, r/D = 1.85.
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Figure 4.7: Scaling of the OASPL of the hydrodynamic pressure at a range of axial
locations. Black: l/D = 1, r/D = 0.91, Stcutoff = 1.5; Black: l/D = 1, r/D = 0.91,
Stcutoff = 1.5; Red: l/D = 2, r/D = 1.06, Stcutoff = 1.0; Blue: l/D = 3, r/D = 1.22,
Stcutoff = 0.9; Green: l/D = 4, r/D = 1.38, Stcutoff = 0.6; Cyan: l/D = 5, r/D = 1.53,
Stcutoff = 0.5; Orange: l/D = 6, r/D = 1.69, Stcutoff = 0.4; Fuchsia: l/D = 7, r/D =

1.85, Stcutoff = 0.4.
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In Figure 4.4 and Figure 4.6 the acoustic component of the measured pressured comes

to dominate the spectra at the upper end of the Strouhal number range. This is demon-

strated by the sudden reduction in gradient of the spectra; however, the acoustic com-

ponent likely still contributes to the spectra at lower Strouhal numbers. This would

explain, at least in part, the divergence of the different velocity spectra for Strouhal

numbers greater the peak value.

There is also a spread in the amplitudes of the different jet velocities at Strouhal numbers

below the peak in Figure 4.6 and particularly for Figure 4.4. The reason for this differ-

ence has not been determined. Possibly it is affected by the condition of the boundary

layer at the nozzle exit. The 40 mm nozzle from which Figure 4.4 is produced, has a rel-

atively low convergence angle that leads to a thick boundary layer[98] relative to that of

the 38.1 mm nozzle. Additionally, there appears to be increasing differences in the peak

Strouhal numbers of the different jet velocities with increasing axial microphone location

in Figure 4.6, which contributes to the spread in amplitude at low Strouhal numbers.

The measurements were taken for a fixed microphone location, while Witze[110] derived

a semi-empirical equation showing that potential core length increases with jet velocity;

the resulting decrease in the axial position of the microphone relative of the potential

core length, and, hence, decrease in shear layer thickness below the microphone, could

explain the increase in peak Strouhal number. However, this is in contrast to the sur-

face pressure measurements of Lawrence,[18] using the same jet, and the measurements

of Guitton,[82] both of which show an excellent collapse of the measured spectra.

The effect of flight on a jet is to reduce the velocity difference across the shear layer and

to stretch the jet, reducing the shear layer thickness at a given axial location. Miller[54]

hypothesised that the peak frequency of the hydrodynamic field would scale relative to

the shear layer thickness and jet velocity. The shear-layer thickness was in turn assumed

to depend linearly on the potential-core length, and the potential core-length on U j−U f

to the power of an experimentally determined exponent. The pressure amplitude was also

hypothesised to scale with the velocity difference (U j−U f), again, to an experimentally

determined exponent. Such a velocity difference relationship is also found for far-field

jet-mixing noise, at a polar observer angle of θ = 90◦ and a given flight velocity. Using

surface pressure data on a wing positioned close to a laboratory jet, Miller found the

scaling methods to work well, with carefully chosen empirical constants.

Miller tested the scaling methods against surface pressure measurements on a model 757

wing within an acoustic wind tunnel. Statically it is possible that the jet may wet the

surface, and with the wind-tunnel operational the wing may produce lift, distorting the

jet. The wing position was also not modified to account for the reduction in shear-layer

width in flight. Finally, the shear-layer width/potential-core length was not known,

requiring extra empirical constants to make up for this. Using the flight stream in

the Doak laboratory it is possible to measure the near-field pressure of the isolated jet

simulating the effect of flight. Additionally, hot wire measurements of Proenca[98] mean
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that the near-field measurements can be made keeping the axial microphone location

constant relative to the potential-core length.

Figure 4.8 to Figure 4.10 display comparisons of the measured near-field spectra at

three different radial locations. In each, the axial microphone location relative to the

potential-core length, and the velocity difference, has been kept constant. The spectra

appear to collapse very well, when using a Strouhal number based on jet velocity, as

predicted by Miller. There appears to be a discrepancy between the sub-peak spectra

for the static and in-flight cases. Further work is required to determine if this is an effect

of the interaction between the nozzle and flight stream boundary layers.
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For the static jet, the amplitude of the hydrodynamic pressure spectra at different jet

velocities is collapsed using jet Strouhal number and jet velocity to the third power

(Figure 4.4). In flight, one would expect the amplitude to scale as (U j − U f)
3. This is

demonstrated in Figure 4.11 for a range of flight velocities and microphone locations.

Unfortunately, the range of jet velocities is limited to M j = 0.75, 0.8 & 0.9, however

the excellent collapse of the spectra gives strong evidence for this method of amplitude

scaling.
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4.3 Scaling with Jet Diameter

Comparisons of far-field JSI noise measurements, taken with jet nozzles with different

diameters, have suggested that the frequency scales as 1/D j and amplitude with D2
j , as

with jet-mixing noise. To determine whether these scaling methods also apply to the jet

hydrodynamic pressure spectra, near-field pressure measurements were also taken of the

flight stream, which is essentially just a bigger jet. A comparison of the jet and flight

stream spectra in presented in Figure 4.12. The spectra have been scaled for jet velocity,

further demonstrating the scaling of the hydrodynamic pressure spectra of static jets;
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although only a small range of jet velocities are used, which is down to the operating

range of the flight stream. Unsurprisingly, the flight stream is significantly louder than

the jet, being 7.5 times greater in diameter. Attempting to scale the amplitude and

frequency to account for the difference in diameter, it appears that the amplitude scales

with the diameter and the frequency with Strouhal number (see Figure 4.13).
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4.4 Axial Wavenumber

When calculating JSI noise it is important to know the axial wavenumber, as well as

the spectrum, of the hydrodynamic pressure field. This is because the radial decay of

the hydrodynamic pressure field and the polar directivity of JSI noise are related to the

axial wavenumber.

Lyu[68, 111] used LES data of an isolated jet to complete an k − ω decomposition of the

near-field pressure. Using this decomposition, Lyu demonstrates that the convection

velocity is frequency dependent, showing that at low frequencies the convection velocity

is significantly below the 0.6U j which is often assumed for fluctuations in the shear layer.

Figure 4.14 and Figure 4.15 show k − ω decompositions of the near-field pressure in

two LES. The two LES come from the University of Cambridge, the first as part of the

HARMONY (wHole AiRcraft Multidisciplinary nOise desigN sYstem) project,[112] the

second is of the Doak Laboratory’s 38.1 mm jet[106,107] (see Appendix B for further in-

formation). The decompositions have been created by Fourier transforming the pressure

time series around each ring of the FWH surfaces positioned within the near-fields of the

jets. The CPSD is then calculated between each ring for each mode. Finally, a Fourier

transform is performed along axial locations, giving PSD as a function of frequency,

mode, axial wavenumber and axial position. Also shown in Figure 4.14 and Figure 4.15

are lines (in black) denoting waves travelling along the cones at the speed of sound,

k1 = 2πf/a0, and waves travelling at 0.6U j (in red).

The decomposition in Figure 4.14 uses 41 probes spaced 0.25D apart, to give a resolution

of k1D j/2π = 0.1. The CPSD between rings has been computed using seven averages

with 50% overlap with a Strouhal number resolution of 0.085. Figure 4.15 has been

calculated using 106 rings of probes spaced 0.2D apart to give a resolution of k1D j/2π =

0.048. In the frequency domain thirteen averages have been used with a Strouhal number

resolution of 0.037.

These k−ω decompositions only approximate the axial decomposition, because the FWH

surfaces are in fact conical rather than cylindrical. However, there is a clear distinction

between the acoustic, as outlined by the black lines, and hydrodynamic components.

As has been shown from modal decompositions of near-field spectra, Figure 4.14 and

Figure 4.15 show that modes 0 and 1 dominate the hydrodynamic spectra and that the

acoustic component increasingly dominates the near-field spectra of the higher order

modes.
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Figure 4.14: k-ω decomposition of a jet near-field pressure using HARMONY jet
LES[112] data. a) mode 0; b) mode 1; c) mode 2; d) mode 3. M j = 0.875, x/D = 3 &

r/D = 1.28



Chapter 4 Scattered Source 75

Figure 4.15: k-ω decomposition of a jet near-field pressure using Doak jet LES[106,107]

data. a) mode 0; b) mode 1; c) mode 2; d) mode 3. M j = 0.6, x/D = 3 & r/D = 1.75

In order to create modal and k − ω decompositions, a significant number of micro-

phones are required to get good k1 resolution in the low frequency region where the

hydrodynamic pressure field is present (Figure 4.14 and Figure 4.15 use ≈1300 & 13000

probes respectively). Therefore, during an experiment it may not be possible to take

synchronous measurements over a sufficient number of microphones to find the axial

wavenumber using k − ω decomposition. Therefore, Lyu has developed a method to

calculate the axial wavenumber that uses a single ring of microphones if modal decom-

position is required, or a single microphone otherwise.

Using the assumption that the propagation of the hydrodynamic pressure can be de-

scribed by cylindrical harmonics, Lyu suggests calculating the axial wavenumber at a

given axial location by taking near-field measurements at several radial locations (the

measurements are not required to be taken synchronously). Then, a value for ιr is found

as a function of frequency such that the spectra across the different radial location can

be collapsed using a modified Bessel function of the second kind, K2
m(rιr). From ιr it

is then possible to find a value for the axial wavenumber, k1.

The LES data used to produce Figure 4.15 uses the same nozzle used in the near-field

measurements of Lawrence, and uses a jet Mach number also used in the experimental

campaign. This means a comparison can be made between the calculation method of

Lyu and the k − ω decomposition. In Figure 4.16, the peak axial wavenumber, k1, is
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plotted as a function of frequency. This allows a comparison with the axial wavenumber

calculated with Lyu’s method, which will only return a single value. At modes 0 and

1 the peak axial wavenumber increases approximately linearly until St = 0.5, beyond

which the maximum PSD corresponds to the acoustic component. In the region cor-

responding to the hydrodynamic pressure, the axial wavenumber calculated with Lyu’s

method compares very well up to St ≈ 0.9 & 0.25 (modes 0 and 1 respectively). Above

these Strouhal numbers the near-field spectra at the upper radial measurement location

is increasingly dominated by the acoustic rather than hydrodynamic field (Figure 4.17).

Therefore, the calculated wavenumber converges on the wavenumber associated with

the maximum PSD of the acoustic component. At this point, however, the calcula-

tion method of Lyu & Dowling fails, because acoustic propagation is not described by

K2
m(rιr).
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Figure 4.16: Comparison of the axial wavenumber calculated using the method of
Lyu with the axial wavenumber corresponding to the peak of the k-ω spectra from the
LES and Doak jets (X). a) mode 0; b) mode 1; c) mode 2; and, d) mode 3. x/D j = 3
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At modes 2 and 3 a comparison between the wavenumbers found from the method of

Lyu & Dowling and the k − ω decomposition (Figure 4.16) is more difficult, because

the amplitude of the acoustic component dominates the hydrodynamic component in

the LES data for most frequencies. The comparison can be improved both by using the

HARMONY LES data (Figure 4.14), as the FWH surface is half a jet diameter closer

to the jet, and finding the maximum over the range of PSD values for which k1 > 1.1k,

thus excluding the acoustic component (see Figure 4.18). Now the hydrodynamic wave

number is apparent over a larger range of Strouhal numbers and at mode 2. At some

Strouhal numbers the amplitude of the hydrodynamic component drops below the noise

in the decomposition, at which point the maximum k1 = 1.1k. It is apparent from

Figure 4.18 that the non-dimensional values plotted in Figure 4.18 collapse the results

from the two different jets. This is in agreement with the measurements of Bychkov &

Faranosov,[48] which show the convection velocity to scale with Strouhal number. This

could therefore be incorporated into a semi-empirical JSI noise prediction model. It is

now even more apparent that the axial wavenumbers of the hydrodynamic field increase

linearly, and are very similar for the 4 different modes plotted. This knowledge could be

used to extrapolate the initial values calculated using Lyu & Dowling’s method linearly

into the frequency range where the lower measurement location is still dominated by the

hydrodynamic pressure field of the jet.
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The effect of axial location on the axial wavenumber is explored in Figure 4.19. Over the

axial locations plotted the peak axial wavenumber does not appear to vary significantly.

Why this is the case is not immediately obvious. Upstream of the potential core, the

convection velocity may be fairly constant; however, beyond the end of the potential

core the jet velocity decays, and the convection velocity would then also be expected to

decrease. One possible problem may be that the resolution of the k − ω decomposition

is not sufficient in either frequency or wavenumber to show the variation in convection

velocity.
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2; and, d) mode 3.

The measurements of the near-field pressure of the 40 mm Doak jet can be used to assess

the effect of flight on the axial wavenumber of the hydrodynamic pressure. Figure 4.20

and Figure 4.21 compare the axial wavenumbers calculated using the method of Lyu

& Dowling from the near-field pressure measurements at x/x p = 0.65 and r/D =

1.22 & 1.72. Because of the need to keep the jet hydrodynamic pressure spectra above

the noise of the flight stream, only a few jet velocities are used. Additionally, as only one

microphone was used, it is not possible to decompose the pressure spectra into azimuthal

modes.

Figure 4.20 demonstrates that the axial wavenumber remains a function of the jet

Strouhal number even in flight. This is somewhat surprising, as one may expect that

the convection velocity of the jet hydrodynamic pressure would be modified by the pres-

ence of the flight stream. There are some differences between the axial wavenumbers

at different flight velocities. There appears to be an increase in the gradient of axial

wavenumber with respect to Strouhal number as flight stream velocity increases. This

made more clear in Figure 4.21, which compares axial wavenumbers at different flight-

stream velocities for a given jet velocity. Over the limited Strouhal number range, this

would appear to be due to a reduction in axial wavenumber at Strouhal numbers below

0.25. The gradient of the M f = 0 curve is actually lower than that found for the LES
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and 38.1 mm Doak nozzle, which is closer to M f = 0.1 and M f = 0.2. Before it is

possible make any conclusions about changes to axial wavenumber with flight, it will be

necessary to take measurements in a manner which allows azimuthal modal decompo-

sition. It would also be beneficial to have measurements for different nozzles, or even

LES, as before, if possible.

fDj=Uj

k
1
D

j=
2: 0.00

0.20

0.40

0.60

0.80

1.00
a) b)

0.00 0.25 0.50 0.75 1.00
0.00

0.20

0.40

0.60

0.80

1.00
c)

0.00 0.25 0.50 0.75 1.00

d)

Mj = 0:75 Mj = 0:80 Mj = 0:90

Figure 4.20: Axial wavenumber calculated using Lyu’s method at different jet and
flight velocities. x/x p = 0.65. a) M f = 0; b) M f = 0.1; c)M f = 0.2; and, d)M f = 0.3.

0.00 0.25 0.50 0.75 1.00

fDj=Uj

0.00

0.20

0.40

0.60

0.80

1.00

k
1
D

j=
2:

Mf = 0:0

Mf = 0:1

Mf = 0:2

Mf = 0:3

Figure 4.21: M j = 0.75 and x/x p = 0.65.



Chapter 4 Scattered Source 81

4.5 Bulleted Nozzles

In order for jet noise to be studied in isolation in a repeatable manner and in laboratories,

laboratory jets are fed from a compressor far upstream of the nozzle, and separated by

settling chambers and baffles. This, combined with the need to study the fundamentals

of jets, leads for the most part to simple axisymmetric jet nozzles, such as used so far.

On gas turbine engines there is a centre portion reserved for all the turbo-machinery

required to power the engine, with the ‘gas’ travelling in annular ducts around the core.

Therefore, to prevent separation and the resulting loss of thrust, there is a ‘bullet’ at the

end of the core that draws the inner diameter of the air stream back to the centreline. In

low bypass gas turbine engines, such as on business jets, where the primary jet produces

a significant level of noise, this bullet is generally hidden in a combined nozzle, externally

appearing as a circular nozzle. On high bypass ratio gas turbine engines, the primary

jet produces little noise, so there is less need to mix the primary and secondary flows.

The large diameter of these engines also means that extending the nacelle to create a

combined nozzle would lead to a large increase in weight and drag. Therefore, the bullet

is external to both primary and secondary nozzles. This causes the properties of the jet

to change between the nozzle exit and the end of the bullet, affecting the noise produced.

The most obvious effect of the bullet is to reduce the outer radius of the jet, due to

conservation of mass. Then, assuming the jet is fully expanded at the nozzle exit, an

effective jet diameter can be defined past the end of the bullet

D e =

√
4(A s +Ap)

π
, (4.1)

where Ap and A s are the primary and secondary nozzle exit areas respectively. Fig-

ure 4.22 shows the TKE predicted from a RANS calculation of a bulleted jet. If the

radial position of the line of maximum TKE is used as an indication of the diameter

of the jet close to the nozzle, then at the end of the bullet the effective jet diameter

is ≈ 0.4D s, very close to that predicted from Equation 4.1. The effect this effective

diameter has on far-field jet-mixing noise is demonstrated in Figure 4.23, where the use

of the effective diameter calculated with Equation 4.1 correctly collapses the spectra

with the circular jets.
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Figure 4.22: RANS solution for the turbulent kinetic energy of a dual-stream bulleted
nozzle with matched jet velocities. A s +A p = 0.5D2
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Figure 4.23: Collapse of far-field noise data (θ = 90◦) for jets of various diameters,
showing the effect of the bullet on far-field jet-mixing noise

What is less clear is how the bullet effects the hydrodynamic field of the jet. If a near-

field microphone is positioned beyond the bullet, it seems logical to scale the radial

location by the effective diameter. However, an axial position scaling is less clear cut, as

the shear layer is unlikely to develop in a similar manner along the bullet as for a circular

jet. Also, disturbances originating at the trailing edge that are coherent over large axial

distances will be subject to the reduction in diameter, and hence circumference of the

jet. This could possibly change the amplitudes and frequencies with respect to a circular

jet with the same effective diameter.

Ko et al. have studied the effect of the diameter of the bullet on near-field pressure of an

annular jet[113] with outer diameter kept constant. There results show that at a given

microphone location the diameter of the bullet had no effect on the measured spectral

shape and peak frequency. However, increased bullet diameter was associated with

spectra of lower amplitudes, possibly due to the decreased mass flow rate, or distance
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from shear layer to microphone. These results may not be entirely representative of

bulleted annular jets though, as the bullets aren’t aligned with the jet streamlines,

leading to separation from the bullet.[114] This may cause the jet near-field to develop

in a manner closer to that of a plain jet.
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Figure 4.24: Comparison of the JSI noise produced by nozzles with and without
bullets. θ = 90◦, φ = 0◦, l = 120 mm & h = 40 mm

Figure 4.24 gives a comparison of the JSI noise produced by two nozzles with (D 6= D e)

and two nozzles without (D = D e) bullets. The trailing edge of the plate was positioned

120 mm downstream of the nozzle and 40 mm radially from the jet axis. It is readily

apparent that the JSI noise produced is identical for the nozzles with matching effective

diameters. This lends weight to the argument for using the effective diameter to calculate

the amplitude of the hydrodynamic field. On the other hand, the spectral shape between

the different nozzles is very similar, despite the different h/D and l/D locations of the

plate, maybe suggesting that the absolute distance from nozzle to plate is a better

indication of spectral shape. Or, possibly, this is just due to the difference between

l/D = 3 and l/D = 3.75 being quite small.

4.6 Summary

The aim of this chapter was to demonstrate and develop scaling laws for the hydrody-

namic pressure spectra of a jet. These scaling laws can then be used, along with mea-

surements of jet hydrodynamic pressure spectra, to produce the input to a jet-surface

interaction noise calculation.

Near-field unsteady-pressure measurements have been taken of the Doak laboratory jet

with and without the presence of a coaxial ‘flight stream’ to simulate the effect of flight
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on the jet. The measurements were taken with a single nose-cone-equipped microphone

aligned with the jet axis and placed using a three-axis traverse, allowing the microphone

to be placed quickly and accurately at many locations. Additionally, measurements were

taken of the near-field of the flight stream, which is essentially just a larger jet.

