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Abstract 

Airborne particulate matter pollution is a global health problem that affects people from all 

demographics. To reduce the impact of such pollution and enable mitigation and policy planning, 

quantifying individuals’ exposure to pollution is necessary. To achieve this, effective monitoring of 

airborne particulates is required, through monitoring of pollution hotspots and sources. Furthermore, 

since pollution is a global problem, which varies from urban areas to city centres, industrial facilities to 

inside homes, a variety of sensors might be needed. Current sensing techniques either lack species 

resolution on a world scale, lack real-time capabilities, or are too expensive or too large for mass 

deployment. However, recent work using deep learning techniques has expanded the capability of 

current sensors and allowed the development of new techniques that have the potential for worldwide, 

species specific, real-time monitoring. Here, it is proposed how deep learning can enable sensor design 

for the development of small, low-cost sensors for real-time monitoring of particulate matter pollution, 

whilst unlocking the capability for predicting future particulate events and health inference from 

particulates, for both individuals and the environment in general.  
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1. Introduction 

Airborne particulate matter pollution is a worldwide health and environmental problem. To determine 

sources to reduce their impact, mitigate toxic levels, and predict dangerous episodes (just as current 

meteorological centres do regarding heatwaves, hurricanes and flooding), precise sensing capability is 

necessary on an individual, local and global scale. Owing to recent significant advancements in the field 

of deep learning, this review aims to discuss how such a field has been applied to the domain of 

particulate matter detection. The review begins by describing the various sources of particulate matter 

pollution, along with the dynamics of the particulates and the associated health and environmental 

implications. Following this, in section 3, we discuss the current common methods used for detecting 

and analysis of particulate matter present in the atmosphere. Deep learning is then introduced in section 

4, where we discuss its history, followed by its application to the field of airborne particulate pollution. 

Finally, in section 5, we discuss the future perspectives of deep learning for particulate matter sensing 

and propose future ideas that could enable the development of more accurate sensors and stronger 

synergy between detection, forecasting and inference.  

2. Airborne Particulate Matter 

2.1 Sources 

Air pollution can consist of particulate matter in the form of particles that can range from over 10 μm 

(>PM10), to below 10 μm (PM10), below 2.5 μm (PM2.5), and below 0.1 μm (PM0.1), where the 

particles themselves can be formed from a range of chemicals [1] that are present worldwide [2]. Since 

particulates of all sizes exist in a variety of shapes (symmetrical, asymmetrical, and irregular), the size 

of a particulate is generally defined by its aerodynamic diameter, which is a diameter equal to a spherical 

particulate with a density of 1 g/cm3 density, whose aerodynamic behaviour (settling velocity) is 

equivalent to the particulate in question [3].  

Particulate matter emanates from a variety of sources. A significant source of airborne particulate matter 

is road transport, particularly from the combustion of diesel from public and private vehicles [4]. These 

particulates are generally carbonaceous materials, including black carbon (carbon-based micron and 
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nano-sized spheres formed from the incomplete combustion of organic matter), elemental carbon, and 

a range of polycyclic aromatic hydrocarbons (PAHs) [5]. Brake and tyre wear can also produce rubber 

and metallic particulates [6]. The burning of fossil fuels [7], biofuels [8] and wood [9], also contribute 

to black carbon particulate matter. Other types of particulate matter include iron and sulphur from steel 

works [10], metals from mining [11] and cement dust from factories [12]. Particulate matter can also 

originate from natural sources such as desert dust, whilst sea salt can also contribute to overall 

atmospheric particulate levels [13]. Outdoor natural biological contributions include pollen from trees, 

grass and weeds, and spores from fungi [14]. 

Airborne particulate matter pollution can also occur indoors from a variety of sources such as cooking 

[15], as well as spray products (e.g., surface cleaners, deodorants, and air fresheners [16]), wood burning 

stoves [17], cigarette smoking and incense [18], fungal spores [19], as well as general sweeping and 

cleaning, which can project particulate matter into the air [20]. Additional sources include microplastic 

fibres from the wear and tear of textiles [21] and asbestos fibres from walls and roofing [22]. Figure 1 

shows a diagram summarising common particulates and their size range.  

  

Figure 1. Diagram showing the relative sizes of common airborne particulate matter. 

2.2 Dynamics  

The size, shape, and composition of particulate matter, as well as metrological factors, can affect their 

number density and toxicity [23], and therefore sensing devices should also include the capability for 

identification of these factors. For example, particulates exist in a variety of sizes, from single spheres 

and cuboids to shards and agglomerates [24]. Ultrafine particulate matter can evolve and become larger 

by coagulation via collisions with other particles (see figure 2), by chemical reaction, and by activation 

in the presence of water vapour in the troposphere [25]. In addition, pollen grains, which usually have 

a size of 10-100 µm, have been found to have urban particulate matter attached to them [26]. 

 

Figure 2. Atmospheric aerosol formation through particulate coagulation. 

Particulate matter can be present at different heights (based on the initial altitude of the emission, air 

flow, and weather conditions), with concentrations varying depending on meteorological factors and 
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population density [27]. Due to the size and weight of airborne particulates, such pollution can travel in 

the atmosphere from one area to another [28]. Not only do particulate pollution levels vary from region 

to region [29], but particulate matter levels can also even vary over minutes to hours [30], months [31], 

and on a yearly basis [32]. Therefore, particulate sensors would need to be able to detect over both short 

and long time periods, at different places and different altitudes. 

