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1 Introduction

There has been recently a lot of progress in the microscopic derivation of the entropy of
anti de Sitter (AdS) black holes, starting with the magnetically charged and topologically
twisted ones in AdS4 × S7 [1] and followed by the Kerr-Newman (KN) black holes in
AdS5 × S5 [2–4]. This analysis has been extended to many other black objects in AdSd,
with d = 4, 5, 6, 7 with different types of electromagnetic charges and rotations and with
various amounts of supersymmetry. For a (partial) review, see [5]. A general entropy
functional that captures the large N entropy of black holes and black strings in general AdS
compactifications with a holographic dual was written in [6]. In this picture, the entropy
functional is a sum of universal contributions called gravitational blocks, which can be
related to some simple field theory quantity, either the central charge or the sphere-partition
function of the dual conformal field theory (CFT). The proposal has been successfully
tested for all known examples in maximally supersymmetric compactifications and in many
other cases with less supersymmetry. The microscopic counting of states for black objects
in AdS is usually done by a large N saddle point analysis of a supersymmetric index in the
dual CFT. Black hole physics then suggests that, in the large N limit, the corresponding
field theory partition functions should factorize and the CFT free energy

FM ≡ − logZM , (1.1)

where M is the Euclidean boundary of the black object, should be the sum of universal
contributions associated to a geometric description ofM as the gluing of elementary pieces.
The form of the entropy functional in [6] was indeed suggested by the decomposition of the
supersymmetric partition functions in holomorphic blocks [7].1 In this paper, we call this
property large N factorization. For a more precise definition see below and the beginning
of section 2.

All recent field theory computations for black objects in AdS4 and AdS5 have confirmed
the above picture. The factorization properties are particularly nontrivial when magnetic
charges and rotation are simultaneously present, see for example [20] for rotating black
strings in AdS5 × S5, and [21] for a class of rotating black holes in AdS4.

In this paper we analyse the large N factorization properties of five-dimensional par-
tition functions on various manifolds of the formM =M3× S2

ε , where ε is an equivariant
1The idea of “gluing” or “sewing” building blocks to compose field theory observables is old and it has

been successfully used in many different contexts. See [8–19] for developments related to our context.
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parameter for rotations along S2 and a chemical potential for the angular momentum of
the dual black hole. We will consider three examples. The first is the partition function
on S3

b × S2
ε , with a squashing along S3 and a topological twist along S2 [22]. Although

there is no associated dual black object, we expect factorization to hold nevertheless. The
other two examples correspond to partition functions on (S2

ε ×S1)×Σg, with a topological
twist along the genus g Riemann surface Σg, and a different type of supersymmetry. When
S2 is twisted this is the (partially) refined five-dimensional topologicallly twisted index
discussed in [22, 23]. The case where S2 is not twisted corresponds to a mixed index, first
considered in [24].

All these partition functions can be written, for genus 0, by gluing copies of the
Nekrasov’s partition functions [25], in the spirit of [8]. Since a proper derivation of the
mixed index is lacking in the literature we provide it here, by identifying the supergrav-
ity background the five-dimensional field theory should be coupled to in order to preserve
supersymmetry and by performing an explicit localization around this background.

For simplicity, we will focus on two specific field theories, the so-called ENf+1 Seiberg
theory, the UV fixed point of a N = 1 USp(2N) gauge theory coupled to Nf fundamental
hypermultiplets and an antisymmetric one [26], and the N = 2 SU(N) super Yang-Mills
(SYM) theory, which is supposed to flow at strong coupling to the six-dimensional N =
(2, 0) theory of type AN−1. The two theories are holographically dual to the warped
AdS6 ×w S4 solution in massive type IIA [27], and to AdS7 × S4 in M-theory, respectively.
Black holes and black strings in these compactifications have been found in [28–34] and all
the corresponding entropy functionals satisfy factorization. In this paper we investigate
the factorization properties from the field theory point of view. We will verify that various
quantum field theory observables can be written as a sum over two contributions associated
with the two hemispheres of S2

2∑
σ=1
B(∆(σ), ε(σ)) =

F
(
∆i + ε

2 ti
)

ε
±
F
(
∆i − ε

2 ti
)

ε
, (1.2)

where ∆i, i = 1, 2 are (constrained) chemical potentials for a U(1) flavor symmetry asso-
ciated with a rotation on S4, ti are the corresponding (constrained) flavor magnetic fluxes
on the sphere S2, and F has a natural interpretation in terms of the central charge/sphere
partition function of the dual CFT. Factorization takes the simple form (1.2) only when
written in terms of constrained variables. If there is a topological twist on S2, correspond-
ing to dual magnetically charged and twisted black holes, we need to use the minus sign
in (1.2) and the constraints2

∆1 + ∆2 = 2π , t1 + t2 = 2 , (1.3)

while, if S2 is untwisted, corresponding to dyonic KN black holes, we need to use the plus
sign in (1.2) and the constraints

∆1 + ∆2 = 2π + ε , t1 + t2 = 0 . (1.4)

The expression (1.2) is clearly reminiscent of an equivariant localization formula.
2In some examples, S3

b×S2
ε for instance, we will normalize the first constraint as ∆1 +∆2 = 2 to facilitate

comparison with literature.
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In the various examples F is proportional to3

S3
b × S2

ε (S2
ε × S1)× Σg

ENf+1 Seiberg theory FS5(∆)
2∑
i=1

si
∂FS5(∆)
∂∆i

6d N = (2, 0) theory A6d(∆)
2∑
i=1

si
∂A6d(∆)
∂∆i

(1.5)

where si, normalized with s1 + s2 = 2− 2g, are the magnetic fluxes through the Riemann
surface Σg. The quantities in the table have the following interpretations.

FS5(∆i) = −9
√

2
5π2

N5/2√
8−Nf

(∆1∆2)
3
2 , (1.6)

is the large N five-sphere free energy of the Seiberg theory in a convenient parameterization,
see [35, eq. (3.38)] and [36, eq. (2.37)], and

A6d(∆) = N3

24 (∆1∆2)2 , (1.7)

can be read off from the anomaly polynomial of the N = (2, 0) theory at large N , in a
way that we will discuss. The expressions for (S2

ε × S1) × Σg, on the other hand, can
be interpreted as the S3 partition function of the three-dimensional CFT obtained by
compactifying the Seiberg theory on Σg, and the trial central charge of the four-dimensional
CFT obtained by compactifying the N = (2, 0) theory on Σg, respectively.

A word of caution is in order. While the evaluation of the partition functions on
S3
b × S2

ε in the large N limit can be done with stardard methods, that for (S2
ε × S1)× Σg

is harder and we will not be able do it from first principles. For ε = 0, it was conjectured
in [22, 23] that the twisted index localizes at the critical points of an effective twisted su-
perpotential W(S2×S1)×R2 , similarly to the three-dimensional case [1]. Under this working
assumption, the entropy of static black objects in AdS6 and AdS7 was correctly repro-
duced [23, 30–32]. We will use the same logic here. A similar analysis for the twisted and
mixed partition functions on (S2

ε × S1) × Σg was first done in [24] for the Seiberg theory,
with the somehow surprising conclusion that factorization holds only in the ε = 0 limit.
This is in contradiction with the results for rotating twisted black objects that exhibit
factorization [33, 34] and we reconsider the problem here. As we will discuss in detail, the
dependence of W(S2

ε×S1)×R2 on gauge magnetic fluxes can be modified by contact terms
for ε 6= 0. We will show that, both in the case of twisted and mixed index, there is a
natural definition of an effective twisted superpotential W(S2

ε×S1)×R2 for ε 6= 0 that leads
to factorization.4 If we assume that the partition functions localize at the critical points of
W we find the free energy quoted above. As we will show, this result correctly reproduces

3For the explicit formulae and normalization factors see (3.23) and (3.40), for S3
b ×S2

ε , (4.74) and (4.89)
for the twisted index, and (5.101) and (5.117) for the mixed one.

4Our twisted superpotential is then different from the one used in [24].
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the entropy of all known black objects in AdS6 and AdS7. It would be nice to have a first
principle derivation of logZM that does not involve the assumptions made in [22–24].

One other interesting result of our analysis is that the on-shell superpotential
W(S2

ε×S1)×R2 itself factorizes with blocks given by (1.6) or (1.7).5 Indeed, we have the
interesting relation

logZ(S2
ε×S1)×Σg(∆, t, ε, s) = i

2∑
i=1

si
∂W(S2

ε×S1)×R2(∆, t, ε)
∂∆i

, (1.8)

which is the five-dimensional generalization of the index theorem proved in [37, 38].
The paper is organized as follows. In section 2, we will discuss general facts about

factorization and compare results in different dimensions. This will also serve to fix nota-
tions and a common ground for the rest of the paper. In section 3, we discuss the partition
function on S3

b ×S2
ε and we show that it factorizes. In section 4 we discuss the refined topo-

logically twisted index. We introduce various equivalent definitions of the effective twisted
superpotential W(S2

ε×S1)×R2 , and discuss the ambiguity in these definitions. We then show
that, for a natural symmetric choice of W, its on-shell value is factorized. Moreover, we
will verify that, if the partition function localizes at the critical points of W, it also has a
factorized form. We will also show that this result correctly reproduces the entropy of the
known rotating twisted black holes in massive IIA [34] and the density of states of black
strings in AdS7×S4 [33]. In section 5, we first write the rigid supergravity background for
the mixed index, and then explicitly perform localization. Using the same assumptions as
in section 4, we show that both the on-shell twisted superpotential and the partition func-
tion factorizes. We also verify that this result correctly reproduces the entropy of a class
of KN black holes in massive IIA [34]. In section 6 we shed light on the relation between
the on-shell W and logZ for the twisted and mixed index by proving the generalization
of the index theorem discussed in [37]. We conclude in section 7 with a discussion and
open problems.

2 Generalities about factorization

In this section we discuss some general facts about factorization in three dimensions, that
we will use also in five dimensions.

2.1 The entropy functional

In the recent and successful approach to microscopic counting, the entropy of supersym-
metric AdS black holes is obtained by extremizing the entropy functional

I(∆i, εa) ≡ logZM(∆i, εa)− i
∑
i

∆iQi − i
∑
a

εaJa , (2.1)

where Qi are the electric charges and Ja the angular momenta. Here, ZM(∆i, εa) is a
supersymmetric partition function on the compact manifold M that depends on a set of

5See (4.48) and (4.65) for the twisted index, and (5.77) and (5.88) for the mixed one.
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chemical potentials ∆i and εa conjugate to Qi and Ja, respectively. Extra conserved charges
of the black hole, for example magnetic charges, are encoded in the explicit form of the
function ZM(∆i, εa). The entropy functional (2.1) should be extremized with respect to
∆i and εa. This is the familiar fact that the entropy at zero temperature can be obtained
by taking the Legendre transform of the partition function.

For all known black holes in AdS, supersymmetry imposes a constraint among the
electric charges and the angular momenta. There is a similar linear constraint on the
magnetic charges, if present. It is however convenient to include all possible electric charges
and angular momenta in (2.1) and perform a constrained extremization. In this picture, the
variables ∆i and εa in (2.1) satisfy a linear constraint. This is consistent with the fact that
supersymmetric indices can be only refined with fugacities for symmetries that commute
with a particular supercharge and it allows for a complete field theory description. We
could obviously solve explicitly the constraint and write the entropy functional in terms
of independent variables. However, (2.1) takes a simple form only when written in terms
of constrained variables. In particular, in all known cases, it is a homogeneous function of
degree one of the constrained ∆i and εa.

For all known KN or topologically twisted black holes in maximally supersymmet-
ric AdS compactifications, with or without magnetic charges or rotation, the function
ZM(∆i, εa) in (2.1) can be written as a sum of contributions from the gravitational blocks [6]

logZM(∆i, εa) =
∑
σ

B(∆(σ)
i , ε(σ)

a ) , (2.2)

where

B(∆(σ)
i , ε(σ)

a ) = −F(∆(σ)
i )∏

a ε
(σ)
a

, (2.3)

and each ε(σ)
a is a linear combination of the rotational chemical potentials εa while ∆(σ)

i =
∆i ± ipiε(σ), where pi are magnetic fluxes through M.6 Experimentally, σ runs over the
elementary pieces into which the boundary manifoldM is decomposed, in the factorization
of the partition function in holomorphic blocks [7, 16]. Each black hole corresponds to a
different gluing. The function F(∆i) is instead universal, related to the prepotential or
on-shell action of the relevant supergravity, or, more physically, to the large N limit of
the central charge of the dual field theory, in the case of even-dimensional CFTs, or of
the sphere free-energy for odd-dimensional ones, fully refined with respect to the global
symmetries. For the maximal supersymmetric compactifications, F(∆) is proportional to
the values given in table 1.

Let us look at an example which will be also useful in the future. Consider rotating
four-dimensional black holes with a spherical horizon. We can decompose the sphere into
two hemispheres. We then use the A-gluing for topologically twisted black holes

∆(1)
i = ∆i + ε

2pi , ε(1) = ε ,

∆(2)
i = ∆i −

ε

2pi , ε(2) = −ε ,
(2.4)

6One can verify that a straightforward generalization covers also spindle black objects [39–43], see [41]
for an explicit example.
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AdS4 × S7 F(∆a) ∝ N3/2√∆1∆2∆3∆4

AdS5 × S5 F(∆a) ∝ N2∆1∆2∆3

AdS6 ×w S4 F(∆a) ∝ N5/3(∆1∆2)3/2

AdS7 × S4 F(∆a) ∝ N3(∆1∆2)2

Table 1. The structure of the block for the AdS backgrounds with maximal allowed supersymmetry
in each dimension. AdS6 ×w S4 is the background dual to the USp(2N) five-dimensional theory
considered in this paper [26, 27]. The chemical potentials ∆i are associated with the Cartan of the
internal sphere isometry in all dimensions.

associated with constraints of the form
4∑
i=1

∆i = 2 ,
4∑
i=1

pi = 2 , (2.5)

and the identity gluing (id-gluing)

∆(1)
i = ∆i + ε

2pi , ε(1) = ε ,

∆(2)
i = ∆i −

ε

2pi , ε(2) = ε ,
(2.6)

associated with constraints of the form
4∑
i=1

∆i − ε = 2π ,
4∑
i=1

pi = 0 , (2.7)

for KN ones, including dyonic ones. The chemical potentials ∆i are conjugate to the
U(1)4 ⊂ SO(8) isometry for AdS4 × S7 and to a basis of U(1) symmetries Ri in which we
can decompose the general R-symmetry of the model viewed as a generic N = 2 theory.
The constraints on magnetic charges are dictated by supersymmetry: the R-symmetry
magnetic flux must be 2 for the topological twist and zero for KN black holes.

There are two cases where the entropy functional simplifies. The first is the case of KN
black holes in AdSd, d = 4, 5, 6, 7 with no magnetic charges. The corresponding entropy
functional for the maximal supersymmetric compactifications has been written in [44–46].
With zero magnetic fluxes, the gluing formula degenerates and the entropy functional is
the sum of equal contributions, hiding the factorization properties. These become manifest
for dyonic black holes [6, 47].

The second is the case of black objects topologically twisted on S2 but with zero angular
momentum on the sphere. The solution depends on magnetic fluxes si on S2 normalized
as
∑
i si = 2. We assume that the boundary manifold M = N × S2 factorizes into two

blocks of the form N ×D2, where the disks D2 correspond to the two hemispheres. Here,
we have ε = 0. We can still use the A-gluing defined above, and send ε to zero at the end
of the computation. We obtain

logZM(∆) =
∑
i

si
∂F(∆)
∂∆i

. (2.8)

– 6 –
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This is indeed the general structure of the unrefined topologically twisted index at large
N in a variety of situations [1, 23, 37, 38]. The sphere S2 can be replaced with a Riemann
surface Σg of genus g with no major changes and the only difference that now integer fluxes
are normalized as ∑

i

si = 2− 2g . (2.9)

In the interesting case where the compactification of the original CFT on the Riemann
surface Σg becomes conformal in the IR,7 (2.8) will express the large N sphere partition
function/central charge of the lower-dimensional CFT in terms of those of the higher-
dimensional one. This relation is for example satisfied for the large N sphere partition
function of the twisted compactification Σg of the ENf+1 Seiberg theory [23, 48]. It is
also a general relation between the large N central charges of theories related by twisted
compactifications, as it can be easily proved by integrating the anomaly polynomial on
Σg [23, 38, 49].

The factorization properties are really nontrivial when magnetic charges and rotation
are simultaneously present. We will focus on this case in the following and in the rest of
the paper.

2.2 Factorization in field theory

The gravitational block picture is expected to be a consequence of analogous factorization
properties of the quantum field theory observables. Let us consider first three dimensions.
Most of the three-dimensional supersymmetric partition functions, and in particular the
topologically twisted index and the superconformal one, can be written by gluing two
holomorphic blocks B(a,∆, ε) according to the formula [7]

Z(∆, ε) =
∫

daB(a(1),∆(1), ε(1))B(a(2),∆(2), ε(2)) , (2.10)

where a(σ), σ = 1, 2, are gauge fugacities. Another useful expression is [7, 16]

Z(∆, ε) =
∑
α

Bα(∆(1), ε(1))Bα(∆(2), ε(2)) , (2.11)

where α labels a choice of Bethe vacuum for the two-dimensional theory obtained by
reducing the theory on a circle and Bα(∆, ε) =

∮
daB(a,∆, ε) is a suitable contour inte-

gral passing through the Bethe vacuum aα. In applications to holography, we typically
work in a saddle point approximation where one particular Bethe vacuum dominates the
sum (2.11) [1]. We then expect some form of factorization also at large N . In a slightly
different but equivalent context, the explicit analysis has been performed in [21] confirm-
ing factorization in the form discussed in the previous section for the topologically twisted
index, the superconformal one, and the sphere partition function, and exploring various
relations among all these quantities.8

7Holographically, there exists a domain wall interpolating between AdSp+1 and AdSp−1 × Σg, where p
is the dimensionality of the original CFT.

8The analysis in [21] has been only done, for simplicity, for the N = 8 theory coupled to a fundamental
hypermultiplet, which is supposed to flow to ABJM in the IR, but we might expect the results to hold in
general.
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To understand the form of (2.3) for generic rotation and magnetic charges, it is conve-
nient to expand the holomorphic blocks in the limit of small ε. In this limit, the holomorphic
blocks are singular (see e.g. [7, eq. (2.22)] and [18, eq. (F.15)])

B(a,∆, ε) ∼
ε→0

exp
(
− 1
ε
W(a,∆) + . . .

)
,

Bα(∆, ε) ∼
ε→0

exp
(
− 1
ε
W(aα,∆) + . . .

)
,

(2.12)

where W(a,∆) is the effective twisted superpotential of the two-dimensional theory and
the Bethe vacua aα are its critical points. An important point is that, at large N , the
on-shell twisted superpotential W(aα,∆) is related to the S3 free energy [21, 37, 38],9 and
the explicit form of the gravitational block (2.3) follows from (2.11). It might seem that
this argument holds only in the strict limit ε→ 0, while in reality (2.3) and the associated
factorization are valid also for ε 6= 0. However, a careful analysis shows that, at large N ,
the subleading terms in (2.12) vanish except for the first one, whose only role is to enforce
the form of the gluing and the constraint among chemical potentials. A similar situation
holds in other dimensions, including five, as we will see.

Analogous results hold for the refined topologically twisted index in four dimensions,
which can be obtained by gluing two copies of T 2 × D2. The index for N = 4 SYM
captures the density of states of rotating black strings in AdS5×S5 and it has be shown to
factorize both in gravity and field theory in [6, 20]. The field theory computation has been
done by explicitly evaluating the partition function, but the same result would be obtained
using the arguments in [21]. For future reference, let us notice that computation for black
strings are usually done in the Cardy limit where the modular parameter τ of the torus
T 2 is small. In this limit the on-shell twisted superpotential of the two-dimensional theory
becomes proportional to the trial central charge of the four-dimensional CFT [38],

W(∆) ∼ a(∆)
τ

, (2.13)

in agreement with the general discussion. The Cardy limit on T 2 is appropriate for studying
the physics of the black holes obtained by compactifying the string on a circle, and leads
to the charged Cardy formula [33]. We will encounter a similar setting in section 4.3.2. For
recent results at finite τ see [53].

In five dimensions, the holomorphic blocks B(a,∆, ε1, ε2) are given by the K-theoretic
Nekrasov’s instanton partition function on R2

ε1 × R2
ε2 × S

1 [25, 54, 55]. The two chemical
potentials ε1 and ε2 are equivariant parameters for the rotations on R4 and are conjugate
to the two possibile angular momenta for black holes in AdS6 and black strings in AdS7.
All the partition functions we will consider can be written in a similar form to (2.10) by
gluing Nekrasov’s partition functions [19, 22–24]. There are many similarities with three
and four dimensions. The role of the twisted superpotential is played by the Seiberg-Witten

9The on-shell twisted superpotential of many three-dimensional N = 2 Chern-Simons-matter gauge
theories with holographic duals were computed in [50–52].
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prepotential FSW(a,∆) and the expansion of the holomorphic block is given by [25]

B(∆, ε1, ε2) ∼
ε1,ε2→0

exp
(
− 1
ε1ε2
FSW(a,∆) + . . .

