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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Physical Sciences

Thesis for the degree of Doctor of Philosophy

UNRAVELING THE MYSTERIES OF SPACETIME: HOLOGRAPHIC CODES
AND GRAVITATIONAL LENSING

by Charlie Woodward

The fabric of spacetime is the underlying structure embedding the entirety of the observable
phenomena in our universe and though it has been studied in significant detail, many mysteries
remain. This thesis is dedicated to studying two particular topics that arose from explorations
into the nature of spacetime and is correspondingly separated into two distinct parts, namely
holographic quantum error-correcting codes and gravitational microlensing.

The first part of this thesis concerns itself with the suggestion that spacetime is not
fundamental but rather an emergent concept. According to the holographic principle, the
fundamental degrees of freedom of a bulk spacetime are encoded on its boundary surface,
which is of one dimension lower than the bulk. The AdS/CFT correspondence is the most
explicit realisation of the holographic principle, forming a unique framework in which one can
use concepts and techniques arising in quantum information theory to study quantum gravity.
Holographic properties have been vastly explored through the novel use of tensor networks,
which can be interpreted as encoders for quantum error-correcting codes. We focus our
attention on the study of codes associated with holographic geometries living in higher
dimensions, constructing stabiliser codes that are analogues of the famous HaPPY code [1].
We do so by considering both absolutely maximally entangled (AME) and non-AME codes
noting that discrete symmetries of the polytope are always broken for AME codes in
dimensions higher than two. We also explore alternate constructions of stabiliser codes for
hyperbolic spaces in which the we associate the logical information with the boundary.

The second part of this thesis involves gravitational lensing, the observed astrophysical
phenomena involving the propagation of light through a specific background spacetime,
governed by its null geodesic equations. Utilising the expansions presented in [2], we consider
gravitational lensing by a rotating, compact object (i.e an object described by the Kerr
metric) in the weak deflection limit, thus assuming large astrophysical separations. We present
magnification curves using point-source models for numerous geometrical configurations
involving different inclinations and spins. Throughout this analysis, we discuss the plethora of
applications that arise in both astrophysics and fundamental theory before introducing a more
realistic model adjusted for the inclusion of extended sources with limb-darkening effects.
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Preface

Introduction

At its heart, theoretical physics is the elegant blend of the lucrative fields of mathematics
and physics, perfectly epitomised by the following two quotes:

‘The most beautiful thing we can experience is the mysterious. It is the source of all
true art and science.’ - Albert Einstein

‘Scientists have become the bearers of the torch of discovery in our quest for knowledge.’
- Stephen W. Hawking

Understanding our universe at the most fundamental level and uncovering all of its
subtleties and secrets, stands at the forefront of every physicist’s aspirations. The last
decade has been particularly fruitful, constituting the discovery of the Higgs boson [4, 5],
the first detection of gravitational waves [6] and the emergence of the first images of the
event horizon of a black hole [7–12]. Indeed, it truly is a compelling time to be working
in the discipline.

This thesis is divided into two parts. In the first part we concern ourselves with a
particularly fascinating avenue of the holographic principle, elucidating its confluence with
ideas in quantum information theory, namely its natural interpretation in the language of
quantum error correcting codes. In the second part, we describe the curious phenomena
of gravitational lensing, incorporating rotating celestial objects such as Kerr black holes,
analysing the null geodesics from both an astrophysical perspective and the viewpoint of a
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2 Introduction

fundamental theorist. The underlying connection uniting these two exhilarating concepts
stems from the fundamental nature of spacetime itself, together with its many mystifying
properties and unique mathematical structure.

One of the considerable, outstanding problems in theoretical physics stems from the
incompatibility of gravity and the realm of quantum mechanics. Unifying the strong and
weak nuclear forces, electromagnetism and gravity into one consistent ‘theory of
everything’ remains an elusive dream, due to the persistence of the latter resisting
quantisation. Pursuits of achieving this unprecedented goal has led to the development
of numerous postulations that combine the four fundamental forces of our universe into a
single consistent theory, the leading candidate being string theory [13–15].

Due to the meticulous study of black holes, one of natures most mysterious objects,
throughout the 1970s [16–22], new insight was drawn from their quantum properties. The
interpretation of these findings led to the more radical prospect that spacetime itself is not
fundamental but rather that it emerges from quantum physics. The radical conjecture that
arose, appropriately deemed the holographic principle [23, 24], stated that the world is in
fact a hologram with the fundamental description living at its boundary. The holographic
principle was first realised Maldacena in the form of the AdS/CFT correspondence [25]
within string theory, providing a duality between a particular class of spacetimes and
conformal field theories.

The emergence of the bulk geometry from a field theory living at its boundary is an
astonishing aspect of the AdS/CFT correspondence, and over time, studying the various
aspects of entanglement entropy became an encouraging candidate to probe the
bulk [26–31]. The seminal work [32] sought to understand the emergence of locality in
the bulk, uncovering a new affinity in which the AdS/CFT correspondence can be
interpreted as a quantum error correcting code. This stimulating relationship was only
established recently, thus the field is subject to much ongoing work, however there have
been numerous innovative constructions of holographic codes [1, 33–38]; toy-models that
realise the AdS/CFT correspondence.

The perplexing phenomena describing the deflection of light rays in the presence of a
gravitational field, was first formally addressed by Einstein [39], prior to the development
of the full theory of general relativity [40]. Implementing the acclaimed equivalence
principle, he explicitly calculated the deflection angle, reproducing the formula from
Newtonian physics [41] which was later shown to be in quantitative agreement with the
experimental measurement [42]. While occasional research papers made reference to
gravitational lensing in the decades that followed [43–47], the field became somewhat
dormant, only receiving substantial attention in the 1960s [48–53]. Most notably, in the
invigorating studies [51, 52], the underlying equations describing gravitational lensing
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were derived and it was shown how one could utilise gravitational lensing in order to
determine Hubble’s constant.

However until 1979, gravitational lensing was viewed as an obscure subject to pursue
with no substantial experimental evidence. This outlook was altered dramatically when the
quasi-stellar object (or quasar) QSO 0957+561 became the first observed source to exhibit
gravitational lensing [54]. The two corresponding optical images A and B, with redshift
z ∼ 1.4, had an angular separation of around 6 arcseconds. This observation sparked a
new era in the gravitational lensing community and many further lensing systems were
consequently observed, kindling tremendous excitement in the research area, inspiring a
plethora of remarkable works [55–65].

Outline

Before beginning the discussion at a higher level of technicality, we briefly summarise the
organisation of the material within this thesis. In chapter 1, we begin by establishing
the holographic principle [23, 24], providing the motivation for its most well understood
realisation, the AdS/CFT conjecture [25], the central focus of this chapter. We discuss
the correspondence in both its original and most general form, constructing a precise
holographic dictionary [66,67] via the field-operator map, before articulating the key ideas
behind holographic renormalisation [68–71].

In chapter 2, we present all of the essential ingredients making up quantum
information theory [72] that have significant value in subsequent chapters. We illustrate
the concepts related to the unique phenomenon of quantum entanglement [73], providing
essential elaboration on the representation of quantum systems using tensor
networks [74, 75]. Further, we introduce the notion of quantum error correcting
codes [72,76,77], discussing their key properties, prior to introducing a particular class of
codes known as stabiliser codes [78].

Chapter 3 is devoted to bringing together the two major concepts introduced in the
first two chapters. This fascinating confluence between the AdS/CFT correspondence and
those appropriate branches of quantum information theory, encompass fresh concepts such
as holographic entanglement entropy [30, 31], the Ryu-Takayanagi conjecture [26, 27] and
holographic quantum error correcting codes [1, 32,79].

Chapter 4 of this thesis consists of the original research published in [80]. Here, we
initiate a systematic study of codes associated with holographic geometries in higher
dimensions, relating cellulations of the spatial sections of the geometries to stabiliser
codes. We construct analogues of the HaPPY code [1] for three-dimensional hyperbolic
space (AdS4), using both absolutely maximally entangled (AME) and non-AME codes.
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These codes are based on uniform regular tessellations of hyperbolic space but we note
that AME codes that preserve the discrete symmetry of the polytope of the tessellation
do not exist above two dimensions. We also explore different constructions of stabiliser
codes for hyperbolic spaces in which the logical information is associated with the
boundary and discuss their potential interpretation. We explain how our codes could be
applied to interesting classes of holographic dualities based on gravity-scalar theories
(such as JT gravity [81,82]) through toroidal reductions of hyperbolic spaces.

In chapter 5, we provide a comprehensive literature review of the various aspects of
gravitational lensing subsequently used in chapter 6. A general overview of lensing in the
Schwarzschild regime introduces this chapter, outlining the fundamental aspects of this
phenomena. This involves defining the lens equations [51, 83], deriving the deflection
angle [39] and summarising the notion of microlensing [84]. We then extend to a more
general situation, encapsulating the addition of spin, so that we have a rotating lens by
considering null geodesics in Kerr spacetime [2, 85–92]. We close this chapter by
commenting on how our work may relate to two extremely fascinating concepts with
regards to the fundamentals of spacetime, namely the fuzzball proposal [93–96] and the
Kerr/CFT correspondence [97,98].

Chapter 6 of this work consists of further original research that has yet to be
submitted for publication. After reviewing the parameter space constituting the weak
deflection limit and the introducing the analytic expansions first presented in [2, 88], we
investigate the importance of the spin asymmetry that arises in Kerr lensing for large
astrophysical separations. These effects are initially illustrated through study of the
point source magnification curves for various different spin and inclination configurations
and by drawing comparisons with the analogous Schwarzschild magnification curves.
Our analysis is then extended by considering spherical (finite) sources of uniform
brightness as well as cases involving limb darkening effects. We explain how our initial
model paves the way for future research that has rather interesting consequences, with
vast applications in both astrophysics and fundamental theory.



Part I

Holographic quantum error
correcting codes
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CHAPTER 1

The AdS/CFT correspondence

1.1 The holographic principle

The vital ingredient, underpinning many of the proposals within this work, is the highly
acclaimed anti-de Sitter/conformal field theory correspondence, commonly referred to as
the AdS/CFT correspondence [25]. This duality has shown concrete success in pursuits
to realise the holographic principle, a concept arising from the countless endeavours to
quantise gravity. The following section is dedicated to introducing the holographic
principle, discussing its origin and thus motivating the AdS/CFT correspondence. The
original arguments were presented by ’t Hooft [23] and Susskind [24], before the
enlightening review [99] was produced, covering the topic in remarkable depth whilst
providing a full list of references.