2.3 Health 

Owing to the small size, shape and variety of chemical compositions, airborne particulate matter directly 

results in a range of health conditions [33,34] and is estimated to contribute to around nine million 

deaths globally per year [35,36]. More specifically, fine particulate matter can have a detrimental effect 

on life expectance, as documented in a study in the United States of America [37]. 

Figure 3 presents a diagram showing the pathway through the nose and mouth of different sized 

particulates into the human body and highlights associated health impacts of such particulates. The eyes 

are particularly susceptible to dust and other particulates, and PM2.5 has been found to trigger ocular 

hypertension [38]. Particulates on the size scale of 10-100 µm, such as pollen grains, can get trapped in 

the nasal cavity and can lead to allergic rhinitis, with approximately 10% to 30% of adults around the 

world suffering from the condition [39].  

In general, smaller particulates are more likely to travel further along the respiratory tract and into the 

lungs, and larger particulate (PM10 and >PM10) are instead generally found more frequently in the 

upper airways. Indeed, cement dust exposure can enter the respiratory tract and has been linked to acute 

respiratory illnesses such as sneezing, coughing and shortness of breath [40]. Microplastics (PM10), 

such as polyethylene and polyethylene terephthalate fibres, have been found in tissue from the upper, 

middle, and lower part of the human lungs [41]. 

Cigarette smoke can contain considerable amount of PM2.5, and high levels have been associated with 

lung cancer mortality [42], and PM2.5 urban particulate matter has been linked to asthma exacerbation 

[43]. Since PM2.5 contains particles below 100 nm, such particulates can enter alveolar, allowing them 

to enter the blood circulation system and in turn travel to various organs of the human body. There is 

also evidence that particulates could lead to liver disease [44], and long-term exposure has demonstrated 

an increased risk of obtaining non-Hodgkin lymphoma [45]. Further to this, there is indication that 

particulates accumulating in the brain [46] are associated with Alzheimer’s [47], dementia [48], strokes 

[49] and perhaps autism [50].  
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Figure 3. Health effects associated with airborne particulate matter pollution. 

2.4 Environmental Effects 

Airborne particulates have adverse effects on the environment and contribute to climate change [51]. 

As shown in the diagram of figure 4, particulate matter such as black carbon from wood and fossil fuel 

burning can be emitted into the atmosphere and transported via air currents to different areas. Black 

carbon present in the atmosphere can absorb more infrared radiation than CO2, and so can lead to heating 

of the atmosphere [52]. In addition, atmospheric black carbon can deposit on snow, leading to increased 

melting due to the lowering of snow grain albedo [53].  

 

Figure 4. Impact of black carbon on the atmosphere and environment. 

Particulate matter can deposit on the leaves of vegetation and in the surrounding soil [54]. Metals can 

be absorbed by the roots [55], and can also be present on plants and in turn affect the biochemical 

processes [56]. The direct deposition of particulate matter onto the surfaces of leaves can cause damage 

due to pH of the particulates [57], and potentially inhibit photosynthesis and respiration leading to the 

decaying of leaf matter, with the associated negative effects on agriculture [58]. 

3. Current Sensing Methods and Monitoring  
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The World Health Organisation (WHO) has set limits on the amount of particulate matter that is safe, 

with values of fine particulate matter (PM2.5) of 5 μgm-3 annual mean with 15 μgm-3 24-hour mean, 

and coarse particulate matter (PM10) of 15 μgm-3 annual mean with 45 μgm-3 24-hour mean [59]. Since 

particulate levels often exceed such values throughout the world [60], being able to accurately measure 

levels is vital for human health and understanding the sources of particulate matter. As discussed in this 

section, a variety of sensing methods exist, each with their own advantages and disadvantages. 

3.1 Gravimetric  

A critical capability of a particulate sensor is to be able to determine or infer masses and concentration 

of particulates. For both the PM10 and PM2.5 standards, the Federal Reference Method (FRM), as 

defined by the U.S. Environmental Protection Agency (EPA), states that the reference technology used 

for measuring PM10 and PM2.5 should be based on gravimetric analysis of particulates collected over 

a 24-hour time period [61]. Whilst measurements can be sorted into PM10 and PM2.5, species specific 

measurements cannot generally be obtained, and this technique lacks real-time capability. 

3.2 Oscillation 

Tapered element oscillating microbalance (TEOM) sensors consist of a filter on the end of a glass tip 

whose vibration frequency is measured electronically [62,63]. As particulate matter is deposited onto 

the filter, the glass tip oscillation frequency changes. The particulate matter mass can then be directly 

inferred as the oscillation frequency will decrease as particulate mass is added. Whilst such 

measurements can be very precise, species identification is not possible.  

3.3 Radiation 

A beta attenuation monitor (BAM) utilises β-ray attenuation to quantify the particulate matter 

concentration in air [64]. Air is passed through an inlet and particulate matter is impacted onto a glass 

fibre tape. The tape is situated between a β-radiation source and a scintillator, so that matter collected 

on the surface of the tape attenuates the radiation and therefore affects the signal on the scintillator. The 

amount of attenuation is generally proportional to the amount of particulate matter sampled. 