)
. (2.14)

Analogy with lower dimensions motivated the conjecture made in [22, 23] that the (un-
refined) five-dimensional partition functions localize at the critical point of FSW(a,∆).
The on-shell value of the Seiberg-Witten prepotential for both the Seiberg theory and
the N = (2, 0) theory has ben computed in [22, 23] and are proportional to the S5 free
energy (1.6) and the anomaly coefficient (1.7), respectively. All these analogies suggest
that factorization holds with the blocks given in table 1. Unfortunately, decompositions
similar to (2.11), which would help in setting these statements on a firmer ground, are not
fully understood in five dimensions. We will try to attack directly the five-dimensional
matrix models.

3 Factorization of the S3
b × S2

ε partition function

We are interested in evaluating the partition function of five-dimensional N = 1 gauge
theories on S3

b×S2
ε in the limits that are appropriate for holography. Here b is the squashing

parameter of the three-sphere and ε is an Ω-deformation on the twisted two-sphere. We
label the (gauge, flavor) fluxes on S2

ε by (n, t), respectively. Following [22], for an N = 1
gauge theory with gauge group G, I hypermultiplets in a representation ⊕(RI ⊕ R̄I) of
the gauge group, and vanishing Chern-Simons contributions, we can write down the refined
perturbative part of the partition function as (see appendix A)10

ZS3
b
×S2

ε
(a, n; ∆, t, ε|b) = 1

|W |
∑
n∈Γh

∮ rk(G)∏
i=1

dxi
2πixi

e
−F

S3
b
×S2

ε
(ai,ni;∆,t,ε|b)

, (3.1)

where the exponent FS3
b
×S2

ε
is given by

FS3
b
×S2

ε
(ai, ni; ∆, t, ε|b)

= 16π2Q2

g2
YM

TrF(na)

+
∑
α∈G

|Bα|−1
2∑

`=− |B
α|−1
2

sign(Bα) logS2
(
− iQ (α(a)− 1 + `ε)

∣∣∣b)

−
∑
I

∑
ρI∈RI

|BρI |−1
2∑

`=− |B
ρI |−1

2

sign(BρI ) logS2
(
− iQ (ρI(a) + 1− νI(∆) + `ε)

∣∣∣b) .

(3.2)

Here, α are the roots of the gauge group, ρ, ν denote the weights of the hypermultiplets
under the gauge and flavor symmetry groups, respectively, and |W | is the order of the

10One can switch between the conventions used here and those of [22] by setting gthere
5 = 1

2gYM, gthere = 0,
uthere = −iQa, νthere = −iQ(1−∆), and mthere − rthere + 1 = n + t− 1.
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Weyl group of G. Moreover, gYM is the Yang-Mills coupling constant and x = eia. Finally,
S2(z|b) is the double sine function defined by

S2(z|b) ≡
∏

m,n∈Z≥0

mb+ nb−1 +Q− iz
mb+ nb−1 +Q+ iz , Q ≡ 1

2
(
b+ b−1

)
, (3.3)

and
Bρ ≡ ρ(n) + ν(t)− 1 Bα ≡ α(n) + 1 . (3.4)

Before moving forward, let us note the following asymptotic relation for the logarithm
of the double sine function, see [56, appendixA],11

fb(z) ≡ logS2(z|b) ∼ iπ
(
z2

2 + Q2

6 −
1
12

)
sign [Re(z)] , as |Re(z)| → ∞ , (3.5)

that becomes useful when we study the large N limit of the S3
b × S2

ε partition function.
Note also that, for a ∈ iR,

sign(B)

|B|−1
2∑

`=− |B|−1
2

fb (−iQ(a+ `ε)) = Bfb(−iQa)− iπ(Qε)2

24 B(B2 − 1) sign(Im a) . (3.6)

The full partition function on S3
b × S2

ε is a sum over instantonic contributions. In the
large N limit, instantons are suppressed and we can restrict to the perturbative part of the
partition function given above.

3.1 USp(2N) gauge theory with matter

Let us consider an N = 1 USp(2N) gauge theory coupled to Nf hypermultiplets in the
fundamental representation and one hypermultiplet A in the antisymmetric representation
of USp(2N) [26]. The global symmetry of the theory is SU(2)R×SU(2)A×SO(2Nf )×U(1)I
where the first factor is the R-symmetry while the other three factors are flavor symmetries:
SU(2)A acts on A as a doublet, SO(2Nf ) rotates the fundamental hypermultiplets, and
U(1)I is the topological symmetry associated to the conserved instanton number current
j = ∗Tr(F ∧F ). The global symmetry is enhanced to SU(2)R×SU(2)A×ENf+1 at the UV
fixed point [26]. The theory arises on the intersection of N D4-branes and Nf D8-branes
and orientifold planes, and is holographically dual to the AdS6×wS4 background of massive
type IIA supergravity [27] (see also [57–59]).

The partition function on S3
b × S2

ε=0 at large N was computed in [22] and scales as
O(N5/2). Here we are interested in the dependence on ε and the factorization properties.

Denote the Cartan elements of USp(2N) by ai, i = 1, . . . , N , and normalize the weights
of the fundamental representation of USp(2N) to be±ei. The antisymmetric representation
then has weights ±ei ± ej with i > j and N − 1 zero weights, and the roots are ±ei ± ej
with i > j (V1) as well as ±2ei (V2). Vector and hypermultiplets then contribute to the
FS3

b
×S2

ε
functional

FS3
b
×S2

ε
(ai, ni; ∆K , tK , ε|b) = FA+V1(ai, ni; ∆m, tm, ε|b) + FF+V2(ai, ni; ∆f , tf , ε|b) , (3.7)

11Recall that sign(0) = 0.
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with

FA+V1 =
N∑
i>j

[
F∆m,tm(±ai ± aj)−F∆K=2,tK=2(±ai ± aj)

]
+ (N − 1)F∆m,tm(0) ,

FF+V2 =
N∑
i=1

[ Nf∑
f=1
F∆f ,tf (±ai)−F∆K=2,tK=2(±2ai)

]
,

(3.8)

where

F∆K ,tK (a) ≡ − sign(BK)

|BK |−1
2∑

`=− |BK |−1
2

logS2
(
− iQ (a+ 1−∆K + `ε)

∣∣∣b) , (3.9)

with BK = n + tK − 1. Here, the index K labels all the matter fields in the theory and we
introduced the notation

F∆K ,tK (±ai) ≡ F∆K ,tK (ai, ni) + F∆K ,tK (−ai,−ni) . (3.10)

Notice that the vector multiplet contribution is equal to minus the contribution of a hy-
permultiplet with ∆K = 2 and tK = 2.

As we will see, the dependence on ∆f is subleading at large N and we will be interested
in the chemical potential ∆m and the flux tm for the Cartan subgroup of SU(2)A. As
mentioned in the introduction, the free energy will take a nice form when written in terms
of constrained variables. We then define

t1 ≡ tm , t2 ≡ 2− tm , s.t.
2∑
i=1

ti = 2 ,

∆1 ≡ ∆m , ∆2 ≡ 2−∆m , s.t.
2∑
i=1

∆i = 2 .
(3.11)

Observe that the last term in FA+V1 is of order O(N) in the largeN limit and, given the
expected N5/2 scaling of the free energy, subleading. We will also make a few assumptions
regarding the gauge variables that are true for the solution at ε = 0 [22] and that we
will verify afterwards. Assuming that | Im ai| scales with some positive power of N , and
using (3.5) and (3.6), we obtain12

FA+V1 = iπQ2
N∑
i>j

[
(∆1t2 + ∆2t1)aij −

1
4(4∆1∆2 + ε2t1t2)nij

]
sign (Im aij)

+ iπQ2
N∑
i>j

[
(∆1t2 + ∆2t1)a+

ij −
1
4(4∆1∆2 + ε2t1t2)n+

ij

]
sign

(
Im a+

ij

)
.

(3.12)

For the ease of notation, we defined aij ≡ ai − aj , a+
ij ≡ ai + aj and the same for the

gauge fluxes ni. Because of the Weyl reflections of the USp(2N) group, we restrict to
12We do not include subleading terms in the rest of this calculation.
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Im ai > 0. Assuming also that the eigenvalues are ordered by increasing imaginary part,
i.e. Im ai > Im aj for i > j, and using

N∑
i,j=1

(ai − aj) sign(i− j) = 2
N∑
j=1

(2j − 1−N)aj ,

N∑
i,j=1

(ai + aj) = 2N
N∑
j=1

aj ,

(3.13)

(3.12) is simplified to

FA+V1 = iπQ2
N∑
k=1

(2k − 1)
[
(∆1t2 + ∆2t1)ak −

1
4(4∆1∆2 + ε2t1t2)nk

]
. (3.14)

Similarly, the contribution of FF+V2 to the large N free energy can be computed using (3.5)
and (3.6). It is natural to assume that ai and ni scale with the same positive power of N .
Then, neglecting lower powers of ai and ni that are subleading, we find

FF+V2 = −iπQ2(8−Nf )
N∑
k=1

(
a2
k + ε2

12n
2
k

)
nk . (3.15)

Under the same hypothesis also the classical term is subleading, see (3.2). Putting (3.14)
and (3.15) together we get the final expression for the FS3

b
×S2

ε
functional

FS3
b
×S2

ε
(a, n; ∆, t, ε|b) = − iπQ2(8−Nf )

N∑
k=1

(
a2
k + ε2

12n
2
k

)
nk

+ iπQ2
N∑
k=1

(2k − 1)
[
(∆1t2 + ∆2t1)ak −

1
4(4∆1∆2 + ε2t1t2)nk

]
,

(3.16)
that remarkably can be recast in the following form

FS3
b
×S2

ε
(a, n; ∆, t, ε|b) = 4iQ2

π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (3.17)

where we used the A-gluing parameterization

a
(1)
k ≡ ak −

ε

2nk , ∆(1)
i ≡ ∆i + ε

2 ti , ε(1) = ε ,

a
(2)
k ≡ ak + ε

2nk , ∆(2)
i ≡ ∆i −

ε

2 ti , ε(2) = −ε .
(3.18)

Here, FSW is the Seiberg-Witten prepotential of the four-dimensional theory obtained by
compactifying the five-dimensional N = 1 theory on S1 and it receives contributions from
all the Kaluza-Klein (KK) modes on S1 [60]. In the large N limit, it reads [23, eq. (3.67)],

FSW(ak; ∆i) = π2

4

N∑
k=1

(8−Nf

3 a3
k + (2k − 1)∆1∆2ak

)
. (3.19)
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Extremizing (3.16) over the gauge variables (ak, nk), we find the saddle point equations

∂FS3
b
×S2

ε
(a, n)

∂ak

∣∣∣
ak=åk

= 0 ⇒ åknk = 2k − 1
2(8−Nf )(∆1t2 + ∆2t1) , (3.20)

and
∂FS3

b
×S2

ε
(a, n)

∂nk
= 0

∣∣∣
ak=åk, nk=̊nk

⇒ n̊k = − i
ε

√
2k − 1
8−Nf

( √(
∆1 + ε

2 t1
)(

∆2 + ε

2 t2
)
−
√(

∆1 −
ε

2 t1
)(

∆2 −
ε

2 t2
) )

.

(3.21)
Observe that (3.20) and (3.21) are equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = i√

8−Nf

√
(2k − 1)∆(σ)

1 ∆(σ)
2 , (3.22)

for σ = 1, 2. We see that both åk and n̊k scale as N1/2 and are purely imaginary for
generic values of the parameters. Plugging the saddle points (̊ak, n̊k) back into the partition
function (3.1) we can write down the large N version of the S3

b × S2
ε free energy as

FS3
b
×S2

ε
(∆i, ti, ε|b) = 8

27
Q2

ε

[
FS5

(
∆i + ε

2 ti
)
− FS5

(
∆i −

ε

2 ti
)]

, (3.23)

with FS5(∆i) being the free energy of the theory on S5,

FS5(∆i) = −9
√

2π
5

N5/2√
8−Nf

(∆1∆2)
3
2 ,

2∑
i=1

∆i = 2 . (3.24)

Note that
N∑
k=1

(2k − 1)3/2 ∼ 4
√

2
5 N5/2 , for N � 1 . (3.25)

In the limit ε→ 0, our expression for the refined free energy (3.23) reduces to

FS3
b
×S2(∆i, ti|b) = −4

√
2πQ2N5/2

5
√

8−Nf
(∆1∆1)1/2(∆1t2 + ∆2t1) , (3.26)

which agrees with [22, eq. (3.17)] upon the following change of variables

∆1 = 1 + ν̃there , ∆2 = 1− ν̃there , t1 = 1 + n̂there , t2 = 1− n̂there . (3.27)

3.2 N = 2 super Yang-Mills

Consider five-dimensional N = 2 super Yang-Mills with gauge group SU(N). In N = 1
notations, the theory contains one vector multiplet and one hypermultiplet transforming
in the adjoint representation of the gauge group. We introduce a fugacity ∆ and a flux
t associated with the flavor symmetry acting on the hypermultiplet. We are interested in
evaluating the S3

b × S2
ε free energy in the ’t Hooft limit

N � 1 with λ ≡ g2
YMN = fixed . (3.28)
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The FS3
b
×S2

ε
functional reads

FS3
b
×S2

ε
(ai, ni; ∆, t, ε|b) = FYM(ak, nk) + FH(ai, ni; ∆, t, ε|b) + FV(ai, ni, ε|b) , (3.29)

with

FYM =
(4πQ
gYM

)2 N∑
k=1

aknk ,

FH =
N∑

i,j=1
F∆,t(aij) , FV = −

N∑
i,j=1
F∆=2,t=2(aij) ,

(3.30)

where F(a) is given in (3.9) and aij ≡ ai−aj . As before, the vector multiplet contribution
is equal to minus the contribution of the hypermultiplet with ∆ = 2 and t = 2.

In the strong ’t Hooft coupling λ� 1 the eigenvalues are pushed apart, i.e. | Im aij | →
∞, and (3.29), using (3.5), can be approximated as

FS3
b
×S2

ε
(ai, ni; ∆, t, ε|b)

=
(4πQ
gYM

)2 N∑
k=1

aknk

+ iπQ2

2

N∑
i,j=1

[
(∆1t2 + ∆2t1)aij −

1
4(4∆1∆2 + ε2t1t2)nij

]
sign(Im aij) ,

(3.31)

where we introduced, as before, a set of constrained variables

t1 ≡ t , t2 ≡ 2− t , s.t.
2∑
i=1

ti = 2 ,

∆1 ≡ ∆ , ∆2 ≡ 2−∆ , s.t.
2∑
i=1

∆i = 2 .
(3.32)

Assuming that the eigenvalues are ordered by increasing imaginary part, using (3.13),
we obtain

FS3
b
×S2

ε
(ai, ni; ∆, t, ε|b)

=
(4πQ
gYM

)2 N∑
k=1

aknk

+ iπQ2
N∑
k=1

(2k − 1−N)
[
(∆1t2 + ∆2t1)ak −

1
4(4∆1∆2 + ε2t1t2)nk

]
.

(3.33)

Remarkably, this can be recast as

FS3
b
×S2

ε
(ai, ni; ∆, t, ε|b) = 4iQ2

π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (3.34)

where we used the A-gluing parameterization

a
(1)
k ≡ ak −

ε

2nk , ∆(1)
i ≡ ∆i + ε

2 ti , ε(1) = ε ,

a
(2)
k ≡ ak + ε

2nk , ∆(2)
i ≡ ∆i −

ε

2 ti , ε(2) = −ε .
(3.35)
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and the effective Seiberg-Witten prepotential, in the strong ’t Hooft coupling limit, is given
by [23, eq. (3.20)]

FSW(ak; ∆i) = π2

4

N∑
k=1

(
8πi
g2
YM

a2
k + (2k − 1−N)∆1∆2ak

)
. (3.36)

Extremizing (3.33) over the gauge variables (ak, nk), we find the saddle points

åk = ig2
YM

64π (2k − 1−N)
(
4∆1∆2 + ε2t1t2

)
,

n̊k = − ig2
YM

16π (2k − 1−N)(∆1t2 + ∆2t1) .
(3.37)

Notice that (3.37) is equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = ig

2
YM

16π (2k − 1−N)∆(σ)
1 ∆(σ)

2 , (3.38)

for σ = 1, 2. Plugging (̊ak, n̊k) back into the partition function (3.1) we can write down the
S3
b × S2

ε free energy as

FS3
b
×S2

ε
(∆i, ti, ε|b) = −Q

2g2
YM

192 N(N2 − 1)(∆1t2 + ∆2t1)(4∆1∆2 + ε2t1t2) , (3.39)

that can be more elegantly rewritten in the factorized form

FS3
b
×S2

ε
(∆i, ti, ε|b) = −N(N2 − 1)Q

2g2
YM

96ε
[(

∆(1)
1 ∆(1)

2
)2 − (∆(2)

1 ∆(2)
2
)2]

, (3.40)

with blocks associated with the function (1.7). Note that

N∑
k=1

(2k − 1−N)2 = 1
3N(N2 − 1) . (3.41)

In the limit ε→ 0, our expression for the refined free energy agrees with [22, eq. (4.74)].

Bethe approach. The S3
b × S2

ε free energy (3.33) is linear in the gauge magnetic fluxes
nk so one can explicitly perform the sum

∑
n∈Γh

in (3.1),

ZS3
b
×S2

ε
=
∑
n∈Γh

∮ N∏
k=1

dxk
2πixk

e−iπQ2(2k−1−N)(∆1t2+∆2t1)ak

× e
−π4Q

2

(
64π
g2

YM
ak−i(2k−1−N)(4∆1∆2+ε2t1t2)

)
nk
,

(3.42)

to obtain
ZS3

b
×S2

ε
=
∑
a=å

e−iπQ2(2k−1−N)(∆1t2+∆2t1)ak , (3.43)
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where the sum is over all solutions å to the Bethe ansatz equations (BAEs)13

1 = e
−π4Q

2
∑N

k=1

(
64π
g2

YM
ak−i(2k−1−N)(4∆1∆2+ε2t1t2)

)
≡ exp

(
i
∂WS3

b
×R2

ε
(ak; ∆, ε|b)
∂ak

)
. (3.44)

Here, WS3
b
×R2

ε
(ak; ∆, ε|b) is the “quantum corrected” effective twisted superpotential of the

theory on S3
b × R2

ε and it reads

WS3
b
×R2

ε
(ak; ∆, ε|b) = πQ2

4

N∑
k=1

(
32iπ
g2
YM

ak + (2k − 1−N)(4∆1∆2 + ε2t1t2)
)
ak . (3.45)

The solution to the BAEs (3.44) is simply given by

åk = ig2
YM

64π (2k − 1−N)
(
4∆1∆2 + ε2t1t2

)
. (3.46)

Plugging the solution (3.46) back into the twisted superpotential (3.45) and the partition
function (3.43) we find, respectively,

WS3
b
×R2

ε
(∆, ε|b) = iQ2

96g2
YM

N(N2 − 1)(4∆1∆2 + ε2t1t2)2 ,

FS3
b
×S2

ε
(∆i, ti, ε|b) = i

2∑
i=1

ti
∂WS3

b
×R2

ε
(∆, ε|b)

∂∆i
,

(3.47)

in agreement with (3.39).

