[image: image282.jpg]



0000
Journal of Mechanical Science and Technology 00 (0) (2022)

Y.F. Wu et al. / Journal of Mechanical Science and Technology XX (2022) XXXX~XXXX

An optimization method for vibration suppression and energy dissipation of the axially moving string with hybrid nonclassical boundaries

Yuanfeng Wu1, Enwei Chen1 Neil. S Ferguson2, Yuteng He1, Haozheng Wei1, Yimin Lu1
1School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China; 2Institute of Sound and Vibration Research, University of Southampton, Southampton S017 1BJ, UK
(Received May 19th, 2022; Revised Oct 21st, 2022; Accepted Nov 21st, 2022) 

Keywords: Axially moving string; Nonclassical boundary; Bi-objective optimization design; Particle swarm optimization.
Correspondence to: Enwei Chen / cew723@163.com
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Abstract  The axially moving string model is widely used in engineering applications and is of great significance in research. In order to suppress the transverse vibration and facilitate energy dissipation of the axially moving string with nonclassical boundaries, a bi-objective optimization model and methodology are proposed for its boundary parameters’ design. First, an approximate numerical model for an axially moving string with a nonclassical boundary is established, which based on the finite element method (FEM) and Newmark-beta method. Then, a bi-objective model is proposed, including the average transverse vibration and the average system energy in a single traveling wave period, and a particle swarm optimization (BOPSO) algorithm is established for optimization. Finally, the proposed optimization model is applied in a numerical example, and the results are compared with NSGA-II, a multi-objective cuckoo search algorithm (MOCSA), and multi-objective flower pollination algorithm (MOFPA) to verify the feasibility of the proposed methodology.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Introduction

Axially moving systems, i.e., string, beam, conveyor belt, web, etc., play an important role in our life and modern industry, significantly contributing to promoting life quality and engineering development [1]. The axially moving string is considered the most fundamental and common model for axially moving systems, with a large volume of previous academic study [2]. Vital engineering devices, such as elevator and crane container systems, are typical applications of axially moving string models [3].

Since the 1950s, researchers have conducted extensive studies covering dynamics modeling methods of axially moving string systems [4]. Subsequently, numerous studies were performed, mainly focusing on different work conditions, materials and boundaries. Andrianov and Awrejcewicz [5] derived a governing equation of an axially moving string with time-varying velocity. Based on a varying-length string system, Zhu and Chen [6] investigated the forcing response of an elevator system. For a string comprising viscoelastic material, Chen [7] constructed its governing equation with the Boltzmann superposition law. More recently, Sorokin [8] studied the effect of viscous dampers on the dynamics of an axially moving non-uniform string with spatially periodically varying mass. Regarding a particular nonclassical boundary condition, Gaiko and van Horssen [9] investigated the low-frequency vibration of the axially moving string with a damper-spring-mass boundary. They also studied the vibrations of an elevator cable with a swayed boundary [10]. Based on an actuator at one boundary, the boundary control of an axially moving string is studied by Kim et al [11]. Lee et al. [12] studied the vibration characteristics of axially moving beam using the transfer matrix method. Moreover, the response of free oscillation with similar nonclassical hybrid boundaries was also studied by Chen et al. [13].

In terms of modeling methods, it can be divided into either approximate or analytical methods. Currently, approximate methods are widely employed to address the response of an axially moving string, wherein the Galerkin discretization method is a common choice [3]. For example, Chen et al. 
 ADDIN EN.CITE 
[14,15]
 adopted Galerkin truncation to study the vibration of the viscoelastic moving string as well as chaos and bifurcation phenomena. Yang et al. [16] analyzed the nonlinear vibration of an axially moving string using gyroscopic complex modes based on the Galerkin truncation and perturbation approach. Furthermore, some other approximate methods are introduced in this system, wherein the finite element method (FEM) is typical. Fung et al. [17] first applied FEM to solve the transverse vibration of a string with time-varying length, and Yao et al. [18] presented a hybrid Laplace transform/FEM for the same problem. Subsequently, Chen et al. 
 ADDIN EN.CITE 
[19,20]
 studied energy dissipation of the vibration of an axially moving string with simple and viscous damper boundaries using FEM. In addition to approximate methods, analytical methods have been recently employed. For instance, Chen et al. 
 ADDIN EN.CITE 
[21,22]
 developed a time-domain reflected wave superposition method to analyze energy dissipation and transverse vibration response of different nonclassical boundaries.