The measured near-field spectra provide further evidence that the amplitude of the

hydrodynamic pressure spectra scale with jet velocity to the third power. Comparing

the measurements taken relative to the jet and flight stream suggests that the amplitude

also scales with nozzle diameter. Further, comparison of installed jet noise measurements

taken with nozzles of different diameter and flow area would suggest it is a diameter based

on flow area against which the near-field pressure spectra scales (at least downstream of

any bullet). The in-flight measurements would suggest that these scaling laws remain

true in flight if the axial location of the microphone is held constant relative to the

potential-core length of the jet.

In addition to the spectrum of the hydrodynamic pressure, it is also important that the

axial wavenumber of the hydrodynamic pressure field is known for the calculation of

jet-surface interaction noise. k-ω decomposition has been used to get the wavenumber

spectra on FWH surfaces placed within the near-field of jets in LESs. This has shown

the peak axial wavenumber of the hydrodynamic field to increase approximately linearly

with Strouhal number, and to remain constant with axial position. Comparison with

the method proposed by Lyu & Dowling to calculate the axial wavenumber from ex-

perimental data, showed that the method of Lyu & Dowling returned the peak axial

wavenumber of the k-ω decomposition. Measurements showed small changes between

axial wavenumbers at low Strouhal numbers in flight. However, in-flight measurements

with multiple microphones (so the near-field pressure can be decomposed into azimuthal

modes) will be required before further conclusions can be drawn.
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Trailing Edge Scattering

Several jet-surface interaction noise models have been published, based on analytical

edge-scattering theories.[65][73][67] These models have been validated against small-scale

laboratory measurements of installed jet noise. In this chapter, the jet-surface inter-

action noise model of Lyu & Dowling[67–69,71,115] will be validated against laboratory

measurements of installed jet noise, where a co-axial ‘flight stream’ has been used to sim-

ulate the effect of forward motion on the jet. Additionally, comparisons have been made

with installed jet noise measurements using plates with chord lengths more representa-

tive of airliner wings. Finally, the use of Roger & Moreau’s back-scattering theory[43, 51]

and strip theory are discussed for modelling more realistic planform geometries.

5.1 Data Quality

Figure 5.1 shows far-field installed spectra at 90◦ with the flight-stream and the jet

matched to the flight-stream the velocity. There is a broad tone, the frequency of which

is dependent on the flight-stream velocity, between 5 and 15 kHz. Using a shedding

Strouhal number of 0.22 leads to a length dimension between approximately 1.8 and

2 mm. This suggests that the source of this noise is vortex shedding from the trailing

edge of the plate, which is approximately 1.2 mm thick, if one also includes the thickness

of the boundary layer formed on the plate by the flight-stream flow.

85
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Figure 5.1: Far-field installed flight-stream background noise. Installed flat plate is
located at l/D = 3 and h/D = 1, with c/D = 7.5

As several of the same plates and jet/flight acoustic Mach numbers were used in both

the experiment campaigns, it is possible to compare the results of the two to ascertain

the repeatability of measurements. A comparison of far-field installed spectra, using

the c/D = 7.5 plate, between the two test campaigns is presented in Figure 5.2. The

only noticeable differences are observed at high frequencies, well above the frequency

range of the JSI noise. This difference is likely because microphone capsule frequency

corrections were not available for the capsules used in the second campaign, and so

have not been applied to these spectra. The measurements are, therefore, deemed to be

suitably repeatable.
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Figure 5.2: Comparison of installed far-field pressure measurements taken in the first
and second measurement campaigns. M f = 0, θ = 90◦ and φ = 0◦. a) M j = 0.3; b)

M j = 0.6; c) M j = 0.75; d) M j = 0.8

After taking the installed measurements with the c/D = 2.5 plate during the first

campaign, it was discovered that the plate was positioned closer to the jet than intended

at h/D = 0.9 rather than h/D = 1. This was found to be due to a bow in the plate,

which the tensioning bolts straightened out, reducing the distance to the jet. With the

actual position of the plate now measured, only a few key jet and flight-stream velocities

were repeated with the plate in the correct location. This difference is clearly noticeable

in Figure 5.3. The repeats are much more comparable with the measurements in the

second campaign, again considering the messy spectra and the lack of frequency response

corrections. This again suggests a certain degree of repeatability, once one accounts for

the bow in the plate.
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Figure 5.3: Comparison of installed far-field pressure measurements taken in the first
and second measurement campaigns. θ = 90◦ and φ = 0◦. a) M j = 0.3, M f = 0; b)

M j = 0.6, M f = 0.1; c) M j = 0.75, M f = 0.2; d) a)M j = 0.9, M f = 0.3

Figure 5.2 and Figure 5.3 suggest that the plates can be placed with some precision, but

does not necessarily ensure that the plate is positioned with a high degree of accuracy.

For instance, the plate has been positioned using a tape measure to measure the distance

from the nozzle to the underside of the plate (side of the plate facing the jet). This means

that the position of the plate can be measured to, at best, the nearest millimetre. In

addition, the plates are approximately 1.2 mm thick and the nozzle thickness at the exit

is 0.5 mm. This adds to the uncertainty over the value of h that is equivalent to that in

a model that assumes negligible plate thickness.

5.2 Sources of Error

5.2.1 Modal Decomposition

In order to validate Lyu & Dowling’s JSI noise model in flight, measurements are required

of the jet near-field pressure within the flight stream. As discussed in Chapter 3, this

requirement to have a microphone in the flow, plus the need to reposition the microphone

regularly meant that only a single microphone was used. With only one microphone it

is not possible to decompose the near-field pressure into modes. Far-field JSI noise
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calculations can therefore only be made using Lyu & Dowling’s simplified model. It

would therefore be appropriate to try to understand what effect the use of the simplified

model could have on the JSI noise calculations.

To demonstrate differences between the full and simplified models, the near-field ring-

array measurements of Lawrence (described in Chapter 3 and Chapter 4) will be used.

It should be noted, however, that these measurements were of a different nozzle to

that used for the in-flight measurements, so the effect of a modal decomposition on

calculations using the measurements of Lawrence may not be directly applicable to the

in-flight calculations. Additionally, these near-field measurements were taken only for a

static nozzle, the modal composition of the near-field could potentially change in flight.

Figure 5.4 displays modal decompositions of the near-field spectra at x/D = 3 and

M j = 0.3. As has previously been shown, modes 0 and 1 dominate the hydrodynamic

spectra, especially at the peak. At Strouhal numbers much higher than the peak, in

this case around one, the acoustic field of the jet starts to dominate the spectra. The

generation of the acoustic field by random turbulent fluctuations in the shear layer means

that higher order modes become increasingly important.
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Figure 5.4: Modal decomposition of the near-field pressure of an isolated static axi-
symmetric jet. M j = 0.3, x/D = 3. a) r/D = 1.22; b) r/D = 2.22

Using this modal decomposition, far-field predictions have been made using increasing

numbers of modes, and compared with Lyu’s simplified model (Figure 5.5). Unsur-

prisingly, given the previous results, there is a large difference in amplitude between

predictions using mode 0 and modes 0 and 1. However, adding the remaining modes to

the predictions has little effect. This is because the amplitude of these modes is low,

and, when decomposed into spanwise components, their energy does not peak at k2 = 0,

which is the component that propagates to this location, at φ = 0.
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Figure 5.5: Comparison of far-field JSI noise calculated with Lyu’s simplified method,
using one microphone, and full method using modes m = 0, m = 0 & 1 and m =

0, 1, 2, 3, & 4. M j = 0.30, c/D = 20, θ = 90◦ and φ = 0◦.

Figure 5.5 shows that there is a difference of several decibels between the full model, using

the modal decomposition of the near-field, and the simplified model. This difference is

plotted in Figure 5.6, where it is compared with the difference in SPL between modes

m = 0 & 1 and the near-field spectra on a single microphone. Clearly the majority of

the increase with the simplified model is due to retaining the higher order modes, which

would otherwise have an insignificant contribution to the JSI noise. The remainder

likely comes from the difference in propagation and spanwise-wavenumber distribution

between modes 0 and 1. This leads to an error of 1 dB at the peak, which increases to

2.5 dB at low frequencies and 5 dB at high frequencies, where the modes greater than 1

contribute most.
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Figure 5.6: Difference in amplitude measured/calculated (near-field/far-field respec-
tively) between the near-field measured with a single microphone and modes m = 0 & 1
of the near-field measured with multiple microphones. M j = 0.30, c/D = 20, θ = 90◦.

This error does not appear to have a significant effect on the overall noise prediction

because, firstly, the interference pattern remains unchanged, so the same directivity will

be predicted, and, secondly, at the point when the error reaches 5 dB the spectrum

is already 20 dB below the peak. Therefore, using near-field pressure measurements

taken with a single microphone in conjunction with Lyu’s simplified model is likely to

be sufficient to create OASPL predictions for axisymmetric jets where the observer is

positioned at φ = 0◦ or 180◦.

5.2.2 Near-Field Microphone Position

The model predictions are sensitive to errors in the positioning of the microphones in

two ways: 1) it can lead to the use of incorrect axial wavenumbers; and, 2) the incident

pressure amplitude on the surface of the plate can be affected. The near-field pressure

varies much more rapidly in the radial direction than the axial direction, so it is much

more likely that any error is due to the radial placement of the microphone.

To calculate the axial wavenumber the hydrodynamic pressure spectra at two radial

measurement locations are collapsed using modified Bessel functions of the second kind.

Thus, if the microphones are not in the expected locations, either through a systematic

error or otherwise, then the wrong wavenumber may be calculated. With a traverse res-

olution of 6.25 µm, the error in spacing between microphone locations will be negligible.

A systematic error is, therefore, more likely, as the reference radius of the microphone

was set by eye against a laser cast along the jet centreline. An estimate can be made of

the effect of a systematic error using the ratio of spectral amplitudes at two radii with
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a constant offset
PSD2

PSD1
=

K2
m([h2 + ε]ιr)

K2
m([h1 + ε]ιr)

. (5.1)

The first term of the Taylor expansion can be found by differentiating with respect to ε,

d

dε

[
K2
m(C2)

K2
m(C1)

]
= − ιr Km(C2)

K2
m(C1)

[
Km−1(C2) + Km+1(C2)− Km(C1)[ Km−1(C1) + Km+1(C1)]

Km(C1)

]
.

(5.2)

If the asymptotic expansion of the Bessel function for large arguments is used,

Km(z) ∼
√

π

2z
e−z, (5.3)

then the result of the differential simplifies to

− 2ιr
C2

C1
e−2(C1−C2) + 2ιr

C2

C1
e−2(C1−C2) = 0. (5.4)

This suggests that, if the systematic error is small, the effect it has on the calculated

wavenumber, and thus on the model predictions, will be negligible.

The hydrodynamic pressure field is measured on a ring about the jet and then propagated

onto the trailing edge of the scattering surface using a modified Bessel function of the

second kind, hence

PSD ∝ 1

K2
m(ιrr0)

. (5.5)

Differentiating with respect to r0 gives

d

dr0

1

K2
m(r0ιr)

= kr
Km−1(r0ιr) + Km+1(r0ιr)

K3
m(r0ιr)

. (5.6)

Applying the Taylor series approximation, the PSD on the trailing edge, and therefore

in the far-field, is proportional to

PSD ∝ 1

K2
m(ιrr0)

[
1 + ειr

Km−1(r0ιr) + Km+1(r0ιr)

Km(r0ιr)

]
. (5.7)

The first error term is proportional to ιr, which is itself proportional to frequency.

Therefore, an error in the placement of the microphone will more adversely affect the

higher frequencies. In the rest of the chapter predictions will be made using mode 0

only.

5.3 Flight

The steps for calculating JSI noise with Lyu’s model are demonstrated at a jet Mach

number of 0.75. This jet Mach number has been chosen because, at this trailing-edge
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location, JSI noise is apparent above the jet and flight-stream mixing noise at all flight-

stream velocities and a polar angle of θ = 90◦.

Measured near-field spectra across the flight-stream Mach number range are displayed in

Figure 5.7. As the flight-stream Mach number is increased, the hydrodynamic pressure

spectra of the flight stream dominates that provided by the jet at increasing Strouhal

numbers. The regions where the flight stream dominates are well below the peak

Strouhal number of the jet hydrodynamic pressure spectra, so should have little effect

on the JSI noise calculation, and have, therefore, been removed from the spectra.
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Figure 5.7: Jet Near-field spectra. M j = 0.75, x/D = 3. a) M f = 0.0; b) M f = 0.1;
c) M f = 0.2; and, d) M f = 0.3

The first step towards calculating JSI noise via Lyu & Dowling’s method is to calculate

the axial wavenumber of the hydrodynamic pressure field. This is accomplished via the

method outlined by Lyu & Dowling, using modified Bessel functions of the second kind

to collapse the red and black spectra in Figure 5.7. The resulting axial wavenumbers

are shown in Figure 5.8. As was discussed in Chapter 4, the axial wavenumber of the

jet hydrodynamic pressure field increases linearly with Strouhal number up until a local

maximum. This maximum corresponds to the point at which the acoustic pressure begins

to dominate the hydrodynamic pressure at the furthest radial measurement location (red

lines in Figure 5.7). Above this Strouhal number, the calculated wavenumber tends to

the acoustic wavenumber. k − ω decomposition of the near-field pressure of an isolated

jet using LES data, in Chapter 4, suggested that the peak of the axial-wavenumber
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distribution increases linearly. Thus, the initial linear region in Figure 5.8 has been

extrapolated to higher Strouhal numbers.
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Figure 5.8: Wavenumbers calculated from the near-field spectra of a Mach 0.75 jet.
a) M f = 0.0; b) M f = 0.1; c) M f = 0.2; and, d) M f = 0.3

Using the jet near-field spectra measured at the lowest radial location (Figure 5.7)

and the calculated wavenumbers (Figure 5.8), JSI noise is then calculated using Lyu’s

method; propagating the pressure onto the plate using cylindrical harmonics, and using

Amiet’s theory to calculate the noise scattered to the far field. A comparison of the

calculated and experimentally measured JSI noise is made in Fig. 5.9. For flight Mach

numbers of M f = 0 (Figure 5.9a) and M f = 0.1 (Figure 5.9b), there is very good

agreement between the calculated and measured results, both in amplitude and shape.

The slight upturn in the JSI noise spectra between Strouhal numbers of 1 and 2 is

caused by the acoustic field beginning to dominate the hydrodynamic field in the near-

field spectra. At flight Mach numbers of 0.2 (Figure 5.9c) and 0.3 (Figure 5.9d), it is

more difficult to make a comparison, as the installed level is close to the isolated level.

However, the model appears to increasingly under-predict the measured spectra as flight

velocity increases; though the spectral shapes still appear to be in good agreement.
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Figure 5.9: Comparison of far-field JSI noise calculated with Lyu’s method with
experimental measurements of installed and isolated jet noise. M j = 0.75. a) Mf = 0.0;

b) M f = 0.1; c) M f = 0.2; and, d) M f = 0.3

Despite the under-prediction of the model at M f = 0.3, both the model and the experi-

mental measurements in Figure 5.9 serve to demonstrate the effect of flight in reducing

jet noise (at a polar angle of 90◦). Both the isolated and installed spectra can be seen to

reduce as flight velocity increases, with the peak level reducing by approximately 10 dB

for the isolated jet noise and the installed jet noise by 13 dB. With static jet noise and

jet-surface interaction peak noise scaling as jet velocity to the seventh and fifth power

respectively, it may be expected that the isolated jet noise would decay by the greater

amount in flight. However, in flight the jet stretches so jet mixing noise scales with a

velocity difference to an exponent less than seven, while the same stretching increases

the distance from the edge of the shear layer to the trailing-edge of the wing, reducing

JSI noise further than the velocity difference to the fifth power.

Another installation effect apparent from the experimental data in Figure 5.9 is reflec-

tion of the acoustic jet-mixing noise from the plate. This is apparent at high Strouhal

numbers, where the installed jet noise remains higher than the isolated levels. This has

been extensively covered in literature, and is not modelled here.

Further comparison is made between the model and the experimental data in Figure 5.10.

The higher velocity Mach 0.9 jet is used as it gives the greatest separation from the noise

produced by the flight stream, both in frequency and amplitude, at the flight Mach
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number of 0.3. It is immediately apparent from Figure 5.10 that the under-prediction

of the model at a flight Mach number of 0.3 (as seen in Figure 5.9) is true also for a jet

Mach number of 0.9. Reasons for this under prediction could include: Firstly, a smaller

radial separation between the near-field microphone locations was used to calculate the

axial wavenumbers in this case. This could exacerbate any error in the positioning

of the microphone and the effect it has on the calculation of the axial wavenumbers.

Secondly, high frequency JSI noise is more sensitive to the positioning of both the near-

field microphone and the plate. As the peak frequency increases in flight, this would

also exacerbate any positioning error. Thirdly, the jet may experience a Coanda effect

in flight, moving toward the plate and increasing the level of JSI noise. Finally, the

decrease in amplitude and increase in peak frequency of the JSI noise may make the

reflection of mixing noise significant over the same Strouhal number range. Another

aspect that needs exploring, but is unlikely to contribute to the under-prediction, is the

effect of flight on the relative amplitudes of the azimuthal modes, as this will affect the

amplitude and azimuthal directivity of far-field JSI noise.
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Figure 5.10: Comparison of far-field JSI noise calculated with Lyu’s method with
experimental measurements of installed and isolated jet noise. M j = 0.90, M f = 0.3,

h/D = 1, l/D = 3 and φ = 0◦. a) θ = 71◦; b) θ = 90◦; c) θ = 109◦; d) θ = 129◦

Figure 5.11 displays a comparison between model and experimental measurements for

the M j = 0.9 jet, with M f = 0.2. As for M j = 0.75 at the same flight-stream velocity,

both the amplitude and spectral shape compare very well with the model. It would

appear, therefore, that the under-prediction is limited to M f > 0.2.
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Figure 5.11: Comparison of far-field JSI noise calculated with Lyu’s method with
experimental measurements of installed and isolated jet noise. M j = 0.90, M f = 0.2,

h/D = 1, l/D = 3 and φ = 0◦. a) θ = 71◦; b) θ = 90◦; c) θ = 109◦; d) θ = 129◦

5.4 Chord Length

Various previously published experiments[22] have shown how the chord of a plate po-

sitioned in proximity to a jet changes the spectral shape and amplitude of JSI noise.

This is also demonstrated in Figure 5.12, which shows how the amplitude of the lower

frequencies of JSI noise reduce as chord length decreases. This is because the reduc-

tion in chord: a) changes the phase of the incident pressure on the plate, which when

scattered to the far-field interact to create angles where the sources are in phase and

areas where the plate sources are out of phase; b) increases the strength of the trailing-

edge scattered noise diffracted by the leading edge and interfering with the trailing-edge

scattered noise in the far-field, as was modelled by Miller;[54] and, c) changes the phase

angle and relative strengths of the leading-edge and trailing-edge scattered noise.
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Figure 5.12: Measured far-field noise spectra with four different chord lengths. c/D
= 20 comes from measurements with a 38.1 mm nozzle. M j = 0.3, M f = 0, h/D = 1,

l/D = 3, θ = 90◦ and φ = 0◦

The effect of chord length on installed jet noise is further demonstrated in Figure 5.13.

It is apparent in this figure that the directivity becomes less of a cardioid and more of

a dipole as chord reduces, in agreement with edge-scattering theory. While this change

has a large effect on the amplitude in the forward polar arc there is little change in

the rear-arc, where jet noise is a large component of turbofan noise. The reason for the

small change in OASPL in the mid and rear polar arcs is shown in Figure 5.12, where the

biggest effect of the changing chord is on the low frequency end of the JSI noise spectra,

and therefore does not have a strong effect on OASPL. At full scale and applying a

weighting for the human response to frequency, the difference in PNL (Perceived Noise

Level) in the mid and rear polar arcs would likely be even less.
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Figure 5.13: Comparison of measured far-field installed-jet OASPL directivity with
four different chord lengths. c/D = 20 comes from measurements with a 38.1 mm

nozzle. M j = 0.3, M f = 0 and φ = 0◦.