FS3
b×S2

ε
(∆, t, ε|b) and the 4d central charge. The N = 2 SU(N) SYM theory is

supposed to flow at strong coupling to the six-dimensional N = (2, 0) theory of type
AN−1. The eight-form anomaly polynomial of the N = (2, 0) theory at large N is given by

A6d = N3

24 p2(R) , (3.48)

where p2(R) = e2
1e

2
2 is the second Pontryagin class of the SO(5) R-symmetry bundle,

with eσ, σ = 1, 2, being the Chern roots. Notice that the chemical potentials ∆1 and
∆2 are naturally associated with the Cartan of SO(5) and the block function (1.7) is
formally obtained by replacing e1 → ∆1 and e2 → ∆2 in the anomaly polynomial. The
compactification of the 6d (2, 0) theory on a topologically twisted S2 gives rise to a class
of four-dimensional N = 1 CFTs [61]. The theories are specified by the internal flux
t and have an additional global symmetry associated with the U(1) rotational isometry
of S2 and conjugated to the equivariant parameter ε. We can read off the conformal
anomaly coefficient a(∆, t, ε) of the four-dimensional N = 1 theory by integrating A6d on
an Ω-deformed S2

ε . The integration can be done most conveniently by the localization
formula [33, section 3.3.2] and it yields

A4d = −N
3

48 (∆1t2 + ∆2t1)
(
4∆1∆2 c1(F )2 + t1t2 c1(J)2

)
c1(F ) , (3.49)

13In the large N limit only one Bethe solution dominates the partition function [1].
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where c1(F ) is the first Chern class of the 4d R-symmetry bundle and c1(J) is the first
Chern class of the background U(1) gauge field coupled to the rotation of S2

ε . Setting
c1(J) = εc1(F ) and comparing (3.49) with the six-form anomaly polynomial, at large N ,

A4d = 16
27a(∆, t, ε)c1(F )3 , (3.50)

we find the trial a central charge of the 4d N = 1 theory

a(∆, t, ε) = −9N3

256 (∆1t2 + ∆2t1)(4∆1∆2 + ε2t1t2) . (3.51)

Remarkably, we observe the following large N relation between the S3
b × S2

ε free en-
ergy (3.39) and the a central charge (3.51)

FS3
b
×S2

ε
(∆, t, ε|b) = 4

27(gYMQ)2a(∆, t, ε) . (3.52)

4 Refined topologically twisted index

We now consider the partition functions on (S2
ε × S1)× Σg, with a topological twist both

along the genus g Riemann surface Σg and on S2. We also turn on an Ω-background
along S2 with equivariant parameter ε. This corresponds to the (partially) refined five-
dimensional topologically twisted index introduced in [22, 23]. The index depends on
fugacities y and fluxes (s, t) on (Σg, S

2
ε ) for the flavor symmetries. Setting the possible

Chern-Simons levels to zero, the perturbative part of the matrix model reads [23]

Z(m, n, a; s, t,∆|ε) = 1
|W |

∑
{m,n}∈Γh

∮
C

rk(G)∏
i=1

dxi
2πixi

(
det
ij

∂2W(S2
ε×S1)×R2(a, n; ∆, t, ε)

∂ai∂aj

)g

× exp
(

8π2

g2
YM

TrF(mn)
) ∏
α∈G

|Bα2 |−1
2∏

`=−
|Bα2 |−1

2

(1− xαζ2`

xα/2ζ`

)Bα1 sign(Bα2 )

×
∏
I

∏
ρI∈RI

|B
ρI
2 |−1

2∏
`=−

|B
ρI
2 |−1

2

(
xρI/2yνI/2ζ`

1− xρIyνI ζ2`

)BρI1 sign(BρI2 )
,

(4.1)

where (m, n) and (s, t) are the gauge and flavor magnetic fluxes on (Σg, S
2
ε ), respectively;

x = eia, y = ei∆, and ζ = eiε/2. We have also defined

Bρ
1 ≡ ρ(m) + ν(s) + g− 1 , Bα

1 ≡ α(m)− g + 1 ,
Bρ

2 ≡ ρ(n) + ν(t)− 1 , Bα
2 ≡ α(n) + 1 .

(4.2)

Here, W(S2
ε×S1)×R2 is the effective twisted superpotential of the two-dimensional theory

obtained by compactifying the 5d N = 1 theory on S2
ε × S1 (with infinitely many KK
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modes). In particular, the contribution of a hypermultiplet to the twisted superpotential
W(S2

ε×S1)×R2 can be written as

WG
(S2
ε×S1)×R2(a, n; ∆, t, ε)

= −

|B2|−1
2∑

`=− |B2|−1
2

∑
k∈Z

(a+ ∆ + k + `ε) [log(a+ ∆ + k + `ε)− 1] sign(B2)

= −

|B2|−1
2∑

`=− |B2|−1
2

Li2
(
ei(a+∆+`ε)) sign(B2) ,

(4.3)

where, in the spirit of [62, 63], we have resummed the one-loop contribution of the KK
modes on S1 and included the |B2| zero-modes on S2, decomposed according to their
charges under the U(1) isometry of the sphere. In order to comply with the regularization
scheme used in (4.1), we add local parity terms [23], so that the total contribution of a
hypermultiplet to the twisted superpotential can be written as

WH(S2
ε×S1)×R2(a, n; ∆, t, ε) = −

|B2|−1
2∑

`=− |B2|−1
2

(
Li2

(
ei(a+∆+`ε))− 1

2g2(a+ ∆ + `ε)
)

sign(B2) ,

(4.4)
where the functions gs(a), s ∈ Z≥0, are related to the Bernoulli polynomials by

Lis(eia) + (−1)s Lis(e−ia) = −(2πi)s

s! Bs

(
a

2π

)
≡ is−2gs(a) , (4.5)

for 0 < Re(a) < 2π. In particular,

g2(a) = a2

2 − πa+ π2

3 , g3(a) = a3

6 −
π

2 a
2 + π2

3 a . (4.6)

The right-hand side of (4.5) is extended by periodicity to arbitrary values of Re(a). In the
range −2π < Re(a) < 0, we need to use

gs(2π − a) = (−1)sgs(a) . (4.7)

The contribution of a vector multiplet can be obtained via

WV(S2
ε×S1)×R2(a, n, ε) = −WH(S2

ε×S1)×R2(a, n; 2π, 2, ε) . (4.8)

Putting together WH and WV , and adding the classical Yang-Mills contribution, we can
write down the complete effective twisted superpotential as follows

W(S2
ε×S1)×R2

= − 8π2i
g2
YM

TrF(na)
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+
∑
α∈G

|Bα2 |−1
2∑

`=−
|Bα2 |−1

2

(
Li2

(
ei(α(a)+`ε))− 1

2g2(2π + α(a) + `ε)
)

sign(Bα
2 ) (4.9)

−
∑
I

∑
ρI∈RI

|B
ρI
2 |−1

2∑
`=−

|B
ρI
2 |−1

2

(
Li2

(
ei(ρI(a)+νI(∆)+`ε))− 1

2g2(ρI(a) + νI(∆) + `ε)
)

sign(BρI
2 ) .

Finally, in studying the large N limit of the topologically twisted index (4.1) we shall
use the following formulae for the asymptotic behavior of the polylogarithms

Lis(ei(a+∆)) + is

2 gs(a+ ∆) ∼ is

2 gs(a+ ∆) sign(Im a) , as | Im a| → ∞ , (4.10)

where 0 < Re(a+ ∆) < 2π,14 and

sign(B)

|B|−1
2∑

`=− |B|−1
2

g2(a+ ∆ + `ε) = Bg2(a+ ∆) + ε2

4π3 g3(π(B + 1)) . (4.11)

4.1 Alternative interpretations for W(S2
ε×S1)×R2

In the following, we will give two independent interpretations of the twisted superpoten-
tial (4.9). They can be used as alternative definitions and we have checked that both
yield (4.9).

(i) Bethe approach. It is easy to see that the twisted superpotential (4.9) appears in
the partition function as15

Z(S2
ε×S1)×Σg

= 1
|W |

∑
{m,n}∈Γh

∮
C

rk(G)∏
i=1

dxi
2πixi

× exp
(

i
∑
k

mk

∂W(S2
ε×S1)×R2(a, n; ε)

∂ak

)
Zint

∣∣
m=0(a, n; ε) ,

(4.12)

where Zint is the integrand in (4.1).
Resumming the gauge magnetic fluxes m on the Riemann surface, we obtain a set of

poles at the Bethe vacua, the critical points å of the twisted superpotential. We still need
to perform a sum over the gauge fluxes on S2

ε . It was conjectured in [23, 24] that the
partition function localizes at the solutions to the generalized BAEs. In our case, these
take the form16

1 = exp
(
∂W(S2

ε×S1)×R2(a, n; ε)
∂ak

)∣∣∣
a=å, n=̊n

,

1 = exp
(
∂W(S2

ε×S1)×R2(a, n; ε)
∂nk

)∣∣∣
a=å, n=̊n

.

(4.13)

14For other ranges of Re(a+ ∆), we need to shift the argument of gs by appropriate multiples of 2π.
15We dropped the dependence on the flavor parameters (∆, s, t) to avoid clutter.
16The second equation is the natural generalization to ε 6= 0 of the condition ∂FSW

∂a
= ∂W

∂n
used in [23].
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In comparison to the Bethe approach for the three- and four-dimensional indices, see for
example [1, 18, 38, 63–65], the equation in the second line of (4.13) is a new feature of the
five-dimensional indices, where we have two sets of physical gauge magnetic fluxes.

The relation (4.12) can be used as a working definition of W(S2
ε×S1)×R2 . Notice, how-

ever, that this definition is inherently ambiguous. We can always add to W(S2
ε×S1)×R2 a

function that depends on n but not on a and (4.12) would be still true. For example,
precisely for this reason, our twisted superpotential differs from the one used in [24] in a
similar context.

(ii) Gluing W(R2
ε×S1)×R2. Consider a five-dimensional N = 1 gauge theory on (R2

ε1 ×
S1) × R2

ε2 with ε1 = ε and ε2 = 0. The twisted superpotential of the two-dimensional
effective theory obtained by reducing the five-dimensional theory on the Ω-deformed copy
of R2 × S1 is then defined as [66]

W(R2
ε×S1)×R2(a; ε) ≡ −i lim

ε2→0
ε2 logZC2×S1(a; ε1, ε2)

∣∣
ε1=ε , (4.14)

where ZC2×S1(a; ε1, ε2) is the K-theoretic Nekrasov partition function

ZC2×S1(gYM, k, a; ∆, ε1, ε2) = Zcl
C2×S1ZHC2×S1ZVC2×S1 , (4.15)

with [55, 67, 68]17

Zcl
C2×S1(gYM, k, a; ε1, ε2) = exp

(
4π2

g2
YMε1ε2

TrF(a)2 + ik
6ε1ε2

TrF(a3)
)
,

ZVC2×S1(a, ε1, ε2) = ZPVC2×S1(a, ε1, ε2)
∏
α∈G

(xα; p, t)∞ ,

ZHC2×S1(a; ∆, ε1, ε2) = ZPHC2×S1(a; ∆, ε1, ε2)
∏
ρ∈R

(xρyν ; p, t)−1
∞ ,

(4.16)

where, for completeness, we also included a Chern-Simon term with level k. Here, we
defined the double (p, t)-factorial as

(x; p, t)∞ =
∞∏

i,j=0
(1− xpitj) , (4.17)

where x = eia, y = ei∆, p = e−iε1 and t = e−iε2 . Moreover, ZPVC2×S1 and ZPHC2×S1 denote the
parity contributions

ZPVC2×S1(a; ε1, ε2) =
∏
α∈G

exp
[ 1
ε1ε2

( i
2g3 (−α(a))− i(ε1 + ε2)

4 g2 (−α(a))

+ i(ε1 + ε2)2

16 g1 (−α(a))− i
96(ε1 + ε2)3 + iπ

48
(
ε21 + ε22

)
− ζ(3)

)]
,

17The partition function can be also derived using localization [22] and the result differs from the one
given here in the regularization scheme. Various parity prescriptions start differing at order O(ε2) with
constant terms or terms proportional to g1(a). In the theories considered in this paper these differences
cancel after gluing when you sum over positive and negative weights or lead to irrelevant constant terms.
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ZPHC2×S1(a; ∆, ε1, ε2) =
∏
ρ∈R

exp
[ 1
ε1ε2

( i
2g3

(
ρ(a) + ν(∆)

)
+ i(ε1 + ε2)

4 g2
(
ρ(a) + ν(∆)

)
+ i(ε1 + ε2)2

16 g1
(
ρ(a) + ν(∆)

)
+ i

96(ε1 + ε2)3 + iπ
48
(
ε21 + ε22

)
+ ζ(3)

)]
. (4.18)

The classical contribution to the effective twisted superpotential (4.14), using (4.16),
thus reads

Wcl
(R2
ε×S1)×R2(gYM, k, a; ε) = − 4π2i

g2
YMε

TrF(a)2 + k

6ε TrF(a)3 . (4.19)

Next, we can write the following asymptotic expansion for the contribution of a vector
multiplet to the twisted superpotential (4.14)

WV(R2
ε×S1)×R2(a; ε) =WPV(R2

ε×S1)×R2(a; ε)−
∞∑
s=0

(−iε)s−1Bs
s!

∑
α∈G

Li3−s(eiα(a)) , as ε→ 0 ,

(4.20)
where

WPV(R2
ε×S1)×R2(a; ε) =−

3∑
s=0

(−iε)s−1Bs
s!

i3−s

2
∑
α∈G

g3−s (α(a) + 2π)

−
∑
α∈G

[
ε

48g1
(
α(a) + π + ε

2
)
− i
ε
ζ(3)

]
,

(4.21)

and Bs = {1,−1
2 ,

1
6 , 0,−

1
30 , 0, . . .} is the sth Bernoulli number. The contribution of a

hypermultiplet to the twisted superpotential (4.14), as ε→ 0, is similarly given by

WH(R2
ε×S1)×R2(a; ∆, ε) =WPH(R2

ε×S1)×R2(a; ε) +
∞∑
s=0

(−iε)s−1Bs
s!

∑
ρI∈R

Li3−s(ei(ρI(a)+νI(∆))) ,

(4.22)
where

WPH(R2
ε×S1)×R2(a; ∆, ε) =

3∑
s=0

(−iε)s−1Bs
s!

i3−s

2
∑
ρI∈R

g3−s (ρI(a) + νI(∆))

+
∑
ρI∈R

[
ε

48g1

(
ρI(a) + νI(∆) + π + ε

2

)
− i
ε
ζ(3)

]
.

(4.23)

Finally, the effective twisted superpotential of the two-dimensional theory obtained by
compactifying the five-dimensional N = 1 theory on S2

ε × S1 is constructed via gluing two
copies of W(R2

ε×S1)×R2(a; ∆, ε) according to the A-gluing18

a
(1)
k = ak + ε

2nk , ∆(1) = ∆ + ε

2(t− 2) , ε
(1)
1 = ε ,

a
(2)
k = ak −

ε

2nk , ∆(2) = ∆− ε

2(t− 2) , ε
(2)
1 = −ε .

(4.24)

18We refer the reader to [23, eq. (2.138)] and the discussion around (2.115) therein, to understand the
shift in the chemical potential, i.e. ∆→ ∆− ε(σ), σ = 1, 2.
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Explicitly, up to irrelevant constant terms,

W(S2
ε×S1)×R2(a, n; ∆, t, ε) =

2∑
l=1
W(R2

ε×S1)×R2(a(l); ∆(l), ε(l)) . (4.25)

One can check indeed that

(4.9)− (4.25) = ε2

48

( ∑
α∈G

Bα
2 −

∑
I

∑
ρI∈RI

BρI
2

)
, (4.26)

with Bα
2 and Bρ

2 given in (4.2). In writing (4.26) we used that, as ε→ 0,

Li2(ei(a+∆+`ε)) =
∞∑
s=0

(i`ε)s

s! Li2−s(ei(a+∆)) , (4.27)

and

sign(B)
∞∑
s=0

|B|−1
2∑

`=− |B|−1
2

(i`ε)s

s! Li2−s(ei(a+∆)) (4.28)

= −
∞∑
s=0

(−iε)s−1Bs
s!

(
Li3−s

(
ei(a+∆+ 1

2 (B−1)ε))− (−1)s Li3−s
(
ei(a+∆− 1

2 (B−1)ε))) .
We thus find agreement between (4.9) and (4.25) up to an irrelevant constant term and
linear terms in n that cancel after summing over positive and negative roots and weights
for all the theories in this paper.

On a final note, we observe that the consistency between the gluing and the Bethe
approach to the definition of the twisted superpotential is a consequence of the fact that
the topologically twisted index itself can be obtained by gluing copies of the Nekrasov
partition function [23].

4.2 W(S2
ε×S1)×R2 and its factorization

In this section, we consider the twisted superpotential W(S2
ε×S1)×R2 as a function of both

the gauge variables a and the fluxes n, and study its critical points, or, in other words, the
solutions to the generalized BAEs. We will show that the on-shell twisted superpotential
factorizes into contributions coming from the North pole and the South pole of the two-
sphere S2

ε . The poles of the sphere are the two fixed points of the rotational symmetry
and we will see that to each fixed point we can associate a block B5(∆, ε). We consider the
usual two examples

(i) N = 1 USp(2N) gauge theory with matter. In this case, we find that

B5(∆i, ε) ≡
4iπ2

27
FS5(∆i)

ε
, (4.29)

where FS5(∆i) ∝ (∆1∆2)3/2 is the free energy of the theory on S5 that depends on
constrained parameters ∆1,2 for the SU(2)A × SU(2)R symmetry.
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(ii) N = 2 SYM that decompactifies to the N = (2, 0) theory of type AN−1 in six
dimensions. The block in this case is given by

B5(∆i, ε) ≡ −
iπ2g2

YM
8

A6d(∆i)
ε

, (4.30)

with A6d(∆i) ∝ (∆1∆2)2 being the anomaly coefficient of the 6d (2, 0) theory that
depends on the constrained parameters ∆1,2 for the U(1)2 ⊂ SO(5) R-symmetry.

It is interesting to observe that a form of factorization holds for the off-shell twisted
superpotential, even before extremization.

4.2.1 USp(2N) gauge theory with matter

The effective twisted superpotential has the same structure as (3.7) and we only need to
replace F∆k,tK (a), see (3.9), with

W∆K ,tK
(S2
ε×S1)×R2(a) = − sign(BK

2 )

|BK2 |−1
2∑

`=−
|BK2 |−1

2

(
Li2

(
ei(a+∆K+`ε))− 1

2g2(a+ ∆K + `ε)
)
.

(4.31)
We refine the partition function with fugacities ∆m and fluxes (sm, tm) for the SU(2)A
symmetry acting on the antisymmetric hypermultiplet. Similarly to section 3.1, we assume
that | Im ai| and | Im ni| scale with some positive power of N and that the eigenvalues ai
are ordered by increasing imaginary part. We also define

aij ≡ ai − aj , ni,j ≡ ni − nj ,

a+
ij ≡ ai + aj , n+

i,j ≡ ni + nj ,

B2,ij ≡ ni − nj + 1 , Bm
2,ij ≡ ni − nj + tm − 1 .

(4.32)

Consider first the following contribution

W−(S2
ε×S1)×R2 ≡ −

N∑
i>j

[
W∆K=2,tK=2

(S2
ε×S1)×R2(±aij)−W∆m,tm

(S2
ε×S1)×R2(±aij)

]
. (4.33)

Using (4.10), we obtain

W−(S2
ε×S1)×R2 = − 1

2

N∑
i>j

|B2,ij |−1
2∑

`=−
|B2,ij |−1

2

g2(2π + aij + `ε) sign(Im aij) sign(B2,ij)

+ 1
2

N∑
i>j

|Bm2,ij |−1
2∑

`=−
|Bm2,ij |−1

2

g2(aij + ∆m + `ε) sign(Im aij) sign(Bm
2,ij)

− 1
2

N∑
i>j

|B2,ji|−1
2∑

`=−
|B2,ji|−1

2

g2(2π + aji + `ε) sign(Im aji) sign(B2,ji)
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+ 1
2

N∑
i>j

|Bm2,ij |−1
2∑

`=−
|Bm2,ji|−1

2

g2(aji + ∆m + `ε) sign(Im aji) sign(Bm
2,ji) . (4.34)

The above equation can be simplified further by performing the product over ` in (4.34),
using (4.11). Employing the constrained chemical potentials ∆i and fluxes ti, i = 1, 2 (we
also give the definition of the constrained fluxes si on Σg for future reference),

s1 ≡ sm , s2 ≡ 2(1− g)− sm , s.t.
2∑
i=1

si = 2− 2g ,

t1 ≡ tm , t2 ≡ 2− tm , s.t.
2∑
i=1

ti = 2 ,

∆1 ≡ ∆m , ∆2 ≡ 2π −∆m , s.t.
2∑
i=1

∆i = 2π ,

(4.35)

we can write

W−(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= −1
2

N∑
i>j

[
(∆1t2 + ∆2t1)aij + 1

4(4∆1∆2 + ε2t1t2)nij
]

sign(Im aij) .
(4.36)

The contribution of

W+
(S2
ε×S1)×R2 ≡ −

N∑
i>j

[
W∆K=2,tK=2

(S2
ε×S1)×R2(±a+

ij)−W
∆m,tm
(S2
ε×S1)×R2(±a+

ij)
]
, (4.37)

can be found similarly. It reads

W+
(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= −1
2

N∑
i>j

[
(∆1t2 + ∆2t1)a+

ij + 1
4(4∆1∆2 + ε2t1t2)n+

ij

]
sign(Im a+

ij) .
(4.38)

Combining (4.36) and (4.38), and using (3.13), we find

WA+V1
(S2
ε×S1)×R2 = −1

2

N∑
k=1

(2k − 1)
[
(∆1t2 + ∆2t1)ak + 1

4(4∆1∆2 + ε2t1t2)nk
]
. (4.39)

The contribution of WF+V2
(S2
ε×S1)×R2 to the large N twisted superpotential can be computed

similarly, using (4.10) and (4.11). Neglecting lower powers of ai and ni that are subleading,
we get

WF+V2
(S2
ε×S1)×R2 = −8−Nf

2

N∑
k=1

(
a2
k + ε2

12n
2
k

)
nk . (4.40)
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Under the same assumption also the classical term in (4.9) is subleading. Putting (4.39)
and (4.40) together we can finally write down the complete twisted superpotential

W(S2
ε×S1)×R2(a, n; ∆, t, ε) = − 8−Nf

2

N∑
k=1

(
a2
k + ε2

12n
2
k

)
nk

− 1
2

N∑
k=1

(2k − 1)
[
(∆1t2 + ∆2t1)ak + 1

4(4∆1∆2 + ε2t1t2)nk
]
,

(4.41)
that can be more elegantly put in the form

W(S2
ε×S1)×R2(a, n; ∆, t, ε) = −2π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (4.42)

using the A-gluing parameterization

a
(1)
k ≡ ak + ε

2nk , ∆(1)
i ≡ ∆i + ε

2 ti , ε(1) = ε ,

a
(2)
k ≡ ak −

ε

2nk , ∆(2)
i ≡ ∆i −

ε

2 ti , ε(2) = −ε ,
(4.43)

with FSW(ak; ∆i) being the effective Seiberg-Witten prepotential evaluated in the large N
limit [23, eq. (3.67)]19

FSW(ak; ∆i) = 1
4π

N∑
k=1

(8−Nf

3 a3
k + (2k − 1)∆1∆2ak

)
. (4.44)

Extremizing (4.41) over the gauge variables (ak, nk), we find the solution to the general-
ized BAEs

∂W(S2
ε×S1)×R2(a, n)
∂ak

∣∣∣
ak=åk

= 0 ⇒ åknk = − 2k − 1
2(8−Nf )(∆1t2 + ∆2t1) , (4.45)

and
∂W(S2

ε×S1)×R2(a, n)
∂nk

= 0
∣∣∣
ak=åk, nk=̊nk

⇒ n̊k = i
ε

√
2k − 1
8−Nf

(√(
∆1 + ε

2 t1
)(

∆2 + ε

2 t2
)
−
√(

∆1 −
ε

2 t1
)(

∆2 −
ε

2 t2
))

.

