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Missing data analysis requires assumptions about an out-
come model or a response probability model to adjust for
potential bias due to nonresponse. Doubly robust (DR) es-
timators are consistent if at least one of the models is cor-
rectly specified. Multiply robust (MR) estimators extend
DR estimators by allowing for multiple models for both the
outcome and/or response probability models, and are con-
sistent if any of the multiple models is correctly specified.
We propose a robust quasi-randomisation-based model ap-
proach to bring more protection against model misspecifi-
cation than the existing DR and MR estimators, where any
multiple semiparametric, nonparametric or machine learn-
ing models can be used for the outcome variable. The pro-
posed estimator achieves unbiasedness by using a subsam-
pling Rao-Blackwellmethod, given cell-homogenous response,
but regardless of any working models for the outcome. An
unbiased variance estimation formula is proposed, which
does not use any replicate jackknife or bootstrap methods.
Simulation study shows that our proposed method outper-
forms the existing multiply robust estimators.
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Abbreviations: DR, doubly robust; MR, multiply robust; MAR, missing at random; OR, outcome regression; RP, response probability; RB, Rao-Blackwell;
SRB-MA, subsampling Rao-Blackwell model-assisted; SRB-MMA, subsampling Rao-Blackwell multiple model-assisted.
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1 | INTRODUCTION

Missing data can bring critical challenges in making valid inferences. It is well known that a direct application of
statistical methods to complete cases without appropriate treatments of nonresponse could lead to significant biases,
as the respondents often systematically differ from the non-respondents (Kim and Shao, 2021; Little and Rubin, 2019).
To remove or reduce the biases due to nonresponse, model-based approach has been commonly used, where either
an outcome (imputation) model for a study variable of interest or a response (probability) model to mimic the unknown
response mechanism is assumed to be true. However, this approach is vulnerable to model misspecification.

An estimator is said to be doubly robust in the relevant literature if it remains asymptotically unbiased and con-
sistent if either the outcome model or response probability model is correctly specified. Since DR estimators have
double protection on asymptotic estimation consistency against model misspecifications, it has been widely used in
missing data analysis. Kott (1994), Kott (2006), Kim and Park (2006), Haziza and Rao (2006), Kott and Chang (2010),
Haziza et al. (2014), and Kim and Haziza (2014) discussed the DR procedures in the survey sampling context.

Those existing DR estimators, however, may fail to achieve consistent estimation in many practical studies. It
allows only a singlemodel for the study variable and a singlemodel for the response probability. With an unknown true
data-generating process, it is still risky to assume that one of the two models is correctly specified. This has motivated
the development of a multiply robust estimator that Han andWang (2013) first introduced, where multiple models for
the outcome and response probability are considered in estimation. A multiply robust estimator is consistent if any
one of those models is correctly specified, thus, can bring more protection against model misspecification than the DR
procedures. For example, multiple models may be fitted in practice, each involving different subsets of covariates and
possibly different link functions. Such models increase the likelihood of correct specification (Han and Wang, 2013;
Chen and Haziza, 2017). Han and Wang (2013) used an empirical likelihood approach to develop a multiply robust
point estimator and Han (2014) considered the case of regression analysis as an extension of Han and Wang (2013).
Chen and Haziza (2017) developed multiply robust procedure in a finite population setting. See also Chen and Haziza
(2021) for a review.

While Han and Wang (2013) and Chen and Haziza (2017) focus on expanding the pool of candidate paramet-
ric models with different sets of variables and/or different link functions, we aim to propose a new class of robust
estimators for better performance by relaxing parametric model assumptions for the outcome variable so that any
semiparametric, nonparametric, or machine learning models can be used as working models as well. Especially, many
machine learning techniques can potentially be powerful assisting models, so our approach uses them as our working
outcome models. In our procedure, multiple working models for the outcome variable are learned from a random
subsample of the respondents, and their prediction errors unexplained by the outcome models are observed from the
hold-out subsample of the respondents and projected to the non-respondents under the cell mean response proba-
bility model, which lead to multiple robust estimators. We define our final proposed estimator as a weighted average
of those multiple estimators, where the weights are determined in a data-driven approach by using a subsampling
Rao-Blackwell, so that the variance of the prediction errors, thus the variance of the estimator, can be minimized.

Our proposed approach extends some related ideas in machine learning and model-assisted estimation in the
absence of missing data. Our use of multiple outcome models can be characterised as weighting-based ensemble
learning (e.g. Zhou (2012)). It is similar in spirit to the super learner proposed by Van der Laan et al. (2007), which
aims to improve prediction by creating a weighted combination of many candidate outcome learners, but in a different
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manner to ours. Whereas our use of the cell response model is a robust extension of the randomisation-based ap-
proach of unbiased statistical learning proposed by Sanguiao-Sande and Zhang (2021), which applies a single assisting
outcome model to the complete sample observations by the subsampling Rao-Blackwell method.

