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High-resolution estimates of social 
distancing feasibility, mapped for 
urban areas in sub-Saharan Africa
Heather R. Chamberlain    ✉, Attila N. Lazar    & Andrew J. Tatem   

Social distancing has been widely-implemented as a public health measure during the COVID-19 
pandemic. Despite widespread application of social distancing guidance, the feasibility of people 
adhering to such guidance varies in different settings, influenced by population density, the built 
environment and a range of socio-economic factors. Social distancing constraints however have only 
been identified and mapped for limited areas. Here, we present an ease of social distancing index, 
integrating metrics on urban form and population density derived from new multi-country building 
footprint datasets and gridded population estimates. The index dataset provides estimates of social 
distancing feasibility, mapped at high-resolution for urban areas across 50 countries in sub-Saharan 
Africa.

Background & Summary
Since the start of the COVID-19 pandemic, public health measures intended to control disease spread have been 
used with near-global application. Amongst these measures, social distancing (also referred to as physical dis-
tancing) has been widely advised, with individuals required to maintain physical distance between themselves 
and others outside their household. Distances specified by governments have typically been between 1 and 2 
metres or 6 feet1. Social distancing guidelines or requirements have been adopted as a public health measure 
or non-pharmaceutical intervention (NPI), intended to slow or stop transmission, in nearly all countries glob-
ally during the COVID-19 pandemic. Universal application of such requirements assumes that social distanc-
ing is possible everywhere, however the feasibility of populations being able to comply with social distancing 
requirements can vary geographically, both between and within countries2,3. Contextual factors affecting social 
distancing feasibility include population density, urban form and the built environment and a range of socio-
economic factors, such as occupation, reliance on daily wages, shared water, sanitation and hygiene facilities 
or dependence on public transport. In urban areas particularly, high population and built densities, can mean 
social distancing is all but impossible in some locations2,4–6.

Locations where population density and urban form are constraints for social distancing, have not been 
systematically identified. Existing maps or datasets related to social distancing feasibility have been limited to 
individual cities or single countries at most, with approaches predominantly focussing on urban form and infra-
structure. For cities in a number of countries, maps considering pavement (sidewalk) width as a social distanc-
ing constraint for pedestrians have been developed, for example New York (https://www.sidewalkwidths.nyc/), 
London (https://www.underscorestreets.com/social-distancing) and various cities in the Netherlands (https://
covid19.social-glass.tudelft.nl/). These maps have been possible due to the availability of highly-detailed data 
on urban infrastructure, including pavement widths. Generally such data with sufficient spatial coverage is only 
available for individual cities or countries with advanced geospatial data systems.

Other approaches have been used to map and identify social distancing constraints in low- and 
middle-income countries. Macharia et al.7 developed a sub-national social vulnerability index for COVID-19 
for Kenya. Although this index doesn’t specifically consider social distancing feasibility, it includes measures 
related to socioeconomic deprivation, associated with difficulty in practising social distancing, such as informal 
employment and shared sanitation facilities, alongside the proportion of the population resident in informal 
settlement and internally-displaced person camps7. The index was applied at the sub-county level (administra-
tive unit level 2), highlighting sub-national variations in vulnerability, but not at the intra-urban scale. Bhardwaj 
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et al.8 used data on population density and estimates of building height, alongside access to WASH facilities 
to identify “hotspots for contagion and vulnerability” in Kinshasa, Cairo and Mumbai8. In identifying high 
risk locations, building height data were used to calculate an adjusted population density measure considering  
“livable floor space”, based on assumptions of the height of a floor. However, these adjusted population den-
sity estimates may be highly uncertain, given that the input gridded population datasets (from WorldPop or 
Facebook) do not consider building height in the spatial allocation of population to grid cells9. For informal 
settlements in South Africa, Gibson and Rush10 identified challenges in social distancing, based on the small dis-
tance between dwelling units. These studies utilised building outlines that were manually digitised from satellite 
imagery, and therefore were limited to a few locations due to data availability.

Given the identified data gap, this paper outlines an ease of social distancing index for sub-Saharan Africa, 
intended to identify locations where social distancing in urban areas is likely to be very difficult. The index 
incorporates residential population density and urban form metrics, which are calculated from new geospatial 
datasets available for sub-Saharan Africa, with index values mapped for small spatial units within urban areas. 
The geographic variation in social distancing feasibility highlighted by this dataset is relevant in planning disease 
response efforts, for both COVID-19 and future pandemic preparedness, and also can be beneficial for urban 
planning, development and risk identification. The datasets produced11,12 are available through the WorldPop 
Open Population Repository (https://wopr.worldpop.org/?/SocialDistancing).

Methods
To calculate ease of social distancing index values for small spatial units, the following steps were taken: 1) 
definition of urban extents; 2) creation of spatial units within urban extents; 3) calculation of the built score 
component of the index from building footprint data; 4) calculation of the population density score component 
of the index from gridded population data; and 5) calculation of the index values from the built score and popu-
lation density score components for each spatial unit. A schematic overview of this process is provided in Fig. 1.