3.4 Optical 

Satellite based sensing provides the advantage of large area and volumetric sensing. Columnar satellite-

derived aerosol optical thickness (AOT) values can be related, via linear regression, to surface PM2.5 

mass measurements, based on EPA guidelines [65]. Engel-Cox et al., outlined the use of Light Detection 

and Ranging (LiDAR) at 532 nm wavelength in combination with aerosol optical depth (AOD) 

measurements and ground-based PM2.5 monitoring data to create 3D mapping of PM2.5 mass 

concentration [66]. 

Since the optical properties of particulates are dependent on their chemical and structural properties, 

analysis of the light scatter can be used to determine particulate levels, as in the case of optical particle 

counters (OPCs) [67]. OPCs generally use laser or LED light to illuminate particulates in a specified 

volume of air and capture the scattered light using a photodiode detector. Whilst these optical scattering 

sensors are relatively simple, small and cheap, and allow for real-time monitoring by scientists and 

communities, they currently lack the capability for species specific identification [68]. 

3.5 Spore Traps 

Since particulate matter exists in a variety of shapes, sizes, and composition, with their associated 

effects dependent on these parameters, there is a clear importance for identification of each individual 

particulate. Volumetric air sampling traps, such as the Burkard Spore Trap, can be used to collect 

particulate matter of a variety of sizes to enable analysis of airborne particulates over a 24-hour or 7-

day period [69]. These traps are approximately 1 m tall, and air is drawn in through an inlet and 

particulates are impacted onto an adhesive surface such as a tape. Following a desired period of 

monitoring, the tape is removed from the trap and inspected in a laboratory via methods such as visible 

light microscopy [70], electron microscopy [71] and X-ray photoelectron spectroscopy (XPS) [72], to 
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allow for particulate species identification. Since species identification occurs post sample collection in 

a laboratory, such a technique does not enable real-time measurements. 

As such, alternative methods are required for more immediate mitigation. Ideally, a sensor should be 

able to determine the species of individual particulate matter, as well as their size and shape, in real-

time, and with a low cost and small footprint to enable mass deployment. Figure 5 presents a Venn 

diagram of common existing detection and analysis technique, with deep learning-based sensor in the 

overlap region, since, as will be described in the next section, deep learning excels at using large data 

to improve the capability current techniques, and to synergise techniques. 

    

Figure 5. Comparison of common methods for airborne sampling and characterisation. Detection 

techniques can quantify particulates of a certain size, such as PM2.5 and PM10, whilst analysis 

techniques offer particle species classification. Ideally, both capabilities should be combined, to 

achieve real-time species identification, which could be achieved using a deep learning-based sensor. 

4. Deep Learning 

4.1 History 

Deep learning is a subset of artificial intelligence (AI) that uses neural network algorithms to process 

information [73]. The information that a neural network receives is passed through multiple layers, 

where the output of a layer acts as the input to the next. Deep learning can utilise convolutional filters 

to perform feature extraction, to enable a neural network to understand similarity and trends in data. 

Deep learning has its origins in 1943 when the first computer model using threshold logic to mimic the 

thought process was developed by Warren McCulloch and Walter Pitts [74]. 

Whilst algorithms were being developed and improved, it was the advent of mass market graphics 

processing units (GPUs) for desktop computers [75] that allowed for parallel computing, hence allowing 

complex problems to be separated into thousands or millions of separate tasks and processed 

simultaneously, and in doing so, unlocking huge capabilities for deep learning algorithms. By 2012, 

GPUs had a significant advantage over CPUs for processing images, with 4× in GFLOPS (giga floating 

point operations per second) processing in some instances [76], meaning that deep learning algorithms 

were routinely performed on computers with dedicated GPUs for training. Indeed, ImageNet’s 

classification with deep convolutional neural networks (CNN) was demonstrated by Krizhevesky et al. 

[77], which was able to classify 1.2 million images into 1000 categories (leopard, container ship etc.) 

with a top-5 error rate of 17%. The results were significantly better than previous work and used two 

NVIDIA 580 3GB GPUs, taking 6 days to accomplish.  
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In 2014, generative adversarial networks (GANs) were developed [78], which allow for realistic image 

generation of written digits, and photographs of faces and animals, while the conditional generative 

adversarial network (cGAN) was implemented by Isola et al.cc [79] for image transformation from one 

domain to another, such as black and white photographs to colour photographs. Neural networks have 

since been applied to almost all scientific domains, including the natural world, with examples including 

bird sound identification [80], wild chimpanzee face recognition [81] and orca sound detection [82].  

4.2 Deep learning applications to airborne pollution sensing 

Due to the capability of deep learning for pattern recognition, such a technique has been implemented 

in the categorisation of images of airborne particulates, as well as their light scattering patterns, 

holographic images, and fluorescence signature. Work has been shown to enable the identification of 

particulates beyond existing techniques such as manual identification of pollen in microscope images. 

In addition, owing to the ability of neural networks in processing multidimensional data, neural 

networks have also shown promise in the ability to forecast pollution levels based on limited amount of 

data. As we discuss in the following subsections, deep learning has been implemented successfully in 

a variety of areas, from sensing to forecasting. 

4.2.1 Optoelectronics 

Being able to automatically identify particles from their images is important for classification and 

source apportionment. As shown in the schematic in figure 6, a trained neural network can be used to 

identify a particulate, in this case a pollen grain, from a microscope image. As discussed in this section, 

deep learning has been applied extensively to the field of optics. 