1.1.1 Black holes: The emergence of the holographic principle

Quantising gravity remains one of the great outstanding problems in theoretical physics.
However, attempts to understand this elusive puzzle, have proved useful nonetheless. In
most physical circumstances gravitational fields are weak, so a lack of understanding of
quantum gravity is not essential, however should one truly wish to reveal the characteristics
of quantum gravity, the natural place to investigate are situations where gravity proves
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to be strong. Strong gravity is known to prevail in circumstances where matter becomes
sufficiently dense resulting in the gravitational collapse of an astronomical object. As is
well known, black hole formation is a result of complete gravitational collapse, making the
study of black holes a prime candidate to uncover the mysteries of quantum gravity.

One of the most remarkable results in modern physics was uncovered in the 1970s,
when physicists began investigating these quantum properties of black holes. Black holes
were realised to be thermodynamical objects that both radiate thermally at a well-defined
temperature and carry entropy.

This discovery arose with Hawking’s area theorem, which illustrated that the area of
a black hole’s event horizon can never decrease, in analogy to the second law of
thermodynamics [16];

δSmatter ≥ 0 ←→ δAhorizon ≥ 0. (1.1.1)

Pushing this realisation further, four laws of black hole thermodynamics were hypothesised
[17] which consequently were speculated to be purely mathematical since black holes were
truly thought to be black (hence having no entropy or temperature). However a concern
arose: launching a thermodynamical system into the black hole would destroy entropy,
violating the second law of thermodynamics. Thus, Bekenstein [18–21] proposed that
black holes have an entropy, SBH , that is directly proportional to the area, Ahorizon, of the
event horizon,

SBH = kBAhorizon

4ld−2
P

= kBc
3Ahorizon

4ℏG(d) , (1.1.2)

where kB is the Boltzmann constant, lP = (ℏG(d)/c3)
1

d−2 is the d-dimensional Planck
length and G(d) is the Newtonian gravitational constant, differing according to the
dimension of the spacetime d. This entropy is famously known as the
Bekenstein-Hawking entropy. Furthermore, this led to the suggestion that SBH truly is a
thermodynamic quantity, leading to the emergence of the generalised second law of black
hole thermodynamics [18–20]: the sum of the entropy from other fields of matter Smatter

and the black hole entropy SBH can never decrease,

δStotal = δ(SBH + Smatter) ≥ 0. (1.1.3)

The thermodynamic characterisation of these extreme objects was clarified when
Hawking considered quantised fields in a classical black hole background. Describing
black holes in this semi-classical regime, it was discovered that black holes slowly emit
thermal radiation. Thus, they were not truly black at all [22]. In fact, the laws of black
hole mechanics were not solely a mathematical analogy to the laws of thermodynamics,
black holes were true thermodynamic systems. This emitted thermal radiation is
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Figure 1.1.1: The Carter-Penrose diagram depicting the formation of a black hole due
to the gravitational collapse of some spherically symmetric shell, with the future event
horizon denoted H+.

associated with the temperature
TH = ℏκ

2πkBc
, (1.1.4)

known as the Hawking temperature of a black hole, where κ is the surface gravity of the
horizon. For instance, the radiation emitted from a d = 4 Schwarzschild black hole has
Hawking temperature

TH = ℏc3

8πkBGM
. (1.1.5)

These astounding results inspired numerous proposals and insights into quantum gravity.
Firstly, the Bekenstein-Hawking entropy formula (1.1.2) can be used to argue that, for
some volume V with surface area A, the maximally entropic system is that of a black hole.
Consider a system undergoing gravitational collapse, evolving via an adiabatic process,
resulting in the formation of a black hole. For instance, consider some spherical shell with
area A collapsing into a black hole with horizon area A such as in figure 1.1.1. Of course,
since black holes are the densest objects in the universe and the area bounding the object
remains constant, the initial object must necessarily contain less energy than that of the
black hole. So by simply adding matter to this initial system, one achieves gravitational
collapse and the volume becomes filled by the black hole. Hence, in order to preserve the
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generalised second law, one must satisfy the spherical entropy bound [24]

Smatter ≤ SBH = A

4G. (1.1.6)

In other words, there are underlying constraints on how densely information can be
packed within an object 1. Compressing too much entropy into a sufficiently small region
would result in the system collapsing into a black hole. Therefore, (1.1.2) yields the
surprising yet crucial result; the maximal entropy of any static object is not related to
the volume as one may expect, but instead is related with the surface area. While (1.1.6)
has several shortcomings, such as the requirement the initial system is initially nearly
spherically symmetric, the more rigorous covariant entropy bound [100] rectifies these
issues. Moreover, it has been extensively proved valid in numerous instances and can be
used to derive the Bekenstein bound [101] in any isolated, weakly gravitating
system [102].

When considering quantum systems, it is well-known that the thermodynamic entropy,
S, of an isolated system and the dimension of the Hilbert space of the system, N , have
the following relation:

N = eS . (1.1.7)

Likewise, for any quantum mechanical system, the total number of degrees of freedom N

is defined to be the logarithm of the Hilbert space’s dimension,

N = logN . (1.1.8)

Since quantum field theory (QFT) is a local theory, a justifiable assumption is that the
number of degrees of freedom of a system scale with the volume of the system, N ∼ V , or
in other words, the Hilbert space of the system will consist of N = eV states.

Return to the aforementioned example in which we considered some system undergoing
evolution resulting in black hole formation. According to (1.1.2), the total number of
degrees of freedom for the final black hole system, bounded by some area A and filling a
volume V , is N = A/4G while the total number of states is N = eA/4G. Consequently,
the initial system will have a much larger Hilbert space (of dimension ∼ eV ) prior to the
collapse, leading to the total number of states being reduced, meaning any recovery of the
initial state will have been made impossible - undoubtedly a violation of unitarity. Thus,
insisting on preserving unitarity, one is left with the startling outcome that the dimension
of the Hilbert space was eA/4G from the very beginning.

1Note, to make the variables of interest more apparent, in (1.1.6) one uses units such that c = ℏ =
kB = 1, which will now be adopted for the remainder of this thesis.
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This intriguing phenomenon led to the proposal of the holographic principle by Susskind
and ’t Hooft [23,24]: Any theory of quantum gravity in a given region of spacetime should
be exactly equivalent to another theory living at the boundary of this region, since the
maximum entropy is proportional to the boundary area, as opposed to the volume. In
other words, any volume V bounded by some area A, is completely described by the
N = A/4G fundamental degrees of freedom encoded on the boundary surface A.

The holographic principle is frequently declared as a duality. In this language, the
holographic principle states:

Any quantum theory of gravity in a (d + 1)-dimensional spacetime
is dual (mathematically equivalent) to another theory without

gravity, in a spacetime with one less, non-compact dimension d.

This ‘holographic’ interpretation of gravitational theories indeed has a resemblance to
the concept of a hologram with regards to visual perception. There, the image is encoded
in some 2-dimensional surface, projected to appear in 3-dimensions. Before continuing
to the next section where we describe the most prevalent realisation of the holographic
principle, the AdS/CFT correspondence, we briefly describe some of the other implications
of black hole thermodynamics.

Firstly, due to the no-hair theorem, which states black holes are uniquely
characterised by their mass, charge and angular momentum, they cannot have classical
microstates. Therefore these microstates (1.1.7) that are closely associated with the
Bekenstein-Hawking entropy must stem from the full quantum theory of gravity.
Descriptions of certain classes of black holes viewed from a microscopic, unitary
quantum perspective have been provided from string theory. Further, Strominger and
Vafa [103] were able to successfully reproduce the Bekenstein-Hawking entropy for a
particular extremal, maximally supersymmetric black hole configuration. Though
numerous other classes of black holes have since been explicitly shown to satisfy the
Bekenstein-Hawking entropy, understanding the microstate structure of the
Schwarzschild black hole remains elusive.

The thermal radiation emitted by the black hole in the semiclassical regime arises from
the pair production and annihilation of virtual particles that populate the vacuum outside
the event horizon and is known as Hawking radiation [21, 22]. A heuristic description
of Hawking radiation is the view that one member of the entangled pair produced from
vacuum fluctuations falls into the black hole, while the other member escapes to infinity.
The existence of Hawking radiation results in the astonishing puzzle that is the black hole
information paradox [104]. From a quantum perspective this corresponds to a violation of
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unitarity, since an initial infalling pure state will be converted into a mixed (thermal) state.
Furthermore, when black hole evaporation eventually occurs, the information associated
to the infalling particles will be lost. A solution the black hole information paradox may
provide information about the underlying theory of quantum gravity. While there is no
general consensus for a resolution to this startling paradox, several different approaches
have been proposed. The most widely acknowledged include the fuzzball proposal [93–96],
the island proposal [105–109], as well as the concept of soft hair on black holes [110].

1.2 The AdS/CFT conjecture

As previously described, the most concrete realisation of the holographic principle arose
from string theory, first explored by Maldacena in his profoundly influential study [25].
In this section, after introducing anti-de Sitter spacetimes, we review the AdS5/CFT4

conjecture, the most studied example of the correspondence, which is a duality relating a
four-dimensional conformal field theory (CFT) and anti-de Sitter spacetime in five
dimensions. We then introduce the more general statement of the AdS/CFT conjecture,
outlining other key examples originating from various different string theory
configurations. To close the chapter, we summarise the numerous applications of the
conjecture as well as depicting a handful of further interesting features.

1.2.1 Anti-de Sitter spacetime

The Lorentzian analogue of Euclidean hyperbolic spacetime, anti-de Sitter spacetime
(AdS) is the maximally symmetric solution of Einstein’s equations with constant
negative curvature. That is, it is the maximally symmetric spacetime satisfying

Rµν −
1
2Rgµν + Λgµν = 8πTµν , (1.2.1)

where one has negative cosmological constant Λ < 0. In what follows, we will only discuss
vacuum solutions, i.e. Tµν = 0, though generalisations are straightforward. Thus, the
Riemann curvature tensor for exact AdS may be expressed as

Rµνργ = 1
L2 (gρµgνγ − gµγgνρ). (1.2.2)

The (d + 1)-dimensional spacetime AdSd+1 can be exprssed with the metric in global
coordinates

ds2 = −
(︂
1 + r2

L2

)︂
dt2 + dr2

1 + r2

L2

+ r2dΩ2
d−1, (1.2.3)
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where we have denoted the AdS radius of the spacetime as L =
√︁
−d(d− 1)/2Λ. Here,

r ∈ [0,∞), t ∈ (−∞,∞) and Ωd−1 are the angular coordinates parametrising the sphere
Sd−1.