We show that the proposed estimator achieves unbiasedness by using a subsampling Rao-Blackwell method, re-
gardless of any working outcomemodels. Variance estimation for estimators relying on any nonparametric or machine
learning models can be a challenging problem due to the complexity. We develop an unbiased variance estimation
formula for our proposed estimator, which readily accommodates such models and does not use any replicate jack-
knife or bootstrap methods. We also note that although Han and Wang (2013) and Chen and Haziza (2017) develop
their multiply robust estimators and related theoretical properties using parametric models, their procedures are able
to include nonparametric or machine learning models via calibration constraints. We compare one of them to our
proposed estimator in the survey sampling context, presented in Section 5.

The remainder of the paper proceeds as follows. In Section 2, a basic setup is introduced. In Section 3, we
develop our proposed estimator in the case of a single outcome model and its variance estimator, and demonstrate
their unbiasedness. We extend the proposed approach to allow formultiple outcomemodels in Section 4. A simulation
study is given in Section 5 and concluding remarks are made in Section 6.

2 | BASIC SETUP

Consider a finite population of N elements identified by a set of indices U = {1, . . . ,N }, where N is known. Let yi
and xi be a study variable of interest and the vector of covariates associated with yi for each unit i , respectively. Let
s denote the set of indices for the elements in a sample selected by a probability sampling p (s) , where ∑

s p (s) = 1

over all possible samples from U . We assume that xi is always observed but yi is subject to missingness. Let the
population quantity of interest be θN = g (y1, . . . , yN ) , and let θ̂ be a linear estimator of θN under complete response.
For example, if we define θ̂ as follows,

θ̂ =
∑
i ∈s
wi yi , (1)

wherewi = pr(i ∈ s)−1 is the inverse of the first-order inclusion probability of unit i , it is a design-unbiased estimator
of the population total θN =

∑N
i=1 yi . Given the existence of missing data, we define δi as a response indicator, i.e.,

δi = 1 if yi is observed, and δi = 0 otherwise. We assume that the response mechanism is missing at random (MAR)
in the sense of Rubin (1976) as follows:

pr(δi = 1 | xi , yi ) = pr(δi = 1 | xi ) .

An imputation-based estimator of θN is given by

θ̂I =
∑
i ∈s
wi

{
δi yi + (1 − δi ) ŷ ∗i

}
, (2)

where ŷ ∗
i
denotes the imputed value used to replace the missing value yi and it can be constructed from an as-

sumed outcome regression (OR) model for the study variable y as follows:

E {Y | xi , δi = 0} = m (xi ; β ), (3)
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wherem (xi ; β ) is any pre-specified function of β , and β is a vector of unknown parameters. Under MAR, the imputed
estimator can replace the missing values by y ∗

i
= m (xi ; β̂ ) , where β̂ is a consistent estimator of the true parameter β

under the OR model (3). If the model (3) is misspecified, the imputed estimator with y ∗
i
= m (xi ; β̂ ) is biased.

For a more robust approach, we can adopt in addition a response probability (RP) model for Pr(δi = 1 | xi ) as
follows:

pr(δi = 1 | xi ) = p (xi ;α), (4)

for some α , where p (xi ;α) is any pre-specified function of α and α is a vector of unknown parameters. Then, a class
of the estimators can be given in the form of

θ̂dr (β̂ , α̂) =
∑
i ∈s
wi

[
m (xi ; β̂ ) +

δi
p (xi ; α̂)

{yi −m (xi ; β̂ ) }
]
, (5)

where β̂ is a consistent estimator for β under the OR model and α̂ is consistent for α under the RP model. Note that
the estimator (5) is referred to as a doubly robust estimator in the sense that it can be consistent if either one of the
two models (3) and (4) is correctly specified, e.g. by examining

θ̂dr (β̂ , α̂) − θ̂ =
∑
i ∈sr

wi
yi −m (xi ; β̂ )
p (xi ; α̂)

−
∑
i ∈s

wi {yi −m (xi ; β̂ ) }.

θ̂DR (β̂ , α̂) is a class of estimators, of which properties are determined by how to choose (β̂ , α̂) . Scharfstein et al.
(1999) and Haziza and Rao (2006) used maximum likelihood approach to estimate α and then estimate β by using
ordinary or iteratively reweighted least square methods. Cao et al. (2009) used the optimal score equation based on
influence function theory and Kim and Haziza (2014) used the same estimating equation for β as in Scharfstein et al.
(1999) and Haziza and Rao (2006), but proposed to use a calibration condition regarding ∂m (xi ; β )/∂β to choose α ,
instead of using the maximum likelihood approach. Kim and Haziza (2014) showed that their proposed DR estimator
has better efficiency than the other DR estimators proposed by Cao et al. (2009), Haziza and Rao (2006), and Tan
(2006).

As Chen andHaziza (2017) discussed, anyDR estimators still require that eithermodel is correctly specified, which
is not always desirable in practice. They proposed a multiply robust imputation procedure which allows for multiple
OR models and multiple RP models with different subset of covariates and different link functions. Their proposed
estimator is consistent if one of the OR models is true or one of the RP models is true. It is more robust than doubly
robust estimators by increasing the likelihood of having a true model for either outcome or response probability in the
pool of candidate parametric models. However, they are still not free of failure due to model misspecification, given
that the true data generating process is always unknown.

