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Abstract
Airborne particulatematter pollution is a global health problem that affects people from all
demographics. To reduce the impact of such pollution and enablemitigation and policy planning,
quantifying individuals’ exposure to pollution is necessary. To achieve this, effectivemonitoring of
airborne particulates is required, throughmonitoring of pollution hotspots and sources. Furthermore,
since pollution is a global problem, which varies fromurban areas to city centres, industrial facilities to
inside homes, a variety of sensorsmight be needed. Current sensing techniques either lack species
resolution on aworld scale, lack real-time capabilities, or are too expensive or too large formass
deployment. However, recent work using deep learning techniques has expanded the capability of
current sensors and allowed the development of new techniques that have the potential for worldwide,
species specific, real-timemonitoring. Here, it is proposed howdeep learning can enable sensor design
for the development of small, low-cost sensors for real-timemonitoring of particulatematter
pollution, whilst unlocking the capability for predicting future particulate events and health inference
fromparticulates, for both individuals and the environment in general.

1. Introduction

Airborne particulatematter pollution is aworldwide health and environmental problem. To determine sources
to reduce their impact,mitigate toxic levels, and predict dangerous episodes (just as currentmeteorological
centres do regarding heatwaves, hurricanes andflooding), precise sensing capability is necessary on an
individual, local and global scale. Owing to recent significant advancements in the field of deep learning, this
review aims to discuss how such afield has been applied to the domain of particulatematter detection. The
review begins by describing the various sources of particulatematter pollution, alongwith the dynamics of the
particulates and the associated health and environmental implications. Following this, in section 3, we discuss
the current commonmethods used for the detecting and analysis of particulatematter present in the
atmosphere. Deep learning is then introduced in section 4, wherewe discuss its history, followed by its
application to thefield of airborne particulatematter pollution. Finally, in section 5, we discuss the future
perspectives of deep learning for particulatematter sensing and propose future ideas that could enable the
development ofmore accurate sensors and stronger synergy between detection, forecasting and inference.

2. Airborne particulatematter

2.1. Sources
Air pollution can consist of particulatematter in the formof particles that can range fromover 10μm (>PM10),
to below 10μm (PM10), below 2.5μm (PM2.5), and below 0.1μm (PM0.1), where the particles themselves can
be formed from a range of chemicals [1] that are present worldwide [2]. Since particulates of all sizes exist in a
variety of shapes (symmetrical, asymmetrical, and irregular), the size of a particulate is generally defined by its
aerodynamic diameter, which is a diameter equal to a spherical particulate with a density of 1 g cm−3, whose
aerodynamic behaviour (settling velocity) is equivalent to the particulate in question [3].
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Particulatematter emanates from a variety of sources. A significant source of airborne particulatematter is
road transport, particularly from the combustion of diesel frompublic and private vehicles [4]. These
particulates are generally carbonaceousmaterials, including black carbon (carbon-basedmicron and nano-sized
spheres formed from the incomplete combustion of organicmatter), elemental carbon, and a range of polycyclic
aromatic hydrocarbons (PAHs) [5]. Brake and tyrewear can also produce rubber andmetallic particulates [6].
The burning of fossil fuels [7], biofuels [8] andwood [9], also contribute to black carbon particulatematter.
Other types of particulatematter include iron and sulphur from steel works [10], metals frommining [11] and
cement dust from factories [12]. Particulatematter can also originate fromnatural sources such as desert dust,
whilst sea salt can also contribute to overall atmospheric particulate levels [13]. Outdoor natural biological
contributions include pollen from trees, grass andweeds, and spores from fungi [14].

Airborne particulatematter pollution can also occur indoors from a variety of sources such as cooking [15],
as well as spray products (e.g., surface cleaners, deodorants and air fresheners [16]), wood burning stoves [17],
cigarette smoking and incense [18], fungi [19], as well as general sweeping and cleaning, which can project
particulatematter into the air [20]. Additional sources includemicroplastic fibres from thewear and tear of
textiles [21] and asbestosfibres fromwalls and roofing [22]. Figure 1 shows a diagram summarising common
particulates and their size range.

2.2.Dynamics
The size and composition of particulatematter, as well asmetrological factors, can affect their number density
and toxicity [23], and therefore sensing devices should also include the capability for identification of these
factors. For example, particulates exist in a variety of sizes, from single spheres and cuboids to shards and
agglomerates [24]. Ultrafine particulatematter can evolve and become larger by coagulation via collisionswith
other particles (see figure 2), by chemical reaction, and by activation in the presence of water vapour in the
troposphere [25]. In addition, pollen grains, which usually have a size of 10–100μm,have been found to have
urban particulatematter attached to them [26].

Figure 1.Diagram comparing the relative sizes of common airborne particulatematter.

Figure 2.Atmospheric aerosol formation through particulate coagulation.
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Particulatematter can be present at different heights (based on the initial altitude of the emission, airflow,
andweather conditions), with concentrations varying depending onmeteorological factors and population
density [27]. Due to the size andweight of airborne particulates, such pollution can travel in the atmosphere
fromone area to another [28]. Not only do particulate pollution levels vary from region to region [29], but
particulatematter levels can also even vary over hours [30], months [31], and on a yearly basis [32]. Therefore,
particulate sensors would need to be able to detect over both short and long time periods, at different places and
different altitudes.