Defining urban extents.  The ease of social distancing index has been calculated for urban areas in 50 countries/ 
territories/dependencies in sub-Saharan Africa. The index is calculated specifically for urban areas due to the high 
and growing proportion of the population resident in urban areas13,14, and there generally being greater social 
distancing constraints in urban settings. The urban areas for which index values have been calculated, are based 
on two GHSL (Global Human Settlement Layer) datasets: GHS-SMOD v2.015 and GHS Urban Centre Database 
(UCDB) 2015 v1.216. The GHS-SMOD dataset is a raster of settlement types, while the GHS-UCDB dataset pro-
vides locations (points and polygons) of urban centres. The GHS-UCDB urban centre polygons correspond to 
the urban centre (class 30) in the GHS-SMOD dataset. The GHS-UCDB dataset was used as the basis for selecting 
urban centres for inclusion in the index dataset, with the GHS-SMOD dataset used to define the extent of the 
urban area surrounding each urban centre.

The GHS-UCDB dataset includes a data quality field (QA2_1V); all urban centres in the GHS-UCDB data-
set classified as being true positives (QA2_1V = 1) were selected for inclusion in the index dataset. For these 
selected urban centres, the GHS-SMOD data was used to define the spatial extent of each urban area, for which 
index values were calculated. In defining urban extents, the intention was to ensure that the full urban area 
was included, as opposed to accurately delimiting the urban area. SMOD class values of 21–30 (peri-urban, 
semi-dense urban cluster, dense urban cluster, urban centre) representing urban/peri-urban settlement types 
were all considered to be urban, and the grid cells corresponding to these classes were reclassified to create a 
binary urban/not-urban raster. All grid cells in the binary urban raster that were spatially contiguous with an 
urban centre, were considered to be part of the urban area surrounding the urban centres. Given the relatively 
coarse spatial resolution of the GHS-SMOD data (1 km) and the potential growth in urban settlements since 
2015, the spatially contiguous urban grid cells were buffered by 3 km to try and ensure the full urban area was 
included. A distance of 3 km was chosen after testing a range of buffer distances and visually assessing the buff-
ered area against the urban extent visible in recent satellite imagery. Finally, a convex hull was created around 
each location of contiguous urban grid cells to create a smooth polygon boundary around the buffered grid 
cells. If convex hulls spatially overlapped, the urban areas within these convex hulls were considered to be a 
single urban area, and a new convex hull was created around the combined urban areas. In the case of urban 
areas being near national boundaries, national administrative boundaries were used to spatially clip the urban 
extents. Similarly for urban areas in coastal locations, urban extents were clipped to the coastline. In total, for the 
50 countries in sub-Saharan Africa covered by this dataset, there were 1,373 urban extent polygons covering an 
area of 239,050 km2, associated with 1,551 named locations in the GHS-UCDB dataset.

Defining spatial units within urban extents.  As the social distancing index dataset covers 50 coun-
tries, no sufficiently small administrative or statistical unit existed across all countries to be the unit of analysis 
within urban areas. Instead, small spatial units were created within each urban extent (Fig. 2), for which index 
values were calculated. The boundaries of the custom spatial units were defined by recognisable features as far as 
possible, such as roads, rivers and railways. Data on these linear features were supplemented by additional line 
and polygon features, such as the boundaries of land use types (e.g. military areas, airports, hospital grounds, 
golf courses). Data on all features used in defining the boundaries of the custom spatial units was extracted from 
OpenStreetMap17 and is detailed in Table 1. Similar approaches utilising OpenStreetMap (OSM) data to create 
spatial units based on recognisable features have been used in sub-Saharan African cities for studies on urban 
land use classification18,19, slum mapping20 and semi-automated approaches to create census enumeration units21.

The extracted features from OpenStreetMap (OSM) were intersected to create polygons. In many locations 
on the urban fringe, there was a sparsity of features or land use boundaries, meaning that the polygons created by 
intersecting features could be quite large. To address this, further efforts were made to subdivide large polygons 
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located on the urban fringe. Settlement extents22, classified as either BUAs (built-up areas) or SSAs (small settled 
areas), were used to identify locations on the urban fringe. Polygons which intersected the boundary of a BUA 
or SSA settlement extent, and were greater than 100,000 m2 in area, were considered to be large polygons on the 
urban fringe which should be further subdivided. For these selected polygons, if OSM data for residential areas 
was available, these were included as additional features to subdivide the existing polygons. The area of every 
polygon was then calculated. A minimum area constraint of 10,000 m2 (1 hectare) was applied; any polygons less 
than 1 hectare in area were merged with neighbouring polygons iteratively, until the area constraint was met. 
The resulting polygons were the spatial units of analysis for which the social distancing index is calculated, and 
are most representative of single street blocks, or groups of street blocks, in the urban centre.

Fig. 1  An overview of the data processing steps involved in estimating the ease of social distancing index for 
urban areas in sub-Saharan Africa. These steps consist of: (1) defining urban extents, (2) creating spatial units, 
(3) calculating the built score and (4) population density score for each spatial unit, and (5) from these scores, 
calculating the index values. The colours representing each step are used in the subsequent figures also.
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If an urban extent had fewer than 30 spatial units, the urban extent was excluded from the output dataset 
as it was considered to most likely not actually constitute part of an urban area. Such instances either occurred 
along national boundaries, where an urban extent polygon spanned the national boundary but significant urban 
settlement was only present in one country. Alternatively urban extents with less than 30 spatial units occurred 
where an urban centre was very small, and insufficient features in OpenStreetMap meant it was not possible to 
define suitable spatial units within the urban extent. A threshold of 30 spatial units was chosen following testing 
of a range of threshold values.