Rather than increasing the number of candidate parametric models for the outcome and the response probability
with the assumption that one of them is correctly specified, we can gain more robustness by relaxing the parametric
model assumptions, while achieving unbiased variance estimation as well as point estimation, as described in the
following section.
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3 | PROPOSED METHOD

We propose a different approach to develop a new class of estimators that is more robust than (5).

Let s = sr ∪ sm be the bipartition of sample s , where sr is the set of indices with complete response and sm is the
set of indices with nonresponse. Initially, we randomly split sr into training set s1 and test set s2 such that sr = s1 ∪ s2,
where s1 is selected from sr by simple random sampling, denoted by q (s1 | sr , s) . In the first phase, we fit a suitable
working model to learn y based on the training set s1; in the second phase, we observe the error of the first-phase
model in the test set s2.

One can use any suitable working model for y , which can be any parametric, semiparametric, nonparametric or
machine learning models such as regression tree, random forest, and any other learning models. Let µ (xi ; s1) denote
the predicted value of the study variable yi for unit i with features xi , which is trained on {(xi , yi ) : i ∈ s1 }. For any
j < s1, we define the error of prediction by µ (x ; s1) as

e j = yj − µ (xj ; s1) .

Then, we can re-express θ̂ in (1) as

θ̂ =
∑
i ∈s
wi yi =

∑
i ∈s1

wi yi +
∑
i ∈sc

1

wi {µ (xi ; s1) + e i },

where the prediction errors e i are observed in s2 but missing for i ∈ sm since yi is not observed in sm . We now
estimate the total of the prediction errors in sc1 by using a response probability model.

We assume a cell mean model for the response probability rather than a parametric model, as follows. Under
MAR, we assume that the population U is partitioned into G cells, i.e., U = U1 ∪U2 ∪ · · · ∪UG such that

pr(δi = 1) = pg , if i ∈ Ug , (6)

for g = 1, . . . ,G . The partition can be constructed by the quantiles of x Im et al. (2018). This has similar effects
to forming the response cells with the help of a fitted parametric model (4), but is more robust than adopting the
parametric RPmodel directly, as described in Haziza and Beaumont (2017). Unlike Kim and Fuller (2004), who assume
the cell mean model for the study variable y , we assume the cell mean model for the response indicator δ , so that we
can treat FN = {(x1, y1), . . . , (xN , yN ) } as fixed constants when it comes to variance estimation.

Remark 1. For the cell formation (6), one can also use any type of RP model, including a machine learning model
such as classification tree and random forest, which are often more robust than parametric model approaches, as
demonstrated via numerical studies in Section 5.

Now, we apply the doubly robust idea to the complement of s1, i.e., sc1 = s2 ∪ sm , conditional on s1 to construct
an unbiased estimator. We first define the induced probability of subsampling s1 from s given by

p1 (s1 | s) =
∑

sr :s1⊂sr
q (s1 | sr , s)p (sr | s), (7)

Let s1g , s2g , sr g , smg and sg be the corresponding subsamples of units fromUg , whose sizes are n1g , n2g , nr g , nmg and
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ng . The conditional response probability for i ∈ s \ s1 given s1 and s is given by

p2g = pr(i ∈ s2g | s1, s) = n2g /(ng − n1g ), (8)

for g = 1, . . . ,G . Then, we define an estimator of θN as

θ̂ (1) =
∑
i ∈s1

wi yi +
∑

i ∈s∩sc
1

wi µ (xi ; s1) +
G∑
g=1

∑
i ∈sg∩sc1g

wi
δi
p2g

{yi − µ (xi ; s1) }, (9)

=
∑
i ∈s1

wi yi +
∑

i ∈s∩sc
1

wi y
∗
i

where y ∗
i
= µ (xi ; s1) +

∑G
g=1 I (i ∈ sg )δi /p2g {yi − µ (xi ; s1) } is the imputed value of yi . Here, e i = yi − µ (xi ; s1) is

observed if i ∈ s2g .
The difference of (10) to the full-sample estimator θ̂ can be given as

θ̂ (1) − θ̂ =
G∑
g=1


∑
i ∈s2g

wi
e i
p2g

−
∑

i ∈s2g∪smg
wi e i


Clearly, if µ (xi ; s1) corresponds to the true outcome model, then θ̂ (1) − θ̂ will be approximately zero. Next, although
µ (xi ; s1) may bemisspecified to a greater or lesser extent generally, the conditional expectation of θ̂ (1) −θ̂ given s1 and
µ ( ·; s1) is still zero, if p2g is the inclusion probability in s2g induced by the cell-response model (6) and the subsequent
random split of (s1, s2) .