(4.46)
Notice that (4.45) and (4.46) are equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = i√

8−Nf

√
(2k − 1)∆(σ)

1 ∆(σ)
2 , (4.47)

for σ = 1, 2. Plugging the saddle points (̊ak, n̊k) back into the twisted superpotential (4.41)
we obtain

W(S2
ε×S1)×R2(∆i, ti, ε) = 4π2i

27ε

[
FS5

(
∆i + ε

2 ti
)
− FS5

(
∆i −

ε

2 ti
)]

, (4.48)

19One needs to rescale (ak,∆i)→ π(ak,∆i) to go back to the conventions of (3.19) and section 3.1. The
same remark applies to (4.49).
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with FS5(∆i) being the free energy of the theory on S5,

FS5(∆i) = −9
√

2
5π2

N5/2√
8−Nf

(∆1∆2)
3
2 ,

2∑
i=1

∆i = 2π . (4.49)

In the limit ε→ 0, our expression for the refined twisted superpotential (4.48) reduces to

W(S2
ε×S1)×R2(∆i, ti) = −4

√
2 i

15
N5/2√
8−Nf

2∑
i=1

ti
∂(∆1∆2)3/2

∂∆i
, (4.50)

which matches the expression in [23, eq. (3.88)].

W(S2
ε×S1)×R2 and the free energy on S3

b ×S2
ε . Comparing (3.16) with (4.41) we find

the following remarkable relations

W(S2
ε×S1)×R2(πa,−n;π∆i, ti, πε) = iπ

2Q2FS3
b
×S2

ε
(a, n; ∆i, ti, ε|b) ,

W(S2
ε×S1)×R2(π∆i, ti, πε)

∣∣∣
ak=åk, nk=̊nk

= iπ
2Q2FS3

b
×S2

ε
(∆i, ti, ε|b) .

(4.51)

4.2.2 N = 2 super Yang-Mills

The twisted superpotential of the theory reads

W(S2
ε×S1)×R2 =WYM(ak, nk) +WH(ai, ni; ∆, t, ε) +WV(ai, ni, ε) , (4.52)

with

WYM = −8π2i
g2
YM

N∑
k=1

aknk ,

WH =
N∑

i,j=1
W∆,t(aij) , WV = −

N∑
i 6=j
W∆=2π,t=2(aij) ,

(4.53)

and W(a) given in (4.31). Note that

WV(ai, ni, ε) = −WH(ai, ni; 2π, 2, ε) . (4.54)

In the strong ’t Hooft coupling λ� 1, (4.52) can be approximated as

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε) = − 8π2i

g2
YM

N∑
k=1

aknk

− 1
2

N∑
i 6=j

|Bij |−1
2∑

`=−
|Bij |−1

2

g2(2π + aij + `ε) sign(Im aij) sign(Bij)

+ 1
2

N∑
i,j=1

|BF
ij
|−1

2∑
`=−

|BF
ij
|−1

2

g2(aij + ∆ + `ε) sign(Im aij) sign(BF
ij ) ,

(4.55)

– 26 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
7

where we used (4.10) to substitute the Li2(ei(a+∆)) with g2(a + ∆) as | Im aij | → ∞ and
we defined

Bij ≡ ni − nj + 1 , BF
ij = ni − nj + t− 1 . (4.56)

Let us introduce the following democratic parameterization for the U(1)2 ⊂ SU(2)R ×
SU(2)F symmetry

s1 ≡ s , s2 ≡ 2(1− g)− s , s.t.
2∑
i=1

si = 2− 2g ,

t1 ≡ t , t2 ≡ 2− t , s.t.
2∑
i=1

ti = 2 ,

∆1 ≡ ∆ , ∆2 ≡ 2π −∆ , s.t.
2∑
i=1

∆i = 2π .

(4.57)

Then, performing the product over ` in (4.64), using (4.11), we can simplify (4.64) to

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= −8π2i
g2
YM

N∑
k=1

aknk −
1
4

N∑
i,j=1

[
(∆1t2 + ∆2t1)aij + 1

4(4∆1∆2 + ε2t1t2)nij
]

sign(Im aij) .

(4.58)
Assuming that the eigenvalues are ordered by increasing imaginary part, using (3.13), we
obtain

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= −8π2i
g2
YM

N∑
k=1

aknk −
1
2

N∑
k=1

(2k − 1−N)
[
(∆1t2 + ∆2t1)ak + 1

4(4∆1∆2 + ε2t1t2)nk
]
,

(4.59)
that, using the A-gluing parameterization (4.43), can be more elegantly put in the form

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε) = −2π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (4.60)

where the effective Seiberg-Witten prepotential evaluated in the large N limit [23,
eq. (3.67)] reads20

FSW(ak; ∆i) = 1
4π

N∑
k=1

(
8π2i
g2
YM

a2
k + (2k − 1−N)∆1∆2ak

)
. (4.61)

Extremizing (4.59) over the gauge variables (ak, nk), we find the solution to the generalized
BAEs

åk = i g
2
YM

(8π)2 (2k − 1−N)
(
4∆1∆2 + ε2t1t2

)
,

n̊k = i g
2
YM

(4π)2 (2k − 1−N)(∆1t2 + ∆2t1) .
(4.62)

20One needs to rescale (ak,∆i)→ π(ak,∆i) to go back to the conventions of (3.36).
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Notice that (4.62) is equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = i g

2
YM

16π2 (2k − 1−N)∆(σ)
1 ∆(σ)

2 , (4.63)

for σ = 1, 2. Substituting (̊ak, n̊k) into the twisted superpotential (4.59) we find

W(S2
ε×S1)×R2(∆, t, ε) = − ig2

YM
384π2N(N2 − 1)(∆1t2 + ∆2t1)(4∆1∆2 + ε2t1t2) , (4.64)

that can be more elegantly recast in the factorized form

W(S2
ε×S1)×R2(∆, t, ε) = −iN(N2 − 1) g2

YM
192π2ε

[(
∆(1)

1 ∆(1)
2
)2 − (∆(2)

1 ∆(2)
2
)2]

. (4.65)

In the ε→ 0 limit, (4.65) matches [23, eq. (3.30)].

W(S2
ε×S1)×R2(∆, t, ε) and the 4d central charge. Comparing (3.51) with (4.64), we

note the following large N relation

W(S2
ε×S1)×R2(π∆, t, πε) = 2πi

27 g
2
YMa(∆, t, ε) , (4.66)

with a(∆, t, ε) given in (3.51).

4.3 Factorization of the index

In this section we discuss the factorization properties of the refined twisted index. As we
already discussed, we will make the assumption that the partition function localizes at the
solutions to the generalized BAEs given in (4.13) [23, 24]. We will see that this assumption
leads to the factorization of the index and the correct entropy for a class of dual black holes
and black strings.21

We want to factorize logZ(S2
ε×S1)×Σg

into contributions coming from the North pole
and the South pole of the two-sphere S2

ε . We will see that to each fixed point we can
associate a block B3(∆, s, ε). As before, we consider two theories,

i) N = 1 USp(2N) gauge theory for which we find

B3(∆, s, ε) ≡ −π2
FS3×Σg

(∆, s)
ε

. (4.67)

Here, FS3×Σg
(∆, s), see (4.75), is the free energy of the theory on S3 × Σg that

depends on a set of twisted masses ∆ and background magnetic fluxes s for the flavor
symmetry.

ii) N = 2 SYM for which we find

B3(∆, s, ε) ≡ −2πg2
YM

27
a(∆, s)

ε
, (4.68)

where a(∆, s), see (4.90), is the trial central charge of the four-dimensional theory
obtained via compactifying the 6d (2, 0) theory on Σg with the mixing parameter ∆
and the flavor flux s.

21Our results differ from those in [24], which do not factorize, due to a different twisted superpotential
used in the conjectured BAEs.
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The relation between the blocks for the index, (4.67) and (4.68), and the blocks for
the twisted superpotential, (4.29) and (4.30), is simply

B3(∆, s, ε) = i
2∑
i=1

si
∂B5(∆i, ε)

∂∆i
, (4.69)

and consequently

logZ(S2
ε×S1)×Σg = i

2∑
i=1

si
∂W(S2

ε×S1)×R2

∂∆i
. (4.70)

4.3.1 USp(2N) gauge theory with matter

The refined twisted index in the large N limit does not depend explicitly on the refinement
parameter ε since

logZ∆K ,sK ,tK
(S2
ε×S1)×Σg

(a) = BK
1 sign(BK

2 )

|BK2 |−1
2∑

`=−
|BK2 |−1

2

(
Li1

(
ei(a+∆K+`ε))+ i

2g1(a+ ∆K + `ε)
)

(4.10)= i
2B

K
1 sign(BK

2 )

|BK2 |−1
2∑

`=−
|BK2 |−1

2

g1(a+ ∆K + `ε)

= i
2B

K
1 B

K
2 g1(a+ ∆K) ,

(4.71)
where recall that

BK
1 = m + sK + g− 1 , BK

2 = n + tK − 1 , (4.72)

and it simply reads [23, eq. (3.104)]

logZ(S2
ε×S1)×Σg

= − i
2

N∑
k=1

(2k − 1) [(s2t1 + s1t2)̊ak + (∆1s2 + ∆2s1)̊nk] . (4.73)

Substituting the saddle points (̊ak, n̊k), see (4.45) and (4.46), into (4.73) we find

logZ(S2
ε×S1)×Σg

(∆, s, t, ε) = − π2ε

[
FS3×Σg

(
∆i + ε

2 ti, si
)
− FS3×Σg

(
∆i −

ε

2 ti, si
)]

,

(4.74)
with FS3×Σg

(∆i, si) being the free energy of the theory on S3 × Σg [22],22

FS3×Σg
(∆i, si) = −8

√
2

15π
N5/2√
8−Ng

2∑
i=1

si
∂(∆1∆2)3/2

∂∆i
. (4.75)

Recall that
2∑
i=1

∆i = 2π ,
2∑
i=1

si = 2− 2g ,
2∑
i=1

ti = 2 . (4.76)

22We can compare with (3.26), valid for genus zero. To have a round S3, we should set Q = 1. Recall
that the flavor flux through the Ω-deformed S2 was called ti in (3.26) and now, for the Riemann surface
Σg, should be renamed to si with

∑2
i=2 si = 2− 2g. Also, ∆i should be rescaled by a factor of π.
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Black holes microstates in AdS2 × S2
ε × Σg. The refined topologically twisted in-

dex (4.74) is expected to reproduce the Bekenstein-Hawking entropy of a class of rotating
dyonic black holes in AdS6 in massive type IIA supergravity whose near horizon geometry
is a fibration of AdS2 over the twisted space S2

ε × Σg. Unfortunately, the most general
black holes are still to be constructed and the only known example [34, section 6.3.1] was
found, using gauged supergravity of class F in four dimensions, when the fluxes through
the Riemann surface, using the notations of [34], are constrained as follows

s1 = 2
3 , s2 = 0 . (4.77)

The above choice leaves us with g > 1. In [34] the magnetic fluxes along the S2
ε were

denoted by pi, i = 1, 2, satisfying the twisting condition

p1 + p2 = −2
3 , (4.78)

and the angular momentum by J . Then, the Bekenstein-Hawking entropy reads

SBH = π

9
√

2G(4)
N

√
1− 6p1(3p1 + 1)− sign(6p1 + 1)

√
(2p1 + 1)(6p1 + 1)3 − 4× 35J 2 .

(4.79)
The above entropy can be obtained by extremizing the Legendre transform of the refined
index, i.e.

I(S2
ε×S1)×Σg

(∆, ε) = logZ(S2
ε×S1)×Σg

(∆, s, t, ε)− iεJ − Λ(∆1 + ∆2 − 2π) , (4.80)

with respect to the chemical potentials (∆1,∆2, ε) and the Lagrange multiplier Λ, that
enforces the constraint

∑2
i=1 ∆i = 2π. Define

Π ≡

√√√√√(2t1 − 3)−
(

9π
(g−1)FS5

J
)2

(2t1 − 1)−3

3(2t1 − 1) , (4.81)

with FS5 being the exact free energy of the N = 1 USp(2N) gauge theory on S5 [69]

FS5 = −9
√

2π
5

N5/2
√

8−Nf
. (4.82)

Then, the extrema of (4.80) are given by

∆̊1 = π

2 (1 + Π−1) , ∆̊2 = π

2 (3−Π−1) ,

ε̊ = i 9
√

2π2

(g− 1)FS5

J

Π(2t1 − 1)2
√

Π(2t1 − 1)2 − 2t1(t1 − 1) + 1
,

Λ̊ = −(g− 1)
9
√

2π
FS5

×

√√√√36 (1−2t1(t1−1))+ 6 sign(2t1 − 1)

√
12(2t1 − 3)(2t1 − 1)3 − 35

( 2πJ
(g− 1)FS5

)2
.

(4.83)
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Plugging (4.83) back into the I-functional (4.80) we find

I(S2
ε×S1)×Σg

∣∣∣
(4.83)

(t1, J) = 2πΛ
∣∣∣
(4.83)

(t1, J) = SBH(p1,J ) , (4.84)

where we used the identification [34, eq. (7.15)]

si = −3|1− g|si , ti = −3pi , i = 1, 2 ,

J = 1
2G(4)

N
J , (4.85)

along with the standard AdS6/CFT5 dictionary

1
G

(6)
N

= − 3
π2FS5 ⇒ 1

G
(4)
N

= vol(Σg)
G

(6)
N

= −12|1− g|
π

FS5 . (4.86)

This is in complete agreement with [34, section 7.1] upon identifying

ωthere ≡ −
i
π
ε , χithere ≡

2
3π∆i , i = 1, 2 . (4.87)

4.3.2 N = 2 super Yang-Mills

The refined twisted index in the strong ’t Hooft coupling limit λ � 1 does not depend
explicitly on the refinement parameter ε, see (4.71), and it is simply given by [23, eq. (3.37)]

logZ(S2
ε×S1)×Σg

= − i
2

N∑
k=1

(2k − 1−N) [(s2t1 + s1t2)̊ak + (∆1s2 + ∆2s1)̊nk] . (4.88)

Substituting the saddle points (̊ak, n̊k), see (4.62), in the above expression we obtain

logZ(S2
ε×S1)×Σg

(∆, s, t, ε) = −2πg2
YM

27ε

[
a

(
∆i + ε

2 ti, si
)
− a

(
∆i −

ε

2 ti, si
)]

, (4.89)

with a(∆i, si) being the trial central charge of the four-dimensional theory obtained by
compactifying the 6d (2, 0) theory of type AN−1 on Σg with a flavor flux s [61] (see also [23,
eq. (C.7)])23

a(∆i, si) = −9N(N2 − 1)
128π3

2∑
i=1

si
∂(∆1∆2)2

∂∆i
. (4.90)

Recall that
2∑
i=1

∆i = 2π ,
2∑
i=1

si = 2− 2g ,
2∑
i=1

ti = 2 . (4.91)

23We can also compare with (3.51), valid for genus zero. We should set ε = 0 in (3.51), rename ti as si
and enforce

∑2
i=1 si = 2− 2g for a generic Riemann surface. Also, ∆i should be rescaled by a factor of π.
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Charged Cardy formula. The refined topologically twisted index (4.89) is expected
to reproduce the density of states of a class of rotating dyonic black strings in AdS7 × S4

in M-theory whose near horizon geometry is a fibration of AdS3 over the twisted space
S2
ε × Σg. A class of such strings have been constructed in [33] wherein it was also shown

that the gravitational density of states24 matches the charged Cardy formula for the dual
CFT2. We now show that the same result can be derived from (4.89).

We interpret our index as the partition function of the 6d N = (2, 0) AN−1 theory
on S2

ε × Σg × S1 × S1
(6), where S

1
(6) is the extra circle opening up at strong coupling. The

modulus τ of the torus T 2 = S1 × S1
(6)

τ = 4πi
g2
YM

, (4.92)

is identified with the gauge coupling constant of the five-dimensional theory. The refined
topologically twisted index itself can then be identified with the elliptic genus of the two-
dimensional CFT obtained by compactifying the 6d (2, 0) theory on S2

ε × Σg.
The large N index (4.89) can be rewritten as

logZ(S2
ε×S1)×Σg

(∆, s, t, ε) = − 8iπ2

27τε

[
a

(
∆i + ε

2 ti, si
)
− a

(
∆i −

ε

2 ti, si
)]

. (4.93)

The number of supersymmetric ground states dmicro is thus given by the Fourier transform
of (4.93) with respect to (τ,∆, ε),

dmicro(s, t, e0, q, J) = − i
(2π)2

∫
iR

dβ
∫ 2π

0
d∆Z(s, t,∆)eβe0−i∆Q−iεJ , (4.94)

with β ≡ −2πiτ and the corresponding integration is over the imaginary axis. In a sad-
dle point approximation, the number of supersymmetric ground states can obtained by
extremizing

I(S2
ε×S1)×Σg

(β,∆, ε) ≡ − 16π3

27βε

[
a

(
∆i + ε

2 ti, si
)
− a

(
∆i −

ε

2 ti, si
)]

+ βe0 − i∆1Q1 − i∆2Q2 − iεJ − Λ(∆1 + ∆2 − 2π) ,
(4.95)

with respect to (β,∆1,∆2, ε,Λ) and evaluating it at its extremum

log dmicro(s, t, e0, Q1, Q2, J) = I(S2
ε×S1)×Σg

∣∣
crit.(s, t, e0, Q1, Q2, J)

= 2πΛ
∣∣
crit.(s, t, e0, Q1, Q2, J) .

(4.96)

Here, we introduced the complex Lagrange multiplier Λ that imposes the constraint (4.57)
among the chemical potentials and two independent electric charges. As mentioned in
section 2, BPS black objects in AdS have constraints among the charges. For all the
known entropy functionals, the constraint arises by requiring that the entropy is real. We

24The actual computation is done by compactifying the black string on a circle with non-zero momentum
and reading the entropy of the corresponding black hole, in the original spirit of [70].
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will then fix the relation among the charges by requiring that (4.96) is a real positive
quantity, and we will see later that this is consistent with the gravity dual. The extrema
of the I-functional (4.95) read

Λ̊ = −i
Ξ̊ε
8π − J (t1 ((Q1 +Q2)s2 −Q1s1) + t2 ((Q1 +Q2)s1 −Q2s2))

J (s2(t2 − 2t1) + s1(t1 − 2t2)) ,

β̊ = −iN(N2 − 1)
24

ε̊

J
t1t2(s2t1 + s1t2) ,

∆̊1 = −8πJ (s2t1 + s1(t2 − t1))− ε̊(Q1 −Q2)t1t2(s2t1 + s1t2)
4J (s2(t2 − 2t1) + s1(t1 − 2t2)) ,

∆̊2 = −8πJ (s2(t1 − t2) + s1t2) + ε̊(Q1 −Q2)t1t2(s2t1 + s1t2)
4J (s2(t2 − 2t1) + s1(t1 − 2t2)) ,

ε̊ = 8π|J |
√

s2
2t

2
1 + s1s2t2t1 + s2

1t
2
2

t1t2(s2t1 + s1t2)Ξ ,

(4.97)

where we defined, for the ease of notation,

Ξ ≡ 4J2 (s1(t1 − 2t2) + s2(t2 − 2t1))

+ t1t2(s2t1 + s1t2)
[
(Q1 −Q2)2 + e0

N(N2 − 1)
3 (s1(t1 − 2t2) + s2(t2 − 2t1))

]
.
(4.98)

We will take ε̊ to be purely imaginary.25 Thus, for dmicro to be real we need

Im Λ̊ = 0 ⇒ Q2
Q1

= −−s1t1 + (s2t1 + s1t2)
−s2t2 + (s2t1 + s1t2) . (4.99)

Luckily, this is precisely the constraint among charges for the dual black strings in [33].
The physical interpretation of the constraint is that the black string has zero R-charge, as
discussed in [33]. Finally, the microscopic degeneracy of states can be put in the follow-
ing form

log dmicro(s, t, e0, Q1, Q2, J) = 2π
√
cCFT

6

(
e0 −

(Q1 −Q2)2

2kFF
− J2

2k

)
, (4.100)

in agreement with the charged Cardy formula [33, eq. (5.31)], where

cCFT = 2N(N2 − 1) s2
1t

2
2 + s1s2t1t2 + s2

2t
2
1

s1(2t2 − t1) + s2(2t1 − t2) ,

k = −N(N2 − 1)
24 t1t2(s1t2 + s2t1) ,

kFF = −N(N2 − 1)
6 (s1(t1 − 2t2) + s2(t2 − 2t1)) ,

(4.101)

are, respectively, the exact central charge, the level of the rotational symmetry, and the
flavor symmetry level of the two-dimensional (0, 2) CFT.