Calculating population density and urban form metrics.  Calculating estimates of population density 
requires data on the geographic distribution of population. Typically, population distribution data provides a 
static representation of population, for example population counts derived from censuses are based on residential 
address locations. The spatial distribution of population though is not static, and changes constantly as people go 
about their daily lives. Although census data are generally considered to be the standard source for population 
counts, the necessity of enumerating the population at their residential location means that the population distri-
bution derived from census data is inherently more representative of the population at night, than during the day23.  
During the daytime, populations are likely to be at school or work, running errands or undertaking other activi-
ties outside their residential location, altering the spatial distribution of population. During the COVID-19 pan-
demic, changes in population mobility and implementation of measures intended to reduce disease transmission, 
such as school closures, requirements to work from home and curfews, have also affected the spatial distribution 
of population24,25.

High-resolution data on population distributions is most commonly derived from censuses and therefore 
represent residential populations (e.g. gridded datasets from WorldPop). Data on other population distribu-
tions are available, although these vary in terms of their spatial coverage and resolution. Oak Ridge National 
Laboratory’s LandScan Global dataset26 represents ambient population at 1 km spatial resolution globally, 
LandScan USA27 provides daytime and nighttime population distributions for the USA, while Pop24723 provides 

Fig. 2  A schematic representation of the data processing steps involved in the creation of the spatial units for 
which the index is ultimately calculated.
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time-specific population distributions for England. Considerations around social distancing feasibility are 
not limited to residential settings, with social distancing a necessity in a wide-range of settings where other 
transmission-mitigating measures are not in place. However, given the availability of data on population distri-
butions with suitably high spatial resolution, and the general lack of additional transmission-mitigating meas-
ures in residential settings, this work focuses on social distancing feasibility considering residential population 
density.

The ease of social distancing index is calculated from metrics of residential population density and space 
occupied by buildings, calculated for each spatial unit (Fig. 3). Residential population density was calculated 
from WorldPop high-resolution gridded population count datasets28 with a spatial resolution of 3 arc seconds 
(approximately 100 m at the Equator). There are other gridded population datasets available with similar or finer 
spatial resolutions (e.g. GHS-POP or HRSL)29, however only WorldPop population datasets are constrained to 
grid cells with Ecopia building footprints. As the index relies on measures of both population density and space 
occupied by buildings (calculated from Ecopia building footprints), it made most sense to use gridded popula-
tion estimates that were spatially constrained based on the same building footprint data. WorldPop gridded pop-
ulation datasets are created primarily with two approaches: top-down and bottom-up estimation modelling30. 
The top-down approach creates gridded estimates through the spatial disaggregation of enumerated census pop-
ulation counts or projections for administrative units. In contrast, the bottom-up approach takes enumerated 
population counts for small areas, for example from household survey listings, and uses a geostatistical model 
to estimate population for all grid cells, including in unsampled locations30. Particularly for locations where 
population projections are uncertain due to a long time period having elapsed since the last census, bottom-up 
modelled population estimates are likely to provide a more realistic estimate of population counts and spatial 
distribution. For this reason, where WorldPop bottom-up population estimates are available, these have been 
used as the data source for the population density component of the ease of social distancing index. For coun-
tries where bottom-up estimates were not available, gridded population estimates produced using a top-down 
constrained approach were used instead.

Data/Format Purpose Source/Description of dataset Details of dataset

Urban centres/Point (vector) Defining urban 
extents

JRC Global Human Settlement Layer
- A global dataset of urban centres, represented as points

GHS (Global Human Settlement) Urban Centre Database 
2015 v1.216,53

Settlement types/Gridded (raster) Defining urban 
extents

JRC Global Human Settlement Layer
- A gridded dataset of settlement types at a spatial 
resolution of 30 arc seconds, with 8 classes (urban centre, 
dense urban cluster, semi-dense urban cluster, suburban/ 
peri-urban, rural cluster, low density rural very low density 
rural and water)

GHS (Global Human Settlement) - SMOD v2.0 
(Settlement Model grid)15,53

National administrative 
boundaries/Polygon (vector)

Clipping urban 
extents

CIESIN
- Polygons of national boundaries (administrative level 0),  
used in defining the extent of the gridded population 
datasets

National administrative boundaries, from WorldPop 
and Center for International Earth Science Information 
Network (CIESIN), Columbia University54

Coastlines/Line (vector) Clipping urban 
extents

OpenStreetMap
- Lines representing coastlines

Coastline features from OpenStreetMap: downloaded from 
https://osmdata.openstreetmap.de/data/coastlines.html

Linear and boundary 
features/Polygon/line (vector)

Defining spatial units 
for the index

OpenStreetMap
- Polygon and line datasets representing features of the built 
environment and landuse boundaries

Features from OpenStreetMap17:
- Roads, Railways, Waterways, Industrial, Cemetery, 
Military, Golf course, Park, Wetland, Water, Quarry, 
University, Hospital grounds, Reservoir, Residential - from 
geofabrik.de
- Mine, Airport, Landfill, Basin - from QuickOSM55 
QGIS56 plugin

Settlement extents/Polygon (vector) Defining spatial units 
for the index

CIESIN GRID3
- Polygons representing settlement extents, based on 
grouping of building footprints. Settlement extents are 
classified as built-up areas (BUAs), small settled areas 
(SSAs) or hamlets.

GRID3 Settlement Extents version 01, alpha22*
*Full details of each national dataset is provided in 
Appendix C of the Ease of Social Distancing dataset release 
statement11

Population/Gridded (raster) Index calculation

WorldPop
- Gridded datasets of estimated population counts at a 
spatial resolution of 3 arc seconds (0.0008333333 decimal 
degrees or approximately 100 m at the Equator). Available 
as national datasets.

