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Speech-in-noise performance in hearing-impaired listeners assessed using evoked
responses and enhanced using tactile stimulation

by Samuel William Perry

Hearing aid and cochlear implant users struggle to understand speech in noisy places,
such as classrooms and busy workplaces, with their performance typically being sig-
nificantly worse than for normal-hearing listeners. This thesis details development of
two new methods for improvement of speech-in-noise performance outcomes. The first
addresses shortcomings in current techniques for assessing speech-in-noise performance
and the second proposes a new intervention to improve performance.

Chapters 3 and 4 present modifications to a new electrophysiological assessment method,
using the temporal response function (TRF), for prediction of speech-in-noise perfor-
mance. The TRF offers information not provided by behavioural speech-in-noise mea-
sures (the gold standard for speech-in-noise research and clinical assessment), which
may be used for automated intervention fitting and further analysis of the mechanisms
of speech-in-noise performance. Alterations to methodology for applying the TRF are
proposed, which may provide the groundwork for further development of the TRF as a
method for assessing speech-in-noise performance.

Chapters 5 and 6 investigate the efficacy of a new intervention to improve speech-in-noise
performance in cochlear implant users by providing missing sound-information through
tactile stimulation on the wrists. This section focuses on developing and testing initial
prototype devices that could rapidly be adapted for real-world use. These prototypes
represent the first step towards the realisation of a wearable device, with accompanying
results demonstrating the potential for their use in improving speech-in-noise perfor-
mance.

This thesis highlights two techniques that could be further developed for assessing and
enhancing speech-in-noise performance, and outlines future steps to be taken for the
realisation and combination of these techniques for improved treatment of the hearing
impaired.
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1

Chapter 1

Introduction

Outside of the laboratory, speech is rarely encountered in isolation. It is typically ex-
perienced in suboptimal conditions, competing with a variety of background noises. As
one of the most important acoustic signals encountered in everyday life, a person’s abil-
ity to understand speech in background noise can have a significant impact on their
ability to communicate (Carhart and Tillman, 1970; Dubno et al., 1984; Mattys et al.,
2012), affecting academic ability, workplace performance and social interactions (Shield
and Dockrell, 2008; Sullivan and Carrano, 2015; Dobie and Van Hemel, 2004). Poor
speech-in-noise performance is one of the most common complaints of individuals with
hearing loss (Kochkin, 2000; Plomp, 1986; Dubno et al., 1984) and is typically caused by
pathologies or lesions in the auditory system (as described in Section 2.1). High quality
speech-in-noise performance assessment and interventions are therefore key to achieving
improved benefits for patients with hearing loss.

Clinical assessment of speech-in-noise typically relies on behavioural testing to measure
a patient’s performance. Patients are assessed by playing speech stimuli in background
noise and measuring their ability to repeat what was heard. This provides a quick and
easy to administer method to assess the benefits of a hearing assistive device. These
tests also offer additional insight to that of standard tests such as pure tone audiometry
(PTA), by providing a more direct measure of the communication difficulties experienced
by the patient (Taylor, 2003). However, there are also several limitations to these
tests. First, they provide little information about the underlying cause of speech-in-
noise performance issues (such as whether the issue is as a result of a conductive or
senorineural hearing loss — see Section 2.1 for details). This limits their use in diagnosis
of hearing issues, as additional tests are required to determine the cause. Speech-in-noise
test results also offer minimal indication of how to adjust an intervention to better suit
the patient, beyond the patient’s own subjective responses. Again, additional tests (such
as PTA) are therefore required for the fitting procedure, limiting speech-in-noise tests to
be used primarily for verification of a fitting. Finally, speech-in-noise tests require active
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participation from the patient, making them unsuitable for certain groups of patient,
such as children and those unable to respond (Anderson and Kraus, 2010).

Evoked responses are an alternative objective method that measures synchronous elec-
trical neural activity in response to sensory stimulus. They have not currently been
developed for clinical assessment of speech-in-noise performance, but have been demon-
strated as a potential alternative measure (Vanthornhout et al., 2018; Anderson and
Kraus, 2010).

Evoked responses have a number of benefits over behavioural measures that make them
a viable candidate for an alternative measure of speech-in-noise performance. First, they
don’t require direct user interaction, so may be developed as an appropriate measure
for those who are unable to respond behaviourally. This may be of particular benefit
for assessing infants, in order to appropriately fit a hearing intervention earlier than
is possible with behavioural measures. Evoked responses may also provide additional
insight on the neural mechanisms that affect speech-in-noise performance. Additional
information may lead to more informed optimisation of current hearing assistive de-
vices. For example, a better understanding of the types of acoustic features that are
being poorly transmitted along the auditory pathways, may allow clinicians to tune the
patient’s assistive device accordingly.

Evoked responses also have application in development of new alternative interventions
for addressing speech-in-noise issues issues (Ding and Simon, 2014; Vanthornhout et
al., 2018). By embedding electrodes in hearing assistive technology, it may be possible
to measure responses in real-time. This would allow for on-the-fly tuning of hearing
interventions based on the neural activity of the patient.

There are a number of limitations that should be addressed in the realisation of evoked
responses as a viable clinical speech-in-noise measure. In particular the testing time
needed to record evoked responses is considerably longer than that for behavioural mea-
sures. This will need to be reduced for a clinical implementation of any proposed evoked
response methods, given the limited time available for hearing intervention fitting in
clinic. Evoked response based methods are also more cumbersome, using multiple elec-
trodes in addition to the headphones/loudspeaker and button required for behavioural
measures. This will also need to be reduced for clinical implementations, as use of many
electrodes may cause issues, particularly with uncooperative patients such as infants.
Finally, it should be noted that otoacoustic emissions are an alternative measure of
hearing performance that offer objectively assess outer and middle ear function. This
technique is used widely in clinics, in particular for assessment of newborns (Akin-
pelu et al., 2014). The specific mechanism (cochlear amplification) that this technique
measures limit’s their applicability in providing a complete speech-in-noise assessment
method. For these reasons, this thesis will focus on the application of evoked responses,
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given their ability to assess the auditory system from brainstem to cortex (as detailed
in the following Section 2.2.2).

In addition to the effective measurement of speech-in-noise performance, an effective
intervention must be provided to address the patient’s performance issues. Current
clinical interventions, such as hearing aids and cochlear implants, are typically employed
to counter these issues. Whilst these interventions are effective in many cases, they
do not provide a complete solution, with some patients still experiencing significant
issues (Fagan, 2015; Wilson, 2008). This is partially due to the biological limitations
of the damaged auditory system and the technological limitations of the interventions.
Research into the use of multi-sensory interventions, such as electro-haptic stimulation
(a technique that combines the electrical stimulation of a cochlear implant with haptic
stimulation provided on a patient’s wrists) and haptic aids, is a potential alternative to
address some of the limitations of current interventions. These methods aim to provide
information not transmitted by hearing based intervention, via alternative senses such
as touch. It has been suggested that by augmenting hearing with haptic stimulation,
it may be possible to improve a listener’s ability to recognise speech in background
noise (Fletcher, 2021a; Fletcher et al., 2020b; Fletcher et al., 2018).

This thesis has two primary aims. The first is to explore the efficacy of evoked responses
for assessment of speech-in-noise performance. The second is to explore the efficacy
of electro-haptic stimulation for treatment of speech-in-noise performance issues. Com-
bined, these areas have the potential to provide the basis for a new, objectively optimised
alternative to current hearing assistive devices.
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Chapter 2

Background

This chapter outlines current research relevant to the development of a new electrophysi-
ologically -based speech-in-noise assessment and haptics-based intervention. Section 2.1
will first outline the physiology of the auditory system that influences a person’s speech
in noise performance, as well as the forms of pathologies and lesions that may lead to a
reduction in a person’s speech-in-noise performance. The relative merits of behavioural
and electrophysiological measures of speech-in-noise performance are discussed in detail
in Section 2.2. Key considerations will be outlined for the development of both practical
clinical tests, as well as tests for in-lab research. Section 2.3 will then outline current
clinical interventions, such as hearing aids and cochlear implants which are employed to
counter issues with speech-in-noise performance. This section will highlight the bene-
fits of these interventions, and also highlight the practical and technical challenges that
limit their performance. Finally, Section 2.4 will introduce the use of haptics as a fur-
ther form of intervention, which may be used to augment current clinical interventions.
This section will outline current understanding of the integration of haptic and auditory
stimulus for the improvement of speech-in-noise performance. The technical and prac-
tical challenges currently faced when implementing a real-world intervention using this
technology will also be outlined.

2.1 Mechanisms of speech-in-noise performance

A person’s ability to hear speech in background noise depends on their sensory system’s
ability to separate relevant acoustic and linguistic cues from noise. This complex pro-
cess is performed primarily by the auditory system, but can also be supported through
integration with other sensory modalities, such as vision and touch. Section 2.1.1 pro-
vides an overview of the anatomy and physiology of the auditory system systems and
outlines interactions with other modalities when faced with a speech-in-noise task. Sec-
tion 2.1.2 covers the key perceptual features of speech and types of noise and distortion.
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Finally, Section 2.1.3 outlines various hearing pathologies that have a negative impact
on speech-in-noise performance.

2.1.1 Anatomy and physiology of audition for speech recognition

The human auditory system consists of a number of components that work together to
process sound signals. The auditory system can be divided into a number of components,
which are described in the following sections: The conductive system (Section 2.1.1.1),
consisting of the outer and middle ear; The sensorineural system (Section 2.1.1.2), con-
sisting of the cochlea and eighth cranial nerve; and the central auditory pathways (Sec-
tion 2.1.1.3), comprising of a complex network of neurons, nerves and nuclei that lead
from the cochlea to the auditory cortex. Additional systems such as the visual and tactile
system, and their integration with the auditory system are detailed in Section 2.1.1.5.
Finally, computational models of the processes that occur in the aforementioned sensory
systems are detailed in Section 2.1.1.6.

2.1.1.1 The outer and middle ear

The outer and middle ear’s primary function is to convert the acoustic pressure changes
in the air to fluid vibrations in the cochlea. Sound signals are first filtered by the physical
shape of the listener’s head, the pinna and resonances in the ear canal. These are then
converted to mechanical vibrations at the eardrum (tympanic membrane), which travel
via the ossicles (the Malleus, Incus and Stapes) to the cochlea (Moore, 2016; Plack,
2014, p.24, p.53-55). The anatomy of the outer ear is illustrated in Figure 2.1.

Figure 2.1: Schematic diagram of the peripheral auditory system1
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These mechanical processes filter the sound, altering its temporal and spectral charac-
teristics prior to transduction in the inner ear. Damage to the outer or middle ear can
distort speech and noise signals, which may impact a person’s speech-in-noise perfor-
mance. This is known as a “conductive hearing loss” — a brief overview on the types
of hearing loss is provided in Section 2.1.3.

2.1.1.2 The inner ear

The inner ear is concerned with the conversion of acoustic vibrations, transmitted by
the outer ear, into neural signals to be further processed by the central auditory path-
ways. This process of transduction occurs in the cochlea — a coiled, fluid filled tube,
roughly 3.5cm in length. The primary components of the cochlea in relation to sound
transduction are the basilar membrane, a thin membrane that spans the length of the
cochlea; the organ of corti, a layer of tissue which rests on top of the basilar membrane;
and outer and inner hair cells, which line the organ of corti. Cavities on both side of
the basilar membrane vary in pressure, caused by the vibration of the oval window (a
membrane covered opening in the cochlea, connected to the stapes). Vibration of the
basilar membrane, as a result of changes in fluid pressure and the movement of outer
hair cells, causes movement of inner hair cells. In turn the movement of these hair cells
triggers the firing of neurons, thus converting the acoustic vibration to neuronal activity.
This activity is then subject to further processing in the central auditory pathways. The
detailed workings of the cochlea can be found in texts such as those provided by Gelfand
(2016) and Moore (2016) and Plack (2014).

In addition to the transduction of vibrations to neural activity, the cochlea is of par-
ticular importance to speech perception, as it is the point at which sound is separated
based on its spectral characteristics. By mapping specific frequency sub-bands of sounds
to neurons along the length of the basiliar membrane, the cochlea creates a tonotopic
neural representation of a sound. This process effectively behaves analogously to a
set of band-pass filters, which act to divide the acoustic vibrations into bands that in-
crease from low to high frequency. These filters are commonly referred to as “auditory
filters” (Moore, 2016; Plack, 2014, p.68, p.57-59). This tonotopic mapping is an impor-
tant stage in auditory processing and is thought to be a key component in fundamental
processes of speech recognition, such as pitch perception, formant tracking and loudness
perception (Plack, 2014, p.100, 117).

1This creative commons licensed figure was produced by Lars Chittka and Axel Brockmann (https://
commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg), “Anatomy of the Human Ear”,
https://creativecommons.org/licenses/by/2.5/legalcode (accessed 05/12/2021).

https://commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg
https://commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg
https://creativecommons.org/licenses/by/2.5/legalcode


8 Chapter 2. Background

2.1.1.3 The central auditory pathways

Beyond the cochlea, acoustic information is carried as electrical activity via structures of
connected neurons through the central auditory pathway. This section aims to provide
an overview of the components and structure of the central auditory pathways. The
function of individual cells and their combined interactions in higher level structures is
described in relation to speech perception. However, it should be noted that the audi-
tory pathways are not fully understood due to their significant complexity. Therefore,
this section provides a brief overview of the neurophysiological aspects and systems,
thought to be of particular importance in the processing of speech in noise. For fur-
ther information on the details of neurophysiology, a comprehensive overview of current
knowledge with regards to the central nervous system as a whole (of which the central
auditory pathway is a significant component), is provided by Bear et al. (2016). Schnupp
et al. (2011) also provides significant detail on the neural processing of sound and the
perceptual correlates of these processes.

The central auditory pathways consist of two types of cell: neurons and glia. Auditory
signals are processed via structures of connected neurons as they ascend the auditory
pathway, with surrounding glia cells thought to primarily support and maintain neu-
rons (Bear et al., 2016). Neurons transmit information as electrical spikes known as
action potentials. These action potentials travel from neuron to neuron via axons,
which synapse with the soma, axons and dendrites of other neurons to form a net-
work. Information such as low level audio feature representations are encoded in the
frequencies and patterns of these potentials. Examples include amplitude modulations
and spectral features of a stimulus, which are encoded by phase locking the spikes pro-
duced by neurons to the frequency of the feature (Plack, 2014; Schnupp et al., 2011).
In addition, as action potentials cause synaptic excitation as signals are passed between
neurons, secondary extracellular currents are generated which are known as field poten-
tials. These potentials propagate to the scalp as extracellular activity in the neurons and
glia. This activity can be measured using techniques such as Electroencephalography
(EEG), Magnetoencephalography (MEG) and Electrocochleography (ECochG). Use of
these techniques for analysis of neural activity in response to acoustic stimuli and for
the potential analysis of speech in noise performance is discussed in Section 2.2.2. As
acoustic signals ascend the auditory system they are passed between various structures
of neurons called nuclei. These nuclei are connected both in ascending connections and
descending efferent pathways, sending auditory signals upwards to subsequent nuclei
and feedback signals downward, thought to affect previous auditory processing mecha-
nisms (Burguetti and Carvallo, 2008). It is thought that the auditory pathway is formed
in a hierarchical structure that performs low to high level processing similar to that of
the visual system (Moore, 2016; Okada et al., 2010). The pathways can be separated
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into three main divisions: the brainstem, thalamus and cerebrum. Each division is in-
volved to various degrees in the low, mid and high level processing that is performed on
speech signals (Gelfand, 2018). A schematic diagram of the primary neural connections
in the system is provided in Figure 2.2.

Figure 2.2: Schematic diagram of the central auditory pathways2

The central auditory pathways consist of a vast network of interconnecting neurons that
carry electrical signals, generated at the cochlea, to a variety of processing stations.

Initially, information travels through the brainstem to the Cochlear Nucleus via the
auditory nerve, at which point signals are distributed via branches of neurons to subse-
quent auditory processing stations (nuclei). Nuclei in the brainstem that are believed to
be of particular importance in speech processing include: the superior olivary complex,
the point at which a significant amount of information from both ears converge and

2This creative commons licensed figure was produced by Jonathan E. Peelle (https://commons.
wikimedia.org/wiki/File:Auditory_Pathway.png), “Auditory Pathway”, https://creativecommons.
org/licenses/by/4.0/legalcode (accessed 05/12/2021).

https://commons.wikimedia.org/wiki/File:Auditory_Pathway.png
https://commons.wikimedia.org/wiki/File:Auditory_Pathway.png
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
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therefore thought to play a key role in sound spacialisation; the nucleus of lateral lem-
niscus, which has been hypothesized as a source of acoustic reverberation processing, as
well as in the shaping of interaural time differences used for sound localisation (Felmy,
2019; Kidd and Kelly, 1996); and the inferior colliculus, which is thought to perform
processing related to the periodicity of the stimulus (Schnupp et al., 2011, p.125-129).
At this stage, tonotopic mapping of neurons is thought to be maintained, and it has
been shown that neurons respond directly to simple stimuli such as tones (Hickok and
Poeppel, 2007; Binder, 2000; Wessinger et al., 2001). This suggests that the brainstem
is largely concerned with processing of lower level acoustic features (features such as the
fundamental frequency or amplitude modulations of a stimulus, which are related to its
acoustic characteristics). However, the brainstem may also play a role in higher-level
linguistic processing, due to the extensive efferent pathways that link the brainstem to
higher centres of the brain (Budinger et al., 2000; Doucet et al., 2002; Coomes and
Schofield, 2004). For example, recent research using electroencephalography (EEG) has
suggested that the response of neurons in the brainstem may also be influenced by higher
level processing such as selective attention (Forte et al., 2017; Reichenbach et al., 2016).
Evidence has also been presented that suggests representations of higher level features
derived from pitch may be present in subcortical mechanisms (Krishnan and Gandour,
2009).

As signals ascend the auditory pathway, they reach the medial geniculate body in the
thalamus. As with the brainstem, a tonotopic arrangement of neurons is thought to be
maintained at this stage. However, it is thought that representations of speech signals no
longer accurately entrain the rhythm of speech (Schnupp et al., 2011, p.155-156). It has
also been shown that speech processing in the medial geniculate body is task dependant
and influenced by attention (von Kriegstein et al., 2008). This influence of higher level
factors and divergence of signal representations from the fine grained rhythmic structures
of speech illustrates the transition from lower level acoustic signal processing towards
higher level linguistically-relevant representations as signals ascend through the auditory
pathway. This continues as signals travel on to the auditory cortex.

The auditory cortex is an auditory processing station located in the cerebrum. Situ-
ated in the temporal lobe, the auditory cortex, as well as auditory processing centres
known as the planum polare and planum temporale, interact with higher order cog-
nitive structures (Schnupp et al., 2011). Aspects of particular interest with regards
to speech recognition are the superior temporal sulcus, the superior temporal gyrus,
and Wernicke’s area. Situated primarily in the left hemisphere, clinical observation has
linked this area to speech production and comprehension. This has been shown through
observation of temporary disruption to these components, which can have a negative
impact on speech processing tasks (Bear et al., 2016). It has also been shown through
experiments using positron emission tomography (PET) scans, that sections of the su-
perior temporal gyrus respond with preference to intelligible speech over unintelligible
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speech (Scott, 2000). In the primary sections of cortical processing, it is thought that
signals are still organised by their acoustic features (Schnupp et al., 2011, p.165). It is
believed that as the signals disperse through the cortex, passing through areas such as
the superior temporal gyrus towards the prefrontal cortex in the frontal lobe, processing
is concerned with the mapping of acoustic features to categorical lexical and semantic
representations (Stevens, 2002; Wilson et al., 2018). At the cortical stage of processing,
cognitive functions such as working memory and attentional capacity begin to signifi-
cantly influence speech processing. For example, working memory has been shown to
affect speech recognition performance, particularly in its role as temporary storage for
unidentified words until they can be successfully parsed using subsequent contextual
cues. This is of importance when a word cannot be immediately identified for reasons
such as lack of clear articulation by a speaker (Wingfield, 1996). The effects of higher-
level linguistic processing mechanisms on speech recognition performance are discussed
further in Section 2.1.2. However, higher-level linguistic processes are not fully under-
stood, in part due to the limitations of neuroimaging approaches. Reasons for this are
discussed briefly in Section 2.2.2. This presents a significant challenge when considering
speech-in-noise performance: Without a clear understanding of higher-level linguistic
recognition and semantic processing in the brain, it is difficult to understand the effect
of noise on processes that are crucial to speech perception and recognition. Current
understanding of the effects that noise has on speech perception and of the methods
used to measure performance in this area are discussed in the following sections.

2.1.1.4 Binaural hearing

The arrival time and level differences (interaural time differences and interaural level
differences) of a signal between two ears are known to play a key role in sound localisa-
tion. This has been shown to affect speech recognition in noise, in particular when the
target speaker and distracting noise are not co-located. This ability of a listener to focus
their attention on a target speaker in the presence of competing, spatially separate noise
is often referred to as the “cocktail party” effect, particularly in relation to a person’s
ability to understand speech in competing, spatially separated babble noise (Cherry,
1953). It has been reported that this spatial release from masking can improve speech
reception thresholds significantly when the noise is spatially separated (Bronkhorst and
Plomp, 1988). Work such as that produced by Feuerstein (1992) also demonstrates a
reduction in word recognition performance for spatially separated speech and noise, as
a result of a simulated single-sided unilateral conductive hearing loss in normal hearing
participants. This is further supported by Hsieh et al. (2009), through an observed
reduction in speech-in-noise performance in unilateral conductive hearing loss partici-
pants. However, due to the greater impact of hearing deficits in other auditory systems
(as discussed in the following sections), this research will focus specifically on speech-
in-noise performance in a monaural listening environment. It should therefore be noted
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that this will negate some of the most prominent effects of deficits in the outer ear, such
as changes in filtering as a result of a damaged pinna and ear canal, which may prove
to be an interesting area for further research.

2.1.1.5 Multi-sensory integration

In addition to direct auditory stimulation, speech and language recognition can be af-
fected by input from other senses. This ‘multi-sensory integration’ has been shown
to provide considerable improvements to speech recognition performance, primarily
through audio-visual integration. For example, lip-reading is the integration of audi-
tory and visual cues, and has been shown to support speech understanding in particular
when auditory cues are degraded (Grant and Braida, 1991). This integration is thought
to occur primarily in the cortical regions, such as the primary auditory cortices, the an-
gular gyrus and the inferoposterior temporal lobe (Bernstein et al., 2008; Calvert et al.,
1997; Campbell et al., 2001).

An area that has also shown promise is audio-tactile integration. This area has a growing
literature of research suggesting potential benefits, relating to speech recognition, such
as sound localisation (Fletcher et al., 2020a), speech-in-noise performance (Fletcher et
al., 2020b; Fletcher et al., 2019; Fletcher et al., 2018; Huang et al., 2017), melody recog-
nition (Huang et al., 2019; Luo and Hayes, 2019) and basic auditory feature perception
such as pitch (Fletcher et al., 2020c). Details on the anatomy, limits of the tactile system
and its integration with the auditory system are discussed further in Section 2.4.1.

The principle of inverse effectiveness is a key principle of multi-sensory integration (Wal-
lace et al., 1996; Hairston et al., 2003; Laurienti et al., 2006). This states that integration
of multiple senses is maximised when each sense is degraded alone. Use of multi-sensory
integration is therefore appealing for development of interventions for hearing impaired
listeners, as audition is degraded both by competing noise and by the hearing impair-
ment, so is likely to be well supported by information for peripheral senses. This is
exemplified in previous studies, where cochlear implant users are provided with par-
tial/degraded location or speech information via both a cochlear implant and haptic
devices (Fletcher et al., 2020a; Fletcher et al., 2020b).

A further principle is the correlation of temporal properties (Ernst and Bülthoff, 2004;
Fujisaki and Nishida, 2005; Burr et al., 2009; Parise and Ernst, 2016). This states that
two senses are most likely to be integrated when stimuli are maximally correlated in
time. Therefore, this must be considered in the development of any multisensory based
intervention to improve speech recognition, and will be discussed in further sections.

Previous literature shows clear potential for multisensory integration to assist hearing
impaired listeners who struggle with speech-in-noise performance. This thesis will focus
on audio-tactile integration, due to recent technological advancements that may allow
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for further benefits than previously shown. A review of modern haptic technology and
previous haptic devices that have been developed to improve speech recognition and
speech-in-noise performance are detailed in Section 2.4.2.

2.1.1.6 Computational models of the auditory system

A range of computational models have been developed to quantify the relationship be-
tween the inputs and outputs of the auditory system’s components, detailed previously
in this chapter. These models are built on observations, which for the auditory sys-
tem are typically either physical, neuronal or behavioural measures. In the context of
speech-in-noise performance, models are typically based on behavioural data, as these
are a direct measure of human perception (as opposed to physical and neuronal mea-
sures, which provide only indirect correlates of perception). Lower-level models may
aim to produce the outputs of specific parts of the system (such as the response of the
middle ear, or the basilar membrane). Higher level models are typically constructed
from collections of these lower-level models, and aim to predict the response of the sys-
tem as a whole — quantifying the perceived loudness of a stimulus (BS.1770-2, 2015),
or the speech intelligibility of a stimulus (Kates and Arehart, 2021), for example. A
comprehensive list of model types is not feasible within the scope of this thesis, how-
ever an extensive collection of model implementations can be found in the Auditory
Modelling Toolbox (Majdak et al., 2021). Auditory models have application in hearing-
impairment evaluation, by allowing for predictions to be made about how a deficit in
components of the auditory system affects its overall function (Majdak et al., 2021).
They also have technical application, as they can be used to develop and optimise audio
processing strategies in hearing-assistive devices, as discussed in Section 2.3, and also in
the development of new diagnostic measures, as demonstrated in Chapters 3 and 4.

2.1.2 Components of speech-in-noise performance

The human auditory system processes various acoustic and lexical cues to understand
speech. As noise increases these cues can become distorted or masked entirely, causing
a reduction in speech recognition. The type of degradation also dictates the influence of
various cognitive systems on recognition performance. Section 2.1.2.1 outlines the vari-
ous lower- and higher-level cues that are used for segmentation of speech. Section 2.1.2.2
details the types of noise and sound degradations that impact speech recognition per-
formance, and the auditory mechanisms that address these.
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2.1.2.1 Acoustic and phonemic features of speech

As described in previous sections, as speech signals ascend through the cortex, represen-
tations of acoustic features are transformed into categorical phonemic representations.
It is thought that these sequences of sequential phonemic units are used to store words
in memory, and that there is a hierarchical structure to this storage (Clements, 1985;
McCarthy, 1988; Halle and Stevens, 1971). This mapping is a highly non-linear process,
as a change in the phonemic content of a word constitutes a new word, but a change in
the raw acoustic cues does not necessarily constitute a new word (for example, words
can be spoken with different pitches, intensities or accents without changing the word
perceived by the listener). A model proposed by Stevens (2002) outlines a mapping of
acoustic cues to split acoustic signals into phonological units. This model presents three
broad classes of phonological segment: vowels, glides, and consonants. These segments
are delineated by variation in the amplitude envelopes of frequency bands (the band-
width of which are determined relative to the formants of the speech). The proposed
differences between segments are:

• Vowels have greater intensity than consonants

• Vowels have generally higher first formant frequencies than consonants

• Vowels have greater intensity in the low- and mid-frequency spectrum than adja-
cent consonants

• An acoustic discontinuity occurs at the formation and release of a consonant

• A glide also has a higher frequency at the first formant and a reduction in the low-
and mid-frequency spectrum, but there is no acoustic discontinuity

For an in-depth description of the segment types and the anatomical mechanisms for
their production, refer to Stevens (2002). This model suggests that the broad spectral
shape and intensity of a speech signal are important factors for speech recognition.
Many behavioural studies support this conclusion, demonstrating participant’s ability
to recognise speech when fine-grained spectral cues are removed (Shannon et al., 1995;
Shannon et al., 1998; Rosen et al., 1992; Xu and Pfingst, 2008).

In addition to phonemic identification, factors such as fundamental frequency (F0) recog-
nition should be considered, as this conveys information such as emotional expression
(prosody) (Hammerschmidt and Jürgens, 2007), voicing (Holt et al., 2001; Whalen et al.,
1993) and is also crucial to tonal languages such as Mandarin Chinese, Thai, Vietnamese
and Cantonese. Loss of this information, encoded primarily in the temporal structure
of the acoustic signal, has been shown to have a detrimental impact on speech under-
standing, particularly for tonal languages (Brown and Bacon, 2010; Fu et al., 1998b; Xu
and Pfingst, 2008).
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2.1.2.2 Noise and distortions

There are 3 main types of noise/degradation (masking) that affect a person’s ability
to recognise speech: Energetic masking, degradation without energetic masking and
informational masking. Energetic masking is formed of environmental masking that
additively overwhelms the target speech source due to the intensity of the masking
acoustic signal. Overcoming energetic masking primarily requires adequate separation
of the acoustic features of the target from those of the masker (see Brungart (2001) for
more information.) Success in separation depends on many factors, such as the masker’s
intensity and its temporal and spectral morphology (Bregman, 1990; Darwin, 2008).

Degradation without energetic masking occurs due to degradation of the source speech
signal during transmission. This masking can be caused as a result of factors such as
reverb, telephone line distortion and receiver limitations (as a results of hearing loss
or hearing aid/cochlear implant processing) (Mattys et al., 2012). A person’s ability
to compensate for these distortions depends on many factors such as their degree/type
of hearing loss and their ability to apply contextual cues to infer meaning from the
degraded signal (Norris and McQueen, 2008).

Unlike the previously defined masking types, informational masking occurs due to its
higher level contextual and semantic value, in addition to its acoustic properties. For
example, this may occur in the presence of a competing talker where the content of
the competing speech draw the listener’s attention away from the target speaker. In-
formational masking is addressed by a listener’s higher level cognitive processing such
as attentional capacity and working memory (Kidd et al., 2008; Hoen et al., 2007).
For an in-depth review of speech degradations and their effect on speech recognition
performance, refer to Mattys et al. (2012) and Brungart (2001)

2.1.3 Effects of hearing loss on speech-in-noise performance

A hearing loss is typically categorised based on the location of the abnormality or lesion.
Abnormalities or lesion at the middle ear are referred to as a conductive hearing loss,
characterised as impaired conduction of sound signals through these areas. Damage
to these systems can impact perception of speech, and may reduce speech recognition.
As detailed in Section 2.1.1.4, access to binaural cues can impact a person’s speech-in-
noise performance. Damage to the outter ear may reduce access to these cues, such
as deformation of the pinna or blockage of the ear canal as a result of excessive ear
wax (Oldfield and Parker, 1984). However, steps can often be taken, such as wax removal
or reconstructive surgery, which can have considerable positive impacts for addressing
speech-in-noise performance issues related to a conductive hearing loss (Oshima et al.,
2010; Rivolta, 2013). Some conductive losses even show improvements to speech-in-
noise performance, an effect known as “paracusis willisii”, caused by the attenuation of
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background noise by the conductive loss, and the increased intensity of the speaker’s
voice to account for the increase in background noise (known as the Lombard voice
reflex, see Gelfand, 2016, p.139 for details). For these reasons, and due to the relative
pervasiveness of sensorineural hearing losses (Carhart and Tillman, 1970; Pekkarinen
et al., 1990; Yueh et al., 2003, p.278), this thesis will focus primarily on sensorineural
impairments.

Sensorineural hearing losses are caused by neural pathway and cochlear pathologies.
This type of hearing loss covers a broad range of issues, from impaired transduction
from mechanical vibration to neural activity, to lesion in the neural auditory pathways.
Retrocochlear related hearing losses (losses that occur as a result of pathologies beyond
the cochlea) such as lesions of the eighth cranial nerve may have adverse effects on
speech-in-noise performance. However, this section will focus primarily on lesions at the
cochlea due to their relative prevalence.

Degradation of the cochlea and associated neural pathways due to factors such as high
levels of noise exposure, ototoxicity, vascular issues and presbycusis can affect the func-
tioning of the hair cells, neurons and other components that transduce mechanical vibra-
tion (Gelfand, 2016, p.137). This can result in distorted characteristics of the auditory
filters, negatively impacting a listener’s ability to discriminate spectral detail in speech
(See Section 2.1.2.1 for details). For example, reduction in amplitude at high frequencies
and impaired ability to discriminate frequencies are types of distortion that are partic-
ularly detrimental to speech-in-noise performance. These can be caused by conditions
that affect outer hair cell function, which can result in the widening of auditory filter
bands and increase linearity in terms of loudness perception (Glasberg and Moore, 1986;
Oxenham and Bacon, 2003). These distortions to a patient’s perception of spectral fea-
tures and loudness can result in patients being able to detect, but not able to understand
speech (Gelfand, 2016, p.138).

Current clinical interventions such as hearing aids and cochlear implants are regularly
employed to treat sensorineural hearing losses. Success of these interventions vary, as
discussed in Section 2.3.1. Alternative interventions such as electro-haptic stimulation
may also offer improvements to speech-in-noise performance for those worst affected by
hearing losses. These interventions are discussed in Section 2.4

2.2 Measures of speech-in-noise performance

An effective measure of speech-in-noise performance can offer insight into a patient’s
hearing ability for diagnostic purposes. It may also offer an indication of the perfor-
mance of a patient’s hearing interventions (such as a hearing aid or cochlear implant.
See Sections 2.3 and 2.4 for details on traditional and alternative interventions). This
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measurement is required, both for diagnosis of impaired speech-in-noise performance and
for development of better interventions to address speech-in-noise performance issues.

There are currently a wide variety of clinical measures for assessing speech-in-noise
performance. These are performed behaviourally, by presenting a stimulus and assessing
the response of the participant (responses are typically verbal or indicated by pressing
a button). These tests are widely used, but may offer only limited information on the
underlying mechanisms that drive speech-in-noise performance. The advantages and
shortcomings of these tests are discussed in detail in Section 2.2.1.