Arguably the most noteworthy feature of AdS spacetime is the existence of the
conformal boundary2 at r = ∞. Moreover, this boundary has the topology R × Sd−1,
matching that of conformally compactified Minkowski Space on R1,d−1. This boundary
plays an important role in the AdS/CFT correspondence as we will see in section 1.2.2.
One defines asymptotically locally AdS spacetimes (AlAdS) as Einstein metrics with a
negative Λ that can be conformally compactified to have the same conformal structure as
AdS. We will return to the discussion of these spacetimes in section 1.4, where we
provide further mathematical insight by explicitly assigning them a metric.

Another convenient parametrisation of the embedding of AdS spacetime is provided
using the Poincaré patch coordinates. In these coordinates, the AdSd+1 metric becomes

ds2 = L2

r2 dr
2 + r2

L2 ηµνdx
µdxν , (1.2.4)

where the spacetime is foliated over r with r ∈ (0,∞) and ηµν = diag(−1,+1, . . . ,+1)
denoting the usual Minkowski metric. In these new coordinates, the conformal boundary
can clearly be noticed to be present at r = ∞, where the metric diverges due to the
second order pole r → ∞. One may also notice that in the opposing limit, r → 0, there
is a degenerate Killing horizon known as the Poincaré horizon. This singularity is not a
curvature singularity and simply arises due to the choice of coordinates.

Similarly, the AdS metric is often expressed in the Poincaré coordinates3, which is
achievable by introducing the inverse radial coordinate z = L2/r. Then

ds2 = L2

z2 (dz2 + ηµνdx
µdxν), (1.2.5)

where z ∈ (0,∞). In this new set of coordinates, the conformal boundary lies at z = 0
while the Poincaré horizon is located at z →∞.

Now we have outlined the basic structure of AdS spacetime and its features, we proceed
to present the remarkable AdS/CFT correspondence itself.

2See appendix A.1.1 for concrete mathematical definitions on the conformal boundary and conformal
compactifications.

3This coordinate system only strictly covers half of the AdSd+1 spacetime.
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1.2.2 The AdS5/CFT4 conjecture

The original and most studied account of the AdS/CFT correspondence encompasses
type IIB string theory on AdS5 × S5 and the superconformal theory, four-dimensional
N = 4 supersymmetric Yang-Mills (SYM) theory, living at the boundary of AdS5. For our
purposes here, we will not explicitly show the derivation of the duality, but the motivation
arises when examining a stack of N coincident D3-branes from both the open (gsN ≪ 1)
and closed (gsN ≫ 1) string perspectives. In the near-horizon or Maldacena limit, α′ → 0
with r/α′ fixed, the quantum field theory emerges as the gauge theory living on the D3-
brane worldvolume associated with the conformal boundary, ∂M , of the AdS5 component.

The AdS5/CFT4 conjecture can be stated as:

N = 4 SYM theory in four spacetime dimensions, with
gauge group SU(N) and Yang-Mills coupling constant gY M is
dual to ten-dimensional type IIB string theory on AdS5 × S5

consisting of N units of five-form flux (F5) and curvature radius L.

Each side of the duality has two key free parameters. Firstly, on the CFT side of the
theory, one has the rank of the gauge group N and the Yang-Mills coupling constant gY M .
Similarly, investigating the AdS side of the map, there are two dimensionless parameters.
Firstly, we have the string coupling gs. The second parameter is the shared radius L
of both the five-dimensional AdS5 space and the five dimensional sphere S5 expressed
in units of string length L/

√
α′, with α′ = l2s as usual. According to the AdS5/CFT4

correspondence, these parameters are related as

g2
Y M = 2πgs, 2g2

Y MN = L4

α′2 . (1.2.6)

While this form of the conjecture is most precise, the correspondence is often studied in
numerous different parameter regimes. The duality is particularly interesting when the
string coupling is considered in the weak coupling perturbative limit gs ≪ 1, whilst keeping
L/
√
α′ constant. Should one insist that the ‘t Hooft coupling, λ ≡ g2

Y MN remains fixed,
then the duality can be understood to be an exact equivalence between classical string
theory and a gauge theory in the large-N limit (‘t Hooft limit), i.e. when N →∞.

Further, taking the limit λ → ∞, and consequently L/
√
α′ → ∞, implies that the

radius of curvature is significantly larger than the length of a string L≫ ls, thus the AdS
side of the duality is in the low-energy limit of IIB string theory - a supergravity regime
(so AdS5 × S5 has weak curvature). Hence, we are left with a duality between type IIB
supergravity on AdS5 × S5 and strongly-coupled N = 4 SYM theory in four spacetime
dimensions. In this sense, the AdS/CFT duality is a strong/weak duality. The various
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different forms of the AdS/CFT correspondence, depending on which limit we are in, are
listed in table 1.2.1.

Since these two theories are mathematically equivalent, then the global symmetries
on both sides of the duality should concur. To exemplify this, consider the subgroup
generating the bosonic symmetries, SO(4, 2) × SO(6). From the boundary field theory
perspective, SO(4, 2) corresponds to the conformal group, while rotating supercharges
under R-symmetry provides the SU(4) ∼ SO(6). From the gravity theory perspective,
these symmetry groups arise from the isometry groups of the AdS5 and S5 components
respectively. Indeed, one can show the full superconformal group PSU(2, 2|4) will also be
preserved by each side of the correspondence.

Note, with the current interpretation, the four-dimensional CFT is then seemingly
encoded at the boundary of the ten-dimensional string theory. However, after Kaluza-Klein
compactification on the five dimensions encompassed by the sphere S5, we immediately
notice that this duality is a manifestation of the holographic principle since the five-
dimensional string theory on the AdS5 geometry is then mathematically equivalent to the
four-dimensional N = 4 SYM theory living on the conformal boundary of AdS5.

Various forms of the AdS/CFT correspondence

Conformal Field Theory IIB string theory

Strongest General N = 4 SYM theory. Quantum string theory on AdS5×
S5.⏐↓ N →∞, λ =const.
⏐↓ gs → 0, α′/L2 = const.

Strong Large N N = 4 SYM theory. Classical string theory on AdS5× S5.⏐↓ λ→∞ ⏐↓ α′/L2 → 0

Weak Strongly coupled, large N N = 4
SYM theory.

Classical supergravity theory on
AdS5× S5.

Table 1.2.1: The multiple different forms of the AdS/CFT correspondence.
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1.2.3 The general AdSd+1/CFTd conjecture

In the previous section we briefly mentioned that the AdS5/CFT4 correspondence emerged
as a realisation of the holographic principle from a particular string theory configuration
involving D3-branes. This concept of beginning with a full string theory or supergravity
solution and compactifying on the internal space is known as a top-down approach.

While we have restricted our focus to just the AdS5/CFT4 correspondence here, many
other instances of the more general AdS/CFT correspondence exist, stemming from various
different string theory configurations, following a top-down approach. The product spaces
between various asymptotically locally AdS spacetimes and some compact geometry are
known to realise the holographic principle. For example, in [25], spheres with different
but appropriate dimensionality (with respect to the AdS space) such as AdS4 × S7 and
AdS7 × S4 are shown to be appropriate configurations for AdS4/CFT3 and AdS7/CFT6.
Correspondingly, the superconformal field theories making up these dualities are the ABJM
[111] and N = (2, 0) [112] gauge theories respectively. There is no requirement, however,
that these compact spaces are spheres and such configurations have been shown to realise
the AdS/CFT correspondence [113].

Another interesting case is the AdS3/CFT2 correspondence in which the D1-D5 brane
solution of string theory is considered on AdS3 × S3 ×M4, where M4 is some compact
manifold. As discovered by Brown and Henneaux [114], the isometry group of AdS3 is
SO(2, 2) ∼= SL(2,R)×SL(2,R), with algebra sl(2,R)×sl(2,R), which is enhanced to the
infinite-dimensional Virasoro algebra vir× vir¯ . Further, the corresponding central charge
of the conformal field theory is given by

c = 3L
2G(3) . (1.2.7)

Study of the AdS3/CFT2 duality can also provide interesting insights to the so-called
Banados-Teitelboim-Zanelli (BTZ) asymptotically AdS3 black hole [115], which we will
discuss in section 3.1.2.

These various examples led to the more general AdS/CFT conjecture:

Any quantum theory of gravity in a (d + 1)-dimensional
asymptotically locally anti-de Sitter spacetime is dual (mathematically

equivalent) to a conformal field theory of dimension d.

This duality can also be extended to include non-conformal field theories, however
these theories cannot simply be dual to asymptotically AdS gravity. As demonstrated
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in [116,117], one can construct relevant Dp-brane solutions (p ̸= 3) such that in the near-
horizon limit, conformal symmetry is broken. This is since the dilaton admitted is not
constant, or correspondingly, in the dual field theory these constructions inherit a gauge
coupling that runs with energy scale. This class of dual theories is then said to possess a
generalised conformal structure [118]. Configurations of this type were studied in greater
depth in [119] to understand the precise holographic map between the bulk gravity theory
and the boundary field theory.

Traditionally, when discussing the so-called bulk theory, we mean the gravity theory
(i.e. AdSd+1 spacetime), while reference to the boundary theory indicates the asymptotic
boundary of the spacetime (i.e. the flat R1,d−1). The relation between these is depicted
in figure 1.2.2 for AdS3/CFT2. We note here, that from this instance forwards, when
discussing an AdS gravity theory, one really means an asymptotically locally AdS gravity
theory.

Figure 1.2.2: A representation of the bulk/boundary correspondence in AdS3 spacetime.
Fixed time slices t = const are represented by the Poincaré disk, thus generating the
shaded cylinder to depict the full AdS3 spacetime. At spatial infinity of the bulk AdS3
spacetime, there is a conformal boundary where the boundary theory lives.

This enormous landscape of gauge/gravity dualities that has been unveiled, including
those considering non-conformal field theories in addition to non-relativistic quantum field
theories [120], continue to provide new and curious insights into the world of quantum
gravity. For phenomenological purposes, these holographic dualities have been investigated
in great depth. In order to describe strongly coupled field theories that exhibit interesting
phenomena, one aims to construct bulk gravity theories with appropriate symmetries in
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order to match that of the field theory of interest. Of course, many of these dualities
require lower degrees of conformal symmetry and supersymmetry in the field theory than
the cases presented so far. Due to this adversity, in practice, one often uses a bottom-up
approach.

As opposed to the top-down approach, the bottom up approach involves fashioning
an effective gravitational theory with appropriate field content to that of the case of
phenomenological interest. While the actions of these theories are necessarily ad-hoc,
they still possess the ability to capture the essential physics of the problem. These
approaches have led to numerous applications of holography being developed, with
notable utilisations in quantum chromodynamics (AdS/QCD) [121–124], condensed
matter systems (AdS/CMT) [125–128] and hydrodynamics [129–131].