Gridded population estimates, derived from projected 
population counts for 2020 produced using top-down 
disaggregation methods and constrained to settled grid 
cells57 with the exception of:
- Sierra Leone58, Mozambique59, Zambia60, Burkina Faso61, 
Ghana62, Nigeria63, South Sudan64, Democratic Republic 
of the Congo65*
*The DRC bottom-up estimates only cover 5 provinces in the 
west of DRC. Top-down population estimates57 were used for 
the remaining 21 provinces

Grid cell surface area/Gridded 
(raster)

Index calculation 
(to convert counts to 
density)

WorldPop
- Gridded dataset (global coverage) with values as the 
surface area of each grid cell

Grid cell surface area dataset from WorldPop and Center 
for International Earth Science Information Network 
(CIESIN), Columbia University54

Building footprints/Polygon (vector) Index calculation
Ecopia-Maxar (Digitize Africa)
- Polygons of building footprints, extracted from high-
resolution satellite imagery. Available as national datasets 
for sub-Saharan African countries

Building footprints created by Ecopia using automated 
feature extraction of building roofs from Maxar high-
resolution satellite imagery, as part of Digitize Africa52

Table 1.  The input datasets used in creating the mapped index outputs for urban areas in sub-Saharan Africa, 
including the data file format, purpose, source and description.
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The WorldPop top-down approach involves dasymetric modelling of census counts or projections, using 
a Random Forest model to estimate a weighting layer from a range of ancillary gridded covariates31. In the 
“constrained” approach, a binary settlement mask is used to constrain the disaggregation to grid cells iden-
tified as having one or more buildings present. In the case of top-down constrained population datasets for 
sub-Saharan African countries, the binary settlement mask is based on Ecopia building footprints. Ancillary 
covariates derived from the building footprints, such as building count, building area, variation in building area 
and distance to edge of settled area are also included as inputs to the Random Forest model (used to estimate the 
dasymetric weighting layer). Further details of the gridded population datasets are provided in Table 1.

To calculate a mean population density for each spatial unit, a population density raster was first created for 
each country by dividing the grid cell values in the population count raster, by the surface area for each grid cell, 
maintaining a spatial resolution of 3 arc seconds. From the density raster, an estimate of mean population den-
sity was then calculated for each spatial unit, using zonal statistics. In the event that a spatial unit was of a size or 
shape such that there were no grid cell centroids of the population raster located within it, a mean zonal statistic 
could not be calculated. Instead, for the centroid of the spatial unit, an estimate of mean population density 
was calculated by interpolating neighbouring grid cell values. For spatial units in close proximity to a national 
boundary, there were some locations where it was not possible to calculate a mean population density, due to 
differences in the spatial extents of datasets resulting in missing population estimates. Where this occurred, 
spatial units have been assigned a no data value (−99) for the population density score.

The second metric used in the index was a measure of space occupied by buildings, calculated from building 
footprint polygons. Developments in computing power and the increasing availability of very high-resolution 
satellite imagery, have enabled new datasets of building footprint polygons to be produced using feature extrac-
tion techniques. For sub-Saharan Africa, existing building footprint datasets include those from Microsoft 
(https://www.microsoft.com/en-us/maps/building-footprints), Google (https://sites.research.google/
open-buildings) and Ecopia (https://www.ecopiatech.com/global-feature-extraction). The differences between 
these datasets, and the extent to which they can be used interchangeably has not been systematically explored 
and this will be a focus of future work. Only the Ecopia building footprints have coverage for all countries in 
sub-Saharan Africa and hence were used in calculating the built metric of the social distancing index.

For each spatial unit, the proportion of space occupied by buildings was calculated by summing the total 
building footprint area, divided by the area of the spatial unit. In instances where building footprints spanned 
more than one polygon, the building footprint polygon was split into two or more smaller polygons along the 

Fig. 3  A schematic representation of the data processing steps involved in the calculation of the built and 
population density scores, and the subsequent calculation of the ease of social distancing index values for each 
spatial unit.
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boundary of the spatial unit. This metric was solely derived from building footprint data and does not consider 
building height or associated floor space. To incorporate measures of available floor space would require detailed 
building height data for all cities across sub-Saharan Africa, which was not available. In assessing social distanc-
ing feasibility, estimating available floor space is important in areas where high population densities are asso-
ciated with high-rise buildings which have a relatively small building footprint. In the context of sub-Saharan 
African urban areas, the prevalence of high-rise buildings varies but they are typically not the norm for resi-
dential dwellings. More commonly high population densities are associated with informal settlement areas5, 
where building height is commonly one- or two-storeys. Whilst data on building height were not available to 
incorporate into the index, a new urban morphological dataset32, available for major cities globally, provides 
a classification of urban form which considers building height. Comparing the ease of social distancing index 
values with this urban morphological classification for 12 cities (Supplementary Information Fig. 1), indicates 
that for the majority of cities, areas of high- and mid-rise buildings are not associated with high index values.

To convert the estimates of mean population density and proportion of space occupied by buildings into 
scores, the estimates were then classified with values assigned between 1 and 10. Whilst this is an arbitrary and 
subjective choice of classes, the values are easy to interpret and it provides a level of detail that adequately distin-
guishes between different levels. Values for the proportion of space occupied by buildings in a spatial unit were 
assigned values between 1 and 10; spatial units in which 10% or less of the space was occupied by buildings were 
assigned a value of 1, greater than 10% but less than or equal to 20% were assigned a value of 2. Classified values 
were assigned in this linear fashion up to a value of 10, which was assigned where over 90% of a spatial unit was 
occupied by buildings. If a spatial unit had no building footprints within it, then a value of 0 was assigned (Fig. 4).