An alternative method that is not currently used clinically for the assessment of speech-
in-noise performance is the evoked response. These measures may offer an objective
alternative to traditional metrics, and may also offer additional insight into the under-
lying neural mechanisms of speech-in-noise performance. A review of current evoked
potential based methods are discussed in Section 2.2.2

2.2.1 Behavioural measures

Behavioural measures are the most commonly used measures in clinic for assessing both
speech-in-noise performance, and for more general assessment of hearing. The most
common types of measures are pure tone audiometry and speech-in-noise tests. PTA is
a common clinical measure of general hearing performance. It is performed by playing
tones of various audiometric frequencies to the patient and adjusting the level between
presentations to assess the lowest level that the patient can detect. Patients respond by
pressing a button when they hear a tone in either ear, until they can no longer hear a
tone. For a full description of the PTA procedure, refer to Gelfand (2016) and British
Society of Audiology (2018). PTA is the gold standard for assessing general hearing
performance and is used for fitting and tuning of hearing aids and cochlear implants.
It is suitable for clinic as it is fast to administer and provides intuitive, standardised
results that can be used to categorise a hearing loss. However, it is suggested in many
studies that PTA is a poor predictor of a person’s speech recognition performance in
noise (Killion and Niquette, 2000; Middelweerd et al., 1990; Carhart and Tillman, 1970).
This is thought to be due to factors such as the influence of higher level cognitive pro-
cessing, as well as integration of senses such as visual cues (and potentially vibrotactile
cues, as discussed in Section 2.4) on speech recognition (Smoorenburg, 1992; Humes and
Roberts, 1990), and the lack of representation for distortions caused by interfering noise
sources (both externally as a result of additional background noise, and internally as a
result of a hearing loss (Lee and Humes, 1993)). Plomp (1986) concludes that although
speech in quiet scores may correlate with PTA derived measures, PTA measures may not
correlate well with speech-in-noise scores. for speech in noise. Although PTA derived
features such as the pure tone average correlate well with speech reception thresholds
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(SRTs; The standard metric for assessing speech reception, as described in detail in Sec-
tion 2.2.1.1) for attenuated speech, this is no longer true for SRTs for distorted speech
or for SRT for both attenuated and distorted speech. This is thought to be due to the
lack of representation for the effects of non-linear distortion in PTA results.

This is supported by studies conducted by Humes and Roberts (1990), Lee and Humes
(1993) and Smoorenburg (1992). Humes and Roberts (1990) and Smoorenburg (1992),
which consistently demonstrated that PTA scores do not account for a considerable
amount of variance in speech recognition scores in noise, with R2 values ranging from
as little 0.3 to a maximum of 0.7 using various combinations of frequencies as predic-
tors. Smoorenburg, 1992 illustrated the considerable inter-subject variability between
participants when comparing SRTs with PTA scores. For example, when considering
participants with SRTs at −2.5 dBA, PTA averages of 2 and 4 kHz range from around
0 to 55 dB HL. An exception which confounded previous findings is a study by Bar-
renas and Wikstrom (2000), which reports an R2 of 0.92 when comparing PTA averages
at 3, 4 and 6 kHz to speech recognition scores at a signal to noise ratio (SNR) of +4
dB. This study suggests that a non-linear relationship exists between PTA scores and
speech recognition scores. However, methodology of the study limited the applicability
of such findings to real-world performance (such as the use of only a single set SNR and
use of speech shaped noise as opposed to noise that is more representative of everyday
background noise. Further details on the implications of such factors is provided in
Sections 2.2.1.2 and 2.2.1.3).

Many behavioural speech recognition tests have been developed in attempts to more
accurately measure speech-in-noise performance. More specifically, tests that include
the presentation of noise have been developed to better simulate the conditions that
speech may be encountered in the real world. Factors such as the test format, speech
stimulus and added noise all have a significant impact on the test’s validity.

2.2.1.1 Speech-in-noise test procedures

Clinical speech and speech-in-noise recognition tests are typically behavioural measures.
These are based on the assumption that a person’s behaviour in a given condition forms
an indirect measurement of their perception (Leek, 2001). Therefore, these measures
aim to quantify a person’s perception of speech based on their responses to a varying
speech (and added noise) stimulus. Performance is measured as a function of speech
intensity or SNR, with responses typically measured by analysing the person’s ability to
repeat the stimuli. These functions are commonly referred to as psychometric functions.
This section aims to provide a brief review of the most prominent considerations when
comparing speech-in-noise tests, and provides examples of some commonly used clinical
tests. For a comprehensive overview of speech-in-noise/speech in quiet test methods,
refer to Lawson and Peterson (2011) and Gelfand (2016).
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There are three commonly used methods for sampling psychometric functions in order to
provide a recognition score: by estimating a listener’s SRT; by calculating percent correct
responses to stimuli at a single intensity/SNR; or by calculating their performance across
a range of equally spaced intensities/SNRs, known as the method of constant stimuli.
Choice of method is determined by a number of factors, such as the type of information
that is required from the test and the time allocated for the test.

One measure that provides information about the limits of a person’s ability to under-
stand speech is the SRT (Gelfand, 2016). The SRT estimates the point on a listener’s
psychometric function at which a listener can correctly recognise a certain percentage of
presented words. This percentage is typically 50% (also known as the SRT50 or SNR50)
but can be adjusted based on the method used for its calculation. There are a number
of methods that can be used to calculate an SRT, most commonly using an adaptive
track (refer to Lawson and Peterson (2011) for a comprehensive overview of methods for
calculating SRTs). This procedure adapts the level of the signal and/or noise based on
the percent correct score (the percentage of words correctly repeated out of all scored
words in a sentence, for example) of a person’s response. An advantage of this method
is that, by varying the difficulty of trials based on previous responses, subsequent tri-
als converge around the threshold efficiently, allowing for accurate threshold estimation
with a minimum number of trials. An adaptive track is used in tests such as the hearing
in noise test (HINT) in order to determine a listener’s SNR based SRT (Nilsson et al.,
1994).

The method of constant stimuli is an alternative method, which measures performance
at equal intervals across intensities/SNRs, from imperceptible to consistently percepti-
ble (Leek, 2001, p.1279). This method is used in tests such as the Bamford-Kowal-Bench
(BKB) speech-in-noise (Niquette and Killion, 2016), QuickSIN (Killion et al., 2004) and
Word in noise (WIN) test. This method allows for a better estimation of the function as
a whole, but requires considerably more trials to gain the same level of accuracy around
the SRT (typically calculated using the Spearman-Kärber equation — refer to Miller
and Ulrich (2001) for details). One advantage of an accurate estimate across the psy-
chometric function is the ability to accurately estimate its slope. An example is the use
of a slope measure by Wilson et al. (2003) to demonstrate the shallower roll-off in per-
formance of hearing impaired participants in comparison to normal hearing participants
as the speech-in-noise test’s difficulty increased. However, estimations of slope from
adaptive track procedures significantly increase the number of trials needed, reducing
the benefits in terms of speed of the procedure (Leek, 2001).

Several considerations with respect to the format of the test may impact the measured
performance and can have a substantial effect on reliability of the test. These include:
the size of the test, which forms a trade off between test duration and test reliability; the
method listeners will use to respond, affecting the influence of chance correct responses
based on the open or closed set format of the test; and the scoring method, which affects
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the relative influence of lower and higher level processing on a participant’s score. For
brevity, the reader is referred to Gelfand, 2016, p.215-242 for a comprehensive overview
of the effects of these parameters on speech-in-noise tests.

2.2.1.2 Speech stimulus

Stimuli vary considerably between the most prominent speech materials used for speech-
in-noise/recognition tests, with a range of different characteristics that influence the
quality of the metrics. Stimulus types range from individual syllables and isolated mono-
syllabic or spondaic words to full sentences, with aspects such as linguistic complexity,
semantic context and acoustic content varying considerably. Although the exact rela-
tionship between cognition and speech perception is not fully understood, an awareness
of the effects that stimulus choice has on the underlying processing is crucial, as it deter-
mines the auditory functions that will be measured by any recognition/speech-in-noise
test. Lawson and Peterson (2011) define speaker variability, stimulus type and word fa-
miliarity as key factors that affect speech recognition performance. This section outlines
current understanding of the relationship between speech stimuli selection, recognition
performance and the processing mechanisms that contribute to such performance.

The type of stimuli chosen for a recognition/speech-in-noise test primarily affect the
influence of higher level cognitive abilities influence test results. The types of cognitive
abilities that contribute to these tests include working memory capacity, attentional
capacity, speed of linguistic processing, knowledge of language vocabulary, and ability
to make contextual inferences (Grant and Seitz, 2000; Moradi et al., 2014; Humes et al.,
2013; Humes and Dubno, 2010). For example, performance on speech-in-noise/speech
in quiet tests have been shown to be influenced increasingly by working memory and
attentional capacity as a function of stimulus length (Moradi et al., 2014; McArdle et al.,
2005). In the case of sentences, a reduced ability to focus on and recall multiple words
after a stimulus is presented may negatively impact recognition scores.

A participant’s ability to infer information from contextual cues has also been shown
to have significant impact on scores, particularly when using sentences that have sub-
stantial semantic and syntactic context. These cues allow listeners to use knowledge
of the language and information surrounding a word to surmise a reasonable answer
when auditory cues are lacking (Ernestus et al., 2002; Mattys et al., 2012). Use of
isolated syllables or words in speech recognition tasks have been shown to minimise the
contextual information available to a participant (Lawson and Peterson, 2011). This
places focus on the participant’s ability to process lower level acoustic features, limiting
the level to which these top-down influences, such as attention and working memory,
affect results. Ernestus et al. (2002) demonstrate the effect that context has on reduced
speech using Dutch words surrounded by various degrees of contextual information. Re-
sults suggest an increasing reliance on surrounding context as a target word’s acoustic
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content is reduced. The stimulus types used for a range of speech materials is detailed
in Table 2.1

It is well known that vocal qualities vary from person to person. Factors such as gender,
age, accent and articulation may affect performance and should be considered when
choosing material for a speech-in-noise/recognition test. These factors are thought to
impact speech recognition performance due to the differences in acoustic characteristics
between male and female, as well as young and old speakers. Aspects that differ include
the fundamental frequency ( f0), overall intensity and more complex characteristics, such
as ‘breathiness’, which are discerned through a variety of acoustic cues (Klatt and Klatt,
1990; Lee et al., 1999).

Variation in speaker accent (both non-native and unfamiliar native) may also present
significant challenge to a listener, and has been linked to reduction in language pro-
cessing speed and increased listening effort. In the case of heavily accented speech it
may result in complete lack of comprehension (Adank et al., 2009; Anderson-Hsieh and
Koehler, 1988). The divergence from clear speech caused by speech disorders and dis-
fluencies common in everyday conversation can also have a negative impact on speech
intelligibility. A detailed review of the effects of clear speech on a listener’s performance
is discussed by Smiljanić and Bradlow (2009). A comprehensive analysis of the many
variations in speaker characteristics is outside the scope of this review, however further
insight is provided by Uchanski (2005) and Mattys et al. (2012). These factors will pri-
marily affect the level to which a listener will need to rely on higher level compensatory
strategies, placing pressure on cognitive functions such as working memory, attentional
capacity and lexical mapping. The speaker type of the chosen materials will largely
depend on the source of the recordings. Variations in recordings of materials may affect
a listener’s performance and therefore care should be taken when choosing appropriate
stimuli.
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Material name Stimuli Test response/scoring No. list items No. lists Set type Source

PAL PB-50 Monosyllabic words Repeat word 50 20 Open

CID W-22 Monosyllabic words Repeat word 50 4 Open

NU-6 Monosyllabic CNC words Repeat word 50 4 Open

CID Everyday Sentences Sentences Repeat sentence 10 (50 key words) 10 Open

NST High-frequency nonsense syllables Repeat syllables 25 12 Open

MRHT Monosyllabic words Repeat & mark the word (1 of 6 alternatives) 50 4 Closed

CCT High-frequency monosyllabic

words

Check the word (1 of 4 alternatives) 100 & 50 4 Closed

SSI-ICM & SSI-CCM Synthetic sentences Identify sentence by number (1 of 10

alternatives)

10 24 Closed

CUNY NST Nonsense syllables Mark the syllable 7–9 11 subtests Closed

IEEE sentences Phonetically balanced sentences — 10 72 —

BKB sentences Sentences Scored based on key word recognition 21 50 — Bench et al.

(1979)

AB words Sentences Scored based on key word recognition 21 50 — Bench et al.

(1979)

Table 2.1: Summary of speech recognition test materials
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2.2.1.3 Noise stimulus

Smoorenburg (1992) demonstrated considerable variance in the relationship between a
listener’s speech-in-noise performance and audiogram. This is thought to be as a result
of this test measuring primarily the listener’s ability to withstand the effects of atten-
uation, with no explicit consideration for the influence of signal degradation (beyond
any further attenuation of a signal that may occur as the result of a degradation). The
addition of distortion is therefore necessary to gain a more in depth understanding of a
listener’s real-world speech recognition performance. The choice of noise stimulus/dis-
tortion determines the types of real-world speech degradations that may be encountered
by a listener. There are 3 types of degradation: Energetic masking, non-energetic mask-
ing and informational masking. Energetic masking occurs as a result of interference from
another source (background noise), non-energetic masking occurs as a result of source
signal degradation (distortion as a result of hearing aid processing, from degradation
as a result of a hearing loss or via a telephone line or for example) and informational
masking occurs as a result of interfering higher level information from a competing
speech source (Hoen et al., 2007). As energetic and informational masking are consis-
tently reported to be a significant issue for hearing aid users and for those who suffer
from hearing loss, they should be primary considerations when developing/administer-
ing speech-in-noise tests (Dubno et al., 1984). This section will therefore focus on these
forms of masking, outlining the types of noise/distortions that are typically used for
speech-in-noise tests. The implications of noise type selection and presentation method
on a listener’s speech-in-noise test performance will also be discussed.

When considering the effects of energetic masking, the relationship between the spectral
and temporal characteristics of the speech signal and the noise that play a significant
role in the listener’s ability to recognise the speech (Theunissen et al., 2009; Dreschler et
al., 2001; Soli, 2008). The two most common types of noise used in speech-in-noise tests
are speech shaped noise (white noise shaped to the long term spectral characteristics
of speech) and babble noise (a combination of a number of overlapping background
speakers), each of which have varying spectral and temporal characteristics.

Babble noise has been shown to be an effective masker for speech-in-noise tests and has
been used in tests such as QuickSIN (Killion et al., 2004), WIN (Wilson and Burks,
2005) and BKB-SIN (Niquette and Killion, 2016). Babble noise is generated by mixing
various numbers of recorded speakers and is thought to be a type of noise with particular
ecological validity, emulating an environment where a listener must recognise target
speech amongst various numbers of competing speakers (Cullington and Zeng, 2008;
Wilson et al., 2003). Unlike speech shaped noise, babble noise contains spectral and
temporal properties that vary over time. Most notably, spectral and temporal ‘dips’
have been shown to contribute to a listener’s performance. These dips arise in the
temporal domain from short pauses in the masking speech, and at points where the
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masking speech has low energy — typically at unvoiced consonants such as ‘m’, ‘n’,
‘k’, or ‘p’ (Peters et al., 1998). In the spectral domain, dips arise due to the varying
spectral qualities of the masking speech over time, and the relative variations in the
target speech. When the masking speech does not fully overlap the target speech in
the spectral domain, it may be possible for a listener to recognise unmasked portions
of the target speech. Choices such as age, gender and number of speakers used to
generate the babble noise have significant impact on temporal and spectral properties
of the noise (Duquesnoy, 1983; Summers and Molis, 2004; Drullman and Bronkhorst,
2004; Hawley et al., 1999; Middelweerd et al., 1990). The number of speakers used to
generate the noise is of particular importance with regards to energetic masking. It has
widely been observed that as the number of competing speakers increases, temporal and
spectral fluctuations decrease (Bronkhorst and Plomp, 1992; Simpson and Cooke, 2005;
Drullman and Bronkhorst, 2000; Hawley et al., 1999). This is caused as dips are reduced
when further speakers are added (Bronkhorst and Plomp, 1992). However, discrepancies
in the effects of speaker number between studies have highlighted the dependence of this
variable on other factors that may affect the acoustic content of the babble noise, such as
speaker gender, accent, pitch etc. (Rosen et al., 2013; Bronkhorst, 2000; Cherry, 1953).

Alternatively, speech shaped noise has been used in tests such as HINT (Nilsson et al.,
1994) and for improvement of SRT estimation methods by Plomp and Mimpen (1979).
Speech shaped noise is generated by filtering white noise, typically by generating the long
term average speech spectrum (LTASS) of the target stimulus. The resulting noise has a
constant energy at frequencies approximately equal to the energy at those frequencies in
the speech stimulus. The steady temporal and spectral characteristics of such noise en-
sures an approximately equal SNR across frequencies, regardless of speaker variabilities
such as gender (Nilsson et al., 1994; Theunissen et al., 2009). However, as steady state
speech shaped noise is constant in both the spectral and temporal domains, it fails to
account for differences in listener performance as a result of spectral or temporal dips.
Studies often modulate the temporal characteristics of steady noise in order to produce
a temporally modulated noise that maintains its static spectral properties (Schoof and
Rosen, 2014; Buss et al., 2009; Middelweerd et al., 1990). This emulates the temporal
dips commonly found in natural noises such as babble noise, whilst continuing to fully
mask the target speech in the spectral domain. This type of noise has been used in
speech-in-noise tests such as the Matrix test (Hagerman, 1982).

A key difference between the presented noise types is the lack of informational masking
when using steady state and amplitude modulated noise (Theunissen et al., 2009). As
babble noise is comprised of various streams of intelligible speech, the recognition of
speech from competing speakers may interfere with target speech comprehension dur-
ing higher-level lexical processing. This has been demonstrated in a variety of studies,
showing that informational masking may interfere despite the lack of energetic mask-
ing (Spieth et al., 1954; Simpson and Cooke, 2005; Sperry et al., n.d.; Van Engen and
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Bradlow, 2007) and that when interference is a competing speaker, informational mask-
ing may be the dominant cause of interference (Brungart et al., 2006).

It is clear that choice of noise type affects the types of auditory processing and the
levels to which higher-level cognitive ability contribute to a listener’s performance in a
speech-in-noise test. A study by Wilson et al. (2007) compared the relative effects of
babble and speech shaped noise on speech-in-noise test results. Results suggest that
normal-hearing listeners tend to perform better by around 2.1 dB in babble noise, with
only minor differences in psychometric function morphology. The intrasubject standard
deviation of normal-hearing listener’s SRTs were 1.0 dB for speech shaped noise and 1.3
dB for babble noise (Wilson et al., 2007). These results are supported by similar results
presented by Plomp and Mimpen, 1979 and those presented by Wagener and Brand,
2005. Wilson et al., 2007 also reported increased standard deviations for hearing-
impaired listeners — 3.5 dB for speech shaped noise and 4.1 dB for babble noise. Overall,
results suggest that babble noise may increase test-retest variability when compared to
speech shaped noise. However, the increase in ecological validity due to the addition of
informational masking offers a significant advantage when considering a speech-in-noise
tests applicability to performance in a real-world situation, such as listening to speech
amongst competing speakers.

2.2.1.4 Common clinical tests

To illustrate the parameters outlined in the previous Sections 2.2.1.1 to 2.2.1.3, this
section outlines examples of tests used in The University of Southampton’s Auditory
Implant Service (USAIS) for assessment of cochlear implant users and candidates. It
should however be noted that testing procedures may vary accross centres, based on
factors such as location and the clinical populations that they attend to. Table 2.2
outlines the parameters of five speech-in-noise tests used at USAIS.

2.2.2 Electrophysiological measures

Auditory evoked responses are measurements of synchronous electrical activity in the
auditory system in response to sounds. By placing transducers on a listener’s head,
it is possible to monitor the change in the auditory nervous systems’ field potentials
in response to a stimulus. This has been shown to provide valuable insight into the
functioning of the auditory processing system for both research and diagnostic pur-
poses (Gelfand, 2016). Auditory evoked responses are typically measured using EEG,
MEG or ECochG. These neuroimaging techniques have a number of attributes which
make them particularly well suited to analysis of the auditory system. In particular this
includes their high temporal resolution, the objective nature of these measurements and
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Test name Parameter Value

BKB Adaptive Test for

adults

Speech material BKB Male

Lists used for each session Software selects trials at random across all BKB

Male lists

Noise material Speech-shaped noise

Adaptive track 2 down, 1 up

Adapted parameter Noise

Speech level 65 dBA

Starting SNR +10 dB SNR

SNR calculation RMS of speech and noise material calculated

(removing silent sections), then ratio calculated

Step size 5 dB, 1 dB

Number of reversals 2 big, 8 small

Scoring SNR — The average of the last 8 reversals

Transducer Mono central speaker

BKB Non-adaptive

In-quiet Test for adults

Speech material BKB Male

Lists used for each session Consecutive lists, noting previously completed lists

to avoid repetition

Speech level 65 dBA

Scoring Percentage key-words correct for 2 lists

Transducer Mono central speaker

Automated Toy Test for

children

Speech material Automated Toy Test sentences

Noise material Speech-shaped noise

Adaptive track 2 down, 1 up

Adapted parameter Speech

Noise level 55 dBA

Starting speech level +15 dB SNR

Transducer Central speaker, 90°left and 90°right speakers

Speech location Centre

Noise location Centre, 90°left, 90°right

Step size 8 dB, 4 dB

Number of reversals 2 big, 8 small

Scoring SNR — Average of last 8 reversals, then subtract

the noise level

AB Words

Non-adaptive Test for

adults

Speech materials AB Words lists

Speech level 65 dBA

Scoring Complete words correct and syllables correct

Transducer Central speaker

Table 2.2: Summary of speech recognition and speech-in-noise tests used by USAIS
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the lack of need for a response from a listener, making them suitable for assessment of
patients that are unable to respond to behavioural measures.

Electrophysiological measures also show potential for research purposes, as a method
for analysing the underlying neural mechanisms that drive speech-in-noise performance.
This could provide further insight into the auditory processing mechanisms as well as
being extendable to analyse the integration of other senses that result in improved
speech-in-noise performance (Walter, 1964; Bourguignon et al., 2020; Riecke et al., 2019).
This thesis will focus on auditory evoked responses, however discussion is provided in
Section 7 on the possible use of multisensory evoked responses in future work.

There are also a number of issues that must be addressed when considering evoked
responses, including poor SNR in the measured responses, poor spatial localisation of
the generator of the response (in comparison to the accuracy of methods such as fMRI
of fNIRS, for example) and the range of practical limitations that are inherent in these
methods. For brevity, this review will focus primarily on measurement using EEG, due
to its wide availability, relatively low cost and non-invasive nature. MEG based literature
will also be considered due to its analogous response with those recorded using EEG.
This section will provide an overview of the different forms of auditory evoked responses
and the methods used for obtaining such measurements. Relevant research into their
applicability for the assessment of speech-in-noise performance will also be discussed.

Evoked responses using EEG measure the field potential recorded via electrodes, placed
across the participants scalp, in response to a stimulus. These potentials are produced as
the summation of extracellular electrical activity from populations of neurons in the cen-
tral nervous system. When recorded in response to an auditory stimulus, this produces
an auditory evoked response. EEG is classified as a far-field recording technique, as mea-
surements are taken at considerable distance from the source of the electrical activity
(in comparison to near-field techniques, such as EcochG, where measurement is taken
as close to the source of activity as possible). Therefore, the number and positioning of
electrodes has a substantial impact on the recording quality. Auditory evoked responses
are recorded using between 3 and 128 electrodes which are placed across the scalp in var-
ious configurations. The number of electrodes used and their positioning are commonly
dictated by a predefined schema known as the 10–20 system, which details the number
and placement of electrodes (Libenson, 2010). The choice of electrode montage can af-
fect the spatial resolution of the resulting recording, as a montage with fewer electrodes
spaced at greater relative distances will not be able to resolve the location of neuronal
activity accurately as a tightly spaced montage with many electrodes (Niedermeyer and
Lopes da Silva, 2005).

The underlying spread of current is also a limiting factor in spatial resolution, as increas-
ing the number of electrodes decreases the independence of each electrode. This is due
to the electrical current produced from neuronal generators reaching multiple electrodes.
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For brainstem response, as few as 3 electrodes are sufficient to measure a response, how-
ever use of such a reduced number of electrodes is primarily for practical purposes in a
clinical environment, particularly in reducing setup time (Hall, 1992). When considering
responses such as cortical responses in a research context, a larger number of electrodes
are typically used. It should also be noted that activity is measured relative to a refer-
ence. This may be a single reference electrode for all electrodes or may vary depending
on the chosen montage. Using a reference electrode with a differential amplifier allows
for the high levels of external electrical noise that are common to both electrodes to be
rejected (known as common mode rejection), leaving primarily the relatively low voltage
action potentials to be measured in the output signal (Hall, 1992; Libenson, 2010). Hav-
ing been measured and amplified the signal is finally converted from analog to digital
using and analog-to-digital converter ready for further digital processing.

A particular issue with EEG is the attenuation of neural activity measured at far field
(at the scalp) and the interference from multiple neural generators. Due to the many
layers of tissue that must be traversed for a potential to reach the scalp, a large number
of neurons must be activated simultaneously to achieve a measurable response. MEG
is a comparable alternative form of encephalography that suffers less from these issues,
however this method requires a considerably more controlled environment and is often
not available or practical for clinical purposes.

Figure 2.3: Example of an idealised response to click stimulus3

There are a number of considerations which can impact the quality of evoked responses.
The most significant factors are outlined by Hall (1992):

• Analysis time (typically the number of epochs measured)
3This figure was adapted from Albert Kok—Eigen bewerking van Picton et al. (1974)., Public

Domain, https://commons.wikimedia.org/w/index.php?curid=2213490 (accessed 07/12/2021)

https://commons.wikimedia.org/w/index.php?curid=2213490
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• Noise

• Artefacts

• Filter settings

The size of epochs measured detemines the time period after the onset of a stimulus
that is analysed. This has implications for the analysis of underlying sources in the
central auditory pathways, as it is understood that different components respond to a
stimulus at various latencies. Figure 2.3 illustrates the signal morphology of the proto-
typical click responses: The auditory brainstem response (ABR), auditory mid-latency
response (AMLR), and auditory late response (ALR). Table 2.3 provides details on some
commonly measured responses to a click stimulus, discussed in Section 2.2.2.1 (with the
exception of the auditory steady state response (ASSR), discussed in Section 2.2.2.2).
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Type Latency (msec) Terminology Presumed source/generator

Early <12

EcochG 1–4

Cochlear Microphonic AC component receptor potential—cochlear hair cells

Summating Microphonic DC component receptor potential—cochlear hair cells

N1 or AP Auditory nerve compound action potential I-auditory nerve action potential

ABR 1–12 Brainstem

Wave I Compound action potential recorded from the distal end of the acoustic nerve or graded potential of

dendritic terminals of acoustic nerve

Wave II Changes in current flow at the poms acusticus internus, or compound action potential of the auditory

nerve at the entrance into the brainstem, or graded potentials from cochlear nucleus

Wave III Cochlear nucleus and trapezoid body or superior olivary complex and trapezoid body

Wave IV Lateral lemniscus, ventral lemniscus cells, or superior olivary complex or ascending auditory fibers in the

pons

Wave V Ventrolateral inferior colliculus and ventral lateral lemniscus

Wave VI, VII Higher brainstem structures such as the medial geniculate body

Mid-latency 12–50

Transient Na (N20), Pa (P30) Myogenic vs. neurogenic source

Late response >50

Late 50–250 N100, P150, N200 Cortical

Long >250 P300, CNV Cortical

Steady-state Frequency domain response 40 Hz ASSR Cortical

80 Hz ASSR Brainstem + cortical

Table 2.3: Summary of commonly measured evoked responses to auditory stimulus4



2.2. Measures of speech-in-noise performance 31

Given the extremely small amplitude of the signals being measured in evoked responses,
one of the most significant issues is how to account for the noise generated by other
sources of activity, both internally and externally. For example, the amplitude of a
wave V may be as little as 0.5 µV, which is orders of magnitude smaller than the
combined noise from internal sources such as other brain activity, muscle activity and
external sources such as electrical activity from power lines (Hall, 1992). Common mode
rejection is commonly used to account for this poor SNR. As EEG measures a potential
between two electrodes, common mode rejection inverts the polarity of one electrode
(the inverting electrode) and adds the resulting signals to the non-inverting electrode.
This results in any signal common to both electrodes being subtracted from the final
signal. Assuming that the noise to be removed is constant across both electrodes, this
method significantly reduces the amount of background noise (typically by around 80
dB (Hall, 1992, p.69)), but does not have a significant effect on the response which
should only be present in the non-inverting electrode’s signal.

Another common process is to repeat the stimulus multiple times and average the result-
ing signals. This method of noise reduction assumes that the underlying response will
remain constant across repeated presentations, allowing the stochastic noise to be aver-
aged out. This has been shown to be effective for short stimuli such as clicks and tone
pips and has traditionally been used in conventional evoked response measurements.
However, recent methods have been developed that do not require multiple repeats of
a stimulus to obtain a response. These methods have been shown to be effective in the
analysis of speech evoked responses, as discussed in Section 2.2.2.5.

Specific artefacts in the signal can also be detected and attenuated using filtering meth-
ods. Three common examples are the noise generated by eye blinks, breathing and
powerline electrical activity. Digital filters are commonly applied to detect and attenu-
ate the effects of such artefacts. In the case of electrical activity for example, a narrow
notch filter at 50 or 60 Hz (dependant on country) may attenuate such activity without
significantly affecting the remaining signal. Effective filtering methods have been devel-
oped to attenuate eye blinks as a post-processing stage using independent component
analysis. The details of the machine-learning based filtering approach used to achieve
this are complex and outside the scope of this review (refer to Hoffmann and Falkenstein
(2008)), however it has been shown to be an effective method for reducing the effect of
such artefacts.

Traditionally, evoked responses have been recorded using short stimuli such as clicks
and tone pips, repeated multiple times to elicit a response. This allows for these indi-
vidual responses to be averaged, thus reducing noise across the recordings to reveal the
consistent underlying response across repetitions. This technique is used in the ABR,
AMLR and ALR. Alternatively, responses can be measured from a constant modulat-
ing stimulus, as is the case with the ASSR. These techniques each provide information

4This table was adapted from Niedermeyer and Lopes da Silva (2005, p.976, 980)
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about auditory processing at various levels of the central auditory pathways, although
their relationship to perception of speech-in-noise is not entirely clear (as discussed fur-
ther in the following sections). In addition, it has recently been shown that speech and
speech like stimulus can be effective for the analysis of the auditory system’s processing
of speech using evoked responses. These stimuli have the advantage of better repre-
senting real life speech than synthetic tones and clicks (Kraus and Nicol, 2003; Russo
et al., 2004; Johnson et al., 2005). Types of stimulus range from analysis of responses
to individual phonemes (such as /da/) to analysis of running speech. This section will
first review current understanding of conventional stimulus, such as clicks and tones,
including the presentation of such stimulus in noise, and discuss the relationship be-
tween these responses and speech-in-noise performance. The most prominent research
into responses using speech based stimulus will then be reviewed, including the range of
signal processing techniques that allow for the use of such stimuli.

2.2.2.1 Auditory brainstem response (ABR)

The ABR has been shown to be an effective diagnostic tool for clinical applications
such as infant screening, threshold estimation and identification of pathologies in the
auditory system. Click evoked responses are currently the most widely researched type
of response, although tone bursts and chirps are also used (Hall, 1992, p.307-308).

Analysis of the brainstem response is performed in the time domain and focuses on the
relative latency and amplitude of peaks (labelled I-V in Figure 2.3, see Table 2.3 for
the physiological sources of these peaks) in the first 12 milliseconds after the onset of a
stimuli. Alternatively, chirps (rapidly sweeping tones) and tone pips have been shown to
effectively elicit responses. These stimuli allow for raised peak amplitude and frequency
specific responses. These techniques are most commonly used for improving wave V
amplitude and for the estimation of frequency specific thresholds of infants, as the click-
ABR is thought to produce relatively inaccurate threshold estimations, particularly at
low frequencies (Hall, 1992, p.424).

A small number of studies have suggested that the click-ABR can provide a predictor for
speech discrimination performance under certain conditions. Borg (1982) and Rawool
(1989) reported significant correlations between speech in quiet scores and various wave
morphology features for listeners with acoustic neuromas (N = 12) and older normal-
hearing listeners (N = 7). However, Borg (1982) found no correlation between speech
discrimination and ABRs for sufferers of cochlear hearing loss. This is further supported
by the finding of Makhdoum et al. (1998) in cochlear implant users (N = 15). It is also
thought that responses to simplistic stimuli may not provide robust approximations of
complex sounds such as speech (Greenberg, 2004; Song et al., 2006; Johnson et al.,
2008, p.169-170) and may therefore be poor predictors of a listener’s speech processing
or speech-in-noise performance in general. It is therefore expected that ABR is unable to
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fully predict speech and speech-in-noise performance due to the lack of higher level cog-
nitive processing involved in the neural responses to click and similar simplistic stimuli
in the auditory system (Song et al., 2006). The focus of ABR on only lower level linear
processing structures in the brainstem will only provide insight into the function of a
limited subsection of the structures involved in speech processing. For these reasons,
short speech based stimuli have also been used to elicit responses analogous to ABR
but with greater ecological validity. These speech based stimuli are discussed further in
Section 2.2.2.4.

Research into the effects of broadband noise on click ABRs have shown changes in ABR
morphologies for various demographics as a result of increasing noise levels. A series
of studies found various effects on response morphology as a result of increasing broad-
band noise level for both normal-hearing and hearing impaired listeners. Effects include
increases in wave V latency, wave I-V interval and decreases in average wave ampli-
tude (Burkard and Hecox, 1983b; Burkard and Hecox, 1983a). However, to the authors
knowledge there is no research suggesting that these correlate with SIN performance.

2.2.2.2 Auditory steady state response (ASSR)

Modulated continuous stimuli using pure tones are used to produce the ASSR. As with
tone pip elicited ABR, the ASSR can be used to determine the brainstem response
to specific frequencies. By modulating the amplitude (and sometimes frequency) of a
carrier wave and performing spectral analysis of the resulting response, a peak at the
modulation frequency can be used to determine the brainstem response to the carrier
frequency. As the ASSR is elicited by a continuous stimulus, overlapping windows
are analysed in the frequency domain and averaged to produce a response that is a
summation of synchronous activity from sources throughout the central auditory path-
ways (Picton et al., 2003). The relative contributions of these sources are determined
primarily by the rate of stimulus amplitude and frequency modulation. Stimuli are typ-
ically modulated at either 40 Hz, eliciting responses primarily from both the brainstem
and primary auditory cortex, or at 80–100 Hz, where responses are produced primarily
in the brainstem (Herdman et al., 2002).

As with ABR methods, the simplistic nature of the ASSR stimulus may limit its appli-
cability to the prediction of speech-in-noise performance in terms of measuring higher
cognitive functioning. However, studies such as that by Dimitrijevic et al. (2004) (using
young normal-hearing listeners N = 10, elderly normal-hearing listeners N = 10 and
elderly hearing-impaired listener N = 10) and Dimitrijevic et al. (2001) (using young
normal-hearing listeners N = 21) report significant correlations (ranging from between
r = 0.38 and r = 0.74) between independent amplitude and frequency modulated ASSRs
and word recognition scores in quiet. These correlations are attributed to the similarities
between modulations in the ASSRs and those found in speech. Significant correlations
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are also thought to be produced as a result of the combined contributions of processing
at the various stages throughout the central auditory pathways. A study by Manju
et al. (2014) reported correlation (r = 0.61, p < 0.05) between SRTs obtained using
an adaptive speech-in-noise test (which comprised on HINT derived materials and pro-
cedure, adapted for indian speech), and 30–40 Hz ASSRs for normal-hearing listeners
(N = 11). However it is noted that predictions were not possible at higher modulation
frequency ASSRs. Therefore an ASSR that stimulates responses at the brainstem level
may not provide a similar level of predictive performance. It should also be highlighted
that group level correlation with speech-in-noise scores does not directly suggest that a
measure could be developed to accurately predict scores at the individual level. Further
work would be needed to ascertain within-subject variability.