Lemma 1 Assume that the cell response model (6) holds, where the partition of U (U = U1 ∪U2 ∪ · · · ∪UG ) is fixed and
known. Then, regardless the choice of µ and the given sampling design, we have

E (θ̂ (1) |s) = Er {Eq (θ̂ (1) | sr , s) | s } = E1 {E2 (θ̂ (1) | s1, s) | s } =
∑
i ∈s
wi yi ,

where wi = π−1
i
, and Er ( · | s) and Eq ( · | s, sr ) denote the expectations with respect to the response probability and

subsampling distributions, respectively. E1 ( · | s) and E2 ( · | s1, s) are the expectations over the induced probability of
sampling s1 from s and corresponding conditional response probability given s1 and s , respectively.

By virtue of Lemma 1 (proof in Appendix 1) one can safely adopt any assisting outcome model for y , although
a better outcome model could lead to a small variance of the resulting estimator than a worse model, given the cell
response model. However, θ̂ (1) is only based on one random split of sr = s1 ∪ s2, which leads to additional variance
due to learning from s1 instead of sr . As proposed by Sanguiao-Sande and Zhang (2021), we can reduce the variance
of θ̂ (1) by applying the Monte Carlo Rao-Blackwell (RB) method. Then, our proposed estimator is given by

θ̂SRB =
1

K

K∑
k=1

θ̂ (k ) (10)

where θ̂ (k ) is the estimator (10) calculated from the k -th Monte Carlo subsamples, (s (k )1 , s
(k )
2 ) such that sr = s (k )1 ∪

s
(k )
2 , for k = 1, . . . ,K . It converges to Eq (θ̂ (1)DR

| s, sr ) , where the expectation is evaluated with respect to random
subsampling of s1 from sr , i.e., q (s1 | sr , s) .
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Theorem 1 below gives the properties of the proposed subsampling Rao-Blackwell (SRB) quasi-randomisation-based
estimator θ̂SRB under the joint probability distribution induced by the sampling design, random subsampling, and the
cell mean response probability model. See Appendix 1 for the proof.

Theorem 1 Assume that the cell response model (6) holds, where the partition ofU is fixed and known. Then, regardless the
choice of µ and the given sampling design, the estimator θ̂SRB is unbiased for the finite population total θN , i.e., E (θ̂SRB ) =
θN , and its variance is

var(θ̂SRB ) = var
(∑
i ∈s
wi yi

)
+ E {var2 (θ̂ (1) | s1, s) } − E {varq (θ̂ (1) | s, sr ) }

+E {varq (θ̂SRB | s, sr ) },

where

var(θ̂ (1) | s1, s) =
G∑
g=1

(ng − n1g )2

n2g

(
1 −

n2g

ng − n1g

)
1

ng − n1g − 1

∑
j ∈(s\s1 )g

(wj e j − ēw ,g )2,

and ēw ,g =
∑
j ∈(s\s1 )g wj e j /(ng − n1g ) .

Note that the first two terms account for the variance due to sampling and the variance due to the response and
imputation, respectively. The third term, E {var(θ̂ (1) | s) }, measures the variance reduction by E (θ̂ (1) | s) rather than
θ̂ (1) , and the last term is added due to the Monte Carlo RB method instead of exact RB, E (θ̂ (1) | s) .

Theorem 2 gives an unbiased estimator of var(θ̂SRB ) , denoted by V̂SRB . See Appendix 1 for the proof.

Theorem 2 Let πi j be the second-order sample inclusion probability, and πi > 0 for all i ∈ U , and πi j > 0 for all i , j ∈ U .
We define an estimator of var(θ̂SRB ) as

V̂SRB = V̂ 1 + V̂ 2 − V̂ 3 + V̂ 4

where

V̂ 1 =
∑
i ∈sr

∑
j ∈sr

1

p̂i j

πi j − πi πj
πi j

yi
πi

yj

πj
,

V̂ 2 =
1

K

K∑
k=1

G∑
g=1

(ng − n (k )1g )2

n
(k )
2g

©«1 −
n
(k )
2g

ng − n (k )1g

ª®¬ 1

(n (k )2g − 1)

∑
j ∈s (k )

2g

(wj e (k )j
− ē (k )w ,g )2,

V̂ 3 =
1

K − 1

K∑
k=1

(θ̂ (k ) − θ̂SRB )2,

V̂ 4 =
1

K (K − 1)

K∑
k=1

(θ̂ (k ) − θ̂SRB )2,

where p̂i j = p̂r(δi δj = 1 | xi , xj ) under the cell response model (6), and ē (k )w ,g =
∑
j ∈s (k )

2g

wj e
(k )
j

/n (k )2g . The estimator V̂ is

unbiased for var(θ̂SRB ) .
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4 | EXTENSION TO MULTIPLY ROBUST ESTIMATION

The SRB estimator (10) relies on only one working model for y . Instead of choosing a single outcome model, we
propose another SRB-based estimator that takes multiple outcome models into account as in (11) below, which is
referred to as subsampling Rao-Blackwell ensemble learning-assisted estimator (SRB-EL):

θ̂SRBEL =
1

K

K∑
k=1

M∑
m=1

a
(k )
m θ̂

(k )
m , (11)

where a (k )m ∈ {0, 1} is an indicator of selecting model µm (x ; ·) , such that ∑M
m=1 a