Mean population density values were classified based on the population density that is possible with differ-
ent distancing parameters. To estimate population density with a range of distancing parameters, an idealised 
model of perfect spacing between people, based on a hexagon tessellation was used. In this conceptualisation, 
the hexagon represents the space available for one person, with the person considered as the hexagon centroid 
(Fig. 4). The distance between the centroid of a hexagon and the midpoint of a side is termed the apothem (d), 
with the distance between centroids of neighbouring polygons being twice the apothem length. Considering a 
social distancing requirement of 2 m distance, for all individuals in a spatial unit to maintain 2 m from each other, 
whilst being able to move, an apothem of 3 m is required. This distance ensures that a person can move 2 m in any 
direction, whilst still maintaining a distance of 2 m from any other person. The area of a hexagon with an apothem 
of 3 m (i.e. the area needed for one person to maintain 2 m distance whilst being able to move) is 31.18 m2, which 
corresponds to a population density of 32,075 people per km2. Spatial units with a mean population density of 
greater than or equal to 32,075 people per km2 are assigned a value of 10 - the maximum population density score.

Population density scores were assigned to the remaining population density estimates using threshold val-
ues derived for increased spacing between people. The hexagon apothem was increased in increments of 1 m, up 
to 11 m. A hexagon with an apothem of 11 m covers an area of 419.16 m2 for which the corresponding maximum 
population density is 2,386 people per km2. A value of 1 was assigned to spatial units with non-zero population 
density estimates less than 2,386 people per km2. The population density thresholds are outlined in Fig. 4. Any 
spatial unit with 0 estimated population was assigned a value of 0. The calculation of population density thresh-
olds are theoretical and do not account for obstructions which may be present and affect the space available for 
individuals to move within and distance from each other. The distances used to calculate population density 
thresholds will in reality most likely be reduced, due to the space within built environments rarely being open 
and free from obstructions.

Calculating the social distancing index.  The index value for each spatial unit was calculated as the mean 
value of the population and built scores, resulting in index values ranging from 0 to 10. An index value of 10 
would indicate a very high population density (≥32,075 population per km2) and a very high density of buildings 
(>90% of spatial unit area is occupied by buildings); a combination of factors which would mean that social dis-
tancing is extremely difficult. In contrast, an index value of 1 would indicate a relatively low population density 
and considerable space available around buildings, likely associated with fewer physical constraints for social 
distancing. A value of 0 indicates that a spatial unit has no buildings and no estimated population, and conse-
quently no social distancing constraints are anticipated. A no data value (−99) was assigned for any spatial units 
which had a no data value for the population score. Mapped index values for West Africa are shown in Fig. 5, with 
detailed maps included for the capital cities of Sierra Leone, Ghana and Cameroon.

Data Records
The ease of social distancing index datasets11,12 for urban areas in 50 sub-Saharan African countries are 
openly available to download from the WorldPop Open Population Repository (https://wopr.worldpop.org/?/
SocialDistancing) in Shapefile format. To download files for multiple countries at once, we recommend using the 
WOPR API or wopr R package (see relevant tabs at https://apps.worldpop.org/woprVision/ for guidance). The 
datasets can also be viewed interactively through the GRID3 Data Hub (https://data.grid3.org/). Further details 
of the datasets, including a description of each field, are outlined in Table 2.

Technical Validation
The ease of social distancing index values are calculated from metrics derived from gridded population estimates 
and building footprints. These input datasets were already checked by the data producers to ensure they comply 
with the intended quality-standards. In terms of the building footprints, the data producers implemented both 
automated checks and a manual review process. This includes the manual review of a randomly-selected area of 
50 km2, for every 1000 km2 of processed imagery33, and checks to ensure that the dataset meets specified quality 
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requirements (≥90% valid interpretation)34. Gridded population datasets are harder to validate, particularly at 
fine spatial resolutions or at the grid-cell level29. Gridded population datasets for sub-Saharan African countries, 
produced using the WorldPop top-down constrained approach, utilise the best-available census-derived data 
on population totals, carefully selected geospatial covariates and building footprint datasets. Output datasets 
are checked to ensure that grid cell values sum to the administrative unit totals used as input for the dasymetric 
modelling, have a sufficiently high explained variance (e.g. >0.8) and spot-checked through visual compari-
son with satellite imagery basemaps. For WorldPop gridded population datasets produced using bottom-up 
modelling approaches, similar geospatial covariates and building footprint datasets are used, with high-quality 
population enumeration datasets, typically collected in partnership with national statistical offices. The result-
ing gridded population datasets include uncertainty estimates at the grid cell level, and for aggregated totals.  
A review process involving calculating various goodness of fit metrics, cross-validation, comparison of the out-
puts with alternative population data sources and recent high-resolution satellite imagery is undertaken. Where 
possible the estimates are also reviewed by staff from national statistical offices. In the context of this work, 
additional visual checks of mapped input datasets were implemented. For the resulting index values, mapped 
outputs were checked on a country-by-country basis, and the statistical distributions of index values reviewed. 
Any issues identified in this process are listed in the data release statement Appendix E11,12.