2.3.Health
Owing to the small size, shape and variety of chemical compositions, airborne particulatematter directly results
in a range of health conditions [33, 34] and is estimated to contribute to around ninemillion deaths globally per
year [35, 36].More specifically,fine particulatematter can have a detrimental effect on life expectance, as
documented in a study in theUnited States of America [37].

Figure 3 presents a diagram showing the pathway of different sized particulates into the human body and
highlights associated health impacts of such particulates. The eyes are particularly susceptible to dust and other
particulates, and PM2.5 has been found to trigger ocular hypertension [38]. Particulates on the size scale of
10–100μm, such as pollen grains, can get trapped in the nasal cavity and can lead to allergic rhinitis, with
approximately 10% to 30%of adults around theworld suffering from the condition [39].

In general, smaller particulates aremore likely to travel further along the respiratory tract and into the lungs,
and larger particulate (PM10 and>PM10) are instead generally foundmore frequently in the upper airways.
Indeed, cement dust exposure can enter the respiratory tract and has been linked to acute respiratory illnesses
such as sneezing, coughing and shortness of breath [40].Microplastics (PM10), such as polyethylene and
polyethylene terephthalate fibres, have been found in tissue from the upper,middle, and lower part of the
human lungs [41].

Cigarette smoke can contain considerable amount of PM2.5, and high levels have been associatedwith lung
cancermortality [42], and PM2.5 urban particulatematter has been linked to asthma exacerbation [43]. Since
PM2.5 includes particles below 100 nm, such particulates can enter alveolar, allowing them to enter the blood
circulation system and in turn travel to various organs of the human body. There is also evidence that
particulates could lead to liver disease [44], and long-term exposure has demonstrated an increased risk of
obtaining non-Hodgkin lymphoma [45]. Further to this, there is indication that particulates accumulating in the
brain [46] are associatedwith Alzheimer’s disease [47], dementia [48], strokes [49] and perhaps autism [50].

Figure 3.Health effects associatedwith airborne particulatematter pollution.
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2.4. Environmental effects
Airborne particulates have adverse effects on the environment and contribute to climate change [51]. As shown
in the diagramof figure 4, particulatematter such as black carbon fromwood and fossil fuel burning can be
emitted into the atmosphere and transported via air currents to different areas. Black carbon present in the
atmosphere can absorb infrared radiation, and so can lead to heating of the atmosphere [52]. In addition,
atmospheric black carbon can deposit on snow, leading to increasedmelting due to the lowering of snow grain
albedo [53].

Particulatematter can deposit on the leaves of vegetation and in the surrounding soil [54].Metals can be
absorbed by the roots [55] and be present on plants, and in turn affect the biochemical processes [56]. The direct
deposition of particulatematter onto the surfaces of leaves can cause damage due to pHof the particulates [57],
and potentially inhibit photosynthesis and respiration leading to the decaying of leafmatter, with the associated
negative effects on agriculture [58].

3. Current sensingmethods andmonitoring

TheWorldHealthOrganisation (WHO) has set limits on the amount of particulatematter that is safe, with
values offine particulatematter (PM2.5) of 5μgm−3 annualmeanwith 15μgm−3 24 hmean, and coarse
particulatematter (PM10) of 15μgm−3 annualmeanwith 45μgm−3 24 hmean [59]. Since particulate levels
often exceed such values throughout theworld [60], being able to accuratelymeasure levels is vital for human
health and understanding the sources of particulatematter. As discussed in this section, a variety of sensing
methods exist, eachwith their own advantages and disadvantages.

3.1. Gravimetric
A critical capability of a particulate sensor is to be able to determine or infermasses and concentration of
particulates. For both the PM10 and PM2.5 standards, the Federal ReferenceMethod (FRM), as defined by the
U.S. Environmental ProtectionAgency (EPA), states that the reference technology used formeasuring PM10
and PM2.5 should be based on gravimetric analysis of particulates collected over a 24 h time period [61].Whilst
measurements can be sorted into PM10 and PM2.5, species specificmeasurements cannot generally be
obtained, and this technique lacks real-time capability.

3.2.Oscillation
Tapered element oscillatingmicrobalance (TEOM) sensors consist of afilter on the end of a glass tipwhose
vibration frequency ismeasured electronically [62, 63]. As particulatematter is deposited onto the filter, the glass
tip oscillation frequency changes. The particulatemattermass can then be directly inferred as the oscillation
frequencywill decrease as particulatemass is added.Whilst suchmeasurements can be very precise, species
identification is not possible.

3.3. Radiation
Abeta attenuationmonitor (BAM) utilisesβ-ray attenuation to quantify the particulatematter concentration in
air [64]. Air is passed through an inlet and particulatematter is impacted onto a glassfibre tape. The tape is
situated between aβ-radiation source and a scintillator, so thatmatter collected on the surface of the tape

Figure 4. Impact of black carbon on the atmosphere and environment.
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attenuates the radiation and therefore affects the signal on the scintillator. The amount of attenuation is
generally proportional to the amount of particulatematter sampled.