For example, in hydrodynamics, the exotic state of matter observed in heavy-ion
collisions known as quark-gluon plasma can be well described by a strongly coupled
relativistic fluid. The universal values of certain transport coefficients in strongly
coupled fluids have been predicted using the gauge/gravity duality. Most illustriously,
the ratio of shear viscosity η over entropy density s was found to be [132,133]

η

s
= 1

4π , (1.2.8)

a result that is consistent with the particularly small values of η/s which can be inferred
from RHIC/LHC experiments for quark-gluon plasma. This has led to the development
of the fluid/gravity correspondence [129]: the duality between long wavelength solutions
of the Einstein equations in (d+ 1)-dimensions and solutions of nonlinear boundary fluid
dynamics described by the generalised d-dimensional Navier-Stokes equations.

1.3 The holographic dictionary

The gauge/gravity duality has provided a clear relation between two theories: a
gravitational theory on asymptotically locally AdS spacetimes and a quantum field
theory (without gravity) living on its boundary. In this section, one explicitly illustrates
these details by introducing the precise one-to-one mapping established in [66, 67]. The
existence of such a map paves the way for the establishment of a full holographic
dictionary between the two sides of the correspondence. We will also briefly encounter
Witten diagrams and the required AdS propagators, the latter of which we will
re-encounter later when demonstrating how bulk reconstruction justifies the existence of
holographic codes.
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1.3.1 The field-operator map

The conjectured correspondence [25] was further clarified and more rigorous rules
identifying the dynamical equivalence between the bulk and boundary theories were
developed independently by both Witten [67] and Gubser, Klebanov and Polyakov [66].
By equating the generating functionals, a precise computational dictionary can be
established between the two sides of the correspondence. For any CFT, the generating
functional WCF T [ϕ(0)] may be expressed as

WCF T [ϕ0] := logZCF T [ϕ(0)] = log
⟨︂
e−

´
ddxϕ(0)(x)O(x)

⟩︂
CF T

, (1.3.1)

where O are field theory operators and the source fields are denoted by ϕ(0). Then, the
master formula capturing the correspondence lies in the quintessential relation equating
the gravitational partition function, Zgrav, and the CFT partition function ZCF T :

Zgrav[ϕ(0)] = ZCF T [ϕ(0)], (1.3.2)

where the bulk fields ϕ have boundary asymptotics ϕ(0) = ϕ|∂AdS
. More explicitly, on the

gravity side, one computes the path integral across all bulk field configurations ϕ satisfying
these boundary conditions. Thus,

Zgrav[ϕ(0)] =
ˆ

ϕ|∂AdS
=ϕ(0)

Dϕe−S[ϕ] =
⟨︂
e−

´
ddxϕ(0)(x)O(x)

⟩︂
CF T

(1.3.3)

where the action functional for the bulk theory is denoted S[ϕ]. Then, we have a
correspondence; there is a one-to-one map between bulk field ϕ in the gravitational
theory and the field theory operators O in the boundary theory. Specifically,

ϕ(m) ↔ O(∆), (1.3.4)

where m indicates the mass of ϕ(m) and ∆ is the scaling dimension of O(∆). Subsequently,
a relationship between m and ∆ can also established. For example, should ϕ be a massive
scalar we have

m2L2 = ∆(∆− d). (1.3.5)

While fields of different spins satisfy different relations, the fundamental one-to-one
mapping holds true. This is often called the field/operator correspondence.

In general, it is often extremely difficult to calculate the full partition function on the
gravity side (Zgrav) of the correspondence. Typically, we restrict our interest to the leading
term in the saddle-point approximation during the evaluation of Zgrav, or in other words,
focusing on the partition function in the low-energy limit. In doing so, we are localising
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the path integral on the classical solution to the equations of motion, ϕcl, so

Zgrav[ϕ(0)] = e−Son−shell[ϕcl], (1.3.6)

where Son−shell denotes the on-shell supergravity action and the classical solutions satisfy
the boundary conditions ϕcl|∂AdS = ϕ(0). Therefore,

Son−shell[ϕcl] = −WCF T [ϕ(0)]. (1.3.7)

Now we have a clear understanding of the map between generating functionals, connected
correlation functions can now be computed holographically. This is implemented by taking
derivatives of the generating functional with respect to the sources, evaluated by setting
these sources to vanish, e.g. we have the one-point correlation function

⟨O(x)⟩ = δSon−shell

δϕ(0)(x)

⃓⃓⃓⃓
ϕ(0)=0

, (1.3.8)

the two-point correlation function

⟨O(x1)O(x2)⟩ = δ2Son−shell

δϕ(0)(x1)δϕ(0)(x2)

⃓⃓⃓⃓
ϕ(0)=0

, (1.3.9)

and the more general n-point correlation function

⟨O(x1)O(x2) . . .O(xn)⟩ = δnSon−shell

δϕ(0)(x1)δϕ(0)(x2) . . . δϕ(0)(xn)

⃓⃓⃓⃓
ϕ(0)=0

. (1.3.10)

1.3.2 Propagators in anti-de Sitter spacetime

An alternative language to use when discussing the field/operator correspondence is that
of AdS propagators. From the gravity perspective, computing correlation functions from
1.3.7 is equivalent to calculating the tree-level diagrams in AdS space, known as Witten
diagrams. We will not discuss these diagrams in depth here, but they are analogous to
Feynman diagrams and are supplemented by a set of rules comparable to the Feynman
rules.

In Witten diagrams, there are two propagators to consider, the bulk-to-boundary
propagator and the bulk-to-bulk propagator. As their names may indicate, the
bulk-to-boundary operator connects a source at the boundary ∂AdS to an interaction
point in the bulk (or another source at the boundary) while the bulk-to-bulk propagator
connects two interaction points within the bulk. Various examples of Witten diagrams
can be seen in figure 1.3.1.
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AdS

(a) boundary AdS (b) 2-pt (c) 3-pt (d) 4-pt type-I (e) 4-pt type-II

Figure 1.3.1: Examples of Witten diagrams in AdS. Diagram (a) shows an empty diagram
used to denote the general structure. The interior of the circle denotes the bulk of the
AdS space while the circle itself corresponds to the boundary ∂AdS. Diagrams (b)-(d)
indicate various n-point diagrams with only bulk-to-boundary propagators while (e) also
includes a bulk-to-bulk propagator.

As usual, the objective is to solve the bulk equations of motion for some bulk field
ϕ, subject to the boundary conditions ϕ|∂AdSd+1 ∼ zd−∆ϕ(0), where one identifies ∆ as
the conformal dimension of the dual field theory operator O∆ and ϕ(0) as the source for
this operator. The problem can be reformulated as an integral equation involving the
bulk-to-boundary propagator K, expressing the bulk field as

ϕ(x) =
ˆ

∂AdS

ddXK(x;X)ϕ(0)(X). (1.3.11)

This propagator acts as an integration kernel, responsible for applying the boundary
conditions as well as implementing the dynamics from the bulk equations of motion. For
clarity, we have used coordinates X and x here, such that in this notation, these
coordinates are abbreviations i.e. in global coordinates X = (t′,Ω′) is a boundary point
and x = (t, r,Ω) is a bulk point. We note that the bulk-to-boundary propagator is most
often expressed in Poincaré coordinates4 in the literature, in which it explicitly takes the
form

K(z, x; y) = C∆

(︃
z

z2 + (x− y)2

)︃∆
, (1.3.12)

where
C∆ = Γ(∆)

πd/2Γ(∆− d
2
, (1.3.13)

however our more general notation is a natural choice for the purposes of this thesis, as
shall be made clear in section 3.2. The bulk-to-bulk propagator G is similarly defined,

ϕ(x) =
ˆ

AdS
dd+1y

√
g G(x; y)J(y), (1.3.14)

equivalent to solving the equations of motion in the presence of some source J(y) where
y = (t′, r′,Ω′) is another point in the bulk. The bulk-to-bulk propagator may similarly

4For the bulk-to-boundary propagator, the choice of Poincaré coordinates are such that (z, x) denotes
a point with bulk coordinate z and boundary coordinates xµ while yµ denotes the coordinates of the
boundary variable.
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be expressed using Poincaré coordinates5, where it takes the form of a hypergeometric
function;

G(z, x;w, y) = C∆
2∆(2∆− d)ξ

∆ · 2F1

(︃∆
2 ,

∆ + 1
2 ; ∆− d

2 + 1; ξ2
)︃
, (1.3.15)

where
ξ = 2zw

z2 + w2 + (x− y)2 . (1.3.16)

While we do not use the bulk-to-bulk propagator in much that follows though the bulk-
to-boundary operator will resurface in section 3.2.

1.4 Holographic renormalisation

One of the crucial identifications in the AdS/CFT correspondence is that in the
supergravity solution, the radial coordinate can be associated with the renormalisation
(energy) scale in the dual conformal field theory. Recall, the AdSd+1 metric in Poincaré
coordinates,

ds2 = L2

z2 (dz2 + ηµνdx
µdxν). (1.4.1)

Scale invariance in the boundary CFT implies the dilatation xµ → axµ along with µ→ µ/a

is a symmetry, where µ is the energy scale. Analogously, the corresponding transformation
in AdSd+1 is generated by the SO(d, 2) isometry

xµ → axµ, z → az. (1.4.2)

One may then naturally identify the radial coordinate r = 1/z with the energy scale µ,
i.e. r ∼ µ. The boundary z → 0 then corresponds to the ultraviolet (UV) regime of
the boundary field theory, while in the limit z → ∞ implies we are in the infrared (IR)
regime of boundary field theory. Alternatively, at the boundary region of AdS, z → 0
implies r → ∞ and so we are in the IR regime in the gravitational theory while towards
the Poincaré horizon, z → ∞ means we are in the UV regime in the bulk theory. This
phenomenon is a general property of the gauge/gravity duality often called the UV/IR
connection.

According to this UV/IR connection, since one expects UV divergences to arise from
correlations functions in quantum field theory, as a consequence, it should be expected that
the bulk theory suffers from IR divergences. These UV divergences are familiarly dealt
with in quantum field theory by performing the procedure of renormalisation. Hence,

5For the bulk-to-bulk propagator, the choice of Poincaré coordinates are such that (z, x) denotes a point
with bulk coordinate z and boundary coordinates xµ while (w, y) denotes a point with bulk coordinate w
and boundary coordinates yµ.
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in order to eliminate the IR divergences in the bulk theory (these divergences at the
boundary), one expects holographically that solely from a near-boundary analysis, one
will be able renormalise the bulk theory. Addressing these concerns is the procedure of
holographic renormalisation [68–71].