Fig. 4  The population density and built scores are evenly weighted in the index, calculated as the mean of 
the two scores (top). Examples of the spacing of buildings and population for each score value is included, 
with the built score shown with building footprints representing both a single and multitude of buildings. The 
population density score is calculated based on a hexagon tessellation with a range of distancing parameters, 
with the classification of built and population scores provided (bottom).
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It is difficult to validate if the ease of social distancing index values reflect the reality of social distancing 
feasibility within and between urban areas. However, in the context of urban sub-Saharan Africa, popula-
tions in slums and/or informal settlements are recognised as experiencing challenges in social distancing2–6. 
Consequently, we would expect that high index values would be associated with these types of settlements. 
UN-Habitat characterises informal settlements as residential areas where inhabitants do not have security of 
tenure, often have limited access to basic services and infrastructure, with housing that may not meet relevant 
building and planning regulations, and may be located in environmentally-hazardous locations35. However, 
informal settlements take many forms36 and there is no accepted formal definition of slums or information 
settlements37. Locations of informal settlements and slums are also not routinely mapped in a standardised way, 
and are often home to populations that can be excluded from official statistics38,39.

Mapped datasets of informal settlements do exist for some cities, for example informal settlements in 
Cape Town, South Africa are available as mapped extent polygons (https://africaopendata.org/dataset/
city-of-cape-town-gis-data). Recent work by the International Growth Centre (IGC) with Ordnance Survey 
(OS), characterised informal settlements in Lusaka, Zambia, with detailed maps of settlement types40. These 
spatial datasets provide mapped locations of informal settlements, but are limited in their coverage to individual 
cities and cannot be assumed to be consistent in the definition used in mapping informal settlements. The ease 
of social distancing index values, and the associated population density and built scores, were compared with 
the maps of informal settlements in Lusaka and Cape Town (Fig. 6). Spatial units in these cities were classified 
as one of two settlement types: informal settlements or other (not informal settlements). For Lusaka, the IGC/
OS detailed maps of settlement types provided information at the building level; the majority settlement type 

Fig. 5  Mapped ease of social distancing index outputs are shown for West Africa, with examples for Freetown, 
Sierra Leone (left column), Accra, Ghana (centre column) and Yaoundé, Cameroon (right column). The lower 
panes show larger-scale maps (middle rows) with examples for locations with higher index values, shown both 
with the mapped index values and the spatial units overlaid with Maxar satellite imagery from 2018–2020 
(bottom row). The higher index values (paler colours) indicate greater expected difficulty in practising social 
distancing.
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for each spatial unit was determined and reclassified to the binary informal settlement classes. In contrast, the 
informal settlement dataset for Cape Town was less spatially-detailed and consisted of polygons representing 
informal settlement extents. We took a conservative approach and considered any spatial unit with 50% or 
more of its area within a settlement polygon as being an informal settlement. For spatial units within the areas 
considered to be informal settlements (“Informal”), the proportion of spatial units with each combination of 
population density and built scores was calculated, and compared against those spatial units in the areas that are 
not classified as informal settlements (“Other”) within the same spatial extent. An additional comparison with 
areas classified as planned residential in Lusaka, is shown in Supplementary fig. 2.

Figure 6 shows that a greater proportion of the spatial units in areas of informal settlement had higher pop-
ulation density and built score values, than spatial units in other types of settlement. For Lusaka, 92.3% of 
spatial units in informal settlements had a population density score of 7 or greater, while for other settlement 
types, only 35.8% of spatial units did. Similarly for Cape Town, 84.9% of spatial units in informal settlements 
had a population density score of 7 or greater, while for other settlement types, only 20.4% of spatial units did. 
Focussing on the highest population density scores, 58.8% and 66.7% of spatial units in informal settlements 
in Lusaka and Cape Town respectively, had a population density score of 9 or greater with the same score only 
for 16.6% (Lusaka) and 7.4% (Cape Town) of spatial units in other settlement types. Built score values are con-
sistently lower than population density score values, but higher values are still observed for spatial units within 
informal settlements than other settlement types. 45.4% of spatial units within informal settlements in Lusaka 
and 69.7% of spatial units within informal settlements in Cape Town had a built score value greater than or equal 
to 4. In comparison, only 18.9% and 31.6% of spatial units in other settlement types in Lusaka and Cape Town 
respectively had a built score value greater than or equal to 4. The higher score values found in informal settle-
ment locations are reflected in the index values also, with 61.7%/73.4% of spatial units in informal settlements 
(Lusaka/Cape Town) having an index value of 6 or greater, compared to 19.3%/12.0% of spatial units in other 
settlement types (Lusaka/Cape Town). Examining index scores for areas of informal settlements in Lusaka and 
Cape Town, confirms that high index values, indicating greater difficulty in social distancing, are found in loca-
tions where social distancing is recognised as being more difficult. This comparison would ideally be repeated 

File/description Variables

XXX_SocialDistancing_v1_0_index Dataset of spatial units 
(polygons) within urban areas, with index values calculated for 
each spatial unit. The population density and built score values are 
also included as attributes11,12

uext_ID: ID of the urban extent. Common ID which can be used to link with the XXX_SocialDistancing_
v1_0_urban_extents and XXX_SocialDistancing_v1_0_urban_points files.

adm0_ISO3: The alpha-3 letter ISO-3166 code of the country dataset

UNIT_AREA: The area of the spatial unit [metres squared]

BUILT_AREA: The summed area of all building footprint polygons within the spatial unit [metres 
squared]

BUILT_PROP: The proportion of the spatial unit that is built, calculated as BUILT_AREA/UNIT_AREA

NBUILTPROP: The proportion of the spatial unit that is not built, calculated as 1-BUILT_PROP

POP_DENS: The mean population density (population per kilometres squared) of the spatial unit, 
calculated for all grid cells that have their centroid within the spatial unit

BUILTscore: Built score (0–10), classified based on the BUILTPROP field. A value of 10 corresponds to 
over 90% of the unit area being occupied by buildings. A value of 1 corresponds to less than 10% of the unit 
area being occupied by buildings, but with at least 1 building present. A value of 0 indicates a spatial unit 
with no buildings present.