 

Figure 6. Schematic of the identification of particulates from images using deep learning. 

Daood et al. trained a CNN to classify pollen grain genera directly from visible light microscope and 

scanning electron microscope images [83]. When testing on 30 different genera, the method achieved 

~90% classification rate for light microscope images and ~94% classification rate when testing on SEM 

images. The CNNs were more accurate at classification than traditional machine learning methods, such 

as support vector machine (SVM) classifiers [84] trained on features extracted using fractal dimension, 

grey level co-occurrence matrix, Gabor features, histograms of oriented gradient descriptors, and local 

binary pattern histogram, which achieved classification accuracies of ~ 72%, ~ 51%, ~ 67%, ~ 62% and 

~ 77%, respectively when testing on light microscope images. Likewise, when testing on scanning 

electron microscope (SEM) images, these classifiers achieved lower accuracy than the CNN, with 

values of ~ 61%, ~ 48%, ~ 60%, ~ 50% and ~ 72%, respectively.  

Classifying only visible light microscopy using AlexNET CNN [77] has shown to achieve an accuracy 

of 98% for 46 different classes of pollen grain [85]. This result is much higher than manual classification 

processes, such as that used by the medical and pharmaceutical industry, which were reported to be ~ 

67%, and higher than classification via an SVM of ~ 64% used by others to classify even fewer pollen 

grains [86].  

Using data from an automatic trap system (Bio-Aerosol Analyzer BAA005 [87]), which records images 

of particulates when they have been captured, the Inception v3 CNN [88] was used to enhance the 

capability of the BAA005 algorithm and accurately classify 31 taxa of pollen [89]. 
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Other optical methods combined with deep learning include holography, in which a mobile microscopic 

holography device was developed. In this method, particulates were impacted onto a sticky substrate to 

allow for holographic imaging and then CNNs were used to reconstruct images of pollen (i.e., transform 

the holographic image into the real image) and then to classify 5 different species of pollen as well as 

dust [90]. The device was also tested in the real-world on oak tree pollen. The device was able to process 

bioaerosols at a throughput of 13 L/min, and was tested on Aspergillus spore, Alternaria spore, Bermuda 

grass pollen, oak tree pollen and ragweed pollen, achieving a classification accuracy greater than 94%.  

Categorisation of particulate shape is important in understanding their source and potential effects. Yin 

et al. used a CNN model with an attention mechanism to identify atmospheric particles of four different 

structural types, namely flocculent particles, fibrous particles, mineral particles, and spherical particles 

directly from SEM images [91]. The attention-CNN model was found to have higher classification 

accuracy compared with CNN and SVM, since features of the particle can be focused on, instead of 

non-particle features such as the background.  

Using a microfluidics chip to flow pollen grains through a microfluidic device at a rate of 150 grains 

per second, an AlexNet-based CNN was used to process and classify pollen grains based on their optical 

images and the output was combined with classified electrical signals in a multimodal approach [92]. 

The experiment involved classification of eight different classes of pollen, giving an accuracy of 82.8% 

for the standalone electrical classifier, 84.1% for the standalone optical classifier, and 88.3% for the 

multimodal approach (processing of combined electrical and optical outputs). It was suggested that the 

method could also be used to classify other particulates between 10 µm and 100 µm. 

A quasi-real-time PM monitoring device was created by integrating smartphone-based digital 

holographic microscopy via the use of small optics and a laser diode [93]. Holographic speckle images 

of particulates were obtained and transformed into particulates images via a deep autoencoder (DAE), 

and regression layers were used to extract important features and predict PM10 and PM2.5 

concentrations. Their technique could successfully estimate PM10 and PM2.5 concentrations of dust 

particulates from the holographic speckle patterns, with high throughput (1.57 seconds per 100 

holograms). The technique was also very accurate, with relative errors of the test datasets for PM10 

concentrations being 11.23% ± 9.32%, whilst the relative errors of the test datasets for the PM2.5 

concentrations were 5.81% ± 4.46%. Such mobile-optics integration is a potential future direction for 

particulate sensing, especially for hazardous environments, or for alerting high pollen counts or 

dangerous toxicity levels.  

Whilst current optical particle counters involve using a photodiode detector, using a complementary 

metal-oxide-semiconductor (CMOS) sensor or charged coupled device (CCD) detector array potentially 

allows more information about the object that scattered the light. As such, by capturing more of the 

scattered light and thus a 2D spatial scattering pattern, identification of different particulates can be 

achieved. The concept is presented in figure 7, which shows how laser light is used to illuminate a 

plastic microparticle, and its scattering pattern is captured by a camera and a neural network identifies 

the material from the pattern. This ‘lensless’ sensing method involves capturing the light scattered from 

the particulate using a camera sensor, rather than collecting the light with an objective lens that would 

otherwise enable imaging of the object onto a camera sensor. This allows for a smaller, cost-effective 

sensor design. Using this approach, wood ash and pollen were identified directly from their scattering 

patterns using a CNN, when the particulates were illuminated via a laser diode [94]. Scattering patterns 

captured from each particulate using a camera sensor were fed into the neural network, taking less than 

50 milliseconds to output a predicted category. The neural network was found to be correctly identify 