From the review above, the previous research mainly focused on complicated or hybrid boundary conditions, which are more complex than the simple fixed-support boundary condition. Most papers provide profound studies on the dynamic behavior in the dynamic analysis process. Nevertheless, few studies aim to explore the proper parameters configuration of hybrid boundaries for vibration suppression and energy dissipation, and it is a valuable issue. As a powerful tool for optimization, the intelligent evolution algorithm has been widely used in recent engineering design and industry [23]. To the best of the authors’ knowledge, no research has been conducted combining an intelligent algorithm applied to the axially moving string problem to determine the optimal parameter of the hybrid boundaries.
Compared with the approximate methods, an analytical method, e.g., the reflected wave superposition method, is more accurate. For the latter, though, once the boundary conditions change, its complicated dynamical model should be rederived; moreover, its computation efficiency is lower than that of the approximate method. In this paper, a method combining particle swarm optimization (PSO) and FEM is used to explore and determine the proper parameter setting for vibration suppression and energy dissipation.

The rest of the paper is organized as follows. In Section 2, an approximate numerical method based on FEM and Newmark-beta method and a bi-objective model is developed to measure the vibration and energy dissipation degree. In Section 3, an improved bi-objective particle swarm optimization (BOPSO) is represented and combined with the model mentioned above to establish a bi-objective optimization model. The feasibility of the proposed model and the performance of the BOPSO are verified in Section 4. Section 5 introduces the overall conclusions and future work.

2. A numerical modeling method for vibration suppression and energy dissipation 

2.1 Numerical modeling of axially moving string
In practice, the boundary of the moving string may not be the simple fixed-fixed case. Typically, the complicated operating condition could be represented by a hybrid boundary comprising damping, mass, and spring. In this paper, a typical model with nonclassical boundary 
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represent the attached damping, mass, and stiffness at the right-side terminal. Besides, we suppose boundary mass m0, spring k0, and damping c0 do not have other properties. For instance, the damping c0 is regarded as a zero-mass and zero-stiffness damper.
To simplify the approximate model, the following classical assumptions are considered 
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: (a) The transverse vibration 
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Fig. 1. The schematic of an axially moving string with nonclassical hybrid boundary
For the system shown in Fig. 1, we suppose that the lumped mass 
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 is initially at the equilibrium position, and its kinetic energy Ek and potential energy Ep are denoted in Eqs. (1)-(2).
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where 
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 denote the partial derivatives of the transverse displacement 
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, respectively. Discretizing the string model by FEM, the transverse displacement of the 
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-th element of the string can be approximated as shown in Eqs. (3)-(5):
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where 
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 is the shape function of the 
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-th element 
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In particular, for the node vector 
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where Ek,i and Ep,i are the kinetic energy and potential energy of the 
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-th element, respectively; 
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 is the nonlinear term of which the expressions are given in Eq. (7).

Based on the Lagrangian function, e.g., Eq. (8), the approximate model for element 
[image: image46.wmf]i