Amiet’s theory (used by Lyu & Dowling) assumes that the chord of the surface is semi-

infinite for calculating the scattered surface pressure. The effect of finite chord on the

far-field scattered noise is approximated by limiting the surface area to which Curle’s

theory is applied. This ignores the diffraction of the trailing-edge-scattered noise by the

leading edge, and any leading-edge scattering.

Most comparisons between JSI noise calculated with Amiet’s theory and experiment

have used plates with very large chords, in order to reduce the effects of the leading

edge on the measured installed jet noise. Therefore, a comparison has been made with

surfaces of differing chords, including cases closer in scale to realistic wing surfaces (2.5D

- wing, 0.7D - single slotted flap).

In Figure 5.14 and Figure 5.15 JSI noise model predictions are compared with exper-

imental measurements of installed jet noise. From these figures it would appear that

the model has accurately calculated the spectra of the two largest plates (c/D = 20

and c/D = 7.5). There is a slight over-prediction of the peak SPL with c/D = 7.5 at

M j = 0.75. This is likely to be due to taking near-field pressure measurements with

only one microphone, preventing the decomposition of the near-field pressure spectrum

into azimuthal modes. This would allow modes of order |m| > 1 to contribute to the JSI

noise prediction more than they should at this polar angle. To confirm this hypothesis

near-field pressure measurements would need to be taken at the same axial and radial

location, relative to the jet nozzle, and jet velocity, but with sufficient microphones to

decompose the pressure into azimuthal modes and use the modal spectra to calculate

the JSI noise.
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Once the chord has been reduced to 2.5 jet diameters, the entire JSI noise spectra

is overpredicted by approximately ≈ 5 dB. This suggests that the simplified model no

longer captures the physics of the situation, as not decomposing the near-field into modes

would show the same level of overprediction between different chord lengths. Reducing

the chord further, to c/D = 0.7, the overprediction has increased further below the peak

frequency. Although at frequencies at and above the peak the model and measured

spectra compare very well. However, with the leading edge 2.3D downstream of the

nozzle, a leading-edge-scattering source is likely to exist, which would further raise the

calculated spectra.
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Figure 5.14: Comparison of model predictions and experimental installed jet noise
measurements with different chord lengths. M j = 0.3, M f = 0, l/D = 3, h/D = 1,
θ = 90◦ and φ = 0◦. a) c/D = 20; b) c/D = 7.5; c) c/D = 2.5 (h/D = 0.9); and, d)

c/D = 0.7
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Figure 5.15: Comparison of model predictions and experimental installed jet noise
measurements with different chord lengths. M j = 0.75, M f = 0, l/D = 3, h/D = 1,
θ = 90◦ and φ = 0◦. a) c/D = 20; b) c/D = 7.5; c) c/D = 2.5 (h/D = 0.9); and, d)

c/D = 0.7

As chord reduces, one expects the comparison to become less favourable because Amiet’s

theory does not account for the leading edge when calculating the scattered surface

pressure. This can be corrected by applying Schwarzchild’s solution iteratively to the

leading and trailing edges. The first leading edge correction to Amiet’s trailing edge

scattering theory has been derived by Roger & Moreau.[43, 51]

In Figure 5.16 and Figure 5.17 Roger & Moreau’s back-scattering correction has been

applied to the calculation of the JSI noise from the c/D = 2.5 and 0.7 plates. Compared

with Amiet’s original theory, the largest effect of the back-scattering correction has

been to reduce the amplitude of the JSI noise spectra at Strouhal numbers/frequencies,

below the peak. Roger & Moreau have demonstrated that the back-scattering correction

increasingly reduces the amplitude of the scattered far field noise as kc reduces below

one. This explains why it is most noticeable at the lower jet velocity of M j = 0.3 (see

Figure 5.16).
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Figure 5.16: Comparison of JSI noise predictions using Amiet’s theory without and
with Roger & Moreau’s back-scattering theory. M j = 0.3, M f = 0, l/D = 3, h/D = 1,

θ = 90◦ and φ = 0◦. a) c/D = 2.5 (h/D = 0.9); b) c/D = 0.7
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Figure 5.17: Comparison of JSI noise predictions using Amiet’s theory without and
with Roger & Moreau’s back-scattering theory. M j = 0.75, M f = 0, l/D = 3, h/D = 1,

θ = 90◦ and φ = 0◦. a) c/D = 2.5 (h/D = 0.9); b) c/D = 0.7

At higher frequencies the effect of the back-scattering correction is to modify the di-

rectivity and hence the spectral shape. This is demonstrated further in Figure 5.18

where the biggest change to spectral shape occurs in the rear arc. This is because the

back-scattering correction is another edge scattering solution, and by itself has far-field

directivity pattern that goes to zero in the forward arc. However, the effect has been

to raise the peak amplitude further, not to lower it, increasing the discrepancy with the

measured data.
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Figure 5.18: Comparison of far-field JSI noise predictions using Amiet’s theory with-
out and with Roger & Moreau’s back-scattering theory. M j = 0.6, M f = 0, l/D = 3,

h/D = 0.9 and φ = 0◦. a) θ = 50◦; b) θ = 70◦; c) θ = 90◦; and, d) θ = 110◦

In Figure 5.19 a comparison has been made between the experimentally measured JSI

noise OASPL and that calculated with the method of Lyu & Dowling for the c/D = 7.5

plate. At the lowest Mach number (M j = 0.3, Figure 5.19a), the shapes of the model

and experimental directivities match very well. The amplitude of the model is approx-

imately 1-2 dB greater than that of the experiment for this case, but, as previously

mentioned, this is likely due to using the total near-field SPL rather than using a modal

decomposition. Also included for comparison are dipole and cardioid directivity pat-

terns, with the amplitude at 90◦ set to match that of the experimental data. At large

chord lengths, and high frequencies, Amiet’s theory suggests that the directivity should

display a cardioid directivity pattern. In Figure 5.19a, there appears to be a cardioid

directivity in the forward arc and a dipole directivity in the rear arc. As the jet velocity

is increased, the directivity appears to ‘flatten’ in the forward arc. This trend is seen

in both the experimental and model directivity patterns, though the model appears to

be increasingly overpredicting in the forward arc, while maintaining the 1-2 dB offset in

the rear arc.
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Figure 5.19: Comparison of model and experimental polar OASPL directivity. l/D =
3, h/D = 1, c/D = 7.5, M f = 0 and φ = 0◦. a) M j = 0.3; b) M j = 0.6; c) M j = 0.75;

and, d) M j = 0.9;

Polar directivity plots for c/D = 2.5 and c/D = 0.7 are displayed in Figure 5.20 and Fig-

ure 5.21 respectively. As in Figure 5.19, both plots display a good comparison between

the model and experimental OASPL directivity patterns at the lowest jet velocity, while

the OASPL in the rear arc is increasingly overpredicted by the model as jet velocity

is increased. In addition, the overprediction of the OASPL within the forward arc has

increased with the c/D = 2.5 plate. The forward arc OASPL of the c/D = 0.7 plate

appears to be very well predicted, however the model OASPL would likely increase if

leading-edge scattering were also included. For the c/D = 0.7 plate, the directivity at

each jet velocity appears to be close to that of a dipole, which is to be expected as kc

becomes small.
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Figure 5.20: Comparison of model and experimental polar OASPL directivity. l/D =
3, h/D = 0.9, c/D = 2.5, M f = 0 and φ = 0◦. a) M j = 0.3; b) M j = 0.6; c) M j = 0.75;

and, d) M j = 0.9;
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Figure 5.21: Comparison of model and experimental polar OASPL directivity. l/D =
3, h/D = 1, c/D = 0.7, M f = 0 and φ = 0◦. a) M j = 0.3; b) M j = 0.6; c) M j = 0.75;

and, d) M j = 0.9;

To calculate OASPL in Figures 5.19, 5.20 and 5.21, the measured spectra were integrated

from 100 Hz up to a Strouhal number of one. This limited range has been used to try

to capture the JSI noise, while minimising the contributions from the reflection of jet

mixing noise. The isolated jet OASPL has then been subtracted from the installed

OASPL, where the installed OASPL is greater one decibel above the isolated OASPL.

Below one decibel of separation it becomes increasingly difficult to determine whether the

difference between the installed and isolated level is due to JSI noise, other installation

effects or differences in jet velocity (due to control system).

Further work is required to understand why the model increasingly overpredicts the JSI

noise in the rear arc as jet velocity increases. One hypothesis concerns the assumption

that the incident pressure, p′S1, is stationary and takes the value at the trailing edge; as

it has a greater amplitude in the rear arc than the trailing-edge scattered component,

p′S2, and is dependent on the pressure across the entire surface. This could be further

explored using a near-field pressure model that includes the variation along the jet axis,

such as the models of Bychkov & Faranosov[48] or Vera.[64]
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5.5 Finite Span

So far it has been assumed, for the purpose of calculating the JSI noise analytically

using Amiet’s theory, that the span of the scattering surfaces are infinite. Amiet[40, 50]

states that the infinite span assumption is valid when

Mk1d >> 1, d/c >> 1, k1d >> 1. (5.8)

These conditions have not necessarily been met at all frequencies for the experimental

data used. For instance the plate of Lawrence had an aspect ratio, d/c of 1.44 which is

not much greater than 1. Therefore it may not always be possible to assume that the

span is infinite.

It may also not be possible to assume the scattering surface has an infinite span if either

the geometry of the scattering surface or the flow conditions vary along the span.[116–119]

In such cases, the solution can be approximated by splitting the surface into strips of

finite span, assuming the conditions are constant along each strip, and then applying

Amiet’s theory. However, when applying Amiet’s theory to each strip, as the span is

finite the sinc function does not become a delta function, and, therefore, the integral

over k2 cannot be so easily evaluated.

For aerofoil self-noise, the spanwise wavenumbers and the different strips are assumed

to be incoherent. Thus, the scattered far-field noise due to each strip becomes

PSD Sx(ω) =

(
kx3

β2r̃2
x

)2 d

2

∫ ∞
−∞

PSD I(ω, k2)|Γ(c, C1, C3)|2 2 sin2(C2d/2)

πd|C2|2
dk2. (5.9)

Summing the noise due to each strip incoherently works well if the spanwise extent of

each strip is greater than the correlation length. If not, the amplitude and directivity

will be incorrect. To correctly calculate the far-field noise in this situation, the noise

from each strip should be summed coherently. However, the coherence of the boundary

layer generated self-noise between strips is generally unknown. Therefore, an inverse

strip theory has been suggested by Christophe & Anthoine,[116] whereby the noise from

a large strip is subtracted from an infinite span calculation to effectively give the noise

produced by a much smaller strip.

In the model of Lyu & Dowling, measurements of the jet near field are used to decom-

pose the hydrodynamic pressure field into modes and axial wavenumber components

(although only one axial wavenumber is assumed for each frequency and mode), which

are incoherent. These modes are then propagated onto the scattering surface whereupon

a Fourier transform is taken to get the spanwise wavenumber distribution. The com-

ponents of the spanwise wavenumber distribution are therefore coherent, and therefore

need to be summed in terms of pressure. The integral over k2 is then calculated in terms
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of pressure for each strip

p′Sx(ω) = (1 + i)
kx3e

−ik̃r̃x+k̃Mx̃1

πβ2r̃2
x

∞∑
m=−∞

∫ ∞
−∞

p̂′I(ω,m, k2)Γ(c, C1, C3) e− iC2y2c sin(C2d/2)

C2
dk2, (5.10)

where y2c is the location of the spanwise centre of the strip.

Since the incident pressure on each strip is due to the same source - the jet - the far-field

noise from each strip should also be summed coherently. For N strips, and assuming

the trailing edges of the strips are at the same axial location (l), the far-field noise is

p′Sx(ω) = (1 + i)
kx3 e− ik(r̃x−Mx1/β)/β

πβ2r̃2
x∑

m

N∑
q=1

∫ ∞
−∞

p′(ω,m)f(ιr,m, k2, h)Γ(cq, C1, C3) e− iC2y2c,q
sin(C2dq/2)

C2
dk2, (5.11)

where f(ιr,m, k2, h) = p′I(ω,m, k2)/p′(ω,m).The far-field PSD can then be calculated

using

PSD Sx(ω) = lim
T→∞

π

T
¯p′Sxp
′∗
Sx. (5.12)

The only stochastic variable in the calculation of p′Sx is p′(ω,m), which being indepen-

dent of k2 can be removed from the integral. Also, as the modes are incoherent, it is not

necessary to calculate the CPSD between different modes. This then results in

PSD Sx(ω) =
2k2x2

3

π2β4r̃4
x∑

m

∣∣∣∣∣∣
N∑
q=1

∫ ∞
−∞

f(ιr,m, k2, h)Γ(cq, C1, C3) e− iC2y2c,q
sin(C2dq/2)

C2
dk2

∣∣∣∣∣∣
2

PSD(ω,m). (5.13)

There are several points to note when completing the integrals in Equation 5.9 and

Equation 5.10. Firstly, it may be necessary to integrate over super-critical wavenumbers,

for which the transformed wavenumber k̃ is imaginary. In this case Roger & Moreau[43]

use

C1 = k̃ + k1 − (k̃2 tan(ψ)− kM)/(β2 + tan2(ψ)) (5.14)

where k̃2 > 0, while to get the correct decay on the surface,

C1 = −k̃ + k1 − (k̃2 tan(ψ)− kM)/(β2 + tan2(ψ)), (5.15)

when k̃2 < 0. Secondly, the Schwarzchild solution is only valid when k̃ does not equal

zero. Thirdly, there is an extra term, e− iC2y2c , in Equation 5.10 compared to Equa-

tion 2.128. This term comes from the shift theorem and accounts for a strip whose



Chapter 5 Trailing Edge Scattering 109

centre line is not along y2 = 0. Finally, the integral must be completed numerically,

which is much more computationally expensive than assuming infinite span.

Figure 5.22, Figure 5.23 and Figure 5.24 compare far-field solutions for the finite and

infinite-span implementations for different azimuthal angles, polar angles and chords,

respectively. For each case, the strip theory solution matches the infinite span solution

when the span to wavelength ratio is greater than 103. As the span is reduced, there

comes a point at which the strip theory solution no longer matches the infinite span

solution. In most cases the solution starts to vary in a sinusoidal pattern about the

infinite span solution when the integral over k2 includes the point where k̃ = 0. Thus, it

occurs at high ratios of d/k at azimuthal observer angles closer to the plane of the plate

as the centre of the sinc function shifts towards this location. As the span is reduced,

the variation increases further and the result can also become spiky. This is because the

location k̃ = 0 becomes more important to the integral, and at this location there is a

singularity, arising from the term
√

C1
C1−C3

E(c[C1−C3]) in Γ(c, C1, C3). This behaviour

is, however, suppressed when the chord to wavelength ratio, c/λ, is low because the

error function now goes to zero more quickly than the denominator, C1 −C3, as k̃ → 0.

A robust manner in which to overcome this singularity is needed if strip theory is to

become useful for industrial application.
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Figure 5.22: Comparison of the finite-span and infinite-span solutions at several
azimuthal angles. f = 1000 Hz, c = 3.4, θ = 90◦ and k1 = 45
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Figure 5.23: Comparison of the finite-span and infinite-span solutions at several polar
angles. f = 1000 Hz, c = 3.4, φ = 0◦ and k1 = 45
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Figure 5.24: Comparison of the finite-span and infinite-span solutions at several plate
chords.f = 1000 Hz, φ = 80◦, θ = 90◦ and k1 = 45

As the noise from multiple strips is to be summed coherently, the total noise should

converge on the infinite span solution as the number of strips is increased. This is

demonstrated in Figure 5.25 with example spectra calculated using increasing numbers

of strips. This is most evident at the lowest frequencies with the amplitude initially

8 dB below the infinite span solution. At high frequencies, there is not such an obvious

change in amplitude but, by the time the number of strips reaches 32, the spectrum

shows the same scalloped pattern as the infinite span solution. Additionally, Figure 5.25

demonstrates that, for each total number of strips, the spectrum matches that of a single

strip with the same overall span.
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Figure 5.25: Convergence of strip theory model on the infinite span solution with
increasing number of strips. c = 0.1, d = c/8, θ = 90◦, φ = 45◦. Dashed lines are single

strips with the same overall span as combined d = c/8 strips.

As previously mentioned, the plate used in the JSI noise experiments has an aspect ratio

of 1.44. At low frequencies and low jet velocities, therefore, the finite span may have

an effect. In Figure 5.26, a comparison of the finite and infinite span models is shown

with the far-field measurements of Lawrence at a jet Mach number of 0.3. In general

there is little difference between the two models. The largest differences occur at polar

angles θ = 110◦ and θ = 130◦. At these angles, the finite span model appears to more

accurately predict some of the subtler features of the measured spectra. For instance,

at θ = 110◦ (Figure 5.26c), there is a ‘trough’ in the spectra at approximately 500 Hz,

which is not captured by the infinite span model, but is by the finite span model.

The trough in Figure 5.26c occurs at approximately 500 Hz in the experimental data but

at approximately 600 Hz in the finite span model. This could be due to neglecting the

effect of the span ends on the scattered surface pressure, as strip theory still assumes the

span is infinite when calculating the scattered surface pressure on each strip. Roger et

al[120] have demonstrated that including the span ends, via application of Schwarzchild’s

solution to each, can have a significant effect on the surface pressure and far-field di-

rectivity. Their results demonstrate that the effect on the scattered surface pressure

can extend a wavelength into the plate. At 600 Hz, the span to wavelength ratio is

approximately two, so the effect of the span ends could extend over a large portion of

the plate.
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Figure 5.26: Comparison of finite and infinite span models with the measurements of
Lawrence.[18] a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; d) θ = 130◦. M j = 0.3, M f = 0.0,

l/D = 3, h/D = 1 and φ = 180◦

In Figure 5.26 the difference between the infinite and finite span models was most no-

ticeable at θ = 110◦. At this polar angle, Figure 5.27 displays comparisons between the

models at different jet velocities. The same ‘trough’ can been seen in the measured and

finite span model spectra at the same frequency for all jet velocities.
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Figure 5.27: Comparison of finite and infinite span models with the measurements
of Lawrence.[18] a) M j = 0.3; b) M j = 0.5; c) M j = 0.75; d) M j = 0.9. M f = 0.0,

l/D = 3, h/D = 1, θ = 110◦ and φ = 180◦

In Figure 5.22 the effect of finite span was shown to be greater towards the sideline.

It would, therefore, be appropriate to test the finite span implementation of the JSI

noise model against measured data at angles other than φ = 0◦. This comparison can

be made using the c/D = 7.5 plate with the 40 mm Doak jet. However, the near-

field measurements of this jet cannot be decomposed into modes as only one near-field

microphone was used. Therefore, a comparison will be made of the OASPL directivity,

and the near-field measurements of Lawrence will be used to includes modes of order

greater m = 0.

In Figure 5.28 a comparison of the azimuthal OASPL directivities for the c/D = 7.5 plate

at several jet velocities is presented. There is quite a large variation in the experimental

directivities with jet velocity. At M j = 0.3, the OASPLs at φ = ±60◦ are only 3 dB

below the peak, while at M j = 0.8, this increases to 6 dB and the directivity appears

more ‘peaked’. This change in directivity is captured well by the model, however it is

clear that the model requires the hydrodynamic pressure field to be decomposed into at

least modes of order m = 0 & 1.
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Figure 5.28: Azimuthal OASPL directivity of JSI noise. ‘Infinite’ and ‘Finite’ span
model predictions use near-field pressure measurements of the 40 mm Doak jet and,
therefore, only uses mode 0. ‘Infinite: Modes 0 & 1’ and ‘Finite: Modes 0 & 1’ span
model predictions use near-field pressure measurements of the 38.1 mm Doak jet. c/D =
2.5, ψ = 0◦ and θ = 90◦. a) M j = 0.3; b) M j = 0.6; c) M j = 0.75; d) M j = 0.8.

θ = 90◦.

Comparing the finite and infinite span models, the results are almost identical up to

φ = ±60◦. Beyond this angle, the gradient of the finite model increases and the infinite

model initially decreases. When including mode m = 1, the finite span model still

separates from the infinite span model beyond ±60◦, but now the directivity of both

models match that of the experiment up to approximately ±60◦. Overall, the infinite

span model shows the best comparison with the measured data, with the finite span

model under-predicting.