(k )
m = 1, and θ̂ (k )m is the SRB estimator

based on model m from the k -th Monte Carlo subsamples (k = 1, . . . ,K ).
In this study, we define a (k )m = 1 if model µm (x ; s (k )1 ) has the lowest prediction errors in s (k )2 in terms of V̂ (m,k )

2

given by

V̂
(m,k )
2 =

G∑
g=1

(ng − n (k )1g )2

n
(k )
2g

©«1 −
n
(k )
2g

ng − n (k )1g

ª®¬ 1

(n (k )2g − 1)

∑
j ∈s (k )

2g

(wj e (m,k )j
− ē (m,k )w ,g )2, (12)

where e (m,k )
j

= yj − µm (xj ; s (k )1 ) and ē (m,k )w ,g =
∑
j ∈s (k )

2g

wj e
(k )
j

/n (k )2g . Recall that V̂ (m,k )
2 (k = 1, . . . ,K ) sums up to V̂ 2 for

model m in Theorem 2 that measures the variance due to imputation by model m as well as the response probability.
Thus, the proposed SRB-EL estimator gives more weight to a model that has a smaller imputation variance. As K
goes to infinity, θ̂SRBEL will tend to θ̂∗SRBEL =

∑M
m=1 pm θ̂

∗
m , where pm is the probability of choosing model m such that∑M

m=1 pm = 1, and θ̂∗m = Eq (θ̂ (1)m | s, sR ) .

Proposition 1 Assume that the cell mean response model (6) holds, where the partition of U is fixed and known. For any
multiple K working outcome models µm (m = 1, . . . ,M ) and the given sampling design, we have

E (θ̂SRBEL ) = θN

and

var(θ̂SRBEL ) = var
(∑
i ∈s
wi yi

)
+ E

{
var2

(
θ̄
(1)
m | s1, s, a

)}
− E

{
varq

(
θ̄
(1)
m | s, sr

)}
+E {varq (θ̂SRBEL | s, sr ) },

where θ̄ (1)m =
∑M
m=1 am θ̂

(1)
m , a = (a1, . . . , aM )T and

var2 (θ̄ (1)m | s1, s, a) =
G∑
g=1

(ng − n1g )2

n2g

(
1 −

n2g

ng − n1g

)
1

ng − n1g − 1

∑
j ∈(s\s1 )g

(wj ē (m)
j

− ē∗(m)
w ,g )2,

for m = 1, . . . ,M . Here, ē∗(m)
w ,g =

∑
j ∈(s\s1 )g wj ē

(m)
j

/(ng − n1g ) , ē (m)
j

=
∑M
m=1 ame

(m)
j

, and e (m)
j

= yj − µm (xj ; s1) is the
prediction error by the m-th outcome model for unit j ∈ sc1 .

Proposition 2 Let πi j be the second-order sample inclusion probability, and πi > 0 for all i ∈ U , and πi j > 0 for all i , j ∈ U .
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The proposed variance estimator given below is unbiased for var(θ̂SRBMR ) :

V̂SRBEL = V̂ 1 + V̂ 2 − V̂ 3 + V̂ 4,

where

V̂ 1 =
∑
i ∈sr

∑
j ∈sr

1

p̂i j

πi j − πi πj
πi j

yi
πi

yj

πj
,

V̂ 2 =
1

K

K∑
k=1

G∑
g=1

(ng − n (k )1g )2

n
(k )
2g

©«1 −
n
(k )
2g

ng − n (k )1g

ª®¬ 1

(n (k )2g − 1)

∑
j ∈s (k )

2g

(wj ē (k )j
− ē∗(k )w ,g )2,

V̂ 3 =
1

K − 1

K∑
k=1

(θ̂ (k )
EL

− θ̂SRBEL )2,

V̂ 4 =
1

K (K − 1)

K∑
k=1

(θ̂ (k )
EL

− θ̂SRBEL )2,

where p̂i j = p̂r(δi δj = 1 | xi , xj ) under the cell response model (6) with fixed and known imputation cells, ē∗(k )w ,g =∑
j ∈s (k )

2g

wj ē
(k )
j

/n (k )2g , and ē (k )
j

=
∑M
m=1 a

(k )
m e

(m,k )
j

.

Remark 2. The proposed SRB-EL estimator is based on a single cell RP model, which can actually be formed based on
one or several RPmodels, but is more robust than applying the RPmodels directly. Moreover, the estimator adaptively
assigns different weights to the multiple outcomemodels, according to their prediction errors that are observed in the
hold-out test subsample, so that it is more robust than assuming any of them to be true. In this sense, the proposed
estimator can be considered as multiply robust, or simply robust by the usage of the term in robust statistics. This
differs to the multiply robustness defined in Han and Wang (2013), where the estimator is good if one of the OR or
RP models is correct but without the assurance that the performance does not deteriorate considerably otherwise.

5 | SIMULATION STUDY

We conduct a simulation study to evaluate the performance of the proposed method using a similar simulation setup
as Chen and Haziza (2017) which followed the setup of Kang and Schafer (2007).