We begin this section by outlining the general process of holographic renormalisation,
creating a clear framework to follow. We then consider the case of pure gravity (i.e. the
situation where the metric is the only bulk field), illustrating this method and stating
some of the most recognised ramifications. For further details, the reader is suggested to
study the original papers [68–70], together with the enlightening review [71].

1.4.1 The general procedure

The general procedure of holographic renormalisation may be summarised as follows:

1. Firstly, the Einstein field equations must be solved in full generality enforcing the
prescribed boundary conditions. These field equations are solved iteratively using
a near-boundary expansion and arbitrary Dirichlet boundary conditions, thus the
resultant solution will take on an asymptotic form.

2. We proceed by substituting this asymptotic solution to the field equations back into
the original action, evaluating it on-shell. During this computation, one introduces a
regulator, ϵ, restricting the integration range, and calculates all arising divergences.
We denote the regulated on-shell action Sreg[f(0); ϵ] where f(0) represents the value
an arbitrary bulk field takes at the boundary (i.e. the field theory source). The
divergences are isolated such that Sreg = Sdiv + Sfin.

3. A new covariant counter-term action is then defined in terms of the diverging pieces
of Sreg[f(0)],

Sct[F(x, ϵ); ϵ] = −Sdiv[f(0)[F(x, ϵ)]; ϵ]. (1.4.3)

Here we have explicitly shown that f(0) must be properly defined on the full
asymptotic bulk field solution, which we denoted as F(x, ϵ). This requirement
arises since one must invert the series F(x, ϵ) order by order since one needs to
express the divergent pieces in terms of the induced metric on the regulated
boundary.

4. The subtracted action at the cut-off, defined as the summation

Ssub[F(x, ϵ); ϵ] = Sreg[f(0); ϵ] + Sct[F(x, ϵ); ϵ], (1.4.4)

is then noticeably finite as one considers the limit ϵ→ 0. The renormalised on-shell
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action can then be defined as

Sren[f(0)] = lim
ϵ→0

Ssub[F(x, ϵ); ϵ]. (1.4.5)

Here we have outlined the general procedure of holographic renormalisation. It is worth
noting while it is conceptually simple, due to the inversion within step 3, applying this
procedure can become computationally challenging and cumbersome. Alternative
approaches have been considered based off of Hamiltonian and Hamilton-Jacobi
techniques [134,135].

1.4.2 Asymptotically locally AdS spacetimes

It is now natural to investigate holographic renormalisation by studying the asymptotics
in a purely gravitational environment. Should we enforce conformal structure at spatial
infinity and find the the most general asymptotic solution of the Einstein field equations
1.2.1, one will obtain an asymptotically locally AdS spacetime, as we previously alluded to
in section 1.2.1. In the works of Fefferman and Graham [136], this spacetime was shown
to possess the metric

ds2 = gµνdx
µdxν = L2

(︃
dρ2

4ρ2 + 1
ρ
g̃ij(ρ, x)dxidxj

)︃
, (1.4.6)

where in odd boundary dimensions d, gij(ρ, x) is given by the expansion

g̃(ρ, x) = g(0) + ρg(2) + · · ·+ ρ(d−1)/2g(d−1) + ρd/2g(d) + . . . (1.4.7)

and in even boundary dimensions d, gij(ρ, x) is given by the expansion

g̃(ρ, x) = g(0) + ρg(2) + · · ·+ ρd/2g(d) + h(d)ρ
d/2 log ρ+ . . . (1.4.8)

Similarly to the ordinary AdS metric in Poincaré coordinates, the coordinates used here
are (ρ, xi), with ρ ∈ (0,∞) corresponding to the radial direction of the extra holographic
dimension6. Hence, the conformal boundary is located at ρ = 0. Similarly, we use the
notation of lower case Roman indices (i, j) to indicate the remaining d directions as
opposed to the Greek indices (µ, ν) which denote all d+ 1 directions. As before, the AdS
radius of the spacetime is L =

√︁
−d(d− 1)/2Λ.

6The radial coordinate was changed from z to ρ = z2 for convenience when explicitly solving the
equations of motion
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For the bulk spacetime (M, g) with boundary ∂M , the Einstein-Hilbert action is

S[g] = 1
16πG

[︃ˆ
M
dd+1x

√
g(R[g]− 2Λ) +

ˆ
∂M

ddx 2√γK
]︃
, (1.4.9)

such that the second term is the Gibbons-Hawking-York term [137,138]. The action should
always be supplemented by this term for spacetime manifolds possessing a boundary in
order to remove second-order derivatives. Denoting ni as the outward-pointing normal
unit vector, we use K = ∇in

i to represent the trace of the extrinsic curvature (second
fundamental form) of ∂M and γij as the induced metric on ∂M .

As mentioned previously, this action will contain a divergence upon its evaluation
on-shell, originating from a second order pole at ρ = 0. Following the second stage of
holographic renormalisation, one introduces a regulator, ϵ > 0, in turn restricting the
range of integration to be over the bulk region ρ ≥ ϵ. Further, the boundary term is
evaluated on the hypersurface ρ = ϵ, so the new regulated action is

Sreg[g] = 1
16πG

[︃ ˆ
ρ≥ϵ

dd+1x
√
g(R[g]− 2Λ) +

ˆ
ρ=ϵ

ddx 2√γK
]︃
. (1.4.10)

The induced metric on ρ = ϵ is given by γij = (L2g̃ij)/ϵ. One computes this action using
the Fefferman-Graham gauge 1.4.6 by first realising that on-shell, we have the relationship

R[g]− 2Λ = − 2d
L2 . (1.4.11)

Similarly, the trace of the second fundamental form on the hypersurface ρ = ϵ can be
expressed as

K = 1
L2 (d− ρTrg−1∂ρg). (1.4.12)

Hence substituting these expressions into the regulated action 1.4.10, the on-shell regulated
action becomes7

Sreg[g] = − L
d−1

16πG

ˆ
ddx

[︃ˆ
ϵ
dρ

d

ρd/2+1

√︁
det g̃ + 1

ρd/2 (−2d
√︁

det g̃ + 4ρ∂ρ

√︁
det g̃)|ρ=ϵ

]︃
.

(1.4.13)
In this new form, the divergences in the regulated action arise in the limit ϵ → 0. As
described in step 2 of the procedure, we isolate these terms by expressing the Sreg as an
expansion about the divergences by using the asymptotic solution: i.e. 1.4.7 for odd d and
1.4.8 for even d. Thus, for odd d, the expansion becomes

Sreg = − L
d−1

16πG

ˆ
ddx
√
g(0)

(︂
ϵ−d/2a(0) + ϵ−d/2+1a(2) + . . . ϵ−1/2a(d−1)

)︂
+O(ϵ0), (1.4.14)

7Here we manipulate the algebra using the well-known relationship between the trace and determinant
Trg−1∂ρg = Tr∂ρg/g = (∂ρdet g)/det g, as well as the chain rule; ∂ρ

√
det g = ∂ρdet g/2

√
det g.
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where each of the coefficients ak are local covariant terms of the boundary metric g(0).
The full explicit values of these expressions may be found in [69]. For even d, we have

Sreg = − L
d−1

16πG

ˆ
ddx
√
g(0)

(︂
ϵ−d/2a(0) + ϵ−d/2+1a(2) + . . . ϵ−1a(d−2) − log ϵa(d)

)︂
+O(ϵ0),

(1.4.15)
with the notable difference stemming from the additional divergent logarithmic piece log ϵ.
From step 3, one can then form expressions for the counter-term action. For odd d,

Sct = Ld−1

16πG

ˆ
ddx
√
g(0)

(︂
ϵ−d/2a(0) + ϵ−d/2+1a(2) + . . . ϵ−1/2a(d−1)

)︂
, (1.4.16)

while for even d,

Sct = Ld−1

16πG

ˆ
ddx
√
g(0)

(︂
ϵ−d/2a(0) + ϵ−d/2+1a(2) + . . . ϵ−1a(d−2) − log ϵa(d)

)︂
. (1.4.17)

Then, in order to finally remove the divergences from the system, as described in step 4,
one sums the counter-term action, Sct, with the regulated action, Sreg. Then the regulator,
ϵ, is removed by taking the limit in which it vanishes, leaving the renormalised on-shell
action

Sren = lim
ϵ→0

(Sreg + Sct). (1.4.18)

The procedure of holographic renormalisation is critical in any discussion of the AdS/CFT
correspondence and now we have outlined how one implements it in practice, we briefly
close this chapter with some interesting results that arose due to this technique.

The first of these is known as the holographic Weyl anomaly, a discovery first appearing
in [68]. Here, consider the finite portion of the action, Sfin, defined as before as Sfin =
Sreg −Sdiv. Should we want to consider a different representation of the boundary metric
with the same conformal structure, or in other words, vary the boundary metric under a
Weyl transformation as

δgij
(0) = 2δσgij

(0), (1.4.19)

this manifests as
δSfin = Ld−1

16πG

ˆ
ddx
√
g(0)δσA, (1.4.20)

where A is the Weyl anomaly. It is worth noting that in the case of odd d, in order to
ensure the vanishing of the variation δSreg = 0 to consequently obtain δSfin = δSct, we
must consider the combined transformation of (1.4.19) together with δϵ = δσϵ. In [68]
it was shown that the anomaly vanishes in odd dimensions, Aodd = 0, while in even
dimensions it is given by the coefficient of the divergent logarithmic counter-term

Aeven = −a(d). (1.4.21)



1.4. Holographic renormalisation 27

In dimensions d = 2 and d = 4, the holographic Weyl anomaly calculated in the bulk
exactly matches the corresponding anomaly arising in the dual CFT. In the case of d = 2,
this of course coincides with the central charge 1.2.7 previously described (calculated using
the asymptotic symmetry algebra of AdS3 [114]), while in the case of d = 4, it agrees with
the large-N limit of N = 4 SYM with gauge group SU(N). Further, for d = 6, the Weyl
anomaly was computed holographically, providing new information about the dual (0,2)
theory.