Recent research has also explored the potential for speech spectrum ASSRs presented
in noise to be used for speech-in-noise performance. In addition to their work using
ASSRs in quiet, Dimitrijevic et al. (2004) compared ASSRs with speech spectrum noise
at various modulation rates to word-in-quiet scores, finding that both young and elderly
subjects had similar reductions in response recognitions and amplitudes when ASSRs
were presented in noise as opposed to in quiet. Leigh-Paffenroth and Murnane (2011)
found significant correlations between WIN scores and the 40 Hz ASSR in babble noise
when measuring ASSR detection rate and average ASSR amplitude in normal-hearing
listeners (r = −0.38, p = 0.044) and HIs (r = −0.39, p = 0.039). However, although
significant, these results accounted for only 15% of the WIN score variability for normal-
hearing listeners and only 23% for HIs. The large inter-subject variability suggests that
this measure may not be a robust predictor of behavioural speech-in-noise measures.
Overall, the presented research suggests that ASSR provide robust correlates for word
recognition in quiet scores at the group level. However, as these scores do not account
for the distortion factor described in Section 2.2.1.3, these may not translate to similar
predictive capabilities for speech-in-noise tests. There has been considerably less success
in correlating ASSRs, recorded both with and without added noise, to speech-in-noise
scores.

2.2.2.3 Mid and late latency responses (AMLR and ALR)

Using a similar method to that for recording an ABR, the AMLR and ALR can be
recorded to analyse synchronous activity at higher levels of the central auditory path-
ways. These measures provide responses to cortical and mid-level structures that are
not represented in ABR. Refer to Figure 2.3 for illustration of the AMLR and ALR
response morphology.

The AMLR occurs at 12–50 ms and is comprised of four waves: Pa, Na, Pb, Nb
(P=Positive, N=Negative). These waves are thought to occur as a result of activity
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in mid and higher level structures such as the inferior colliculus and primary and sec-
ondary structures in the auditory cortex (Hall, 1992, p.553-558). Few notable studies
exist that directly measure the relationship between the AMLR and speech recognition
or speech-in-noise. Romero et al. (2015) found weak correlations for Na-Pa amplitude
and Na latency with syllabic awareness test for children with learning disabilities. How-
ever, studies by Paludetti et al. (1991) and Makhdoum et al. (1998) found no correlation
between AMLR and speech recognition performance in 74 normal-hearing listeners and
15 cochlear implant users. It was found that AMLR morphology could often appear
normal alongside abnormal speech recognition results and vice versa. This suggests that
there may be some link between AMLR and higher level lexical processing. This re-
search suggests that it is unlikely that the AMLR will provide a robust correlate for
speech-in-noise performance.

The ALR occurs at latencies of more than 50 ms and primarily consists of components:
P1 (thought to be equivalent to the Pb peak of the AMLR), N1, P2, N2, P300 and
the mismatch negativity response (MMN). ALRs are typically elicited with tones or
speech of significantly longer duration than those used for ABR or AMLR. Unlike
ABR and AMLR, a wide variety of stimuli can be used for effective production of
the ALR including the use of music and stimulus in noise. A further difference in
the case of the P300 and MMN is that these components are elicited in response to
change in stimulus, requiring a target stimulus to be presented infrequently amongst
another frequent stimulus. These responses therefore provide an indicator of stimulus
discrimination in neural encoding of a sound, as opposed to stimulus presence as is the
case for other responses discussed previously (Hall, 1992, p.643–644, 716, 769). In terms
of speech performance evaluation, the ALR is typically evoked in response to short speech
stimulus. Research has shown correlation between the P300 and P2 components of the
ALR with speech recognition performance in cochlear implant users (Makhdoum et al.,
1998; Groenen et al., 2001). The ALR is thought to be more effective for estimation of
speech-recognition performance used for cochlear implant users in these studies due to
the contamination of lower level responses such as ABR by the electrical activity of the
cochlear implant. However it should be considered that the measurement of responses
such as the P300 may be considerably more difficult due to the need for active attention,
again limiting the applicability of such techniques in hard to test patients and infants.
Research into the use of ALR for prediction of speech-in-noise performance using short
speech stimuli is discussed in Section 2.2.2.4.

2.2.2.4 Phonemes and words

A range of stimuli have been used for eliciting complex stimulus ABRs (cABR) for
analysis of the brainstem response to speech-like stimulus. The most common stimu-
lus is the consonant-vowel syllable /da/, although many other stimuli, both speech and
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non-speech based, have been used. cABRs are typically recorded with parameters anal-
ogous to conventional click-ABRs. As with conventional click-ABR, a range of defining
features have been outlined in the literature, based on peak amplitude and latency, as
well as features such as the frequency following response (FFR), which is determined
by the f0 of the steady state section of the stimulus. Responses to cABRs are averaged
in order to improve SNR and so the limitation of stimulus length is still imposed on
responses. For this reason, it is suggested that a stimulus should be between 40–100 ms
to allow for reasonable recording times, although longer durations may be used (Skoe
and Kraus, 2010). As with conventional ABR methods, the need for averaging cABRs
may limit the ecological validity of the stimulus. For example, Reichenbach et al. (2016)
and Neupane et al. (2014) suggest that repetitions of short stimuli may result in neural
adaption which limits the applicability of such responses to the task of better under-
standing speech comprehension. This method has nonetheless been the focus of much
research into the encoding of speech in subcortical neural pathways. Examples of such
research include demonstrating that a robust representation of speech is maintained at
the brainstem (Anderson et al., 2013) and that the encoding of the speech envelope is
most important when listening to clean speech, whereas the temporal fine structure is
increasingly exploited as SNR increases for speech-in-noise (Bidelman, 2016).

Multiple studies have explored the relationship between speech-in-noise performance
and cABR responses. A series of studies by Anderson et al. (2010b), Anderson et al.
(2010a), Anderson and Kraus (2010) and Anderson et al. (2013) found a number of
correlates to HINT and speech, spatial and quality of hearing scale (SSQ) scores. In
analysis of brainstem responses by Anderson et al. (2010b), it was found that f0 re-
sponses in the consonant-to-vowel transition period of the stimulus correlated with HINT
(r = −0.424, p = 0.008) scores. Anderson et al. (2013) also reported that the wave mor-
phology variables they selected provided additional predictive power in SSQ scores to
that provided by QuickSIN scores+participant age+standard click ABRs when analysing
using multivariate linear regression (a significant change in R2 = 0.158, F(3, 103) =

5.413, p = 0.001). It was noted that f0 representation in the FFR did not significantly
correlate with HINT or QuickSIN scores. These results contradict a considerable amount
of literature (as outlined in Section 2.2.2.1) that suggest ABR based measures do not
well predict speech-in-noise performance, by presenting evidence that additional predic-
tive value may be provided by ABR measures evoked using speech-based stimulus. The
authors highlight evidence that the cABR provides heightened sensitivity to “subtle dif-
ferences” in hearing-impaired populations, citing Song et al. (2006), which may provide
some explanation as to this discrepancy, however the exact cause is not clear and an
area that would require further research. Although these results suggest that correlates
to speech-in-noise performance metrics can be extracted from cABR, the intersubject
variability is high and any one of these correlates may not reliably predict speech-in-noise
performance alone. Furthermore, work by Novis and Bell (2019) suggests that cABRs
may require further epoching than that of standard click stimulus to achieve reliable
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responses. This may limit its clinical applicability due to the increased time required for
testing. Further research is required in these areas to independently verify the results
found by Anderson et. al, and to determine the cause of the discrepancy between these
results and those of ABRs to simple stimuli.

Research by Billings et al. (2013) also used a short speech like stimulus (/ba/) to study
the effects of noise on ALR morphology. In addition, these results were compared with
the participants (N = 15) SRTs, measured using IEEE sentences in speech spectrum
noise. Results suggested that N1, P2, and N2 latencies decreased and amplitudes in-
creased as a function of SNR. It was noted that that changes in ALR morphology
due to the rollover effect (where speech signals become less intelligible at high signal
levels) were not observed in this study. This may suggest that degradation in speech
performance as a result of this effect may not be represented in this type of response.
However it should be considered that the participant sample size was small and only
included young normal-hearing listeners, therefore these results may not generalise to
wider populations.

Single words have also been used by epoching at set syllables and averaging responses.
This technique was used by Wagner et al. (2016), with the aim of understanding the
relationship between P1-N1-P2 and T complex morphology and the spectrotemporal
features of the words presented. Analysis of the complexes obtained showed that both
complexes reflected the spectrotemporal features of the syllables. These results demon-
strated the viability of these complexes for analysis of deficiencies in the cortical pro-
cessing of speech, showing that they remained robust to natural variations in speaker
and were consistent at the group level (and individual level for the P1-N1-P2 complex).
Research into the effects of noise on these complexes may therefore have the potential
to indicate levels of spectrotemporal deterioration at the cortical level. However, to
the author’s knowledge, no research has yet compared these complexes to behavioural
measures of speech-in-noise performance.

2.2.2.5 Sentences and running speech

A recent development in evoked response measurement is the advancement in signal
processing methods that allow for the analysis of responses to running speech. This
advancement holds potential for the development of improved correlates to speech-in-
noise performance as it allows for direct analysis of neural activity in response to natural
speech. The use of stimulus with considerably greater ecological validity allows for the
analysis of responses that better resemble the neural activity that occurs in everyday
listening. Therefore correlates obtained from these responses may better represent de-
ficiencies in the central auditory pathways that affect the processing of running speech
than short and artificial stimuli. There are currently two similar methods that have
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been shown to be successful in the analysis of such stimuli: A brainstem-level correla-
tion based approach which directly compares representations of the input stimulus to
the response signal (Kong et al., 2015; Reichenbach et al., 2016; Forte et al., 2017) and a
cortical-level regression modelling/prediction based method that estimates the transfer
function of the auditory system given the known input (the stimulus) and the output
(the EEG signal in response to stimulus) (Aiken and Picton, 2008; Lalor et al., 2009;
Lalor and Foxe, 2010; Di Liberto et al., 2015; Ding and Simon, 2012). This section will
provide an overview of these techniques and discuss the various studies that focus on or
are relevant to the application of these methods for speech-in-noise estimation.

Another method, outlined in Kong et al., 2014, that may also yield useful correlates
to speech-in-noise performance is the use of direct cross-correlation between the EEG
signal and various stimulus derived features. By extracting features such as the envelope
and f0 from the speech stimulus and finding the time lag at which these features best
correlate with the EEG, it is possible to determine if and at what stage in the central
auditory pathways that the features are best represented. Work by Kong et al. (2014)
used this method to study the cortical representation of the speech envelope for active
and passive listening conditions. Participants (N = 8) were presented with active and
passive listening tasks in noise and in quiet. Denoising source separation (DSS) was ini-
tially used to reduce the EEG signal to its most consistent components across multiple
trials (150 tone pips were presented to the participant to obtain multiple trials for DSS).
The most consistent component was then correlated to the envelopes of the attended and
unattended speech signals. A variety of differences were found between the morpholo-
gies of the correlation functions for the attended speaker and the unattended speaker,
suggesting a significant effect of attention on cortical representations of speech. This
was built on by Power et al. (2011) to explore the relationship between spectral resolu-
tion of the attended speaker and cortical entrainment to that speech in the presence of a
distracting speaker. Using an analogous method to the previous study, it was found that
participant (N = 8, normal-hearing listeners) speech scores were significantly correlated
(r = 0.62, p < 0.001) with the neural modulation index (“the RMS of the difference
in the cross-correlation values between the attended and unattended speech over time
lags” (Kong et al., 2015, p.788)). These studies demonstrate the potential for a corre-
lation based correlate for speech-in-noise performance and further highlight the effects
of attention on cortical tracking of speech. This method was further built on by Re-
ichenbach et al. (2016) and Power et al. (2011). These studies focused on extracting
the amplitude envelope modulated f0 of the stimulus signal using a variety of methods.
This signal is then correlated with single channel EEG to determine the correlation and
time lag of the f0 neural representation. Using normal-hearing listeners (N = 14) the
study by Forte et al. (2017) demonstrated the presence of the fundamental frequency
(and higher harmonics) in the brainstem response, consistently observing a correlation
between response and stimulus at around 9 ms in all but 2 participants. It was also
observed that this representation was modulated by the attention of the listener in the
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presence of competing speakers, with larger responses at latency peaks found for the
attended speaker over the unattended speaker. This was true for 9 out of 14 subjects.

This research suggests that a correlation based method may be viable for producing
speech-in-noise correlates, potentially with as few as 4 electrodes. It demonstrates the
ability to extract acoustic features that are relevant to speech perception and shows
that these features are encoded in the presence of competing noise. This research also
highlights the necessary consideration for attention which is shown to be a factor even in
subcortical speech processing. However, there are a number of discrepancies between this
approach and other research that should also be considered: It is noted by Reichenbach
et al. that reduction in f0 representation was observed when speech is intelligible, in
contrast to previous research by Galbraith et al. (2004) which observed the opposite
effect. It is suggested that this may be as a result of discrepancies between responses
to running speech and repeated stimulus. This therefore may contrast the findings of
studies using short, repetitive stimuli discussed in Section 2.2.2.4, which suggest that
f0 is less likely to be useful as a speech-in-noise correlate, as recognition performance
is thought to be modulated to a greater degree by transitions in speech than in steady
state sections. Other considerations include the need to present repetitive stimuli prior
to running speech in order to utilise DSS.

An alternative method that has been the focus of recent research is the use of a temporal
response function (TRF, or mTRF for multivariate-TRFs) for analysis of running speech.
This method can be thought of as an extension of the correlation method presented
previously, that attempts to model the auditory system as a linear time-invariant system,
using linear regression. This model assumes that the output of the system (y(n), the
EEG data) can be described as a convolution (∗) of the input of the system (x(n), the
stimulus) with an impulse response (w(n)), plus residual noise (Lalor et al., 2009):

y(n) = x(n) ∗ w(n) +Noise.

This can be thought of as a regression model, where a least-squares solution is used to
estimate an impulse response, that minimises the error between input and output. This
response can then be used for estimation of unseen EEG data from an input signal, or
for reconstruction of an unseen input signal from EEG data. This method has been used
in a number of studies, particularly for the purposes of understanding the level to which
different representations of the input signal are present in cortical responses to running
speech. Studies have shown that the amplitude envelope (Aiken and Picton, 2008; Lalor
and Foxe, 2010), spectral representations and phonemic representations (Di Liberto et
al., 2015; Di Liberto and Lalor, 2017) may all contribute to neural processing using this
method of comparing a reconstructed signal to an unseen original.

Studies have also used the TRF method when focusing on understanding the localisation
of different representations throughout the cortical central auditory pathways. Using
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this method Brodbeck et al. (2018) demonstrated the ability to localise the sources of
representations from lower level acoustic processing (amplitude envelope) to mid-level
(word frequency) and cortical level semantic processing (semantic composition). By
generating source estimates, creating TRFs for each individual estimated dipole, and
recombining these TRFs, a model was created that described the activity in response to
stimulus, both temporally and spatially. Results supported previous understanding of
the hierarchical composition of the central auditory pathways, in addition offering further
insight into the possible sources of speech processing at various levels. Additionally, these
models were generated with as little as 6 minutes of MEG data, suggesting that this
method may yield benefits for reduction of stimulus needed for generating TRFs. It is
noted that the localisation techniques used are limited by the relatively low number of
sensors. This suggests that this method may be less applicable to EEG measurements,
which typically use fewer sensors than MEG.

There are limitations to the current implementation of the mTRF that should be ac-
knowledged when considering its use for running speech analysis. A commonly high-
lighted issue is its assumption that the modelled system is linear and time-invariant,
despite it being well understood that the auditory system is neither (Lalor et al., 2009;
Power et al., 2011; Brodbeck et al., 2018; Vanthornhout et al., 2018). A potential solu-
tion to this issue is to substitute a non-linear model such as an artificial neural network
or source vector machine, allowing for non-linearities in the system to be better repre-
sented in the model. This was explored by Power et al. (2011) who found only minor
improvements through a non-linear extension based on a Volterra series. Given that this
model only used a second-order extension, there is still potential for further improve-
ments to the model. A further consideration is the relatively poor correlations that are
achieved between the original stimulus and the reconstruction produced by the model
(maximum correlations can be as little as 0.2 in the presence of competing speaker (Ding
and Simon, 2012)) as well as the large inter-subject variability in results. These aspects
will likely affect the robustness of these models when considering individual listener’s
responses and may result in the need for long data collection sessions to generate reliable
results.

It is clear that the TRF is a promising method for assessing speech-in-noise performance
as it allows for direct analysis of speech feature representation along the auditory path-
way. Vanthornhout et al. (2018) investigated the potential for use of the TRF in this
context. This study focused on correlating reconstructions of the speech envelope in
response to running speech with results from a Matrix test. Normal-hearing listeners
(N = 24) were presented with concatenated matrix test stimuli in up to 7 SNRs and
15 minutes of running speech. EEG data was recorded in response to these stimuli and
an TRF model was trained using the running speech stimulus only. Envelope recon-
struction was performed using the concatenated Matrix test responses, with correlation
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to the original clean matrix speech used to compare with the behavioural measure. Re-
sults were promising, showing that the cortical representation of the speech envelope
could be better reconstructed as the SNR increased. This was also found to correlate
well (r = 0.69, p = 0.001) with SRTs obtained from the behavioural test. This research
was further developed by Lesenfants (2019), extending the method to use higher and
lower level phonetic and spectral features proposed by Di Liberto et al. (2015). The
model used for prediction is also adapted to use a grand-average TRF model, rather
than individual models for each participant. Results suggested that using a combined
spectrogram-phonetic representation in the theta band could provide SRT estimations
within 2 dB SNR for more than 80% of the normal-hearing participants. The authors
of this study conclude that this predictive performance provides an objective measure
of speech-intelligibility, but that further research is needed to assess the measures per-
formance over an extended cohort of participants.

A number of methodological aspects should be considered that may be addressed to
build on this work: The studies used a small number of normal-hearing listeners, with
only minor variations in performance on the behavioural test. Participant’s SRTs were
in the range of -10 dB SNR to 0 dB SNR. Given the small range of subject performance
levels and the matrix test’s reported inter-subject variability of 0.5 dB (Luts et al., 2014),
it is not clear if this method would generalise to larger populations and to those with
varying degrees of speech-in-noise performance. As noted for previous evoked response
methods, results are presented at the group level, so further research would be needed
to understand the individual predictive performance of these methods. Additionally,
as these methods focus on cortical processing, cognitive processing may influence the
results. Use of alternative acoustic features such as the temporal fine structure could
be used to give further insight into processing that occurs at the brainstem (Maddox
and Lee, 2018). This would likely also be less influenced by such higher level cognitive
function. As suggested previously, the use of higher level models may improve overall
reconstruction accuracy. Finally, the model used for prediction could be extended to a
non-linear model to improve overall correlation between stimulus and reconstruction.

2.3 Traditional interventions to improve speech-in-noise performance

When surgical and/or pharmaceutical interventions do not provide an effective solution
for a person’s hearing loss, external neuroprosthetics are typically used in order to aid in
speech-in-noise performance. There are a wide variety of clinical interventions available,
which are selected based on the type and severity of the hearing loss. There are a number
of challenges in the design of these devices, both acoustically (devices are required to
process a wide range of input sound levels and frequencies), and practically (devices
must provide a robust intervention for day-to-day use in a variety of environments)
This sections will provide a brief overview of available hearing assistive technologies,
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focusing on typical clinical interventions such as acoustic or bone-anchored hearing aids
(Section 2.3.1), and cochlear implants (Section 2.3.2).

2.3.1 Hearing aids

For many hearing losses, the most appropriate intervention is currently an acoustic
hearing aid, which amplifies sound to compensate for loss of hearing sensitivity. Recent
improvements in design and manufacturing techniques have lead to a variety of hearing
aid styles, as discussed in Section 2.3.1.1. Hearing aid designs must account for many
inherent restrictions, including limited power supply, the need to be very small, and the
variety of noises and distortions that degrade a listener’s speech-in-noise performance.
The advent of modern digital technology in recent years has allowed for the development
of increasingly complex signal processing strategies. These aim to improve speech-in-
noise performance by enhancing the quality of the acoustic signal received by the hearing
aid, as discussed in Section 2.3.1.2. These sections focus on the impact of hearing aid
design decisions on speech-in-noise performance outcomes for hearing impaired listeners.
Due to the wide range of designs and implementations, this section will provide an
overview of the most common concepts, with references to detailed reviews provided.

2.3.1.1 Hardware

Hearing aids are designed with a broad focus on improving the quality of user outcomes
(including improvement to speech-in-noise performance), as well as the durability of the
device and its aesthetics (Moore and Popelka, 2016). In modern hearing aids a complex
combination of hardware is used to maximise performance in these areas. These devices
typically consist of the following components:

• Microphone(s) used to transduce speech and environmental sounds to electrical
signals.

• An analog-to-digital converter, used to convert analog electrical sound signals to
a digital representation for further processing and noise reduction.

• Sets of application-specific integrated circuits (ASICs) and digital signal processing
chips, used to perform noise reduction and other signal enhancement techniques
(discussed in Section 2.3.1.2).

• Increasingly, hearing aids may include a wireless module, allowing for communi-
cation with other devices and/or hearing aids via radio/bluetooth.

• A receiver (either with or without an accompanying digital to analog converter),
used to convert the processed audio signal back to audio for presentation to the
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listener. Depending on the hearing aid type, this may be a small speaker or bone-
conduction shaker.

• A small ergonomic case designed to house the device components discreetly.

• A battery, used for powering the electronic components of the hearing-aid.

This section will provide a brief outline of the key hardware manufacturing advances
that have had a significant impact on speech-in-noise performance. For a comprehensive
overview, please refer to Fay et al. (2016).

Manufacturing has progressed in almost all aspects of hearing aid hardware over the
past 30 years. In recent years, the focus of hearing aid design has been primarily on
improvement of speech recognition performance, on improved overall sound quality, re-
duced power consumption (for longer battery life) and on reduction in size (Hänsler
and Schmidt, 2006; Launer et al., 2016; Killion et al., 2016; Moore and Popelka, 2016).
Development of a discrete solution is necessary due to the perceived stigma of using
a hearing aid (Bartkiw, 1988; Parette and Scherer, 2004; Erler and Garstecki, 2002),
but presents a trade-off between device size and potential audio processing performance.
Advancements in transducer, signal-processing and wireless technologies have enabled
the development of a wide range of different hearing aid styles. Modern digital hearing
aids may be mounted visibly in the ear, completely in the ear (not visible), behind the
ear or mounted externally on the mastoid in the case of bone conduction hearing aids.
However speech-in-noise performance remains an issue for all of these device types.

A key area of improvement has been in transducer technologies. The development of
higher quality transducers has improved bandwidth and frequency responses, as well as
improved resistance to shock damage, magnetic shielding, and microphone insensitivity
to vibration (Killion et al., 2016). This has led to reduced additive mechanical and
electrical noise, as well as less distortion of the speech signal. Modern transducers are
now able to capture and reproduce speech signals with imperceivable levels of distortion
and broadband flat frequency responses. Any further gains in this technology would be
largely eclipsed by the quality of the ear-mold fit, and the limitations of battery power
on the audio amplifiers of the hearing aid (Lewis and Moss, 2013; Killion et al., 2016).

The advent of digital signal processing and ASICs have allowed for vastly more com-
plex signal processing than was previously possible using analog circuitry alone. These
chips provide increased power efficiency and can be flexibly reprogrammed. This allows
for adaption of algorithms for different environments and fine-grained tuning based on
user’s hearing loss (Hänsler and Schmidt, 2006). However, given the small form factors
required for hearing aids, signal-processing strategies are still fundamentally limited by
the need to perform processing in real-time on relatively low-powered chips. There are
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a plethora of algorithms implemented on these chips that aim to improve speech-in-
noise performance - The most prominent algorithmic developments are detailed in the
following Section 2.3.1.2.

Development of wireless technologies such as bluetooth and low-frequency radio trans-
mission have allowed for innovation in hearing aid design. Wireless modules are com-
monplace in modern hearing aids, allowing users to connect to media devices such as
computers and mobile phones. Direct connection to these devices has been shown to be
particularly advantageous for increasing the SNR to improve speech recognition perfor-
mance (Kim et al., 2014; Chen et al., 2021). Additionally, bilateral hearing aids may
now communicate with each other, allowing for the implementation of more advanced
binaural signal-processing strategies (reviewed in Section 2.3.1.2).

Although these technological advances are promising, there are still many limitations
that restrict improvements to speech-in-noise performance. These currently include the
need for ever smaller device form factors, limited battery power which restricts signal
processing capabilities, and the required simplicity of wireless signals between devices
(due to the limits of small wireless modules).

2.3.1.2 Signal-processing strategies

The DSP and ASIC chips (described in above Section 2.3.1.1) can be programmed with a
plethora of signal processing techniques, designed to cleanup and amplify audio. Hearing
aid signal-processing algorithms typically fit into one of the following categories (Launer
et al., 2016):

• Noise reduction

• Environment classification

• Frequency- and level-dependent amplification for restoring audibility and accept-
able loudness.

Each stage of digital signal processing incurs a delay to the signal. A delay of more than
10-12 ms causes an unwanted echo, therefore the complete signal processing strategy of a
hearing aid must total less than this (Stone et al., 2008). This is a primary limiting factor
on the performance of hearing aid signal processing techniques. This section provides
a brief overview of the most common signal processing strategies and their effect of
speech-in-noise performance. For a comprehensive overview, please refer to Launer et
al. (2016).

Hearing aid digital signal processing strategies start with a frequency analysis (either
FFT/IFFT or filterbank based). This is key stage that supports much of the signal pro-
cessing techniques that follow. There are various trade-offs between frequency analysis
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methods but all are required to work within small windows to reduce latency. This anal-
ysis is therefore usually very limited in terms of frequency resolution (for example, for
a 16 KHz samplerate a typical FFT size of 128 samples results in frequency bins spaced
coarsely at 125 Hz intervals), limiting the quality of subsequent algorithms (Launer et
al., 2016; Hänsler and Schmidt, 2006).

Multiple techniques are employed to reduce the unwanted background noise in a signal.
Multi-mic and binaural beamforming algorithms are commonly used to direct the focus
of microphones towards the target speaker. Many other algorithms are also used to
remove stationary noises, impulsive sounds and to reduce feedback from the receiver.
Detailed description of these algorithms are outside the scope of this review — for
more information refer to Launer et al. (2016). The effectiveness of noise reduction
algorithms on speech-in-noise performance varies, with considerable benefit shown in
particular for beamforming based approaches. Picou et al. (2014) shows reduced lis-
tening effort and improved speech-intelligibility, particularly for binaural beamforming
approaches. However beamforming techniques are only effective when the source and
noise are in separated spatially. The benefits of other noise reduction techniques are less
clear. Although algorithms show promise for specific environments, many don’t provide
significant benefit, particularly when the competing noise is another speaker (Ricketts
and Hornsby, 2005; Bentler et al., 2008)

As hearing aids are required to operate in a wide variety of environments, their signal-
processing strategies must be able to adapt accordingly. To do this, a higher-level heuris-
tic understanding of the environment can be used to inform signal processing strategies
(For example, an ideal signal-processing strategy would be very different for listening in
a quiet environment than for listening to speech in a noisy restaurant). This is achieved
using some form of environmental classifier. These systems work by analysing the sta-
tistical properties of the incoming sound, which then typically use machine learning
based classifiers in order to make decisions on the type of environment (Nordqvist and
Leijon, 2004). Little direct evidence suggests that these algorithms improve speech-in-
noise performance. However, the ability to accurately predict environment allows for
more specialised signal processing strategies, which is likely to have a positive impact
for speech-in-noise performance (Bentler and Chiou, 2006).

Frequency and level dependent amplification is commonplace in all digital hearing aids.
This uses the frequency analysis described above with per-channel dynamic range com-
pressors. These algorithms compress, limit and expand the signal on a per-band basis
to control the perceived loudness of a signal, aiming to counter loudness recruitment by
maintaining an optimal listening level for speech and sound recognition. Gain and com-
pression settings are set by an audiologist based on the user’s PTA scores, but may also
take the user’s preferences in to account. Gains may then be adapted during use based
on an environment classification algorithm, as described above. The effect of dynamic
range compression on speech-in-noise performance strongly depends on the settings of
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the specific algorithm and is highly user dependent, requiring careful tuning to avoid dis-
tortion of the speech amplitude envelope. An in depth review of compression strategies
is provided by Launer et al. (2016).

In addition to level compression, frequency compression/transposition is sometimes used
to restore high frequency hearing. These algorithms remap higher frequency components,
either by superimposing them onto lower ranges or by compressing the entire spectrum of
sound. Various methods have been proposed, as reviewed in Simpson (2009), Alexander
(2013), and Picou et al. (2015). Overall performance benefits using frequency compres-
sion are modest, with severely hearing impaired participants gaining the largest benefits.

2.3.2 Cochlear implants

A cochlear implant may be the most appropriate intervention for listeners who suffer
from severe to profound hearing losses, and so would not benefit from an acoustic hearing
aid. A cochlear implant uses many similar technologies to a hearing aid, with the
exception of the receiver. A cochlear implant is a surgically implanted neuroprosthetic
that bypasses the outer ear, stimulating the auditory nerve directly using and array of
electrodes. This section will outline the hardware (Section 2.3.2.1) and signal processing
(Section 2.3.2.2) components of cochlear implants and their impact on user outcomes
for speech-in-noise performance.

2.3.2.1 Hardware

A cochlear implant has both an external and an internal component. The external
component consists of microphones and a speech processing unit (analogous to the roles
to the transducers and signal-processing units of a hearing aid. Refer to Section 2.3.1.1
for details on these components). Control signals derived from the input audio are then
transmitted to the internal component via a radio, mounted using a magnet on the skull.
The internal system consists of a receiver, and electrode array surgically inserted into
the cochlea.

The electrode array is the interface that stimulates the auditory nerve, providing tono-
topically mapped electrical pulses, which are perceived by the user as sound. Electrode
arrays typically range from 16 to 22 electrodes used to stimulate the cochlea. This
number is limited by the spread of electrical current along the cochlea, severely limiting
the resolution of a cochlear implant in comparison to a healthy cochlea (which contains
thousands of hair cells along the cochlea). Despite this limitation, cochlear implants
have been shown to restore hearing to some of the most severely impaired listeners,
in some cases resulting speech in quiet scores comparable to those of normal hearing
listeners (Friesen et al., 2001). However, scores remain considerably poorer for speech-
in-noise conditions. Studies have reported cochlear implants users performing in the



2.3. Traditional interventions to improve speech-in-noise performance 47

range of 15 dB worse than normal hearing listeners in the presence of modulated noise.
Additionally, percent words correct scores can also drop below 50% at even modest noise
levels (Fu and Nogaki, 2005; Nelson et al., 2003; Fu et al., 1998a) due to the fundamen-
tal limitation of the maximum number of usable electrodes. However, techniques are
currently being developed to try and limit the spread of current along the cochlea. The
benefits of these for speech-in-noise performance are briefly discussed in the following
Section 2.3.2.2, or see Carlyon and Goehring (2021) for an in-depth review. It should
also be noted that the quality of the surgical procedure can have a substantial impact
on speech-in-noise scores, however this is outside the remit of this review. For a review
of modern surgical procedures and their impact on speech-in-noise performance refer
to Lenarz (2018).

Additional benefits to speech-in-noise performance have been found in users who have
received two implants. This provides access to additional localisation cues and binau-
ral signal processing strategies (discussed in Section 2.3.2.2) that are not available to
unilateral cochlear implant users. Although bilateral implantation is a growing trend,
the majority of cochlear implant users are currently implanted unilaterally and cannot
access these additional benefits (Dunn et al., 2008; Dunn et al., 2010; Laszig et al., 2004;
Smulders et al., 2016).

2.3.2.2 Signal-processing strategies

Cochlear implant signal processing has benefited greatly from parallel research into
hearing-aid technology. Algorithms such as automatic gain control, noise reduction
and directional microphone steering follow similar strategies to those described in Sec-
tion 2.3.1.2. An additional mapping strategy is also used to map audio down to the im-
plant’s array of electrodes. This section will review the most prominent signal processing
strategies, and there benefits for cochlear implant user speech-in-noise performance.

As with hearing aids, noise reduction is commonplace in cochlear implants. However,
given the generally poorer performance of cochlear implant users, even more traditional
strategies have been shown to give user significant benefits. A range of traditional noise
reduction algorithms have been investigated, with studies finding significant improve-
ments of up to 2dB SRT or 25 percentage word recognition performance (Loizou et al.,
2005; Hu et al., 2007; Dawson et al., 2011; Mauger et al., 2012; Ye et al., 2013; Chen
et al., 2015; Wang and Hansen, 2018).

Directional microphone signal processing has also shown significant benefit, both in
bilateral and unilateral formats. With approaches showing substantial improvements
from 3.6 up to 16 dB SRT (Chung et al., 2006; Chung and Zeng, 2009; Spriet et al.,
2007). As with hearing-aids these methods are only effective when the target speaker
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and noise are not co-located, and are also susceptible to degradation from reverberant
environments.

There are 3 main strategies used for mapping audio to electrical stimulation: CIS,
SPEAK and ACE. ACE has been shown to perform better in specific speech-in-noise
tests (Kiefer et al., 2001) — Skinner et al. (2002) reported that for the CUNY sen-
tence in quiet test, ACE performed on average 8.8% words correct higher than SPEAK
and 5.6% words correct higher than CIS tests. However, ACE has also been shown to
perform worse in consonant-vowel-consonant tests (performing 7–8% lower). Therefore
overall it cannot be concluded to be a better strategy is the most effective for speech-in-
noise performance. There have been both commercial and research based modifications
of each of these strategies. Some aim to provide extra information such as the tempo-
ral fine structure (Wouters et al., 2015; Hochmair et al., 2015). Evaluations of these
methods have not shown a consistent benefit for speech recognition or speech-in-noise
performance (Magnusson, 2011; Riss et al., 2016; Riss et al., 2011; Müller et al., 2012).
There are also many other experimental strategies — some provide additional biologi-
cally inspired processing before the strategy in order to mimic biological non-linearities,
such as the Medial Olivocochlear Reflex (Lopez-Poveda et al., 2020). Others aim to
enhance specific features of the input signal such as pitch modulations (Francart et al.,
2015; Vandali et al., 2019).

Overall, developments in mapping strategies provide small but inconsistent improve-
ments that are typically less than 10% in terms of improved percent scores, and around
1–2 dB improvements for SRTs. Noise reduction and other pre-processing methods have
shown larger improvements, having been demonstrated to provide 2 dB reductions in
SRT and improvements of up to 25% correct.