 can be derived as denoted in Eqs. (9)-(10):
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where 
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. Note that the superscript “ ' ” represents the derivatives with respect to time. For the last node vector 
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, according to the right boundary, we substitute Eqs. (1)-(2) into Eq. (11),
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where 
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 is the nonconservative force acting on the 
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-th node, and obtain 
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The governing equation has been transformed into an ordinary differential equation using the FEM approach, which is only related to time 
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 and is independent of the axial coordinate 
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. Combining with Eq. (9) of each element, the governing equation (see Eq. (13)) of local coordinate 
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where 
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, namely the approximate transverse vibration of an axially moving string with nonclassical fixed-damper_spring_mass boundary, and its nonlinear term 
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For simplicity, when the nonlinear terms are small, i.e., considering assumptions (a) and (b), the linear model can be used as follows [19]:
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Then, based on the improved Newmark-beta method [19], an approximate model of the axially moving string system, incorporating the approximate discrete model and numerical method of an axially moving string, is established, and the vibration response of any time interval can be calculated.
2.2 The bi-objective model of the axially moving string system
For a linear model in Eq. (16), the traveling wave period 
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 for an axially moving string means the minimum time to return its initial deflection shape, and the mathematical formulation of traveling wave period 
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 is given in Eq. (17) [21].
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In this subsection, two indicators in 
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, namely the average vibration magnitude (
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) and average energy (
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) for the system indicators, are established to evaluate the system's vibration suppression and energy dissipation in a traveling wave period 
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(1) The average vibration magnitude in 
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. The transverse vibration is a significant factor impacting the smoothness and stability of the axial movement, particularly in precision machinery and other industrial applications [3]. Hence, an indicator used to measure the vibration suppression ability is developed, as expressed in Eq. (18),
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where 
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A

 is the vibration magnitude of the initial defection shape. Eq. (18) means the average transverse vibration magnitude of the axially moving string in the traveling wave period 
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, which can be calculated by the approximate model in Section 2.1.

(2) The average energy in 
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. The energy of transverse motion is also a critical factor influencing the stability of the string. The modal coordinate system evaluation method was adopted to study the energy caused by transverse vibration of the linear model (see Eq. (16)) as reported in the literature 
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where 
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 are modal mass matrix and modal stiffness matrix, and the average energy index can be denoted in Eq. (21).
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where E(0)= Ek(0)+Ep(0) is the system’s initial energy at 
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Finally, the two objectives above are converted into a minimization requirement for optimization, as denoted in Eq. (22),
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3. The bi-objective optimization modeling based on particle swarm optimization
This section introduces a bi-objective optimization model based on improved bi-objective PSO (BOPSO) in Sections 3.2 and 3.3. PSO, a well-known meta-heuristic algorithm, has been widely used in optimization algorithms due to its excellent performance in numerous optimization problems. It has desirable characteristics, such as fewer control parameters and easy implementation [24], and is adopted herein.
3.1 Bi-objective optimizer and hypervolume indicator
The multi-objective optimization aims to find a solution X=[x1,…,xp] from the feasible domain 
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where X=[x1,…,xp] is the feasible solution composed of p design variables, and 
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is the objective vector consisting of s objectives of the feasible solution
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Some scholars rank the objective and compare each objective one by one throughout the optimization process, i.e., the lexicographical method [23]. Furthermore, some studies are based on dimensionless parameters and weighting to transform multi-objective into a single objective function 
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[25,26]
. However, it is difficult to remove the unit among the different objective functions and optimize all the objectives to reach the best value simultaneously due to the conflict of each objective. Once the importance of each objective changes, the optimization procedure should be re-implemented.