In Scenario 1, we generate 1,000 finite populations of size N = 10, 000 as follows. For unit i (i = 1, . . . ,N ) , a vector
xi = (x1i , x2i , x3i )T is randomly generated, where x1i − 1 ∼ Poisson(5) and (x2i , x3i )T is generated from a standard
multivariate normal distribution, and yi = 5 − 1.5x1i + x3i + ϵi is generated accordingly, where ϵi is a standard normal
random error associated with unit i .

From each finite population, we select a random sample of size n = 800 using random sampling with probability
proportional to a size variable, ψi = 0.5χi + 1, where χi is generated from a chi-square distribution with one degree of
freedom. The inclusion probability is πi = nψi /

∑
j ∈U ψj , for i ∈ {1, . . . ,N }.

In each sample, missing y is generated with probability pr(δi = 0 | xi ) = {1 + exp(α0 + α1x1i + α1x2i + α3x3i ) }−1,
where we set (α0, α1, α2, α3) = (−0.7, 0.2,−0.5, 0.5) which leads to the average response rate of 60%.

In addition, we consider the following transformations of the x -variables: z1i = exp(x1i /2), z2i = x2i /{1+log(x1i ) },
and z3i = x2i x3i . Letting p (x ;α) = 1 − {1 + exp(α0 + α1x1i + α2x2i + α3x3i ) }−1 and m (x ; β ) = β0 + β1x1i + β2x2i + β3x3i
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denote the correct response probability and OR models, we consider p (z ; α̃) and m (z ; β̃ ) as incorrect models in this
scenario.

From each realized incomplete samples, we compute the following estimators for θN = N −1 ∑N
i=1 yi .

1. ȳF ul l : As a gold benchmark, we use the full samples and compute θ̂ = N −1 ∑
i ∈s wi yi

2. ȳCH (∗ ∗ ∗∗) : As one of the existing multiply robust estimators, we compute the estimator of Chen and Haziza
(2017)which is developed in the survey sampling framework. The four digits in parentheses indicatewhichmodels
are used for estimation. The first two digits correspond tom (x ; β ) andm (z ; β̃ ) , and the last two digits correspond
to p (x ;α) and p (z ; α̃) , respectively.

3. ȳCH :++ (∗ ∗ ∗∗) : Although Chen and Haziza (2017) focused on parametric models for the outcome and response
probability, we note that their estimation procedure can incorporate any nonparametric or machine learning mod-
els into the calibration constraints, which is used for a further investigation. In addition to ȳCH (∗∗∗∗) , we consider
the following models in estimation:
– ȳCH :CM (∗ ∗ ∗∗) : The cell mean model (6) assumed for the response probability, where we use all the six ex-

planatory variables (x1, x2, x3, z1, z2, z3) and construct 9 cells based on the random forest classification for pi .
Using a larger number of cells does not bring any significant difference.

– ȳCH :RF (∗ ∗ ∗∗) : A random forest on (x , y ) used for the outcome variable.
– ȳCH :RF CM (∗ ∗ ∗∗) : Both the cell mean model (6) and random forest on (x , y ) are added to the calibration

constraints.
6. ȳSRBEL : We compute our proposed estimator (11) with three outcome models, m (x ; β ) , m (z ; β̃ ) and a random

forest on (x , y ) , and the response cells are constructed in the same way as in ȳCH . We apply the Monte Carlo
RB method with K = 50 and a 50-50 random split between s (k )1 and s (k )2 in sr for k = 1, . . . ,K .

In Scenario 2, we generate 1,000 finite populations of size N = 10, 000 as in Scenario 1 except that we now use
yi = 5 + 1.5x1i − 2x22i + x3i + ϵi , and pr(δi = 0 | xi ) = 1 − Φ (−1.5 + 0.2x1i + 0.7x2i + 0.25x3i ) , where Φ ( ·) denotes the
standard normal cumulative distribution function. Note that none of the six models, p (z ;α) , p (z ; α̃) , the cell mean
model, m (x ; β ) , m (z ; β̃ ) and the random forest, are correctly specified.

Table 1 presents the Monte Carlo biases, standard errors, and root mean squared errors of the estimators of θN
under both the scenarios. In Scenario 1 where m (x ; β ) and p (x ;α) are true models for y and δ , the multiply robust
estimators based on the four parametric models except for ȳCH (0101) , show negligible biases, since at least one of the
outcome and response probabilitymodels is correctly specified. ȳCH :CM (1000) alsoworkswell since the true outcome
model is used, while ȳCH :RF (0010) shows a lower efficiency with a small increase in bias in spite of using the correct
response probability model. Note that ȳCH :RF CM (1100) is the most comparable estimator to our proposed estimator
ȳCH :RF CM in a sense that both use the three outcome models and one cell mean response model for estimation.
We can see that our proposed estimator is more efficient than ȳCH :RF CM . Comparing between ȳCH :RF CM (1111)
and ȳCH (1111) , adding the random forest and cell mean model into the calibration constraints does not bring any
improvement in both efficiency and bias reduction.