The next interesting case to consider is that of the holographic energy-momentum
tensor Tij , with the following arguments first described in [69]. As mentioned earlier, the
one-point correlation function of some operator O may be calculated according to (1.3.8).
Then the expectation value of Tij in the context of holographic renormalisation is given
by

⟨Tij(x)⟩ = 2
√
g(0)

δSren

δgij
(0)

, (1.4.22)

since it is sourced by the representative of the conformal structure gij
(0)(x) on boundary

∂M . Under the limit where the regulator vanishes, ϵ→ 0, this gives

⟨Tij(x)⟩ = lim
ϵ→0

(︃ 2√︁
g̃(ϵ, x)

δSfin

δg̃ij(ϵ, x)

)︃
= lim

ϵ→0

(︃
Ld−2

ϵd/2−1Tij [γ]
)︃
, (1.4.23)

where
Tij [γ] = 2

√
γ

δSfin

δγij
= T reg

ij [γ] + T ct
ij [γ] (1.4.24)

is the energy-momentum tensor defined on the induced metric γij at the cut-off ρ = ϵ and
we have made use of γij = (L2g̃ij)/ϵ. Naturally, T reg

ij arises from the regulated action Sreg

while T ct
ij comes from the counter-terms. In [69], ⟨Tij⟩ is shown to be covariantly conserved

with respect to gij
(0) and is explicitly calculated as

⟨Tij⟩ = dLd−1

16πG g(d)ij +Xij [g(0)ij ], Xij ≡ 0 if d is odd. (1.4.25)

The contact terms Xij are tensors with dependence upon g(0)ij as well as the relevant
spacetime dimension. In particular, they share a relation with the conformal anomaly in
the boundary field theory. For further details and specific values of Xij , see [69].

Should one wish to study the trace of ⟨Tij⟩, then consider the Weyl rescaling (1.4.19)
in the form of the following variation:

δSren = lim
ϵ→0

δSfin = −
ˆ
ddx
√
g(0)

(︂1
2 ⟨Tij⟩ δgij

(0)

)︂
. (1.4.26)

Now, one can clearly understand the importance of the dimension d, or more precisely,
whether it is odd or even. Should one consider the case of odd d, then we have vanishing
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Weyl anomaly Aodd = 0 and so δSfin will also vanish. Thus, on one hand, we obtain the
relation ⟨︂

T i
i

⟩︂
= 0. (1.4.27)

On the other hand, for the case of even d, since the Weyl anomaly is non-zero and has the
form (1.4.21), then ⟨︂

T i
i

⟩︂
= Ld−1

16πGa(d). (1.4.28)

Then we immediately see the relationship between the holographic energy-momentum
tensor and the Weyl anomaly (1.4.21).



CHAPTER 2

Quantum information and quantum error correcting codes

2.1 Quantum entanglement and tensor networks

In this section, two of the motivating factors for holographic codes are introduced, quantum
entanglement and tensor network theory. Quantum entanglement is a unique phenomenon,
stemming from quantum mechanics, in which the quantum states of two or more objects
must be described in reference to one another even if these objects are spatially separated.
Further details on entanglement and its applications in quantum information theory are
presented more broadly in [73] and [72] respectively.

Tensor networks may be thought of as a mechanism capable of describing wave functions
of quantum many-body systems that see later use when discussing holographic codes.
This topic is rather extensive so only the most relevant details have been procured in
this thesis but for a more in depth review, the reader is suggested to study the following
monograph [74,75].

2.1.1 Quantum entanglement

Quantum entanglement is a crucial characteristic of quantum systems, arising from the
superposition principle, therefore being a feature that is not exhibited in classical systems.

29
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States existing in a quantum system that is composed of two subsystems, A and B,
associated with Hilbert spaces HA and HB respectively, will live in the Hilbert space
H = HA ⊗HB. Should the bipartite state be decomposed as

|ψ⟩ = |ϕ⟩A ⊗ |ϕ
′⟩B (2.1.1)

then it is deemed separable. Should the state not be separable, it is entangled. Of course,
for a multipartite system consisting of n parties, the analogue definition of a separable
state is

|ψ⟩ = |ϕ⟩1 ⊗ · · · ⊗ |ϕ
′⟩n (2.1.2)

and it is entangled if it cannot be decomposed as in (2.1.2). The canonical example of
entangled states are the Bell states (also known as EPR pairs):

|ψ±⟩ = 1√
2

(|00⟩ ± |11⟩), |Φ±⟩ = 1√
2

(|01⟩ ± |10⟩), (2.1.3)

where the notation |ij⟩ := |i⟩⊗|j⟩. These states are the essential components at the centre
of many quantum protocols such as quantum teleportation [139], superdense coding [140]
and quantum key distribution [141].

In order to quantify entanglement, we introduce two concepts, the Schmidt
decomposition and entanglement entropy. Firstly, it is useful to describe quantum
systems using the density operator

ρ =
∑︂

i

λi |ψi⟩ ⟨ψi| , (2.1.4)

for some ensemble of pure states {λi, |ψi⟩}, where λi are the probabilities associated with
the states |ψi⟩. Now for the pure state |ψ⟩ of the bipartite system consisting of subsystems
A and B, with orthonormal sets {ui} ∈ HA and {vi} ∈ HB, the Schmidt decomposition
[142,143] is

|ψ⟩ =
d∑︂

i=1
λ

1/2
i |ui⟩ |vi⟩ . (2.1.5)

Here, d = min(dA, dB) where (dA, dB) = (dim(HA), dim(HB)) and λi are non-negative
real numbers. Each value λ1/2

i is called a Schmidt coefficient and satisfies
∑︁d

i=1 λi = 1.
An important consequence of the Schmidt decomposition is that for a pure state |ψ⟩ in a
bipartite system, one immediately has ρA =

∑︁
i λi |ui⟩ ⟨ui| and ρB =

∑︁
i λi |vi⟩ ⟨vi|. Hence,

the eigenvalues λi are the square of the Schmidt coefficients and more remarkably, are
identical for both density operators ρA and ρB.

A basic way to ‘measure’ entanglement is through the Schmidt rank (Schmidt number);
the number of non-zero Schmidt coefficients λ1/2

i . Should the Schmidt rank be 1, then the
state |ψ⟩ is a product state and is therefore separable. However, if the Schmidt rank is
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strictly larger than 1, the state is entangled.

There is, however, a finer way to measure entanglement, using the notion of
entanglement entropy. Once again, suppose the total quantum state of the system is
described by the pure density matrix, ρAB, and the Hilbert space can be bipartitioned as
before as H = HA ⊗ HB, for two subsystems A and B. The reduced density matrix
associated to subsystem A is

ρA ≡ TrB(ρAB), (2.1.6)

where TrB is the partial trace over subsystem B. The reduced density matrix ρA can be
interpreted as a way to describe the statistical outcomes of subsystem A when averaging
out the measurement outcomes of subsystem B. So, ρA is then of course a very useful
object if we are only interested in the development of subsystem A (and similarly ρB if we
are only interested in subsystem B).

For any density matrix ρA, the pure state ρAB that satisfies (2.1.6) is referred to as the
purification of ρA. In general, the reduced density matrix ρA will be a mixed state since
the two subsystems are likely to be entangled, though should the pure state ρAB not be
entangled then the reduced states will also be pure.

This entanglement between various mixed subsystems leading to a pure state ρ can
be quantified using the entanglement entropy. The von-Neumann entropy [144] of the
subsystem A measures the total amount of quantum entanglement between A and its
complement AC in ρ:

S(ρA) = −Tr(ρA log ρA). (2.1.7)

Of course should the quantum system be bipartitioned into subsystems A and B, the
entanglement entropy would simply measure the entanglement between A and B. The
von-Neumann entropy can also be expressed in terms of the eigenvalues λi of ρA as

S(ρA) = −
∑︂

i

λi log λi, (2.1.8)

noting that logarithms are taken to be base two and by convention we define 0 log 0 ≡ 0
(justified by the limit limx→0 x log x = 0). Should ρA be a pure state, then it follows that
the von-Neumann entropy vanishes as expected, i.e. S(ρA) = 0.

To provide a simple yet effective example, consider the Bell state |ψ+⟩ on a bipartite
Hilbert space, HA ⊗HB, where A and B are single qubits corresponding to the first and
second qubits respectively. The total density matrix can be described by

ρAB = |ψ+⟩ ⟨ψ+| = 1
2
(︁
|00⟩ ⟨00|+ |11⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨11|

)︁
, (2.1.9)
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and so the reduced density matrix ρA is given by

ρA ≡ TrB(ρAB) = 1
2
(︁
|0⟩ ⟨0|+ |1⟩ ⟨1|

)︁
= 1

2IA. (2.1.10)

Thus should one want to measure the entanglement entropy of a single qubit (taken here
to be the first qubit) in the Bell state |ψ+⟩, a simple computation reveals

S(ρA) = −Tr(ρA log ρA) = −1
2

1∑︂
i=0,j=0

⟨iA| log
(︂1

2 |jA⟩ ⟨jA|
)︂
|iA⟩ = log 2. (2.1.11)

Since ρA is diagonal here, the entanglement entropy is maximal or in other words, the states
ρA and ρB are maximally entangled. Obviously, the entanglement entropy for B returns
the same result, S(ρB) = log 2. This is a general feature of any bipartite system. Since the
Schmidt decomposition implies that the two density operators ρA and ρB share the same
eigenvalues λi, then provided ρAB is in a pure state, the von-Neumann entropies will always
equate; S(ρA) = S(ρB). Further, since the EPR pair display maximal entanglement, one
can clearly state that for any two qubit system, the entanglement entropy must satisfy
S(ρA) ≤ log 2. For a quantum state consisting of N qubits, with Hilbert space HA, then
dim(HA) = 2N . Thus maximal entanglement corresponds to entropy

S(ρA) = N log 2 = log[dim(HA)] (2.1.12)

and in general entanglement entropy is bound by

S(ρA) ≤ log[dim(HA)]. (2.1.13)

2.1.2 Tensor networks

Finite-dimensional tensors are multilinear maps often represented as a multi-dimensional
array. Thus, a rank-r tensor is an element of Cd1×···×dr with dimension d1 × · · · × dr and
scalars, vectors and matrices are simply rank-0, rank-1 and rank-2 tensors respectively.
Often, tensors are represented diagrammatically by some solid shape associated with
numerous legs, with each of these legs being given a corresponding index such that the
total number of legs provides the order of the tensor. For example, figure 2.1.1 depicts a
fourth order tensor T with elements (or amplitudes when discussing quantum states)
Ti,j,k,l that has been graphically shown as a circle and its four free legs. Networks
consisting of multiple tensors may also be constructed by contracting over legs with
shared indices, resulting in a single composite tensor. Suppose we wish to contract two
tensors A and B, with amplitudes Ai,j and Bj,k, over the shared index j, as depicted by
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T i

j

k

l

Figure 2.1.1: A single tensor T depicted as a circular node while its uncontracted indices
i, j, k, l correspond to the four free legs.
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Figure 2.1.2: Two examples of tensor networks built from contractions of various smaller
tensors. On the left, two tensors with amplitudes Ai,j and Bj,k are contracted over shared
indices to form a new tensor C with amplitude Ci,k. On the right, three tensors with
amplitudes El,j,m, Fi,l,n and Gn,m,k are contracted over shared indices to give a new tensor
D with amplitude Di,j,k.