2.3.3 User outcomes

Hearing aids and cochlear implants have been demonstrated to be extremely success-
ful interventions for improving patience’ access to sound. Cochlear implant are widely
recognised as one of the most effective neuroprosthesis developed to date — allowing
the severely hearing impaired to achieve performance in excess of 80% words correctly
identified for high-context sentences (“NIH Consensus Conference. Cochlear Implants
in Adults and Children” 1995). Given the challenging listening environments faced by a
hearing aid, they too provide considerable improvement, particularly in quiet listening
conditions (Souza, 2016). This is a remarkable improvement that is as a result of devel-
opment in these technologies, as discussed in previous Sections 2.3.2 and 2.3.1. However,
for speech-in-noise performance, both hearing aids and cochlear implants provide signif-
icant improvements for hearing impaired listeners (Souza, 2016; Carlyon and Goehring,
2021). Neither hearing aid or cochlear implant users are able to perform as well as
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normal hearing listeners, with cochlear implant users experiencing the greatest difficul-
ties. Kaandorp et al. (2015) assesses the 3 groups using sentences and digit-triplets in
noise. For sentences in noise the normal hearing listeners scored -4.2 dB SRT on av-
erage (std=0.8). Hearing aid users scored significantly worse at 2.1 dB SRT (std=4.8)
and cochlear implant users score worst at 8.0 dB SRT (std=6.1). For digits in noise,
the normal hearing group scored -9.3 dB SRT on average (std=0.7). Again hearing aid
users scored significantly worse at -4.4 dB SRT (std=3.5) and cochlear implant users
score the worst at -1.8 dB SRT (std=2.7). These results highlight the limits of current
interventions to provide adequate speech-in-noise performance for hearing impaired lis-
teners. These limits are likely a combined result of the fundamental technological limits
of the interventions (such as the limit resolution of cochlear implant electrode arrays)
and of the limits of the fitting procedures (such as the use of predominantly PTA scores
for fitting of hearing aids).

2.4 Haptics to improve speech-in-noise performance

As discussed in Section 2.3, current interventions for addressing hearing-loss are limited
in their ability to improve speech-in-noise performance. Recent research has demon-
strated the efficacy of using haptic stimulation devices for the improvement of speech
recognition (Summers, 1992) and speech-in-noise performance (Fletcher, 2021a). By
providing missing sound information that cannot be perceived via the impaired audi-
tory system via haptic stimulation, it may be possible to develop a new intervention that
supports current clinical interventions. Section 2.4.1 will first evaluate the anatomical
and physiological limits of the tactile system, which should be considered when designing
such an intervention. Section 2.4.2 will then review previously developed tactile devices,
with a focus on the hardware and software limitations as well as both experimental and
clinical outcomes for users.

2.4.1 Anatomy and psychophysical limits of the tactile system

This section will first provide a brief overview of the anatomical mechanisms of the tactile
system (such as the types of receptors found in the skin and the integration of tactile
signals with auditory signals in the brain) and the psychophysical properties of tactile
perception to be considered when designing a haptic intervention. This section will
then outline the sensitivity of the system with regards to intensity, temporal response,
and frequency changes as well as spatial acuity. Finally this section will discuss the
perception of complex stimuli, with comparison to the auditory system.

There are two types of skin: glabrous and hairy skin. Glabrous can be found on areas
such as the palm, fingertips and lips, and hairy across most other parts of the body.
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Each contain various densitys of the four primary mechano-recoptors: Merkel’s disks,
Ruffini endings, Meissner’s corpuscles and Pacinian corpuscles. Merkel’s disks, Ruffini
endings and Pacinian corpuscles are found in both hairy and glabrous skin. In addition
to these, Meissner’s corpuscles are also found in glabrous skin. These receptors work
in conjunction to form the overall perception of tactile stimuli. However, the sensitiv-
ity to stimulus varies based on the types and density of receptors at the location on
the body. This variability should be considered both when interpreting the following
presented limits of the tactile system, and when selecting a suitable body location for
the intervention. The following will focus on the perceptual limits that have been well
established for key areas such as the hand and forearm. For an in depth text on this
area, refer to Gescheider et al. (2010).

Tactile responses from receptors travel via the somatosensory pathways to various nodes
throughout the brain. Extensive connections have been shown between tactile and au-
ditory pathways, from lower areas beginning at the cochlear nucleus, up to cortical
regions (Aitkin et al., 1981; Foxe et al., 2000; Shore et al., 2003; Shore et al., 2000) Phys-
iological studies have also demonstrated interaction between the pathways, showing that
activity in the auditory cortex can be modulated via haptic stimulation (Lakatos et al.,
2007; Meredith and Allman, 2015). The existence of these connections suggests that
there is considerable potential for audio-haptic integration. This is further supported
by imaging studies (Kassuba et al., 2013; Schürmann et al., 2006) and psychophysical
evidence of audio-haptic integration (reviewed by Fletcher (2021a). However, the psy-
chophysical limits should be considered to design an intervention that maximally utilises
these mechanisms.

Of the perceivable features of tactile stimuli, the tactile system is particularly sensitive
to changes in intensity. For the hand and index finger, differences of as little as 1.5 dB
between successive stimuli can be detected (Craig, 1972; Gescheider et al., 1996), and
similar results have also been shown for the wrist (Fletcher et al., 2021a; Summers et al.,
2005). This is similar to that of the healthy auditory system (Harris, 1963; Penner et al.,
1974; Florentine et al., 1987), suggesting that across ear intensity difference cues may be
well substituted via tactile stimulation for the hearing impaired (Fletcher et al., 2020a).
The system’s dynamic range and resolution also show promise for transfer of speech
cues. The tactile system has a dynamic range of 55 dB (Verrillo et al., 1969), which
although poorer than the healthy auditory system (which typically has a range of 115-
130 dB), is particularly sensitive in comparison to a cochlear implant, which can only
provide between 10 and 20 dB of range (Zeng and Galvin, 1999; Zeng et al., 2002). The
resolution within this range also provides up to 40 steps of individually discriminable
intensities, far greater than the maximum of 20 dB for a cochlear implant (Gescheider
et al., 1996; Kreft et al., 2004; Galvin and Fu, 2009; Fletcher et al., 2021a; Fletcher
et al., 2021b).
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Unlike intensity, the tactile system’s sensitivity to temporal changes is limited when
compared to the auditory system. Gap detection thresholds for tactile stimulation are
around 10 ms on average (Gescheider, 1966; Gescheider, 1967), consistently higher than
the 2-5ms threshold reported for normal-hearing, hearing-impaired and cochlear implant
users (Moore and Glasberg, 1988; Garadat and Pfingst, 2011; Plomp, 1964; Penner,
1977). In addition, competing maskers have been shown to raise stimulus detection
thresholds when the masker precedes the target stimulus by as much several hundred
milliseconds (Gescheider et al., 1989). This contrasts the auditory system that typically
is not affected by a preceding masker of more than 100 ms (Elliott, 1962; Shannon,
1990). The poor gap detection and masking performance of the tactile system precludes
the perception of much of the temporal fine-structure of speech directly. However, the
relatively slowly modulating speech amplitude envelope has been delivered via haptic
stimulation in a number of studies, providing considerable benefits — in particular for
those with cochlear implants (Fletcher et al., 2018; Fletcher et al., 2019; Fletcher et al.,
2020b; Proctor and Goldstein, 1983; Spens and Plant, 1984). The tactile system is well
suited to providing this speech feature. This is due to its high sensitivity to envelope
modulations at frequencies that are important for speech recognition (Weisenberger,
1986; Drullman et al., 1994). Given the particularly poor dynamic range and spectral
resolution of a cochlear implant, these users are a set that would therefore be expected
to see the greatest benefit from this type of haptic stimulation.

Both on the finger and on the forearm, the tactile system is considerably poorer at
discriminating changed in frequency than the auditory system. It is only able to dis-
criminate differences of 20% at 50 Hz and of 35% at 200 Hz (Goff, 1967; Rothenberg et
al., 1977), compared to the healthy auditory system’s ability to discriminate differences
of down to 0.6% for frequencies between 0.25 and 2 kHz (Sek and Moore, 1995). The
auditory system’s performance is poorer for cochlear implant users, due to the spectral
resolution caused by the implant. However, cochlear implant users are still able to detect
frequency changes of 10–25% at 500 Hz and 10–20% at 4 kHz (Turgeon et al., 2015). The
bandwidth of the tactile system is also reduced, ranging from 30–1000 Hz, compared to
the 20– 20,000 Hz (Suzuki and Takeshima, 2004) range of the healthy auditory system.
Vocoder based approaches have been used to remap frequency ranges to account for
this (Fletcher et al., 2018; Fletcher, 2021a). These characteristics suggest that a direct
mapping of auditory frequency components to haptics may be of limited suitability to
provide fine-grain pitch cues.

An alternative approach for mapping frequency content is to map this feature spatially
across locations on the skin. This approach is limited primarily by the design space
(dependent on body location), ability to separate actuators within the space, and the
spread of excitation between tactile transducers of the device. For the hand, localisation
accuracy is thought to be high, with discrimination threshold measures reported at
0.5 mm to 6 mm (Johnson and Phillips, 1981; Perez et al., 2000). Higher thresholds
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are reported for the forearm, at between 25 mm to 50 mm (Cholewiak and Collins,
2003; Schatzle et al., n.d.). It should be noted that discrimination of multiple sites
is highly dependent on stimulus type (Boldt et al., 2014; Perez et al., 2000) and non-
standardised methodologies may result in inaccuracies in previously reported spatial
resolution (Johnson and Phillips, 1981; Craig and Johnson, 2000). It should also be
considered that the perceptual interaction of stimulation at multiple locations on the
skin is complex and only partially understood - effects such as masking, summation,
suppression and enhancement have all been observed when stimulation occurs at multiple
sites and should be accounted for when designing a new haptic intervention (Fletcher
and Verschuur, 2021) — See Summers, 1992, p.19-23 for further details. Overall, the
data presented suggests that actuators could be effectively arranged across the skin to
provide a spatial mapping for auditory features. Success has already been found using
spatial mappings for sound localisation (Fletcher et al., 2020a; Fletcher et al., 2021b;
Fletcher et al., 2021a; Fletcher et al., 2020b), and in commercial haptic aids (see the
following Section 2.4.2 for further details). The spatial mapping of pitch and amplitude
envelope features will be discussed further in Chapters 5 and 6.

2.4.2 Tactile stimulation devices

Over the past century many devices have been developed, aiming to provide tactile
stimulation for the hearing impaired. This section will provide a brief overview of the
most prominent commercial and research based devices. The practical limitations, both
in hardware (Section 2.4.2.1) and signal-processing strategies (Section 2.4.2.2) will be
outlined and recent advances in technology that may support development will be high-
lighted. For further information on this topic please refer to the latest reviews by Fletcher
(2021a), Fletcher and Verschuur (2021), and Fletcher (2021b) and Summers (1992)

2.4.2.1 Hardware

Much of the technology needed in the development of a haptic device follows that of
a hearing aid or cochlear implant. Components such as microphones, analog-to-digital
converters, wireless modules and batteries all use similar technology. This section will
review any notable differences to that of hearing aids, but for an overview of these
technologies please refer to Section 2.3.1.1. The additional components that must be
considered in the design of a haptic device are:

• Motors - to provide haptic stimulation on the skin

• Motor drivers - to calibrate and provide driving currents to the motors based on
control voltages of the signal processing strategy

• Component casing and mounting on the skin
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The previous Section 2.4.1 focused on properties of the finger, hand, wrist, or forearm
(due to limited data for other locations). However, tactile aids have been designed for
use at many locations on the body. These additionally include the abdomen, sternum,
and back. Table 2.4 provides a list of some notable tactile aids for the hearing impaired,
alongside information on their physical location. Locations such as the hand are popular
in lab research due to the high sensitivity of the skin at this area (Huang et al., 2017;
Huang et al., 2019; Fletcher et al., 2018). However, commercially viable devices typicaly
opt for areas such as the wrist or back due to the practical restrictions when performing
daily tasks with devices mounted to the hand (Summers, 1992, p.9-11). Additionally,
the size and appearance of the device should be cosidered. For hearing-assistive devices
the stigma of such a device is a significant factor inhibiting their uptake (Bartkiw, 1988;
Bispo and Branco, 2008; Erler and Garstecki, 2002; Parette and Scherer, 2004). It is
possible that the same will be true of tactile devices (Fletcher, 2021b).



54
C
hapter

2.
Background

Device name Body location Shaker type Audio input type Audio sensitivity Source

Siemens Minifonator Wrist 1 “Electro-mechanical transducer” External mic 100 Hz–3 kHz Weisenberger (1989)

Tactaid II+ Sternum or

top/bottom of wrist

2 V1420 Variable-reluctance tactile

motors (origin unknown)

External mic, built-in mic or T-coil 100 Hz–8 kHz Tactaid II+ Fitting

Manual M-3 (1992)

Tactaid VII Wrist or abdomen 7 motors (type unknown) External mic, built-in mic or T-coil 200 Hz–7 kHz Galvin et al. (1999)

Neosensory Buzz Wrist 5 LRA motors Built-in microphone 300 Hz–3 kHz Neosensory (2020)

TASBI Wrist 5 LRA motors None (external conversion to tactile signal) 300 Hz–3 kHz Pezent et al. (2019)

Vibrotactile vest Chest, back and

abdomen

ERM (model #307-100 from

Precision Microdrives)

Arduino Uno/External conversion Unknown Novich and Eagleman

(2015)

Soft-talker Wrist DC driven “Micromotor” - Portescap

(UK) 712

Built-in microphone 150 Hz - 10 kHz Walker et al. (1987)

Queen’s University

Tactile Vocoder

Forearm 18 solenoids None (external conversion to tactile signal) 160 Hz - 8 kHz Brooks et al. (1985)

Table 2.4: Summary of some notable haptic devices
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As with hearing-aids and cochlear implants, microphones placement is key for provid-
ing the clearest representation of speech. Current and historic haptic devices do not
use behind the ear devices, typically opting for onboard or external microphones (see
Table 2.4). This simplifies the design processes, as it does not require communication
between behind the ear devices and the haptic device. However this can result in issues
such as wind noise and noise from friction between the microphone and user’s cloth-
ing (Fletcher, 2021a; Fletcher and Verschuur, 2021). Recent work by Fletcher et al.
(2020a) has also shown improved sound localisation performance when presenting bin-
aural audio via haptic stimulation. These binaural cues, recorded from behind the ear
microphones, would not be available to provide localisation cues when using built-in
microphones. Use of behind the ear devices is an area that may provide considerable
benefit to haptic devices, and may soon be possible with the advent of modern wireless
communication technology (discussed in previous Section 2.3.1.1).

In place of the receiver or electrode array for traditional hearing interventions is an
array of motors or electrodes used to stimulate the skin. The choice of transducer is
crucial, with properties such as frequency and amplitude response, power consumption,
and form factor needing consideration. The three most prominent transducer types
are Eccentric Rotating Mass motors (ERMs), Linear Resonant Actuators (LRAs) and
Piezos. ERMs provide high intensity vibration for stimulating the skin (approximately
1-7 G for representative motors of an appropriate size (Precision Microdrives, 2021a;
Precision Microdrives, 2021b; Precision Microdrives, 2021c)). However, these motors
have coupled amplitude and frequency so an increase in one results in an increase in
the other. As mentioned in previous Section 2.4.1, formal assessment is needed to
better understand the effects of using complex stimuli such as this. LRAs provide less
force than ERMs (Approximately 0.7-1.5 G for representative motors of an appropriate
size (Precision Microdrives, 2021e; Precision Microdrives, 2021d; Precision Microdrives,
2021f)) but have decoupled frequency and amplitudes, vibrating at a single resonant
frequency. Piezos are able to provide decoupled frequency and amplitude, as well as
high output force (Approximately 2.5—36 G for representative motors of an appropriate
size (TDK, 2021d; TDK, 2021f; TDK, 2021a; TDK, 2021b; TDK, 2021c; TDK, 2021e;
TDK, 2021h; TDK, 2021g)) but are considerably more expensive than the alternatives.
For any motor type the contactor size should also be considered, as increased contact
with the skin is known to increase the sensitivity due to stimulation of increased numbers
of receptors (Verrillo, 1963).

In addition to motor selection, control voltages from the signal-processing strategy must
be effectively converted to driving currents for the given motors. These drivers must
account for the pressure placed on the motor, as well as the motors start-up and stopping
times in order to faithfully reproduce the stimulation from the signal-processing. There
are many driver technologies that have been developed with advanced techniques such
as automatic calibration, active braking (the technique of applying an inverse voltage
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to a motor to decrease motor intensity more rapidly) and overdrive (the technique of
applying a voltage higher than the target intensity to a motor to increase motor intensity
more rapidly) to optimise the motor’s performance (Texas Instruments, 2021; Boreas
Technologies, 2021).

Finally, the form factor of the device should be designed appropriately such that it will
not deter the user. Ideally devices should be discreet, comfortable and not interfere
with the user’s day-to-day activities (Fletcher and Verschuur, 2021; Summers, 1992).
This is an area that can be improved on over traditional devices such as the tactaid
and soft-talker tactile aids illustrated in Figure 2.4. The reduction in size of signal-
processing units, batteries and haptic drivers should allow for more practical devices
than was possible during the design of devices such as these.

There are a large number of research and commercial devices that have been developed
to explore the benefits of haptic stimulation. Some notable devices have been listed in
Table 2.4. There are also many examples of custom made/adapted devices that have
been used for research purposes, such as the adapted HV Labs shakers used by Fletcher
et al. (2020a), Fletcher et al. (2019), and Fletcher et al. (2018) and the finger-mounted
tactaids used by Huang et al. (2017) and Huang et al. (2019). These devices would need
considerable modification for real-world application.

Figure 2.4: Image of the Tactaid VII haptic aid (A) and the Soft-Talker haptic aid (B)

2.4.2.2 Signal-processing strategies

Unlike hearing aids and cochlear implants, there is no consensus on the most appropriate
strategy for mapping audio to haptics. A number of strategies have been proposed, that
can be broadly categorised into two categories: vocoder based strategies and feature
based strategies. Vocoder based strategies typically split the input audio into frequency
bands, extract the envelope, and then use these envelopes to modulate a motor or set of
motors. Examples of this approach include the Tactaids II (Tactaid II+ Fitting Manual
M-3 1992) and studies by Fletcher et al. such as Fletcher et al. (2018) and Fletcher
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et al. (2020b). These strategies aim to provide a sense of the broad spectral shape
of the speech signal over time. However, the need for wide bandwidth filters across
the frequency range of interest results in the loss of key speech features such as the
fundamental frequency. Despite this limitation, promising results have been shown in
particular for cochlear implant users. Despite these limitations Brooks et al. (1985)
reports that, with extensive training, in quiet conditions a vocabulary of up to 250 word
can be learnt using a vocoder based method. Fletcher et al. (2019) shows improvements
in noise, reporting improvements of 8.3% performance points for correctly identified
words in noise, with some users improving by as much as 20%. Further improvements
are also demonstrated when the noise is separated from the speech in space; Fletcher et
al. (2020a) reports improvements of 2.8 dB improved SRT when the noise was ipsilateral
and 2.6 dB improvements when the noise was presented contralaterally.

Feature based methods aim to address this by explicitly extracting higher level rep-
resentations of key speech features such as the fundamental frequency (Huang et al.,
2017; Huang et al., 2019), speech formants (Blamey and Clark, 1985) and voicing of
the speech (Ifukube and Yoshimoto, 1974; Bin Afif et al., 2019). Using a mapping
of extracted fundamental frequency to tactile frequency Huang et al. (2017) reported
improvements of 2.2 dB SRT on average, with some users improving up to 7 dB. How-
ever, this study bypassed the noise by presenting clean speech to the signal-processing
strategy. Further work will be needed to determine the robustness of this strategy to
noise. These studies demonstrate the efficacy of both signal-processing strategies to of-
fer improvements to speech-in-noise performance, however further research is needed to
better understand which features are best utilised by the user to gain the improvements
reported.

Many studies haven’t addressed the issue of background noise, choosing to provide the
clean signal directly to the haptic signal processing. This is a non-trivial issue in the
design of haptic signal-processing strategies as the robustness of these techniques to
noise would be important in the resulting performance of users in a real-world context.
Approaches such as those developed in Fletcher et al. (2019) use additional noise reduc-
tion techniques in order to improve the SNR prior to presentation. The lack of an effect
of haptics in Fletcher et al. (2020b) for the co-located noise condition (when no noise
reduction was used) in comparison to effects in similar conditions with noise reduction
in Fletcher et al. (2018) and Fletcher et al. (2019) suggests that these types of techniques
are effective for haptic signal noise reduction. Further work is needed to assess the im-
provements that might be offered using more advanced noise reduction techniques, such
as those presented in Section 2.3.1.2

Finally, as discussed in Section 2.3.1.2, hearing aids use both higher level features and
information such as environment classifications to inform processing of the raw audio,
forming a hybrid of the two categories outlined above. However, this form of contextual
awareness has not been demonstrated in the literature for haptic devices. Translation
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of technologies such as this approach, as well as advanced noise reduction and wire-
less streaming from behind the ear devices are areas that hold much promise for the
improvement of current signal processing strategies for a new haptic intervention.

2.5 Thesis overview

The aim of the studies presented in the following chapters is to provide two new methods
for the assessment and treatment of speech-in-noise performance. The thesis is divided
into 6 chapters, including the introduction and current background chapter. An outline
of the following chapters is provided below.

Chapters 3 and 4 report results from experiments focused on the implementation and
optimisation of a new objective neuroimaging method. This method provides a mea-
sure of how ecologically valid running speech is represented in cortical regions of the
brain. This chapter forms the foundations for a technique that could provide additional
insight, both for the underlying mechanisms of speech-in-noise performance and for the
integration of haptic stimulation for the improvement of speech-in-noise performance.
The data and analysis in these chapters provide novel methods for the improvement
of an established method for analysing evoked responses. These chapters first validate
previous approaches, providing an objective comparison of previously used methods. In
addition, the chapters propose novel adaptions of previously used methods, accompa-
nied by data which provides an objective evaluation of their performance. The results
present compelling initial evidence for their efficacy as candidate methods to use for
speech-in-noise measures.

Chapter 3 first addresses the most appropriate statistical model for applying the neu-
roimaging method, both in normal-hearing and listeners with a sensorineural hearing
loss. Results show no significant difference between the two most widely used model
types (SVD and Cholesky solver based linear regressions) in the current literature, but
shows significant improvements for amplitude envelope reconstruction for the newly
proposed ElasticNet model for the wide and delta analysis bands.

Chapter 4 then proposes an alternative perceptually-motivated feature for use with the
selected model. Results suggest that the proposed perceptual loudness model can be
more accurately reconstructed than the amplitude envelope for the wide and delta band
models. These results could provide the basis for an objective method that, in the
future, may be used for clinical tasks such as speech-in-noise performance assessment.
Additionally the method may have further applications in areas such as analysing the
underlying mechanisms of hearing losses and in analysis of audio-haptic integration.

The above work was published, in part in the conference proceeding by Perry et al.,
2018, and Perry et al., 2019. These publications provided the academic community with
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insight into the potential for the proposed evoked response analysis method to be used
for speech-in-noise performance, presenting initial experiment designs and pilot data to
demonstrate this.

Chapter 5 details the development of a forearm-worn haptic intervention for the im-
provement of pitch discrimination in cochlear-implant users. The design choices made in
development of the device are outlined and a new signal processing strategy for extract-
ing and mapping pitch information to haptic stimulation is presented. This approach
addresses a number of the shortcoming of previous haptic interventions (such as noise
robustness of the signal processing strategy and limited frequency response of the skin),
as discussed in Section 2.4.2. The approach is then tested for normal hearing listen-
ers using a cochlear implant simulation, in a two alternative forced choice experiment.
Tone complexes are used to determine the minimum pitch difference that can be discrim-
inated with and without the haptic intervention. Results show that the users were able
to discriminate pitch differences more accurately in the Haptic only and audio-haptic
conditions than the audio alone condition. This section demonstrates the potential for
a haptic intervention to provide key features of speech that would otherwise not be
accessible for cochlear implant users.

This chapter was published in the peer-reviewed article Fletcher et al., 2020c. This article
presented evidence supporting the use of a multi-channel haptic device to present pitch
information with considerably greater resolution than is possible via a cochlear implant.
This article is of significance to the academic community as it presents a methodology
and accompanying data that could be used in the development of a real-world haptic
intervention to improve speech-in-noise performance.

Chapter 6 builds on the results of Chapter 5, detailing the design of a compact wrist-
worn intervention and signal processing strategy for the improvement of speech-in-noise
performance. Participants are tasked with completing a standard speech-in-noise test,
using either a new haptic processing strategy, an adapted strategy developed for previous
haptic interventions or audio alone. Each condition was tested both before and after a
substantial training regime. Results showed no significant effect of either haptic strategy
on speech-in-noise performance scores. Discussion is provided on the unexpected lack
of improvement found in this chapter and the areas that may require improvement are
outlined.

Finally, Chapter 7 provides a summary of the reported findings, discussing their rele-
vance to the current state-of-the-art in audiological and multi-sensory research. This
chapter highlights the key questions that have resulted from the presented research and
suggests future work that is needed. In particular, this section focuses on areas such
as the potential for combination of the two methods presented to provide a tool for
both basic research into the underlying mechanisms of audio-haptic integration and also
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as a clinical tool for an objectively optimised audio haptic intervention for the hearing
impaired.
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Chapter 3

Development of the Temporal Response
Function model as a method for assessing
speech-in-noise performance

Both clinically and in the lab, assessment of speech-in-noise performance is predom-
inantly performed using behavioural speech-in-noise tests. However, these tests have
limitations, such as the subjectivity of participant responses, test-time needed, and the
lack of information that these tests provide on the underlying mechanisms of hearing
loss. This places some limitations on the diagnostic information that can be extracted for
clinical applications, or used to explore the underlying causes of hearing loss in the lab
(An in depth review of the limitations of behavioural speech-in-noise tests is provided in
Chapter 2.2.1. The TRF (described in Section 2.2.2) may have application in addressing
the above issues. The TRF is a method that can be applied in response to continuous
non-repeating speech. Recent advances have show that from the same collected data,
analyses can be made at multiple levels of the auditory pathways, from brainstem (Mad-
dox and Lee, 2018; Brodbeck and Simon, 2020) to cortex (Crosse et al., 2016; Di Liberto
et al., 2018; Lalor and Foxe, 2010). Additionally this method can be performed without
active participation from the patient, which may make it suitable for patients that are
unable to respond directly (however, it should be noted that the method is sensitive to
attention, a property of the method that is discussed further in Section 2.2.2). These
properties make this method a suitable candidate for a new diagnostic and intervention
fitting tool, that may also be particularly effective for groups such as children or those
who cannot respond behaviourally. This method may therefore be able to compliment
current classical speech-in-noise tests, and may offer greater insight into the neural un-
derpinnings of speech-in-noise performance. However, there are currently a number of
issues that should be addressed when considering this method for speech-in-noise per-
formance analysis. One issue is that previous literature use a variety of different model
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implementations without formal assessment of the discrepancies between these. Assess-
ment of model parity is therefore necessary to allow for comparison between previous
studies, and to choose the most suitable implementation to achieve optimal predictive
performance. Previously proposed implementations may also not be optimal in terms of
reconstruction performance. Improvements made to these models could benefit factors
such as test times and speech-in-noise performance prediction accuracy.

The following Sections will outline an experiment designed to validate previously pro-
posed methods used for constructing the TRF and propose a new method that may
provide improved performance. Much of the literature implements the TRF using one
of two models: either a time-delaying ridge-regressor with a cholesky solver (Maddox
and Lee, 2018; Gramfort, 2013) or with a singular value decomposition solver (Crosse
et al., 2016; Riecke et al., 2019; Vanheusden et al., 2020) for computing the least-squares
solution. The study aims to test the expectation that these implementations will provide
similar reconstruction performance. Section 3.1.5.2 will outline the implementation of
these models and will detail an additional regression model (the ElasticNet model) that
may provide improved performance over previously proposed methods. These models
will be assessed at 3 bandwidths —Wideband (0–20 Hz), Delta band (1–4 Hz) and Theta
band (4–8 Hz). These bandwidths are commonly used for cortical TRF construction and
are thought to be in the range of amplitude envelope frequencies that contribute most
to speech intelligibility (Aiken and Picton, 2008).

Section 3.1 will outline a study which compares these measures to assess the performance
of each for reconstructing amplitude envelopes. Results of the current study are then
discussed in Sections 3.2 to 3.4, outlining the contributions made to the development
of a method that could be applied both as an alternative speech in noise measure for
diagnosis and as a measure to inform the fitting of interventions such as hearing aids,
cochlear implants and haptic devices.

3.1 Methods

3.1.1 Participants.

This chapter is an analysis of existing data: the data used in the current study was
originally collected by the authors of the study detailed in Vanheusden et al. (2020). The
dataset contained evoked response and hearing assessment data for seventeen hearing-
impaired participants (11 males, 6 females, aged between 64 and 70). Participants were
native English-speaking and had a mild to moderate bilateral sensorineural hearing loss.
Hearing profiles were obtained using PTA at audiometric frequencies from 250 Hz to
8 KHz. Hearing-loss profiles were as follows:

• 13 participants had bilateral sloping high frequency hearing losses
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• 2 participants had flat bilateral hearing losses

• 1 participant had a bilateral ski-slope hearing loss

• 1 participant had a sloping hearing loss in their best ear and a flat hearing loss in
their worst

Hearing thresholds for audiometric frequencies in each ear are detailed in the following
Table 3.1

Frequency Left ear Right ear

250 Hz 23 ± 13dB 29 ± 21dB

500 Hz 23 ± 15dB 27 ± 21dB

1 KHz 29 ± 16dB 32 ± 23dB

2 KHz 43 ± 19dB 43 ± 21dB

3 KHz 54 ± 17dB 51 ± 20dB

4 KHz 61 ± 14dB 61 ± 17dB

6 KHz 69 ± 19dB 68 ± 24dB

8 KHz 68 ± 18dB 65 ± 18dB

Table 3.1: Average thresholds± standard deviation for each ear at standard audiometric
frequencies across participants

All participants were fitted with hearing-aids using the NAL-NL2 fitting procedure. The
dataset contained data collected both when participants were aided by their hearing-aids
and when unaided. For the purpose of the current study, only the unaided data was
used. Responses to BKB materials in quiet were collected for further analysis. This data
was also not used as part of this study. For further details, including the participant’s
hearing aid types and gain profiles, refer to Vanheusden et al. (2020).

3.1.2 Stimuli.

Twenty five minutes of running speech was used for collection of evoked response data.
This was taken from a freely available audiobook (Colum, 2021), read by a female
speaker. The audiobook was split into 8 segments of approximately 3 minutes each.
The signals were then low-pass filtered at 3 KHz with a 120th order FIR filter. The
stimulus was presented at 70 dBA equivalent sound pressure level (LeqA SPL).

3.1.3 Apparatus.

The stimulus was presented to the participant via a loudspeaker (placed 1.2 m in front
of the participant) using a RME BabyFace soundcard (RME, n.d.) with a sample rate of
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44.1 KHz. EEG data were collected using a BioSemi ActiveTwo EEG system (BioSemi,
n.d.). 32 standard electrodes were used with two additional mastoid electrodes giving
a total of 34 channels arranged following the 10–20 system layout. Evoked response
data was recorded at a sample rate of 2048 Hz. Triggers were used for synchronisation
of the stimulus output and evoked-response recording. These were produced via the
soundcard, using an Arduino Due (Arduino, 2021) based trigger system with custom
software to convert the soundcard output to triggers compatible with the ActiveTwo
system.

3.1.4 Procedure.

The dataset contained evoked-response data recorded whilst participants listened to the
story segments described in Sections 3.1.2. Upon completion of hearing assessment using
PTA and a set of BKB sentences in quiet, participants were fitted with a 32 channel
electrode cap conforming to the 10–20 system of electrode placement. After presenta-
tion of each segment participants were asked multiple-choice questions to confirm that
they were attending and understood the speech. For recording of the evoked-responses
participants were seated in a quiet room with a loudspeaker placed 1.2m directly in
front.

3.1.5 Signal Processing.

3.1.5.1 Pre-processing.

Evoked response data was first re-referenced to the average. This data was then band-
pass filtered into three bandwidths (delta, theta and wideband). For each band a one-
pass, zero-phase, non-causal bandpass filter was created. The time-domain FIR win-
dowing method with a hamming window was used for design of the filter. The resulting
filter was a 6759 point FIR filter with a -6 dB cutoff at 0.5 Hz and 22.5 Hz for the
wideband filter, 0.5 Hz and 5 Hz for the delta band, and 3 Hz and 9 Hz for the theta
band. All filters had a passband ripple of 0.01 dB and a stopband attenuation of -53 dB.
To decrease subsequent processing time, the resulting signals were then downsampled to
64 Hz using the Fourier method after windowing using a boxcar window in the frequency
domain.

The absolute Hilbert envelope was computed to extract the speech envelope from the
stimulus. This envelope was then filtered for each bandwidth using filters with iden-
tical properties to those used for the EEG data. The resulting filtered envelopes were
then downsampled to 64 Hz to match the evoked-response data, again using an identical
downsampling procedure. All data were preprocessed using the MNE Python pack-
age (Gramfort, 2013) and custom python scripts.
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3.1.5.2 TRF Models.

As described in Section 2.2.2.5, the discrete-time TRF is a spatio-temporal model that
maps the stimulus’ speech envelope (y(tn)) as a combination of evoked-response record-
ings xj(t + τ) at a delay τ (note that t + τ is used to represent the non-causal mapping
of the EEG data back to the amplitude envelope):

y(t) =
N

∑
j=1

T

∑
τ=1

β j,txj(t + τ) + ε j(t), (3.1)

where β is the weighting of evoked response channel j at time t (this can be thought of
as a multi-channel impulse response, mapping the EEG channels to the envelope), T is
the total number of delays, and ε(t) is the residual of each channel that is not explained
by the model. Note that y(t) represents the amplitude envelope extracted directly from
the digital representation of the audio file. This model can then be constructed by
minimising mean squared error between the predicted stimulus reconstruction and the
actual stimulus:

min ε(t)2 =
T

∑
t=1

[y(t)− ŷ]2 (3.2)

Modelling the relationship between the evoked responses as a linear sum, β can be
defined using the ordinary least squares approach:

β = (X′X)−1(X′y), (3.3)

where X is the design matrix and X′ is its transpose. For calculation of X′X in Equa-
tion 3.3 previous models have typically used either a Cholesky solver (Maddox and Lee,
2018; Gramfort, 2013) or a singular value decomposition solver (Crosse et al., 2016;
Riecke et al., 2019; Vanheusden et al., 2020). The choice of an implementation’s solver
can influence the calculation of model parameter and so verification of model parity is
important to confirm that results across the previous literature are comparable.