In addition, the Pareto-dominated relationship is widely used for solution comparison, which treats each objective fairly in the optimization process. For instance, if the solutions 
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wherein 
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 is the number of objective functions, 
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 is the feasible domain.
To evaluate the quality of each solution, two indicators, the crowd distance metric (CDM) and Pareto rank (PR), were developed by Deb et al. [27], which is the core of the tournament selection mechanism. The CDM of 
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Nevertheless, this procedure cannot measure the quality of the Pareto front. Here, the hypervolume indicator [28] is chosen as a performance metric measuring the quality of the Pareto non-dominated set, and it does not require the real Pareto front in advance, which can be expressed in Eq. (29) [29]:
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where the 
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3.2 Particle behavior and neighbor searching operator
In the PSO algorithm, each position is a feasible solution associated with a particle. A particle can alter its velocity to a better position by sharing with other particles. A particle explores its position 
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 by changing the velocity 
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The velocity and solution updating of the (k+1)-th iteration can be represented as follows:
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where 
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 is the optimal solution of particle swarm of the kth iteration. Note that the value ranges of 
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In order to diversify the solution searching process, the two-point crossover operator and one-point crossover operator of genetic algorithm based on binary encoding and decoding technique are adopted in velocity updating, in which the symbol “(” is the crossover operator. Before introducing two kinds of crossover operators, the binary encoding and decoding mechanism is presented. Take a design variable 
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Step 1. Determine the value range 
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Step 3. Calculate the corresponding decimal number 
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Step 4. Convert the decimal-coded 
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 to binary-coded, and obtain a binary sequence 
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Fig. 2. The schematic of two-point crossover operator and one-point crossover mechanism of the first design variable, i.e. 
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: (a) one-point crossover operator and (b) two-point crossover operator.
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=6), are taken as two feasible solutions, and a crossover operator is determined randomly. Then, the design variable 
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 can be transformed into two binary-coded sequences. Finally, the shown crossover procedure will be executed according to the randomly generated crossover points.
3.3 Improved bi-objective particle swarm optimization
To handle bi-objective optimization and obtain more Pareto solutions, this paper combines the PSO algorithm with multi-objective processing methods and preserves all Pareto non-inferior solutions in the optimization process. The termination condition of the algorithm is to reach the maximum number of iterations. The basic framework of the proposed improved bi-objective PSO (BOPSO) is illustrated in Fig. 3, and the detailed steps are as demonstrated in this subsection.
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Fig. 3. The flowchart of the proposed improved hybrid PSO algorithm
Step 1: Initialize PSO parameters, including iteration limit 
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Step 2: According to the range of each variable, generate the particle swarm randomly and obtain the initialized particles’ position 
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Step 3: Update 
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4. Numerical Simulations

In this section, in order to verify the practicality and the performance of the proposed methodology, including the approximate model and bi-objective optimization model, the initial displacement conditions and some necessary parameters of the string model are described by Eq. (32) [19] and Table 1.
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Table 1. The parameters of the axially moving string
	Parameters
	Values
	Parameters
	Values

	l
	3 m
	Δt
	Ttw/500

	T0
	10 N
	A0
	0.01 m

	v0
	0.2·c
	EA
	3.2×104 N

	ρ
	0.4 kg·m-1
	
	


4.1 Numerical results and performance comparison of the methods
Three classical Pareto-based multi-objective optimization methods are introduced for comparison, i.e., NSGA-II 
 ADDIN EN.CITE 
[27,30]
, MOCSA [31], and MOFPA [32], to illustrate the optimization performance of BOPSO. We set the scope of three design variables, i.e., 
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, respectively. The number of the total elements of the discretized string 
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 is 20 by referring [20]. And the numerical results retain four decimal places. The initial parameters of BOPSO are set as follows: iteration limit of each run 
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. The transcoding process is accurate to four decimal places. The swarm size and iteration limit of NSGA-II, MOCSA, and MOFPA are also set the same values as aforementioned. Based on the model introduced in Section 2, the response of each time step at a traveling wave period and two objective functions in Section 3.1 can be calculated. To measure the quality of the Pareto solutions obtained by each algorithm, the reference point 
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 of hypervolume is set as (3,3).
[image: image233.png]Hypervolume

6.4

5.2

=—©O— NSGA-II

—tt—= MOCSA
- B = MOFPA
i BOPSO

10

15
Trial Iteration

20

25

30




Fig. 4. The hypervolume values of the listed methods for 30 trial iterations
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Fig. 5. The iterative convergence of the four optimization methods
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Fig. 6. The iterative convergence of the four optimization methods
Table 2. The computation time of each optimization method
	Method
	The computation time 