43 out of 50 particulates. The results were presented in a confusion matrix, consisting of true positives 

and true negatives as well as false positives and false negatives. The Matthews correlation coefficient 

(multiclass classification quality [95]) was calculated to be 0.81 (maximum potential value of 1). 
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The prediction of pollen grains from scattered light captured via back reflection through an optical fibre 

has also been demonstrated by the same group [96]. More specifically, pollen grains were illuminated 

with a single-core fibre and the subsequent scattering patterns were collected via a 30-core fibre, with 

the scattered light then directed onto a camera sensor for capture. A CNN was employed to categorise 

3 different types of pollen grains using their associated captured scattering patterns. The neural network 

was able to correctly predict the pollen species with an accuracy of ∼ 97% accuracy. In addition, the 

distance between the pollen grains and the end of the fibre was also included as training data for the 

CNN and when tested, the neural network was able to predict the distance with an associated error of 

±6 μm. The neural network was also found to be robust to different levels of light. 

 

  

Figure 7. Concept of using scattered light and deep learning for the identification of particulates. 

To further quantify the particulates that are scattering the light, the scattering signal from particulates 

in optical scattering can be transformed into an image. Lensless imaging of pollen grains was 

demonstrated using three lasers of different wavelengths to transform a scattering pattern directly into 

an image of pollen using a cGAN [97]. Image transformation has also been used to transform images 

of pollen from one modality (image style) into another, such as from visible light microscope into SEM 

image, to aid in identification using SEM databases [98]. Further to sensing and imaging, recent work 

has been carried out using image transformation from a pollen grain in dehydrated state to a pollen grain 

in a hydrated state, to estimate the original size and shape of the pollen grains prior to dehydration [99].  

This could be useful in areas of understanding pollen behaviour and the environment from which it has 

existed. 

4.2.2 Laser-induced spectroscopy 

Laser-induced spectroscopy is another technique that has been used in research for particulate matter 

identification. Since different materials can fluorescence with different wavelengths upon laser 

illumination, their spectra can be used to identify particulate matter. Using the Rapid-E automatic 

particle detector to collect scattering and fluorescence data from 29 types of bioaerosols such as pollen 

and spores, Daunys et al. [100] found that for clustering unidentified particulates, clustering of 

fluorescent data played a more important role than clustering scattering data, most likely due to the 

effect of dehydration on the shape of pollen grains. More specifically, based on fluorescence properties, 

it was found that Betulaceae genus pollen data could be grouped into the same clusters, whist it was 

also possible to differentiate Secale and Dactylis genera from the same family (Poaceae) using 

fluorescent clustering. Further to this work, Tešendić et al [101] describe incorporating deep learning 

into the Rapid-E for real-time monitoring and automatic airborne detection of pollen. They developed 

a system called ‘RealForAll’ that retrieves optical data (scattering pattern, fluorescence spectrum and 

fluorescence lifetime) from Rapid-E devices and classifies the pollen using a CNN. The system provides 

hourly measurements with a time delay of 15 minutes (due to batch data processing), via a web-based 

applications as well as Android and Apple mobile-based applications. Their results showed it was 

possible to classify 11 pollen types with an Pearson correlation coefficient (a measure of linear 

association between two sets of data) of > 0.7. 
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Deep learning has also been used for identifying PM2.5 source from wood burning, diesel exhaust, and 

cigarettes using excitation emission matrix (EEM) (excitation wavelength vs. emission wavelength vs. 

fluorescence intensity) fluorescence spectroscopy [102]. By collecting material using filters, obtained 

spectra was used as training data for a CNN to predict the types with an overall accuracy of 89%. To 

scale to other sources, more data was suggested to be needed for application to real-world samples.  

Relevant to bioaerosol pollution, Hasti et al. [103] developed a deep learning-based denoiser and spray 

droplet location predictors to enable accurate estimation of the location of gas turbine combustion spray 

droplets in the light scattered Mie images. A modified CNN (no downsampling to maintain image size), 

modified ResNet [104] (no downsampling), and modified U-Net were used to denoising the images, 

with the results showing that the U-Net architecture gave the lowest MSE, with a value of 0.0053 on 

the validation dataset. Their trained denoising algorithm took ~ 2.13 seconds per image using a single 

NVIDIA T4 GPU. Droplet centre prediction was carried out using a CNN-based architecture, giving an 

average error of 1.35 pixels for the x-pixel location and 0.927 pixels for the y-pixel location of the 

droplets.  

4.2.3 Remote sensing 

Satellite-based sensing offers large area monitoring of particulates, and much work has been done in 

improving the capability using deep learning. Whilst most studies using satellite-derived aerosol optical 

depth (AOD) PM measurements involve low spatial resolution, a recent study by Imani used deep 

learning to determine PM2.5 and PM10 concentrations using Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite images [105]. The work discusses using an LSTM-based neural 

network that was trained on ground scenes imaged by MODIS, to relate the intensity values of the 

satellite image bands and particulate matter measurements at different spatial locations. By using 

publicly available satellite images, the resultant generated PM2.5 map and PM10 map of Tehran city 

showed that the proposed technique is a potentially suitable for simple low-cost PM mapping. The deep 

learning results are compared with a random forest model employed on the same data, and it was found 

that in the majority of cases, the deep learning model achieved a lower RMSE and mean absolute 

percentage error (MAPE), and a higher index of agreement (AI) (difference between observed and 

estimated values). The model was also compared with state-of-the-art air pollution studies that employ 

AOD products for particulate matter concentrations estimations. Again, in most cases the results 

showed lower RMSE. However, it was noted that because the satellite data is affected by cloud levels, 

the model may not be as suitable when the sky is cloudy.  