In practice, these models require regularisation to prevent overfitting of the model to
the data used to construct it. L2 regularisation is commonly used (Crosse et al., 2016;
Lalor et al., 2009; Vanheusden et al., 2020), adding a penalty term to the loss function
as follows:

min ε(t) =
T

∑
t=1

[y(t)− ŷ]2 + λ
N

∑
j=1

β̂2
j,t, (3.4)

where β̂ is the fitted model and λ is the regularisation parameter. Higher values of λ

results in greater L2 regularisation, which penalises large parameters in the model. This
can result in less complex and therefore more generalisable models, which may increase
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predictive performance. For further information on ridge regression, refer to Bishop
(2006).

In addition to the verification of the two previously proposed models (Cholesky ridge
regression and SVD ridge regression), this study evaluates the performance of a third
model: ElasticNet-net regression. ElasticNet regression expands on the previously de-
scribed Ridge regression by combining both L1 (LASSO) and L2 (Ridge) regularisation
in the loss function:

min ε(t) =
T

∑
t=1

[y(t)− ŷ]2 + λ

(
1 − α

2

N

∑
j=1

β̂2
j,t + α

N

∑
j=1

|β̂ j,t|
)

, (3.5)

where α is the regularisation parameter used for the relative influence of L1 and L2
regularisation terms.

The L1 regularisation added in ElasticNet provides a form of automatic evoked-response
channel selection. Unlike L2 regularisation, L1 regularisation will give 0 weightings to
channels/time-delays that do not contribute to the predictive power of a model, effec-
tively removing them from the model. This may occur when channels contain artefacts
or do not represent relevant neuronal activity. However L1 regularisation may perform
poorly for channels that are strongly co-linear (as would be expected for evoked response
recordings). The α regularisation parameter is provided to balance the use of regular-
isation types, allowing for combination with L2 regularisation which is well suited to
highly correlated data. This model has been shown to provide improved predictive per-
formance by combining the often superior performance of L2 regularisation (for problems
where there are more observations (samples) than features (electrode channels)) with
the feature selection capabilities of L1 regularisation (Zou and Hastie, 2005). The Elas-
ticNet model used in the current study was fitted using coordinate descent, an iterative
optimisation algorithm for efficiently finding the minimum of a loss function (Wright,
2015).

For each participant, models were fitted to the data using 5-fold cross-validation to eval-
uate their reconstruction performance. For all folds both stimulus and evoked-response
data were standardised using z-scoring. For each fold an 80%–20% split was used, with
20 minutes of data used for training of the model and the remaining 5 minutes for test-
ing. For each training fold, 50 λ values (logarithmically spaced between 10−15 to 1015),
and 10 α values (linearly spaced between 0.1 and 1.0) were used to construct a total of
500 models. For each test fold, the reconstructed envelope (ŷ) and the actual envelope
(y) were split into 30 10-second segments. Pearson’s correlation was calculated between
y and ŷ for each of the 30 segments. Optimal regularisation parameters were chosen
as those which produced the highest average correlation coefficient across all test-fold
segments. The mean and standard deviation of the correlation coefficients were then
calculated from all test segments to provide a measure of model reconstruction per-
formance. In addition, the null-distribution of the model was estimated. An identical
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procedure was performed as described above, but reversing the speech envelope pro-
vided to the model. This provided a measure of the model’s chance level reconstruction
performance.

All models were implemented in custom Python scripts, utilising the MNE package (Gram-
fort, 2013) and the Scikit-learn package (Pedregosa et al., 2011).

The data analysis detailed was approved by the University of Southampton Faculty of
Engineering and Physical Sciences Ethics Committee (ERGO ID: 52472). Data collec-
tion protocol was approved by the local National Health Service (NHS) ethics committee
(refer to Vanheusden et al. (2020) for details). All research was performed in accordance
with the relevant guidelines and regulations.

3.2 Statistics

Normality was assessed using a Shapiro-Wilk test. Data was not normally distributed
within data splits across participants. Therefore non-parametric tests were used for
subsequent analysis. Friedman tests were conducted for each bandwidth to assess the
effect of model type. 6 planned post-hoc Wilcoxon signed-rank tests were performed for
subsequent analysis (applying Bonferonni-Holm correction for multiple comparisons).
Further unplanned post-hoc Wilcoxon signed-rank tests were conducted for exploratory
analysis of individual participant results (no further correction was made for multiple
comparisons at this stage). Statistics were calculated using custom Python scripts,
utilising Scipy (Virtanen et al., 2020) and Pingouin (Vallat, 2018) packages.
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3.3 Results

Figure 3.1: Group level hearing-impaired subject correlation for the wideband Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed using

Wilcoxons sign-ranked tests) are annotated as:
∗ : p ⩽ 0.05,n.s. : p > 0.05
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Figure 3.2: Group level hearing-impaired subject correlation for the delta Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed using

Wilcoxons sign-ranked tests) are annotated as:
∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Figure 3.3: Group level hearing-impaired subject correlation for the theta Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed using

Wilcoxons sign-ranked tests) are annotated as:
∗ : p ⩽ 0.05,n.s. : p > 0.05
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Friedman tests were conducted, correcting for ties, with model type (Cholesky ridge
regression, SVD ridge regression and ElasticNet models) for the delta (0.5–4Hz), theta
(4–8Hz) and wideband (1–20Hz) bandwidths. A significant effect of model type was
found for wideband (χ2(2) = 11.23, p = 0.004) delta band (χ2(2) = 16.62, p < 0.001)
and theta band (χ2(2) = 7.54, p = 0.023) conditions.

For the wideband condition, the median correlation for the Cholesky model was 0.187
(ranging from 0.149 to 0.234). Its time reversed model had a median correlation of
-0.006 (ranging from -0.024 to 0.021). The median correlation for the SVD model was
0.184 (ranging from 0.137 to 0.254). Its time reversed model had a median correlation
of 0.001 (ranging from -0.020 to 0.012). The ElasticNet model’s median correlation was
0.184 (ranging from 0.147 to 0.237). Its time reversed model produced correlation of 0.0
for all measurements, due to the L1 regularisation.

For the delta band condition, the median correlation for the Cholesky model was 0.204
(ranging from 0.147 to 0.263). Its time reversed model had a median correlation of
-0.006 (ranging from -0.028 to 0.021). The median correlation for the SVD model was
0.196 (ranging from 0.151 to 0.263). Its time reversed model had a median correlation
of -0.001 (ranging from -0.032 to 0.016). The ElasticNet model’s median correlation
was 0.207 (ranging from 0.160 to 0.265). Again, the time-reversed ElasticNet produced
correlation of 0.0 for all measurements, due to the L1 regularisation.

For the theta band condition, the median correlation for the Cholesky model was 0.173
(ranging from 0.051 to 0.261). Its time reversed model had a median correlation of
-0.002 (ranging from -0.024 to 0.043). The median correlation for the SVD model was
0.172 (ranging from 0.065 to 0.261). Its time reversed model had a median correlation
of 0.000 (ranging from -0.023 to 0.016). The ElasticNet model’s median correlation was
0.177 (ranging from 0.049 to 0.266). As with previous conditions, the L1 regularisation
resulted in correlations of 0.0 for the time-reversed ElasticNet.

6 planned post-hoc Wilcoxon sign-ranked tests were performed, correcting for multiple
comparisons, to assess the difference in distributions between the Cholesky model, SVD
model, and the ElasticNet model and to compare each model to its time-reversed equiv-
alent model. For the wideband condition, correlations were significantly higher overall
for the ElasticNet than the SVD model (W = 9, p = 0.024). No significant difference
was found between the Cholesky model and the ElasticNet model (W = 14, p = 0.053)
or SVD models (W = 26, p = 0.191). Time-reversed models performed significantly
worse than all time aligned models (Cholesky model: W = 0, p = 0.001; SVD model:
W = 0, p = 0.001; ElasticNet model: W = 0, p = 0.001). Results of the wideband
model are illustrated in Figure 3.1. For the delta band condition, the ElasticNet model
performed significantly better than both the Cholesky model (W = 13, p = 0.043) and
the SVD model (W = 0, p = 0.001). The performance of the Cholesky and SVD models
was not significantly different (W = 44, p = 0.946). Time-reversed models performed
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significantly worse than all time aligned models (Cholesky model: W = 0, p = 0.001;
SVD model: W = 0, p = 0.001; ElasticNet model: W = 0, p = 0.001). Results of
the delta band model are illustrated in Figure 3.2. For the theta band, the ElasticNet
model performed significantly better than both the Cholesky model (W = 9, p = 0.024)
and the SVD model (W = 10, p = 0.024). The SVD model also performed significantly
better than the Cholesky model (W = 11, p = 0.024). Time-reversed models performed
significantly worse than all time aligned models (Cholesky model: W = 0, p = 0.001;
SVD model: W = 0, p = 0.001; ElasticNet model: W = 0, p = 0.001). Results of
the theta band are illustrated in Figure 3.3. 6 Further unplanned post-hoc wilcoxons
sign-ranked tests were performed for each participant individually. These results are
illustrated in Appendix A. No correction for multiple comparisons was applied for these
exploratory tests. Significant differences are illustrated for model comparisons in Fig-
ures A.1, A.2 and A.3. All subjects were found to have strongly significant (p > 0.001)
higher correlations for the time-aligned model than for the time-reversed model.

3.4 Discussion

In the current study, it was shown that the ElasticNet model provides a small but
significant improvement when reconstructing the speech amplitude envelope for a range
of hearing-impaired listeners. In all conditions ElasticNet performed significantly better
than both the Cholesky and SVD models. However, the largest median correlation
improvement shown for the theta band was only 0.004. In addition this study has verified
the parity of previously proposed methods, finding small but significant differences in
implementations for only the theta band (median correlation performance differed by
only 0.001).

Despite the small magnitude of performance improvements presented, these results sug-
gest that the ElasticNet may offer a suitable alternative, as it provides additional bene-
fits over the Cholesky and SVD models. For example, the ElasticNet model produced a
DC output for the reversed stimulus, demonstrating its ability to remove channels that
do not contribute to predictions (thus resulting in a DC model when no channel con-
tributes). This may have benefits when analysing noisy data, as L1 regularisation may
provide a replacement for manual or set rule based removal of channels, (methods which
may result in loss of useful data for the model). Additionally, as an L1 coefficient exists
for each time delay, this may also provide further information on specific time-delays
that contribute to the reconstruction. This information could be used in conjunction
with direct analysis of the model’s morphology to infer the underlying neural compo-
nents that drive the stimulus reconstruction — analogous to traditional evoked-response
analysis techniques (see Section 2.2.2 for details). Future work should look to further
analyse the L1 coefficients to determine the channels and delays that best contribute to
the model. This may provide insight into the number of channels that may be needed
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when moving towards a clinical implementation, and for faster testing times for current
in-lab research using the TRF.

It was also unlikely that the ElasticNet model would perform worse than the other
models as in situations where L1 regularisation is not effective, the α parameter allows
the model to switch to only use L2 regularisation. Therefore, there is little disadvantage
to using this model in place of previous models.

The comparison of the Cholesky and SVD methods showed no significant difference for
wideband and delta band models. The difference between models for the theta band
was small and unlikely to have any practical impact for comparison across studies. This
suggests that these models are broadly interchangeable, with no discernible benefit of
either method.

The limitations of this study should also be considered. It should be noted that the
Theta band performed considerably worse than the other bands for all models. These
results do not agree with previous literature using similar methodologies, where theta
band reconstructions are typically greater than delta band reconstructions (Di Liberto
et al., 2015; Lesenfants, 2019). This may be due to time alignment issues in the original
dataset — it is possible that there is a delay/jittering of samples that may reduce
reconstruction performance at this higher frequency band. However it is not possible
to verify this with the available data. Therefore further analysis with an independent
dataset may be necessary to verify these findings.

Furthermore, when interpreting the presented results other limitations of the dataset
should be considered. This study demonstrated the efficacy of the presented methods
for only hearing impaired listeners. The data was sufficient to provide a range of hear-
ing losses for comparison of models, however further comparison may be necessary on
a normal-hearing cohort. In addition, for this study the presented models were only
compared for speech in quiet data. Further analysis is needed to assess the sensitivity of
these models for speech-in-noise performance assessment. Studies using similar models
have shown that these methods degrade in their reconstructive performance as noise
increases, providing accurate speech-in-noise score predictions (Lesenfants, 2019; De-
cruy et al., 2018; Etard and Reichenbach, 2019). Additional exploration of responses to
speech-in-noise is needed to determine the benefits of the ElasticNet model in particular
for clinical or in-lab analysis of speech-in-noise performance.

There are a number of steps needed to maximise the potential of the TRF models for
both clinical and in-lab applications. For example, in this study models were only fitted
for typical cortical bandwidths (wideband, delta and theta) in the presented study. In
order to analyse non-cortical components of hearing loss, the models presented could
be adapted to reconstruct the temporal fine-structure of the stimulus, as demonstrated
by Maddox and Lee (2018). This work would be necessary for the development of an
analysis tool for assessment of the complete auditory pathways.



3.5. Contributions 73

In this study the TRF models were fitted using the amplitude envelope as the stimulus.
This stimulus feature may not be optimal for a linear decoder, given the non-linear na-
ture of the auditory system. Further exploration of the potential benefits of non-linear
perceptually motivated feature reconstruction is provided in Chapter 4. Performance
of the ElasticNet model may also be improved using techniques such as variance infla-
tion factor analysis (VIF) to assess and PCA to reduce collinearity in the input to the
ElasticNet model. Collinearity in data is particularly detrimental to L1 regularisation
so these collinearity reduction methods may provide better regularisation performance
than is reported in this study (Dormann et al., 2013). Further work should also assess
the performance of the ElasticNet model with reduced amounts of training data. Cur-
rent research typically trains each model on 20 minutes of data, which is too long for
these methods to be viable for clinical diagnostic or for intervention fitting procedures.
With smaller datasets overfitting is more likely to occur and so the additional regular-
isation provided by ElasticNet may provide performance benefits that have not been
shown in this study. The use of ElasticNet could also be extended to other areas, such
as auditory attention decoding or for assessment of audio-haptic integration, following
established methodologies, such as those presented by Riecke et al. (2019) and Fu et al.
(2019). This may provide additional insight into the underlying neural mechanisms in
these areas.

Overall, results indicate that any of these methods would be a viable option for analysis
of evoked-responses to running speech for hearing impaired listeners. A new model has
also been presented, which may offer further benefits for interpretation than traditional
models used for assessment of evoked-responses to running-speech. This study indicates
that the ElasticNet model has the potential for development as both a clinical and in-lab
assessment of speech-in-noise performance.

3.5 Contributions

The data used in this study was originally collected for the study detailed in Vanheusden
et al. (2020). This dataset was chosen as it was suitable for assessment of the signal
processing methods proposed in Section 3.1.5.2, and for the diversity of participant
responses within the dataset, as detailed in Section 3.1.1. All stimulus preprocessing and
response analysis (detailed in Sections 3.1.5.1 and 3.1.5.2) were performed independently
of original analysis described in Vanheusden et al. (2020). Reanalysis of this data was
authorised by the original authors. Data analysis implementation was designed and
implemented by the author Samuel Perry and supervisors Mark Fletcher, David Simpson
and Steve Bell. The above work was published, in part in the conference proceeding
by Perry et al., 2018, and Perry et al., 2019.
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Chapter 4

Feature optimisation of the Temporal
Response Function model as a
speech-in-noise assessment method

The previous Chapter 3 outlined an adaptation of the TRF model as a method with
potential to be used as a measure of speech-in-noise performance. This focused on
the optimisation of a linear model for reconstructing the amplitude envelope of speech.
However, the amplitude envelope is a basic acoustic property of the audio, and so does
not represent the non-linear perception of amplitude in the auditory system. It may
therefore be expected that a feature that better represents human perception of loud-
ness would be better represented in the neural responses to running speech. Previous
research suggests that perceptually motivated features such as spectrograms (Daube
et al., 2019) and categorical phonetic features (Di Liberto et al., 2015; Di Liberto and
Lalor, 2017) can improve the reconstruction performance of TRFs, and improve predic-
tion of speech intelligibility (Lesenfants, 2019). In addition, a recent study by Biesmans
et al., 2017 suggests that auditory models can improve the performance of the TRF for
the task of auditory attention decoding. Their results show attention decoding accuracy
improving from 77.7% for a standard envelope extraction method, to 81.5% with a sim-
plistic loudness model. Furthermore, more complex loudness models are not found to
provide further benefit in this study. Combined, these studies suggest that perceptual
loudness TRF may improve the reconstruction performance. This may benefit the de-
sign of an evoked-response based measure of speech-in-noise performance, particularly if
using speech-in-noise score prediction methods such as that presented by Vanthornhout
et al., 2018.

The following Section 4.1 outlines a study to evaluate the TRF’s reconstruction per-
formance of a perceptual loudness model in normal-hearing and hearing impaired par-
ticipants. In this chapter, the ElasticNet model proposed in previous Chapter 3 will
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be used to compare the reconstruction performance of the speech amplitude envelope
and a perceptual model of loudness (ITU BS17704). The ITU loudness model produces
a function of perceived loudness, for speech in background noise (International Teleco-
munication Union, 2015). It may therefore be expected that this will outperform the
amplitude envelope in terms of reconstruction performance. It should be noted that the
candidate models presented by Biesmans et al., 2017 may offer reasonable alternative
models. However, the best performing model (the “p-law” model) does not benefit from
the same level of validation as the ITU model presented: The ITU model was chosen
as a simple (in terms of computational complexity, an important factor in the inclusion
of the proposed methods in low-power/wearable devices, as highlighted by Biesmans
et al., 2017 and discussed further in Section 4.4), standardized model that has been
validated for 97 NHLs on a wide variety of material, from spoken words to sound effects
and television shows. The model was validated using a subjective loudness matching
procedure, where participants were tasked with matching various material (336 audio
sequences) to a 60 dBA reference signal (a segment of female English speech). Subjective
rating are highly correlated with the ITU model for these validation studies for 2 mono-
phonic datasets (r=0.979 and r=0.985), and are also highly correlated for a further
mixed monophonic and multi-channel dataset (r=0.980) (International Telecomunica-
tion Union, 2015). Therefore the ITU model appears a well suited candidate model for
the proposed application. Implementation of this model is detailed in Section 4.1.5

The presented study evaluates the features on both normal-hearing and hearing impaired
listeners, using a reduced amount of data-per participant in comparison to that used in
Chapter 3. This aims to more comprehensively test the feasibility of the proposed
method than that of Chapter 3 — using datasets of representative cohorts and EEG
recording lengths that are closer to clinically feasible than in the previous chapter.
As with the previous chapter, models will be assessed for 3 bandwidths – Wideband
(0–20 Hz), Delta band (1–4 Hz) and Theta band (4–8 Hz). These bandwidths are
thought to be in the range of amplitude envelope frequencies that contribute most to
speech intelligibility (Aiken and Picton, 2008) and are commonly used for cortical TRF
reconstruction. Results of this study are detailed in Sections 4.2 and 4.3. The potential
for a loudness model based TRF to be used as a speech-in-noise score prediction method
and the current limitations of the method as a diagnosis/intervention fitting procedure
are outlined in Section 4.4.
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4.1 Methods

4.1.1 Participants.

This study used evoked response data from two datasets: The dataset of evoked-
responses from hearing-impaired listeners described in Chapter 3, and a dataset of re-
sponses from normal-hearing listeners. The normal-hearing data used in this study was
originally collected by Stephanie Nel, a BSc student at the University of Southampton.
The dataset contained evoked response data for 13 normal-hearing participants (5 males,
8 females, aged between 18 and 29). Participants were native English-speaking and had
normal hearing, as assessed using PTA.

4.1.2 Stimuli.

For the normal-hearing dataset, 12 minutes of running speech was used for stimulation
of evoked responses. The stimulus was taken from a freely available audiobook (Colum,
2021) read by a female speaker. The audiobook was split into 4 segments of approxi-
mately 3 minutes each. The speech was low-pass filtered at 3 KHz with a 120th order
FIR filter. The stimulus was normalised to a peak of 0 dB FS. Stimulus was presented
at 75 dBA equivalent sound pressure level (LeqA SPL). For the normal hearing dataset,
participants were presented this stimulus as part of a wider battery of stimuli. Record-
ings of the other stimuli were not used as part of this research.

4.1.3 Apparatus.

For the normal-hearing dataset, the stimulus was presented to the participant via a
loudspeaker placed 1.2 m in front of the participant. The loudspeaker was driven by
an RME BabyFace soundcard (RME, n.d.). EEG data were collected using a BioSemi
ActiveTwo EEG system (BioSemi, n.d.). Thirty-two standard electrodes were used, ar-
ranged following the 10–20 electrode system layout. Evoked response data was recorded
at a samplerate of 2048 Hz. Triggers were used to synchronise stimulus output and
evoked-response recordings. These were produced via the soundcard, using an Arduino
Due (Arduino, 2021) based trigger system with custom software to convert the sound-
card output to triggers compatible with the ActiveTwo system.

4.1.4 Procedure.

The procedure for collection of data for both the hearing-impaired dataset and the nor-
mal hearing dataset was similar, with the exception of the location, tester and test
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procedure (as noted where applicable). The location of data collection for the normal-
hearing dataset was the Hearing and Balance Centre at the University of Southampton.
For the hearing-impaired dataset, data was collected in the Royal Berkshire NHS Foun-
dation Trust Audiology Department.

4.1.5 Signal processing

Pre-processing of both the evoked-response data and amplitude envelope were performed
as detailed in previous Section 3.1.5.1. In addition, the loudness stimulus feature was ex-
tracted using the procedure illustrated in Figure 4.1, following the specification detailed
in ITU BS.1770–4 (International Telecomunication Union, 2015).

Loudness
estimate

Gated
window

−0.691 + 10Log10Mean-square
K-weighted

filter
Audio in

Figure 4.1: Schematic diagram of the ITU BS.1770–4 loudness model

First a K–weighted filter was applied. This consisted of a high-shelf filter and a high-
pass filter, implemented as two IIR filters in series. Filter morphology is illustrated in
detail in International Telecomunication Union (2015). The mean-square of each sample
is then calculated and converted to the LKFS scale, defined as

l(t) = −0.691 + 10Log10(z(t)), (4.1)

where z is the mean-square of the input sample at time t. The constant of 0.691 is
subtracted to cancel the additional gain applied to the signal by the K-weighted filter.
The signal is then split into 400 ms windows, with an overlap of 75%. Each window is
then gated using an absolute and a relative threshold. The absolute threshold (ΓA) is
calculated as

ΓA = 10(−70.0+0.691)/10. (4.2)

Samples that are below this threshold are first removed from further calculations. The
relative threshold (ΓR) is then defined as

ΓR = −0.691 + 10Log10

(
∑

J
z

)
+ 10(−10.0+0.691)/10, (4.3)

where J = {t : z > ΓA}. The loudness of each block of samples is then calculated as:

L = −0.691 + 10Log10

(
1
|K| ∑

K
z

)
(4.4)
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where L is the loudness measure of the current block, K = {t : z > ΓA and z > ΓR} and
|K| is the number of elements in K. The resulting momentary loudness measure was then
filtered into each of the analysis bands (Delta, Theta and Wideband) using an identical
filter to the amplitude envelope, as specified in Section 3.1.5.1. An illustration of the
ITU loudness model’s output in relation to a standard amplitude envelope is shown in
Figure 4.2.

Figure 4.2: Comparison of the normalised amplitude envelope and ITU loudness model
function for a segment of stimulus

The ElasticNet model defined in previous Chapter 3.1.5.2 was used for reconstruction
of the stimulus features. For each dataset, two models were optimised for each partici-
pant. The first was fitted using the speech amplitude envelope of the stimulus, and the
second was fitted using the momentary loudness measure. An example comparison of
an original amplitude envelope to its reconstruction is illustrated in Figure 4.3. 5-fold
cross-validation was used, with an 80%–20% train–test split per fold. This resulted in
approximately 9 minutes 40 seconds of training data and 2 minutes 20 seconds of test
data per fold. For each fold, the input feature and evoked response data were stan-
dardized using z-scoring. Models were optimised per training fold using a grid search
to select the best of 50 λ parameter values (ranging logarithmically between 10−15 and
1015) and 10 α parameter values (ranging linearly between 0.0 and 1.0). For details on
model parameters, please refer to Chapter 3. For the test data, feature reconstructions
(ŷenv and ŷITU) and their respective targets (yenv and yITU) were split into 12 10-second
segments. The Pearson’s correlation was calculated for each segment pair. Averaging
these correlations provided a measure and standard-deviation of feature reconstruction
performance. Mean correlation was used as the performance metric in the grid search for
the optimal model parameters. Null-distributions were calculated for the final models
of each feature. This was achieved by fitting two further models, using time reversed
features to provide a measure of chance-level reconstruction performance.
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Figure 4.3: Comparison of the original and reconstructed amplitude envelope, recon-
structed using the ElasticNet model, for a segment of stimulus

All data were preprocessed using the MNE Python package (Gramfort, 2013) and custom
python scripts.

The data analysis detailed was approved by the University of Southampton Faculty
of Engineering and Physical Sciences Ethics Committee (ERGO ID: 52472). Hear-
ing impaired participant data collection protocol was approved by the local National
Health Service (NHS) ethics committee (refer to Vanheusden et al. (2020) for details).
Normal-hearing participant data collection protocol was approved by the University of
Southampton Faculty of Engineering and Physical Sciences Ethics Committee (ERGO
ID: 17552). All research was performed in accordance with the relevant guidelines and
regulations.

4.2 Statistics

For both the normal-hearing and hearing-impaired dataset, normality was assessed us-
ing a Shapiro-Wilk test. Data was not normally distributed within data splits across
each participant. Therefore non-parametric tests were used for subsequent analysis.
3 Friedman tests were conducted for each dataset (using Bonferonni-Holm correction
for multiple comparisons), with feature type as the primary factor. Planned Wilcoxon
signed-rank tests were performed for all models that yielded a significant results from
the Friedman test (correcting for multiple comparisons using Bonferroni-Holm correc-
tion for multiple comparisons). Further unplanned Wilcoxon sign-ranked tests were
performed as exploratory analysis per-participant. For these tests, no further correction
was made for multiple comparisons. Statistics were calculated using custom Python
scripts, utilising Scipy (Virtanen et al., 2020) and Pingouin (Vallat, 2018) packages.
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4.3 Results

Figure 4.4: Group level hearing-impaired participant feature reconstruction correlation
for the wideband band amplitude envelope and perceptual loudness models. Differences

in distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗∗ : p ⩽ 0.01
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Figure 4.5: Group level hearing-impaired participant feature reconstruction correlation
for the delta band amplitude envelope and perceptual loudness models. Differences in

distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗∗ : p ⩽ 0.01

Figure 4.6: Group level hearing-impaired participant feature reconstruction correlation
for the theta band amplitude envelope and perceptual loudness models. Differences in

distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001
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Separate analysis was performed for the normal-hearing and hearing impaired datasets,
due to discrepancies in data collection methods that limited comparison (such as differ-
ences in testers and testing protocols). The rationale for this is discussed in Section 4.4.

For the hearing-impaired dataset, Friedman tests were performed, correcting for ties,
with envelope and loudness features as factors. Results showed a significant effect of
feature type for wideband (χ2(1) = 5.4, p = 0.02), delta band (χ2(1) = 8.07, p = 0.005)
and theta band (χ2(1) = 11.27, p < 0.001).

For the wideband condition, the median correlation for the amplitude envelope was 0.164
(ranging from 0.147 to 0.280). Its time reversed model had a median correlation of 0.009
(ranging from -0.036 to 0.045). The median correlation for the loudness model was 0.227
(ranging from 0.120 to 0.346). Its time reversed model had a median correlation of -0.014
(ranging from -0.048 to 0.048)

For the delta band condition, the median correlation for the amplitude envelope was
0.173 (ranging from 0.106 to 0.285). Its time reversed model had a median correlation of
-0.001 (ranging from -0.049 to 0.054). The median correlation for the loudness model was
0.256 (ranging from 0.100 to 0.349). The time reversed model had a median correlation
of -0.006 (ranging from -0.049 to 0.064)

For the theta band condition, the median correlation for the amplitude envelope was
0.133 (ranging from 0.077 to 0.303). Its time reversed model had a median correlation of
0.008 (ranging from -0.045 to 0.04). The median correlation for the loudness model was
0.077 (ranging from 0.042 to 0.232). The time reversed model had a median correlation
of -0.002 (ranging from -0.073 to 0.041)
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Figure 4.7: Group level normal-hearing participant feature reconstruction correlation
for the wideband amplitude envelope and perceptual loudness models. Differences in

distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗∗ : p ⩽ 0.01.

Figure 4.8: Group level normal-hearing participant feature reconstruction correlation
for the delta band amplitude envelope and perceptual loudness models.
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Figure 4.9: Group level normal-hearing participant feature reconstruction correlation
for the theta band amplitude envelope and perceptual loudness models. Differences in

distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ : p ⩽ 0.05.

For the normal-hearing dataset, an effect of feature type for both wideband (χ2(1) =

6.23, p = 0.01) and theta (χ2(1) = 11.27, p < 0.001) band was found. For the delta band
(χ2(1) = 3.77, p = 0.052) results were approaching, but did not meet the threshold for
significance.

For the wideband condition, the median correlation for the amplitude envelope was 0.164
(ranging from 0.147 to 0.280). Its time reversed model had a median correlation of 0.009
(ranging from -0.036 to 0.045). The median correlation for the loudness model was 0.227
(ranging from 0.120 to 0.346). Its time reversed model had a median correlation of -0.014
(ranging from -0.048 to 0.048)

For the delta band condition, the median correlation for the amplitude envelope was
0.173 (ranging from 0.106 to 0.285). Its time reversed model had a median correlation of
-0.001 (ranging from -0.049 to 0.054). The median correlation for the loudness model was
0.256 (ranging from 0.100 to 0.349). The time reversed model had a median correlation
of -0.006 (ranging from -0.049 to 0.064)

For the theta band condition, the median correlation for the amplitude envelope was
0.133 (ranging from 0.077 to 0.303). Its time reversed model had a median correlation of
0.008 (ranging from -0.045 to 0.04). The median correlation for the loudness model was
0.077 (ranging from 0.042 to 0.232). The time reversed model had a median correlation
of -0.002 (ranging from -0.073 to 0.041)
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In each dataset, 4 planned post-hoc Wilcoxon sign-ranked tests were performed per band
(excluding the normal-hearing delta band, which did not reach significance in the Fried-
man test) for each participant. These assess the difference in reconstruction performance
of the ElasticNet models for the speech-amplitude envelope and the perceptual loudness
model, and also compared each model to its time-reversed model.

For the hearing-impaired dataset, the wideband models performed significantly better
for the loudness model than for the speech-amplitude envelope (W = 8, p = 0.002). Both
models performed significantly better than their time-reversed equivalents (amplitude
envelope model: W = 0, p = 0.000; loudness model: W = 0, p = 0.000). The difference
between features are illustrated in Figure 4.4.

For the delta band, the loudness model also significantly outperformed the envelope
based model (W = 7, p = 0.001). Again, both models outperformed their respective
time reverse models (amplitude envelope model: W = 0, p = 0.000; loudness model:
W = 0, p = 0.000). Comparison of feature models for the delta band is illustrated
in Figure 4.5. For the theta band, the loudness model was significantly worse that
the amplitude envelope model (W = 1, p = 0.000). As with the previous models,
both models outperformed their time-reversed models (amplitude envelope model: W =

0, p = 0.000; loudness model: W = 0, p = 0.000). Model comparison is illustrated in
Figure 4.6.

For the normal-hearing dataset, the wideband models performed significantly better for
the loudness model than for the speech-amplitude envelope (W = 8, p = 0.002). Both
models performed significantly better than their time-reversed equivalents (amplitude
envelope model: W = 0, p = 0.000; loudness model: W = 0, p = 0.000). The difference
between features are illustrated in Figure 4.7. However, after correcting for multiple
comparisons, the delta band loudness model did not significantly outperform the ampli-
tude envelope model based on the Friedman tests detailed above. Therefore no further
group-level analysis was performed of this band. Results for each feature model are
illustrated in Figure 4.8.

For the theta band, the amplitude envelope model performed significantly better than
the loudness feature model for the normal-hearing dataset (W = 15, p = 0.017). All
models performed significantly better than their time-reversed equivalents (amplitude
envelope model: W = 1, p = 0.001; loudness model: W = 5, p = 0.002). Results for the
theta band are illustrated in Figure 4.9.

In addition to group level analysis, 3 unplanned post-hoc Wilcoxons sign-ranked tests
were performed for each participant. These tests compared the performance of the
amplitude envelope model to the loudness model, and also compared each to its time-
reversed model. No correction for multiple comparisons was applied for these exploratory
tests. Results of these tests are presented in Appendix B.
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4.4 Discussion

Overall, this study has shown that for the delta and wideband TRFs, the loudness model
can be reconstructed significantly better from the EEG signal than the amplitude en-
velope for both hearing-impaired and normal hearing listeners. Median reconstruction
correlations (r) increased by as much as 28.5% for the hearing-impaired dataset and
31.1% for the normal-hearing dataset using the loudness model. These models were
significantly above the noise floor at the group level. In addition only a minority of
per-participant reconstructions were not significant (further analysis is required to de-
termine the cause of these poor reconstructions). However, for the theta band, the loud-
ness model consistently performed poorly compared to the amplitude envelope. The
amplitude envelope median reconstruction performance was as much as 41.0% higher
for the hearing-impaired dataset and 34.0% for the normal-hearing dataset. In addi-
tion, although comparison at group level showed significance of loudness model for the
theta band above the time-reversed equivalent model (assessing the median reconstruc-
tion values for each participant for this analysis), measures within participant suggest
performance wasn’t significantly above the time-reversed model for the majority of par-
ticipants.

The presented findings show consistent reconstruction improvements in the delta and
wideband models. This suggests that a non-linear perceptual correlate of the amplitude
envelope is well represented in the evoked responses to clean running speech. Further
work is needed to asses the degradation of these reconstructions with added noise, and
the correlation between this and subjective measures of speech-in-noise performance.

The theta models performed poorly for the loudness model. A possible reason for this
was the 400 ms windowing in the loudness model. The 400 ms mean-square produces
a low-pass moving average filter which may have filtered the higher frequency stimulus
fluctuations of the theta band. Adjustment of the window parameter of the loudness
model may result in more robust reconstructions for this bandwidth. Using the ITU
specification loudness model this bandwidth’s reconstruction performance will be lim-
ited. Adjustments to the window size may address this issue, but this modification may
limit the model’s correlation with behavioural measures of loudness perception.