3.4.Optical
Satellite based sensing provides the advantage of large area and volumetric sensing. Columnar satellite-derived
aerosol optical thickness (AOT) values can be related, via linear regression, to surface PM2.5mass
measurements, based on EPA guidelines [65]. Engel-Cox et al outlined the use of LightDetection andRanging
(LiDAR) at 532 nmwavelength in combinationwith aerosol optical depth (AOD)measurements and ground-
based PM2.5monitoring data to create 3Dmapping of PM2.5mass concentration [66].

Since the optical properties of particulates are dependent on their chemical and structural properties,
analysis of the light scatter can be used to determine particulate levels, as in the case of optical particle counters
(OPCs) [67]. OPCs generally use laser or LED light to illuminate particulates in a specified volume of air and
capture the scattered light using a photodiode detector.Whilst these optical scattering sensors are relatively
simple, small and cheap, and allow for real-timemonitoring by scientists and communities, they currently lack
the capability for species specific identification [68].

3.5. Spore traps
Since particulatematter exists in a variety of shapes, sizes, and composition, with their associated effects
dependent on these parameters, there is a clear importance for identification of each individual particulate.
Volumetric air sampling traps, such as the Burkard Spore Trap, can be used to collect particulatematter of a
variety of sizes to enable analysis of airborne particulates over a 24 h or 7 day period [69]. These traps are
approximately 1 m tall, and air is drawn in through an inlet such that particulates are impacted onto an adhesive
surface such as tape. Following a desired period ofmonitoring, the tape is removed from the trap and inspected
in a laboratory viamethods such as visible lightmicroscopy [70], electronmicroscopy [71] and x-ray
photoelectron spectroscopy (XPS) [72], to allow for particulate species identification. Since species
identification occurs post sample collection in a laboratory, spore traps do not enable real-timemeasurements.

As such, alternativemethods are required formore immediatemitigation. Ideally, a sensor should be able to
determine the species of individual particulatematter, as well as their size and shape, in real-time, andwith a low
cost and small footprint to enablemass deployment. Figure 5 presents aVenn diagramof common existing
detection and analysis technique, with a deep learning-based sensor in the overlap region, since, as will be
described in the next section, deep learning excels at using large data to improve the capability of current
techniques, and to synergise techniques.

Figure 5.Comparison of commonmethods for airborne sampling and characterisation. Detection techniques can quantify
particulates of a certain size, such as PM2.5 andPM10, whilst analysis techniques offer particle species classification. Ideally, both
capabilities should be combined, to achieve real-time species identification, which could be achieved using a deep learning-based
sensor.
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4.Deep learning

4.1.History
Deep learning is a subset of artificial intelligence (AI) that uses neural network algorithms to process information
[73]. The information that a neural network receives is passed throughmultiple layers, where the output of a
layer acts as the input to the next. Deep learning can utilise convolutional filters to perform feature extraction, to
enable a neural network to understand similarity and trends in data. Deep learning has its origins in 1943when
thefirst computermodel using threshold logic tomimic the thought process was developed byWarren
McCulloch andWalter Pitts [74].

Whilst algorithmswere being developed and improved, it was the advent ofmassmarket graphics processing
units (GPUs) for desktop computers [75] that allowed for parallel computing, hence allowing complex problems
to be separated into thousands ormillions of separate tasks and processed simultaneously, and in doing so,
unlock huge capabilities for deep learning algorithms. By 2012, GPUs had a significant advantage over CPUs for
processing images, with 4× inGFLOPS (gigafloating point operations per second) processing in some instances
[76], meaning that deep learning algorithmswere routinely performed on computers with dedicatedGPUs for
training. Indeed, ImageNet’s classificationwith deep convolutional neural networks (CNN)was demonstrated
byKrizhevesky et al [77], inwhich theywere able to classify 1.2million images into 1000 categories (leopard,
container ship etc.)with a top-5 error rate of 17%. The results were significantly better than previous work and
used twoNVIDIA 580 3GBGPUs, taking 6 days to accomplish.

In 2014, generative adversarial networks (GANs)were developed [78], which allow for realistic image
generation of written digits, and photographs of faces and animals, while a conditional generative adversarial
network (cGAN)was implemented by Isola et al [79] for image transformation fromone domain to another,
such as black andwhite photographs to colour photographs. Neural networks have since been applied to almost
all scientific domains, including the natural world, with examples including bird sound identification [80], wild
chimpanzee face recognition [81] and orca sound detection [82].

4.2.Deep learning applications to airborne pollution sensing
Due to the capability of deep learning for pattern recognition, such a technique has been implemented in the
categorisation of images of airborne particulates, as well as their light scattering patterns, holographic images,
andfluorescence signature.Work has been shown to enable the identification of particulates beyond existing
techniques such asmanual identification of pollen inmicroscope images. In addition, owing to the ability of
neural networks in processingmultidimensional data, neural networks have also shown promise in the ability to
forecast pollution levels based on limited amount of data. Aswe discuss in the following subsections, deep
learning has been implemented successfully in a variety of areas, from sensing to forecasting.

4.2.1. Optoelectronics
Being able to automatically identify particles from their images is important for classification and source
apportionment. As shown in the schematic infigure 6, a trained neural network can be used to identify a
particulate, in this case a pollen grain, from amicroscope image. As discussed in this section, deep learning has
been applied extensively to thefield of optics.