POPscore: Population density score (0–10), classified based on the POP_DENS field. A value of 1 
corresponds to low population density and a value of 10 corresponds to very high population density.  
A value of 0 indicates a spatial unit where the mean population density is 0 people per kilometre squared. 
A no data value (−99) indicates missing data.

INDEXvalue: Ease of social distancing index value (0–10), calculated as the mean of the BUILTscore and 
POPscore field values. A value of 1 is indicative of relative ease of social distancing due to low population 
density and ample space around buildings. A value of 10 is indicative of high difficulty in maintaining 
social distancing due to very high population density and very little space around buildings. A no data 
value (−99) indicates missing data.

XXX_SocialDistancing_v1_0_urban_extents The urban extents 
within which spatial units are defined, and for which index values 
are available11,12

uext_ID: ID of the urban extent. Common ID which can be used to link with the XXX_SocialDistancing_
v1_0_urban_extents and XXX_SocialDistancing_v1_0_urban_points files.

adm0_ISO3: The alpha-3 letter ISO-3166 code of the country dataset

XXX_SocialDistancing_v1_0_urban_points Points representing 
urban centres, extracted from the GHS Urban Centre Database 
2015 v1.2. Names of urban centres are included as attributes11,12

PNT_LAT: Latitude of urban centre point location (decimal degrees)

PNT_LON: Longitude of urban centre point location (decimal degrees)

adm0_NAME: Name of country

adm0_ISO3: The alpha-3 letter ISO-3166 code of the country dataset

urb_NAME: Name of urban centre

uext_ID: ID of the urban extent. Common ID which can be used to link with the XXX_SocialDistancing_
v1_0_urban_extents and XXX_SocialDistancing_v1_0_urban_points files.

Table 2.  Details of the output data files of the ease of social distancing index. Files are available for each 
country, identified by the first three letters in the file name (XXX) being the alpha-3 letter ISO-3166 code of 
the country dataset. A full list of ISO codes and corresponding country names is available in Appendix 1 of the 
dataset release statement.
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across all urban extents in the ease of social distancing index dataset, but this is not possible given the limited 
mapped data on informal settlement extents.

Gibson and Rush10 assessed social distancing feasibility by calculating the distance between buildings in two 
informal settlements in Cape Town. In both settlements: Masiphumelele and Klipfontein Glebe, it was iden-
tified that social distancing would be very difficult given the dense arrangement of buildings10. Settlements 
with these names are included in the Cape Town informal settlement dataset described previously, however the 
spatial extents of the settlements differ and only overlap for the settlement of Masiphumelele. The ease of social 
distancing index values for spatial units in Masiphumelele are generally high (minimum: 8, maximum: 8.5); 
the index values are in agreement with Gibson and Rush’s findings for Masiphumelele. For the settlement of 
Klipfontein Glebe only a qualitative assessment was carried out due to the spatial mismatch in the area identified 
as Klipfontein Glebe. The area considered to be Klipfontein Glebe in Gibson and Rush’s work did not have par-
ticularly high index values. The low index values for this area are driven by low population density scores, whilst 
built scores remain relatively high. Reviewing the values of the gridded population dataset for Klipfontein Glebe 
shows surprisingly low values given the number and density of built structures. The gridded population esti-
mates used in calculating index values for South Africa are top-down estimates (i.e. disaggregated from census 
projections). The discrepancy between the population score and the built score may be the result of a potential 
under-enumeration of the population in this area during the census or growth of settlement since the last census. 
This is consistent with the findings of Thomson et al.41 who identified underestimates of population in gridded 
datasets for slum areas in Nigeria and Kenya. Future work to improve the accuracy of gridded population esti-
mates in informal settlements, such as the development of bottom-up modelled estimates42,43, will likely benefit 
derived datasets such as the ease of social distancing index.

Usage Notes
The ease of social distancing index datasets provide estimates of social distancing feasibility for urban areas 
across sub-Saharan Africa. The index values are calculated for small spatial units, providing mapped estimates 
at high spatial resolution. The datasets are available to download in Shapefile format and users can work with 
these in Geographic Information Systems (GIS) software or other software with spatial analysis capabilities. 
These datasets can support a range of applications, both directly associated with COVID-19 response and more 
broadly related to public health, urban planning and accessibility. For example, an analysis to identify locations 
with poor access to COVID-19 testing, could also consider where social distancing is most difficult as loca-
tions with both poor access to testing and difficulty in social distancing may be susceptible to rapid community 
transmission that is not detected through standard testing programmes. In such locations, infected individuals 
are unlikely to be able to effectively self-isolate at home and therefore to prevent further community trans-
mission, support and provision of accessible facilities nearby to self-isolate are likely needed5. Given potential 
differences in testing- or treatment-seeking behaviour, the ease of social distancing index may be beneficial in 
planning sampling frames for COVID-19 seroprevalence surveys in terms of stratification by neighbourhoods 
or settlement types. The index datasets may also have a role in community advocacy, for example in provid-
ing quantitative data and mapped outputs to communities experiencing difficulties in social distancing and 
associated challenges with overcrowding. Aside from the COVID-19 pandemic, the ease of social distancing 
index can be useful in identifying locations susceptible to other risks. Locations with high population densities 
and overcrowding, particularly when combined with poor ventilation, can provide conditions favourable for 
transmission of other airborne infectious diseases, such as influenza, tuberculosis or measles44. Other physical 
hazards are also a concern in such locations; for example, buildings in close proximity and constructed from 
flammable materials are at particular risk of rapid fire spread - conditions that are commonly found within 
informal settlements10.