It should also be noted that the variance of loudness model is consistently higher than
the amplitude envelope. This may suggest that that the model is more sensitive to
differences in stimulus, or that the loudness feature reconstruction is more susceptible to
irrelevant interfering noise. In the former case, this may be advantageous for assessment
of speech in noise performance, as it indicates that the feature is more sensitive to the
stimulus, and so may be more sensitive to the effects of noise on speech intelligibility.
This is supported by the results of Biesmans et al. (2017) which suggest that loudness
models are more sensitive to competing talkers than amplitude envelope based models.
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A limitation of the current study is that the normal-hearing dataset cannot be directly
compared to the performance of the hearing impaired dataset, due to differences in col-
lection protocols (such as differing room acoustics and speech presentation level). Future
research may address this issue by comparing these cohorts with a unified data collection
protocol. In the pursuit of a clinically viable metric of speech-in-noise performance, the
amount of stimulus presented, as well as the number of electrodes used for the collection
of data should be considered, given the limited time available for assessment. Methods
such as sequential testing (Chesnaye et al., 2019) may be adapted to determine the op-
timal quantity of evoked-responses needed for fitting of loudness model TRFs in clinic.
Further analysis of the model and L1 coefficients may also provide insight into the most
prominent electrodes for analysis in clinic, as discussed in Section 3.4. It should also
be considered that there was an unavoidable differences in the age of cohorts for the
datasets of the current study. Future work should explore the performance of loudness
model based TRFs for matched cohorts of hearing impaired and normal-hearing listen-
ers. Finally, the effect of participant interventions has also not been assessed in the
current study. Given that previous studies have shown no clear effect of hearing aids
on amplitude envelope responses (Vanheusden et al., 2020), the effect of an interven-
tion used to improve speech in noise performance should be assessed to understand the
sensitivity of the TRF to the perception of audio provided by these devices.

There are several further steps required to maximise the impact of the proposed method.
For the development of a speech-in-noise score prediction method, the presented regres-
sion model/loudness feature should be adapted, using a technique such as that presented
by Vanthornhout et al. (2018) or Lesenfants (2019), to assess the sensitivity of the
method to variations in background noise, and to understand how this correlates with
subjective measures of speech-in-noise performance. This study suggests that provid-
ing perceptual loudness features can provide performance reconstruction improvements.
Further augmentation of the proposed feature, adding additional categorical phonetic
data may provide further improvements to reconstruction performance, and may pro-
vide additional information on higher level cortical processing, as discussed using similar
methodology by Di Liberto et al. (2015) and Lesenfants (2019).

It may also be possible to increase reconstruction performance of the model by using non-
linear regression models (in place of the ElasticNet model) in addition to perceptually
motivated features. Recent studies have shown improved reconstruction performance for
the amplitude envelope using dilated convolutional neural networks (Accou et al., 2021),
as well as standard deep neural network architectures for attentional decoding (de Taillez
et al., 2020) and for envelope reconstruction with intracranial EEG (Akbari et al., 2019;
Yang et al., 2015). The ElasticNet model could also be further optimised by adapting
it as a Linear Support Vector Machine (SVM) to allow for increased computational
efficiency (Zhou et al., 2014). A simple adaption of this SVM model to use a non-linear
kernel may provide an alternative method for introducing a data-driven non-linearity to
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the TRF model, in addition to the non-linearity introduced by the presented loudness
model feature.

Finally, this method may have further application as an assessment method for cochlear
implant users. This may be of particular use for objective and automatic fitting of
cochlear implants, and may have application in closed loop cochlear implants that can
re-tune to maximise speech-in-noise performance on the fly (Geirnaert et al., 2021).
Previous work has suggested that the method could be readily translated for use in
cochlear implant users (Verschueren et al., 2019). Further disucssion on the use of these
methods in the context of assessing and optimising haptic interventions for cochlear
implant users is also provided in Chapter 7

In summary, the presented results suggest that a loudness model based TRF method
can provide significantly improved stimulus reconstruction performance for both normal-
hearing and hearing-impaired listeners. Appropriate analysis bands have also been iden-
tified for the presented loudness model feature. The method presented may have further
application as a predictor of speech-in-noise scores, and may have further applications
such as analysis of cochlear implant users and in the development of neuro-steered hear-
ing interventions, Further work is needed to assess the method’s sensitivity to speech in
noise stimulus and adaption of the method is necessary to produce a practical clinical
measure.

4.5 Contributions

In addition to data used in previous Chapter 3 (see Section 3.5 for details), The data
used in this study was originally collected by Stephanie Nel in completion of her BSc
in Audiology at The University of Southampton. This dataset was chosen as it was
suitable for assessment of the signal processing methods proposed in Section 4.1.5. All
stimulus preprocessing and response analysis (detailed in Section 4.1) were performed
independently of original analysis. Reanalysis of this data was authorised by the original
authors. Data analysis implementation was designed and implemented by the author
Samuel Perry and supervisors Mark Fletcher, David Simpson and Steve Bell. The above
work was published, in part in the conference proceeding by Perry et al., 2018, and Perry
et al., 2019.





91

Chapter 5

A haptic neuroprosthetic to improve
pitch discrimination performance in
cochlear implant listeners

As highlighted in Section 2.1, pitch is an important feature of speech, used to identify
accent, age and sex (Abberton and Fourcin, 1978; Titze, 1989), as well as segmental (Ox-
enham, 2008; David et al., 2017), and suprasegmental properties (Banse and Scherer,
1996; Murray and Arnott, 1993; Most and Peled, 2007; Peng et al., 2008; Meister et al.,
2009; Xin Luo et al., 2007). As detailed in Section 2.3.2, cochlear implant users are
particularly poor at perceiving fine-grained pitch cues, due to the limited resolution and
distortions introduced by the implant. When discriminating the difference in the pitch
of two stimuli, cochlear implant user performance varies markedly. Studies report dis-
crimination thresholds of as high as 80–90% pitch differences (roughly 10–11 semitones)
required for musical instruments (Brockmeier et al., 2011; Bruns et al., 2016), and of
around 10–20% (around 2–4 semitones) for synthetic tone complexes (Drennan et al.,
2015; Kang et al., 2009). In each study, the variance in performance is high, with some
users scoring as poorly as more than 100% (over an octave) to, as well as 0.5% (less than
one semitone).

By providing additional pitch cues, a suitable haptic augmentation may be able to im-
prove on the currently limited performance of cochlear implant users. As discussed
in Section 2.4.2.2, one study by Huang et al. (2017) explores using a pitch-to-haptic
mapping to improve speech-in-noise performance. Results showed promise, with im-
provements of 2.2dB SRT on average. However, to the author’s knowledge, no studies
have explored the limits of pitch discrimination possible when providing these cues
synchronously via haptics with or without a cochlear implant. In addition, the work
presented by Huang et al. (2017) extracted the haptic signal from clean speech, and
therefore did not assess the noise-robustness of the signal-processing strategy. This
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factor that could inhibit the real-world application of a pitch based haptic stimulation
method.

The presented study assesses the potential for haptic stimulation to improve pitch dis-
crimination performance. Section 5.1 will first outline the design and implementation
of a forearm worn device to provide haptic stimulation to enhance pitch discrimination
performance, and its accompanying signal-processing strategy. The presented device de-
sign aims to be readily translatable to an inexpensive real-world intervention. A study
is then detailed, with the following aims:

• Test the limits of pitch discrimination for simulated cochlear implant users with
the designed device.

• Assess the robustness of the device and accompanying signal-processing strategy
to inharmonic background noise

• Test whether the audio and haptic stimulation is effectively combined by the lis-
tener, to provide better performance than either modality alone

Results are then presented and discussed in Sections 5.2 to 5.4, outlining contributions
made to the development of a real-world intervention for improving speech-in-noise per-
formance in cochlear implant users. The limitations of the implementation are also
discussed highlighting areas that may increase the performance and viability of the out-
lined device.

5.1 Methods

5.1.1 Device design

The aim was to create an in-lab device that would be capable of providing haptic stim-
ulation up the length of the forearm. This would allow for a spatial mapping of F0

estimates (the acoustic correlate of pitch) to locations up the arm, avoiding issues such
as the poor frequency resolution of the tactile system and the lack of inexpensive mo-
tors with independent frequency and amplitude control, as highlighted in Section 2.4.
Further, the design was limited to use technologies that could reasonably be adapted to
a real-world, inexpensive intervention (such as inexpensive motors and motor drivers).
An image of the device during development is provided in Figure 5.1
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Figure 5.1: Image of an 8 motor prototype of the presented device during development.
Each band hold 2 motors, on on the dorsal side and one on the palmar side of the wrist.

Of the motors available (detailed in Section 2.4.2), two ERM motors were selected: The
Precision Microdrives 30610H (labelled as “Motor Type 1” in Figure 5.2) and 304116
(labelled as “Motor Type 2” in Figure 5.2) (Precision Microdrives, 2021a; Precision
Microdrives, 2021b). These motors provided a suitable dynamic range (with maximum
outputs of 1.84 G and 1 G respectively) and had differing frequency responses (operating
frequency of 230 Hz for the 30610H and 280 Hz for the 306116). This allowed for an
interleaved design with motors alternated along the forearm. This approach was taken to
increase discrimination between motor locations, allowing users to discriminate motors
both in space and in frequency. A total of 12 interleaved motors were used to match
the output of the signal-processing strategy described in the following Section 5.1.2. Six
motors were mounted on the dorsal (upper) side of the forearm and 6 on the palmar
(lower) side, with motors spaced 3 cm apart. This spacing was selected to be greater
than 2 point-discrimination thresholds for the forearm(Cholewiak and Collins, 2003;
Schatzle et al., n.d.; Lévêque et al., 2000). An illustration of the motor arrangement is
provided in Figure 5.2.
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Figure 5.2: Schematic representation of the haptic device on the forearm. The two
interleaved motor types are represented by different colours1.

Motors were driven using custom made MOSFET based amplifiers. These amplifiers
took control voltages as input and output driving voltage from 0 V to the rated voltage
of the respective motors. Control voltages were generated using a DC-coupled MOTU
24Ao (MOTU, 2019), controlled by a custom Max (Cycling 74, 2019) patch (detailed in
the following Sections 5.1.2 and 5.1.7). Motors were calibrated to rise linearly between
the extrema of their respective outputs, to maximise their dynamic range.

5.1.2 Signal processing

Figure 5.3: Schematic illustration of the signal processing strategy used to map input
audio to haptic stimulation1.

The proposed signal-processing strategy was designed to provide sub-octave pitch con-
tours that are typically poorly perceived by cochlear implant users. To achieve this a

1Material from: ’Fletcher et al., Enhanced Pitch Discrimination for Cochlear Implant Users with a
New Haptic Neuroprosthetic, Scientific Reports, published 2020, Springer Nature Limited

1Material from: ’Fletcher et al., Enhanced Pitch Discrimination for Cochlear Implant Users with a
New Haptic Neuroprosthetic, Scientific Reports, published 2020, Springer Nature Limited
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chroma-wrapped F0 estimator was used, which categorises the estimated frequency as
one of 12 semitone pitches within an octave. This produces a relative representation
of pitch, presenting frequency changes as small as a semitone, whilst removing absolute
pitch height information. The signal processing strategy used to map audio to tactile
stimulation is illustrated in Fig 5.3. To generate the haptic signal, the F0 of the audio
was first estimated using the YIN fundamental frequency estimator, implemented in the
Max Sound Box toolbox (IRCAM, 2018). A window size of 14 ms was used with no
downsampling (giving a minimum possible estimate of 70 Hz). This F0 estimate was
then used to activate one of the 12 motors. To map the frequency estimate to a motor,
the F0 was first converted to the MIDI scale, a scale used to map frequency to musical
pitch. The full mapping from estimated frequency to motor was calculated as:

Fwrap[n] = mod
(

69 + 12 · log2

(
F0[n]
440

)
, 12
)

, (5.1)

yi[n] =

1, i = Fwrap[n]

0, otherwise
, (5.2)

where Fwrap is an integer in the range 0 ≤ Fwrap < 12, and yi is the channel at index i.
Using this strategy, it was expected that a minimum F0 discrimination performance of
around 6% (1 semi-tone) would be achievable (the minimum difference in F0 required
to switch between motors). If achieved, this performance would be markedly less than
the 10–20% pitch difference discrimination performance of cochlear implant users shown
in previous studies (Drennan et al., 2015; Kang et al., 2009). In parallel, the RMS
amplitude was calculated using 14 ms windows. This envelope was then used to mod-
ulated the activated motor channel. Initial evaluation showed short erratic changes in
F0 estimates, particularly at boundaries between semitones and with added noise. An
RMS moving-average filter with a 125 ms window was added to the signal processing
chain to address this issue. The signal-processing strategy’s output in response to har-
monic complexes (detailed in the following Section 5.1.4) in the presence of white noise
at increasing SNRs is illustrated in Figure 5.4.
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Figure 5.4: Signal-processing strategy output for harmonic complexes at 300 Hz and
300 Hz+5%. Examples 1, 2 and 3 represent 3 presentations of the same stimulus.
Complexes are presented in quiet, at -5 dB SNR and at -7.5 dB SNR to demonstrate

the degradation of the strategy at increasing levels of inharmonic noise1.

In addition to the harmonic complex, sawtooth waves at 85 Hz (the lowest average F0

of typical male speech (Hess, 2012)), 255 Hz (the highest average F0 of typical female
speech (Hess, 2012)) and 440 Hz (the standard tuning pitch for western music) were used
to further assess the algorithm. A sawtooth wave was used as the prototypical waveform
that has both odd and even harmonics, as is typical of many real-world stimuli such as
speech. The algorithm’s performance for each F0 is illustrated in Figure 5.5.

1Material from: ’Fletcher et al., Enhanced Pitch Discrimination for Cochlear Implant Users with a
New Haptic Neuroprosthetic, Scientific Reports, published 2020, Springer Nature Limited
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Figure 5.5: Signal-processing strategy output for sawtooth waves at 85 Hz, 255 Hz,
440 Hz and subsequently at the same frequency+5%. Sawtooth waves are presented in
quiet, at -5 dB SNR and at -7.5 dB SNR to demonstrate the degredation of the strategy

at increasing levels of inharmonic noise1.

The algorithm’s performance is comparable to the stimulus illustrated previously in
Figure 5.4, with marginally poorer performance for the 85 Hz signal at -7.5 dB. It can
also be seen that for the 85 Hz and 255 Hz signals, there is an offset of 1–2 shakers relative
to the clean condition, which is due to errors produced by the initial YIN algorithm.

5.1.3 Participants

12 normal-hearing participants (3 male and 9 female, aged between 22 and 31) were
recruited from student at the University of Southampton and acquaintances of the re-
searcher. Participants were screened to ensure they:

1. Were native British English speakers.

2. Had touch perception threshold with normal limits at the fingertip (< 0.4 ms−2

RMS at 31.5 Hz, and < 0.7 ms2 RMS at 125 Hz) at the fingertip, measured
using a HVLab tactile vibrometer, following ISO 13091–1:200161 specification (In-
ternational Organization for Standardization, 2001). The fingertip was used as
normative data is not available for the wrist or forearm.

3. Had PTA thresholds within normal limits (< 20 dB HL for audiometric frequencies
from 250 Hz to 8 KHz), following British Society of Audiology (2018) specification.

1Material from: ’Fletcher et al., Enhanced Pitch Discrimination for Cochlear Implant Users with a
New Haptic Neuroprosthetic, Scientific Reports, published 2020, Springer Nature Limited
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4. Did not present with any contraindications (as defined per British Society of Au-
diology (2018), as assessed using otoscopy and a health questionnaire.

Participants provided written informed consent and no payment was given for their
participation. Participants reported no issues with their hearing or sense of touch, had
no prior musical training and did not speak a tonal language.

5.1.4 Stimulus

An harmonic complex with an average F0 of 300 Hz (chosen to be approximately central
to the range of F0s found in human speech (Hess, 2012) and at which pitch cues degrade
for cochlear implant users (McDermott, 2004)) was used as the reference stimulus for
both task familiarisation and testing sections (see procesdure Section 5.1.7 for details).
The stimulus F0 was roved by ±5% with a uniform distribution on each trial. The stim-
ulus comprised of equal-amplitude harmonics, generated from the F0 up to the Nyquist
frequency (24 KHz). A 1–4 kHz 12th order (72 dB per octave) 0-phase butterworth band
pass filter was then applied, removing non-pitch cues (such as brightness) that might be
used to discriminate the stimuli (Mehta and Oxenham, 2017; Shackleton and Carlyon,
1994). The signal’s duration was 500 ms, using 20 ms quater-sine onset and -cosine
offset ramps. A 300 ms gap seperated the target and reference stimuli. The target and
reference stimuli were generated using the same processing, with the exception of the
target stimulus F0 being adjusted by the adaptive track, as described in Section 5.1.7.
Both stimuli were presented at a nominal level of 65 dB SPL, and roved by ±3 dB on
each presentation (with a uniform distribution) to reduce possible loudness cues. A
white noise was used as the masking stimulus, to equally mask each of the harmonics of
the reference and target stimuli.

5.1.5 Cochlear implant simulation.

The SPIRAL cochlear implant simulator (Grange et al., 2017) was used to simulate the
pitch-perception of cochlear implant users. This simulator is a hybrid of a tone and noise
based vocoder that has been shown to better match behavioural perceptual measures
of cochlear implant users. The cochlear implant simulations was synthesized following
procedure detailed by Grange et al. (2017), adapting the original Matlab code to provide
an identical real-time Max/MSP implementation. A pre-emphasis filter was also added
to this implementation, following the procedure of Fletcher et al. (2018). A schematic
representation of the SPIRAL signal processing chain is provided in Figure 5.6, followed
by a description of each component.
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Figure 5.6: Schematic illustration of the SPIRAL cochlear implant simulation used for
generating audio stimulus in real-time.

The audio stimulus is first passed through a shallow pre-emphasis filter, with a 3 dB
per-octave roll off and 4 kHz cut-off frequency. This was implemented following input
filter characteristics typically used in cochlear implant speech processors (Chung and
McKibben, 2011). The signal was then split into 22 frequency bands using a filterbank,
consisting of 22 512-point rectangular FIR bandpass filters with centre frequency spaced
equally on the ERB scale. Lower and upper cut-offs for the filterbank were set at 250
Hz and 8 KHz. These filters represent the splitting of the auditory spectrum into sub-
bands allocated to the 22 electrodes of a cochlear implant. The selection of 22 electrode
filterbands was chosen to match those of commonly used cochlear implants from brands
such as Cochlear Ltd. (Sydney, Australia). The signals from each electrode channel were
then processed using a Hilbert transform and low-pass 512 point rectangular FIR filter,
with a cut-off frequency of 50 Hz. This extracted the amplitude envelope, simulating
the electrical stimulation provided by the cochlear implant along the basilar membrane
in the cochlea. 80 tonal carriers were generated, equally spaced from 300 Hz to 8 KHz
on the ERB scale. The phase of each tone was randomised. Envelopes were mixed to 80
channels, with a spread of -8dB per octave implemented to simulate the current spread
of electric stimulation along the cochlea. Current spread was implemented as:

W(i, j) = 10[(S/10)×abs(log2(CF(i)/F(j)))], (5.3)

M(j) =

√
n

∑
i=1

(
W(i, j) ∗ E(i)2

)
, (5.4)

where envelope i centre frequency CF(i) and carrier tone frequency F(j) are used to
calculate a weight W(i, j). n envelopes E(i) are then mixed to produce the mixed en-
velope M(j) for tonal carrier j. The mixed envelopes are then summed to produce the
final output. All parameters for the vocoder were chosen to replicate those proposed
by Fletcher et al. (2018).
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5.1.6 Apparatus

PTA screening was performed in a sound attenuated booth conforming to British Soci-
ety of Audiology standards (British Society of Audiology, 2018). PTA was performed
using a Grason-Stadler GSI 61 Clinical Audiometer and Telephonics 296 D200–2 head-
phones. Vibro-tactile thresholds were measured using a HVLab Vibrotactile Perception
Meter using a constant upward force of 2 N and a 6-mm contactor that had a rigid
surround (adhering to International Organization for Standardization specifications (In-
ternational Organization for Standardization, 2001)). A Brüel & Kjær (BK) calibration
exciter (Type 4294) was used to calibrate the Vibrotactile perception meter. During
the experiment participants responded via a iiyama ProLite T2454MSC-B1AG 24-inch
touchscreen monitor. The experimenter controlled the test whilst behind a screen with
no line of sight to the participant. This was to minimise the observer-expectancy effect,
where an experimenter may subconsciously influence the participant’s responses (Gold-
stein, 2011, p.374). Stimuli were generated using a custom Matlab script (The Mathwork
Inc., 2019) and controlled using Max 8 (Cycling 74, 2019). A sample rate of 48 kHz was
used for presentation of the audio and the haptic signals, with all signals generated by a
MOTU 24Ao soundcard (MOTU, 2019). Haptic stimulation was provided by the device
detailed in Section 5.1.1. Audio was presented via ER-2 insert earphones (Etymotics,
2019). A BK G4 sound level meter, with a BK 4157 occluded ear coupler were used for
stimulus calibration. A BK Type 4231 sound calibrator was used for the sound level
meter calibration.

5.1.7 Procedure

The experiment was completed in one session lasting around two hours. The session
consisted of three phases: A screening phase, a familiarisation phase and a testing
phase. The screening phase consisted of a health questionnaire to confirm participants:

1. had no conditions or injuries that may affect touch perception,

2. had not been exposed to sustained periods of intense hand or arm vibration at any
time,

3. had no recent exposure to hand or arm vibration,

4. had no conditions or injuries that may affect their hearing perception,

5. had received no musical training at any time, or

6. did not speak a tonal language.

Otoscopy was performed first, to check for any contraindications that would preclude
the use of insert earphones or PTA. A PTA hearing test was then conducted to ensure
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participants were normal hearing (hearing thresholds were < 20dB HL (British Society
of Audiology, 2018)). Finally, vibrotactile detection thresholds were also measured at
the fingertip, to ensure touch perception was within normal limits (see Section 5.1.3 for
details).

Figure 5.7: Illustration of the device familiarisation app. Audio and vibration can be
toggled on and off using the first rown of toggles. The pitch discrimination slider is
found below and can be activated using the accompanying toggle. The interval training

buttons can be found at the bottom of the app.

On passing the screening phase participants proceeded to the device familiarisation
phase. In this phase, participants used an app, consisting of a pitch slider and interval
training modules, to familiarise them with the haptic device. An image of the familiari-
sation app is provided in Figure 5.7. In each module, participants could select either
haptic only, audio-haptic and audio only modes. The pitch slider module played a con-
stant tone. Participants adjusted the frequency of the tone based on a slider position.
For the interval training module, participants selected either a “Low → High” or “High
→ Low” button. These determined the order of pitches for two consecutive tones.
Pitches were randomised, with intervals ranging from a single semitone up to 10 semi-
tones. Participants could repeat presentation as many times as they wished, but stimuli
intervals were randomised on each repetition. In both modules, stimuli were presented
clean, with no cochlear-implant simulation applied. Participants were familiarised for
around 5–10 minutes, and were able to ask the experimenter questions for clarification.

Having been familiarised with the device, participants were then familiarised with the
task to be used in the testing phase. For each condition participants completed 15 trials
of the task. A two-alternative forced-choice task was used for task familiarisatoin and
testing. Participants were required to identify which interval had the stimulus with the
higher pitch using the on-screen interface illustrated in Figure 5.8.
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Figure 5.8: Illustration of the display used for the participants to provide feedback
during testing. Instructions read “In this test you will hear two tones. Please select the

tone that had the highest pitch.”

The panels “1” and “2” signified if the first or second stimulus was higher in pitch. On
selecting either panel, the next trial was presented with visual feedback provided to the
participant indicating whether their response was correct. A one up, two down adaptive
track varied the difference in pitch between the target and reference stimulus. The
pitch difference between the reference and target stimulus decreased on two consecutive
correct responses and increased after every incorrect response. An initial difference of
80% was set, with track steps of 10% for the first 2 trials, 5% for the third and 1% for the
final four trials. A threshold was calculated as the average of the final 4 reversals. There
were three stimulus conditions: Audio only, combined audio-haptic and haptic only.
These conditions were counterbalanced across participants to account for any effects of
condition order. Additionally there were three noise conditions: clean signal, white noise
at -5 dB SNR and white noise at -7.5 dB SNR. These were presented in a random order
for each condition. All parameters and condition selection was performed automatically
using a custom Max patch (illustrated in Figure 5.6) to minimise opportunity for errors
by the experimenter.
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Figure 5.9: Illustration of the display used by the experimenter for test control and
monitoring. Top panels indicate responses from the participant. The middle panel
displays the adaptive track for each condition as the test progressed. Controls at the
bottom of the app allow for wiching of conditions, with current number, track value

and number of completed reversals displayed alongside.

The experimental protocol detailed was approved by the University of Southampton
Faculty of Engineering and Physical Sciences Ethics Committee (ERGO ID: 47769). All
research was performed in accordance with the relevant guidelines and regulations.

5.2 Statistics

Data was not normally distributed (as assessed using a Shapiro-Wilks test). As a result,
data was analysed using non-parametric statistical tests. Two Friedman tests (apply-
ing Bonferoni-Holm correction for multiple comparisons) were used to assess overall
condition effects. Data were further analysed using three planned post-hoc Wilcoxon
signed-rank tests (again applying Bonferoni-Holm correction) for comparison of individ-
ual conditions.

5.3 Results

Pitch discrimination thresholds for each condition (audio only, audio-haptic and haptic
only) are illustrated in Figure 5.10. Each condition displays threshold for the 3 noise
conditions (clean signal, -5 dB and -7.5 dB SNR white noise).
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Figure 5.10: Pitch discrimination thresholds for the audio only, audio-haptic and haptic
only conditions for the 12 participants. Conditions with no background noise and with
background noise at either -5 dB or -7.5 dB signal-to-noise ratio (SNR) are shown. Bars
represent the median F0 threshold. Error bars show 5% and 95% confidence intervals

(bootstrapped for each condition using 1000 samples with replacement)

Friedman tests for repeated measures were conducted with factors: stimulation type
(audio only, haptic only, audio-haptic) and noise type (clean, -5 dB SNR, and -7.5 dB
SNR). A significant overall effect of stimulation type was found (χ2(2) = 18.17, p <

0.001). Additionally, a significant overall effect of noise was found for both audio only
(χ2(2) = 18.17, p < 0.001) and haptic stimulation only (χ2(2) = 15.45, p = 0.001).
For the audio only condition the median threshold was 43.4% without noise (ranging
from 8.4% to 106.0% across participants), increasing to 82.2% with noise at −5 dB SNR
(ranging from 27.6% to 130%) and to 85.2% with noise at −7.5 dB SNR (ranging from
29.7% to 116.5%). For the haptic only condition the median threshold was 1.4% without
noise (ranging from 0.8% to 3.5%), 2.0% in noise at −5 dB SNR (ranging from 0.6%
to 6.6%), and 5.0% in noise at -7.5 dB SNR (ranging from 1.1% to 10.8%). There was
no significant overall effect for audio-haptic stimulation (χ2(2) = 2.09, p = 0.35). For
the audio-haptic condition, the median threshold was 1.5% without noise (ranging from
0.8% to 4.1%), 2.5% with noise at −5 dB SNR (ranging from 0.8% to 5.5%), and 2.4%
with noise at −7.5 dB SNR (ranging from 0.9% to 15.0%).

Post-hoc Wilcoxon signed-rank tests (with Bonferroni-Holm correction applied for mul-
tiple comparisons) showed that pitch discrimination improved significantly with audio-
haptic stimulation than with audio alone (T = 78, p = .001, d = 3.76). Threshold
improvments of 42.0% were found without noise (ranging from 7.5% to 103.4% across
participants), of 80.2% with noise at −5 dB SNR (ranging from 7.5% to 103.6%), and of
80.3% with noise at −7.5 dB SNR (ranging from 5.7% to 95.2%). Pitch discrimination
thresholds also improved significently for the haptic alone condition, when compared to
the audio alone condition (T = 78, p = .001, d = 3.75). The median threshold was 41.9%
better without noise (ranging from 7.2% to 104.9% across participants), 79.8% better
in noise at -5 dB SNR (ranging from 7.0% to 101.0%) and 80.8% better in noise at -7.5
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dB SNR (ranging from 7.1% to 91.0%). Pitch discrimination between haptic alone and
audio-haptic stimulation showed no significant difference (T = 35, p = .791, d = 0.05)

5.4 Discussion

The results show that use of the device improved pitch discrimination performance con-
siderably for simulated cochlear implant users. Without noise, participants achieved
median F0 discrimination thresholds of 1.4% without noise. This is markedly less than
the semi-tone minimum target that was expected when designing the device. Results
showed that even the worst performers achieved discrimination thresholds less than
the this target, achieving similar pitch discrimination performance to that of the best
performing cochlear implant users (Drennan et al., 2015; Kang et al., 2009). For the
audio haptic and haptic alone conditions, the highest performing participant were able
to discriminate differences of as little as 0.8%. This is comparable to normal hear-
ing listeners assessed with similar stimulus (however pitch discrimination threshold are
highly sensitive to the precise properties of the stimulus (Kaernbach and Bering, 2001).
The reported improvements in pitch discrimination suggest that the device could be
used to provide segmental and suprasegmental, as well a prosodic, cues, which cochlear
implant users currently have limited access to. Through provision of these additional
important features of speech, this method could aid speech-in-noise performance for
cochlear-implant users.

The notable noise robustness of the method further suggests that this type of pitch
mapping may be viable for real-world applications. The lack of an effect of noise for the
audio-haptic condition, and the low median thresholds for the haptic alone conditions
(rising from 1.4% without noise to only 5.0% at -7.5 dB SNR) highlight the effectiveness
of the signal processing applied to handle background noise. The performance of the
proposed strategy is particularly notable given that traditional real-time pitch extraction
approaches are typically susceptible to background noise (Jouvet and Laprie, 2017).
Results also suggest that this approach is usable in far less favourable conditions than
a cochlear implant would be usable in, as at -7.5 dB SNR cochlear-implant users are
unable to perform pitch discrimination tasks (Kreft et al., 2013) or speech recognition
tasks (Wilson, 2015; Fletcher et al., 2019; Huang et al., 2017). However, it should be
noted that this approach has only been assessed in inharmonic background noise. This
suggests the approach would be robust to real-world noises such as wind or rain, but the
effects of noise with competing harmonic elements such as competing speakers should
also be evaluated.

Additionally, the underlying mechanisms of the observed sub-semitone performance is
not currently clear. Figures 5.4 and 5.5 show that at increasing SNRs the pitch estimates
fluctuate around the true frequency channel. Participants could therefore be comparing
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distributions of activated shakers in order to discriminate the stimuli. It is thought that
a similar process contributes to signal detection in the auditory system (Verhey et al.,
2007; McDermott et al., 2013).

The absence of a degradation in performance between the audio-haptic and the haptic-
alone conditions suggests that the substantially poorer and more distorted pitch cues
provided by the audio did not distract the participants. There was no further im-
provements seen in the audio haptic condition than the haptic alone condition. This is
expected given the inferior cues provided by the audio, as illustrated in the poorer perfor-
mance of participants in the audio-alone condition. As described in Section 2.1.1.5, the
principal of inverse effectiveness states that the highest levels of multisensory integration
occur when individual modalities provide low-quality information — a requirement that
has not been met here.

Their are also a number of limitations to this study that should be considered. Most
notably that this study did not asses the benefit of providing pitch cues via haptics for
speech-in-noise performance. However, previous findings (such as Huang et al. (2017)
and Fletcher et al. (2018), detailed in Section 2.4) suggest that providing pitch and
spectral based cues can result in considerable improvements to cochlear-implant user’s
speech-in-noise performance. Further work in this area is also detailed in Chapter 6.

A further consideration is that the results presented do not demonstrate an improvement
in auditory pitch perception, but show that it is possible to provide detailed pitch cues
that can be detected via haptic stimulation on the forearm. Further work is required to
determine the degree to which integration with auditory stimulus occurs for the type of
tactile pitch cues described in this chapter, and the degree to which better integration
may improve performance.

Limits were also placed on the stimulus, as this was restricted to a single reference
F0 of around 300 Hz (roved by ±5%). Section 5.1.2 details the analysis of outputs
for different reference F0s, suggesting that the method was robust to change in F0s and
therefore that results would likely be generalisable to a range of F0s. A further limitation
is that this study was performed on normal-hearing participants, who listened using a
cochlear implant simulation. Whilst every effort was made to match the performance of
the cochlear implant simulation accurately (See Section 5.1.5), perception of stimulus is
likely to vary between cohorts. Further work is needed to understand the effects of this
stimulation in actual cochlear-implant users.

Finally, a lack of training may also limit the benefits presented. Previous studies have
shown that training can improve performance for auditory frequency discrimination
tasks, when two hour of training is given per day (Moore, 1973). In addition haptic
enhancement of speech-in-noise performance has also been shown to benefit from training
regimes (Fletcher et al., 2019; Fletcher et al., 2018). Therefore the current results may
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underestimate the absolute limits of pitch perception using this method and further
work is needed to determine the potential benefits of training on these results.

Further work is needed to adapt the presented methodology in the development of a real-
world device for improving speech-in-noise performance. It has been argued that the two-
point discrimination thresholds (used to select the 3 cm spacing between motors) may
overestimate the minimum spacing for separable vibration sources (Bach-y-Rita, 2004).
Future designs may allow for closer spacing of motors, which could allow for a more
compact device that does not require use of the full forearm. In addition, the current
signal processing strategy provides only frequency cues, modulated by the broadband
envelope. By combining these with transmission of other cues such as narrowband
envelopes (as demonstrated to be effective by e.g. Fletcher et al. (2018)) may offer
additional speech-in-noise benefits to that found by Fletcher et al.

The results of this study have demonstrated the efficacy of the device presented to pro-
vide fine-grained pitch information that would otherwise not be accessible via a cochlear
implant. These results have been shown to be robust to high levels of non-harmonic back-
ground noise, representative of many real-world competing noises. Stimulation was pro-
vided on a site feasible for real-world implementation of this style of device. The results
presented suggest that this type of device could be used to provide a non-invasive and
inexpensive means to improve speech-in-noise performance for cochlear-implant users.

5.5 Contributions

The data used in this study was originally collected by Nour Thini in completion of
her MSc in Audiology at The University of Southampton. All device development,
experiment design, stimulus processing and data analysis were carried out by the au-
thor Samuel Perry and supervisor Mark Fletcher. Statistical analysis was performed
independently of the original analysis for the MSc. This chapter was published in the
peer-reviewed article Fletcher et al., 2020c.
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Chapter 6

Improvement of speech-in-noise
performance for cochlear-implant users
using electro-haptic stimulation

Section 2.3 highlighted the limitations of cochlear implants to effectively transmit intel-
ligible speech in even small levels of background noise. This section also suggested that
the use of haptic-based interventions may provide additional benefit to cochlear implant
users, with previous studies showing considerable benefit of applying haptic stimula-
tion for clinical scores of speech-in-noise performance. In particular, studies have shown
improvements of 13.9% words correct scores in colocated noise using a vocoder based
approach (Fletcher et al., 2019), 2.2 dB SNR improvement for co-located noise using an
F0 extraction approach (Huang et al., 2017) or 2.8 dB SNR improvement for spatially-
separated noise (Fletcher et al., 2020b). However, previous studies have been limited in
their implementations. In studies such as those by Fletcher et al. (2020b) and Fletcher
et al. (2019), the devices used to deliver the haptic feedback were lab-based devices
that are unsuitable for use in the real-world. The study by Huang et al. (2017) used
haptic-aids that were mounted on the fingertip (limiting their potential for real-world
application, due to the cumbersome properties of finger-mounted devices). In addition
the signal processing strategy only provided F0 cues, removing important cues for speech
intelligibility such as information on the spectral shape of the speech (including higher
formants and the broader spectral envelope morphology) (Hillenbrand et al., 2006).