Daood et al trained aCNN to classify pollen grain species directly fromvisible lightmicroscope and scanning
electronmicroscope (SEM) images [83].When testing on 30 different species, themethod achieved∼90%
classification rate for visible lightmicroscope images and∼94%classification rate when testing on SEM images.
TheCNNsweremore accurate at classification than traditionalmachine learningmethods, such as support
vectormachine (SVM) classifiers [84] trained on features extracted using fractal dimension, grey level co-
occurrencematrix, Gabor features, histograms of oriented gradient descriptors, and local binary pattern

Figure 6. Schematic of the identification of particulates from images using deep learning.
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histogram,which achieved classification accuracies of∼72%,∼51%,∼67%,∼62%and∼77%, respectively
when testing on lightmicroscope images. Likewise, when testing on SEMimages, these classifiers achieved lower
accuracy than theCNN,with values of∼61%,∼48%,∼60%,∼50%and∼72%, respectively.

Classifying only visible lightmicroscopy usingAlexNETCNN [77] has shown to achieve an accuracy of 98%
for 46 different classes of pollen grain [85]. This result ismuch higher thanmanual classification processes, such
as that used by themedical and pharmaceutical industry, whichwere reported to be∼67%, and higher than
classification via an SVMof∼64%used by others to classify even fewer pollen grains [86].

Using data from an automatic trap system (Bio-Aerosol Analyzer BAA500 [87]), which records images of
particulates when they have been captured, the Inception v3CNN [88]was used to enhance the capability of the
BAA500 algorithm and accurately classify 31 taxa of pollen [89].

Other opticalmethods combinedwith deep learning include holography, inwhich amobilemicroscopic
holography device was developed. In thismethod, particulates were impacted onto a sticky substrate to allow for
holographic imaging and thenCNNswere used to reconstruct images of pollen (i.e., transform the holographic
image into the real image) and classify 5 different species of pollen as well as dust [90]. The devicewas also tested
in the real-world on oak tree pollen. The device was able to process bioaerosols at a throughput of 13 l min−1,
andwas tested onAspergillus spore,Alternaria spore, Bermuda grass pollen, oak tree pollen and ragweed pollen,
achieving a classification accuracy greater than 94%.

Categorisation of particulate shape is important in understanding their source and potential effects. Yin et al
used aCNNmodel with an attentionmechanism to identify atmospheric particles of four different structural
types, namely flocculent particles,fibrous particles,mineral particles, and spherical particles directly from SEM
images [91]. The attention-CNNmodel was found to have higher classification accuracy comparedwithCNN
and SVMmodels, since features of the particle can be focused on, instead of non-particle features such as the
background.

Using amicrofluidics chip toflowpollen grains through amicrofluidic device at a rate of 150 grains per
second, anAlexNet-based CNNwas used to process and classify pollen grains based on their optical images and
the outputwas combinedwith classified electrical signals in amultimodal approach [92]. The experiment
involved classification of eight different classes of pollen, giving an accuracy of 82.8% for the standalone
electrical classifier, 84.1% for the standalone optical classifier, and 88.3% for themultimodal approach
(processing of combined electrical and optical outputs). It was suggested that themethod could also be used to
classify other particulates between 10μmand 100μm.

Aquasi-real-time PMmonitoring device was created by integrating smartphone-based digital holographic
microscopy via the use of small optics and a laser diode [93]. Holographic speckle images of particulates were
obtained and transformed into particulates images via a deep autoencoder (DAE), and regression layers were
used to extract important features and predict PM10 and PM2.5 concentrations. Their technique could
successfully estimate PM10 and PM2.5 concentrations of dust particulates from the holographic speckle
patterns, with high throughput (1.57 s per 100 holograms). The techniquewas also very accurate, with relative
errors of the test datasets for PM10 concentrations being 11.23% ± 9.32%,whilst the relative errors of the test
datasets for the PM2.5 concentrations were 5.81% ± 4.46%. Suchmobile-optics integration is a potential
future direction for particulate sensing, especially for hazardous environments, or for alerting high pollen counts
or dangerous toxicity levels.

Whilst current optical particle counters involve using a photodiode detector, using a complementarymetal-
oxide-semiconductor (CMOS) sensor or charged coupled device (CCD) detector array instead potentially allows
more information about the object that scattered the light. As such, by capturingmore of the scattered light and
thus a 2D spatial scattering pattern, identification of different particulates can be achieved. The concept is
presented infigure 7, which shows how laser light is used to illuminate a plasticmicroparticle, and its scattering
pattern is captured by a camera and a neural network identifies thematerial from the pattern. This ‘lensless’
sensingmethod involves capturing the light scattered from the particulate using a camera sensor, rather than
collecting the light with an objective lens thatwould otherwise enable imaging of the object onto a camera
sensor. This allows for a smaller, cost-effective sensor design. Using this approach, wood ash and pollenwere
identified directly from their scattering patterns using aCNN,when the particulates were illuminated via a laser
diode [94]. Scattering patterns from each particulate, captured using a camera sensor, were fed into the neural
network, taking less than 50milliseconds to output a predicted category. The neural networkwas found to
correctly identify 43 out of 50 particulates. The results were presented in a confusionmatrix, consisting of true
positives and true negatives as well as false positives and false negatives. TheMatthews correlation coefficient
(multiclass classification quality [95])was calculated to be 0.81 (maximumpotential value of 1).