the first network in figure 2.1.2. The resulting tensor C can thus be expressed as

Ci,k =
∑︂

j

Ai,jBj,k. (2.1.14)

Graphically, this has been demonstrated by interpreting legs connecting two tensors as
contracted indices between those tensors while indices not summed over remain as free
legs. Similarly, consider the second tensor network in figure 2.1.2. Here one contracts
three tensors across their shared edges in a similar fashion resulting in a rank-3 tensor

Di,j,k =
∑︂

l,m,n

El,j,mFi,l,nGn,m,k. (2.1.15)

Now, one can use the language of tensor networks to interpret quantum many-body
systems. As is well known, a quantum system with local dimension D (i.e. a qudit
system) has a D-dimensional Hilbert space and some pure state |ϕ⟩ of the system can be
specified as a weighted superposition of the D orthogonal basis states: |ϕ⟩ =

∑︁D
k=1 Tk |k⟩

with Tk ∈ C corresponding to a set of D complex amplitudes. Diagrammatically, this
could be drawn as a rank-1 tensor T with one leg indexed by k. For a quantum
many-body system consisting of N degrees of freedom, the pure state wavefunction ψ
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k1 k2 k3 k4 k5 k6 . . . kN

T

Figure 2.1.3: The rank-N tensor T with complex amplitudes Tk1,k2...kN
describing an N -

qudit quantum many-body system with wavefunction ψ and state (2.1.16). Internally this
large tensor consists of a network of tensors interconnected by contracted indices. The N
degrees of freedom of the system corresponding to the N uncontracted indices k1, k2 . . . kN

are represented by free legs.

can be described as

|ψ⟩ =
D∑︂

k1,k2...kN

Tk1,k2...kN
|k1, k2 . . . kN ⟩ , (2.1.16)

where Tk1,k2...kN
∈ C are the set of DN complex amplitudes and consequently T can

be regarded as a rank-N tensor. The dimension of each of the indices k1, k2 . . . kN is
commonly known as the bond dimension χ, given here as χ = D. Figure 2.1.3 depicts the
tensor network diagram describing the wavefunction ψ, consisting of the rank-N tensor T
and the N free legs corresponding to the N uncontracted indices.

Accordingly, a natural mechanism when considering some wavefunction ψ of a quantum
many-body system is to model this large tensor T , corresponding to the entire Hilbert
space H, as a tensor network consisting of contractions of various smaller tensors Pi,
corresponding to some smaller subset of H.

Suppose we wish to consider a many-body quantum state described by a tensor network,
subdivided into two disjoint regions, A and its complement AC . Then, there will be
some cut γ̂A through the network segregating it into two smaller tensor networks, each
one associated with one of the two subsystems A or AC . The contracted legs that are
intersected by the cut results in entanglement between A and AC . An example of a
tensor network partitioned in this way is demonstrated in figure 2.1.4. One could then
calculate the associated entanglement entropy between the two regions using the Schmidt
decomposition (2.1.5) and evaluating (2.1.8). For an arbitrary tensor network, an upper
bound emerges:

S(ρA) ≤ |γA| logχj , (2.1.17)

assuming a common bond dimension χj for all internal legs and where γA is the minimal
cut (i.e. the cut through the fewest legs) through the network ending on the boundary ∂A
that separates A and AC . Note, |γA| indicates the total number of cut internal legs: the
length of γA. If the bond dimension is not consistent throughout the internal legs of the
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A AC

k1 k2 k3 k4 k5 k6

γA

γ̃A

Figure 2.1.4: Multiple cuts γA and γ̃A through a tensor network representation of a
quantum many-body system that has been divided into two sub-regions A and AC .
Endpoints of the cuts lie on the boundary ∂A between the two subsystems and γA is
the minimal cut through the network.

network, then the generalised result is

S(ρA) ≤ min
{︁ ∑︂

b∈γ̂A

log db

}︁
, (2.1.18)

with db the dimension of each corresponding bond b cut by γ̂A.

There are several different architectures for tensor networks that are commonly
employed to reproduce the entanglement structure of different wave functions, the most
prevalent being matrix product states (MPS) [145, 146], projected entangled pairs
(PEPS) [147], tree tensor networks (TTN) [148] and the multi-scale entanglement
renormalization ansatz (MERA) [149]. These different representations are each better
suited to different types of states.

Firstly MPS, which correspond to a one-dimensional chain or ring of tensors (as
depicted in figure 2.1.5), are commonly employed to characterise ground and low energy
eigenstates of local and gapped one-dimensional Hamiltonians [150, 151] efficiently. In
fact, for these tensor networks, the entanglement entropy S(ρA) satisfies an area
law [152] i.e. the entanglement entropy is proportional to the boundary ∂A of the region
A, S(ρA) ∝ |∂A|.

One can straightforwardly think of PEPS as the higher-dimensional generalisation of
MPS, where we now consider an array of tensors in spatial dimensions d > 1. If d = 2,
one could have the particular case of a 3× 3 square lattice as shown in figure 2.1.6. Two-
dimensional PEPS tensor networks are suited to simulate the low-energy eigenstates of a
two-dimensional local Hamiltonian that satisfies the two-dimensional area law [150, 151]
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Figure 2.1.5: An example of a matrix product state (MPS) structure of a tensor network
consisting of six tensors P1, . . . P6 with the loop indicating periodic boundary conditions.
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Figure 2.1.6: An example of a projected entangled pair state (PEPS) structure of a tensor
network consisting of nine tensors P1, . . . P9 with open boundary conditions.

and two-dimensional thermal states [153].

The final tensor network architecture we will briefly describe is MERA, perhaps the
most relevant when considering holographic codes. The tree-like structure of MERA is
composed of two specific tensors, isometries and disentanglers, visualised in figure 2.1.7.
These disentanglers are chosen to be unitary and account for short-range entanglement
amongst neighbouring sites, thus making it a favourable configuration when approximating
states possessing long-range entanglement.

Further, the geometry of MERA exhibits a logarithmic entanglement entropy between
subsystems and is thus capable of approximating critical (gapless) systems i.e. conformal
field theories. For example, the entanglement entropy of a subsystem A in a (1 + 1)-
dimensional conformal field theory [154–156]

S(ρA) = c

3 log l

a
, (2.1.19)

where c is the central charge of the CFT and a is the lattice spacing (ultraviolet cutoff),
scales logarithmically with linear length l = |A|.

While MERA represents a d-dimensional quantum many-body system living on the
bottom row of the diagram, the MERA network itself can be seen as a d+ 1-dimensional
object. This additional holographic dimension is associated with a renormalisation scale,
so that each layer in the MERA network corresponds to some length or energy scale,
generating a coarse-graining transformation from a coarse-grained state to a fine-grained
state (or vice-versa). Thus, MERA can be understood as an entanglement
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renormalisation [157]. For example, in figure 2.1.7, one considers a course-grained state
|ψ0⟩ for some one-dimensional critical system, such that the vertical axis corresponds to
this extra holographic dimension encoding the renormalisation scale.

One may begin to notice numerous similarities between MERA and the AdS/CFT
correspondence, with MERA capturing many of the geometric properties of AdS, leading to
proposals of a correspondence between the MERA and AdS [158,159]. This idea generated
considerable interest from both the AdS/CFT and tensor network communities [160–
162]. We will not explicitly review the specifics of AdS/MERA itself here, though the
implications that follow and ultimately understanding this relationship between tensor
networks and AdS/CFT, is the catalyst to much of the work in this thesis and will play a
crucial role in the discussion that follows.

|ψ0⟩

Figure 2.1.7: An example of a multi-scale entanglement renormalization ansatz (MERA)
tensor network acting on an initial coarse-grained state vector |ψ0⟩. Green circles depict
isometries while red circles identify the unitary disentanglers.

2.2 Quantum error correcting codes

In the following section we introduce the extensive topic of quantum error correcting codes,
discussing the fundamental principles and theories of error correction. Firstly, we lay the
foundations by reviewing the underlying ideas associated with quantum error correction,
before diving further into the mathematical set up behind general quantum codes, adopting
features from classical linear codes. For comprehensive reviews on the topic, the reader is
referred to the following monographs [72,76,77].
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2.2.1 Fundamentals of quantum error correction

Quantum computers are extremely powerful devices, with the potential to significantly
outperform classical computers and perform simulations classical computers simply
cannot [163]. One of the greatest challenges facing quantum computers is the protection
of quantum information from errors, arising from their high susceptibility to interference
of noise. Quantum computers inevitably interact with the environment surrounding
them, hence suffering from decoherence. Quantum error correction is a procedure
implemented in an attempt to suppress the noise of this effect.

A quantum error correcting code (QECC) may be viewed as a mapping where one
encodes k logical qudits (those we wish to protect), into n physical qudits, such that n > k.
In the case of qubits, this is then a mapping from a Hilbert space of dimension 2k to one
of dimension 2n. The encoded information is less likely to be corrupted since one has n−k
additional qudits storing the k logical qudits redundantly.

The essence of quantum error correction can be captured by considering a simple
QECC, the Shor code [164]. Suppose we wish to protect a single logical qubit as it is
sent through some quantum channel, assuming this channel only causes an error on a
single qubit at any particular instance. Then, one encodes the logical qubit into nine
physical qubits in the following manner;

|0⟩ → |0̄⟩ = 1
2
√

2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩), (2.2.1)

|1⟩ → |1̄⟩ = 1
2
√

2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩), (2.2.2)

where the notation |0̄⟩ and |1̄⟩ indicates that these are the basis states of the logical |0⟩
and logical |1⟩ states. Of course, superpositions of the basis states can then be expressed
from the corresponding superposition of these encoded states.

We consider two possible quantum channels, the bit flip channel and the phase flip
channel. The bit flip channel flips a single qubit with probability p or leaves the qubit
untouched with probability 1− p. That is, there is a probability p chance that one applies
the Pauli operator X to the state |ψ⟩ resulting in the new state X |ψ⟩. The phase flip
channel is such that there is a q chance of flipping the relative phase of the |0⟩ and |1⟩
states and a 1 − q chance the qubit is untouched. Specifically, there is a probability q

chance that the Pauli operator Z is applied to the state |ψ⟩ = α |0⟩ + β |1⟩, leaving the
new state Z |ψ⟩ = α |0⟩ − β |1⟩. The Pauli operators X and Z are defined as

X =
(︄

0 1
1 0

)︄
, Z =

(︄
1 0
0 −1

)︄
, (2.2.3)



2.2. Quantum error correcting codes 39

and are often referred to as the bit flip operator and the phase flip operator respectively.