This Chapter aims to build on the results presented in previous studies by developing
and assessing a new device and accompanying signal processing strategy for the deliv-
ery of haptic stimulation. The device is designed to address a number of the outlined
flaws in previous methodologies, to provide a readily translatable method for improving
cochlear implant user’s speech-in-noise performance. Sections 6.1.1 to 6.1.3 outline the
development of the mosaicOne_C device and signal processing strategies designed to
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improve speech in noise performance. Sections 6.1.4 to 6.1.7 outline an experiment to
assess the benefits of the device for speech-in-noise performance in simulated cochlear
implant users (see 5.1.5 for implementation of the cochlear implant simulator). In addi-
tion the proposed modifications to the signal processing strategy are evaluated against
an adaptation of the traditional vocoding method presented by Fletcher et al. (2018).
This study aims to answer the following research questions:

1. Does providing haptic stimulation using frequency-focused vocoding improve speech-
in-noise performance more than the traditional approach?

2. Does extensive training increase the benefit of haptic enhancement for either the
original vocoder or frequency focused approach?

The results of this study are detailed in Sections 6.2 and 6.3. The potential for the
proposed device and signal processing strategy and current limitations of the method as
an intervention for cochlear implant users are outlined in Section 6.4.

6.1 Methods

6.1.1 Tactile stimulation device: The mosaicOne_C

A 4 motor haptic stimulation device (the mosaicOne_C, illustrated in Figure 6.1) was
developed to produce precise haptic stimulation to participants using the signal process-
ing strategies detailed in Sections 6.1.2 and 6.1.3.

Figure 6.1: Image of the custom made mosaicOne_C haptic device. The device houses
4 306–10H 7–mm haptic motors, spaced equally around the wrist.

The device consisted of 4 Precision Microdrives 306-10H 7-mm vibration motors, spaced
equally around the wrist. Each motor was connected to a Texas Instruments DRV2605L
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haptic driver, used to convert control voltages to current for driving the motors. The
DRV2605L was chosen for its flexibility. The driver is capable of automatic calibration
and motor control routines, which were set to maximise the performance of the haptic
motors. The driver was also suitable for rapid prototyping given the ability to simply
program the device using an Arduino via I2C. Table 6.1 details the parameters used to
initialise all haptic drivers.

Parameter Setting Notes

Input mode Analog input mode Allow for control of motors directly

using control voltages from a DC

coupled soundcard

Waveform playback mode Closed-loop unidirectional ERM mode Maximise driver performance using

0–1.8V range to drive motors,

applying overdrive and active

braking based on auto-calibration

results

Calibration time 1.0-1.2 seconds Maximum allowable by the device

Startup boost Enabled (default) Extra gain applied for transient

signals to improve response of

motors

Noise gate Disabled (0%) Remove signal distortion caused by

gating of low level voltages (noise

reduction applied in signal

processing)

Rated motor voltage 3.0V As per 305–10H datasheet

Maximum operating voltage 3.6V As per 305–10H datasheet

Drive time 4.8ms (208.33 Hz; default) Sample-rate for back-EMF

detection

Back-EMF gain 1.8× (default)

Brake factor 4× (default)

Brake stabiliser Enabled (default)

Table 6.1: DRV2605L haptic driver parameters

All haptic driver parameters were controlled using an Arduino Uno via I2C. An I2C
multiplexer (Texas Instruments TCA9548A) selected each driver sequentially, applying
parameters and running each auto-calibration routine in turn. Four control voltages
were generated using a DC-coupled MOTU 24Ao soundcard. Each control voltage drove
the analog input pin of one motor – channels were mapped from the lower left of the
wrist (channel 1), clockwise around the participant’s wrist, to the lower right (channel
4). The complete experiment setup, including audio stimulus hardware, is illustrated in
Figure 6.2
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MOTU 24Ao

Arduino UNO

Laptop

TCA9548A 1-to-8 

I2C multiplexer

TI DRV2605L

Haptic Driver

TI DRV2605L

Haptic Driver

TI DRV2605L

Haptic Driver
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Haptic Driver
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For experimenter For participant

Figure 6.2: Schematic illustration of the experiment setup. Auditory and tactile signal
processing is performed by the MOTU 24Ao. An arduino and I2C multiplexer are
connected for initialisation and calibration of haptic motor drivers. Etymotic ER-3As
provide auditory stimulus to participant and Sennheiser HD600s provide masking noise

for the experimenter.

6.1.2 Tactile signal-processing: Original vocoder.

Two signal processing strategies are proposed to convert audio to haptic stimulation.
The first is an adaption of a DSP strategy originally proposed by Fletcher et al. (2018).
Fletcher et al.’s vocoder strategy has been shown to effectively provide stimulation for
the improvment of speech-in-noise for cochlear implant users. However, the approach
uses a single contactor and seperates audio bands across carrier frequencies, as opposed
to across motors spatially. Previous Chapter 5 suggested that haptic stimulation could
deliver perceptual cues effectively using a spatial mapping. This allows for design of
mapping with a resolution limited primarily by the design space of the user’s wrist. Given
the limitations of inexpesive haptic motors (that cannot provide independent modulation
of frequencies, as described in Fletcher et al. (2018)), this may be a more suitable
alternative that could be applied in development of a real-world device. Therefore, this
approach has been adapted to provide a spatial mapping of the extracted sub-bands.
First, audio is downsampled to 16 kHz and split into 4 sub-bands using 4 512-point
rectangular FIR bandpass filters, equally spaced on the ERB scale, with a lower cutoff
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of 100 Hz and upper cutoff of 1 kHz. Envelopes for each band were then extracted
using a absolute Hilbert transform and a 512-point rectangular FIR lowpass filter, with
a cutoff frequency of 15 Hz, as set for the original vocoder. A multi-band dynamic-range
expander was also implemented as a simple noise reduction stage, adapting the approach
of Fletcher et al. (2018) to be implementable in real-time. The expander threshold was
set at -0.1 dB below the envelope’s average amplitude over the previous 500 ms. The
expansion ratio was set at 9.0, the attack was set at 4 ms and the release was set at
10 ms. No lookahead was used to maximise synchronisation between the haptics and
the audio. The resulting signals were output to each of the 4 motors. A schematic
illustration of the signal processing is provided in Figure 6.3.

Audio in
16 ch.

Filterbank

Hilbert

Transf.

Low-pass filter

15Hz

Expand

temporal

mod.

0.1-1KHz

Tactile

signal

out

16 ch.

4 ch.

Mixdown

4 ch.

Figure 6.3: Schematic illustration of the vocoder approach, adapted from Fletcher et al.
(2018), used for generating tactile stimulus from input audio in real-time.

6.1.3 Tactile signal-processing: Frequency-focused vocoder.

This signal processing strategy was developed as a further adaption of the vocoder
implementation detailed in Section 6.1.2. The original vocoder filterbank channels were
too broad to present find-grain pitch information for voiced speech. As pitch is such a
key feature of speech perception (see Chapter 2.1 for details), a vocoder that is able to
dynamically focus on the fundamental frequency of voiced speech may provide additional
benefits for speech-in-noise performance.

To create the haptic signal, first audio is downsampled to 16 kHz. The signal is then
processed by a filterbank, and separately in parallel by a real-time implementation of
the YIN fundamental frequency estimation algorithm. YIN is implemented following the
procedure detailed by de Cheveigne and Kawahara (2002). F0 and harmonicity estimates
were produced using a window size of 1024 samples, with a hop size of 256 samples. F0

values with a harmonicity less than 0.1 were removed (unvoiced or silent segments). A
running mean of the last 90 harmonic estimates is then calculated, producing a smoothed
F0 contour that is used to select the filterbank sub-bands. The center sub-band is
selected by taking the sub-band index i3 where SFlower(i3) ≤ F0 > SFupper(i3), defining
SFlower(i) as the lower cutoff frequencies of the filterbank and SFupper as the upper
cutoff frequencies at index i. Adjacent lower and upper bands were then selected as
i1 = i3 − 2, i2 = i3 − 1, i4 = i3 + 1, i5 = i3 + 2. As with the “original” vocoder, envelopes
for each band were then extracted using an absolute Hilbert transform and a 512-point
rectangular FIR lowpass filter, with a cutoff frequency of 15 Hz. A temporal expander
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is again implemented, using a threshold set at -0.1 dB below the envelope’s average
amplitude over the last 500 ms. The expansion ratio is set at 9.0, the attack is set at
4 ms and the release is set at 10 ms. No lookahead is used. A schematic illustration of
the signal processing approach is provided in Figure 6.4

Audio in
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Filterbank
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Pitch
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Channel
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Figure 6.4: Schematic illustration of the “frequency-focused” vocoder approach used
for generating tactile stimulus from input audio in real-time.

6.1.4 Participants.

6 normal-hearing participants (4 male and 2 female, aged between 20 and 35) were
recruited from student at the University of Southampton and acquaintances of the re-
searcher. Participants were screened to ensure they:

1. were native British English speakers

2. had touch perception threshold with normal limits (< 0.4ms−2 RMS at 31.5Hz,
and < 0.7ms2 RMS at 125Hz) at the fingertip

3. had PTA thresholds within normal limits (< 20dB HL for audiometric frequencies
from 250 Hz to 8 kHz), following (Insert BSA standard) specification

4. did not present with any contraindications, as assessed using otoscopy and a health
questionnaire

Participants that met these criteria were then familiarised with the CI simulator. 10
male speaker sentences from lists 13 and 14 of the IHR familiarisation corpus (detailed
in Section 6.1.5) were presented using the cochlear implant simulation, controlled by the
participant using a touchscreen interface. Sentences were displayed alongside the audio
files, as illustrated in Figure 6.5. Participants were asked to listen to each sentence, and
were able to repeat sentences as many times as they wished.
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Figure 6.5: The cochlear implant simulation familiarisation interface

Following the CI simulator familiarisation, participants were presented with up to 5 BKB
lists in quiet via the CI simulator. Participants that could not achieve 70% words correct
score after 5 lists were excluded from further testing. No participant was exclused as a
result of this criteria.

6.1.5 Stimuli.

This study used two separate speech corpora: Screening and test sessions used BKB
Male, Female and Institute for Hearing Research BKB familiarisation sentences (male
talker). This provided a total of 60 male and 33 female lists of sentences, 10 sentences
per list. The 2 lists that included sentences used for familiarisation were excluded for all
further testing. Training sessions used the ARU IEEE sentence lists, which comprises
of 72 lists of 10 sentences, spoken in a variety of British male and female accents. From
this corpus, the male Kent, male Avon, female Berkshire and female Middlesex lists
were selected to provide two accents for male and female training. Multiple talkers were
used to train participants across a variety of speech styles (with varying acoustic and
linguistic properties such as pitch, tone and inflection for example). Selection of lists
from each corpus is detailed in Section 6.1.7. All speech stimuli were presented via a
real-time implementation of the SPIRAL vocoder (detailed in Section5.1.5) at 60 dB
LAeq.

The SPIRAL cochlear implant simulator was used to simulate the speech-perception
of CI users. This vocoder aims to provide an accurate simulation of the effects of
current spread in the cochlear. SRTs for normal-hearing listeners using the SPIRAL
vocoder have been shown to better match those of CI users than for traditional vocoder
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approaches. The implementation used matches that used in previous chapters — details
on the implementation can be found in Section 5.1.5.

6.1.6 Apparatus.

The experiment was conducted in a quiet listening room. All auditory stimulus was
presented to the participant using Etymotics ER-2s, via a MOTU 24Ao soundcard.
Stimulus was calibrated using a B&K G4 Type 2250 sound level meter (Brüel & Kjær,
2021a), with a B&K 4157 occluded ear coupler (Brüel & Kjær, 2021b). Sound level cali-
bration was performed using a B&K Type 4231 sound calibrator (Brüel & Kjær, 2021c).
The experimenter was also presented masking noise via Sennheiser HD600 Headphones,
via the MOTU 24Ao in order to reduce the observer expectancy effect (as mentioned in
Chapter 5). Tactile detection thresholds were measured using HVLab diagnostic soft-
ware and a HVLabs tactile vibrometer. The vibrometer had a 6mm probe and a rigid
surround, following ISO specification for measurement of tactile thresholds (Interna-
tional Organization for Standardization, 2001). All other haptic stimulus was presented
using a mosaicOne_C haptic stimulation device (as described in Section 6.1.1) fitted to
the wrist of the participant’s dominant hand. The mosaicOn_C was calibrated at the
start of each session, calibrating each motor sequentially as detailed in Section 6.1.1.

6.1.7 Procedure.

A schematic illustration of the procedure is provided in Figure 6.6 and participant screen-
ing criteria is provided in Section 6.1.4. Participants that passed the screening and CI
simulator familiarisation sessions continued to subsequent CI simulator SRT measure-
ment, device calibration, condition familiarisation, testing and training sessions.

Figure 6.6: Schematic illustration (not to scale) of the experiment timeline.

mosaicOne_C fitted to participant and calibrated using procedure detailed in Sec-
tion 6.1.1. To account for variability in wrist sensitivity between participants, a short
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amplitude matching routine was performed at the start of session 1. Participants were
presented with a screen and instructions as illustrated in Figure 6.7.

Figure 6.7: Participant view of the motor calibration procedure. Interaction with the
interface was performed using a touchscreen.

During the calibration procedure participants were instructed that they would feel two
sequential vibrations when they pressed the “play” button. The task was to set the
slider so that both vibrations were the same intensity. Participants could repeat the
vibration sequence as much as they wished, but needed to adjust the slider and play the
stimulus at least once before submitting a response. On each play, a motor was ramped
to a comfortable level (determined during piloting) using a raised cosine ramp of 20 ms,
sustained for 560 ms and ramped off using a raised cosine ramp for 20 ms, giving a total
stimulus duration of 600 ms. A second motor then presented the same stimulus initially
3 dB higher than the comfortable level or lower than the first. Absolute intensity of both
stimuli were varied randomly with a uniform distribution by ±4dB on each playback
to avoid use of absolute intensity cues for completion of the task. Every combination
of motors was presented twice. Once with the first motor starting 3 dB higher, and
once with the first motor starting 3 dB lower. Presentation order was randomised across
participants. Presentations for each motor combination were then averaged to provide a
map of perceived relative amplitude differences between all motors. Offsets were applied
based on these differences to create perceptually uniform stimulation across motors for
the remainder of the experiment.

The experiment then had an initial session to familiarise participants with each of the
three conditions: Audio only, frequency focused vocoder and original vocoder. The
order of conditions were fully counterbalanced across participants. Participants were
told that there were two vibration conditions (labelled “Vibration 1” and “Vibration
2”) and one audio only condition. For the vibration conditions, the condition labels
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were alternated between participants to account for any biasing towards a particular
label. Additionally, the experimenter was blinded to the current condition throughout
the process to avoid any unintended biasing. Participants were presented with the same
10 IEEE sentences as for CI familiarisation. These sentences were excluded from any
future training sessions. Participants were allowed as many repetitions as requested,
continuing to the next condition at their request. No participant spent more than 5
minutes per condition.

On completion of condition familiarisation, participants proceeded to the CI SRT estima-
tion session. In this session participants were played sentences mixed with background
noise via the cochlear implant simulator and instructed to repeat what was said. A
single adaptive track was used with a 1 up, 1 down procedure. The track used a step
size of 5dB for the big reversal, 2.5dB for the medium reversals and 1dB for the small
reversals. There was a total of 1 big reversals, 2 medium reversals and 6 small reversals
used. Speech stimuli was set to a nominal level of 60 dB LAeq. In the first trial, noise
stimulus was presented at +20 dB SNR and was then adjusted based on the adaptive
track after each response. BKB Male lists 1–10 were used for speech stimulus. Piloting
indicated that this would be sufficient for a complete track and no participant exceeded
this number of lists. A multi-talker party noise recorded by the National Acoustic Labo-
ratories (Keidser et al., 2002) was used. The noise was recorded at a real-world party and
had been filtered to match the international long term average spech spectrum (Byrne
et al., 1994). The amplitude of the noise was varied based on the adaptive track. The
onset of the presented sentence was varied randomly by 200–400ms after the onset of
the noise stimulus. This was to ensure participants could not take advantage of timing
cues when completing a trial. On completion of the track, the SRT was calculated as the
average of the final 6 reversals. Instructions were provided verbally and additionally via
a screen which instructed participants when to listen and when to respond. No feedback
was provided to indicate correctness of the participant’s response for this session.

The testing/training section consisted of 2 test sessions and 6 training sessions, each
lasting around 45 minutes. A gap of no more than 72 hours was permitted between any
two sessions. In the pre- and post-training test sessions speech-in-noise performance was
measured using 6 BKB male and 6 BKB female lists per condition. List presentation
was counterbalanced, with either all female or all male lists presented to the participant
first. This was to avoid order effects across participants based on the speaker type. As
with previous sessions, participants were played sentences mixed with background noise
via the cochlear implant simulator and instructed to repeat what was said. However,
for testing NAL noise was set at a constant level for each session. Noise was presented
at an SNR equivalent to the participants 50% SRT. This performance matching per
participant aimed to avoid ceiling or floor effects in responses. Instructions were provided
verbally and additionally via a screen which instructed participants when to listen and
when to respond. No feedback was provided to the participants to indicate correctness
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of their response. Onset of sentence in noise was varied randomly by 200–400ms to
ensure participants could not use any timing cues. White noise was presented to the
experimented at a comfortable level of around 65 dBA during trial presentations, in order
to mask any auditory cues that may indicate the current condition. The participant’s
performance was measured as percent words correct.

For the 6 training sessions, participants were presented with IEEE sentence lists 1–72
at set noise levels. 36 lists were spoken by one of the two female speakers and the
other 36 by one of the two male speakers. In total, 20 female Berkshire, 16 female
Middlesex, 20 male Kent and 16 male Avon sentences were used. These lists were
divided between the 3 conditions, providing a group of 24 lists per condition. These
groups were created by selecting 4 lists from a single male speaker and an additional
four from a single female speaker at a time, sampling without replacement. Choice of
speaker within a gender was selected at random. As a result, an equal number of male
and female lists were presented per condition across all sessions. Each session used four
lists per condition. For each condition, the four lists were spoken by the same speaker
to maintain continuity of content. The order of speakers for each condition was also
randomised across sessions. NAL noise was set at a constant level for each session. It
was set to the participant’s SRT+5dB for sessions 1 and 2, to their SRT+2.5dB for
the second 2 sessions and to their SRT for the final 2 sessions, following the procedure
outlined in Fletcher et al. (2019). These levels were selected both to match performance
per participant and to gradually increase the difficulty of session, allowing participants
to habituate to each condition. As with training further stimulus presentation followed
that of the training sessions. Additionally participants were provided on screen feedback
after every response, indicating the correct sentence.

The experimental protocol detailed was approved by the University of Southampton
Faculty of Engineering and Physical Sciences Ethics Committee (ERGO ID: 53690.A1).
All research was performed in accordance with the relevant guidelines and regulations.

6.2 Statistics

Shapiro-wilks test confirmed normality of data for the overall (Audio only: W = 0.97, p =

0.07; Frequency-focused: W = 0.99, p = 0.45; Original vocoder: W = 0.98, p = 0.25),
female only (Audio only: W = 0.98, p = 0.68; Frequency-focused: W = 0.96, p = 0.30;
Original vocoder: W = 0.97, p = 0.42) and male only (Audio only: W = 0.96, p = 0.10;
Frequency-focused: W = 0.97, p = 0.22; Original vocoder: W = 0.98, p = 0.43) analyses.
Maulchy’s test indicated that sphericity had not been violated for any factor, therefore
no correction for this was applied. A 2-way repeated measures ANOVA was performed
with factors “Condition” (Audio only, Frequency focused and Original vocoder) and
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“Session” (before and after training) to determine if an effect was present between the
factors.

2 planned post-hoc 2-way repeated ANOVAs (with Bonferonni-Holm correction for mul-
tiple comparisons) were also conducted to explore the effect of Condition and Session for
speaker genders separately. Mauchly’s test indicated that the assumption of sphericity
had been violated for the female speaker only condition factor (χ2(2) = 9.11, p = 0.01),
so degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity
for this factor. t-tests were then performed for the female speaker only data, correcting
for multiple comparisons using Bonferonni-Holm correction. Further unplanned t-tests
were performed to explore the relationship between each condition on an individual level.
No correction for multiple comparisons was applied to these exploratory tests.

6.3 Results

Figure 6.8: Overall speech-in-noise performance for the audio only, frequency-focused
vocoder and original vocoder conditions. Bars represent the mean percent-correct across

all participants. Error bars show the standard error of the distributions.

Group-level speech-in-noise performance for the conditions (audio only, frequency-focused
vocoder, and original vocoder) and session type (pre- and post-training) are displayed
in Figure 6.8.

A 2-way repeated measures ANOVA was performed with factors “Condition” (Audio
only, Frequency focused and Original vocoder) and “Session” (before and after training).
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No significant effect was found for either condition (F(1, 5) = 2.56, p = 0.15, η2
p = 0.34)

or session (F(1, 5) = 4.80, p = 0.08, η2
p = 0.49) and no interaction was found between

the two (F(1, 5) = 3.46, p = 0.07, η2
p = 0.41). For the audio only condition, the aver-

age performance was 47.87% before training (between 26.67% and 68.10%, SE=6.14)
and 54.54% after training (between 38.10% and 78.92%, SE=6.56). For the frequency
vocoded haptics condition, average performance was 52.83% before training (between
24.76% and 67.14%, SE=6.35) and 68.20% after training (between 53.81% and 80.95%,
SE=4.30). For the original vocoder haptics condition, average performance was 57.32%
before training (between 34.99% and 64.76%, SE=4.67) and 64.04% after training (be-
tween 52.50% and 84.76%, SE=5.24).

Figure 6.9: Female speaker stimulus only speech-in-noise performance for the audio
only, frequency-focused vocoder and original vocoder conditions. Bars represent the
mean percent-correct across all participants. Error bars show the standard error of the

mean.

Two planned post-hoc 2-way repeated ANOVAs were conducted to explore the effect
of Condition and Session for speaker genders separately. After correction for multiple
comparisons, a significant effect of condition type was found for the female speaker
(F(1, 5) = 8.40, p = 0.03, η2

p = 0.63). Results are illustrated in Figure 6.9. For
the audio only condition, the average performance was 45.82% before training (be-
tween 22.22% and 72.69%, SE=7.48) and 57.54% after training (between 41.11% and
80.29%, SE=6.08). For the frequency vocoded haptics condition, average performance
was 54.52% before training (between 30.00% and 79.25%, SE=8.02) and 76.16% after
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training (between 62.65% and 91.11%, SE=3.73). For the original vocoder haptics con-
dition, average performance was 62.82% before training (between 41.65% and 82.22%,
SE=6.79) and 69.38% after training (between 42.22% and 86.67%, SE=6.39).

Figure 6.10: Male speaker stimulus only speech-in-noise performance for the audio only,
frequency-focused vocoder and original vocoder conditions. Bars represent the mean
percent-correct across all participants. Error bars show the standard error of the mean.

Post-hoc t-tests were then performed for this data. Before training, the original vocoder
performed significantly better than the audio alone condition (T = −3.75, p = 0.03, d =

5.00). No significant effect was found between the audio only and frequency focused
condition (T = −1.0, p = 0.36, d = 5.00), or the frequency focused and original vocoder
condition (T = −1.89, p = 0.24, d = 5.00). After training the frequency-focused vocoder
performed significantly better than the audio only condition (T = −4.03, p = 0.03, d =

5.00). No significant difference was found between the audio only and original vocoder
condition (T = −1.6, p = 0.34, d = 5.00), or the frequency focused and original vocoder
condition (T = 1.1, p = 0.34, d = 5.00). No effect was found for session type (F(1, 5) =
2.6, p = 0.17, η2

p = 1.0) or interaction (F(1, 5) = 1.3, p = 0.31, η2
p = 0.8). No further

post-hoc tests carried out for these factors. Results for the male speaker data are
presented in Figure 6.10

For the male speaker data no effect was found for session type (F(1, 5) = 4.9, p =

0.08, η2
p = 1.0), condition type (F(1, 5) = 0.53, p = 0.57, η2

p = 0.81) or interaction
between the two (F(1, 5) = 1.9, p = 0.21, η2

p = 0.92). Again, no further post-hoc tests
were performed for these factors.
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Figure 6.11: Overall individual speech-in-noise performance for the audio only,
frequency-focused vocoder and original vocoder conditions. Bars represent the mean
percent-correct across all participants. Error bars show the standard error of the mean.

Figure 6.12: Male speaker stimulus only individual speech-in-noise performance for the
audio only, frequency-focused vocoder and original vocoder conditions. Bars represent
the mean percent-correct across all participants. Error bars show the standard error of

the distributions.
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Figure 6.13: Female speaker stimulus only individual speech-in-noise performance for
the audio only, frequency-focused vocoder and original vocoder conditions. Bars rep-
resent the mean percent-correct across all participants. Error bars show the standard

error of the distributions.

Further unplanned t-tests were performed to explore the relationship between each con-
dition for each participant. No correction for multiple comparisons was applied to
these exploratory tests. Significant differences are illustrated per participant in Fig-
ures 6.11, 6.12 and 6.13

Finally, unplanned linear regression analysis was applied to explore the relationship be-
tween training session number and participant performance, for each condition. These
analyses were first performed using all training and test data. Results are presented for
group-level analysis in Figure 6.14. Further analysis of individual participant perfor-
mance is then illustrated in Figure 6.15. This analysis was also performed using only
male or female training/test data, to explore the effect of speaker gender on perfor-
mance. These analyses are illustrated at the group-level in Figures 6.16 and 6.18, and
for individual participants in Figures 6.17 and 6.19.
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Figure 6.14: Group-level change in performance across training sessions for each condi-
tion, using both male and female lists. Points represent all training/test lists completed
for all participants. Session T1 represents the initial test session and T2 represents the
final test session. All other sessions represent training sessions. The solid line represents
an ordinary least-squares regression fitted to the training data. The error bars of this

line represent the standard error of the regression line.

Condition R2 F(1, 34) p Model (β0, β1)

Audio only 0.02 0.69 0.41 42.694,−1.060

Frequency focused 0.00 0.08 0.78 39.061,+0.288

Original vocoder 0.04 1.29 0.26 22.578,+1.355

Table 6.2: Regression statistics for Figure 6.14
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Figure 6.15: Individual participant change in performance across training sessions for
each condition, using both male and female lists. Points represent all training/test
lists completed for all participants. Session T1 represents the initial test session and
T2 represents the final test session. All other sessions represent training sessions. The
solid line represents an ordinary least-squares regression fitted to the training data.

The error bars of this line represent the standard error of the regression line.
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Participant Condition R2 F(1, 22) p Model (β0, β1)

P01 Audio only 0.01 0.19 0.67 31.433,+0.829

Frequency focused 0.02 0.35 0.56 37.500,+1.143

Original vocoder 0.00 0.10 0.75 26.500,+0.714

P02 Audio only 0.11 2.65 0.12 54.967,−3.657

Frequency focused 0.01 0.13 0.72 31.333,+0.571

Original vocoder 0.19 5.23 0.03 8.267,+4.900

P03 Audio only 0.23 6.69 0.02 58.100,−5.600

Frequency focused 0.06 1.33 0.26 34.433,+2.757

Original vocoder 0.07 1.66 0.21 15.933,+2.257

P04 Audio only 0.17 4.46 0.05 25.000,+4.000

Frequency focused 0.00 0.04 0.84 42.100,−0.386

Original vocoder 0.00 0.00 0.99 27.267,−0.029

P05 Audio only 0.01 0.27 0.61 39.767,−0.886

Frequency focused 0.06 1.43 0.24 53.367,−2.271

Original vocoder 0.01 0.22 0.64 29.433,−0.600

P06 Audio only 0.01 0.22 0.65 46.900,−1.043

Frequency focused 0.00 0.00 0.95 35.633,−0.086

Original vocoder 0.01 0.14 0.71 28.067,+0.886

Table 6.3: Regression statistics for Figure 6.15
Models reported in the form: yPerformance = β0 + β1xSession number.

Figure 6.16: Group-level change in performance across training sessions for each con-
dition, using female lists only. Points represent all training/test lists completed for all
participants. Session T1 represents the initial test session and T2 represents the final
test session. All other sessions represent training sessions. The solid line represents an
ordinary least-squares regression fitted to the training data. The error bars of this line

represent the standard error of the regression line.
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Condition R2 F(1, 16) p Model (β0, β1)

Audio only 0.36 9.03 0.01 48.914,−2.367

Frequency focused 0.11 1.92 0.19 36.511,+1.742

Original vocoder 0.27 5.93 0.03 18.902,+2.581

Table 6.4: Regression statistics for Figure 6.16
Models reported in the form: yPerformance = β0 + β1xSession number.
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Figure 6.17: Individual participant change in performance across training sessions for
each condition, using both female lists only. Points represent all training/test lists
completed for all participants. Session T1 represents the initial test session and T2
represents the final test session. All other sessions represent training sessions. The
solid line represents an ordinary least-squares regression fitted to the training data.

The error bars of this line represent the standard error of the regression line.
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Participant Condition R2 F(1, 10) p Model (β0, β1)

P01 Audio only 0.21 2.64 0.14 41.974 − 2.447

Frequency focused 0.05 0.56 0.47 40.833 + 1.500

Original vocoder 0.21 2.61 0.14 −1.000 + 6.536

P02 Audio only 0.05 0.50 0.49 51.269 − 2.481

Frequency focused 0.00 0.04 0.84 32.643 + 0.464

Original vocoder 0.25 3.40 0.09 17.083 + 3.750

P03 Audio only 0.15 1.77 0.21 54.000 − 3.038

Frequency focused 0.40 6.71 0.03 21.286 + 9.643

Original vocoder 0.04 0.38 0.55 34.500 − 1.893

P04 Audio only 0.01 0.14 0.72 41.917 − 0.750

Frequency focused 0.00 0.02 0.89 36.071 + 0.536

Original vocoder 0.33 4.97 0.05 13.000 + 4.000

P05 Audio only 0.12 1.37 0.27 48.000 − 2.577

Frequency focused 0.00 0.03 0.86 52.895 − 0.289

Original vocoder 0.01 0.12 0.73 25.440 + 0.464

P06 Audio only 0.28 3.92 0.08 59.786 − 3.321

Frequency focused 0.17 2.02 0.19 25.286 + 3.893

Original vocoder 0.51 10.60 0.01 10.923 + 7.654

Table 6.5: Regression statistics for Figure 6.15
Models reported in the form: yPerformance = β0 + β1xSession number.

Figure 6.18: Group-level change in performance across training sessions for each con-
dition, using male lists only. Points represent all training/test lists completed for all
participants. Session T1 represents the initial test session and T2 represents the final
test session. All other sessions represent training sessions. The solid line represents an
ordinary least-squares regression fitted to the training data. The error bars of this line

represent the standard error of the regression line.
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Condition R2 F(1, 16) p Model (β0, β1)

Audio only 0.01 0.10 0.76 35.135,+0.889

Frequency focused 0.03 0.44 0.51 41.780,−1.038

Original vocoder 0.01 0.12 0.73 29.287,−0.847

Table 6.6: Regression statistics for Figure 6.16
Models reported in the form: yPerformance = β0 + β1xSession number.
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Figure 6.19: Individual participant change in performance across training sessions for
each condition, using both male lists only. Points represent all training/test lists com-
pleted for all participants. Session T1 represents the initial test session and T2 repre-
sents the final test session. All other sessions represent training sessions. The solid line
represents an ordinary least-squares regression fitted to the training data. The error

bars of this line represent the standard error of the regression line.
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Participant Condition R2 F(1, 10) p Model (β0, β1)

P01 Audio only 0.44 8.00 0.02 2.214 + 10.036

Frequency focused 0.01 0.09 0.78 39.167 − 1.000

Original vocoder 0.11 1.21 0.30 39.250 − 4.607

P02 Audio only 0.19 2.34 0.16 58.962 − 4.808

Frequency focused -0.00 -0.00 1.00 32.167 − 0.000

Original vocoder 0.65 18.37 0.00 −61.500 + 21.000

P03 Audio only 0.83 49.80 0.00 83.786 − 17.857

Frequency focused 0.03 0.31 0.59 32.250 + 2.058

Original vocoder 0.34 5.15 0.05 4.250 + 7.607

P04 Audio only 0.57 13.50 0.00 −0.667 + 9.750

Frequency focused 0.12 1.37 0.27 56.750 − 2.942

Original vocoder 0.20 2.53 0.14 40.385 − 4.115

P05 Audio only 0.01 0.12 0.73 33.071 + 1.286

Frequency focused 0.44 7.77 0.02 69.357 − 9.107

Original vocoder 0.45 8.16 0.02 64.833 − 9.250

P06 Audio only 0.13 1.45 0.26 12.250 + 9.250

Frequency focused 0.11 1.25 0.29 44.000 − 2.077

Original vocoder 0.45 8.03 0.02 77.429 − 10.714

Table 6.7: Regression statistics for Figure 6.15
Models reported in the form: yPerformance = β0 + β1xSession number.

6.4 Discussion

This study found that overall there was no statistically significant effect of either tactile
stimulation strategy, but that for specific participants there may be considerable benefits
of tactile stimulation. A small but statistically significant effect of frequency-focused
vocoder was observed for the female speaker only stimulus after training, compared to
audio only condition. This suggests that with training the frequency focused algorithm
may have the potential to improve speech-in-noise performance for cochlear implant
users, but that this benefit may be dependent on the acoustic properties of the attended
speaker. A small but statistically significant effect was also found for the original vocoder
in comparison to the audio only condition. This was only found before training on the
female only speaker stimulus. This may suggest that the training regime used for this
experiment was not suitable for the original vocoder strategy. No statistically significant
difference was found between the signal-processing strategies, which suggests that there
was no demonstrable group-level advantage of the new frequency-vocoder approach over
the original vocoder approach.

On an individual level, there were considerable improvements for specific users (al-
though the lack of correction for multiple comparisons should be considered with these
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exploratory analyses). Improvements of up to 32.38% better than audio only were found
for the original vocoder and up to 24.04% for the Frequency-focused vocoder. These re-
sults suggest that although the proposed haptic stimulation method may not provide
the expected performance for all users, certain user may see considerable performance
benefits from this technique.