The prediction of pollen grains from scattered light captured via back reflection through an optical fibre has
also been demonstrated by the same group [96].More specifically, pollen grains were illuminatedwith a single-
corefibre and the subsequent scattering patterns were collected via a 30-core fibre, with the scattered light then
directed onto a camera sensor for capture. ACNNwas employed to categorise 3 different types of pollen grains
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using their associated captured scattering patterns. The neural networkwas able to correctly predict the pollen
species with an accuracy of∼ 97%. The neural networkwas also found to be robust to different levels of
background light. In addition, the distance between the pollen grains and the end of the fibrewas also included
as training data for aCNNandwhen tested, the neural networkwas able to predict the distancewith an
associated error of±6μm.

To further quantify the particulates that are scattering the light, the scattering signal fromparticulates in
optical scattering can be transformed into an image. Lensless imaging of pollen grains was demonstrated using
three lasers of different wavelengths to transform a scattering pattern directly into an image of pollen using a
cGAN [97]. Image transformation has also been used to transform images of pollen fromonemodality (image
style) into another, such as from visible lightmicroscope into SEM image, to aid in identification using SEM
databases [98]. Further to sensing and imaging, recent work has been carried out using image transformation
froma pollen grain in dehydrated state to a pollen grain in a hydrated state, to estimate the original size and
shape of the pollen grains prior to dehydration [99]. This could be useful inunderstanding pollen behaviour and
the environment fromwhich it has existed.

4.2.2. Laser-induced spectroscopy
Laser-induced spectroscopy is another technique that has been used in research for particulatematter
identification. Since differentmaterials can fluorescence with different wavelengths upon laser illumination,
their spectra can be used to identify particulatematter. Using the Rapid-E automatic particle detector to collect
scattering and fluorescence data from29 types of bioaerosols such as pollen and spores, Daunys et al [100] found
that for clustering unidentified particulates, clustering offluorescent data played amore important role than
clustering scattering data,most likely due to the effect of dehydration on the shape of pollen grains.More
specifically, based onfluorescence properties, it was found thatBetulaceae genus pollen data could be grouped
into the same clusters, whist it was also possible to differentiate Secale andDactylis genera from the same family
(Poaceae) usingfluorescent clustering. Further to this work, Tešendić et al [101] describe incorporating deep
learning into the Rapid-E for real-timemonitoring and automatic airborne detection of pollen. They developed
a system called ‘RealForAll’ that retrieves optical data (scattering pattern,fluorescence spectrum and
fluorescence lifetime) fromRapid-E devices and classifies the pollen using aCNN. The systemprovides hourly
measurements with a time delay of 15 min (due to batch data processing), via aweb-based applications aswell as
Android andApplemobile-based applications. Their results showed it was possible to classify 11 pollen types
with a Pearson correlation coefficient (ameasure of linear association between two sets of data) of>0.7.

Deep learning has also been used for identifying PM2.5 source fromwood burning, diesel exhaust, and
cigarettes using excitation emissionmatrix (EEM) (excitationwavelength versus emissionwavelength versus
fluorescence intensity)fluorescence spectroscopy [102]. By collectingmaterial using filters, obtained spectra was
used as training data for a CNN to predict the types with an overall accuracy of 89%. To scale to other sources
and real-world samples,more data was suggested to be needed.

Relevant to bioaerosol pollution,Hasti et al [103] developed a deep learning-based denoiser and spray
droplet location predictor to enable accurate estimation of the location of gas turbine combustion spray droplets
in light scattered images. AmodifiedCNN (no downsampling tomaintain image size), modifiedResNet [104]
(no downsampling), andmodifiedU-Net were used to denoising the images, with the results showing that the
U-Net architecture gave the lowestmean-square error (MSE), with a value of 0.0053 on the validation dataset.
Their trained denoising algorithm took∼2.13 s per image using a singleNVIDIAT4GPU.Droplet centre
predictionwas carried out using aCNN-based architecture, giving an average error of 1.35 pixels for the x-pixel
location and 0.927 pixels for the y-pixel location of the droplets.

Figure 7.Concept of using scattered light and deep learning for the identification of particulates.
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4.2.3. Remote sensing
Satellite-based sensing offers large areamonitoring of particulates, andmuchwork has been done in improving
the capability using deep learning.Whilstmost studies using satellite-derived aerosol optical depth (AOD)PM
measurements involve low spatial resolution, a recent study by Imani used deep learning to determine PM2.5
and PM10 concentrations usingModerate Resolution Imaging Spectroradiometer (MODIS) satellite images
[105]. Thework discusses using an LSTM-based neural network thatwas trained on ground scenes imaged by
MODIS, to relate the intensity values of the satellite image bands and particulatemattermeasurements at
different spatial locations. By using publicly available satellite images, the resultant generated PM2.5map and
PM10map of Tehran city showed that the proposed technique is a potentially suitable for simple low-cost PM
mapping. The deep learning results are comparedwith a random forestmodel employed on the same data, and it
was found that in themajority of cases, the deep learningmodel achieved a lower root-mean-square error
(RMSE) andmean absolute percentage error (MAPE), and a higher index of agreement (IA) (difference between
observed and estimated values). Themodel was also comparedwith state-of-the-art air pollution studies that
employ AODproducts for particulatematter concentrations estimations. Again, inmost cases the results
showed lower RMSE.However, it was noted that because the satellite data is affected by cloud levels, themodel
may not be as suitable when the sky is cloudy.