It is possible that the under-prediction at azimuthal angles close to the plane of the

plate is again due to neglecting the effect of the span ends on the surface pressure. To

determine whether this is the case, the method of Roger et al[120] could be implemented

within the current strip theory model. A numerical experiment could also be performed

using BEM to determine the effect of the span ends on the surface pressure, and make

a comparison with the analytical model.

For the shorter plate chords, the increased aspect ratio of the surface reduces the effect

of the finite span. Figure 5.29 demonstrates that for the c/D = 2.5 plate the OASPL
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directivities of finite and infinite span models are almost identical even for the lowest

jet velocity.
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Figure 5.29: Azimuthal OASPL directivity of JSI noise. c/D = 2.5, ψ = 0◦, M j = 0.3
and θ = 90◦

Overall, it does not seem necessary to include the effect of finite span in JSI noise models

for uniform scattering surfaces: At a polar observer angle of θ = 0◦ the effect of including

finite span in the predictions was to include some subtler features of the spectra, but

at Strouhal numbers and aspect ratios too low to be important for real aeroplanes. At

angles close to the plane of the plate, where the finite span model showed the greatest

difference to the infinite span model, it was the infinite span model whose directivity

compared best with the experimental measurements. It will be demonstrated in the

next section, however, that the use of strip theory, is still useful for estimating JSI noise

for more representative wing geometries.

5.6 Swept Wings

Turbofan powered airliners, for which JSI noise is a concern, cruise in the transonic

regime, where shock waves form along the wings. To reduce the drag created by these

shock waves, the wings are swept backwards. This means that the wing trailing edge is

not actually perpendicular to the jet axis, as considered thus far. Experiments[58, 59] have

shown that sweep alters the directivity of JSI noise, by shifting the peak in the azimuth

‘outboard’ for rearward sweep and reducing the JSI noise at ‘inboard’ azimuthal angles.

This asymmetry in directivity comes about from the asymmetry in the axial wavenumber

spectrum of the jet hydrodynamic pressure field, which is propagating downstream from

the jet nozzle.[60]
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Trailing edge sweep was included within the JSI noise model of Lyu & Dowling,[71, 111,115]

using a transform developed by Roger et al.[72] For the unswept infinite-span trailing

edge, the spanwise wavenumber that propagated to the far-field was equivalent to a plane

wave propagating towards the azimuthal angle of the observer. For the swept case, the

spanwise wavenumber that propagates to the far-field is now given by

k2 = k̃x2/r̃x − k1 tan(ψ)− (k/β2) tan(ψ)(M − x1/βr̃x). (5.16)

Thus, the spanwise wavenumber that propagates to the far-field is now also a function of

axial wavenumber and wing sweep. This can also be demonstrated by using a rotation

matrix to transform the problem (see Appendix C), such that ỹ2 is parallel to the

trailing edge. The wavenumbers perpendicular and parallel to the trailing edge in the

new coordinate system are

k̃1 = k1 cos(ψ)− k2 sin(ψ) (5.17)

and

k̃2 = k1 sin(ψ) + k2 cos(ψ). (5.18)

with the solution set in the new coordinate system identical to the unswept case.

To validate their swept trailing edge model, Lyu & Dowling use the experimental results

of Piantanida et al.[58, 59] The model shows very good agreement with the measured data,

correctly predicting the peak azimuthal angle and the azimuthal directivity, despite the

use of near-field spectra and axial wavenumbers measured with a different jet.

To verify the implementation of the swept wing model and to discuss key features of

the JSI noise due to swept wings, a comparison to Piantanida’s measurements has been

repeated in Figure 5.30 and Figure 5.31. The methods for scaling the jet hydrodynamic

pressure spectra and wavenumbers from Chapter 4 have been used to scale the Doak

laboratory spectra to the diameter and velocity used by Piantanida. As with the com-

parison made by Lyu & Dowling, it was necessary to scale the far-field amplitude to

match the unswept plate measurements at φ = 0◦.

Figure 5.30 displays a comparison between the experimental data of Piantanida and the

swept wing model of Lyu & Dowling. There is good agreement between the peak angle

and directivity across the four sweep angles. However, at a sweep angle of ψ = 30◦, the

peak amplitude is over predicted. Figure 5.30 demonstrates that the incorporation of

higher order modes becomes increasingly important as sweep angle is increased.
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Figure 5.30: Comparison of the swept wing model of Lyu with the experimental data
of Piantanida. M j = 0.4, l/D = 4, r/D = 1, θ = 90◦ and St = 0.2. a) ψ = 0◦; b)

ψ = 15◦; c) ψ = 30◦; d) ψ = 45◦.

At a Strouhal number of 0.2, the mean chords of the plates are less than the acoustic

wavelength. Applying Roger & Moreau’s backscattering theory, therefore should sig-

nificantly affect the directivity. This is evidenced in Figure 5.30, however, it served

to worsen the comparison with the experimental data, introducing double peaks, and

further over predicting the peak amplitude.

Another comparison between the model and Piantanida’s measurements is displayed in

Figure 5.31 at the larger radial plate distance of h/D = 1.5. The same conclusions can

be drawn as with the previous figure, however the over prediction of the peak amplitudes

at sweep angles of ψ = 15◦ and ψ = 30◦ are now much more pronounced. There is also

a discrepancy between the peak angles at ψ = 45◦. Reasons for these discrepancies

could include: a) the scaling method of Chapter 4 not accurately enough calculating the

spectra and axial wavenumber of the jet used by Piantanida; b) modelling the plates

as parallelograms, instead of the trapeziums used by Piantanida (only the trailing edge

was swept), this would not however account for the double peak with the addition of

back scattering to the model with the unswept trailing edge; and/or, c) the microphones

being too close for the far-field assumption in the model to be valid (the microphones

are on an array spaced 14.3D from the jet axis)
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Figure 5.31: Comparison of the swept wing model of Lyu with the experimental data
of Piantanida. M j = 0.4, l/D = 4, r/D = 1.5, θ = 90◦ and St = 0.2. a) ψ = 0◦; b)

ψ = 15◦; c) ψ = 30◦; d) ψ = 45◦;

In an attempt to overcome these issues, new installed jet noise measurements have

been performed with a swept plate in the Doak Laboratory. A parallelogrammatic

plate was used with chord c/D = 2.5 and sweep angle ψ = 20◦. These values were

deemed to be representative of commercial airliners. Furthermore, they allow comparison

with the unswept c/D = 2.5 plate. Noise measurements were taken in the far-field on

an azimuthal array, positioned at θ = 90◦, both statically and in flight. The near-

field measurements of this jet (see Chapter 4) were taken with a single microphone,

preventing an azimuthal modal decomposition which the comparison with Piantanida’s

measurements has shown to be necessary; and the model was shown in the previous

section to overestimate the amplitude of the JSI noise at such a short chord.

Figure 5.32 displays a comparison of the JSI OASPL directivities measured in the exper-

iment and calculated with the model. The simplified model uses the measured near-field

spectra for the same jet (see Chapter 4), while the full model uses the near-field spectra

measured by Lawrence. For the unswept plate, the full model appears to capture the

measured directivity both statically and in flight. With the swept plate the simplified

model captures the increase in the broadness of the peak as the flight-stream velocity

increases. However, it appears that more modes are required to capture the correct

directivity at angles below the peak. In-flight near-field pressure measurements with
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multiple microphones would certainly improve this comparison. It would also be useful

to ascertain whether there are changes to the azimuthal modal decomposition in flight.
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Figure 5.32: Comparison of swept wing model of Lyu & Dowling with installed jet
noise measurements in the Doak Laboratory. l/D = 3, h/D = 1 and θ = 90◦. a)
M j = 0.6 M f = 0; b) M j = 0.75 M f = 0; c) M j = 0.75 M f = 0.1; and, d) M j = 0.75

M f = 0.2.

The difference in measured JSI-noise OASPL between the swept and un-swept plate is

displayed in Figure 5.33, without the flight stream, and in Figure 5.34, where flight-

stream Mach number has been varied. These plots show that the difference between the

swept and unswept wing is a function of jet and flight velocities, as well as sweep angle.

The maximum (positive) difference occurs at the highest jet and flight Mach numbers.

There are also angles of minimum and maximum difference, above/below which the

difference heads back towards zero; because at observer angles in the plane of the plate

theory says that the edge-scattered noise is zero, so the JSI noise of both plates goes to

zero.
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Figure 5.33: Difference between measured JSI noise OASPL with the unswept and
swept wing. M f = 0, l/D = 3, h/D = 1 and φ = 0◦
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Figure 5.34: Difference between measured JSI noise OASPL with the unswept and
swept wing. M f = 0, l/D = 3, h/D = 1 and φ = 0◦

The overall change in JSI noise on an aeroplane due to sweep is, as this section has

shown, going to be highly dependent on not only the geometry of the wing but jet and

flight velocity as well. What should not be forgotten when looking at the graphs here

is that effectively only one jet and ‘wing’ is shown. If one were to add a second jet

and symmetrical plate, then everything else being equal: the difference at θ = 90◦ and

φ = 0◦ in Figure 5.33 and Figure 5.34 would be preserved; ∆SPL about φ = 0◦ would

be symmetric: and, the peak difference in the θ = 90◦ arc would be reduced, as the

unswept SPL would increase by 3 dB but the swept SPL by less. For the results in

Figure 5.33, the swept OASPL would be less than the unswept OASPL at all azimuthal
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angles for M j = 0.3, and at 60◦ and M j = 0.75 the swept OASPL would only be slightly

higher than the unswept OASPL.

5.6.1 Cranked Wings

While jet airliners have swept wings to reduce drag at their transonic cruising speeds,

the trailing edges of the wings are generally not fully swept. Instead, the trailing edges

are often cranked, with an unswept/low-sweep inboard section and a swept outboard

section (see for example Figure 5.35). Reasons for the change in sweep angle can include

improved aerodynamic and structural performance, increased performance of trailing-

edge high-lift devices, and to allow for the suitable positioning of the main landing

gear.[121–125]

Figure 5.35: View of the underside of an Airbus A220, displaying the unswept and
swept portions of the wing trailing edge

As discussed in the previous section, trailing-edge sweep has a large effect on the az-

imuthal directivity of JSI noise. It is, therefore, to be expected that the crank will

further change the directivity of the JSI noise. All else being equal, the unswept section

would likely dominate at ‘inboard’ azimuthal angles (i.e. directly below the aircraft)

and the swept section would dominate at outboard azimuthal angles (i.e. towards the

sideline). It may, therefore, be necessary to model such a planform geometry.

To demonstrate the potential effect of a crank on JSI noise, the noise produced by a

cranked wing has been modelled using strip theory, as discussed in Section 5.5. The

wing planform is that of a narrow-body airliner,[18] with the exception that the chord

at the position of the crank has been kept constant across the entire wing in the model

(see Figure 5.39). The wing planform has an unswept inboard section and an outboard

section swept at ψ = 17.6◦, which is also approximately 63% longer than the inboard

section. Using strip theory, the wing is split into two ‘strips’, one strip modelling the

unswept section of the wing and the other modelling the swept section. For comparison,

fully unswept and swept (ψ = 0◦ and ψ = 17.6◦ respectively) planforms with the same
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chord and overall span have also been modelled. In all three cases, the spanwise position

of the jet axis is the same as the crank.

The comparison has been conducted using a jet Mach number of 0.6, which is between

approach and cut-back conditions,[18] and a flight Mach number of 0.2, the highest at

which the model was found to work earlier in this chapter. The inputs, axial wavenumber

and near-field amplitude, come from measurements taken in the Doak laboratory using

a microphone within the flight-stream flow, as described in Chapter 3. Therefore, the

entire spectrum is treated as mode of order 0.

Figure 5.36 displays a comparison of azimuthal directivity between the different planform

geometries at a polar angle of θ = 90◦ and over four Strouhal numbers, covering the

peak of the JSI noise spectrum. The figure shows that, for the most part, the amplitude

of the cranked wing falls between that of the fully unswept and swept wings, though it is

clear that the unswept and swept strips strongly influence different angle ranges. These

directivity calculations were created using only mode 0, while it was shown earlier in

this chapter that higher order modes are required to calculate the directivity of a swept

wing. If higher modes were to be included then the amplitude due to the swept portion

of the wing would likely increase around φ = 0◦ and φ = 180◦, reducing the influence

of the unswept portion. It is therefore important for a calculation such as this that the

modal content of the jet near-field pressure in flight is measured.
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Figure 5.36: Comparison of azimuthal directivity for different planform geometries.
M j = 0.6, M f = 0.2 & θ = 90◦. a) St = fD j/(U j−U f) = 0.4; b) St = 0.6; c) St = 0.8;

and, d) St = 1.
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The effect of the different planforms on the combined azimuthal and polar directivity is

displayed in Figure 5.37. Comparing (a) and (b) the effect of sweep on the directivity is

clear, pushing the peak rearward, towards the sideline, and reducing the amplitude. The

directivity of the cranked wing combines the directivity of the fully unswept and swept

planforms, as shown for the azimuthal directivity alone in Figure 5.36. This comparison

has been made using a single wing, as one might measure in a laboratory, in reality an

airliner has two symmetric wings. This means that the regions φ > 225◦ and φ < −45◦,

in Figure 5.36, currently dominated by the unswept portion of the cranked wing would

instead be dominated by the swept portion of the opposing wing. This means that

the unswept portion of the wing would only influence the amplitude/directivity directly

below the wing. However, Figure 5.37 shows that the noise scattered by the unswept

portion would also be the main influence at far forward angles, such as θ > 130◦. This,

therefore, also suggests that it may be necessary to consider the influence of the full

wing geometry on JSI noise.

Figure 5.37: Comparison of polar and azimuthal directivity for different planform
geometries. M j = 0.6, M f = 0.2 and St = fD j/(U j − U f) = 0.6. a) Unswept; b)

Swept; and, c) Cranked.

In both Figure 5.36 and Figure 5.37 the azimuthal directivity of the unswept plate is

not symmetric about φ = 0◦/180◦, as one might expect. This is due to the asymmetric

placement of the wing relative to the jet axis, with the spanwise midpoint of the wing

shifted in the positive y2 (φ = 90◦) direction, and comes from the inclusion of the e− iC2y2c

term in Equation 5.10. The term e− iC2y2c includes e− ik2y2c that, if all the other terms
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Figure 5.38: Example of the effect of plate midpoint location on azimuthal directivity.
d/c = 4.76, ψ = 0◦, M j = 0.6, M f = 0.2 and St = fD j/(U j − U f) = 0.6

bar p′I(ω,m, k2) were removed, would give an inverse Fourier transform that returned

the incident pressure on the midpoint of the plate. Combined with the remaining terms

in Equation 5.10, the effect of a shift in mid-point on the amplitude of the far-field

scattered pressure is lessened relative to the effect on the mid-point pressure; but the

peak amplitude shifts in the azimuthal direction associated with the shift in mid-point,

as displayed in Figure 5.38. This effect is less noticeable for the swept wing as the

directivity is already asymmetrical, but explains why the directivity of the cranked wing

follows that of the swept wing (i.e. 45◦ < φ < 135◦) more closely than that of the

unswept wing (i.e. −90◦ < φ < 0◦ & 180◦ < φ < 270◦).

One issue with the use of strip theory to model a cranked wing is that the trailing-

edge scattered pressure from each strip is calculated independently. This leads to a

sudden change in the scattered surface pressure solution either side of the crank (see,

for example, Figure 5.39). Instead the solution for the surface pressure would have to

match at the crank, modifying the surface pressure on either side of the crank from the

infinite span solution. When propagated to the far-field this would modify the directivity

pattern. If Amiet’s condition for assuming infinite span were met on each strip, then the

effect of the crank may be insignificant. However, if the conditions were not met, i.e. the

aspect ratio of a strip was small, then the crank (and the opposing end of the strip) could

have a significant effect on the directivity of that strip. Additionally, the crank tends

to be close to the engines on twin engine airliners, meaning that the incident pressure

on the wing due to the jet will be at its maximum very close to the crank, potentially

increasing the effect of the crank of the scattered acoustic field.
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Figure 5.39: Scattered surface pressure on the cranked wing, as calculated using
Equation 2.118 applied to two strips. St = 0.8, k2 = 0, U s = 292 m/s and U f = 102 m/s.

5.7 Summary

The aim of this chapter has been to validate a jet-surface interaction noise model against

laboratory measurements of installed jet noise at ambient flow conditions and with

scattering-surface geometries closer to what is seen on current airliners. This has meant

comparing to measurements with a co-axial ‘flight stream’ to simulate the effect of flight

on the jet, and with plates with chord to nozzle diameter ratios and sweep angles in the

range seen on current commercial airliners.

Comparing the model with the laboratory measurements utilising the flight stream, it

was demonstrated that the model was able to accurately capture the amplitude and

spectral shape of the jet-surface interaction noise up to a flight stream Mach number of

0.2. Beyond a Mach number of 0.2, at a Mach number of 0.3, the model was still cap-

turing the peak frequency and spectral shape of the installed jet noise, but was however

under-predicting the measured amplitude. Several hypothesis have been proposed for

the cause of this under-prediction, but further work is required to determine the exact

cause.

Next, the model has been compared to installed jet noise measurements taken with

plates of differing chord length. The measurements show that, at low jet velocities, as

the chord decreases the OASPL polar directivity transitions from a cardioid to a dipole

shape, as would be expected from theory. The predicted spectra from the model compare

very well to the measured data at the largest plate chord. However, the model tends

to increasingly over-predict the measured spectra as chord decreases and jet velocity
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increases. This is especially apparent in the rear polar arc. Roger & Moreau’s back-

scattering theory was added to the model to try to improve the prediction with short

chords. While this addition did improve the spectral shape in the rear arc, it had no effect

on the overall amplitude of the predicted spectra, which continued to over-predicted the

measured level.

Finally, the model was extended with strip theory to model scattering surfaces with finite

span and cranked wings. The strip theory model was found to improve the predicted

spectral shape at low frequencies with a large plate with low aspect ratio. However,

at azimuthal angles close to the plane of the plate the strip-theory model was found to

under-predict, and the infinite span model gave the best comparison to the measured

data. Using the strip theory model to calculate the noise from a cranked wing, showed

the unswept section to dominate at angles close to directly above/below the plate, while

the swept section dominated at angles closer to the sideline.



Chapter 6

Large Model-Scale Data

In Chapter 4, methods were discussed for scaling near-field hydrodynamic pressure spec-

tra and wavenumbers for axisymmetric jets. Subsequently, in Chapter 5, the jet-surface

interaction (JSI) model of Lyu & Dowling was validated using a co-flow to simulate the

effect of flight. Methods were then discussed for using this jet-surface interaction noise

model for more realistic finite chord, finite span and swept trailing edge geometries. In

this chapter, the results of these two chapters are brought together to produce a semi-

empirical jet-surface interaction noise prediction tool. The prediction tool is compared

to installed jet noise measurements taken in QinetiQ’s Noise Test Facility (NTF), to

assess whether it can robustly predict large-scale realistic model jet-surface interaction

noise spectra.

6.1 Jet-Surface Interaction Noise Prediction Tool

The aim of this prediction tool is to be able to produce fast, low-fidelity, far-field JSI noise

spectra for realistic configurations of wings and jet nozzles. The tool should incorporate

the effects of nozzle exit area, jet velocity, flight velocity, h/D, l/D, chord, sweep angle

and crank location. Additionally, the prediction tool must work over a range of polar

and azimuthal observer angles suitable for calculating aeroplane certification noise levels

and noise contours.

The model relies on LES or experimental near-field pressure data as the input. In this

chapter the 38.1 mm nozzle near-field ring-array measurements of Lawrence[18] at a jet

Mach number of 0.3 are used. These measurements have been chosen because the ring

of microphones allows the pressure to be decomposed into azimuthal modes and because

they provide sufficient resolution along the jet axis. The pressure measurements have

been decomposed into modes 0 to 4, which are then converted to PSD using Welch’s

method with a bandwidth of 10 Hz. Despite there being slight differences in the near-

field spectra at different jet Mach numbers (see Chapter 4), the Mach 0.3 spectra is

127
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to be used exclusively because the hydrodynamic field dominates the near-field spectra

over the widest Strouhal number range.