25This will lead to a unitary CFT in two dimensions.
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5 A mixed index on (S2
ε × S1)× Σg

The mixed index on (S2
ε × S1) × Σg was first written down in [24] by gluing Nekrasov’s

partition functions. In this section, we describe the supersymmetric background for the
CFT partition function, and we recover the result using supersymmetric localization. We
begin by describing the rigid 5dN = 1 supergravity background, with topology S2×S1×Σg,
on which the CFT lives. The metric on S2×S1 will be such that the S2 is metrically fibered
over the S1, corresponding to angular momentum. The background is the same as the 3d
background which can be used to compute the three-dimensional superconformal index.
We will use a topological twist on Σg, so that the metric on Σg is irrelevant, except for
g = 0 where another angular momentum can be introduced when the metric admits a
continuous isometry. After reduction on the time circle, this type of angular momentum
is equivalent to an Ω-background. Our metric, spinor, and supergravity conventions are
mostly as in [23]. Spinor conventions are collected in appendix C.1, and supersymmetry
conventions in appendix C.2. Note that all of the spacetimes we consider are spin, and we
therefore do not need to introduce SpinC bundles.

The gravity side of the holography, in the case under consideration, consists of black
hole solutions of 6d matter coupled F (4) gauged supergravity. The ordinary F (4) gauged
supergravity, introduced by Romans in [71], was considered in the context of holography
in [72]. Therein, the boundary supergravity, which is coupled to a 5d N = 1 superconformal
theory, can be described using the ordinary Weyl multiplet of 5d superconformal tensor
calculus [73–76], described for instance in [77]. There are hardly any remnants, on the
boundary, of the complexities of the transformations in Romans supergravity. According
to [72], we can identify the boundary metric, SU(2)R gauge field, and antisymmetric tensor
directly with asymptotic values of the bulk supergravity. These are the fields which are
turned on for the simplest black hole solutions. More complicated solutions come from the
matter coupled supergravity. The boundary theory in that case is coupled to the Weyl
multiplet plus additional background vector multiplets. The conditions for preserving
supersymmetry in the boundary CFT are best derived by looking at the Weyl multiplet
first, and adding the matter multiplets on top.

5.1 Rigid supergravity background

A rigid bosonic supersymmetric background is a fixed point of the supersymmetry transfor-
mation of the Weyl multiplet [78–80]. We will follow the description of the Weyl multiplet
given in [77], translated into the notation of [23] using appendix C.2. The relevant super-
gravity fields are the vielbein eµa, the antisymmetric tensor Tab, and an SU(2) R-symmetry
gauge field A(R)

µ .26

The supersymmetry transformation of the gravitino in the Weyl multiplet reads

δψµ = Dµξ + i
4Tab

(
3γabγµ − γµγab

)
ξ − γµξ̃ , (5.1)

26The backgrounds we consider are very similar to those discussed in [19] in the context of four-dimensional
N = 2 supergravity. It seems likely that the background in [19] can be uplifted, and that the analysis can
be carried over to the five-dimensional case, although we were not able to verify this.
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where
Dµξ ≡ ∂µξ + 1

4ωµ
abγabξ + ξ

(
A(R)
µ

)T
. (5.2)

Note that
i
4Tνρ (3γνργµ − γµγνρ) = i

2Tνρ (γµνρ − 4δµνγρ) , (5.3)

so that the antisymmetric tensor field of [72] can be identified with the one used in our
Weyl multiplet as

Bµν = −1
2Tµν . (5.4)

The identification of the other fields is equally straightforward.
We will describe in detail a solution to the equation δψµ = 0 corresponding to a

manifold with topology (S2 × S1) × S2, where a topological twist will be applied to the
second S2 factor. The solution is simple to derive by considering an ansatz whereby the
Killing spinor is the product of the ones for the 3d superconformal index, and a constant
spinor on the twisted S2. More general manifolds, with topology (S2×S1)×Σg for g ≥ 1,
can be included by simply changing the factor sin η in the metric, see (5.5), to 1, in the
case of g = 1, or to sinh η in the case of g ≥ 2. When g = 1, Σg is a torus, i.e. a quotient
of R2, and the supergravity fields and equations are independent of its coordinates. When
g ≥ 2, the Riemann surface Σg is a quotient of the hyperbolic plane, and we can solve the
gravitino equations by considering those on (S2 × S1) × H2 and noting that the Killing
spinor is independent of the coordinates of H2. The definition of the twisted fields, and
other aspects of localization considered below, are mostly independent of g. However, when
considering a compact Σg with g ≥ 1, one should turn off the Ω-deformation parameter ε̃2,
since such a manifold does not admit a continuous isometry with fixed points.

The background for g = 0. We choose the following vielbein on (S2
θ,φ × S1

τ )× S2
η,ϕ

e1 = rdθ , e2 = r sin θ(dφ− βε̃1dτ) , e5 = βdτ ,
e3 = r2dη , e4 = r2 sin η(dϕ− βε̃2dτ) .

(5.5)

The real geometric parameters ε̃1,2 correspond to the real part of the angular momentum
fugacities when the partition function on this background is viewed as an index. We also
take an R-symmetry connection

A(R) = (−βε̃1dτ + cos η(βε̃2dτ − dϕ)) τ3 , (5.6)

corresponding to a partial twist on both the sphere and the part of the spin connection
related to the angular momentum on the twisted sphere, proportional to ε̃2. Lastly, we
turn on the antisymmetric tensor field T

T12 = 1
6r . (5.7)

Observe that T is covariantly constant.
One may check that the Killing spinor equation δψµ = 0, see (5.1), is satisfied for ξ of

the form described below, and that the vanishing of the variation of the dilatino is likewise
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guaranteed as long as one sets the supergravity field D to the value27

D = 1
6r2 + 1

16r2
2
. (5.8)

This background actually preserves 2 supercharges of the type covered by our ansatz.
In the limit ε̃1 → 0, the number of supercharges is further enhanced to 4. The same is true
for g ≥ 2 with the appropriate change of vielbein and with ε̃2 → 0. For g = 1, the amount
of supersymmetry is double that of g 6= 1 in every scenario.

The superalgebra. We choose a specific Killing spinor, which in the notation of ap-
pendix C.1 takes the form28

ξ = 1
2


0 ie

iφ
2 sin θ

2
−ie−

iφ
2 sin θ

2 0
e−

iφ
2 cos θ2 0
0 e

iφ
2 cos θ2

 . (5.9)

We define δ to be the supersymmetry transformation associated with ξ. The superalgebra
generated by δ contains a number of bosonic transformations:

1. An infinitesimal diffeomorphism with parameter iv, where

v ≡ 1
β
∂τ +

(
ε̃1 + i

r

)
∂φ + ε̃2∂ϕ . (5.10)

2. An infinitesimal R-symmetry transformation given by the matrix

Λ = −1
2

(
ε̃1 + i

r

)
σ3 , (5.11)

such that ξ transforms as
ξ → ξΛT . (5.12)

3. A gauge transformation which depends on the field realization.

One can explicitly check that there is no Weyl transformation, nor conformal isometries,
present in the square of the supersymmetry preserved on this background. This is a
necessary, but not sufficient, condition for using localization.

Note that the condition (C.14) cannot be solved for the pair ξ, ξ̃, hence the background
considered here is not reachable from the gauge fixed supergravity used in [81–84]. For
continuity with [23], we will nevertheless continue to use the notation from [81] for the
matter fields.

27For g > 1 one should change the sign of the second term, while for g = 1 the second term is absent.
28Note that ξ does not satisfy the symplectic Majorana reality condition (C.9). This is reminiscent of

the situation for the 3d superconformal index.
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5.2 Localization

We would like to perform localization for an arbitrary N = 1 theory on the background
described above. We will describe first the moduli space arising from such localization.
This space is by definition the vanishing locus for the supersymmetry transformations of
all the fermions in the theory. However, the fields living in hypermultiplets, assuming that
they have generic masses coming from background flavor multiplets, will not contribute
any moduli. We therefore examine here the moduli coming from the vector multiplets,
which are the configurations for which the transformation of the gaugino vanishes.

The supersymmetry transformation of the gaugino reads

δλI = −1
2Γmn (Fmn − 4σTmn) ξI − iDmσΓmξI − iDIJξ

J − 2iσξ̃I . (5.13)

One can show that the following configuration solves the BPS equation δλ = 0

F (0) = n

2

( 1
r2Vol(S

2) + βε̃1 sin θdθ ∧ dτ
)

+ m

2

( 1
r2

2
Vol(Σg) + βε̃2 sin ηdη ∧ dτ

)
,

σ(0) = n

2r , D
(0)
12 = m

2r2
2
,

(5.14)

where m and n are constants taking values in the magnetic weight lattice of G. They
correspond to fluxes for dynamical or background gauge fields. The BPS configuration
also implicitly includes a flat G connection commuting with m and n which, given the
topology of the space, can be taken to be a spacetime independent profile for Aτ .29 For
generic m, n, this flat connection is in the same Cartan subalgebra as m and n .

We henceforth work with the Cartan subalgebra defined by the above BPS config-
urations. These define the Coulomb branch of BPS pseudo-vacua. Due to large gauge
transformations wrapping the time circle, the Cartan elements of the flat connection, de-
noted by aflati , are compact

aflati ∼ aflati + 2π
β
n , n ∈ Z . (5.15)

Note also, that unlike the situation in [23] the Cartan elements of σ(0) are fixed by the
value of the fluxes, and do not define a separate non-compact direction of the Coulomb
branch moduli space.

The BPS configurations include D12 ∝ m, and therefore do not satisfy the original
reality conditions for the field DIJ . Instead, convergence of the path integral with a mea-
sure defined by the classical action of the gauge theory sets D12 to be purely imaginary,
or at least to have a bounded real part, if one makes the standard rotation from Lorentz
signature [23]. Configurations with auxiliary fields not satisfying the original reality condi-
tions are common in solutions to the BPS equations of twisted gauge theories [14, 23, 64].
One can try to explain their appearance by considering a δ-exact mixing term between an

29When g ≥ 1, there exist additional factors of the moduli space of flat connections coming from the
holonomy on the non-contractible cycles of Σg. These do not appear as deformations of the superalgebra
and play no role in localization.
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auxiliary field and a dynamical scalar. Adding this term, and integrating over the original
contour, effectively sets the auxiliary field to a complex value in the BPS equation. The
need to add such a mixing term, in the context of localization, is usually attributed to the
existence of fermionic zero modes [85], or more generally to the need to lift some of the
moduli [86]. In some cases, they can also be understood from the point of view of the ef-
fective low energy theory [87], where they represent a breakdown of localization associated
with contributions from the boundary of field space. We do not have a good understanding
of the arguments for the necessity of including these configurations as they apply to the
situation at hand. However, the consistency of the calculation implies that they should
be included.

5.2.1 Twisted fields

To examine the moduli space more closely, and to deduce the one loop exact effective
action, it is convenient to define twisted fields. Our definition of these fields is very similar
to the one given in [84], although the non-pseudo-Majorana nature of our Killing spinor
prevents us from using the expressions in that work directly.

Vector multiplets. We first define the spinor bilinears

κa ≡ ξ̄γaξ , s ≡ ξ̄ξ . (5.16)

Note that the scalar s vanishes on a great circle in the untwisted S2, the equator with
respect to the fixed points of v, that κaκa = s2, and that at the poles s = ±1 and κa = δa

5.
The vanishing of s means that the localization here is not of the type examined in [84]
or in [23].

We define the following operators acting on a 2-form Ξ

ΞV ≡ κ ∧ iκΞ , ΞH ≡ Ξ− ΞV ,

Ξ± ≡
1
2

(
ΞH ±

1
2siκ ? ΞH

)
.

(5.17)

Note that
Ξ = ΞV + Ξ+ + Ξ− , (5.18)

but that the decomposition is a complex one.
We now define the following twisted fields

Ψa ≡ ξ̄IγaλI , χab ≡ sξ̄IγabλI − (κaΨb − κbΨa) , Φ ≡ sσ − iiκA , (5.19)

and the auxiliary field

Hab ≡ 2s2F−ab +
(
s2 − 1

)
FV ab + 2sξ̄IγabξJDIJ + 6si ¯̃ξIγabξIσ + iσ (κ ∧ ds)ab . (5.20)

One can show that the change of variables from λ to Ψa and χab is nonsingular, even at
the equator. One can also verify that the following projections hold

χV = χ+ = 0 , HV = H+ = 0 . (5.21)

– 38 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
7

There is a perhaps more natural change of variables, and definition of (anti)self-duality, for
the fermions which makes χ horizontal only at the poles and also either self-dual or anti-
self dual depending on which pole. In the end, it makes no difference for the localization
computation.

After the change of variables, we get the following supersymmetry transformations for
the twisted fields

δA = iΨ , δΨ = iκF − iD (sσ) = LκA− iDΦ ,

δχ = H , δH = Lκχ+ i [Φ, χ] , δΦ = 0 .
(5.22)

We can compare these expressions to the ones for either the twisted backgrounds of [23],
or the contact type backgrounds of [84]. The only difference is the appearance of powers
of s. Had s been not just nowhere vanishing but actually constant, as was the case for
both [23] and [84], we would recover the full set of twisted fields defined in those papers.30

As in [23], we define
a ≡ −iΦ(0) = aflat . (5.23)

Hypermultiplets. The off-shell closed hypermultiplet introduced in appendix C.2 can
be twisted in the same manner as the vector multiplet. We define

q ≡ ξIqI , ψq ≡ −iδq , ψF ≡ PFψ , F ≡ δψF . (5.24)

The operator PF is a Hermitian spin projector which selects half of the components of the
spinor ψ. It is chosen so as to have rank 2, to annihilate ξI

PF ξI = 0 , for I = 1, 2 , (5.25)

and to be invariant under δ2, i.e.
LκPF = 0 .

The precise form of PF then determines the spinor F in terms of F I and some expression
linear in qI . In our chosen coordinates and vielbein, we can take

(PF )β
α = 1

2


1− s 0 0 i

√
1− s2

0 1− s −i
√

1− s2 0
0 i

√
1− s2 1 + s 0

−i
√

1− s2 0 0 1 + s

 . (5.26)

The properties of PF guarantee that the action of δ2 on the twisted fields is uniform, and
of course coincides with the one on the vector multiplet. PF can also be written in the
convenient form

PF = 1
2 (κaγa + s14) γ5 , (5.27)

generalizing the expression for the hypermultiplet projections in [84].
30Note that ξ̃, which is related to the field tIJ of [84], vanishes for the twisted backgrounds of [23].
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5.2.2 Localizing terms

We can form a localizing term for the vector multiplet using the twisted fields as in [23]

δVgauge ≡ δ
∫ √

gTr
(

2iχ ∧ ?F + 1
2Ψ ∧ ? (δΨ)∗

)
. (5.28)

The second term in (5.28) is positive semi-definite and vanishes only at

iκF − iD (sσ) = 0 . (5.29)

This equation is indeed compatible with the Coulomb branch moduli space (5.14). The
imaginary part implies that sσ is the moment map for the action of the imaginary part of
κ with respect to the symplectic form F , which in turn implies that σ is constant. The
real part implies that Aτ is a moment map for the real part of κ with respect to the same
symplectic form.31

Had ξ satisfied the symplectic Majorana condition (C.9), the expression ξ̄IγabξID
IJ

would be real and hence Hab would be integrated over a shifted real contour. The first
term in (5.28) would then yield a Lagrange multiplier imposing the real constraint F+ = 0 .
As it stands, however, ξ does not satisfy the symplectic Majorana condition, ξ̄IγabξJDIJ is
not real, and it is not clear whether the first term in (5.28) can be used as a localizing term.
Specifically, the contour over which H should be integrated needs to be somehow invented.
Instead of finding the correct contour, we can consider the standard localizing term

δVgauge alt. ≡
∫ √

gTr
(
λI (δλ)∗I

)
. (5.30)

This term vanishes on the moduli space by construction. The localizing term for the
hypermultiplets is simply the analogue of the one used in [23]

δVmatter ≡ δ
∫ √

g
(
ψAq (δψq)∗A + ψAF (δψF )∗A + ψAFΓmDmqA

)
. (5.31)

5.2.3 Fluctuations

We would like to compute the effective action for the supersymmetric moduli of (5.14),
which is given by a one loop calculation. We will do this using a mixture of the equivariant
index theorem for transversally elliptic operators, and the results of Nekrasov [25] on the
local contributions to such an index from a neighborhood of a fixed circle for the equivariant
action modeled on C2 × S1.

Vector multiplets. We will use the standard background gauge

D(0)
µ aµ = 0 , (5.32)

where D(0)
µ is the covariant derivative with respect to a background connection leading

to (5.14). Specifically, it is a connection which itself satisfies the gauge condition ∇µa(0)
µ =

31This is true in a gauge where A is τ independent.
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0 . Such a representative is guaranteed to exist. We fix the gauge by adding a term to the
action given by

δBRST

∫ √
gc̃D(0)

µ aµ . (5.33)

We would like to verify that the relevant operator coming from V is transversally
elliptic. According to [88, 89], the relevant operator is Doe ⊂ V , which is defined as
the order zero term acting between the fields ϕe and ϕo. In our case ϕe = aµ, while
ϕo = {χ, c, c̄}, where c, c̄ are the ghost and anti-ghost in the gauge fixing multiplet [88].
We find Doe by expressing λ in V as the unique linear combination of χ and Ψ derived
above. We then expand V around the forms in the non-coordinate basis: aa, χab, c, c̄. We
denote the corresponding momenta by pa. We find that the (leading) matrix symbol of
Doe is given by32 

− p4
2s2

p3
2s −p2

2s
p1
2s2 0

− p3
2s2 −p4

2s
p1
2s2

p2
2s 0

− p2
2s2

p1
2s2

p4
2s3 − p3

2s3 0
p4
2s3 − p3

2s2
p2
2s2 − p1

2s3 0
− p3

2s3 − p4
2s2

p1
2s3

p2
2s2 0

p2
2s −p1

2s − p4
2s2

p3
2s2 0

−p1p5 −p2p5 −p3p5 −p4p5 p
2
1 + p2

2 + p2
3 + p2

4

p1 p2 p3 p4 p5



. (5.34)

The top 6 rows correspond to χab, row 7 to c, and row 8 to c̄. One can clearly see that
the rows {4, 5, 6} are multiples of the rows {1, 2, 3}. This is the reflection of the fact that
χab is actually constrained, and has only 3 degrees of freedom. We choose to remove the
rows {4, 5, 6}, and to call the remaining 5 × 5 matrix the matrix symbol of Doe, denoted
σ (Doe). We can now evaluate the determinant of σ (Doe). It is given by

detσ (Doe) = − 1
8s6 ~p

2
(
~p 2 − p2

5

) (
p2

1 + p2
3 + p2

4 + s2p2
2

)
. (5.35)

Note that the singular factor of s−6 is an artifact of the coordinate system and our definition
of the twisted fermions and plays no physical role.

In order to check transversal ellipticity, we must verify that detσ (Doe) is nonzero
on the part of the tangent space which is orthogonal to the equivariant action. This is
equivalent to evaluating the simultaneous vanishing locus of detσ (Doe) and of

‖κapa‖2 = p2
5 + (1− s2)p2

2 . (5.36)

One can easily see that this locus is ~p = 0, independent of the value of −1 ≤ s ≤ 1,
and hence the symbol is transversally elliptic. Note that detσ (Doe) is not transversally
elliptic with respect to the equivariant action on the time circle alone, since the term

32We have ignored various numerical constants which multiply entire rows or columns, since these do not
affect the invertibility of the symbol.
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(
p2

1 + p2
3 + p2

4 + s2p2
2
)
can vanish when p1 = p3 = p4 = s = 0 with p2 arbitrary. This

is the result of having an untwisted S2. In the fully twisted case considered in [23], the
corresponding operator is elliptic once the time circle is taken into account, i.e. once p5
is removed.

Comparing with the expressions in [88], we see that σ (Doe) coincides with the standard
self-dual complex on S2 × S2 at s = −1, θ = 0, and with the anti-self-dual complex at
s = 1, θ = π, extended along the 5th direction.