In Scenario 2, none of working OR or RP model is correctly specified. As expected, all of theMR estimators based
on the four parametric models (ȳCH ) have large biases. However, either using the cell mean responsemodel or random
forest for the outcome, as in ȳCH :CM (1000) , ȳCH :CM (0100) , ȳCH :RF (0010) , and ȳCH :RF (0001) , greatly reduced the
biases observed from ȳCH (∗ ∗ ∗∗) . Especially, ȳ ∗

CH :RF CM (1100) and ȳCH :RF CM (1111) show negligible biases, but the
proposed estimator is seen to achieve the best performance in both efficiency and bias.

All the estimators considered in the simulations can perform reasonably, provided one builds good OR and RP
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TABLE 1 Monte Carlo root mean squared errors (RMSE), standard errors and biases of the several estimators of
θN based on 1,000 Monte Carlo samples

Estimator Scenario 1 Scenario 2

RMSE SE Bias RMSE SE Bias

ȳF ul l 0.787 0.787 0.028 0.480 0.480 0.020

ȳCH (1010) 0.790 0.789 0.028 1.125 0.538 -0.988

ȳCH (1001) 0.789 0.789 0.028 1.070 0.472 -0.960

ȳCH (0110) 0.801 0.799 0.053 1.096 0.580 -0.930

ȳCH (0101) 0.783 0.717 0.315 1.334 0.912 -0.974

ȳCH (1111) 0.790 0.789 0.029 1.586 0.943 -1.275

ȳCH :CM (1000) 0.791 0.790 0.027 0.444 0.321 -0.306

ȳCH :CM (0100) 0.817 0.777 0.252 0.330 0.295 -0.146

ȳCH :RF (0010) 0.888 0.878 0.128 0.517 0.511 -0.079

ȳCH :RF (0001) 0.897 0.885 0.143 0.542 0.523 -0.142

ȳCH :RF CM (0000) 0.889 0.875 0.158 0.511 0.504 -0.082

ȳ ∗
CH :RF CM (1100) 0.880 0.867 0.150 0.517 0.516 -0.034

ȳCH :RF CM (1111) 0.885 0.876 0.129 0.513 0.511 -0.046

ȳSRBEL 0.788 0.788 0.028 0.484 0.484 -0.020

RMSE, Root mean squared error; SE, Standard error.
ȳ ∗
CH :RF CM (1100) is most comparable to ȳpr oposed , in a sense that the same candidate

models (three outcome models and cell mean response model) are used.

models to start with, as seen from Scenario 1. The problem is that this may be difficult to achieve in practice, at
least when restricting to the models most commonly applied in survey sampling, or when there are a large number of
covariates to work with. Although the models used by the SRB-EL estimator are not fined-tuned manually, gains are
readily obtained by allowing for more flexible models such as random forest that do not require too much fine-tuning
to be reasonable, now that the SRB method allows one to move freely beyond familiar parametric models.

Finally, we have calculated the relative bias (RB) of the proposed variance estimator, V̂SRBEL , in Proposition 2, as
follows.

RB (%) = EMC (V̂SRBEL ) − varMC ( ȳSRBEL )
varMC ( ȳSRBEL )

× 100,

where EMC ( ·) and varMC ( ·) denote theMonte Carlo mean and variance, respectively. We also calculate the coverage
rate of a normal confidence interval with our proposed variance estimator, ȳSRBEL ± zα/2V̂ 1/2

SRBEL
, where zα/2 denotes

the upper (1 − α/2) critical value for the standard normal distribution and α = 0.05. As can be seen from Table 2, the
proposed variance estimator performs as intended.
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TABLE 2 Relative bias (RB) and coverage rate (%) of the proposed variance estimator (V̂ ) of the SRB-EL estimator
with the random-forest cell formation under two scenarios based on 1,000 Monte Carlo samples

Estimator Scenario VE MC Var RB(%) CR(%)

ȳSRBEL
1 0.616 0.621 -0.80 94.5

2 0.228 0.234 -2.36 94.3

VE, Variance estimate; MCVar, Monte Carlo variance; RB, Relative
Bias; CR, Coverage rate.

6 | CONCLUDING REMARKS

We propose a new class of robust quasi-randomisation-based estimators, where multiple working models for the out-
come can be any semiparametric, nonparametric or machine learning models, while a cell mean model is used for
the response probability, which as well can be formed with the help of one or several RP models. Multiple outcome
models are learned from a random subsample of the respondents, and the prediction errors unexplained by the out-
come models are observed from the hold-out subsample of the respondents and projected to the non-respondents
under the cell mean response probability model. The resulting estimator is unbiased given cell-homogenous response,
regardless of any working outcome models and misspecification of the predictors. The proposed algorithm of Monte
Carlo RB is easy to implement. The unbiased variance estimation formula is provided, which does not require any
replicate jackknife or bootstrap methods.

The theoretical properties of the proposed estimators and variance estimation formulas are derived for a fixed
finite population. If we consider superpopulation inference, our proposed estimators can become doubly and multiply
robust estimators, in the sense that if one of multiple outcomemodels and cell RPmodel is correctly specified, the pro-
posed estimators would be consistent, with suitable regularity conditions for random vectors (x , y ) and for working
outcome models µm (x ; ·) . In this case, variance estimation can be developed asymptotically. Establishing such doubly
and multiply robustness from our proposed estimator and asymptotic variance estimation under a superpopulation
model will be further studied, particularly when machine learning models are allowed.