In order to scale the hydrodynamic pressure measurements for a new jet, first an effective

jet diameter is calculated based on the primary and secondary (if present) nozzle areas,

D e =
√

4(A s +Ap)/π. (6.1)

This effective diameter is then used to scale the axial location of the trailing edge.

Ideally one would scale the axial location by the potential core length of the isolated

jet, to better capture the turbulence properties within the shear layer. However, the

potential core length is unlikely to be known for a new jet without the help of hot-wire

measurements or similar. For in-flight predictions, the stretching of the potential core

in flight must be taken into account. The axial position of the trailing edge is, therefore,

further scaled to calculate an equivalent static l/D. From the measurements performed

by Proença[98] of the Doak 40 mm jet, the following empirical formula is used,

l e
D e

=
4.6

16U f/340 + 4.6

l

D e
. (6.2)

The radial position of the trailing edge is also adjusted for cases where the wing is

sufficiently close to the jet axis such that it distorts the flow field. This is based on

the installed jet noise measurements of Lawrence,[18] which placed the trailing edge of

a plate both outside and within the flow-field of the isolated jet (see Figure 6.1). The

far-field measurements show that, for a flat plate, the increase in far-field OASPL with

decreasing h reduces as the trailing edge enters the flow field of the isolated jet (see

Figure 6.2). So, if
h

D e
<

l e
D e

tan(0.13) + 0.5 (6.3)

then
h

D e
=

l e
D e

tan(0.13) + 0.5. (6.4)
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Figure 6.1: Trailing edge locations used in the JSI noise parametric study by
Lawrence[18] in comparison to the isolated jet axial flow field calculated using LES

by Wang.[106] The velocity profiles end at 1% of the jet velocity.

0.50 1.00 1.50

h/D

60

65

70

75

80

85

90

95

100

O
A

S
P
L

-
50

lo
g

1
0
(M

j=
0:

3)
(d

B
)

l=D = 2:0

l=D = 2:5

l=D = 3:0

l=D = 3:5

l=D = 4:0

Mj = 0:3

Mj = 0:5

Mj = 0:75

Mj = 0:9

Model l=D = 2

Model l=D = 3

Model l=D = 4

Figure 6.2: Velocity scaling of far-field JSI noise

The amplitude and radial locations of the measured near-field spectra are then linearly

interpolated to the value of l e/D e, to set the spectral shape and to define r/D e at the

axial location of the wing. The spectrum is then scaled using

PSD = PSD + 10 log10(D e/D ref) + 30 log10([U s − U f ]/U ref) (6.5)

to arrive at the amplitude of the incident hydrodynamic pressure spectra at the trailing

edge axial location.
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Next, the axial wavenumber of the hydrodynamic field is required both to compute the

correct rate of propagation with radial location, r, and the correct JSI noise directivity.

To calculate the axial wavenumber a straight line has been fitted through the peak axial

wavenumbers for azimuthal modes of order 0 and 1 from the Doak Laboratory LES (see

Figure 4.16), giving

k1 =
2π

D e

(
C1 + C2

f refD ref

U ref

)
, (6.6)

Where C1 = 0.1 and C2 = 1.4. The LES has been used, rather than calculating the

axial wavenumber from the measured spectra, as both methods agree well initially, but

the peak of the hydrodynamic field was apparent above the acoustic field over a greater

Strouhal number range from the LES. The equivalent frequency at the desired jet nozzle

and flow conditions is given by

f =
f refD ref

U ref

U s

D e
. (6.7)

The next step is to calculate the transfer function between the near-field and the

scattered far-field pressures using Amiet’s theory. The UK TSB-funded SYMPHONY

project tested a realistic airliner wing planform geometry with a cranked trailing edge,

which can be approximated by applying Amiet’s theory to two trapezoidal strips (Fig-

ure 6.3). However, at low frequencies leading-edge back scattering is likely to have

an effect. Therefore, Roger & Moreau’s back-scattering theory is then applied to each

strip. To do this one must assume the leading and trailing edges of each strip are par-

allel. The chord, therefore, has been set to that at the crank directly above the jet axis

(see Figure 6.3).

Both the observer and wing locations are defined in the reference frame of the aeroplane,

while the model uses a reference frame based on the wing. Therefore, the azimuthal

location of the observer, the radial wing locations and the spanwise wing location are

all adjusted to account for the dihedral of the wing.
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Figure 6.3: SYMPHONY wing planform

6.1.1 Model Sensitivity

The axial wavenumber in Equation 6.6 affects both the amplitude of the incident pressure

on the trailing edge, and hence the amplitude of the JSI noise, and the directivity of the

JSI noise. It is, therefore, important to understand the sensitivity of the calculated JSI

noise to the empirical coefficients in Equation 6.6.

The propagation of the hydrodynamic pressure onto the plate is calculated using modi-

fied Bessel functions of the second kind, given the outward propagating waves and axial

wavenumber greater than the acoustic wavenumber. Increasing the coefficients in Equa-

tion 6.6 increases the rate of decay of the hydrodynamic pressure field with r. For radial

positions greater than the measurement location, the calculated pressure will therefore

decrease, while at radial positions small than the measurement location the calculated

amplitude will increase. The opposite would occur if the coefficients in Equation 6.6

were to be reduced.

For a plate location, h, greater than the radial measurement position, r, increasing/de-

creasing the coefficients in Equation 6.6 will decrease/increase the peak amplitude of

the pressure incident on the trailing edge, and vice-versa for h < r. JSI noise, however,

is also affected by the spanwise wavenumber distribution on the trailing edge, which is

also affected by the axial wavenumber. For h > r JSI noise will decrease with increasing

C1 and C2. But for h < r the amplitude of some frequencies will increase while the

amplitude of JSI noise for other frequencies decreases.

Figure 6.4 displays how the OASPL of the JSI noise calculated in the manner described

above is affected by variations in C1 and C2. The ranges of the coefficients cover those

from measurements in Chapter 4 and the condition is one that will be used later in
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this chapter. As expected the amplitude of the JSI noise increasingly diverges as h

increases, and converges at an h lower than the measurement location of r/D ≈ 1, with

an increase in C1 or C2 decreasing JSI noise. The flattening of the OASPL at h/D < 0.75

is due to the simple way in which the JSI noise is modelled for trailing edge positions

within the flow field of the equivalent isolated jet, as described above. The majority of

wing positions used in this chapter are about or below the measurement location (for

Figure 6.4 the measurement location is r/D ≈ 1). The exception is when variations

in h/D are specifically being considered, where values of h/D up to an equivalent of

h/D j = 1.4 in Figure 6.4 are considered.
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Figure 6.4: Effect of variation in axial wavenumber coefficients, C1 and C2, on reduc-
tion in OASPL with radial trailing-edge location h. U j = 245 m/s, U f = 0 m/s and

l/D = 1.94

The effect of variations in C1 and C2 on the model JSI noise spectra is demonstrated in

Figure 6.5 and Figure 6.6. At this position, the trailing edge position h is lower than

the measurement location r, hence the amplitude increases at some frequencies and

decreases at others as described previously. C1 and C2 can be seen to affect different

regions of the spectra. C1 affects low frequencies, where StC2 is not large relative to C1,

while C2 has a greater effect at high frequencies, where StC2 is large relative to C1.
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Figure 6.5: Variation in model spectrum with axial wavenumber coefficient C1. U j =
245 m/s, U f = 0 m/s, h/D = 0.88, l/D = 1.94 and c = 0.4 m
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Figure 6.6: Variation in model spectrum with axial wavenumber coefficientC2. U j =
245 m/s, U f = 0 m/s, h/D = 0.88, l/D = 1.94 and c = 0.4 m

Figure 6.7 and Figure 6.8 display examples of how the sensitivity of the calculated JSI

noise varies with polar angle. JSI noise in the rear arc is more sensitive to changes in

axial wavenumber than that in the forward arc.
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Figure 6.7: Variation in polar directivity with axial wavenumber coefficient C1. St =
0.31, U j = 245 m/s, U f = 0 m/s, h/D = 0.88, l/D = 1.94 and c = 0.4 m
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Figure 6.8: Variation in polar directivity with axial wavenumber coefficient C2. St =
0.3, U j = 245 m/s, U f = 0 m/s, h/D = 0.88, l/D = 1.94 and c = 0.4 m

6.2 Large-Scale Tests

In order to validate the JSI noise prediction tool on a larger and more representa-

tive scale, installed jet noise measurements from the SYMPHONY and HARMONY

projects are used. As part of the UK Technology Strategy Board funded projects

SYMPHONY[137,139] (SYstem Manufacturing and Product design tHrough cOmponent

Noise technologY) and HARMONY[138] (wHole AiRcraft Multidisciplinary nOise desigN

sYstem), installed jet noise measurements were taken in QinetiQ’s Noise Test Facility

(NTF). The aim of SYMPHONY was to provide experimental data against which semi-

empirical, analytical and numerical models for jet-airframe interaction noise could be

validated. Both campaigns utilised a 1/10th scale jet nozzle and airframe representative

of current 150 seater commercial narrow-body jet airliners. 1

1The author played no role in these experiments
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6.2.1 QinetiQ’s Noise Test Facility

The Noise Test Facility (NTF) was a purpose built anechoic chamber for the measure-

ment of noise produced by the exhaust from gas turbine engines. Originally commis-

sioned in 1972[126] (and then decommissioned in 2016), the NTF comprised a chamber

(see Figure 6.9) 26 m wide by 27 m long and 15 m high, lined with twenty-one thou-

sand acoustic wedges, ensuring anechoic conditions down to 90 Hz. Initially, the facility

was designed to allow the static testing of 1/10th scale subsonic jets, up to 18 inches

in diameter.[126] However, in 2003, the NTF was improved to allow the simulation of

forward flight with the installation of a co-axial 1.8 m-diameter ‘flight stream’ capable

of simulating speeds up to Mach 0.33.[127] Additionally, the NTF was capable of testing

hot jets by passing the core jet air through an Avon combustion can. Heat exchangers

could also be used to remove the heat of compression to simulate unheated jets, such as

a bypass jet. The chamber acoustic properties were kept stable by the use of extraction

fans to prevent recirculation of the exhaust gases. Jet velocities and total temperatures,

within 3 m/s and 5 K of the respective targets, were achieved through measurements

of total temperature, pressure and mass flow rate upstream of the nozzles.[18] The jet

operating conditions were adjusted to the chamber conditions to ensure that the desired

acoustic Mach numbers were maintained.

Figure 6.9: View of the NTF showing jet nozzles, exhaust gas collector and micro-
phone arrays
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6.2.2 Nozzles

Three nozzles were used in the SYMPHONY and HARMONY test campaigns. First,

the baseline nozzle, named S33-P51, was designed to be representative of current by-

pass engines used on narrow-body jet airliners. As such, it includes both primary and

secondary flows, a pylon and nozzle bifurcations. This nozzle was used for a study of

the effect of wing position and configuration, however only a handful of different wing

locations were used with only small variations in location, due to the requirement to

change the pylon for each wing location. Due to the cost involved in replacing the py-

lon for each wing location, a second nozzle was created. This nozzle, S33-A55, was an

axisymmetric version of S33-P51-UL without the pylon and bifurcations. The S33-A55

nozzle had a 0.1857 m diameter, with a secondary nozzle exit area of 0.013828 m2 and

an area ratio between secondary and primary nozzles of 5.5, giving an effective diameter,

D e, of 0.147 m. With this nozzle, a much larger parametric study was conducted to

ascertain the effect of wing location on far-field noise.

Finally, a single stream nozzle, S33-ASS, was used for direct comparison with the Doak

Laboratory jet. The primary and secondary flows are matched and mixed before exiting

the S33-ASS nozzle, and includes no centre body, bullet, pylon nor bifurcations. The

outer diameter of this nozzle matches the outer diameter of the other two nozzles, at

0.1857 m, however, the exit area is increased to 0.02708 m2.

6.2.3 Airframe

The airframe was a 1/10th-scale half-wing and fuselage model of a modern 150-seater

commercial jet airliner. In order to capture the effects of lift on the jet, the wing was

designed to create representative amounts of lift at take-off and landing with the use of

angled flaps. A representative aerofoil was chosen for the wing, with modifications to the

aerofoil only made to the suction surface, to ensure that the pressure surface remained

representative with respect to the jet flow. To simulate conditions during take-off and

landing, the trailing edge of the wing could be replaced by single slotted Fowler flaps

(without flap track fairings) at 16◦ and 32◦ flap angles. The airframe was positioned

relative to the jet nozzle using a rotating ‘stinger’ assembly. Linear actuators were used

for fine adjustment of the axial, spanwise and radial position of the wing. The airframe

was connected to the positioning system by a structural support (replacing the port

wing with the jet nozzle beneath the wing on the starboard side of the fuselage) (see

Figure 6.10).
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Figure 6.10: Close-up of the rig, showing fuselage, positioning system and S33-ASS
nozzle

For the installed S33-P51 nozzle test, a sensor was installed in the pylon to ensure correct

positioning of the wing. Without a pylon, no sensor could be installed with the S33-A55

and S33-ASS nozzles. In-flight, when the wing produces lift, it is therefore possible that

the wing could move from the desired location with the S33-A55 and S33-ASS nozzles.

It was, therefore, not possible to know the exact location of the wing in flight with the

S33-A55 and S33-ASS nozzles.

6.2.4 Microphone Arrays

Two microphone arrays are used in the following analysis: the Flyover and Stargate

arrays. The flyover array was a linear array of 1/4” free-field microphones positioned at

an azimuthal angle of 0◦ directly below the airframe. The array was positioned parallel

to the jet axis at a radial distance of 10.2 m from the jet centreline, placing it in the

geometric far-field of the model jet at over 50 secondary jet diameters. The microphones

were placed at polar angles between 50◦ and 130◦, with spacings of 5◦ between the polar

angles of 70◦ and 130◦ and 10◦ otherwise.

The Stargate array was a traversable circular array 4.5 m in diameter, centred on the jet

axis. The array consists of 36 1/4” free-field microphones spaced every 10◦ azimuthally

around the array, starting from 6◦ azimuth, and 9 1/2” free-field microphones spaced

between the 1/4” microphones between 331◦ and 51◦ azimuth. The array was traversed

between polar angles of 28◦ and 110◦.
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6.2.5 Test Conditions

The jet conditions used in the following analysis are labelled 8, 6a, 21 and 22. The veloc-

ities and temperatures associated with each condition are given in Table 6.1. Condition

8 relates to a maximum take-off thrust condition, 6a to a cutback condition and condi-

tions 21 and 22 are matched jets, where the primary and secondary jets have the same

properties, mimicking a single stream nozzle. When simulating flight, SYMPHONY and

HARMONY used flight-stream speeds of 52 and 103 m/s, labelled respectively F1 and

F8.

Table 6.1: Jet conditions, velocities and total temperatures used in the SYMPHONY
and HARMONY test campaigns

Condition Up (m/s) Θ p (K) U s (m/s) Θ s (K)

6a 268 696 245 347

6b 244 288 243 346

8 378 729 292 359

21 255 320 255 320

22 187 305 187 305

6.2.6 Data Processing

Each time series recorded by the microphones during a test is processed into narrow and

third-octave band spectra. These are then further corrected for various effects including

measurement system calibration, background noise, atmospheric attenuation, spherical

spreading and flight-stream shear-layer refraction. In this chapter, the narrow band data

is used, corrected for all but shear layer refraction due to the low frequencies associated

with JSI noise.

For OASPL analyses, OASPL has been calculated by integrating from f = 200 Hz, the

lower limit of the NTF spectra, up to f = 1.2(U + U f)/D, in an attempt to integrate

over the low-frequency JSI noise hump, ignoring the high-frequency jet mixing noise.

6.3 Results

6.3.1 Diameter Scaling

In Chapter 5 the JSI noise model of Lyu & Dowling was validated against small installed

jet noise measurements. The hydrodynamic pressure spectra used as the inputs to

the model came from measurements of the jet from the nozzle used for the installed

measurements. In this chapter these same near-field pressure measurements are used in
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predicting the installed jet noise from nozzles almost five times the diameter. This should

provide evidence for, or potentially against, the method for scaling the hydrodynamic

pressure spectrum demonstrated in Chapter 4.

In Figure 6.11, a comparison is made between the prediction tool and measured installed

jet noise spectra for the axisymmetric planar single-stream, S33-ASS, nozzle. This is

the simplest of the three nozzles, without bullet, pylon, bifurcations nor primary and

secondary streams, so is most comparable to the nozzle used for the near-field pressure

measurements used as the input to the prediction tool. The comparison shows that there

is good agreement between the measured and predicted spectra, especially at polar angle

θ = 90◦.
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Figure 6.11: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-ASS, l/D = 1.94, h/D = 0.88, φ = 0◦ and condition 22S (U j = 187 m/s). a)

θ = 70◦; b) θ = 90◦; c) θ = 110◦; d) θ = 130◦.

The comparison in Figure 6.11 displays an increasing overprediction as polar angle,

θ, decreases. This is more obvious when comparing the polar OASPL directivity in

Figure 6.12. This is not unexpected, as the same effect was observed with the Doak

data, in Chapter 5. However, the polar directivities are very different, perhaps due to

the increased complexity of the scattering surface. Given though that the overprediction

was also seen with the Doak Laboratory measurements, the overall good agreement in

Figure 6.11 would suggest that the effect of diameter is adequately captured by the

model.
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Figure 6.12: Comparison of polar OASPL directivity. Nozzle S33-ASS, l/D = 1.94,
h/D = 0.88, φ = 0◦ and condition 22S (U = 187 m/s).

6.3.2 Flight Velocity

For aircraft certification it is important that JSI noise can be calculated in flight, as

certification measurements are taken during approach and take off. Comparisons of the

predicted and measured spectra at flight speeds of 52 m/s and 103 m/s are displayed in

Figure 6.13 and Figure 6.14 respectively. At the lower flight velocity the model appears

to adequately predict the spectra, however, at the highest flight velocity, Figure 6.14,

the peak frequency range of the prediction is below that of the measured data, by as

much as 50% in Figure 6.14d.
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Figure 6.13: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-ASS, l/D = 1.94, h/D = 0.83, φ = 0◦ and condition 21F1 (U j = 255 m/s and

U f = 52 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; d) θ = 130◦.
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Figure 6.14: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-ASS, l/D = 1.94, h/D = 0.77, φ = 0◦ and condition 21F8 (U j = 255 m/s and

U f = 103 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; d) θ = 130◦.

The in-flight scaling methods are based on the near-field pressure measurements de-

scribed in Chapter 4. These measurements demonstrated that the amplitude and fre-

quency of the hydrodynamic pressure field scaled as (U j − U f)
3 and U j, respectively, if

the axial microphone location was kept constant relative to the potential core length.

Using these scaling methods in the prediction tool has led to accurate prediction of the

JSI amplitude, giving some confidence in this approach. However, peak frequency is

noticeably underpredicted at a flight velocity of 103 m/s.

There are several reasons why this velocity scaling may be incorrect for capturing the

correct frequency, at least for this case. Firstly, only one near-field measurement location

relative to the potential core length was used in the Doak Laboratory, this may not be

enough to draw a robust conclusion on the scaling of the near-field with flight velocity;

Secondly, the static measurement was at x/D = 3, with the microphone traversed down-

stream as flight velocity increased. For JSI noise prediction, the trailing edge position

remains constant and so the position relative to the potential core reduces in flight, it is

possible the frequency scaling changes below a certain distance relative to the potential

core length. Thirdly, the potential core length in flight may not be calculated correctly.

Fourthly, the rate of attenuation decays with radial position increases with frequency;

if the radial position of the trailing-edge or the axial wavenumbers are incorrect then
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the amplitude of the peak frequency may be over attenuated. Finally, if the calculated

directivity is incorrect then this could shift the peak frequency at a given angle away

from that measured.