Hypermultiplets. The symbol for the hypermultiplet localizing term (5.31) is the 2× 2
matrix

Dhyper
oe = ξ̂†IΓmDmξJ , (5.37)

tensored with ΩAB, where we have taken care to project the 5d Dirac operator onto the
space of ϕe, spanned by q and hence by ξJ , and to the conjugate space of ϕo spanned by
ψF and hence by ξ̂I . We can now evaluate

σ
(
Dhyper

oe

)
= −i

(
p3 + ip4 eiφ (p1 + isp2)

−e−iφ (p1 − isp2) p3 − ip4

)
,

detσ
(
Dhyper

oe

)
= −

(
p2

1 + p2
3 + p2

4 + s2p2
2

)
.

(5.38)

At s = ±1, this is equivalent to the symbol for the 4d Dirac operator, acting between
S+ and S−, and its complex conjugate. S± are the positive and negative chirality spin
bundles of a four-manifold. Clearly, σ(Dhyper

oe ) is transversally elliptic with respect to κ.
It is not, however, transversally elliptic with respect to the equivariant action on the time
circle alone, for the same reasons as the symbol for the vector multiplet analyzed above.
Again, this is the result of having an untwisted S2.

5.3 Derivation of the partition function

Here, we set β = r2 = 1. Given the facts in the previous section, it is reasonable to expect
that a theory on this background localizes onto the instanton/anti-instanton complex at
the fixed points. We therefore expect to get a contribution from the fixed points which is
the same as in the twisted case, from the north pole of the untwisted S2, and the complex
conjugate contribution at the south pole. We must integrate these contributions along the
continuous modulus coming from the flat connection. Note that there is no continuous
modulus coming from the vev of σ, since this is fixed by the moment map equation (5.29).
The modulus a is therefore integrated over a shifted real contour. We must also sum over
the localized instantons/anti-instantons and over the two sets of fluxes m, n.

When evaluating the partition function on our spaces, using either Nekrasov’s instanton
partition function or the equivariant index theorem, the effective values of the real part
of the angular momentum parameters at the north and south poles of the untwisted two-
sphere have a relative minus sign.33 Define the following complex angular momentum

33ε̃1 is the coefficient of the rotation with respect to φ, which rotates the local frame at the north and
south poles in opposite directions.
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l 1 2 3 4
ε

(l)
1 ε1 ε1 −ε1 −ε1
ε

(l)
2 ε2 −ε2 ε2 −ε2

Table 2. Values of the equivariant parameters for S2
ε1
× S2

ε2
.

parameter
ε
N/S
1 = ε̃

N/S
1 − sN/S i

r
, (5.39)

where ε̃N/S1 is the plus or minus real geometric parameter ε̃1, and sN/S takes the values ∓1
when the point in question is localized at the north and south poles of the untwisted sphere,
respectively. The linear combinations εN/S1 are all that ever appear in the calculation,
whether as parameters of the equivariant action, or as coefficients multiplying the flux n.
We henceforth work only with this combination, and denote

ε1 ≡ ε̃1 + i
r
. (5.40)

There is no analogous shift for ε̃2, which we now rename to ε2.
For the case of g = 0, we can simply make use of the 5d Nekrasov partition function

to compute the partition function. The conjecture in [8] implies that the full result can
be written as a sum over equivariant fluxes and an integral over a of 4 copies of the 5d
Nekrasov partition function associated to the 4 fixed points. We have derived the fact that
the partition function actually depends on only two fluxes: m, n which correspond to the
homology two cycles of the spacetime manifold. We therefore write the result as

Z(S2
ε1×S

1)×S2
ε2

=
∑
{m,n}

∮
da

4∏
l=1

ZC2×S1
(
a(l); ε(l)1 , ε

(l)
2
)
. (5.41)

We choose a parametrization of these fluxes which is suited to the present context. In this
parametrization, the parameters a(l) in the fully twisted case would be given by34

a(l) = a− ε(l)1
n

2 + ε
(l)
2
m

2 .

The fixed point data is given in table 2.35 The points 1, 2 lie at the north pole of the
untwisted sphere, and 3, 4 at the south pole.

The perturbative part of the Nekrasov partition function can be calculated using the
equivariant index theorem for transversally elliptic operators. There is an important sub-
tlety in using the equivariant index theorem in the situation where the symbol is only
transversally elliptic and not elliptic. One must be careful about how to expand the in-
finite sum in the index in order to translate it into a determinant [88]. A derivation for

34The factors of 1/2 have been inserted in order to match the quantization conditions on m, n with the
expression given in terms of the parameters pl (cf. [23, section 2.7.2]).

35The fixed point data given in [23] is adapted to a general toric geometry. We prefer to use a simpler
table for the specific manifold considered here.
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the specific case of the superconformal index was performed in [90]. The prescription used
in [90], which recovers the result for the superconformal index computed by counting op-
erators, is that half of the effective a(l), associated to the south pole of the sphere, should
be multiplied by an overall −1 (cf. [90, eqs. (5.15)–(5.17)]). Adopting this approach, we
change the sign of a and ε(l)1 for points at the south pole, corresponding in our case to points
3, 4. From the point of view of the full Nekrasov partition function, this prescription pre-
sumably coincides with what one gets by including anti-instantons instead of instantons
at one of the poles. We have already seen that the symbols for the fluctuation operators
imply that this should be the case.

The relevant parameters are therefore

a(l) = a− ε(l)1
n

2 + ε
(l)
2
m

2 , north pole of S2
ε1 ,

a(l) = −a+ ε
(l)
1
n

2 + ε
(l)
2
m

2 , south pole of S2
ε1 .

(5.42)

Taking the data from table 2, we get the following set of parameters

a(1) = a− ε1
n

2 + ε2
m

2 ,

a(2) = a− ε1
n

2 − ε2
m

2 ,

a(3) = −a− ε1
n

2 + ε2
m

2 ,

a(4) = −a− ε1
n

2 − ε2
m

2 .

(5.43)

For hypermultiplets, we can introduce background holonomies corresponding to fugac-
ities ∆. In addition to the overall sign change noted above, there is a shift of the origin of
∆ [23]. This shift was first discussed in [91]. The relevant shift in the purely twisted case
was a uniform shift, which with our conventions for εi is

∆→ ∆− 1
2
(
ε
(l)
1 − ε

(l)
2
)
. (5.44)

In the case at hand, where the sign of ∆, like that of a, changes between the north and
south poles, it is better to think of the shift as a shift of the overall parameter. Combining
with the result for the vectors, we get the following

∆(l) = ∆− 1
2
(
ε
(l)
1 + ε

(l)
2
)
− ε(l)1

t

2 + ε
(l)
2

s

2 , north pole of S2
ε1 ,

∆(l) = −∆− 1
2
(
ε
(l)
1 + ε

(l)
2
)

+ ε
(l)
1

t

2 + ε
(l)
2

s

2 , south pole of S2
ε1 .

(5.45)

In standard conventions, the origin of flavor fluxes s, t would also be at 0. However,
we use conventions in which the background fluxes for the universal twist are at s = 1− g.
For g = 0 we therefore take s below to be the flavor flux on the twisted sphere plus one.
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Taking the data from table 2, we get the following set of parameters

∆(1) = ∆− ε1
t + 1

2 + ε2
s− 2

2 ,

∆(2) = ∆− ε1
t + 1

2 − ε2
s− 2

2 ,

∆(3) = −∆− ε1
t− 1

2 + ε2
s− 2

2 ,

∆(4) = −∆− ε1
t− 1

2 − ε2
s− 2

2 .

(5.46)

For the cases g ≥ 1 one does not have isolated fixed points. Instead, the fixed loci of
the action of v are copies of Σg. The partition function on these spaces can be computed
from the two different perspectives, leading to the same result. We consider the situation
with g arbitrary and therefore set ε2 to 0.

5.3.1 The perturbative partition function

We are interested primarily in determining the partition function in the large N limit,
hence we assume that we can safely ignore non-perturbative contributions. The remaining
elements of the localization calculation are the classical and one loop pieces.

The classical piece. The classical action on the current background is different from
the one indicated in [23]. As in [23], the part of the action containing hypermultiplets will
not contribute a classical term because there are no moduli in this sector of the theory. A
superconformal action for vector multiplets was constructed in [76]. The action depends
on a totally symmetric tensor CABC and vector multiplets VA. In order to construct a
Yang-Mills-like action for a dynamical vector multiplet, one of the VA should be taken
to be a background abelian multiplet fixed to a supersymmetric configuration. Such a
configuration necessarily breaks conformal symmetry.36 For the time being, we reinstate
β, r, r2.

The bosonic action for abelian VA, translated into our field variables and with an
overall normalization which matches that of [23], is given by [76]

S =
∫ √

g CABCTr
[
σA
(1

2F
B
µνF

µνC +Dµσ
BDµσC + 1

2D
IJ,ADB

IJ − 6σBFCµνTµν
)

− i
12ε

µνρστAAµF
B
νρF

C
νρ + σAσBσC

(
− 1

12R+ 8
3D + 13TµνTµν

)]
.

(5.47)
We will choose the index A to run from 1 to 2, with V2 the dynamical vector multiplet

and V1 a background vector multiplet. We also choose the following symmetric tensor

CABC = CδA
1δB

2δC
2 + symmetrization . (5.48)

36One may also construct topological Chern-Simons terms which preserve conformal symmetry.
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In order to get a Yang-Mills like term, we set the following background configuration
for V1,37

F 1 = 1
2

[ 1
r2Vol(S

2) + βε̃1 sin θdθ ∧ dτ
]
, σ1 = 1

2r , (5.49)

with all other fields vanishing. In order to get the normalization for the Yang-Mills term
used in [23], we will take C = 2r/g2

YM.
It is now straightforward to evaluate the classical contribution to the partition function,

by replacing both the supergravity fields and the dynamical vector multiplet fields with
their background values. The result is

Sclassical = −i16π2r

g2
YM

Tr(ma) . (5.50)

There are various puzzling issues about this result. First, (5.50) is not holomorphic
in ε1 as we would expect from gluing the classical pieces of the Nekrasov partition func-
tion. It actually coincides with the result of the gluing when ε1 is purely imaginary (see
section 5.3.2). It would be interesting to understand if there exist some extra terms in the
bosonic action that could reproduce a manifestly holomorphic result.

Secondly, note that due to the periodicity of a, see (5.15), the classical term is not
gauge invariant under large gauge transformations. This is already apparent at the level
of the 5d Nekrasov partition function. The issue did not come up in the fully twisted case,
described in [23], because the classical contributions had a different structure. There are
at least two possibilities to avoid this. For theories with 5d fixed points, gYM must be
taken to ∞ before evaluating the partition function in order to flow to the conformal fixed
point. The calculation at intermediate values of gYM is presumably ill defined. For theories
with a 6d fixed point, on the other hand, it is not completely clear what six-dimensional
observable we are computing, and other details of the 6d physics might come to rescue.
Another possibility is that the classical part of the action is always ambiguous because, as
is the case for non-conformal theories in 4d, its coefficient can be changed by changing the
scale which is introduced in computing the one-loop contribution.

The one loop piece. It should be the case that the one loop determinant can be con-
structed from the determinants used in the superconformal index, i.e. the partition function
on S2×S1, raised to an appropriate power, which stems from the degeneracy of zero energy
modes on Σg. An explanation for this assertion is as follows. The one loop contribution
can be computed using the equivariant index theorem. In the situation at hand, where the
fixed loci with respect to the action of the symmetry generator are not points but copies
of Σg, the relevant index theorem is a hybrid of the equivariant index theorem for the case
of discrete fixed points, and the usual Atiyah-Singer index theorem applied to the fixed
loci. The two contributions should be multiplied to get the result on the product space.38

37In order to preserve the appropriate supersymmetries, the background configurations are restricted to
the ones that yield the dynamical moduli.

38The validity of these assertions is most apparent in the delocalized approach of Berline and Vergne to
the equivariant index theorem, where the index is calculated using an integral over equivariant characteristic
classes [92].
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This applies directly to the index for the twisted Dirac operator, while the index for the
AHS (instanton) deformation complex reduces to the twisted de Rahm complex at the
fixed loci. The result of the calculation with the AS index theorem is simply a number,
which we associate with the degeneracy. Hence, the result of the one loop calculation is
the one stemming from the equivariant index theorem on S2 × S1, raised to the power of
the degeneracy.

The relevant fluctuation operators for computing the degeneracy can be easily ex-
tracted by evaluating the symbols σ (Doe) and σ(Dhyper

oe ) near the fixed points of the un-
twisted sphere and restricting to momenta along the twisted directions only. The degener-
acy can then be computed using the ordinary index theorem for the relevant complex. For
a line bundle of degree d on a Riemann surface of genus g, the Atiyah-Singer index theorem
yields d+ 1− g for the twisted Dolbeault complex, which controls the hypermultiplets. A
hypermultiplet valued in a weight ρ of the dynamical gauge group and a weight ν of the
flavor symmetry group therefore has degeneracy (cf. [14])

− ρ(m)− ν(s) + g− 1 . (5.51)

The overall minus sign comes from the opposite grading of the Dirac and Dolbeault com-
plexes. The origin for the flavor fluxes is at 2g− 2, and the shifted expression is

− ρ(m)− ν(s)− g + 1 . (5.52)

The vector multiplet is controlled by a twisted version of the de Rahm complex, which is
again related to the Dolbeault complex and yields the same result (cf. [14]). The degeneracy
for a mode proportional to a root α reads

α (m) + 1− g . (5.53)

We must also specify the R-charge of the chirals appearing in the superconformal index.
To do this, we compare the square of the supercharge used to localized the SCI with th eone
used here. The ratio of the ε1 dependent term between the derivative with respect to φ and
the R-symmetry transformation acting on q1 is −2. In the context of the SCI, where the
eigenvalue with respect to said derivative is usually denoted j3, the ratio is −2/∆, where ∆
is both the R-charge and the Weyl weight of the bottom component of a chiral superfield
(cf. [90, eq. (5.14)]). Evidently, we should set ∆ to 1. Vector multiplets can also be treated
as chiral multiplets for the purposes of constructing the partition function. This is because
a chiral multiplet of R-charge 0 can get a vev and Higgs a vector multiplet, yielding an
empty theory in the IR. It also holds that the product of the one loop determinants of
chiral multiplets with R-charges ∆ and 2−∆ is 1 [93]. the vector multiplet may therefore
be treated as a chiral multiplet with R-charge 2.

Fermionic zero modes. One must still deal with the fermion zero modes which are the
superpartners of the holonomies on Σg. This can presumably be done using the approach
described in e.g. [64], but the details are more complicated in the 5d context. We will rely
on the 2d result.

– 47 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
7

5.3.2 The final formula

We are ready to write the partition function. The result was first derived in [24] by gluing
Nekrasov partition functions. We set

ε1 = ε , ε2 = 0 , (5.54)

in the following. As already mentioned, in our conventions for the background fluxes, the
universal twist [29] corresponds to s = 1− g. One could also set the background fluxes on
the untwisted two-sphere to zero, t = 0, however, it is vital to keep ε nonzero. Finally, we
define

BρI ≡ ρI(m) + νI(s) + g− 1 , Bα ≡ α(m)− g + 1 . (5.55)

The mixed index can be written as [24]

Z(m, n, a; s, t,∆, ε)

= 1
|W |

∑
{m,n}∈Γh

∮
C

rk(G)∏
i=1

dxi
2πixi

(
det
ij

∂2W(S2
ε×S1)×R2(a, n; ∆, t, ε)

∂ai∂aj

)g

× exp
(

16π2

g2
YMε

TrF(ma)
) ∏
α∈G

[
(x−αζ−α(n); ζ2)∞
(xαζ2−α(n); ζ2)∞

(
− ζxα

) 1
2α(n)

]Bα

×
∏
I

∏
ρI∈RI

[
(xρIyνI ζ1−ρI(n)−νI(t); ζ2)∞

(x−ρIy−νI ζ1−ρI(n)−νI(t); ζ2)∞
(−xρIyνI )−

1
2 (ρI(n)+νI(t))

]BρI
,

(5.56)

with x = eia, y = ei∆, ζ = eiε/2, and W(S2
ε×S1)×R2(a, n; ε) denoting the effective twisted

superpotential of the five-dimensional N = 1 theory on (S2
ε × S1)× R2, whose expression

is the subject of the next section.
For g = 0, the partition function can be obtained by gluing the Nekrasov partition

function (4.15) using the rules discussed in section 5.3 and sending ε2 to zero [24]. The
appearance of the determinant of the effective twisted superpotential for g 6= 0 is discussed
in section 5.4. As noticed in section 5.3.1, the one-loop contributions are obtained by raising
one-loop determinants of the partition function on S2

ε ×S1, the generalized superconformal
index, to integer powers, Bα and Bρ, counting the number of zero-modes on the twisted Σg.
The one-loop contribution of a chiral multiplet of R-charge rK to the three-dimensional
superconformal index reads [93, 94]

logZ∆K ,tK ,rK
χ (a) =

(
q

1
2 (1−rK)x−1y−1

K

)− 1
2 (n+tK)

(
x−1y−1

K q
1
2 (2−rK−n−tK); q

)
∞(

xyKq
1
2 (rK−n−tK); q

)
∞

, (5.57)

where yK = ei∆K and tK denote the flavor fugacity and magnetic flux, respectively. Setting
rK = 1 and yK = y, tK = t we recognize the contributions of the hypermultiplets in (5.56),
while setting rK = 2 and ∆K = 2π, tK = 0 we recognize the contributions of the vector
multiplets. Finally, the gluing procedure produces a classical term which is manifestly
holomorphic in ε1 and coincides with (5.50) when ε1 is purely imaginary. As already
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discussed in section 5.3.1, the role of the classical term, which is not gauge invariant, is
not completely clear to us. In any event, it will only contribute to the partition function
of the N = 2 super Yang-Mills theory whose interpretation as a six-dimensional index has
yet to be clarified.

5.4 W(S2
ε×S1)×R2 and its factorization

In this section we derive the effective twisted superpotential of the two-dimensional theory
obtained by compactifying a five-dimensional N = 1 theory on S2

ε × S1.

(i) Gluing W(S2
ε×S1)×R2. The two-sphere S2

ε is not twisted. We shall use the gluing
procedure that was detailed in section 4.1. For this purpose, we employ the identity gluing
that follows from the rules given in section 5.3 when ε2 = 0

a
(1)
k = ak −

ε

2nk , ∆(1) = ∆− ε

2(t + 1) , ε(1)
1 = ε ,

a
(2)
k = −ak −

ε

2nk , ∆(2) = −∆− ε

2(t− 1) , ε
(2)
1 = −ε .

(5.58)

We can then write39

W(S2
ε×S1)×R2(a, n; ∆, t, ε) =W(R2

ε×S1)×R2(a(1); ∆(1), ε(1))−W(R2
ε×S1)×R2(a(2); ∆(2), ε(2)) ,

(5.59)
where W(R2

ε×S1)×R2 is given in (4.19)–(4.23).
Explicitly, the classical Yang-Mills contribution to the effective twisted superpotential

is given by

WYM
(S2
ε×S1)×R2(gYM, a, n; ε) = − 8iπ2

g2
YMε

(
TrF(a)2 + ε2

4 TrF(n)2
)
. (5.60)

Next, the contribution of a hypermultiplet to the twisted superpotential, in an expansion
around ε→ 0, reads

WH(S2
ε×S1)×R2(a, n; ∆, t, ε) = −

∑
ρI∈R

∞∑
s=0

(iε)s−1

(2π)s ws (ρI(a), ρI(n); νI(∆), νI(t), 1) , (5.61)

where

ws(a, n; ∆, t, r) ≡ gs (π(r − n− t)])
[
Li3−s(ei(a+∆)) + i3−s

2 g3−s(a+ ∆)
]

+ gs (π(2− r − n− t))
[
Li3−s(e−i(a+∆)) + i3−s

2 g3−s(2π − a−∆)
]
,

(5.62)
with gs(a) defined in (4.5).40 Observe that gs(a) = 0 for s < 0. The contribution of a
vector multiplet is simply given by

WV(S2
ε×S1)×R2(a, n; ε) =

∑
α∈G

∞∑
s=0

(iε)s−1

(2π)s ws (α(a), α(n); 2π, 0, 2) . (5.63)

39The relative minus follows from the relative minus for a in the identity gluing and the fact that W
appears with a derivative in the partition function, see (5.64).

40Note that the sign of Re(a+ ∆) is opposite in the two terms in (5.59) and we need to shift accordingly
the functions gs(a) in (4.19)–(4.23).
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(ii) Bethe approach. Alternatively, the twisted superpotential appears in the mixed
index as41

Z(S2
ε×S1)×Σg

= 1
|W |

∑
{m,n}∈Γh

∮
C

rk(G)∏
i=1

dxi
2πixi

× exp
(

i
rk(G)∑
k=1

mk

∂W(S2
ε×S1)×R2(a, n; ε)

∂ak

)
Zint

∣∣
m=0(a, n; ε) ,

(5.64)

where Zint is the integrand in (5.56), as a direct computation shows.
Performing the sum over the gauge magnetic fluxes m through the Riemann surface

in (5.64), we find a set of poles å at the Bethe vacua. It remains to evaluate the sum over
the gauge fluxes n on S2

ε . At this stage, we assume that the mixed index localizes at the
solutions to the generalized BAEs

1 = exp
(
∂W(S2

ε×S1)×R2(a, n; ε)
∂ak

)∣∣∣
a=å, n=̊n

,

1 = exp
(
∂W(S2

ε×S1)×R2(a, n; ε)
∂nk

)∣∣∣
a=å, n=̊n

.