Li et al also used deep learning to fuse satellite data fromMODIS andmeteorological data to estimate
ground-level PM2.5 over large geographical regions inChina [106]. They implemented a layer-by-layer
pretraining technique alongwith geographical correlation to improve the accuracy of the PM2.5 estimation
comparedwith traditional artificial neural network approaches, achieving a cross-validation coefficient of
determination (R2) value being approximately twice as high at 0.88, and aRMSE value being approximately half
asmuch at 13.03μgm−3 in some cases. From the results, they estimated thatmore than 80%of theChinese
population live in regions that have an annualmean PM2.5 greater than the 2015WHOrecommended safe
levels.

Sun et al [107] also used large deep neural networks to train on large-scale satellite data andmeteorological
data to identify their spatiotemporal relationships with PM2.5 particulates to enable ground-based estimations
of hourly PM2.5 levels with 1 km spatial resolution inChina. Comparedwith other state-of-the-artmethods,
theirmodel achieved better performance in terms of testing in the cold andwarm seasons, giving anR2 of 0.84,
RMSE of 19.9μgm−3 andMPEof 11.9μgm−3, whereas a linearmixed effective (LME)model gave anR2 of
0.63, RMSE of 29.0μgm−3 andMPEof 18.1μgm−3, and a support vector regression (SVR)model gave anR2 of
0.77, RMSE of 21.5μgm−3 andMPEof 12.3μgm−3.

Yan et al have used deep learning to obtain large-scale PM2.5 concentrations fromHimawari-8, a
geostationary satellite, to provide high temporal resolution data (hourly intervals) acrossmainlandChina [108].
They developed a neural network that they call ‘EntityDenseNet’, which in contrast tomore classicalmachine
learningmethods (e.g., backpropagation neural network, extreme gradient boosting, light gradient boosting
machine, and random forest), was able to extract spatial and temporal characteristics of PM2.5 concentrations at
a higher accuracy. This work concluded that the coastal city of Tianjinwas influenced by air pollution from
Hebei, and that PM2.5 concentrations were closely related in groups of 3months. Lee et al proposed using deep
learning formonitoring the hourly spatial concentrations of PM2.5 over theKorean Peninsula via using
geostationary ocean colour imager (GOCI) satellite data, which consisted ofmultispectral images of top of
atmosphere (TOA) reflectance [109].When comparing the predicted PM2.5 concentrations with the ground
measurements of PM2.5, theirmodel wasmore accurate than the traditionalmachine learningmethods such as
random forest, giving anRMSEof 7.042μgm−3 andR2 of 0.698, in comparison to the random forestmethod
that gave anRMSEof 7.904μgm−3 andR2= 0.619. It should be noted that their neural networkwas limited
when estimating PM for cloudy areas and the night-time. A simple innovative way to estimate real-time
pollution levels without the need formonitoring stationswas proposed byKow et alwhoused an image-based
deep learning ResNet andVGGmodels that integrated aCNNand regression classification layer to create a
relationshipwith PM2.5 and PM10 datasets collected at an air qualitymonitoring station in Taiwan, to estimate
air pollution from city scape photographs [110]. TheCNN−RCwas able to classify and estimate PM2.5, PM10
andAQI values at the same time based onmultiple inputs, and achieved a classification accuracy for PM2.5,
PM10 andAQI based on day and night images above 70%. Evenwhen the imageswere less clear and therewas
presence of were high levels of smoke, the CNN−RC still produced accurate estimates on pollutant
concentrations.

4.2.4. Forecasting AI
Deep learningCNNs have been used for 1 day to 7 day forecasting of pollen grains of tree, weed and grass pollen
[111].Metrological data such as wind speed, total precipitation and temperature were used alongwith pollen
data from archives inHouston,U.S.A. For comparisonwith daily observations, the neural networkwas able to
predict with a relatively high index of agreement of 0.9, and theCNN showed promising ability formultiple day
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predictionswhen compared to the conventionalmodelling approach. The predictions of seasonal trends inweed
pollenwithin the area of study also correlated strongly with observations, but themodel experienced a slight
decrease in prediction accuracy as the forecast timewas increased.

PM2.5 concentrations have also been predicted by using bothCNNand LSTMneural networks to achieve
more accurate results than previousmodels, whereby theCNNwas used to extract spatial features from a 2D
matrix of data (meteorological and historical pollution data), whichwere then fed into an LSTMused to extract
time series features for the input [112]. This CNN+ LSTMmodel was comparedwith classical recurrent neural
network (RNN), LSTMandback-propagation (BP) basedmethods. The RMSEof theCNN+ LSTMwas 14.3μg
m−3, the RNNwas 30.66μgm−3 and the BPwas 22.37μgm−3. The lower RMSEof theCNN+ LSTMmethod
indicated that incorporating time-series feature information based on the correlation of spatial features could
improve long-term sequence prediction accuracy of particulatematter concentrations.