	
	Min
	max
	avg

	MOCSA
	3337.64
	3430.89
	3392.76

	NSGA-II
	1823.06
	1859.87
	1846.64

	MOFPA
	2411.85
	2440.84
	2422.95

	BOPSO
	2033.60
	2086.25
	2063.89


Each optimization method ran 30 times independently, and the hypervolumes of the Pareto front obtained by the corresponding optimization method are shown in Fig. 4. The optimization was programmed on Matlab 2021a and performed on a 3.8GHz CPU, AMD Ryzen 7 5800X, with 16 GB RAM. It can be observed that the maximum hypervolume of NSGA-II, MOCSA, MOFPA, and BOPSO are 6.25497, 6.18482, 6.21909, and 6.26011, respectively, and the optimization result of BOPSO is stable instead of changing severely. Then, the box plot is used for optimization performance stability analysis, and hypervolumes of 30 trials are depicted in Fig. 5. By removing outliers, the best optimization results of each optimization method remain unchanged, and BOPSO obtained the best hypervolume value. It is evident that the five critical points of BOPSO in the box plot are better than any other compared method and the hypervolume range of BOPSO is the smallest among these approaches, as shown in Fig. 5, proving that the proposed BOPSO produces the best optimization stability. Besides, the computation time of the trial iteration of each optimization time is listed in Table 2. It reveals that BOPSO is inferior to NSGA-II but better than MOFPA and MOCSA. However, it is still a stable and high-quality optimization method in terms of optimization performance, as in the above analysis.
As the four algorithms achieve the maximum hypervolume, the results are used to analyze the convergence speed for each algorithm, as shown in Fig. 6. It can be found that BOPSO and NSGA-II have the fastest convergence rate concerning hypervolume, and BOPSO also achieves the best hypervolume value. The numbers of iterations required by the four methods to converge are 31, 32, 75, 81 for NSGA-II, BOPSO, MOCSA, and MOFPA, respectively. From the above analysis, whether in the optimization quality and stability or the detailed optimization process, BOPSO has the best performance.
Table 3. The Pareto frontier of the four algorithms
	Method
	Solution
	f1
	f2
	Method
	Solution
	f1
	f2

	MOCSA
	1
	0.79468
	0.25987
	MOFPA
	1
	0.73419
	0.25327

	
	2
	0.76501
	0.26290
	
	2
	0.75869
	0.25203

	
	3
	0.77191
	0.26001
	
	3
	0.74689
	0.25243

	
	4
	0.76322
	0.26305
	
	4
	0.73452
	0.25287

	NSGA-II
	1
	0.72498
	0.25134
	BOPSO
	1
	0.72320
	0.25162

	
	2
	0.72535
	0.25098
	
	2
	0.72481
	0.25097

	
	3
	0.72465
	0.25136
	
	3
	0.72332
	0.25121

	
	4
	0.72514
	0.25130
	
	4
	0.72391
	0.25105

	
	5
	0.72526
	0.25125
	
	5
	0.72767
	0.25081

	
	
	
	
	
	6
	0.72323
	0.25141


Table 4. The parameter design results
	Method
	Solution
	c0
	k0
	m0
	Method
	Solution
	c0
	k0
	m0

	MOCSA
	1
	2.14174
	1.02387
	0.00738
	MOFPA
	1
	1.97865
	0.17612
	0.00376

	
	2
	2.01443
	0.76254
	0.02270
	
	2
	1.84749
	0.00511
	0.0007

	
	3
	1.92331
	0.67178
	0.01472
	
	3
	1.9282
	0.1879
	0.00201

	
	4
	1.98360
	0.73196
	0.02503
	
	4
	1.95158
	0.06041
	0.00306

	NSGA-II
	1
	2
	0.037
	0.001
	BOPSO
	1
	1.98465
	0.00658
	0.00112

	
	2
	2
	0.05
	0.001
	
	2
	1.98162
	0.00827
	0.00043

	
	3
	2.001
	0.032
	0.001
	
	3
	1.98751
	0.00245
	0.00111

	
	4
	1.995
	0.037
	0.001
	
	4
	1.9876
	0.00999
	0.00084

	
	5
	1.995
	0.033
	0.001
	
	5
	1.98119
	0.00756
	0.00018

	
	
	
	
	
	