(5.65)

5.4.1 USp(2N) gauge theory with matter

We will now evaluate the effective twisted superpotential of the USp(2N) theory with
matter in the large N limit. The result will take a simple form using a democratic basis
for the flavor chemical potential ∆m and the fluxes (s, t)

s1 ≡ sm , s2 ≡ 2(1− g)− sm , s.t.
2∑
i=1

si = 2− 2g ,

t1 ≡ tm , t2 ≡ −tm , s.t.
2∑
i=1

ti = 0 ,

∆1 ≡ ∆m + ε

2 , ∆2 ≡ 2π −∆m + ε

2 , s.t.
2∑
i=1

∆i = 2π + ε .

(5.66)

The effective twisted superpotential has the same structure as (3.7) and we only need
to replace F∆k,tK (a), see (3.9), with

W∆K ,tk,r
(S2
ε×S1)×R2(a) = −

∞∑
s=0

(iε)s−1

(2π)s ws(a, n; ∆K , tK , r) , (5.67)

with ws(a, n; ∆K , tK , r) given in (5.62). Let us start with the WA+V1
(S2
ε×S1)×R2 contribution.

Using (4.10), and assuming that | Im ai| → ∞, we obtain

WA+V1
(S2
ε×S1)×R2 = − 1

4ε

N∑
i>j

[
(4∆1∆2 + ε2t1t2)aij + ε2(∆1t2 + ∆2t1)nij

]
sign (Im aij)

− 1
4ε

N∑
i>j

[
(4∆1∆2 + ε2t1t2)a+

ij + ε2(∆1t2 + ∆2t1)n+
ij

]
sign

(
Im a+

ij

)
.

(5.68)
41We dropped the dependence on the flavor parameters (∆, s, t) to avoid clutter.
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Assuming also that the eigenvalues are ordered by increasing imaginary part, i.e. ai > aj
for i > j, and using (3.13), we can simplify (5.68) further and write

WA+V1
(S2
ε×S1)×R2 = − 1

4ε

N∑
k=1

(2k − 1)
[
(4∆1∆2 + ε2t1t2)ak + ε2(∆1t2 + ∆2t1)nk

]
. (5.69)

The contribution WF+V2
(S2
ε×S1)×R2 to the twisted superpotential at large N can be computed

similarly using (4.10) and it is given by

WF+V2
(S2
ε×S1)×R2 = −(8−Nf )

3ε

N∑
k=1

(
a2
k + 3ε2

4 n2
k

)
ak . (5.70)

Putting (5.69) and (5.70) together we obtain the final expression for the twisted superpo-
tential W(S2

ε×S1)×R2 ,

W(S2
ε×S1)×R2(a, n; ∆, t, ε) = − (8−Nf )

3ε

N∑
k=1

(
a2
k + 3ε2

4 n2
k

)
ak

− 1
4ε

N∑
k=1

(2k − 1)
[
(4∆1∆2 + ε2t1t2)ak + ε2(∆1t2 + ∆2t1)nk

]
,

(5.71)
that can be recast in the following factorized form

W(S2
ε×S1)×R2(a, n; ∆, t, ε) = −2π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (5.72)

with FSW(ak; ∆i) given in (4.44), using the identity gluing parameterization

a
(1)
k ≡ ak −

ε

2nk , ∆(1)
i ≡ ∆i −

ε

2 ti , ε(1) = ε ,

a
(2)
k ≡ ak + ε

2nk , ∆(2)
i ≡ ∆i + ε

2 ti , ε(2) = ε .
(5.73)

The Bethe solution can be obtained by extremizing (5.71) with respect to the gauge vari-
ables (ak, nk). We find

∂W(S2
ε×S1)×R2(a, n)
∂nk

∣∣∣
nk=̊nk

= 0 ⇒ akn̊k = − (2k − 1)
2(8−Nf )(∆1t2 + ∆2t1) , (5.74)

and
∂W(S2

ε×S1)×R2(a, n)
∂ak

= 0
∣∣∣
ak=åk, nk=̊nk

⇒ åk = i
2

√
2k − 1
8−Nf

(√(
∆1 + ε

2 t1
)(

∆2 + ε

2 t2
)

+
√(

∆1 −
ε

2 t1
)(

∆2 −
ε

2 t2
))

.

(5.75)
Observe that (5.74) and (5.75) are equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = i√

8−Nf

√
(2k − 1)∆(σ)

1 ∆(σ)
2 , (5.76)
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for σ = 1, 2. Note that we use the determination 0 < ∆i ∓ ε
2 ti < 2π, i = 1, 2. Plugging the

saddle points (̊ak, n̊k) back into the twisted superpotential (5.71) we obtain

W(S2
ε×S1)×R2(∆i, ti, ε) = 4π2i

27ε

[
FS5

(
∆i + ε

2 ti
)

+ FS5

(
∆i −

ε

2 ti
)]

, (5.77)

with FS5(∆i) being, in form, the free energy of the theory on S5,

FS5(∆i) = −9
√

2
5π2

N5/2√
8−Nf

(∆1∆2)
3
2 ,

2∑
i=1

∆i = 2π + ε . (5.78)

5.4.2 N = 2 super Yang-Mills

For N = 2 super Yang-Mills we find a dependence on the non-gauge invariant classical
term (5.50), whose interpretation is not clear. It is nevertheless instructive to check that
the twisted superpotential factorizes. Define the democratic basis for the chemical potential
∆i and the fluxes (si, ti), associated to the U(1)2 ⊂ SO(5) R-symmetry

s1 ≡ s , s2 ≡ 2(1− g)− s , s.t.
2∑
i=1

si = 2− 2g ,

t1 ≡ t , t2 ≡ −t , s.t.
2∑
i=1

ti = 0 ,

∆1 ≡ ∆ + ε

2 , ∆2 ≡ 2π −∆ + ε

2 , s.t.
2∑
i=1

∆i = 2π + ε .

(5.79)

The twisted superpotential of the theory reads

W(S2
ε×S1)×R2 =WYM(ak, nk) +WH(ai, ni; ∆, t, ε) +WV(ai, ni, ε) , (5.80)

with

WYM = − 8π2i
g2
YMε

N∑
k=1

(
a2
k + ε2

4 n2
k

)
,

WH =
N∑

i,j=1
W∆,t,r=1(aij) , WV = −

N∑
i 6=j
W∆=2π,t=0,r=2(aij) ,

(5.81)

and W∆,t,r(a) given in (5.67). In the strong ’t Hooft coupling λ � 1, assuming that
| Im(ai − aj)| → ∞, (5.80) can be approximated as, using (4.10),

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= − 8π2i
g2
YMε

N∑
k=1

(
a2
k + ε2

4 n2
k

)

− 1
8ε

N∑
i,j=1

[
(4∆1∆2 + ε2t1t2)aij + ε2(∆1t2 + ∆2t1)nij

]
sign(Im aij) .

(5.82)

– 52 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
7

Assuming that the eigenvalues are ordered by increasing imaginary part, we can trade the∑N
i,j=1 with

∑N
k=1 using (3.13) to write

W(S2
ε×S1)×R2(ai, ni; ∆, t, ε)

= − 8π2i
g2
YMε

N∑
k=1

(
a2
k + ε2

4 n2
k

)

− 1
4ε

N∑
k=1

(2k − 1−N)
[
(4∆1∆2 + ε2t1t2)ak + ε2(∆1t2 + ∆2t1)nk

]
,

(5.83)

that, using the identity gluing parameterization (5.73), can be recast in the following
factorized form

W(S2
ε×S1)×R2(a, n; ∆, t, ε) = −2π

2∑
σ=1

FSW
(
a

(σ)
k ; ∆(σ)

i

)
ε(σ) , (5.84)

with FSW(ak; ∆i) given in (4.61). We extremize (5.83) over the gauge variables (ak, nk) to
obtain the solution

åk = i g
2
YM

64π2 (2k − 1−N)(4∆1∆2 + ε2t1t2) ,

n̊k = i g
2
YM

16π2 (2k − 1−N)(∆1t2 + ∆2t1) ,
(5.85)

to the generalized BAEs (5.65). Observe that (5.85) is equivalent to

∂FSW(a(σ)
k ; ∆(σ)

i )
∂a

(σ)
k

= 0 ⇒ å
(σ)
k = i g

2
YM

16π2 (2k − 1−N)∆(σ)
1 ∆(σ)

2 , (5.86)

for σ = 1, 2. Substituting these values into (5.83) we find

W(S2
ε×S1)×R2(∆, t, ε) = − ig2

YM
3× 29π2ε

[
(4∆1∆2 + ε2t1t2) + 2iε(∆1t2 + ∆2t1)

]
×
[
(4∆1∆2 + ε2t1t2)− 2iε(∆1t2 + ∆2t1)

]
.

(5.87)

Remarkably, this can be recast in the following factorized form

W(S2
ε×S1)×R2(∆, t, ε) = −iN(N2 − 1) g2

YM
192π2ε

[(
∆(1)

1 ∆(1)
2
)2 +

(
∆(2)

1 ∆(2)
2
)2]

. (5.88)

5.5 Factorization of the index

In this section we will make the assumption that the mixed index localizes at the solutions
to the generalized BAEs (5.65). Given (5.64), up to subleading constant factors, the saddle
point contribution to the index is given by

Z(S2
ε×S1)×Σg

= Zint
∣∣
m=0(a, n; ε)

∣∣∣∣
n=̊n,a=å

. (5.89)
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We will show that this expression factorizes,42 and leads to the correct entropy for a class
of dual black holes in massive type IIA. Moreover, as for the twisted index, we find

logZ(S2
ε×S1)×Σg = i

2∑
i=1

si
∂W(S2

ε×S1)×R2

∂∆i
. (5.90)

While the mixed index for the Seiberg theory correctly reproduces the entropy of black
holes in massive type IIA, it is not clear what is the interpretation of the mixed index of
N = 2 super Yang-Mills in terms of the six-dimensional UV fixed point and we are not
aware of dual backgrounds where to test the large N result, which, as already mentioned,
explicitly depends on the existence of a non-gauge invariant classical term (5.50). It is
however interesting to observe that the result factorizes, as expected.

5.5.1 USp(2N) gauge theory with matter

We are interested in evaluating the mixed index (5.89) of the USp(2N) gauge theory in
the large N limit. To this aim, let us first consider the building block

Z(a,m, n; ∆, s, t, ε) =
[

(xyζr−n−t; ζ2)∞
(x−1y−1ζ2−r−n−t; ζ2)∞

(−xy)−
1
2 (n+t)

]m+s+g−1

, (5.91)

where x = eia, y = ei∆, ζ = eiε/2. From (5.64) and the form of W in terms of (5.62), we
can immediately write down the following asymptotic expansion

logZ(a,m, n; ∆, s, t, ε) = (m + s + g− 1)
∞∑
s=0

(iε)s−1

(2π)s vs(a, n; ∆, t, r) , as ε→ 0 , (5.92)

where

vs(a, n; ∆, t, r) ≡ gs (π(r − n− t)])
[
Li2−s(ei(a+∆)) + i2−s

2 g2−s(a+ ∆)
]

− gs (π(2− r − n− t))
[
Li2−s(e−i(a+∆)) + i2−s

2 g2−s(2π − a−∆)
]
,

(5.93)
with gs(a) defined in (4.5). Note that gs(a) = 0 for s < 0.

Then, Zint
∣∣
m=0(ai, ni; ∆K , sK , tK , ε) in (5.89) can be written as

logZint
∣∣
m=0(ai, ni; ∆K , sK , tK , ε) = logZA+V1(ai, ni; ∆m, sm, tm, ε)

+ logZF+V2(ai, ni; ∆f , sf , tf , ε) ,
(5.94)

with

logZA+V1 =
N∑
i>j

[
logZ∆m,sm,tm,r=1(±ai ± aj)− logZ∆K=2π,sK=2−2g,tK=0,r=2(±ai ± aj)

]
+ (N − 1) logZ∆m,sm,tm,r=1(0) ,

logZF+V2 =
N∑
i=1

[ Nf∑
f=1

logZ∆f ,sf ,tf ,r=1(±ai)− logZ∆K=2π,sK=2−2g,tK=0,r=2(±2ai)
]
,

(5.95)
42Our results differ from those in [24], which do not factorize, due to a different twisted superpotential

used in the conjectured BAEs.
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Here, we introduced the function

logZ∆K ,sK ,tK ,r(a) = (sK + g− 1)
∞∑
s=0

(iε)s−1

(2π)s vs(a, n; ∆K , tK , r) , as ε→ 0 . (5.96)

Again, the index K labels all the matter fields in the theory and we used the notation

logZ∆K ,sK ,tK ,r(±ai) ≡ logZ∆K ,sK ,tK ,r(ai, ni) + logZ∆K ,sK ,tK ,r(−ai,−ni) . (5.97)

The only piece that survives the large N limit is given by

logZA+V1 = − i
ε

N∑
i>j

[
(∆1s2 + ∆2s1)aij + ε2

4 (s2t1 + s1t2)nij
]

sign(Im aij)

− i
ε

N∑
i>j

[
(∆1s2 + ∆2s1)a+

ij + ε2

4 (s2t1 + s1t2)n+
ij

]
sign(Im a+

ij) .
(5.98)

Assuming that the eigenvalues are ordered by increasing imaginary part and using (3.13),
we can simplify (5.98) further and write

logZA+V1 = − i
ε

N∑
k=1

(2k − 1)
[
(∆1s2 + ∆2s1)ak + ε2

4 (s2t1 + s1t2)nk

]
. (5.99)

Finally, plugging the Bethe solutions (5.74) and (5.75) back into (5.89),

logZ(S2
ε×S1)×Σg

N�1= logZA+V1

∣∣∣
n=̊n,a=å

, (5.100)

we can recast the final result in the following factorized form

logZ(S2
ε×S1)×Σg

(∆, s, t, ε) = − π2ε

[
FS3×Σg

(
∆i + ε

2 ti, si
)

+ FS3×Σg

(
∆i −

ε

2 ti, si
)]

,

(5.101)
where FS3×Σg

(∆i, si) is the free energy of the theory on S3 × Σg, see (4.75). Recall that

2∑
i=1

∆i = 2π + ε ,
2∑
i=1

si = 2− 2g ,
2∑
i=1

ti = 0 . (5.102)

Black holes microstates in AdS2×S2
ε ×Σg. In the following we show that the mixed

index (5.101) gives a statistical derivation of the entropy of Kerr-Newman black holes found
in [34, section 6.3.2 and 6.3.4]. The near horizon geometry is AdS2 × S2

ε × Σg.
The class of black holes we consider is a two-parameter family of solutions and was

found by specializing the magnetic fluxes along the Riemann surface to (in the notations
of [34])

s1 = 2
3 , s2 = 0 . (5.103)

This choice leads to a compact Riemann surface Σg>1 and vanishing magnetic charges along
the S2

ε . The Bekenstein-Hawking entropy reads

SBH(q1, q2,J ) = π

3G(4)
N

√
108q2

2(q1 + q2) + J
q1 + 9q2

, (5.104)

– 55 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
7

with the following constraint among the conserved charges

J =
(
√

72q2 (q1 + 3q2) + 1− 1)2
(
2(q1 + 3q2)

√
72q2 (q1 + 3q2) + 1 + q1 − 3q2

)
6
(√

72q2 (q1 + 3q2) + 1− 1− 6(q1 + 3q2)(q1 + 9q2)
) . (5.105)

Note that the limit J → 0 is singular and these black holes are always rotating. We shall
extremize the I-functional for t = 0

I(S2
ε×S1)×Σg

(∆, ε) = logZ(S2
ε×S1)×Σg

(∆, s, t = 0, ε)− iεJ− i
2∑
i=1

∆iQi−Λ(∆1 +∆2− ε−2π) ,

(5.106)
with respect to the chemical potentials (∆1,∆2, ε) and the Lagrange multiplier Λ, enforcing
the constraint ∆1 + ∆2 = 2π + ε, to obtain

I(S2
ε×S1)×Σg

∣∣∣
crit.

(Q1, Q2, J) = 2πΛ̊(Q1, Q2, J) , (5.107)

by Euler’s theorem, and

(Λ̊ + iQ1)(Λ̊ + iQ2)3 −
(2(g− 1)√

3π
FS5

)2
(Λ̊− iJ)2 = 0 . (5.108)

Assuming that the charges and the entropy 2πΛ̊ are real we can break (5.108) into two
equations

Im (5.108) = Λ̊2(Q1 + 3Q2)−Q2
2(3Q1 +Q2) +

(2
√

2(g− 1)√
3π

FS5

)2
J = 0 ,

Re (5.108) = Λ̊4 − 3Λ̊2Q2(Q1 +Q2) +
(2(g− 1)√

3π
FS5

)2
(J + Λ̊)(J − Λ̊) +Q1Q

3
2 = 0 .

(5.109)
Solving the first equation gives us, using (5.107),

I(S2
ε×S1)×Σg

∣∣∣
crit

(Q1, Q2, J) = 2π

√√√√√− (2
√

2(g−1)√
3π FS5

)2
J +Q2

2(3Q1 +Q2)
Q1 + 3Q2

, (5.110)

while the second equation leads to the constraint (5.105) among the conserved charges.
We see again, as in section 4.3.2, that the constraint among the conserved charges of BPS
black holes arises as a reality requirement for the entropy functional at the critical point.
To compare with (5.105), we used the identification [34, eq. (7.15)]

Q1 = 1
3GN

q1 , Q2 = 1
GN

q2 , J = − 1
2G(4)

N
J . (5.111)

Using also the standard AdS6/CFT5 dictionary (4.86) we find that

I(S2
ε×S1)×Σg

∣∣∣
crit.

(Q1, Q2, J) = SBH(q1, q2,J ) . (5.112)
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Our result is in complete agreement with [34, section 7.2] upon identifying

ωthere ≡ −
i
π
ε , χithere ≡

2
3π∆i , i = 1, 2 . (5.113)

For completeness, we note that, in the special case t = 0, both our results and those
in [24], which uses a different twisted superpotential for the conjectured BAEs, coincide.
The differences show up for t 6= 0, where our expression for the index factorizes while the
one in [24] does not. To fully test holographically the two sets of different results we would
need a Kerr-Newman black hole solution in massive type IIA with non-vanishing magnetic
charges. We are not aware of any such solution in the literature and it would be interesting
to find one.

5.5.2 N = 2 super Yang-Mills

In the strong ’t Hooft coupling limit λ� 1, we need to evaluate

logZint
∣∣
m=0(ai, ni; ∆, s, t, ε) =

N∑
i,j=1

logZ∆,s,t,r=1(aij)−
N∑
i 6=j

logZ∆=2π,s=2−2g,t=0,r=2(aij) ,

(5.114)
with logZ∆,s,t,r(a) given in (5.96). Employing the asymptotic formula (4.10) and assuming
that the eigenvalues are ordered by increasing imaginary part, using (3.13), we find

logZint
∣∣
m=0(ai, ni; ∆, s, t, ε) = − i

ε

N∑
k=1

(2k − 1−N)
[
(∆1s2 + ∆2s1) + ε2

4 (s2t1 + s1t2)nk
]
.

(5.115)
Plugging the Bethe solutions (5.85) back into (5.89),

logZ(S2
ε×S1)×Σg

λ�1= logZint
∣∣
m=0(̊ai, n̊i; ∆, s, t, ε) , (5.116)

we can recast the final result in the following factorized form

logZ(S2
ε×S1)×Σg

(∆, s, t, ε) = −2πg2
YM

27ε

[
a

(
∆i + ε

2 ti, si
)

+ a

(
∆i −

ε

2 ti, si
)]

, (5.117)

where a(∆, s) is the trial central charge of the four-dimensional theory obtained by com-
pactifying the 6d (2, 0) theory of type AN−1 on Σg, and is given in (4.90). Recall that

2∑
i=1

∆i = 2π + ε ,
2∑
i=1

si = 2− 2g ,
2∑
i=1

ti = 0 . (5.118)

6 An index theorem for the twisted and mixed matrix models

As we have seen in sections 4.3 and 5.5, the large N partition functions on (S2
ε × S1)×Σg

satisfy the relation

logZ(S2
ε×S1)×Σg = i

2∑
i=1

si
∂W(S2

ε×S1)×R2

∂∆i
, (6.1)
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where si, with
∑2
i=1 si = 2 − 2g, are the magnetic fluxes on Σg and ∆i the chemical

potentials for global symmetries. This is a five-dimensional generalization of the index
theorem for the topologically twisted index discussed and proved for a large class of three-
and four-dimensional gauge theories in [37, 38].43

We have used constrained variables throughout this paper. This is convenient because
the entropy functional is then a homogeneous function of degree one in ∆i and ε. The
on-shell values of logZ(S2

ε×S1)×Σg
and W are also homogeneous functions. When written

in terms of general chemical potentials and fluxes, (6.1) takes the form

logZ = i(1− g)
[

2
π
W +

∑
i

(
si

1− g
− ∆i

π

)
∂W
∂∆i

− ε

π

∂W
∂ε

]
, (6.2)

where, to avoid clutter in the notations, we have suppressed the reference to the manifold,
and we have generalized the formula to the case of an arbitrary number of global sym-
metries. This clearly reduces to (6.1) when W is a homogeneous function of ∆i and ε of
degree two, as it is the case in this paper.