Aggarwal andToshniwal [113] also used LSTM-based deep learning neural network for urban air quality
forecasting at a variety of locations in India formonthly time periods, and used a particle swarmoptimisation of
the hyperparameters to further improve the accuracy. The results of the LSTM-based neural network gave a
RMSE score of 14.17μgm−3, which outperformed existingmodels such as autoregressive integratedmoving
average (ARIMA) [114] and radial basis function neural network (RBFNN) [115], which had anRMSE score of
24.44μgm−3 and 44.33μgm−3, respectively. Evaluating the LSTM-basedmodel gave a R2-score ranging from
0.86 to 0.99fifteen locations in India, indicating high accuracy.

5. Future perspectives

A lot of the progress appears to be imaged based, particularly in satellite imagery or optoelectronics, while
prediction accuracy is based on the ability to scale neural networkswithmore data to achieve higher accuracy.
This ismost likely due to a combination of the following two observations. Firstly, image-based neural networks
have been developed extremely rapidly in past years due to easy access to billions of labelled images available
online. Secondly, since currentmethods of identification of concentration levels can involve imaging the
particulates individually or as amass (e.g., photographs of skylines), application of neural networks has focussed
on these areas. Since the accuracy of neural networks tend to be dependent on the amount of training data [116],
accuracies of image-based neural networks are likely to improve over time asmore data can be acquired.

From the authors perspective, an ideal sensor (see figure 8) is one that can provide real-time, species specific
information, at low cost to the consumer, with a small footprint, whether it be for satellite deployment or for
ground-based sensing, with the data accessible and readable for awide variety of people, and potentially
updatable to allow for newneural network capabilities, (i.e., 3D imaging or tracking new treemould species). Of
course, such a device should be as green as possible and could also be poweredwithoutmains electricity to allow
for portability, in the case of ground-based and in-home sensing.

Figure 8.Diagram of desired capabilities of a sensor, which can determine species specific particulate counts, in real-time all over the
world, with high enough spatial resolution to allow individualmitigation.
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5.1. Physics informedmodels
Whilst futurework could involve combiningmultiple neural networks for greater accuracy, as demonstrated by
Luo et al [117], inwhich they combined convolutional neural networks, deep neural networks and integrated
gradients for estimating ozone levels in the atmosphere using ground-truth data, physics-informed neural
networks could provide scalable solutions to inverse problemswith sparse data. In general, the greater the
amount of data available to a neural network for training, themore likely it is to be able to develop an
understanding of the physical laws present in the data, and hence achieve a higher prediction accuracy [118]. On
the contrary, a purely physics-basedmodel requires little data [119]. Hence, depending on the amount of data
available to train neural networks, physics informed neural networks (PINNs) could be used to improve the
capabilities and accuracy of the neural networks, leading to an understanding, in reference to this work, of the
underpinning physical laws of the particulate sensingmethodology, determination of particulate species
characteristics and understanding particulate behaviour (see figure 9).

Recent work has shown that PINNs are effective and efficient for inverse problems, using incomplete
datasets, and are scalable [120]. To date,magnetic resonant image (MRI) segmentation has been performed via
combiningMRI datawith physics parameters in training of a neural network [121]. This is explained to
outperform current segmentation deep learning techniques since the networks can produce segmentations that
are robust to variations in theMRI physics, as the networks are learning the physics that contribute to the image
generation.Other work includes integrating physics computermodels into the deep learning training process,
such as incorporating phase recovery physics computation into deep learning training to enable optimisation of
themicroscope illumination source pattern forQuantitative Phase Imaging (QPI) of stain-free and label-free
microscopy [122]. Since some signal data from sensing can be difficult to interpret, such as light scatter from
particulates, PINNs could support deep learning neural networks in the identification of particulates. PINNs
could also aid in atmosphericmodelling and forecasting of particulate levels and particulate transport.

Currentmethods of particulatemonitoring use either data driven or physics-basedmodelling [123]. Since
pollution forecasting involves a high-dimensional parameter space, with partial amounts of data, the ability of
deep learning to integrate data and physicsmodels could provide suitable architecture for highly accurate and
efficient forecastingmodels. Indeed, preliminary work in this emerging field has been carried out using the
outputs of the physicalmodel as the inputs for the deep-learningmodel, for the purpose of predicting fine-mode
fractions (FMF) of aerosols over land, and achieving an accuracy higher than currentmethods [124]. The
authors found that, comparedwithmore traditional physical–based and deep-learning-based FMF results, the
their PINNwasmore accurate at predicting FMF values overfive land types (e.g., barren land, croplands, forests,
grasslands and urban area). Kashinath et al [125] surveyed neural networkmodels that incorporate physics and
domain knowledge, to developmore generalised climate andweather forecasting weather predictionswith
greater consistency, improved data efficiency and reduced training times. Their survey found that PINNs had a
reduced training time and greater data efficiency compared to previousmodels, gave greater physical
consistency, and provided a better generalisationwhen forecastingweather and climate processes.