Li et al. also used deep learning to fuse satellite data from MODIS and meteorological data to estimate 

ground-level PM2.5 over large geographical regions in China [106]. They implemented a layer-by-layer 

pretraining technique along with geographical correlation to improve the accuracy of the PM2.5 

estimation compared with traditional artificial neural network approaches, achieving a cross-validation 

coefficient of determination (R2) value being approximately twice as high at 0.88, and a root-mean-

square error (RMSE) value being approximately half as much at 13.03 μg/m3 in some cases. From the 

results, they estimated that more than 80% of the Chinese population live in regions that have an annual 

mean PM2.5 greater than the 2015 WHO recommended safe levels. 

Sun et al. [107] also used large deep neural networks to train on large-scale satellite data and 

meteorological data to identify their spatiotemporal relationships with PM2.5 particulates to enable 

ground-based estimations of hourly PM2.5 levels with 1-km spatial resolution in China. Compared with 

other state-of-the-art methods, their model achieved better performance in terms of testing in the cold 

and warm seasons, giving an R2 of 0.84, RMSE of 19.9 μg/m3 and MPE of 11.9 μg/m3, whereas a linear 

mixed effective (LME) model gave an R2 of 0.63, RMSE of 29.0 μg/m3 and MPE of 18.1 μg/m3, and a 

support vector regression (SVR) model gave an R2 of 0.77, RMSE of 21.5 μg/m3 and MPE of 12.3 

μg/m3 .  
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Yan et al. have used deep learning to obtain large-scale PM2.5 concentrations from Himawari-8, a 

geostationary satellite, to provide high temporal resolution data (hourly intervals) across mainland 

China [108]. They developed a neural network that they call “EntityDenseNet”, which in contrast to 

more classical machine learning methods (e.g., backpropagation neural network, extreme gradient 

boosting, light gradient boosting machine, and random forest), was able to extract spatial and temporal 

characteristics of PM2.5 concentrations at a higher accuracy. This work concluded that the coastal city 

of Tianjin was influenced by air pollution from Hebei, and that PM2.5 concentrations were closely 

related in groups of 3 months. Lee et al. proposed using deep learning for monitoring the hourly spatial 

concentrations of PM2.5 over the Korean Peninsula via using geostationary ocean colour imager 

(GOCI) satellite data, which consisted of multispectral images of top of atmosphere (TOA) reflectance 

[109]. When comparing the predicted PM2.5 concentrations with the ground measurements of PM2.5, 

their model was more accurate than the traditional machine learning methods such as random forest, 

giving an RMSE of 7.042 μg/m3 and R2 of 0.698, in comparison to the random forest method that gave 

an RMSE of 7.904 μg/m3 and R2 = 0.619. It should be noted that their neural network was limited when 

estimating PM for cloud areas and the night-time. A simple innovative way to estimate real-time 

pollution levels without the need for monitoring stations was proposed by Kow et al., who used an 

image-based deep learning ResNet and VGG models that integrated a CNN and regression classification 

layer to create a relationship with PM2.5 and PM10 datasets collected at an air quality monitoring 

station in Taiwan, to estimate air pollution from city scape photographs [110]. The CNN−RC was able 

to classify and estimate PM2.5, PM10, and AQI values at the same time based on multiple inputs, and 

achieved a classification accuracy for PM2.5, PM10 and AQI based on day and night images above 

70%. Even when the images were less clear and there was presence of were high levels of smoke, the 

CNN−RC still produced accurate estimates on pollutant concentrations. 

4.2.4 Forecasting AI  

Deep learning CNNs have been used for 1-day to 7-day forecasting of pollen grains of tree, weed and 

grass pollen [111]. Metrological data such as wind speed, total precipitation and temperature were used 

along with pollen data from archives in Houston, U.S.A. For comparison with daily observations, the 

neural network was able to predict with a relatively high index of agreement of 0.9, and the CNN 

showed promising ability for multiple day predictions when compared to the conventional modelling 

approach. The predictions of seasonal trends in weed pollen within the area of study also correlated 

strongly with observations, but the model experienced a slight decrease in prediction accuracy as the 

forecast time was increased. 

PM2.5 concentrations have also been predicted by using both CNN and LSTM neural networks to 

achieve more accurate results than previous models, whereby the CNN was used to extract spatial 

features from a 2D matrix of data (meteorological and historical pollution data), which were then fed 

into an LSTM used to extract time series features for the input [112]. This CNN+LSTM model was 

compared with classical recurrent neural network (RNN), LSTM and back-propagation (BP) based 

methods. The RMSE of the CNN+LSTM was 14.3 µg/m3, the RNN was 30.66 µg/m3 and the BP was 

22.37 µg/m3. The lower RMSE of the CNN+LSTM method indicated that incorporating time-series 

feature information based on the correlation of spatial features could improve long-term sequence 

prediction accuracy of particulate matter concentrations. 