It is worth noticing that, due to the particular form of the differential operator ap-
pearing on the right hand side, (6.2) is parameterization invariant and it can be used
both for constrained and unconstrained variables. Indeed, it is a very simple exercise to
check that, for the twisted index, we obtain the same result for (6.2) computed using
W(∆1,∆2, ε) and constrained variables ∆1 + ∆2 = 2π and s1 + s2 = 2 − 2g or, solving
the constraint first, and using Wunc(∆, ε) ≡ W(∆, 2π − ∆, ε) and independent variables
∆ ≡ ∆1 and s ≡ s1. Similarly, for the mixed index, we could use W(∆1,∆2, ε) and con-
strained variables ∆1 + ∆2 = 2π+ ε and s1 + s2 = 2− 2g or, by solving the constraint first,
Wunc(∆, ε) ≡ W(∆ + ε/2, 2π − ∆ + ε/2, ε) and independent variables ∆ ≡ ∆1 − ε/2 and
s ≡ s1, with the same final result.

The relation (6.2) was found to hold also in [24], that uses a different W compared to
this paper and we expect it to hold in general. We now provide an alternative derivation
that can be generalized to other five-dimensional theories. We will prove (6.2) using only
a few facts about the general structure of the theories and of the large N saddle point. We
will assume that, in the large N limit, the gauge variables a and fluxes n scale with the
same positive power of N , and the eigenvalues are ordered by increasing imaginary part,
i.e. Im ai > Im aj for i > j. We also assume that

(i) The matter content of the theory is vector-like: if ρ(a) is a weight also −ρ(a) is.

(ii) There is long range forces cancellation between vectors and hypers, which, in practice,
translates into the requirement that

∑
α∈G α(a) −

∑
I

∑
ρI∈R ρI(a), with α running

over the roots and ρ over the weights of the hypermultiplets, either cancels or it is
subleading in the large N limit. This condition is necessary to have a well-defined
saddle point.

These conditions are satisfied by all the theories discussed in this paper and extend to a
larger class of quivers that are relevant to the study five- or six-dimensional fixed points.

43And verified in many other examples [50–52].
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For the twisted index, the contribution of a hypermultiplet to the twisted superpoten-
tial is given in (4.9), which, using (4.10) and (4.11), in the large N limit reads

W(a, n,∆; t) = −
3∑
s=0

1− (−1)s

2
εs−1

(2π)s gs(π(2− n− t))g3−s(a+ ∆) sign (Im a) , (6.3)

while for a vector we should take the opposite sign and set ∆ = 2π and t = 2. To
avoid clutter, we omitted the gauge and flavor representation indices and we used a as
a shorthand for ρ(a) or α(a) (and similarly for n, ∆, and t). For the mixed index, the
contribution of a hypermultiplet to the twisted superpotential is given by (5.61) and (5.62),
which, using (4.10) and (4.7), can be written in the large N limit as

W(a, n,∆; t) =
3∑
s=0

εs−1

2(2π)s
[
gs(π(r − n− t))

+ (−1)sgs(π(2− r − n− t))
]
g3−s(a+ ∆) sign (Im a) ,

(6.4)

with r = 1, while for a vector we should take the opposite sign and set ∆ = 2π, t = 0 and
r = 2.

Proof of eq. (6.2): at large N there is no contribution to the index from classical pieces
and fundamental hypermultiplets. Using the notations of sections 4 and 5, the contribution
of a hypermultiplet to the logarithm of the partition function integrand is

im∂W
H

∂a
+ i(s− 1 + g)∂W

H

∂∆ , (6.5)

where, in our notations s1 = s, we have suppressed the gauge indices in m and a and WH

is one of the functions (6.3) or (6.4). The contribution of the vector multiplet is similarly
given by

im∂W
V

∂a
+ i(1− g)∂W

V

∂∆g

∣∣∣
∆g=2π

, (6.6)

where, for convenience, we introduced a fake chemical potential ∆g for the vectors, which
has to be set to ∆ = 2π at the end of the computation. By setting m = 0, we obtain the
large N contribution to the index

i(s−1+g)∂W
H

∂∆ +i(1−g)∂W
V

∂∆g

∣∣∣
∆g=2π

≡ is∂W
∂∆ +i(1−g)

(
−∂W

H

∂∆ + ∂WV

∂∆g

∣∣∣
∆g=2π

)
, (6.7)

where W =WH+WV |∆g=2π. We now promote the number π to the independent variable
π, using the same trick as in [37], and we write the previous expression as

is∂W
∂∆ + i(1− g)∂W

∂π
. (6.8)

Indeed, observing that

∂W
∂π

= ∂WH

∂π
+ ∂WV

∂π
+ 2∂W

V

∂∆g

∣∣∣
∆g=2π

, (6.9)
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the difference between (6.8) and (6.7), is given by(
∂

∂∆ + ∂

∂π

)
WH +

(
∂

∂∆g
+ ∂

∂π

)
WV

∣∣∣
∆g=2π

. (6.10)

All dependences on ∆ and π are in the functions g3−s(a + ∆) and the only potential
nonvanishing contributions in (6.10) come from s = 0 or s = 1(

∂

∂∆ + ∂

∂π

)
g3−s(a+ ∆) = π(π − a−∆)

3 δs,0 −
π

3 δs,1 . (6.11)

Multiplying by the corresponding polynomials of n in (6.3) and (6.4), we see that (6.10)
is a linear function of a and n, multiplied by sign(Im a). The constant pieces vanish when
summing over all gauge variables by assumption (i). It is also easy to see, by direct
inspection of (6.3) and (6.4), that the linear terms in a and n, either directly cancel or
vanish when summing over vectors and hypers by assumption (ii). Now we are ready
to complete the proof. Given the explicit form of (6.3) and (6.4), W is a homogeneous
function of a,∆, ε,π of degree two and therefore

2W = a
∂W
∂a

+ ∆∂W
∂∆ + ε

∂W
∂ε

+ π∂W
∂π

. (6.12)

At the saddle point, ∂W∂a = 0 and we can rewrite (6.8) as

i(1− g)
[ 2
π
W +

(
s

1− g
− ∆
π

)
∂W
∂∆ −

ε

π

∂W
∂ε

]
. (6.13)

This completes the proof.

7 Discussion and outlook

In this paper we have demonstrated the large N factorization properties of a class of
five-dimensional supersymmetric partition functions with a view toward holographic appli-
cations to the microscopic counting for black holes in AdS.

There is by now compelling evidence that the large N saddle point of supersymmetric
indices that are holographically dual to free energies of AdS black objects can be obtained
by gluing elementary objects with the rules discussed in section 2. Black hole physics
suggests that this should be the case in general. There are many examples in three and
four dimensions and we have provided here other examples in five dimensions. In some
cases, this factorization can be proved by using the finite N decomposition in holomorphic
blocks, in other cases, as in this paper, a direct computation is needed.

We mostly focused on the Seiberg theory and the N = 2 super Yang-Mills theory in
five dimensions, which can be used to describe the physics of black objects in AdS6 ×w S4

and AdS7 × S4, but our results can be easily extended to other more complicated quiver
theories.

In this paper we considered the topologically twisted index for manifolds of the type
(S2
ε ×S1)×Σg. In the special case g = 0, we could turn on a second refinement parameter
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and consider the partition function on S2
ε1 × S

2
ε2 × S

1. It would be interesting to analyse
whether this partition function factorizes or not. We expect that this is the case, but we
have no evidence from holography, since we are not aware of AdS black object solutions
with horizon S2 × S2 and two independent rotational parameters.

One main open problem remains to justify the assumptions about the saddle point
for the twisted and mixed index. Generalizing [22–24], we assumed that the two partition
functions localize at the solution of a set of Bethe ansatz equations, in analogy to similar
three- and four-dimensional indices. This assumption led us to the correct results for the
entropy of the known black objects in AdS6 ×w S4 and AdS7 × S4. However, a slightly
different assumption leads to a different result where factorization does not hold [24]. It
would be nice to have a first principle derivation of the large N limit of the twisted and
mixed index.
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A Refined S3
b × S2

ε partition function

In this appendix we derive the one-loop contribution of a hypermultiplet to the refined
S3
b ×S2

ε partition function. The contribution of a vector multiplet, as discussed in the main
text, can be obtained by simply setting ∆K = 2 and tK = 2. Following [22], we uplift
on S1 the one-loop contribution of a hypermultiplet to the S2

εb
× S2

ε2 partition function
incorporating one unit of flux for the U(1) principal bundle over S2

εb
, which gives rise to

the Hopf fibration S1 ↪→ S3
b ↪→ S2

εb
, and write

logZ∆K ,tK (ã)

=
∏
n∈Z

|m1+n|−1
2∏

`1=− |m1+n|−1
2

|BK |−1
2∏

`2=− |B
K |−1

2

(ã+ 1−∆K + n+ `1εb + `2ε2)− sign(m1+n) sign(BK) ,

(A.1)
where BK = n + tK − 1. Using k ≡ |m1 + n|, (A.1) can be put in the form

logZ∆K ,tK (ã)

=
∞∏
k=1

k−1
2∏

`1=− k−1
2

|BK |−1
2∏

`2=− |B
K |−1

2

(
ã+ 1−∆K − k −m1 + `1εb + `2ε2
ã+ 1−∆K + `−m1 + `1εb + `2ε2

)− sign(BK)
.

(A.2)
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Upon the following change of variables

a ≡ ã−m1 , εb ≡ −2b− b
−1

b+ b−1 ,

i ≡ 1
2(k − 1− 2`1) , j ≡ 1

2(k − 1 + 2`1) ,
(A.3)

(A.4) can then be recast as

logZ∆K ,tK (a) =

|BK |−1
2∏

`2=− |B
K |−1

2

∞∏
i,j=0

(
−jb

−1 + kb+Q+Q(a+ 1−∆K + `2ε2)
jb+ kb−1 +Q−Q(a+ 1−∆K + `2ε2)

)sign(BK)

=

|BK |−1
2∏

`2=− |B
K |−1

2

S2 (−iQ(a+ 1−∆K + `2ε2)|b)sign(BK) .

(A.4)
This is exactly the contribution of a hypermultiplet to the refined S3

b × S2
ε partition func-

tion (3.2) after we identify `2 ≡ ` and ε2 ≡ ε.

B Asymptotic behavior of q-functions

The double (p, t)-factorial is defined as

(x; p, t)∞ =
∞∏

i,j=0
(1− xpitj) , with |p|, |t| < 1 , (B.1)

where x = eia, p = e−iε1 and t = e−iε2 . Then, we can write

log(x; p, t)∞ =
∞∑

i,j=0
log(1− xpitj) = −

∞∑
k=1

1
(1− pk)(1− tk)

xk

k
. (B.2)

As ε1,2 → 0, the double (p, t)-factorial has the following asymptotic expansion

log(x; p, t)∞ =
∞∑

s,l=0
(−i)s+2lHs,l(ε1ε2)l−1(ε1 + ε2)s Li3−s−2l(x) , (B.3)

where the coefficients Hs,l can be determined by comparing (B.2) and (B.3), as p, t → 1
(ε1,2 → 0).

The q-Pochhammer is defined as

(x; q)∞ =
∞∏
i=0

(1− xqi) , with |q| < 1 , (B.4)

where x = eia and q = eiε. Then, we can write

log(x; q)∞ =
∞∑
i=0

log(1− xqi) = −
∞∑
k=1

1
(1− qk)

xk

k
. (B.5)

As ε→ 0, the q-Pochhammer symbol has the following asymptotic expansion

log(x; q)∞ =
∞∑
s=0

(iε)s−1Bs
s! Li2−s(x) , (B.6)

where Bs is the sth Bernoulli number.
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C Supersymmetry conventions

In this appendix, we describe our conventions for spinors, supersymmetry transformations,
and rigid supergravity.

C.1 Spinor conventions

We describe N = 1 (minimal) Euclidean supersymmetry in five dimensions.44 The Eu-
clidean spin group is the compact symplectic group Spin (5) ' USp (4). The minimal spinor
has 4 complex, or 8 real, components and sits in the pseudo-real representation 4 of USp (4).
A complex spinor ξ may be usefully represented by a 4× 2 matrix ξαI , where α = 1, . . . , 4
and I = 1, 2. This presentation is useful because the action of the SU(2) R-symmetry is
manifest — it acts on the I index in the fundamental representation. Such a spinor has
twice the minimal number of components. It is a complexification of the minimal spinor,
which it is necessary to introduce in order to write the most general transformations of the
Euclidean superalgebra.

Define the usual Pauli matrices by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (C.1)

The 5d Euclidean Clifford algebra is generated by matrices (Γa)β
α

Γ1 = σ2 ⊗ σ1 , Γ2 = σ2 ⊗ σ2 , Γ3 = σ2 ⊗ σ3 , Γ4 = σ1 ⊗ 12 ,

Γ5 = Γ1Γ2Γ3Γ4 = diag(1, 1,−1,−1) .
(C.2)

We also define a charge conjugation matrix

C = −i12 ⊗ σ2 . (C.3)

These satisfy

{Γa,Γb} = 2δab , Γ†a = Γa ,

CΓaC−1 = ΓT
a , C = C∗ = −CT , C∗C = −1 ,

(CΓa)T = −CΓa , (CΓab)T = CΓab ,

Γabc = 1
2(ΓaΓbc + ΓbcΓa) .

(C.4)

Define the index raising operator εIJ = −εJI , such that εIJ = 1 and εIJεJK = δIK
defines the inverse. We define the Majorana conjugate spinor as

ξ̄αI ≡ CαβξβJεIJ . (C.5)

44This is usually referred to as N = 2 supersymmetry in the supergravity literature.
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In the action of the Euclidean supersymmetry algebra, one uses only the Majorana type
conjugate, in both the action and the supersymmetry transformations. We will also use
the following convention for spinor bilinears

ξ̄1ξ2 ≡
(
CξI1

)T
ξ2I = (ξ1I)T CξI2 , ξ̄1γ

aξ2 ≡
(
CξI1

)T
γaξ2I = (ξ1I)T CγaξI2 . (C.6)

We also have the Fierz identities

ξI1

(
ξ̄2Iψ

)
= −ξI2

(
ξ̄1Iψ

)
+ 1

2ψ
(
ξ̄2Iξ

I
1

)
+ 1

2Γmψ
(
ξ̄2IΓmξI1

)
,

ΓmξI1
(
ξ̄2Iψ

)
= −ξI1

(
ξ̄2IΓmψ

)
− ξI2

(
ξ̄1IΓmψ

)
− ΓmξI2

(
ξ̄1Iψ

)
− Γmψ

(
ξ̄1Iξ

I
2

)
− ψ

(
ξ̄1IΓmξI2

)
.

(C.7)

A complex spinor ξ may satisfy a symplectic Majorana condition: a reality condition,
compatible with the spin and R-symmetry groups, which eliminates half of the components.
Define the Dirac conjugate of a spinor to be(

ξ̄D
)αI
≡ (ξ∗)αI . (C.8)

The symplectic Majorana condition is(
ξ̄D
)αI

= ξ̄αI , (C.9)

where the ξ̄αI is the Majorana conjugate, see (C.5).

C.2 Rigid minimal 5d conformal supergravity

We will mostly follow the 5d conformal supergravity conventions of [77]. From this starting
point, one can derive by partial gauge fixing the 5d supergravity used in [81], which was
used to define the twisted backgrounds in [23]. The conformal supergravity offers a more
flexible framework for finding rigid backgrounds. The supergravity fields of conformal
supergravity are contained in the Weyl multiplet. We refer the reader to [77] for details
about the relevant Weyl multiplet and its supersymmetry transformations. We summarize
the aspects of the Weyl multiplet needed in order to construct rigid backgrounds below. In
the notation of [77], µ, ν, . . . are spacetime indices, a, b, . . . are tangent space indices, and
i, j, . . . are SU(2) R-symmetry indices.

We begin by simplifying the transformations of the Weyl multiplet by taking k-gauge,
setting the dilatational gauge field to zero

bµ → 0 . (C.10)

The remaining bosonic fields in the 5d Weyl multiplet are

eµ
a , Vµi

j , Tab , D . (C.11)

The independent fermionic fields are the gravitino ψiµ and the dilatino χi. In order to bring
the notation more in line with the one used in [23], we will rename Vµ to 2A(R)

µ . We will
also replace the supersymmetry transformation parameters in [77] as follows

εthere = eπi/4ξ , ηthere = −2ieπi/4ξ̃ , (C.12)
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and rotate the gravitino
ψthere
µ = 2eπi/4ψµ . (C.13)

We will also use I, J, . . . as R-symmetry indices. Note that the gauge fixed supergravity
used in e.g. [81] includes an extra symmetric bosonic field tIJ such that

ξ̃I = tI
JξJ . (C.14)

The gravitino variation, in the matrix spinor notation of the previous section, reads

δψµ = Dµξ + i
4Tab

(
3ΓabΓµ − ΓµΓab

)
ξ − γµξ̃ , (C.15)

where
Dµξ ≡ ∂µξ + 1

4ωµ
abΓabξ + ξ

(
A(R)
µ

)T
. (C.16)

The variation of the dilatino can be found in [77]. A rigid background is a bosonic fixed
point of the supersymmetry transformations. Equivalently, it is a solution to the equations

δξ,ξ̃ψ
i
µ = δξ,ξ̃χ

i = 0 , (C.17)

for some spinors ξ, ξ̃ and some configuration of the fields in (C.11). The spinor ξ̃ can
always be solved for as

ξ̃ = 1
5Γµ

(
Dµξ + i

4Tab
(
3ΓabΓµ − ΓµΓab

)
ξ

)
. (C.18)

Note that other derivations of the 5d superconformal tensor calculus, such as [75] and
its followups or [73] and its followups, have a coupling to the antisymmetric tensor field
that is seemingly incompatible with the one used here. de Wit et al. explain that this is due
to different conventions for the F (4) algebra. Moreover, the various versions apparently all
produce the same Poincare supergravity when a vector multiplet is used as a compensator.
There is also an alternative Weyl multiplet called the dilaton Weyl multiplet which is de-
rived for instance in [75] and contains different auxiliary fields and different transformations.

C.3 Matter multiplet transformations

The superalgebra generated by a single Killing spinor pair ξ, ξ̃ includes the following
bosonic transformations

1. An infinitesimal diffeomorphism with parameter iv, where the vector vµ is given by

vµ ≡ ξ̄γµξ . (C.19)

2. An infinitesimal R-symmetry transformation acting as the following matrix on fun-
damental SU(2)R indices

ΛIJ ≡ 6iξ̄(I ξ̃J) . (C.20)

3. A gauge transformation with parameter sσ − ivµAµ, where s ≡ ξ̄ξ .

4. A Weyl transformation with parameter ω ≡ −2iξ̄ξ̃.
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We will continue using the notation for matter fields used in [23]. The matter fields in [77]
have therefore been renamed as follows

W there
M = Am , σthere = σ , Ωthere

i = eπi/4λI ,

Y there
ij = − i

2DIJ , Athere
i = qI , ζthere = e3πi/4ψ ,

(C.21)

which includes an obvious renaming of the spacetime and R-symmetry indices.
With these definitions, the transformations for vector multiplets in a rigid bosonic

background are

δAm = iξ̄IΓmλI , δσ = −ξ̄IλI ,

δλI = −1
2Γmn (Fmn − 4σTmn) ξI − iDmσΓmξI − iDIJξ

J − 2iσξ̃I ,

δDIJ = −2ξ̄(Iγ
aDaλJ) − 2

[
σ, ξ̄(IλJ)

]
+ 2ξ̃(IλJ) + iξ̄(IΓabTabλJ) .

(C.22)

The vector multiplet is off-shell closed.
The transformations for hypermultiplets in a rigid bosonic background are

δqAI = −2iξ̄IψA , δψA = ΓmξIDmq
AI + iξI (σq)AI + 3ξ̃IqAI . (C.23)

Indices A,B, . . . denote the pseudo-real gauge/flavor symmetry representation to which
the hypermultiplets belong. The invariant antisymmetric form for this representation is
denoted ΩAB, with ΩABΩBC = δA

C . The reality condition on the squark is

(q∗)IA = εIJΩABq
B
J . (C.24)

The transformations for the hypermultiplet are only closed on-shell. Off-shell closure
can be achieved, for a specific ξ, ξ̃ pair by introducing an auxiliary field FAI , and a spinor
ξ̂I such that

ξ̄I ξ̂
J = 0 , Lv ξ̂ + ξ̂ΛT = 0 . (C.25)

One can check that the solution space for these equations is two-dimensional. Let

δ̂ξ,ξ̃ψ
A = δξ,ξ̃ψ

A + ξ̂IF
AI , (C.26)

and define
δ
(
ξ̂IF

AI) = δ2
ξ,ξ̃
ψA + i

(
LvψA + ψAΛT) , (C.27)

then δ̂ξ,ξ̃ is off-shell closed and satisfies the correct algebra.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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