For the test data, the lack of a group-level effect in this work contrast previous findings,
where statistically significant effects have been found for similar signal processing strate-
gies to the original vocoder condition. For example, Fletcher et al. (2018) observes an
improvement of 10.8% words correct scores on average (with a standard error of ±2.2%)
for a similar cohort of users. In fact, an almost identical average performance benefit
was found for the original vocoder condition (9.5%) but with a higher standard error of
±6.5%. This high-variance in results suggests that the lack of participants (as a direct
result of the COVID–19 pandemic, see the Statement on the impact of COVID-19) may
have precluded the observation of a robust effect in this study, as was observed for the
method presented by Fletcher et al. (2018). Similar observations may also be made when
comparing results to those of a study in real cochlear implant users by Fletcher et al.
(2019), which found improvements of around 8.3% (SE = 2.5%). On an individual level
the extrema for the current study also suggested promise for the proposed approach.
For the original vocoder, the best participant scored 32.38% better than the audio only
condition (highest scores for the previous studies were 17.8% and 21.8% respectively),
with no score significantly worse than the audio alone condition. The Frequency focused
strategy also performed better than the audio alone condition, scoring 24.04% for the
best user. However, the worst user scored 10.48% lower than the audio only condition
suggesting that this vibration may have distracted participants from the task.

In addition to the test data, analysis was performed for the training session data. Anal-
ysis of performance in the training sessions suggested that participants did not improve
over time with the proposed training regime. For each of the conditions, no statistically
significant positive trends in performance were observed across sessions. However, when
analysing the female trials alone, a significant positive increase of 2.58% in performance
per-session was observed for the original vocoder condition. This suggests that although
overall the training sessions were largely ineffective, some users may have benefited from
training on female talkers, when using the original vocoder. Again, a lack of correction
for multiple comparisons should be considered for these exploratory analyses.

For the analysis of individual training performance, similar results were observed to
group-level analysis. A significant improvement of 4.9% per-session was found for par-
ticipant 2 in the original vocoder condition. A negative effect of -5.6% was also found
for participant 3. However, for the majority of participants no significant trend was
observed, and the significant results would likely not survive correction for multiple
comparisons. This suggested that, overall, the majority of participants did not benefit
from the training regime.
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In the female- and male-only analysis of individual the effects of training was mixed.
Some participants showed improvements in performance for certain conditions, but ben-
efits were not consistent across either participants or conditions. In certain cases, neg-
ative effects were also observed, suggesting that participants actually got worse over
time. For the female-only analysis, participant 5 showed significant improvements of
7.6% per-session for the original vocoder, and participant 3 showed improvements of
9.6% improvement for the frequency focused condition. Again, the majority of par-
ticipants did not show significant trends across sessions. However, for the Male only
analysis both significant positive and negative effects were observed (without correction
for multiple comparisons). Whilst significant benefits of up to 21% per-session were
shown for 3 participants in at least one condition, the other 3 participants showed a
significant negative effect of training up to 17.9% across sessions. It should be noted
that for the male and female only analysis, the lack of training data for each gender on
every session may alter the per-session change in performance values. Therefore, the
length of time between sessions should also be considered when interpreting these values
(illustrated in Figures 6.17 and 6.19).

There are a number of limitations in this study that should be considered. As men-
tioned, one of the most detrimental limitations of the study was the lack of power in
statistical analysis due to the low number of participants. This limited the applicability
of any findings to the development of a haptics intervention — Further assessment of
these techniques would be needed to more conclusively understand the effects of a spatial
mapping of audio to tactile stimulation for speech-in-noise performance improvement.
It should also be noted that the frequency focused vocoder’s adaptive filtering does not
provide the same broader spectral features that the original vocoder provides. This de-
sign aimed to provide the resolution necessary to portray the sub-semitone pitch changes
that encode segmental (Oxenham, 2008; David et al., 2017) and suprasegmental (Banse
and Scherer, 1996; Murray and Arnott, 1993; Most and Peled, 2007; Peng et al., 2008;
Meister et al., 2009; Xin Luo et al., 2007) pitch cues that are lacking in the original
vocoder approach. As the broader speech envelope is thought to provide key cues for
speech intelligibility (Shannon et al., 1995; Drullman et al., 1994) this may be a reason
for the lack of an increased effect over the original vocoder strategy. Future work should
consider the balance between the representation of fine-grain pitch cues and broader
spectral envelope cues in haptic signal processing strategies. In addition only simulated
cochlear implant users were tested, with an average age considerably younger than that
of an average cochlear implant user. Previous research in this area has shown compara-
ble results between cochlear implant users and equivalent normal-hearing listeners using
a cochlear implant simulator (Fletcher et al., 2018; Fletcher et al., 2019) but further
investigation is needed to confirm this.

There were also significant limitations of the training regime. For example, the use
of both male and female materials with multiple accents in both training and testing
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may have had detrimental effects on participant performance. Analysis of the training
data suggested little benefit of this regime and informal reports from some participants
suggested that they struggled when switching between listeners, as this required them
to adjust to the change in haptic stimulation and in the cochlear implant simulator
(possibly as a result of changes to the acoustic and linguistic properties of the speaker).
More focused training on individual speakers and a reduction in the number of speaker
types may benefit future studies, given the limited amount of time available for training
participants. Future studies may look to address this through development of real-
world usable devices, allowing users to train more intensively with the device, in more
ecologically valid scenarios and for longer periods of time. Finally, the effect of train-
ing performance on testing performance was not evaluated in this study. Future work
should look to quantify the relationship between the training regime and the outcome
performance. This would provide further insight into the generalisation of the training
material to unseen speakers and noisy environments.

There are also a number of areas that future work could explore to maximise the ben-
efits of haptic stimulation for the improvement of speech-in-noise performance. This
study has suggested that results may vary considerably between users, with some seeing
greater benefits than other. Further work is needed to determine the users that will see
the greatest benefits from haptic stimulation, as well as the issues that prevent other
participants from seeing significant benefits. This study also aimed to present a device
that could be readily translatable to a real world intervention. However, further devel-
opment is needed to achieve this - For example, the use of ERM motors may not have
optimally presented the amplitude envelopes to the participant, given the co-modulation
of frequency and amplitude. Whilst these motors have been shown to be effective for
presenting simplistic pitch cues (Fletcher et al., 2020c), this complex interaction of both
amplitude and frequency may not provide the most intuitive spatial mapping of am-
plitude envelopes across the skin. Other motor types such as LRAs or Piezo actuators
should be evaluated to determine the optimal presentation of the speech cues. Other
areas that should be explored in greater detail include the power consumption of mo-
tors, use of wireless technologies to reliably connect the device to cochlear implant with
minimum latency, and the miniaturisation of electronics and signal-processing to fit on
a wrist worn device. Advances in these areas are critical to moving the technology to-
wards a more feasible real-world intervention for cochlear implant users. This study
also adapted the frequency-based mapping of previous vocoder-based studies to a spa-
tial mapping across the wrist. This type of mapping may also show further benefit for
similar areas such as sound localisation (Fletcher et al., 2020a; Fletcher et al., 2021a;
Fletcher et al., 2021b) and speech in spatially separated noise (Fletcher et al., 2020b).

This study has presented a new method for improving speech-in-noise performance for
cochlear implant users. Results showed minor benefits for select stimulus, but not sig-
nificant overall effect. However, for individual participants considerable performance
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improvements were observed, suggesting that this method may be viable for provid-
ing considerable benefit to speech-in-noise performance for some cochlear implant users.
Suggestions have been made to address the issues that may potentially have limited the
performance increases observed in this study.

6.5 Contributions

All sections of this chapter were designed and implemented by the author Samuel Perry
and supervisor Mark Fletcher.
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Chapter 7

Discussion

The research presented aimed to address issues with speech-in-noise performance for the
hearing impaired by focusing on two challenges. The first, is how to effectively assess
and diagnose a speech-in-noise performance issue. The second, is how to best restore
performance, typically achieved by fitting an intervention.

Chapters 3 and 4 focused on assessment of speech-in-noise performance, investigating
the optimisation of the TRF that may be used for both clinical assessment and in-lab
analysis of speech-in-noise performance. Previous literature has suggested that the pro-
posed TRF method may be adapted to form an effective technique for assessment of
speech-in-noise performance (Vanthornhout et al., 2018; Decruy et al., 2018; Lesenfants,
2019). However, these studies have only demonstrated limited predictive performance
and required large datasets of evoked responses. Chapters 3 and 4 investigated the bene-
fits of modifications to both the TRF regression model type, and to the selection of input
audio features to be reconstructed by the model. Any benefits of these optimisations
could then be directly applied to the methods for analysing speech-in-noise performance
described in previous literature.

In Chapter 3, a minor benefit of using an ElasticNet model was found over current mod-
els for reconstructing TRFs. This suggested that additional model regularisation could
provide modest performance improvements, and that overfitting was not a primary issue
in model training. However, the ElasticNet model offered additional benefits, such as
implicit feature selection. This may be of benefit for understanding the contributions
of electrodes/features to the trained model and for selection of the optimal subset of
electrodes. These enhancements may be used in the translation of the TRF to a clinical
method. Chapter 4 presented optimisations of the input features, reconstructed using
the elastic-net TRF model from Chapter 3. In this chapter the loudness model was re-
constructed with significantly higher accuracy than the traditional amplitude envelope
model used in previous literature. This suggested that a loudness model based feature
was better represented in cortical evoked potentials. These results highlighted this type
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of perceptually motivated feature as a suitable alternative for use in evaluation methods
such as those presented by Vanthornhout et al. (2018). Combined, Chapters 3 and 4
suggest that modifications to the TRF method can improve its stimulus reconstruction
performance. These modifications are readily adaptable to proposed methods for as-
sessing speech-in-noise performance in the lab. Additional work is needed to provide
a suitable means for assessing speech-in-noise performance in clinic. This is discussed
further in Sections 7.1 and 7.3.

Chapters 3 and 4 focused on development of a new multi-sensory intervention to improve
speech-in-noise performance for cochlear implant users. Through use of a new haptic
wearable device, Chapter 5 demonstrated considerable benefit to pitch discrimination
for normal-hearing participants using a cochlear implant simulator. This finding sug-
gests that pitch cues (which are important features of speech recognition in noise) can
be transmitted effectively with an appropriate audio-to-haptic signal processing strat-
egy and spatial array of haptic motors. Additionally, the robustness of the method to
noise suggested that the approach could be highly effective in situations which cochlear
implant users currently have great difficulty.

Chapter 6 modified the approach presented in Chapter 5 to assess the improvements
to speech-in-noise performance in normal-hearing participants using a cochlear implant
simulator. Results showed a small benefit of the proposed frequency-focused vocoder
tactile stimulation method for female speakers after training, but showed highly sig-
nificant benefits for some individuals. However, despite the magnitude of differences
between conditions following that of previous research (Fletcher et al., 2018; Fletcher
et al., 2019), a lack of statistical power may have resulted in no overall effect of the
haptic stimulation. In addition, results suggested that this method may be particularly
effective for certain users, and that further optimisations to both the signal-processing
strategy and training regime may be factors in the lack of a more robust effect.

These studies contribute to a growing literature of evidence, suggesting that haptics may
provide considerable benefit to speech-in-noise performance for cochlear implant users.
The significant improvements in pitch discrimination demonstrated in Chapter 5 provide
the groundwork for providing fundamental acoustic cues required for understanding
speech in noise.

Overall, the results of this thesis have contributed to the development of two methods
that have application in improving speech-in-noise performance for the hearing impaired.
These show promise both as independent methods, and also in combination, as is dis-
cussed in Section 7.3.
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7.1 Future development of the TRF method

The presented results demonstrate that features thought to be important for speech-
in-noise performance, such as perceptual correlates to the amplitude envelope, can be
reliably reconstructed using the TRF method. However, these results do not directly
assess the sensitivity of the measure to speech recognition in background noise. As a
result, the presented TRF analysis method can be thought of as between levels 2 (“Tech-
nology concept and/or application formulated”) and 3 (“Analytical and experimental
critical function and/or characteristic proof-of-concept”) of the Technology Readiness
Level (TRL) standard, as defined in ISO 16290:2013 (Space Systems. Definition of the
Technology Readiness Levels (TRLs) and Their Criteria of Assessment 2013). The work
in this thesis has supported the formulation of an application for the TRF method (TRL
2 — i.e. as an objective measure of speech-in-noise performance, and analysis method
for assessing multi-sensory integration) and has provided lab-based experimental results
that contribute to a growing literature, demonstrating the limits of the TRF method
(TRL 3). Whilst the performance requirements are broadly defined for the technology
(as outlined in Chapter 2). In order to develop a full proof-of-concept in-lab and clinical
speech-in-noise measure (TRL 3), further work is needed to assess the correlation of
this method with behavioural speech-in-noise measures. Future work should compare
the predictive performance of the proposed method to those presented by Vanthornhout
et al. (2018) and Lesenfants (2019). This would provide insight on the degradation of re-
construction performance with increasing noise levels, a crucial step in the development
of an objective measure of performance.

For further development of the method, particularly as a clinical measure, factors such
as the effect of attention, hearing impairment and age on the method’s performance
should also be assessed. The effect of attention has been investigated by Vanthornhout
et al. (2019). Results suggest that attention does affect the TRF for amplitude envelope
reconstruction but that without attention, reconstruction performance still correlates
well with the SNR of the stimulus. This suggests that the method may be implementable
for cohorts such as infants, who may not actively attend the stimulus.

The effect of age and hearing impairment on TRF amplitude envelope reconstruction are
measured by Decruy et al. (2018) and Decruy et al. (2020). An increase in reconstruction
performance is observed with increasing age and with increasing severity of hearing loss,
despite a decrease in intelligibility scores. This should be considered in particular for
methods such as those presented by Vanthornhout et al. (2018), where reconstruction
performance is expected to degrade with reduced speech-in-noise performance. Further
work is also needed to understand the underlying mechanisms that drive these increases
in reconstruction performance. The areas outlined would contribute to the proposed
method reaching TRL 3.
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For a more practical implementation of the measure (as required for TRLs 4–5 — “Com-
ponent and/or breadboard functional verification in laboratory environment”, “Compo-
nent and/or breadboard critical function verification in a relevant environment”), further
work is needed to reduce the number of electrodes used in testing (Montoya-Martínez
et al., 2021), and to determine the optimum stimulus type Verschueren et al. (2020) and
analysis frequency bands (Zuk et al., 2021; Synigal et al., 2020). This would be needed
to reduce test time in clinic and optimise measure’s sensitivity to speech-in-noise perfor-
mance. For reduction of test time in particular, model training on smaller datasets will
also be necessary to make the method viable in clinic. There is potential to use tech-
niques such as sequential testing to limit the test time (Chesnaye et al., 2019). When
building models with reduced quantities of data, regularisation such as that provided
by ElasticNet may offer additional performance improvements that were not shown in
this thesis.

Work will also be necessary when considering this method for use with cochlear implant
users. Predominantly the issue of the stimulus artefact will need to be managed to
avoid confounds in reconstruction performance. Artefact reduction methods such as
that presented by Somers et al. (2019) have shown promise in reducing these artefacts,
which may making this method viable for cochlear implant users. For cochlear implant
users there may also be the additional potential of recording EEG data directly from
cochlear implant electrodes, eliminating the need for external electrodes (Somers et al.,
2021)

TRLs 6–8 (“Model demonstrating the critical functions of the element in a relevant
environment”, “Model demonstrating the element performance for the operational envi-
ronment”, “Actual system completed and accepted for flight (“flight qualified”)”), work
will focus on validation of the method, and any accompanying prototype hardware in
real-world clinical environments. The proposed implementation would require valida-
tion on multiple clinical populations with a variety of hearing losses, ensuring accurate
estimations of speech-in-noise across all relevant cohorts. Practical issues, such as hard-
ware and software integration with standard clinical setups will be necessary. For this,
an all-in-one device, including electrodes and a synchronised audio and EEG recording
module may need to be developed. Design of the device will also be necessary, to provide
intuitive feedback to clinicians, given the limited time available in typical clinical envi-
ronments. An alternative research interface may also be required, to provide researchers
with the increased signal processing parameter control necessary for in-lab experiments.
Appropriate interpretable measurement values must also be produced by the device,
such that they can be easily translated into intervention fitting parameters. Measure-
ment data should be collated, within reasonable limits, to allow for assessment of the
method’s performance. This will allow for informed development of further method up-
dates and optimisations. Finally, the development and roll-out of the finalised software
and hardware package to relevant clinics and labs will signify completion of TRL 8.
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TRL 9 (“Actual system “flight proven” through successful mission operations”) will be
completed on acceptance of the method into standard clinical and research practices.

In addition to the presented method’s application as a measure of speech-in-noise perfor-
mance, it may be of use in areas such as development of a closed loop fitting system for
acoustic interventions or haptic interventions (discussed further in Section 7.3), where
the intervention dynamically optimises the intervention based on neural responses mea-
sured on-the-fly (Guger et al., 2021a; Guger et al., 2021b, p.53-64, p.95-104). It may
also be used for attentional decoding (Bednar and Lalor, 2020; Teoh and Lalor, 2019;
O’Sullivan et al., 2019) to steer gain control and noise reduction algorithms in hearing
aids (Aroudi and Doclo, 2020; Das et al., 2018; Geirnaert et al., 2020; Van Eyndhoven
et al., 2017). This technology could be further applied to cochlear implants and haptic
interventions. Finally, the method may also be adapted to explore the use of alternative
features, such as pitch (Teoh et al., 2019) to assess degradation of prosody recogni-
tion in noise. This may also be applicable analysing the neural underpinnings of music
perception in the hearing impaired (Zuk et al., 2021).

7.2 Future development of haptic interventions

As with previous Section 7.1, future development towards the realisation of a real-world
haptic intervention for hearing impaired listeners will be described in the context of the
TRL scale. Currently, this technology is between TRLs 3 and 4, as the research presented
in Chapters 5 and 6 have begun the process of developing early prototype devices, based
on previous lab-based conceptual research by Fletcher et al., 2018 and Huang et al., 2017.
In order to translate the results presented in these chapters to provide real world benefit,
it will first be necessary to verify the presented results for actual cochlear implant users.
Beyond this, focus should be placed on development of a suitable wrist-worn haptics
device and adaption of the signal processing strategies to function on its embedded
hardware. Progress has been made in this area throughout this thesis. The development
of real-time signal processing strategies presented could be adapted to run on low-power
embedded hardware, progressing from the offline approaches taken by Fletcher et al.
(2018) and Fletcher et al. (2019). The presented haptic devices could also be more
readily translated to a real-world intervention than the large shakers used by Fletcher et
al. (2018) or finger mounted devices used by Huang et al. (2017). Given the limitations
of the devices presented in Chapters 5 and 6, such as the size of the forearm mounted
device in Chapter 5 and the lack of clear benefits shown for the device presented in 6,
significant modifications to the device design will be necessary. To address the size and
power requirements of the ERM motors used in this Thesis, LRA or Piezo actuators may
be more appropriate for future designs, as discussed in Section 6.4. The use of ERMs
is also limited by the inherently linked frequency and amplitude of the motors (Fletcher
and Verschuur, 2021). Use of alternate motors without this limitation may yield better
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performance outcomes than those reported in Chapter 6. Any modifications to current
device designs will also need to be validated in relevant clinical populations.

Validation of the prototype device will mark the transition of the technology to TRL 4.
Further development of the device, in TRLs 5–7, will require consideration for practical
technical challenges, such as implementation of effective audio streaming from behind
the ear devices, more stringent power requirements and limited signal processing power
on the device. Many of these issues may be solved with existing hardware (such as
Bluetooth LE for audio streaming). For the power requirements a target of at least 14
hours battery life is recommended (Fletcher, 2021a), allowing users to charge their device
overnight. Technologies such as lithium-ion batteries and low-power haptic motors such
as piezo electric motors or linear resonating actuators may also allow for greater longevity
in this area.

As discussed in previous Chapters 5 and 6, adapting signal processing methods already
implemented for cochlear implants and hearing aids (such as automatic gain control,
mapping strategies and noise reduction algorithms) may provide additional performance
benefits without the need for considerable adaption to work with haptics devices. These
methods will also already be optimised for small hardware form-factors, requiring less
tuning to optimise power requirements. Further work may also explore the possibility
of tuning the signal processing strategy based on that of the user’s pre-existing hearing
assistive device. Providing sound information that is poorly transmitted via this de-
vice on a case-by-case basis may offer further benefits to speech in noise performance
(see Fletcher and Verschuur (2021) for an in-depth review of this area).

In TRLs 8–9, further practical areas should be considered for maximum uptake of haptic
interventions, including device aesthetics, compactness, discreetness, and comfort. As
discussed in Section 2.4, the advent of compact and lightweight haptics drivers and
motors, as well as innovation in chip design (including large reductions in size and
future potential for flexible microprocessors (Biggs et al., 2021)) allow for more attractive
modern designs than were possible during the development of the original haptic aids
of the 1980s. Future work may include the development of a compact wrist-worn device
such as that illustrated in Figure 7.1
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Figure 7.1: Render of a prototype haptic device design. The design includes 4 haptic
motors, encased in a flexible, 3D printed wrist strap.

When developing a real-world haptics device, the ease of use for both patient and clin-
ician will be of paramount importance to ensure maximum uptake. This will require
device fitting, which will need to be both fast and intuitive for clinicians. Technologies
such as automatic motor calibration were used in Chapter 6 to account for physical
differences between motors (such as motor pressure and variations/tolerances in motor
manufacturing). However, this calibration procedure does not fully account for physio-
logical and perceptual differences between participants and stimulation sites. Chapter 6
also presented a method for tuning a device based on the participant’s ability to dis-
criminate between motors. This could also be extended to use additional information,
such as absolute thresholds to further maximise the dynamic range, similar to the use
of PTA for other hearing interventions. Further investigation is needed to ascertain
the benefits using measures such as the participant’s tactile detection and discomfort
thresholds for this purpose. For this work critical evaluation of the limits of current
standards to measures tactile thresholds may also be necessary, as highlighted by Perez
et al. (2010).

The presented studies and previous literature for improvement of speech in noise per-
formance have also not yet explored the effects of arm/body movement. Studies have
shown that tactile threshold shifts occur as a result of movement (Juravle et al., 2013)
and so this may have an impact on the real-world performance, in comparison to the
growing literature of primarily in-lab experiments, where stimulation sites are static.

Future experiment protocols should also aim to better represent the challenges faced by
cochlear implant users in the real world. Whilst the presented studies used standardised
materials to assess speech-in-noise performance, these short, isolated sentences may not
represent the challenges (such as additional working memory requirements and cognitive
load) faced when attending to longer running speech encountered in everyday life (Larsby
and Arlinger, 1994; Hygge et al., 1992). The impact of lip reading will also need to be
assessed in combination with haptic stimulation to understand the benefit that haptic
stimulation provides when these visual cues are available. Finally, the impact of age
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on speech-in-noise benefits should be formally assessed, given the changes in haptic
sensitivity that occur with increasing age (Lévêque et al., 2000).

The proposed approach may also be adapted to provide haptic benefits for spatial hear-
ing. Cochlear implant users struggle to locate sounds, leading to impaired threat de-
tection and segregation of sound sources (Dorman et al., 2016). Applying the proposed
haptic enhancements to both wrists may also aid in this area. The signal processing
strategy may offer an enhanced method, providing additional pitch cues to previously
proposed methods for improving sound localisation, such as those presented by Fletcher
et al. (2020a), Fletcher et al. (2021a), and Fletcher et al. (2020b). This would allow
for spatial cues (such as inter aural level differences) to be presented via haptic stim-
ulation in addition to the pitch cues provided in the proposed methods. This may aid
in perception of speech features such as prosody, and may be applicable for separating
multiple instruments based on both harmonic and panning cues when listening to music
(as reviewed in Fletcher (2021b)).

Music perception is a further area that has not yet been fully explored for improving
cochlear implant user’s listening experience. Evidence suggests that vibration can influ-
ence the quality of live concert experiences (Merchel and Altinsoy, 2014) and ability to
synchronise dancing to music (Tranchant et al., 2017; Shibasaki et al., 2016). Tactile
stimulation devices have also shown improvements in timbre and instrument discrimina-
tion (Russo et al., 2012). The presented research, particularly of Chapter 5, may serve
as the groundwork for developing a haptics for music. Further challenges include apply-
ing effective source separation to process individual instruments, extraction of relevant
sound features and intuitive mapping of these to haptic stimulation. An in depth review
of this area of haptics research is provided by Fletcher (2021b).

Finally, extra features may be added to a haptic device to aid users with every-day activ-
ities. The device could be connected to many other smart devices within the Internet of
Things to provide additional functionality, such as alarms, smartphones and televisions.
Development of these features would be particularly viable should the developed de-
vice be controllable via a smartphone, as any additional processing and communication
between smart devices could be outsourced to the smartphone.

7.3 Future work for combining haptics and evoked responses

The research in this thesis has proposed two individual methods (the TRF neuroimaging
method and a haptics based intervention) that, with further development, may be used
for the assessment and improvement of speech-in-noise performance. As discussed in
previous sections, both methods are at similar TRLs, with potential to develop each
into clinically viable tools. At their current stages, further benefits may be possible
by combining these methods. There are 3 main areas in which these methods could
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be effectively combined to improve speech-in-noise performance, and more broadly in
areas such as sound localisation and music perception. The first is in using the TRF
for analysis of the neural mechanisms that underlie the demonstrated haptic benefits.
Numerous previous studies have shown extensive connections between somatosensory
and auditory neurons at all stages along the auditory pathways (Meredith and Allman,
2015; Basura et al., 2012; Kanold and Young, 2001; Kanold et al., 2011; Shore et al.,
2000). However, little is known about at which level haptic integration occurs along
the auditory pathways to result in the improved speech-in-noise performances observed.
The TRF may serve as a method for analysing this integration, by comparing TRFs
trained on haptic stimulus alone, audio-haptic stimulus and audio stimulus alone. With
this method, an improvement in feature reconstruction performance for the combined
audio-haptic condition (in comparison to the audio only and haptic only conditions) may
suggest integration at that level of the auditory pathways. This approach has already
been used by Riecke et al. (2019), who found enhanced cortical tracking of the speech
envelope when audio and haptic stimulation were provided together. Similar studies,
such as that by O’Sullivan et al. (2021) have also already been conducted to explore
the integration of audio and visual stimulus of lip reading. Further work may also look
at integration at lower levels of the auditory pathway, the effects of training on neural
representations and for features such as the loudness model presented in Chapter 4.
This could be carried out in the context of additional research at TRL 1–3, which
could be used to inform device designs and to optimise signal processing strategies when
developing a haptics device (presently between TRLs 3–4, as discussed in Section 7.2).

As mentioned in Section 7.1, the TRF method has the potential to be used for automatic
steering of intervention signal processing strategies. This may be of particular use for
haptic stimulation in combination with an additional beamforming module added to
the proposed haptic signal processing strategies. This may allow for better speech-
in-noise performance than was demonstrated by Fletcher et al. (2020b) for speech in
spatially separated noise. This may also offer additional sound localisation performance
enhancements over those demonstrated by Fletcher et al. (2020a). Significant adaption
of the presented methods and use of head-mounted electrodes (potentially behind the
ears) would be needed for this to provide an effective real-world solution. As with other
interventions, the TRF may also be used for objective, automatic clinical fitting of a
haptic intervention. As with other interventions, this would require significant reduction
in analysis time and require fewer electrodes to be clinically feasible. With solutions to
these issues the TRF may allow for fitting of haptic interventions to infants, potentially
maximising the performance benefits, similar to the observed benefits of early use of
acoustic and cochlear implant intervention (Flexer, 2011). Exploration of this area is
also timely at the given TRL 3–4 of current haptic device development, as it may provide
considerable benefits to the performance of the device prior to its translation to clinical
applications.
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7.4 Conclusion

The aim of this thesis was to contribute to the improvement of speech-in-noise perfor-
mance for the hearing impaired. Progress has been made, through development of two
methods for enhanced assessment and improvement of speech-in-noise performance.

An existing neuroimaging method (the TRF) was adapted, use of an ElasticNet regres-
sion model and a perceptually motivated loudness feature, to improve its reconstruc-
tion performance. Results suggested that the proposed method provided improved re-
construction performance in comparison to previously proposed TRF implementations.
Therefore it may be possible to adapt the proposed method for the improvement of ex-
isting TRF based speech-in-noise prediction methods. This would form the initial steps
towards a clinically viable, automatic and objective speech-in-noise assessment method.
This new method may additionally be a valuable new tool for analysis of the underlying
neural mechanisms of speech-in-noise performance.

Two haptic neuroprosthetics were also developed. The first aimed to improve pitch
discrimination performance for cochlear implant users. Evidence was presented, sug-
gesting marked improvement in pitch discrimination performance. This improvement
in discrimination of pitch, a key cue for speech and music perception, suggested that
this method may provide benefit in these areas. The second neuroprosthetic aimed
to improve speech-in-noise performance for cochlear implant users. Results suggested
that this may provide benefit to speech-in-noise performance for certain users, but that
the proposed design and accompanying training program may not be optimal. Recom-
mendations were outlined for the improvement of the method in further developments
towards a real-world usable haptic intervention for cochlear implant users.

In addition to the use of the presented neuroimaging and haptics methods individually,
this thesis outlined the potential for the combination of these methods. This presents
the exciting possibility that the TRF method could provide further insight into the
underlying neural mechanisms that drive haptic improvement to speech-in-noise perfor-
mance.
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Appendix A

Individual participant results for
Chapter 3

Further results from Chapter 2. Plots illustrate 3 unplanned post-hoc wilcoxons sign-
ranked tests for each participant individually. Tests were performed on the 5 cross-
validation folds of the best model generated for each participant. No correction for
multiple comparisons was applied.

Figure A.1: Individual hearing-impaired subject correlation for the wideband Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed using

Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05
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Figure A.2: Individual hearing-impaired subject correlation for the delta Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed us-

ing Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Figure A.3: Individual hearing-impaired subject correlation for the theta Cholesky
Ridge, SVD Ridge and ElasticNet models. Differences in distributions (assessed using

Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05
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Appendix B

Individual participant results for
Chapter 4

Further results from Chapter 3. Figures B.1 to B.3 illustrate the 3 unplanned posthoc
Wilcoxons sign-ranked tests for each hearing impaired participant individually. Tests
were performed on the 5 cross-validation folds of the best model generated for each
participant. No correction for multiple comparisons was applied. For the wideband and
delta band conditions, all participants reconstructions were found to be significantly
better than their time-reversed models. However, for the theta band model participant
participant 18 (W = 614, p = 0.053) did not reach significance for the amplitude enve-
lope model. For the loudness model participant 11(W = 774, p = 0.299) was also not
significant.

Figure B.1: Individual hearing-impaired subject correlation for the wideband ampli-
tude envelope and perceptual loudness feature reconstruction models. Differences in

distributions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05
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Figure B.2: Individual hearing-impaired subject correlation for the delta amplitude
envelope and perceptual loudness feature reconstruction models. Differences in distri-

butions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Figure B.3: Individual hearing-impaired subject correlation for the theta amplitude
envelope and perceptual loudness feature reconstruction models. Differences in distri-

butions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Figures B.1 to B.3 illustrate the 3 unplanned post-hoc wilcoxons sign-ranked tests for
each normal hearing participant individually. For the wideband envelope model, par-
ticipant 5’s model did not perform significantly better than the time-reversed model
(W = 655.0, p = 0.056). For the wideband loudness model, participants 24 (W =

620.0, p = 0.060) and 28 (W = 634.0, p = 0.077) also did not reach significance. For
the delta band envelope model, participant 5’s model again did not reach significance
(W = 708.0, p = 0.128). Also, as with the wideband loudness model, the delta loudness
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model for participants 24 (W = 622.0, p = 0.062) and 28 (W = 649.0, p = 0.100) were
not significant. For the theta band envelope, models that were not significantly better
than their time reversed equivalents are detailed in Table B.1. For the loudness model,
results are presented in Table B.2.

Figure B.4: Individual normal-hearing subject correlation for the wideband amplitude
envelope and perceptual loudness feature reconstruction models. Differences in distri-

butions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Figure B.5: Individual normal-hearing subject correlation for the delta amplitude enve-
lope and perceptual loudness feature reconstruction models. Differences in distributions

(assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05



154 Chapter B. Individual participant results for Chapter 4

Figure B.6: Individual hearing-impaired subject correlation for the theta amplitude
envelope and perceptual loudness feature reconstruction models. Differences in distri-

butions (assessed using Wilcoxons sign-ranked tests) are annotated as:
∗ ∗ ∗ : p ⩽ 0.001, ∗∗ : p ⩽ 0.01, ∗ : p ⩽ 0.05,n.s. : p > 0.05

Participant no. W p

P02 838.0 1.000

P12 747.0 0.432

P14 759.0 0.752

P25 765.0 0.472

P40 609.0 0.073

Table B.1: Wilcoxon test results for envelope feature models that did not reach signif-
icance in the theta band

Participant no. W p

P02 639.0 0.127

P05 871.0 0.746

P12 641.0 0.131

P14 839.0 0.950

P26 659.0 0.119

P27 745.0 0.211

P28 800.0 0.397

P34 808.0 0.862

P36 648.0 0.099

P40 862.0 1.000

Table B.2: Wilcoxon test results for loudness feature models that did not reach signif-
icance in the theta band
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Statement on the impact of COVID-19
on this thesis

The COVID-19 pandemic has had a significant impact on this thesis. The restrictions
imposed as a result of the COVID-19 pandemic has substantially impeded: collection of
data for both a human neuroimaging study and behavioural study, due to the inherent
close contact needed; data analysis, due to the adaptions required for remote analy-
sis using the high-performance computing cluster; and physical testing and analysis of
devices, due to the lack of access to critical equipment from the university’s vibration
centre (ISVR). The pandemic has had a clear impact on 3 studies across the thesis,
with data collection shortened for two studies and one study cancelled entirely. Of
the two shortened studies, it was only possible to collect pilot data for the first study
and a reduced number of participants for the second. The result of this was a lack of
novel data for assessment of the research questions, with a substantial adaptation of
analysis protocol required for these studies. A number of adaptions have been imple-
mented to mitigate the effects of COVID. This includes the design of 2 new studies
using sub-optimal substitute datasets from other projects at the university. In addition
to the full implementation of data analysis pipelines for the two new datasets, code for
all studies required extensive adaption to run remotely on high-performance computing
facilities (IRIDIS), given the reduced access to in-lab facilities. Lack of access to in-lab
resources has also severely limited the physical characterization of haptic devices for the
electro-haptics study. This has been mitigated somewhat by focusing instead on further
optimisation to signal-processing strategies, however unimpeded access to the labs would
have benefited the final thesis considerably. These mitigations, although effective for
maintaining quality of thesis content, have required considerable time for implementa-
tion of revised data collection, data analysis and signal-processing strategy optimisation.
The combination of adaptions listed have significantly altered the project’s scope, and
limited conclusions possible for the posed research questions. It is hoped that these
exceptional circumstances and the efforts taken to mitigate the impact of COVID-19
will be taken into consideration.
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