	6
	1.9819
	0.01739
	0.00112


Table 5. The optimization results of each objective function

	Method
	The average vibration (f1)
	The average energy (f2)

	
	min
	max
	avg
	min
	max
	avg

	MOCSA
	0.76322
	0.79468
	0.77371
	0.25987
	0.26305
	0.26146

	NSGA-II
	0.72465
	0.72535
	0.72508
	0.25098
	0.25136
	0.25125

	MOFPA
	0.73419
	0.75869
	0.74357
	0.25203
	0.25327
	0.25265

	BOPSO
	0.72320
	0.72767
	0.72436
	0.25081
	0.25141
	0.25118
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Fig. 7. The Pareto front of the four methods
Table 3 and Fig. 7 show the Pareto frontiers of the best hypervolume of each method. As shown in Fig. 7, the Pareto non-dominated solutions obtained by BOPSO have distributed results outside worse using NSGA-II, i.e., it occupies a higher Pareto rank and dominates that of NSGA-II according to the dominance concept introduced in Section 3.1. Table 4 shows the corresponding design results. Table 5 compares the results of the best Pareto front of each method in Fig. 7. Concerning the average of 
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, compared with BOPSO, the solution obtained by MOCSA, NSGA-II, and MOFPA increased by 6.813%, 0.198%, and 2.652%. It means that the Pareto optimization results on the average vibration magnitude using BOPSO are better than that of the other methods. A similar effect also occurs on the average energy, decreasing the string’s vibration and facilitating the energy dissipation in a traveling wave period.

In all, no matter the performance comparison evaluated by hypervolume or the overall optimization effect of each objective function, BOPSO has the most stable optimization performance and the best optimization result for the two objective functions.
4.2 Selection choice of the Pareto front and sensitivity analysis
However, due to the conflict of each objective function, it is almost impossible to achieve the best value of all the objectives, and one improvement may worsen other objectives. Based on Pareto non-dominated relationship, a preference will not be introduced into the optimization process. Still, it is necessary to compromise on each objective for choosing the solution from the Pareto front. As a well-known decision-making method, the analytical hierarchy process (AHP) balances the different objectives for decision-making, and it is chosen here. AHP can be conducted in the following steps [33]: (1) select dimensionless quantities for the unit of each objective; (2) judge the importance of each objective function and set weighting coefficients 
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; (3) integrate the multi-objective functions into a single objective by weighting.
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Eq. (33) expresses the weighted objective of a possible vector Xj, where 
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 are the maximum and minimum of 
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=0.0008 kg. A sensitivity test was carried out to test the optimization performance of each boundary parameter design, i.e., changing one parameter value while the other two parameters kept the obtained optimized values. The result is shown in Fig. 8.
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Fig. 8. The sensitivity test of the objective function to each design variable: (a) 
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As shown in Fig. 8, the influence of 
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 occurs in a similar situation with a slower rate, which means that 
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 reaches the approximate optimal value for an elastic spring and mass equal to 
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. In Fig. 8(b) and (c), it can be found that both 
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 increase continuously with the increased stiffness and mass at the right-side boundary, which indicates that the result obtained by the optimization method previously has a good performance in terms of stiffness and mass optimization, respectively. Due to the small value of 
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=0.25111. In addition, the results of the optimal damper in related literature [22] are compared, which are equal to 
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=0.25152. The results obtained are dominated by the BOPSO selected solution, which suggests that the effect of spring and mass does not exert a purely negative influence on the optimization of 
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.
5. Conclusions

Since many engineering devices are the actual applications of axially moving systems, it is of great significance to study the dynamic behavior of this model. For a specific boundary model, this work mainly focused on a nonclassical hybrid boundary parameters design for vibration suppression and energy dissipation using BOPSO. The main contributions and novelties are as follows:

1. To solve the response at any time in a traveling wave period, the approximate mathematical model based on FEM and Newmark-beta method was established. On this basis, the bi-objective model was constructed for design variable optimization in terms of energy dissipation and vibration suppression.
2. An improved bi-objective optimization model based on particle swarm optimization was proposed for design variable configuration optimization, combining Pareto non-dominated relationship, and binary-coded crossover operator of genetic algorithm.

3. To verify the practicality and superiority of the proposed model and method, a numerical optimization simulation was conducted. The result demonstrates that the proposed methodology can reduce the average vibration, facilitate energy dissipation and perform better than three well-known algorithms in optimization.

Although the effectiveness of the proposed methodology has been verified, some limitations still exist. In this paper, free vibration is discussed, and forced vibration can be studied in the future. In addition, other nonclassical boundaries can be considered for research.
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