Near-field measurements in Chapter 4 suggested that if the microphone is shifted down-

stream as flight speed is increased then the peak frequency scales with jet velocity, as

suggested by Miller.[54] However, the microphone position was based on the empirical

potential core length equation from Proenca,[98] that was created with measurements

at only one jet velocity, and hence is a function of flight speed only. This may have

lead to inaccuracies in the positioning of the microphone for the different jet velocities,

and hence the scaling of the near-field, as methods of scaling potential core length such

as[128]

1 + C1
U f

U j − U f
(6.8)

are a function of jet and flight velocity, and could perhaps have been used to correct the

microphone position for the effect of jet velocity. Once corrected for the effect of the

stretching of the potential core the scaling of frequency with jet velocity suggested by

Miller is based on an eddy convection speed in the jet shear layer. However, convection

velocity has also been proposed to be a function of flight velocity, such as[129]

U c = 0.65(U j − U f) + U f . (6.9)

Finally, completely different frequency scaling methods have been proposed, with Vera[65]

showing good results, in comparison to laboratory measurements with a flight stream,

scaling a static model prediction to flight using f ∝ U j − U f which has also been used

for jet-mixing noise.[130,131]

With the predictions based on near-field pressure measurements and potential core

lengths measured within the Doak laboratory, the predictions could be affected by any

differences in developments of the jets. For instance, the jet pipework within the Doak

laboratory extends[98] for a greater distance within the flight stream than the stinger in

the NTF.[127] This could lead to a greater boundary layer thickness-to-jet-diameter ratio

at the lip of the Doak jet relative to that on the NTF nozzle. This could in turn affect

the development of the jet and the near-field in flight.

When the spectrum of the incident pressure extends to wavelengths of a similar or greater

size to the chord of the scattering surface, then the spectrum of the far-field scattered

acoustic field will display an broad peak with peaks and troughs (see Figure 5.12 for

example). If there are inaccuracies in the calculation, such as the incident axial wave

number wing planform etc., then frequencies seeing constructive/destructive interference

could change, leading to the peak occurring at a different frequency. This however, will

have little effect on the upper end of the JSI spectrum, where the amplitude roll-off is

very high, Figure 6.14c & d show a roll-off of greater than 30 dB/decade. While the
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model and measurements show very similar gradients in these regions there is a frequency

shift between them that is not due to an error in the calculation of the directivity.

Further, analysis of the peak frequency of the measured installed jet noise suggests a

frequency scaling of U j + U f . This is close to what one might expect using a frequency

scaling based on both position relative to the potential core length and convection ve-

locity, if the convection velocity is a function of both jet and flight velocity. Replacing

the U j frequency scaling in the prediction tool with U j + U f , such that

f =
f refD ref

U ref

U s + U f

D e
, (6.10)

both the in-flight predictions are greatly improved, with the spectral shape now a much

better match for the measured data (see Figure 6.15 and Figure 6.16). This method to

scale the frequency of the hydrodynamic field with flight velocity will, therefore, be used

for the remainder of this chapter. Further in-flight near-field pressure measurements

are certainly required to understand this discrepancy in scaling the near-field frequency

with U j and U j + U f .
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Figure 6.15: Comparison of measured installed jet noise with model prediction using
U j + U f frequency scaling. Nozzle S33-ASS, l/D = 1.94, h/D = 0.83, φ = 0◦ and
condition 21F1 (U j = 255 m/s and U f = 52 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦;

and, d) θ = 130◦.
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Figure 6.16: Comparison of measured installed jet noise with model prediction using
U j + U f frequency scaling. Nozzle S33-ASS, l/D = 1.94, h/D = 0.77, φ = 0◦ and
condition 21F8 (U j = 255 m/s and U f = 103 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦;

and, d) θ = 130◦.

Strangely, the amplitude of the model spectra is in very good agreement with the mea-

surements at all polar angles in Figure 6.15 and Figure 6.16. This is strange because

the static data is showing the model to overpredict in the rear arc, as does comparisons

to the Doak Laboratory data. Also, when validating the model in flight in Chapter 5

the model was found to underpredict for flight Mach numbers M f > 0.2, while here

the model appears to work well at a flight Mach number M f = 0.3 (U f = 103 m/s).

Lastly, the model does not appear to properly capture the spectral shape at the polar

angle θ = 130◦ and flight velocity U f = 103 m/s. This may suggest that something is

missing, or not correctly modelled, in scaling the hydrodynamic pressure spectrum in

flight. However, it should also be noted that there is a large variety of spectral shapes

in Figure 6.15 and Figure 6.16 and, other than in Figure 6.16d, these are very well

predicted by the model.

With the frequency scaling in the prediction tool modified to include the flight velocity,

the results of this section show that the prediction tool is capable of scaling up to large

model-scale single stream circular jets. The model correctly accounts for the effects of

diameter, jet velocity and flight velocity at observer positions and azimuthal angle of

the flyover array. However, the overprediction in the rear arc seen in Chapter 5 is also

shown to occur with the large model-scale data.
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6.3.3 Axisymmetric Annular Nozzle

In Chapter 4, far-field installed jet noise measurements were presented to demonstrate

the effect of bullets on JSI noise. Based on these measurements the model scales the

position of the trailing edge, hydrodynamic pressure field frequency and amplitude with

the effective diameter, D e. Figure 6.17 compares these measurements with the JSI noise

model. The model predicts the same amplitude for the nozzles with the same effective

diameter. For both effective diameters, the sur-peak spectra matches between the model

and the measurements. However, the model increasingly overpredicts at frequencies

below the peak of the measured spectra. This is especially obvious for the effective

diameter D e = 32 mm, where the peak frequency is underpredicted by approximately

150 Hz.

The most likely reason for the overprediction of the model below the peak frequencies

of the measured is displayed in Figure 4.1, which compares the near-field spectra of the

38.1 mm and 40 mm Doak jet nozzles. The near-field spectra of the two nozzles are

shown to be equal at frequencies above the peaks. However, the 38.1 mm nozzle has a

lower peak frequency, and the difference in amplitude between the two nozzles continues

to increase as frequency decreases. As it is the near-field measurements of the 38.1 mm

jet that are used as the input to the JSI noise model, one can expect the 40 mm installed

jet noise measurements to be overpredicted at frequencies below the peak, as is likely

the case for the other nozzles used in Figure 6.17.
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Figure 6.17: Comparison of the model prediction (dotted lines) with the installed jet
noise measurements (solid lines) taken in the Doak Laboratory with round and annular

jet nozzles. h = 0.04 m, l = 0.12 m, c = 0.2 m, θ = 90◦, φ = 0◦ and M j = 0.3

The SYMPHONY and HARMONY campaigns used an axisymmetric annular nozzle,

S33-A55, which includes a bullet. Unlike the nozzles used in the Doak Laboratory,
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S33-A55 has primary and secondary streams. If the velocities of the two streams are

different then this creates an internal shear layer that could modify the pressure seen by

the trailing edge in comparison to a single stream nozzle. This internal shear layer can be

avoided if the two streams are matched (i.e. having the same velocity and temperature),

simulating a single stream nozzle. Three matched jet conditions were used during the

campaign and can therefore be used to further validate the use of the effective diameter

to calculate JSI noise.

Figure 6.18 and Figure 6.19 display comparisons of the prediction tool with the measured

spectra using the effective diameter and secondary nozzle diameter respectively within

the model. The matched jet condition 21 has been used to remove any effect of a

secondary internal shear layer. This radial wing location, h/D s = 0.76, was chosen

because, when non-dimensionalised by effective diameter, it is at the same location as

the near-field microphone input data. Hence, errors in the wavenumber calculation

should be small. In Figure 6.18 the amplitude of the model and measurements match at

θ = 130◦ as with the single stream, S33-ASS, nozzle, although the overprediction in the

rear arc seems to have increased. In comparison, the model overpredicts the measured

data at all angles in Figure 6.19, including at θ = 130◦ where the amplitude of the

prediction is three to four decibels greater than in Figure 6.18. This provides further

evidence for the use of effective diameter to scale the hydrodynamic pressure spectra

and trailing edge location for JSI noise prediction.
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Figure 6.18: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, h/D s = 0.76, φ = 0◦ and condition 21S (U s = U p = 255 m/s

and U f = 0 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d) θ = 130◦.
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Figure 6.19: Comparison of measured installed jet noise with model prediction, how-
ever the nozzle outer, D s, rather than effective, D e, diameter has been used in the
model. Nozzle S33-A55, l/D s = 2.35, h/D s = 0.76, φ = 0◦ and condition 21S
(U s = U p = 255 m/s and U f = 0 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦;

and, d) θ = 130◦.

In Figure 6.18 the model is in good agreement with the measured spectrum at polar

angle θ = 130◦. However, the amplitude is increasingly overpredicted at decreasing

polar angles, by a greater amount than seen with the round single stream nozzle. With

the single stream nozzle the overprediction reduced in flight. Figure 6.20 demonstrates

that this is also occurs with the annular jet, which continues to provide evidence for

using effective diameter.
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Figure 6.20: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, h/D s = 0.76, φ = 0◦ and condition 21F8 (U s = U p =

255 m/s and U f = 102 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d) θ = 130◦.

6.3.4 Radial Trailing Edge Location

The radial position, h, of the trailing edge has been shown to have a strong effect on the

amplitude of JSI noise, at least when the trailing edge is outside the jet flow field (for

one example see Figure 6.2). It is, therefore, important that the model is able to capture

the effect of the radial location of the trailing edge. With the dual stream axisymmetric

annular nozzle, S33-A55, a parametric study was conducted with jet condition, wing

configuration and wing position, providing a range of radial trailing edge locations with

which to compare.

The model uses cylindrical harmonics to propagate the hydrodynamic pressure radially.

For a given frequency and mode, this relies on the axial wavenumber to give the correct

rate of decay. Therefore, differences in the model and measurements as h is changed

would indicate that the axial wavenumber is not adequately modelled. Currently, the ax-

ial wavenumber is modelled as a linear function with Strouhal number, which is constant

with axial location and flight velocity.

Figure 6.21, Figure 6.22 and Figure 6.23 display a comparison of measured and predicted

OASPL at flight velocities of 0, 51 and 102 m/s respectively. A polar angle of 130◦ and

a jet velocity of 292 m/s (condition 8) have been chosen for this comparison. In all
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three cases the amplitudes and gradients of the predicted and measured OASPL are

very similar up to h/D s = 0.9. In Figure 6.23 at greater values of h/D s the JSI noise is

masked by the jet mixing noise and further comparison is not possible. In Figure 6.21 and

Figure 6.22 the measured and predicted data starts to diverge instead, with the gradient

of the measured OASPL decreasing. Overall though, the decay of the JSI noise OASPL

with radial trailing edge locations looks to be in agreement with the measurements.
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Figure 6.21: Comparison of measured installed jet noise with model prediction.
Nozzle S33-A55, l/D s = 2.35, θ = 130◦, φ = 0◦ and condition 8S (U s = 292 m/s,

U p = 378 m/s and U f = 0 m/s).
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Figure 6.22: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, θ = 130◦, φ = 0◦ and condition 8F1 (U s = 292 m/s,

U p = 378 m/s and U f = 52 m/s).
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Figure 6.23: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, θ = 130◦, φ = 0◦ and condition 8F8 (U s = 292 m/s,

U p = 378 m/s and U f = 102 m/s).

The comparison of the model and experimental data used measurements with jet con-

dition 8, which has different primary and secondary jet velocities. This difference in

primary and secondary velocities leads initially to a second shear layer (between the

primary and secondary jets), in the ‘initial’ region. As both the inner and outer shear

layers grow they will combine together in an intermediate zone before fully combining in

the ‘fully merged’ zone.[132] The addition of a second shear layer, and its mixing with the

outer shear layer, will make the near field develop differently to that of a single stream

jet. Therefore, modelling the near field of a dual-stream jet by scaling measurements of

a single-stream jet may only be possible under certain conditions.

Measurements by Ko & Kwan[132] of a coaxial jet with velocity ratio U s/U p = 0.7 have

displayed similarity in non-dimensional velocity and turbulence profiles between single

stream jets and the outer shear layer within the initial region of dual-stream jets. Beyond

the initial region, the peak turbulence of the outer shear layer remains constant over a

large portion of the ‘intermediate zone’ with the profile outside the peak continuing to

display similarity with that of single stream jets. Furthermore, measurements of velocity

and pressure spectra through the jet show that, for this high velocity ratio, the peak

Strouhal number is associated with the outer shear layer, and the vortices in the outer

shear layer continue to grow through the intermediate zone.

The S33-A55 and S33-P51-UL nozzles have a diameter ratio approximately 33% greater

than the nozzles used by Ko & Kwan. The velocity ratios of conditions 8 and 6 are

also greater than the highest ratio (0.7) used by Ko & Kwan at approximately 0.78

and 0.92. The axial positions of the trailing edge used with these nozzles likely falls

statically in the intermediate zone, but with the high velocity ratios and high diameter
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ratio, the near-field pressure external to the jet can still likely be approximated by that

of a single-stream jet. In flight, the stretching of the outer shear layer likely places the

axial position of the trailing-edge within the initial region, where the outer shear layer

behaves as that of a single-stream jet and thus the near-field is likely also developing as

such.

6.3.5 Azimuthal Directivity

In Chapter 5 it was suggested that strip theory could be used to model trailing edge

scattering from the cranked wings used on commercial airliners. The SYMPHONY

project used a realistic wing planform with a crank, and also used an azimuthal ring

array of microphones. This allows the azimuthal directivities of the two scattering

models (infinite span and strip theory) to be compared to the measured data, providing

an indication of the suitability of strip theory for modelling cranked wings.

The Stargate azimuthal array was only deployed for jet condition 8 with U f = 0 and

102 m/s. In flight, the difference between the installed noise and isolated mixing noise is

low. Thus, away from the peak, the JSI OASPL is quickly masked beneath the mixing

noise. Statically, the prediction tool has been shown to overpredict in the mid and

rear arcs. Therefore, a comparison of the OASPL directivity will first be performed

at U f = 102 m/s and θ = 110◦. This will then be followed by a comparison for the

static case. Unfortunately, the maximum polar angle at which the Stargate array could

be positioned is θ = 110◦; a larger angle would have increased the difference between

installed and isolated noise in flight, and allowed for a static comparison further into the

forward arc. In order to compare the directivity, the amplitudes will be normalised to

that of the peak on the shielded side of the wing, because the prediction tool does not

account for reflection of jet mixing noise from the wing. To demonstrate the effect of

strip theory, the directivity will also be calculated using the prediction tool for wings of

the same chord and span, with and without sweep.

Figure 6.24 displays the OASPL measured on the Stargate array and predicted using

the model at U f = 102 m/s and θ = 110◦. It is clear from looking at the measured

data that the OASPL amplitude is higher on outboard (i.e. 0◦ < φ < 180◦) side of

the model than on the inboard side((i.e. 180◦ < φ < 360◦)). The amplitude is also

higher on the unshielded side of the wing (−90◦ < φ < 90◦) than on the shielded side

(90◦ < φ < 270◦). The outboard shift has been shown[58–60,71,115] to be the effect of a

backward-swept wing. The discrepancy in amplitude between the unshielded (φ = 0◦)

and shielded (φ = 180◦) sides of the wing could be due to the corrupting presence of

reflected jet mixing noise also in the spectra over the OASPL frequency integration

range. In comparison, the model (using strip theory) and the swept (infinite span)

directivities both show the same outboard shift and a good comparison to the measured
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OASPL on the shielded side. The unswept (infinite span) prediction shows no shift at

all, with the directivity peaking directly above and below the wing.
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Figure 6.24: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, θ = 110◦, h/D s = 0.81 and condition 8F8 (U s = 292 m/s,

U p = 378 m/s and U f = 102 m/s.

Figure 6.25 displays comparisons of the directivity of the prediction tool with that of

the experimental data without the flight stream. The same trends in the measured

directivity discussed with Figure 6.24 are visible in Figure 6.25. Figure 6.25 does show,

however, that the amplitude of the measured OASPL on the unshielded side of the

wing increases relative to that on the shielded side as polar angle, θ increases. The

predictions, on the other hand, have a higher amplitude on the shielded side of the

wing, as the distance from trailing edge to the microphone is shorted compared the

unshielded side. Of the three predictions, the model (using strip theory) directivity

compares best with the measured data, the swept directivity now underpredicting the

amplitude noticeably on the inboard side.
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Figure 6.25: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-A55, l/D s = 2.35, θ = 110◦, h/D s = 0.81 and condition 8S (U s = 292 m/s,

U p = 378 m/s and U f = 0 m/s).

Overall, the results show that strip theory can be used to improve JSI noise predictions

for cranked wing geometries. However, it would appear that for cases displayed here one

could assume the wing to be fully swept. If the span of the wing is also assumed to be

infinite, then the scattering solution would be purely analytical, significantly reducing

the calculation time for each observer location.

6.3.6 Flap Deployment

Nozzle S33-P51 is the most realistic of the three nozzles, with bullet, bifurcations and

pylon. The bifurcations and pylon break the axisymmetry of the nozzle, which could

affect the development of the hydrodynamic pressure field. This nozzle was also used

with the most realistic wing locations, with the trailing edge within the flow field of the

equivalent isolated jet. This close positioning of the wing could also distort the jet and

hydrodynamic pressure field, which would in turn affect the JSI noise.

A comparison between the prediction tool and measurements is made in Figure 6.26 for

a static condition. The overall trends are the same as for the axisymmetric nozzle(S33-

A55), the amplitude and spectral shape match well at polar angle θ = 130◦, however

at lower angles the model increasingly overpredicts. At this trailing edge location the
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wing is likely to distort the jet. This is accounted for in the prediction tool very simply,

by setting the radial trailing edge location to the edge of the shear layer (as described

at the beginning of this chapter). Therefore, at lower radial trailing edge locations the

amplitude of the JSI noise prediction will remain constant.
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Figure 6.26: Comparison of measured installed jet noise with model prediction.
Nozzle S33-P51, l/D s = 2.35, h/D s = 0.66 and condition 6aS (U s = 245 m/s,
U p = 268 m/s and U f = 0 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d)

θ = 130◦.

Introducing a co-flow has been shown to reduce the model overprediction observed in

the rear arc for the axisymmetric nozzles. Additionally, the co-flow stretches the jet,

reducing the width of the shear layer at the trailing edge location and hence reducing

the potential for distortion of the jet by the trailing edge. In Figure 6.27 the model and

measured spectra are compared at a flight velocity of 102 m/s. The overprediction in

the rear arc has reduced and the spectral shapes display good agreement up to a polar

angle of θ = 110◦. The amplitude does appear though to have reduced to the point

where the amplitude is slightly underpredicted, and at θ = 130◦ the spectral shapes no

longer match. Without information of the jet flow field it is difficult to understand why

the amplitude is underpredicted, and spectral shape so different at θ = 130◦.
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Figure 6.27: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-P51, l/D s = 2.35, h/D s = 0.66, φ = 0◦ and condition 6aF8 (U s = 245 m/s and

U f = 102 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d) θ = 130◦.

During take off and landing, aeroplanes deploy flaps in order to increase the maximum

amount of lift the wing can produce; this helps in lowering the take-off and landing

speeds. Typically, modern airliners use single slotted fowler flaps that extend the wing

trailing edge backwards and then tilt downwards. This positions the trailing edge closer

to and at an angle to the nozzle axis, which can severely distort the jet.

In Figure 6.28 is displayed the measured and predicted spectra for a 32◦ flap deployment,

placing the trailing edge inside the nozzle lip line, at a flight velocity of 102 m/s. There

has clearly been a large increase in noise across the whole spectrum in comparison to

the wing configurations used thus far. This will be due to a variety of reasons, such as

an increase in wing self-noise, due to the washing of the underside of the wing by the jet,

and changes to the mixing noise, due to the distortion of the shear layer. There are also

tones in the spectra (they are more apparent in Figure 6.29 at a lower flight velocity),

which have been studied by Lawrence[18, 133] and shown by Jordan et al.[134] to be due

to trapped waves within the potential core of the jet.
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Figure 6.28: Comparison of measured installed jet noise with model prediction. Noz-
zle S33-P51, l/D s = 2.54, h/D s = 0.36, β = 32◦ and condition 6aF8 (U s = 292 m/s,
U p = 268 m/s and U f = 102 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d)

θ = 130◦.
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Figure 6.29: Comparison of measured installed jet noise with model prediction.
Nozzle S33-P51, l/D s = 2.54, h/D s = 0.36, β = 32◦, φ = 0◦ and condition 6aF1
(U s = 292 m/s and U f = 52 m/s). a) θ = 70◦; b) θ = 90◦; c) θ = 110◦; and, d)

θ = 130◦.