Figure 9.Physics informed deep learning can bridge the gap between large amounts of training data and physicsmodelling, providing
potential to understand physical behaviours underpinning identified particulates.
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5.2. Aided sensor design
Futurework could consist of using deep learning neural networks to design and optimise sensors. For example,
deep neural networks have been used to optimise photonic crystal nanocavities [126], design and characterise
plasmonic nanostructures [127], design chiralmetamaterials [128] and enable the design offibres for coherent
beam combination [129]. As conceptualised infigure 10, in the future, one could ask anAI how to best design a
sensor capable of low-cost sensing and identification of single particulate species.

5.3. Computerminiaturisation
Future deep learning in thefield of particulatematter sensingwill likely involve larger training sets formore
accuracy [116]. This will necessitatemore powerful GPUs capable of carrying out trainingwithmore data and
higher resolution in relatively workable times [130]. The trends suggest GPUs are becomingmore efficient with
∼100GFLOPS perWatt currently available [76]. Also, for sensor footprint reduction, which is necessary for
mass deployment and thus higher spatial resolution, increasingly capablemicrocomputers and smaller GPUs
will also be likely necessary. Indeed, to date, CNNs using a Raspberry Pi [131] have been used for image
recognition, such as for identifying animals in images recorded by a camera in thewild [132], and for classifying
microbeads suspended inwater [133]. As displayed infigure 11, one can envisage that, depending on the type of
sensors developed, sensors could eventually beminiaturised throughAI aided design and implemented in smart
watches, vehicles, personal protective equipment (PPE) , air purifiers and vacuumcleaners, as well as public
areas such as bus shelters.

5.4.Monitoring
Beyond sensor design, deep reinforcement learning could aid in real-timemonitoring, decisionmaking and
analysis, as described byVisez et al [134], as well asmaintaining the sensor network, akin tomagnetic control of
tokamak plasmas as described byDeepMind [135]. In addition, deep learning could be used in the discovery of

Figure 10.Concept diagramof asking a deep learning neural network to design an optimal particulate sensor, based on specific desired
capabilities.

Figure 11.Miniaturisation of sensors could lead tomass deployment of sensors throughout society.
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relationships between pollutionmonitoring and healthmonitoring, such as linking pollution levels on a societal
and individual level to specific health concerns. This could enable diagnosing an individual’s allergy to a species
type of pollen or fungal spore. For example, in the case of a patient developing symptoms of rhinitis, neural
networks could be used to analyse the air pollution nearby and attempt to identify a correlationwith such health
events and airborne particle events. Figure 12 shows the potential different aspects that an all-encompassing
deep learning-basedmonitoring system could be designed to achieve, fromparticulate detection, to forecasting
and inferring illnesses and,more generally, environmental impact.

6. Conclusion

This review has discussed current techniques for airborne particulatematter pollution sensing and recent
advances in deep learning that can aid in (1) improving the accuracy of currentmethods, (2) developing new
methods of detection, imaging and characterisation and (3) enabling future pathways for increasing spatial
resolution, temporal resolution and enablemass deployment. These include using deep learning to identify
particulates with low-cost devices, to identify particulatesmore accurately using analysis techniques such as
fluorescence spectroscopy, improving the capability of devices via image transformation, and improving the
accuracy of particulate levels in forecasting.

Recent results in the identification of particulate and their concentration have confirmed that the application
of deep learning enables considerably higher prediction accuracies for both spatial and temporal dimensions.
Greater amounts of high quality data is key tomitigation, forecasting and understanding health effects, and to
obtainmore data, sensors with higher accuracy and greater spatial and temporal resolution should be developed.
We anticipate that as neural networks become larger in size and are trained on greater amounts of data, further
improvements to forecasting and particulate identification (which aremultidimensional spatial-temporal
problems)will be achieved.We conclude that deep learning has only just begun to impact particulatematter
sensing, and indeed deep learningwill be used to solve sensing challenges in domains not yet considered.

However, there is considerable opportunity for improvement, particularly in the domain of species level
identification in real-time on low cost ground-based devices, for space-based sensing, and for global forecasting
of particulatematter levels. The physical size of the sensing devices also needs to be reduced in size to enable
larger distribution of devices, for enabling higher spatial resolution and for implementation in other products
such as PPE and transportation. Furthermore, there ismuchwork needed to be done for the real-time
identification of airborne particulates that are smaller than PM2.5. This will perhaps require a combination of
existing sensingmethodswith new technologies. One possibility here is the development of shorter wavelength
sensors (extreme ultraviolet etc.) for enabling species level imaging or detection below the diffraction limit for
visible wavelength light, ormultispectral andmulti-modal identification could be employed, where light, sound
or electronic sensors are combined. To achieve this, as deep learning continues to become amore established
tool, it is possible deep learningwill be applied to the development of the design of the sensors themselves, for
both abstract design of new types of sensingmethods and instrumentation, and forminiaturisation of current
techniques.

Finally, owing to the transportation of particulatematter around the globe, and the effect of different
particulates on the human health, an important consideration here is to ensure particulatematter data aremade
freely available online. This will enable researchers to developmore accuratemodelling, begin tomove towards

Figure 12.Concept of using deep learning to identify particulates, and then predict future behaviours and levels, and infer health or
environmental effects.
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the standardisation of data collection and processing, and allow public access to data for assisting in local and
global policy design. In addition, the data will need to be correlatedwith health data to aid in health diagnosis
and source identification.
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