Fig. 6  Considering all spatial units within the urban extents of (a) Cape Town, South Africa and (b) Lusaka, 
Zambia, the population density score (POPscore) is plotted against the built score (BUILTscore). Spatial units 
are classified according to settlement type, as either being within an informal settlement (yellow) or not, i.e. all 
other locations (blue). The size of the circle denotes the proportion of spatial units with each combination of 
POPscore and BUILTscore values in the two settlement types.
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The following limitations have been identified with the ease of social distancing datasets. Firstly, the index is 
calculated from data on urban form and population density to capture factors affecting social distancing feasi-
bility at a high spatial resolution. The building footprint data were created through automated feature extraction 
of satellite imagery, and represent the spatial extent of buildings but do not include information on building 
height or use (e.g. whether the building is used for residential purposes). The imagery used in the extraction of 
the building footprints was acquired over multiple years. Greater than 80% of the imagery for the area covered 
by the ease of social distancing index is from 2018 or 201945, however some imagery therefore predates 2018, 
and cloud cover in the satellite imagery may introduce false negatives into the building footprint datasets. The 
time point of the input gridded population datasets also varies. For the majority of locations where WorldPop 
top-down population datasets based on projected census figures were used, the projected estimates were for 
2020. For locations where other population estimate datasets have been used (Burkina Faso, Ghana, Nigeria, 
Mozambique, South Sudan, Sierra Leone, Zambia and the Democratic Republic of the Congo), the time point 
of the population estimates varies between 2015 and 2019 as estimates were only available for a single year. 
Population density was estimated from a single dataset for each country, however other gridded population 
datasets at similar spatial resolutions are available29. Between datasets, there can be marked variation in esti-
mates of population at the grid cell level29,41,46,47. This is potentially a considerable source of uncertainty for anal-
yses using gridded population datasets, including the ease of social distancing index. Future work will explore 
alternative datasets and potential methods for integrating multiple datasets.

Secondly, the gridded population datasets provide estimates of residential or nighttime population density. 
Given that significant diurnal population movements occur within cities, the index values may well change if 
estimates of daytime population density were used instead. There is however a lack of datasets representing 
daytime population distributions within urban areas, e.g. LandScan USA27, Pop24723 and Batista e Silva et al.48 
provide daytime population estimates, but are limited to the USA, England and Europe respectively. Other data 
on population mobility such as call detail records (CDRs) from mobile phones or Facebook mobility data, could 
be used to capture these different spatial distributions where available (e.g.24,49,50). Population movements that 
occur at particular times and in particular places may also influence social distancing feasibility, for example 
transport hubs and markets. In these locations large numbers of people can congregate at certain times, and 
integrating data on population mobility could help identify such locations.

Thirdly, in addition to population density and urban form, socioeconomic factors influence social distancing 
feasibility, however accurate data on these factors which is georeferenced at a granular level is rarely available. 
Socioeconomic factors such as employment in the informal sector/reliance on daily wages, use of communal 
WASH facilities and dependence on crowded public transport can have a multiplicative effect in increasing 
difficulty in social distancing. Conversely, a secure income source from employment which it is possible to do 
whilst working from home, can increase the feasibility of social distancing. Such individual or community-level 
factors will also influence social distancing feasibility. As the index values are solely based on estimates of pop-
ulation density and urban form, which themselves have their own limitations, the dataset should be considered 
as one source to guide response efforts, but should not be relied on as the sole basis for decision-making. Finally, 
the ease of social distancing index dataset is limited in its spatial coverage to urban areas in 50 countries in 
sub-Saharan Africa. This index has been developed with these contexts in mind, but social distancing challenges 
will also be present in smaller towns and some rural locations within the countries covered by the dataset. Future 
work will look to expand the coverage of the index datasets, both outside major towns and cities, through the 
development of a gridded version of the index, and to a greater number of countries. We will also look to incor-
porate additional factors, for example data on building height, and explore alternative sources for calculating 
population density, including self-reported slum population values.

Code availability
The code for data processing and analysis was written in Python (version 3.6.9), using ArcPy in an ArcGIS 
Notebook with ArcGIS Pro (version 2.5.1)51. The DigitizeAfrica building footprints52 used in creating the output 
index for urban areas in sub-Saharan Africa are available for humanitarian purposes on request from Ecopia 
(https://www.ecopiatech.com/). Similar datasets for some countries are openly-available, such as Microsoft 
building footprints or Google Africa Open Buildings. The code used to create the spatial units and calculate the 
index values described in this paper is available to download from GitHub, in the following repository: https://
github.com/heatherchamberlain/SocDistIndex.
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