This study suggests other future work related to the methodology. Finding optimal cell formation in the cell
mean model is an area for future work. Although the cell mean model for the response probability works well in our
limited simulations, it can be relaxed for further improvement. Ongoing research involves a general modeling for the
response probability in multiply robust estimation based on statistical learning. Extension to high-dimensional and/or
multivariate data are also interesting research topics.
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APPENDIX A. Proofs

Proof of Lemma 1.

E (θ̂ (1) | s) = Er {Eq (θ̂ (1) | s, sr ) | s } = E1 {E2 (θ̂ (1) | s, s1) | s }

= E


∑
i ∈s1

wi yi +
G∑
g=1

∑
i ∈(s\s1 )g

wi (µ (xi ; s1) + e i )

������s


= E


∑
i ∈s1

wi yi +
G∑
g=1

∑
i ∈(s\s1 )g

wi yi

������s


= E


G∑
g=1

∑
i ∈sg

wi yi

������s
 =

∑
i ∈s
wi yi .

Proof of Theorem 1. By using Lemma 1 and the IID construction of {θ̂ (k ) : k = 1, . . . ,K }, we have

E (θ̂SRB ) =
1

K

K∑
k=1

E
{
E (θ̂ (k ) | s)

}
=

1

K

K∑
k=1

E

(∑
i ∈s
wi yi

)
= θN .

For the variance of θ̂, we have

var(θ̂SRB ) = var{Eq (θ̂SRB | s, sr ) } + E {varq (θ̂SRB | s, sr ) }

= var(θ̂∗SRB ) + E {varq (θ̂SRB | s, sr ) }

= var
(∑
i ∈s
wi yi

)
+ E {var(θ̂∗SRB | s) } + E {varq (θ̂SRB | s, sr ) },

where θ̂∗
SRB

= Eq (θ̂ (1) | s, sr ) , and the third equality holds because var(θ̂∗SRB ) = var{E (θ̂∗
SRB

| s) } +E {var(θ̂∗
SRB

| s) }
and by Lemma 1.

Note that

var(θ̂∗SRB | s) = var(θ̂ (1) | s) − E {varq (θ̂ (1) | s, sr ) | s }

and

var(θ̂ (1) | s) = E {var2 (θ̂ (1) | s, s1) | s } +V {E2 (θ̂ (1) | s, s1) | s } = E {var2 (θ̂ (1) | s, s1) | s },

therefore, the variance result in Theorem 1 follows.

Proof of Theorem 2.

E (V̂ 1) = E {E (V̂ 1 | s1, s) } = E

∑
i ∈s

∑
j ∈s

πi j − πi πj
πi j

yi
πi

yj

πj

 = var
(∑
i ∈s
wi yi

)
,
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where the second equality holds by the construction of p̂i j .

E (V̂ 2) = E {E (V̂ 2 | s1, s) }

= E


G∑
g=1

(ng − n1g )2

n2g

(
1 −

n2g

ng − n1g

)
1

(ng − n1g − 1)
∑

j ∈(s\s1 )g
(wj e j − ēw ,g )2

 ,
= E {var(θ̂ (1) | s1, s) },

where the second equality holds by the construction of p̂2g , for g = 1, . . . ,G . We can show that E (V̂ 3) = E {varq (θ̂ (1) |
s, sr ) } and E (V̂ 4) = E {varq (θ̂SRB | s, sr ) } due to the IID construction of {θ̂ (k ) : k = 1, . . . ,K }.

Proof of Proposition 1. By using the same argument as in the proof of Theorem 1, we have

var(θ̂SRBEL ) = var
(∑
i ∈s
wi yi

)
+ E {var(θ̂∗SRBEL | s) } + E {varq (θ̂SRBEL | s, sr ) },

where θ̂∗
SRBEL

= Eq (
∑M
m=1 a

(1)
m θ̂

(1)
m | s, sr ) =

∑M
m=1 pm θ̂

∗
m , θ̂∗m = Eq (θ̂ (1)m | s, sr ) and pm = Pr(am = 1 | s, sr ) . Since

var(θ̂∗SRBEL | s) = var
(
M∑
m=1

a
(1)
m θ̂

(1)
m | s

)
− E

{
varq

(
M∑
m=1

a
(1)
m θ̂

(1)
m | s, sr

)}
,

and

var
(
M∑
m=1

a
(1)
m θ̂

(1)
m | s

)
= E

{
var

(
M∑
m=1

a
(1)
m θ̂

(1)
m | s, s1, a

)
| s

}
+ var

{
E

(
M∑
m=1

a
(1)
m θ̂

(1)
m | s, s1, a

)
| s

)
= E

{
var

(
M∑
m=1

a
(1)
m θ̂

(1)
m | s, s1, a

)
| s

}
,

where a = (a (1)1 , . . . , a
(1)
M

)T , the variance result in the proposition follows.
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