The prediction tool, which uses the near-field pressure spectra of an isolated jet as the

input, does not account for any of the aforementioned changes to the jet. Neither does

the tool account for the change in shape of the wing, still assuming that the wing is in

a plane parallel to the nozzle axis. Also, as previously mentioned, the tool assumes that

the trailing edge is at the edge of the isolated jet flow field, not at the true trailing edge

location. It is therefore surprising that the predicted spectra are in anyway comparable

to the measurements, but below a Strouhal number of one there appears to be fair

amount of agreement in shape and amplitude. It would be necessary to remove the

noise due to the other new/enhanced sources before a better comparison could be made.

In Figure 6.28 the model prediction cuts off at a Strouhal number of approximately

three, despite being above the level of the isolated jet mixing noise. This is due to the

acoustic field contaminating the hydrodynamic pressure field in the near-field pressure

spectra used as the input to the model at higher Strouhal numbers. If, as in this case,

higher Strouhal numbers are required, the input would have to be modified in order to

remove the acoustic field from the near-field pressure spectra.
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6.4 Summary

A JSI noise prediction tool has been created based on (i) the scaling laws developed

in Chapter 4, (ii) the jet near-field pressure measurements of Lawrence, and (iii) the

JSI noise model (cylindrical harmonic propagation coupled with Amiet’s trailing edge

scattering theory) of Lyu & Dowling. The prediction tool has been verified against large

model-scale installed jet noise measurements taken in QinetiQ’s NTF using realistic dual

stream nozzle and high-lift wing and fuselage surface geometries.

Comparison of the prediction tool with the axisymmetric single stream nozzle, S33-ASS,

showed the ability to scale to much larger nozzle diameters. Also, while the U j frequency

scaling, found in Chapter 4, was seen not to work in flight, a U j +U f correction showed

the predictions to compare well with the measurements. However, the amplitude of the

installed spectrum was increasingly overpredicted with decreasing polar in the rear arc

for the static case. This is currently believed to be due to the assumption that the

pressure incident on the trailing edge is stationary, however further study is necessary.

Next, the prediction tool was compared to measurements from an axisymmetric, coaxial

bulleted nozzle, with primary and secondary flows. Other than the consistent overpre-

diction in the rear arc for the static jet cases, the amplitude and spectral shapes of

the predictions compared well with the measured data. This provides further evidence

that the effective nozzle diameter should be used to scale the jet hydrodynamic pressure

field of an annular bulleted jet. The good comparison of the spectra and the variation

in OASPL with radial trailing edge location also gives confidence in the modelling of

the axial wavenumber. Finally, a comparison of azimuthal OASPL directivities, with

cranked, fully unswept and fully swept planform geometries successfully demonstrated

the applicability of strip theory to model more representative airframes, particularly

regarding cranked wings.

Finally, the model was compared to the most realistic nozzle geometry, including the

engine-airframe pylon and internal nozzle bifurcations. In flight there was good agree-

ment between the prediction tool and the measured data for the clean wing case. For the

deployed flap cases, the flap distorts the jet, modifying and adding to the noise sources.

For these cases the JSI noise model no longer captures the physics of the installed jet

noise.
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Conclusions and Future Work

7.1 Conclusions

The aim of this thesis was to produce a semi-empirical jet-surface interaction noise

model that could be used by industry. To this end, methods for scaling an isolated jet’s

hydrodynamic pressure field with jet velocity, flight velocity, core nozzle and secondary

nozzle area have been evidenced. Combined with a database of jet near-field pressure

measurements, the hydrodynamic axial wavenumber and spectrum make up the input

to a jet-surface interaction noise model that incorporates cylindrical harmonic near-field

propagation theory and acoustic edge scattering theory. The model has been validated

against installed jet noise measurements using a co-flow to simulate the effect of flight.

The model has then been extended with Roger & Moreau’s back-scattering theory, to

capture the physics of finite chord of real wings. Finally, strip theory has been used to

describe the scattering from the sections of cranked wings on airliners. The resulting

prediction tool is seen to compare well with large model-scale laboratory measurements

of in-flight installed jet noise.

In Chapter 4, unsteady pressure measurements were taken in the near field of laboratory

jets, both with and without a co-axial flight stream flow. These measurements were used

to demonstrate various scaling laws for jet hydrodynamic pressure spectra and to create

inputs for the jet-surface interaction noise calculations in the later chapters. The static

spectra were used to provide further evidence of the manner in which the peak amplitude

and frequency of the hydrodynamic pressure field scales. The former scaling with jet

velocity cubed, and the latter with jet velocity. A comparison of large and small nozzle

pressure spectra provided evidence of peak amplitude and frequency scaling with nozzle

diameter and the reciprocal of nozzle diameter, respectively. Measurements of the jet

near-field pressure within the flight stream were used to demonstrate that, if the axial

location of the microphone relative to the potential core length is kept constant, then

the amplitude of the hydrodynamic pressure spectra scales with (U j−U f)
3. Using LES,

161
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it was demonstrated that the peak axial wavenumber of the hydrodynamic pressure

field could be approximated as a linear function of Strouhal number. Finally, far-field

measurements of installed jet noise are used to show that an effective diameter based on

flow area can be used to scale the hydrodynamic pressure spectra of bulleted nozzles.

In Chapter 5, far-field installed jet noise measurements were taken using a co-flow to

simulate the effect of forward motion on the jet. These measurements were used to

validate the jet-surface interaction noise model of Lyu & Dowling in flight. Additional

measurements using plates with shorter, more realistic, chord lengths, have shown that

the model increasingly overpredicts jet-surface interaction noise in the rear arc as jet

velocity is increased. Roger & Moreau’s back-scattering theory was also included to

improve the predictions with the shorter chord lengths. This improved the prediction of

the spectral shape and amplitude at very low frequencies but did not improve the over-

prediction in the rear arc. It is then demonstrated that at least azimuthal modes 0 and

1 of the hydrodynamic field are required to produce the correct azimuthal directivity on

the installed round laboratory jet. Finally, it is suggested that cranked wing geometries

could be modelled by splitting the wing into strips, each with constant trailing edge

sweep, retaining coherence between the strips. This is shown in the following chapter to

improve the predicted azimuthal directivity of cranked wings, however the use of strip

theory requires numeric integration, which increases the time and complexity required

to converge on a solution. This integral also spans a singularity and a robust manner in

which to deal with this is still required if it is to be used in industry.

Finally, in Chapter 6, a jet-surface interaction noise prediction tool has been assembled.

The prediction tool is based on the jet near-field pressure measurements of Lawrence,

the jet hydrodynamic pressure scaling methods presented in Chapter 4, cylindrical har-

monic propagation for the near-field pressure, edge scattering theory and strip theory

to represent realistic wing planforms. This prediction tool has then been compared with

large-scale far-field installed jet noise measurements taken in QinetiQ’s Noise Test Fa-

cility, using more realistic nozzle and airframe geometries. While the comparison has

shown the model to overpredict the amplitude of the static jet in the mid to rear arcs,

the prediction tool accurately captures the amplitude and spectral shape of the installed

jets in flight.

7.2 Future Work

The next key aspect of the jet-surface interaction noise prediction tool that requires

development is the prediction of the jet hydrodynamic source pressure field itself. Pre-

dictions are currently made using hydrodynamic pressure spectra from an isolated jet

together with a crude empirical correction made wing locations likely to significantly

distort the jet flow field. Work is therefore required to understand how the wing distorts
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the jet, and what effect this has on the incident hydrodynamic pressure. Further in-

flight near-field pressure investigations should also be taken to understand how the peak

frequency of the hydrodynamic pressure field scales in flight. Ideally, in-flight azimuthal

modal decompositions should be performed and used as the input to the jet-surface in-

teraction noise model. This would serve to improve the predictions at angles closer to

the sideline observer location or for wings with swept trailing edges.

Thus far, the effect of flight on jet-surface interaction noise has been included within

Amiet’s theory, for the trailing-edge scattering, and via an empirical scaling method for

the incident hydrodynamic source pressure field. Additionally, for a full-scale installed

jet, the wing would generate lift in flight. This lift force may bend or distort the jet

modifying the hydrodynamic pressure field incident on the trailing edge. To model such

an effect will require understanding of the lift produced by the wing and the effect this

has on the jet both in the model-scale scenario, with a finite flight stream, and in the

full-scale infinite flight stream situation.

The model has been seen to overpredict jet-surface interaction noise in the rear arc,

especially at high jet velocities. This is thought to be due to the assumption that the

pressure incident on the trailing edge is stationary. This assumption could be removed

using the conical Greens function used by Vera, or the Gaussian near-field pressure

distribution used by Bychkov & Faranosov. To further investigate whether the assumed

incident pressure is the cause, numerical experiments could be conducted to understand

how the incident pressure distribution affects the far-field pressure scattered by the

surface.

Currently, the jet-surface interaction noise from a cranked wing is calculated by split-

ting the wing into several strips, each with constant trailing edge sweep, and applying

Amiet’s theory to each strip. With Amiet’s theory the scattered surface pressure is first

calculated assuming the surface to be semi-infinite, whereupon the far-field scattered

pressure is calculated by applying Curle’s theory to the finite region occupied by a strip.

This means that the effect of the crank on the surface pressure is not accounted for.

An analytical solution should, therefore, be sought to improve the model and to explore

whether changes to the crank geometry can influence jet-surface interaction noise.

Airliner wings do not have constant chord and the planform can often be split into two

trapezoid sections. Each section could then be modelled using Amiet’s theory, without

incorporating back-scattering. To include back-scattering, each wing section needs to

be approximated with parallelograms to arrive at a fully analytical solution. Further

research is required to determine whether there is a benefit to including back-scattering

theory for such planforms, and, if so, what chord should be used to best represent the

trapezoid sections as parallelograms.





Appendix A

Spanwise Fourier Transform

In order to calculate JSI noise, Lyu & Dowling take measurements of the unsteady near-field pressure of an isolated jet using a ring array of

microphones. Assuming the near-field pressure to be stationary, cylindrical harmonics are used to propagate the near-field measurements, taken

at the axial location of the trailing edge, onto the surface. Then, in order to make use of Amiet’s theory, the incident pressure is decomposed

in to spanwise wavenumber components by taking a Fourier transform along y2,

p′I(ω,m, k2) =
p′(ω,m)

2π

∫ ∞
−∞

Km

(
ιr

√
h2 + y2

2

)
e imφ e ik2y2 dy2 (A.1)

where, using de Moivre’s formula,

e imφ =

b|m|/2c∑
n=0

(−1)n
(
|m|
2n

)
h|m|−2ny2n

2

(h2 + y2
2)|m|/2

+ i

b(|m|−1)/2c∑
n=0

(−1)n
(
|m|

2n+ 1

)
m

|m|
h|m|−(2n+1)y2n+1

2

(h2 + y2
2)|m|/2

 . (A.2)
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The Fourier transform along y2 can be completed using the following integral representation for the modified Bessel function of the second kind,

Km(z) =
1

2

(z
2

)m ∫ ∞
0

1

tm+1
e−t−z

2/4t dt, (A.3)

where the following identity has also been used

K−m(z) = Km(z). (A.4)

Working through the real component of the incident pressure as an example, the following integral needs to be evaluated∫ ∞
−∞

y2n
2√

h2 + y2
2

e ik2y2 Km(ιr

√
h2 + y2

2) dy2. (A.5)

Substituting the integral representation of the Bessel function into the preceding integral leads to∫ ∞
0

ιmr
2m+1tm+1

e−t−(ιrh)2/4t

∫ ∞
−∞

y2n
2 e ik2y2−(ιry2)2/4t dy2 dt. (A.6)

The Fourier transform can be evaluated using standard identities,∫ ∞
0

ιmr
2m+1tm+1

e−t−(ιrh)2/4t i2n
d2n

dk2n
2

[
2
√
πt

ιr
e−(k2/ιr)2t

]
dt, (A.7)

which is then rearranged into the following form

i2n
√
πιm−1
r

2m
d2n

dk2n
2

∫ ∞
0

1

tm+1/2
e−t(1+[k2/ιr]2)−(ιrh)2/4t dt. (A.8)

Now, by using the transform

u = (1 + [k2/ιr]
2)t, (A.9)
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the integral form of the Bessel function can be returned

i2n
√

2π

ιmr h
m−1/2

d2n

dk2n
2

1

2

(
h
√
ι2r + k2

2

2

)m−1/2

[ι2r + k2
2]m/2−1/4

∫ ∞
0

1

um+1/2
e−u−h

2[ι2r+k22 ]/4u du, (A.10)

and the result of the integral is
i2n
√

2π

ιmr h
m−1/2

d2n

dk2n
2

[
(ι2r + k2

2)m/2−1/4 Km−1/2

(
h2
√
ι2r + k2

2

)]
. (A.11)

Applying this method to the full equation Equation A.1 results in the following expression for the spanwise wavenumber spectrum

p′I(ω,m, k2) =
p′(ω,m)

2π

∫ ∞
−∞

Km

(
ιr

√
h2 + y2

2

)
e imφ e ik2y2dy2 =

p′(ω,m)√
2π

b|m|/2c∑
n=0

(
|m|
2n

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
(ι2r + k2

2)|m|/2−1/4 K|m|−1/2

(
h
√
ι2r + k2

2

)]

− m

|m|

b(|m|−1)/2c∑
n=0

(
|m|

2n+ 1

)
h−2n+1/2ι−|m|r

d2n

dk2n
2

[
k2(ι2r + k2

2)|m|/2−3/4 K|m|−3/2

(
h
√
ι2r + k2

2

)] . (A.12)

While this solution is valid for all modes, to date, published results have only used azimuthal modes of orders 0 and 1, which have been shown

to contain the majority of the energy in the hydrodynamic field for axisymmetric jets. This is fortunate, as it is not necessary to evaluate any

derivatives in Equation A.12 for azimuthal modes of orders 0 and 1. However, it is possible that for non-axisymmetric jets, such as those with

pylons or chevrons, significant amounts of energy may also be seen in higher-order modes. It may also be necessary to include higher-order

modes for swept wings, or observer azimuthal angles near the plane of the scattering surface.

As mentioned, the form of the spanwise-wavenumber spectra in Equation A.12, is easy to evaluate for |m| ≤ 1. However, for |m| > 1 derivatives

with respect to k2 need to be evaluated, which to do numerically would need very careful treatment. Instead, the derivatives can be evaluated
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in Equation A.7, where

d2n

dk2n
2

e−(k2/ιr)2t = e−(k2/ιr)2t
n∑
o=0

(−1)2n−o (2n)!(2k2)2n−2o

o!(2n− 2o)!

(
t

ι2r

)2n−o
. (A.13)

Substituting this series back into Equation A.7 and continuing with the derivation, the solution becomes

p′I(ω,m, k2) =
p′(ω,m)

2π

∫ ∞
−∞

Km

(
ιr

√
h2 + y2

2

)
e imφ e ik2y2 dy2 =

p′(ω,m)√
2π

b|m|/2c∑
n=0

(
|m|
2n

)
1

ι
|m|
r

n∑
o=0

(−1)2n−o (2n)!k2n−2o
2

o!(2n− 2o)!2oho−1/2
[ι2r + k2

2]|m|/2−1/4−n+o/2 K|m|−1/2−2n+o

(
h
√
ι2r + k2

2

)

− m

|m|

b(|m|−1)/2c∑
n=0

(
|m|

2n+ 1

)
1

ι
|m|
r

n∑
o=0

(−1)2n+1−o (2n+ 1)!k2n+1−2o
2

o!(2n+ 1− 2o)!2oho−1/2
[ι2r + k2

2]|m|/2−3/4−n+o/2 K|m|−3/2−2n+o

(
h
√
ι2r + k2

2

) . (A.14)

This solution replaces the derivatives with series summations, and is thus much easier to evaluate numerically.

The solution, and implementation, was validated by comparison with a numerical calculation of the spanwise-wavenumber spectrum (Figure A.1).

The numerical solution was created by calculating the incident pressure at points on a line along y2 using Equation 2.99 with a single mode and

axial wavenumber. A Discrete Fourier Transform (DFT) was then taken across the points on the line.
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Figure A.1: Comparison of numerical and analytical solutions for the spanwise
wavenumber spectrum along the trailing edge of a plate. Azimuthal mode order, m, is

equal to nine.





Appendix B

Large-Eddy Simulation

Several sets of LES data (described below) were available to support the analysis of JSI

noise in this thesis. The simulations were created by Zhong-Nan Wang and Iftehkar

Naqavi at the University of Cambridge.

B.1 HARMONY

As part of the HARMONY project, a LES was created[112] of a cold jet, with a Mach

number of 0.875, produced by an axisymmetric single-stream nozzle. During the simula-

tion, flow properties were recorded on two FWH surfaces (Figure B.1) surrounding the

jet and spaced 1D apart. Each FWH surface consists of rings of probes from x/D = 0

to x/D = 10 with an axial spacing of 0.25D. Each ring consists of 17, 16 equally spaced

and 1 repeated, probes, which combine to produce a cone about the jet with an angle

of ten degrees, starting at x/D = 0, r/D = 0.75 on the lower surface.

The total sample time of the flow parameters on the FWH surface allows for a lower

Strouhal number limit of 0.0085. The upper Strouhal limit is determined by the mesh

resolution, which is dependent on the position of the probe. For the lower FWH surface

the upper Strouhal limit is 3, while for the upper FWH the upper Strouhal limit is 2.

In order to compute the PSD and/or CPSD on the FWH surfaces, Welch’s method has

been used. A bandwidth equivalent to a Strouhal number of 0.034 has been used. With a

50% overlap this allows for 7 averages, which helps to improve the statistical significance

of the results. Ideally more averages would be conducted, however, this would involve

reducing the number of samples used for each Fourier transform, which increases the

lowest resolved frequency and for JSI noise it is the low frequencies which are of most

interest. Hamming windows were applied to the time series, in order to reduce the side

lobes produced by the finite Fourier transform.
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Figure B.1: Location of probes on the HARMONY LES FWH surfaces in the y2 = 0
plane

B.2 Doak

A series of LESs[106,107] have been run based on the geometry of the 38.1 mm Doak jet

nozzle at a acoustic Mach number of 0.6. This choice of geometry and Mach number

allows direct comparison with the acoustic measurements of Lawrence[18] and hot-wire

velocity measurements of Proenca.[98, 135]

For the isolated jet LES, three FWH surfaces are available. Each consists of conical

surface from x/D = −1 to x/D = 20 followed by a cylindrical surface up to x/D = 30.

The surfaces are made up of rings of 129, 128 equally spaced and 1 repeated, probes

spaced axially 0.2D apart. At x/D = −1 and x/D = 30 rings of probes were positioned

radially to close off the upstream and downstream ends of the surfaces.

Also available are probes positioned on cylinders within and in the near-field of the jet.

These probes are positioned in rings of 32 equally spaced microphones, with the rings

positioned 0.25D apart radially and 0.5D axially, between r/D = 0.5 and r/D = 4.

The FWH surfaces have been sampled with a time step of 6E − 6 s for a total of 6000

samples. This gives a total simulation time of ≈36 ms and a Nyquist Strouhal number

of ≈ 16. This Nyquist frequency is not realisable, however, as it is also affected by the

mesh resolution, which is capable of computing Strouhal numbers up to two.