Aggarwal and Toshniwal [113] also using LSTM-based deep learning neural network for urban air 

quality forecasting at a variety of locations in India for monthly time periods, where they used a particle 

swarm optimisation of the hyperparameters to further improve the accuracy. The results of the LSTM-

based neural network gave a RMSE score of 14.17 μg/m3, which outperformed existing models such as 

autoregressive integrated moving average (ARIMA) [114] and radial basis function neural network 

(RBFNN) [115], which had an RMSE score of 24.44 μg/m3 and 44.33 μg/m3, respectively. Evaluating 
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the LSTM-based model gave a R2-score ranging from 0.86 to 0.99 fifteen locations in India, indicating 

high accuracy. 

5. Future Perspectives 

Most of the progress appears to be imaged based, particularly in satellite imagery or optoelectronics, 

while prediction accuracy is based on the ability to scale neural networks with more data to achieve 

higher accuracy. This is most likely due to a combination of the following two observations. Firstly, 

image-based neural networks have been developed extremely rapidly in past years due to easy access 

to billions of labelled images available online. Secondly, since current methods of identification of 

concentration levels can involve imaging the particulates individually or as a mass (e.g., photographs 

of skylines), application of neural networks has focussed on these areas. Since the accuracy of neural 

networks tend to be dependent on the amount of training data [116], accuracies of image-based neural 

networks are likely to improve over time as more data can be acquired. 

From the authors perspective, an ideal sensor (see figure 8) is one that can provide real-time 

information, species specific, at low cost to the consumer, with a small footprint, whether it be for 

satellite deployment or for ground-based sensing, with the data accessible and readable for a wide 

variety of people, and potentially updatable to allow for new neural network capabilities, (i.e., 3D 

imaging or tracing new tree mould species). Of course, such a device should be as green as possible and 

could also be powered without mains electricity to allow for portability, in the case of ground based and 

in-home sensing.  

 

Figure 8. Diagram of desired capabilities of a sensor, which can determine species specific particulate 

counts, in real-time all over the world, with high enough spatial resolution to allow individual 

mitigation. 

5.1 Physics Informed Models 

Whilst future work could involve combining multiple neural networks for greater accuracy, as 

demonstrated by Luo et al. [117], in which they combined convolutional neural networks, deep neural 

networks and integrated gradients for estimating ozone levels in the atmosphere using ground-truth 

data, physics-informed neural networks could provide scalable solutions to inverse problems with 

sparse data. In general, the greater the amount of data available to a neural network for training, the 

more likely it is to be able to develop an understanding of the physical laws present in the data, and 

hence achieve a higher prediction accuracy [118]. On the contrary, a purely based physics model 

requires little data [119]. Hence, depending on the amount of data available to train neural networks, 

physics informed neural networks (PINNs) could be used to improve the capabilities and accuracy of 

the neural networks, leading to an understanding, in reference to this work, of the underpinning physical 

laws of the particulate sensing methodology, determination of particulate species characteristics and 

understanding particulate behaviour (see figure 9).  
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Figure 9. Physics informed deep learning can bridge the gap between large amounts of training data 

and physics modelling, providing potential to understand physical behaviours underpinning identified 

particulates. 

Recent work has shown that PINNs are effective and efficient for inverse problems, using incomplete 

datasets, and are scalable [120]. To date, magnetic resonant image (MRI) segmentation has been 

performed via combining MRI data with physics parameters in training for a neural network [121]. This 

is explained to outperform current segmentation deep learning techniques since the networks can 

produce segmentations that are robust to variations in the MRI physics, as the networks are learning the 

physics that contribute to the image generation. Other work includes integrating physics computer 

models into the deep learning training process, such as incorporating phase recovery physics 

computation into deep learning training to enable optimisation of the microscope illumination source 

pattern for Quantitative Phase Imaging (QPI) of stain-free and label-free microscopy [122]. These 

enhanced physics neural networks could also aid in atmospheric modelling and forecasting of 

particulate levels and transport. 

Since some signal data from sensing can be difficult to interpret, such as light scatter from particulates, 

physics informed networks could support deep learning neural networks in the identification of 

particulates. Current methods of particulate monitoring use either data driven or physics-based 

modelling [123]. Since pollution forecasting involves a high-dimensional parameter space, with partial 

amounts of data, the ability of deep learning to integrate data and physics models could provide suitable 

architecture for highly accurate and efficient forecasting models. Indeed, preliminary work in this 

emerging field has been carried out using the outputs of the physical model as the inputs for the deep-

learning model, for the purpose of predicting fine-mode fractions (FMF) of aerosols over land, and 

achieving an accuracy higher than current methods [124]. The authors found that, compared with more 

traditional physical–based and deep-learning-based FMF results, the their PINN was more accurate at 

predicting FMF values over five land types (e.g., barren land, croplands, forests, grasslands,  and urban 

area). Kashinath et al. [125] surveyed neural network models that incorporate physics and domain 

knowledge, to develop more generalised climate and weather forecasting weather predictions with 

greater consistency, improved data efficiency and reduced training times. Their survey found that 

PINNs had a reduced training time and greater data efficiency compared to previous models, gave 

greater physical consistency, and provided a better generalisation when forecasting weather and climate 

processes. 