Appendix C

Alternate Swept Wing Derivation

As with the straight trailing edge case the scattered field is described by the convected

Helmholtz equation

k2p′ − 2ikM
∂p′

∂y1

+ (1−M2)
∂2p′

∂y2
1

+
∂2p′

∂y2
2

+
∂2p′

∂y2
3

= 0, (C.1)

and the first part of the solution for the scattered surface pressure is, as before,

p S1 = p′I(ω, k1, k2) e− ik1y1− ik2y2 . (C.2)

However, the boundary conditions for the second part of the solution are now given by

∂p′S2

∂y3

= 0, y1 < y2 tan(ψ) (C.3)

and

p′S2 = −p′I e− ik1y1− ik2y2 , y1 ≥ y2 tan(ψ). (C.4)

Now, in order to make use of Schwarzchild’s solution,[41] the following transforms are

required

ỹ1 =
y1

β
cos(ψ̃)− y2 sin(ψ̃), (C.5)

ỹ2 =
y1

β
sin(ψ̃) + y2 cos(ψ̃), (C.6)

ỹ3 = y3 (C.7)

and

p′ = p̃′ e ik̃M(ỹ1 cos(α)+ỹ2 sin(α)), (C.8)

where

tan(ψ̃) = tan(ψ)/β. (C.9)
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This leads to a static form of the Helmholtz equation

k̃2p̃′ +
∂2p̃′

∂ỹ2
1

+
∂2p̃′

∂ỹ2
2

+
∂2p̃′

∂ỹ2
3

= 0. (C.10)

The boundary conditions for the second part of the scattered surface pressure are now

∂p̃′S2

∂ỹ3

= 0, ỹ1 < 0 (C.11)

and

p̃′S2 = −p′I e− iỹ1(k̃1+k̃M cos(ψ̃))− iỹ2(k̃2+k̃M sin(ψ̃)), ỹ1 ≥ 0, (C.12)

where

k̃1 = βk1 cos(ψ̃)− k2 sin(ψ̃) (C.13)

and

k̃2 = βk1 sin(ψ̃) + k2 cos(ψ̃), (C.14)

using

y1 = β(ỹ1 cos(ψ̃) + ỹ2 sin(ψ̃)) (C.15)

and

y2 = −ỹ1 sin(ψ̃) + ỹ2 cos(ψ̃). (C.16)

Taking a Fourier transform along ỹ2 results in a 2D form of the Helmholtz equation to

which Schwarzchild’s solution can be applied

(k̃2 − k̃2
2)p̃′ +

∂2p̃′

∂ỹ2
1

+
∂2p̃′

∂ỹ2
3

= 0, (C.17)

resulting in

p′S2 = p′I e− iỹ1k̃1− iỹ2k̃2 [(1 + i) E(−ỹ1[k̃1 + k̃M cos(ψ̃) +

√
k̃2 − k̃2

2])− 1]. (C.18)

The next step is then to scatter this surface pressure to the far-field with Kirchoff/Curle’s

theory, this will be done in the transformed coordinates, because it allows the integrals

to be separated. In the transformed domain the derivative of the free space Greens

function normal to the surface is

∂G

∂ỹ3

≈ ik̃(x3 − y3)

4πβr̃2
x

e− ik̃(r̃x−ỹ1x̃1/r̃x−ỹ2x̃2/r̃x)+ik̃M([x̃1−ỹ1] cos(ψ̃)+[x̃2−ỹ2] sin(ψ̃)). (C.19)
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First integrating along the spanwise direction

∫ d̃/2

−d̃/2
e− iỹ2(k̃2+k̃M sin(ψ̃)−k̃x̃2/r̃x) dỹ2 = (C.20)

2 sin(d̃/2(k̃2 + k̃M sin(ψ̃)− k̃x̃2/r̃x)

k̃2 + k̃M sin(ψ̃)− k̃x̃2/r̃x
, (C.21)

where

d̃ = d(sin2(ψ̃)/ cos(ψ̃)− cos(ψ̃)) (C.22)

and which in the limit of d̃/2→∞

lim
d̃/2→∞

2 sin(d̃/2(k̃2 + k̃M sin(ψ̃)− k̃x̃2/r̃x)

k̃2 + k̃M sin(ψ̃)− k̃x̃2/r̃x
= (C.23)

2πδ(k̃2 + k̃M sin(ψ̃)− k̃x̃2/r̃x). (C.24)

Integrating now along the chordwise direction, and applying Amiet’s correction, leads

to ∫ 0

−c̃
[ E(−ỹ1C1)− 1/(1 + i)] e− iỹ1C2 dỹ1 =

1

iC2

[
e iC2c̃ E(C1c̃)−

√
C1

C1 − C2
E(c̃[C1 − C2])− e iC2c̃

(1 + i)

]
, (C.25)

where

c̃ = cos(ψ̃)c/β, (C.26)

C1 = k̃1 + k̃M cos(ψ̃) +

√
k̃2 − k̃2

2 (C.27)

and

C2 = k̃1 + k̃M cos(ψ̃)− k̃x̃1/r̃x. (C.28)

Setting

Γ(c̃, C1, C2) = e iC2c̃ E(C1c̃)−
√

C1

C1 − C2
E(c̃[C1 − C2])− e iC2c̃

(1 + i)
(C.29)

the solution for the scattered pressure in the far-field then becomes

p′Sx =
(1 + i)k̃x3

r̃2
x

e− ik̃(r̃x−Mx1/β)

∫ ∫
p′I
C2
δ(k̃2+k̃M sin(ψ̃)−k̃x̃2/r̃x)Γ(c̃, C1, C2) dk2 dk1.

(C.30)

This simplifies to

p′Sx = (1 + i)
k̃x3p

′
I

r̃2
xC2

e− ik̃(r̃x−Mx1/β)Γ(c̃, C1, C2), (C.31)
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with

k2 =
1

cos(ψ̃)
[k̃x̃2/r̃x − k̃M sin(ψ̃)− βk1 sin(ψ̃)]

= −k1 tan(ψ)− kM tan(ψ)

β2
+
kx1 tan(ψ)

β3r̃x
+
kx2

βr̃x

(C.32)



Appendix D

Trapezium Wing

Commercial jet airliners tend to have wings with differing trailing- and leading-edge sweep. This will affect the scattering of jet noise from the

trailing edge both by changing the scattered surface pressure and by changing the surface area which radiates to the far-field. The change to

the surface pressure would need to be calculated using a leading-edge correction (and possibly further trailing- and leading-edge corrections),

which is further complicated from Roger & Moreau’s back-scattering correction by the difference in angle between the leading and trailing edges.

However, the change in the radiation integral can be calculated using Amiet’s theory alone.

The surface pressure from which the far-field pressure is to be calculated is given by

p S2 = e− ik2y2− ik1y1 [(1 + i) E(−[y1 − y2 tan(ψ)]C1)− 1] (D.1)

for a swept trailing edge, where

C1 = k̃ + k1 − (k̃2 tan(ψ)− kM)/(β2 + tan2(ψ)). (D.2)
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Using Curle’s theory, the far-field pressure is given by

p Sx(ω, k1, k2) =

∫ d2

d1

∫ y2 tan(ψTE)

y2 tan(ψLE)−c
e− ik2y2− ik1y1 [(1 + i) E(−[y1 − y2 tan(ψ)]C1)− 1]

ik̃x3

4πβr̃2
x

e− ik̃(r̃x−y1x1/β2r̃x−y2x2/r̃x)+ ik̃M(x1−y1)/β dy1 dy2 (D.3)

where k̃ = k/β and r̃x =
√

(x1/β)2 + x2
2 + x2

3. Now, because the sweep angles of the trailing edge and leading edge are different, the transform

used for the swept wing can’t be used alone to complete the integral. Instead, the transforms

ỹ1 = y1 − y2 tan(ψTE) (D.4)

and

ỹ2 = y2(tan(ψLE)− tan(ψTE))− c (D.5)

are used. Applying these transforms to the integral results in

p Sx(ω, k1, k2) =
ik̃x3 tan(ψ̃) e− ik̃(r̃x−Mx1/β)− icC3

4πβr̃2
x

∫ d̃2

d̃1

∫ 0

ỹ2

e− iỹ1C2− iỹ2C3 [(1 + i) E(−ỹ1C1)− 1] dỹ1 dỹ2, (D.6)

where tan(ψ̃) = tan(ψLE)− tan(ψTE), d̃ = d tan(ψ̃)− c,

C2 = k1 + k̃M/β − k̃x1/β
2r̃x (D.7)

and

C3 =
tan(ψTE)k1

tan(ψ̃)
+

k2

tan(ψ̃)
+

tan(ψTE)k̃M

β tan(ψ̃)
− tan(ψTE)k̃x1

β2r̃x tan(ψ̃)
− k̃x2

r̃x tan(ψ̃)
. (D.8)
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Completing the first integral

p Sx(ω, k1, k2) =
(1 + i)k̃x3 tan(ψ̃) e− ik̃(r̃x−Mx1/β)− icC3

4πβr̃2
xC2

∫ d̃2

d̃1

e−iỹ2C3

[
e− iỹ2C2 E(−ỹ2C1)−

√
C1

C1 − C2
E(−ỹ2[C1 − C2]) +

1− e− iỹ2C2

(1 + i)

]
dỹ2.

(D.9)

Had y2 not been transformed, then the final integral would have been hard to complete analytically. However, the solution now fails when the

trailing and leading edges are parallel.

Completing now the second integral, the solution for the far-field pressure becomes

p Sx(ω, k1, k2) =
(1 + i)k̃x3 tan(ψ̃) e− ik̃(r̃x−Mx1/β)− icC3

4πβr̃2
xC2

[Γ(ỹ2, C1, C2, C3)]d̃2
d̃1
, (D.10)

where

Γ(ỹ2, C1, C2, C3) = − e− iỹ2(C2+C3)

i(C2 + C3)
E(−ỹ2C1)− 1

i(C2 + C3)

√
C1

C1 − C2 − C3
E(ỹ2[C2 + C3 − C1]) +

e− iỹ2C3

iC3

√
C1

C1 − C2
E(−ỹ2[C1 − C2])

− 1

iC3

√
C1

C1 − C2 − C3
E(−ỹ2[C1 − C2 − C3])− 1

1 + i

e− iỹ2C3

iC3
+

1

1 + i

e− iỹ2(C2+C3)

i(C2 + C3)
(D.11)

In order to implement this solution, a function is made to look like

E(xt)√
t
. (D.12)

With this function, when t = 0 L’Hopital’s rule allows the solution to be found,

lim
t→0

E(xt)√
t

= x

√
2

π
, (D.13)
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where otherwise the 1√
t

might make the solution appear singular. The solution will still, however, fail when the sweep angles of the leading

and trailing edges are equal, as tan(ψ̃) = 0. Additionally, this solution is computationally more expensive than for parallel leading and trailing

edges, because the amount of Error functions that need evaluating have increased from two to eight.



Appendix E

Modified Back-Scattering Theory

In Chapter 5, the back-scattering theory of Roger & Moreau[43, 51] was shown to improve

the JSI noise predictions, created using Amiet’s theory, with realistic (in relation to the

nozzle diameter) chord lengths. The plates used in that experiment were un-swept. Later

on in Chapter 5, comparison was made between the model predictions and experimental

measurements using a swept plate with a realistic chord length. Therefore, the back-

scattering theory of Roger & Moreau needed to be extended to include swept wings.

The derivation of the swept back-scattering theory starts with the scattered surface pres-

sure solution for a swept trailing edge, as derived by Lyu[71, 111,115] using the transforms

of Roger et al,[72]

p S2 = e− ik2ỹ2− ik1ỹ1 [(1 + i) E(−ỹC1)− 1],

where

C1 = k̃ + k1 −
k̃2 tan(ψ)− kM
β2 + tan2(ψ)

,

k̃ =

√
k2 − k̃2

2 + (k̃2M − k tan(ψ))2

β2 + tan2(ψ)

and

ỹ1 = y1 − tan(ψ)y2.

The derivation then follows the same procedure outlined in Section 2.2.2.1, with the

exceptions that

y̆1 = −(ỹ1 + c)

and

Φ′ = Φ̃′ e− ik2ỹ2− iỹ1(k̃2 tan(ψ)−kM)/(tan2(ψ)+β2).
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The far-field scattered pressure due to back scattering then becomes

p′Sx3 =
p′Ikx3 e− ik(r̃x−Mx1/β)/β−2 ick̃

β2r̃2
x(k −Mk1)

√
iπC1c

[
1− MC1

MC1 + k −Mk1

]
[
M
{

e2 ik̃c
[
1− (1 + i) E(2k̃c)

]} c
−M e icC3+ i

{
k −M k̃2 tan(ψ)− kM

tan2(ψ) + β2
−Mk̃ +MC3

}{
1 + ε

C3 − 2k̃
e ic[2k̃+C3]/2 sin(c[C3 − 2k̃]/2) +

1− ε
C3 + 2k̃

e ic[C3−2k̃]/2 sin(c[C3 + 2k̃]/2)

+
(1− i)(1 + ε)

2(C3 − 2k̃)
e2 ick̃ E(2k̃c)− (1 + i)(1− ε)

2(C3 + 2k̃)
e−2 ick̃ E∗(2k̃c)

+
1

2
e icC3

√
2k̃

C3
E(cC3)

[
(1 + i)(1− ε)
C3 + 2k̃

− (1− i)(1 + ε)

C3 − 2k̃

]}]
(E.1)

with

C3 = k̃ +
k̃2 tan(ψ)− kM

tan2(ψ) + β2
+
kM

β2
− kx1

β3r̃x

and

k2 = −k1 tan(ψ)− (k/β)(tan(ψ)[M/β − x1/(β
2r̃x)]− x2/r̃x).

In Roger & Moreau’s back-scattering theory, once the surface potential scattered by the

trailing edge has been calculated, Amiet’s Error function is replaced by its asymptotic

expansion. Applying the Schwarzchild solution, the following integral needs completing∫ ∞
0

√
−y1

ξ

e− ik̃ξ

ξ − y1

e− ik̃ξ

√
ξ

dξ. (E.2)

This integral does not have an analytic solution,[43] therefore it is assumed that the

incident potential on the leading edge is stationary, such that the integral becomes

1√
c

∫ ∞
0

√
−y1

ξ

e− ik̃ξ

ξ − y1
e− ik̃ξ dξ =

π√
c

e−2 ik̃y1 [1− (1 + i) E(−2ky1)]. (E.3)

Comparing a numerical implementation of Equation E.2 with the analytical solution,

Equation E.3, Roger & Moreau demonstrate that there is an error in the imaginary part

of the analytical solution. They then suggest correcting this error by multiplying the

imaginary part of Equation E.3 by a correction factor,

ε =

(
1 +

1

2k̃c

)−1/2

. (E.4)

This comparison is repeated in Figure E.1, with more values of k̃c/2. As Roger & Moreau

state, there is an error in the imaginary part for all values of k̃c/2. However, there is

also an increasing error in the real component as k̃c/2 reduces. Figure E.2 displays the

imaginary component after the correction factor is applied. The correction factor of
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Roger & Moreau improves the result significantly, but the error does still increase as

k̃c/2 decreases. After some trial and error, and comparing with the correction factors

of Santana et al.,[136] a improved correction is found in

ε =

(
1 +

2

3.3k̃c

)−1/3

. (E.5)
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Figure E.1: Comparison of the numerical implementation of Equation E.2 with the
simplified analytical solution Equation E.3. k̃c/2 is equivalent to µ̄ in Roger & Moreau’s

notation.

0.00 0.50 1.00 1.50 2.00

2 (1 + y1=c)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

Im
ag

(I
n
te

gr
al

)

~kc=2 = 1:00
~kc=2 = 0:80
~kc=2 = 0:60
~kc=2 = 0:40
~kc=2 = 0:20
~kc=2 = 0:10

Numerical

" = (1 + 1

2~kc
)!1=2

" = (1 + 2

3:3~kc
)!1=3

Figure E.2: Comparison of the numerical implementation of Equation E.2 with the
simplified analytical solution Equation E.3 including correction factors. k̃c/2 is equiv-

alent to µ̄ in Roger & Moreau’s notation.
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To get an analytical solution to the back scattering problem, Amiet’s Error function

is replaced with its asymptotic approximation, before also assuming that the pressure

incident on the leading edge is stationary. Comparing the exact function with the

asymptotic expansion (Figure E.3), the expansion works well when |cC1| is greater than

2. Below |cC1| = 2, however, the asymptotic expansion diverges from the exact function,

with the exact function becoming less sinusoidal and attaining a finite value at |cC1| = 0.

Because of the sinusoidal nature of the asymptotic approximation, the back-scattering

solution of Roger & Moreau becomes questionable in this region. It is also debatable

whether one would expect to be able to get a physical result using Amiet’s theory in

this region, given that the wavelength is larger than the chord.

0 2 4 6 8 10 12

jcC1j

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

(1
+

i)
E
(c

C
1
)
!

1

Real

Imag

Exact

Asymptotic Expansion

Figure E.3: Comparison of Amiet’s Error function with its asymptotic expansion

Despite the questionable validity of applying Amiet’s theory for |cC1| ≤ 2, Figure E.4

shows that the 1/
√
cC1 decay can lead to the pressure on the leading edge being a

significant proportion of that at the trailing edge. For context, with the c/D = 0.7

plate, M j = 0.3, M f = 0 and k2 = 0, at Strouhal numbers of 0.2 and 0.5, |cC1| 2 and 6

respectively. So at these Strouhal numbers the scattered pressure amplitude incident on

the leading edge is between 40 and 20 % of that at the trailing edge. The application of

the back-scattering solution could therefore be expected to have a significant effect on

the scattered far-field pressure.
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Figure E.5 displays the relative error between the asymptotic expansion and the exact

function. The error is fairly significant for values of |cC1| less than three, above this

values the relative error quickly drops below one percent, so is unlikely to have a signifi-

cant effect on the result. There are, however, two fairly simple methods with which this

error could be reduced. Firstly, the approximation

(1 + i) E(−ỹ1C1)− 1 ≈ −|(1 + i) E(cC1)− 1| e
iỹ1C1

√
i

(E.6)

could be used. This gives the correct amplitude at the leading edge and preserves the

phase of the asymptotic approximation, but gives the wrong phase at the leading edge

for low values of |cC1|. Secondly, the approximation

(1 + i) E(−ỹ1C1)− 1 ≈ [(1 + i) E(cC1)− 1] e i(ỹ1−c)C1 (E.7)

gives the correct amplitude and phase at the leading edge, but does not preserve the

phase of the asymptotic approximation. In both cases the correct phases and amplitudes

would be returned for large values of |cC1|.
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Figure E.5: Relative error between the absolute values of (1 + i)E(cC1) − 1 and its
asymptotic expansion

For example, if there is no ambient flow nor sweep and k2 = 0, then calculating the

back-scattered surface pressure involves solving the integral

∫ ∞
0
− 1

π

√
− y̆1

ξ

e− ik(ξ−y̆1)+ ik1(ξ+c)

ξ − y̆1
{(1 + i) E([ξ + c][k1 + k])− 1}. (E.8)

Using Roger & Moreau’s original approximation, the solution becomes

e iky̆1− ikc√
iπ(k1 + k)c

{ e−2 iky̆1 [1− (1 + i) E(−2ky̆1)]}c, (E.9)

while for the approximations above the solutions become, respectively,

e iky̆1− ikc

√
i
{ e−2 iky̆1 [1− (1 + i) E(−2ky̆1)]}c|(1 + i) E(c[k1 + k])− 1|, (E.10)

and

− e iky̆1+ ik1c{ e−2 iky̆1 [1− (1 + i) E(−2ky̆1)]}c[(1 + i) E(c[k1 + k])− 1]. (E.11)

Comparing the approximate analytical solutions to a numerical implementation of Equa-

tion E.8 (Figure E.6 and Figure E.7), shows that Equation E.10 makes an almost negligi-

ble improvement on Equation E.9. On the other hand, Equation E.11 provides a better

approximation of Equation E.8 for all the cases shown. If it is considered necessary, it

would be fairly simple to include Equation E.11 in Equation E.1. This also serves to

once again demonstrates that the in Amiet’s theory (more specifically, the Schwarzchild

solution) it is the pressure incident on the edge that is most important, not necessarily

the overall shape of the incident pressure.
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Figure E.6: Comparison of the numerical calculation of Equation E.8, with Roger &
Moreau’s original approximation (Equation E.9) and two modified solutions (1) Equa-

tion E.10 and 2) Equation E.11). k1 = 0
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