5.2 Aided Sensor Design  

Future work could consist of using deep learning neural networks to design and optimise sensors. For 

example, deep neural networks have been used to optimise photonic crystal nanocavities [126], design 

and characterise plasmonic nanostructures [127], design chiral metamaterials [128] and enable the 
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design of fibres for coherent beam combination [129]. As conceptualised in figure 10, in the future, one 

could ask an AI how to best design a sensor capable of low-cost sensing and identification of single 

particulate species. 

 

Figure 10. Concept diagram of asking a deep learning neural network to design an optimal particulate 

sensor, based on specific desired capabilities.  

5.3 Computer Miniaturisation 

Future deep learning in the field of particulate matter sensing will likely involve larger training sets for 

more accuracy [116]. This will necessitate more powerful GPUs capable of carrying out training with 

more data and higher resolution in relatively workable times [130]. The trends suggest GPUs are 

becoming more efficient with ~ 100 GFLOPS per Watt currently available [76]. Also, for sensor 

footprint reduction, which is necessary for mass deployment and thus higher spatial resolution, 

increasing capable microcomputers and smaller GPUs will also be likely necessary. Indeed, to date, 

CNNs using a Raspberry Pi [131] have been used for image recognition, such as for identifying animals 

in images recorded by a camera in the wild [132], and for classifying microbeads suspended in water 

[133]. As displayed in figure 11, one can envisage that, depending on the type of sensors developed, 

sensors could eventually be miniaturised through AI aided design and implemented in smart watches, 

smart phones, vehicles, PPE equipment, air purifiers and vacuum cleaners, as well as public areas such 

as bus shelters. 

 

Figure 11. Miniaturisation of sensors could lead to mass deployment of sensors throughout society. 

5.4 Monitoring 

Beyond sensor design, deep reinforcement learning could aid in real-time monitoring, decision making 

and analysis, as described by Visez et al. [134], as well as maintaining the sensor network, akin to 

magnetic control of tokamak plasmas as described by DeepMind [135]. In addition, deep learning could 

be used in the discovery of relationships between pollution monitoring and health monitoring, such as 

linking pollution levels on a societal and individual level to specific health concerns. This could enable 
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diagnosing an individual’s allergy to a species type of pollen or fungal spore. For example, in the case 

of a patient developing symptoms of rhinitis, neural networks could be used to analyse the air pollution 

nearby and attempt to identify a correlation with such health events and airborne particle events. Figure 

12 shows the potential different aspects that an all-encompassing deep learning-based monitoring 

system could be designed to achieve, from particulate detection, to forecasting and inferring illnesses 

and, more generally, environmental impact. 

  

Figure 12. Concept of using deep learning to identify particulates, and then predict future behaviours 

and levels, and infer health or environmental effects. 

6. Conclusion 

This review has discussed current techniques for airborne particulate matter pollution sensing and recent 

advances in deep learning that can aid in 1) improving the accuracy of current methods, 2) developing 

new methods of detection, imaging and characterisation and 3) enabling future pathways in for 

increasing spatial resolution, temporal resolution and enable mass deployment. These include using 

deep learning to identify particulates with low-cost devices, to identify particulates more accurately 

using analysis techniques such as fluorescence spectroscopy, improving the capability of devices via 

image transformation, and improving the accuracy of particulate levels in forecasting. 

Recent results in the identification of particulate and their concentration have confirmed that the 

application of deep learning enables considerably higher prediction accuracies for both spatial and 

temporal dimensions. Greater amounts of high quality data is key to mitigation, forecasting and 

understanding health effects, and to obtain more data, sensors with higher accuracy and greater spatial 

and temporal resolution should be developed. We anticipate that as neural networks become larger in 

size and are trained on greater amounts of data, further improvements to forecasting and particulate 

identification (which are multidimensional spatial-temporal problems) will be achieved. We conclude 

that deep learning has only just begun to impact particulate matter sensing, and indeed deep learning 

will be used to solve sensing challenges in domains not yet considered.  

However, there is considerable opportunity for improvement, particularly in the domain of species level 

identification in real-time on low cost ground-based devices, for space-based sensing, and for global 

forecasting of particulate matter levels. The physical size of the sensing devices also needs to be reduced 

in size to enable larger distribution of devices, for enabling higher spatial resolution and for 

implementation in other products such as PPE and transportation. Furthermore, there is much work 

needed to be done for the real-time identification of airborne particulates that are smaller than PM2.5. 

This will perhaps require a combination of existing sensing methods with new technologies. One 

possibility here is the development of shorter wavelength sensors (extreme ultraviolet etc.) for enabling 

species level imaging or detection below the diffraction limit for visible wavelength light, or 

multispectral and multi-modal identification could be employed, where light, sound or electronic 

sensors are combined. To achieve this, as deep learning continues to become a more established tool, it 

is possible deep learning will be applied to the development of the design of the sensors themselves, for 
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both abstract design of new types of sensing methods and instrumentation, and for miniaturisation of 

current techniques. 

Finally, owing to the transportation of particulate matter around the globe, and the effect of different 

particulates on the human health, an important consideration here is to ensure particulate matter data 

are made freely available online. This will enable researchers to develop more accurate modelling, begin 

to move towards the standardisation of data collection and processing, and allow public access to data 

for assisting in local and global policy design. In addition, the data will need to be correlated with health 

data to aid in health diagnosis and source identification. 
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