Now, one prepares and encodes an intial quantum state, |ψ⟩ = α |0̄⟩ + β |1̄⟩. Suppose
the quantum channel causes a single bit flip, for instance by the application of X1, where
we use subscript to denote which qubit the operator is acting upon. In order to determine
the location of the bit flip, it is sufficient to measure the operators Z1Z2 and Z2Z3. The
eigenstates of these operators are the logical basis states |0̄⟩ and |1̄⟩ with eigenvalue +1.
However, should a qubit have been flipped, performing this measurement can be used
to determine which qubit has been flipped. For our case, one would find Z1Z2 = −1
and Z2Z3 = 1 hence deducing the first qubit has been flipped. One can then recover
the original state by simply flipping the qubit back, in our case applying X1. Similarly,
Z1Z2 = 1 and Z2Z3 = −1 would indicate the third qubit has been flipped, Z1Z2 = −1
and Z2Z3 = −1 that the second qubit has been flipped and Z1Z2 = 1 and Z2Z3 = 1 that
no qubits have been flipped. Of course we can perform similar analysis on the other two
clusters to diagnose bit flip errors there.

We can perform a similar method to correct for errors that occur in the phase flip
channel. Here, we measure the operators X1X2X3X4X5X6 and X4X5X6X7X8X9. Once
again, the eigenstates of these operators are the logical basis states |0̄⟩ and |1̄⟩ with
eigenvalue +1. Should a phase flip error occur on any qubits in a particular cluster, it
would alter the value of XiXjXk in that cluster. Thus by measuring these operators, we
can deduce which cluster had been affected by the phase flip and recover the original
state by applying the relevant Z operator.

Of course, it is possible that there are other possible single qubit errors that could
occur. For example, in a certain quantum channel, the state may undergo a simultaneous
bit flip and phase flip on the same qubit, corresponding to the Pauli operator

Y = iXZ =
(︄

0 −i
i 0

)︄
. (2.2.4)

The Shor code will in fact correct this error in a similar manner - one first fixes the bit flip
followed by the phase flip. In fact it turns out that the Shor code can protect the logical
qubit state against arbitrary errors provided they only act upon a single qubit.

2.2.2 Classical linear codes

Quantum Calderbank-Shor-Steane (CSS) codes are constructed from classical linear codes,
and it is useful to summarise here the defining properties of the latter. More details may
be found in [72]. A linear code which encodes k bits of information within an n bit code
space, i.e. an [n, k] code, may be specified by an (n×k) generator matrix G whose elements
are zeroes and ones. This matrix maps the message to the coded equivalent i.e. a message
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x is encoded as y = G ·x. The set of possible codewords for the code is the space spanned
by the columns of the generator matrix G. For example, take a simple [3, 1] code that
maps one bit into three repetitions. i.e.

0→ 000, 1→ 111. (2.2.5)

Then the corresponding generator matrix is

G =

⎡⎢⎢⎣
1
1
1

⎤⎥⎥⎦ , (2.2.6)

such that G[0] = (0, 0, 0) and G[1] = (1, 1, 1).

Alternatively, error correction for linear codes may be captured by the parity check
matrix, an (n−k)×n matrix H. An [n, k] code consists of all n element vectors y such that
H ·y = 0; the code is the kernel of H, which is k dimensional. Using matrix manipulations
one can bring the parity check matrix into the standard form [A(n−k)×k|I(n−k)×(n−k)] where
A is an (n− k)× k matrix. The parity check matrix for the [3, 1] repetition code can be
defined as

H =
[︄
1 1 0
0 1 1

]︄
. (2.2.7)

Clearly, H ·y = 0 is only satisfied for the codewords y = (0, 0, 0) and y = (1, 1, 1). Suppose
that the code y is corrupted, so that the received message is y′, then

y′ = y + e (2.2.8)

where e is the error. Then by construction H · y′ = H · e captures the error (i.e. the error
syndrome is H · y′) since

H · y′ = H · (y + e) = H · y +H · e (2.2.9)

and H · y = 0 for all codewords.

The (Hamming) distance between code words counts the number of places at which the
n bit code words differ. The distance of a code d is defined to be the minimum distance
between any two (distinct) codewords, and classical codes are often referred to as [n, k, d],
i.e. specifying this distance. If d ≥ 2t + 1 for some integer t then one can correct errors
on up to t bits. The distance is bounded from above according to the Singleton bound

d− 1 ≤ (n− k). (2.2.10)
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2.2.3 General quantum error correcting codes

Now we consider more general QECCs, together with their most notable properties. While
the Shor code is very useful to understand the main concepts of a QECC, it is not a realistic
model. It is therefore important to understand how the general theory of quantum error
correction operates and how it should be implemented in the most general framework. Any
interaction between n qubits plus another quantum system (for instance their environment)
may be expressed as

|ψ⟩ ⊗ |0⟩E →
∑︂

a

Ea |ψ⟩ ⊗ |ea⟩E , (2.2.11)

where |ψ⟩ is some initial arbitrary state of the qubits, |0⟩E is the initial (pure) state of
the environment and |ea⟩E are states of the environment that are not necessarily mutually
orthogonal or normalised. The error operators {Ea} are unitary operators that act on the
n qubits. More explicitly, they are the linearly independent Pauli operators,

{Ea} = {I,X, Y, Z}⊗n, (2.2.12)

where index a is used to range over the 22n operators. We now wish to construct a QECC
that is able to correct a subset E ⊆ {Ea}. In order to distinguish which error Ea ∈ E has
taken place, the idea is to perform one collective measurement on the n physical qubits.
Performing the measurement will result in knowing the outcome of a and the preparation
of a state Ea |ψ⟩ ⊗ |ea⟩E . Now, since Ea is unitary, in order to recover the undamaged
state |ψ⟩, one simply needs to apply E†

a to the code block.

In order for any QECC to correct some set of errors E , it must be able to distinguish
every pair of errors Ea, Eb ∈ E on the codespace. This is only possible if Ea |ψi⟩ and
Eb |ψj⟩ are mutually orthogonal, where |ψi⟩, |ψj⟩ are different basis codewords. Therefore,

⟨ψi|E†
aEb |ψj⟩ = 0, (2.2.13)

where i ̸= j and Ea, Eb are correctable errors. Information about the error is learnt by
measuring ⟨ψi|E†

aEb |ψj⟩ for all possible Ea, Eb. Since we must learn nothing about the
coding space, all basis codewords produce the same value when evaluating this quantity:

⟨ψi|E†
aEb |ψi⟩ = ⟨ψj |E†

aEb |ψj⟩ . (2.2.14)

Combining the two expressions provides the Knill-Laflamme condition [165,166]:

⟨ψi|E†
aEb |ψj⟩ = Cabδij , ∀Ea, Eb ∈ E , (2.2.15)

such that |ψi⟩ and |ψj⟩ run over all possible basis codewords and Cab = ⟨ψi|E†
aEb |ψi⟩ is

Hermitian. This is the necessary and sufficient condition required to ensure recovery of the
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original state. Should Cab have maximum rank, the code is referred to as a non-degenerate
code. This means that there exists a particular measurement that can unambiguously
diagnose Ea ∈ E . Alternatively, should Cab be singular, then it is known as a degenerate
code. Shor’s code is an example of a degenerate code.

Pauli operators can also be assigned a weight, defined to be the number of qubits that
the operator acts non-trivially upon. Thus the weight of a Pauli operator is an integer
t, such that 0 ≤ t ≤ n, for an n qubit system. Similarly to the definition of distance
for a classical linear code, the distance of a QECC is the minimum weight of a Pauli
operator E = E†

aEb for which the Knill-Laflamme condition (2.2.15) fails to hold. QECCs
that encode k logical qubits as n physical qubits with distance d, are described as [[n, k, d]]
quantum codes, with the double square bracket indicating the code is quantum as opposed
to classical. Should the set of errors E consist of error operators Ea that are all of weight
t or less, the QECC can correct up to t errors, provided the distance of the code satisfies
d ≥ 2t+ 1. Thus, a QECC that has distance d = 2t+ 1 is able to correct t errors.

There are two important bounds that give further insight into the general properties
possessed by QECCs. The first constraint is known as the quantum Hamming bound.
Suppose one wishes to encode k logical qubits into n physical qubits in a non-degenerate
fashion, where j errors occur. Of course j ≤ t in order for the code to be able to correct
all the errors. There are

(︁n
j

)︁
distinct sets of locations where the j errors may occur and

three possible errors (the X,Y, Z Pauli operators) that can occur on each qubit, meaning
in total there are 3j possible errors. Thus, the total number of errors of weight up to t

may be expressed as
t∑︂

j=0

(︄
n

j

)︄
3j (2.2.16)

Now, for k logical qubits, each error must correspond to a 2k-dimensional subspace. In
order to accommodate all of these subspaces, the 2ndimensional Hilbert space consisting
of n physical qubits must therefore satisfy

t∑︂
j=0

(︄
n

j

)︄
3j2k ≤ 2n, (2.2.17)

an inequality known as the quantum Hamming bound [167]. In the special case where
the QECC encodes a single qubit (k = 1) tolerating errors on one qubit only (t = 1), the
quantum Hamming bound reduces to

1 + 3n ≤ 2n−1 (2.2.18)

and is only satisfied when there are five or more physical qubits (n = 5). In fact, should a
non-degenerate code encoding k = 1 logical qubits into n = 5 physical qubits exist, i.e. the
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[[5, 1, 3]] quantum code, the quantum Hamming bound is saturated. A second interesting
bound to note is the quantum Singleton bound [168], the quantum analogue of (2.2.10);

2(d− 1) ≤ (n− k), (2.2.19)

imposing constraints on the distance of the code.

2.3 Stabiliser codes

In the final section of this chapter, we focus our attention on a particular subclass of
quantum error correcting codes whose construction surfaced from group theory. The
formalism of these stabiliser codes is an obvious starting point, reflecting on their
formulation and various properties. Then, we will utilise classical linear codes to
summarise the main features of the CSS construction of stabiliser codes before ending
with examples of stabiliser codes and a particularly fascinating application. For those
unfamiliar with the topic, further exploration of stabiliser codes can be studied using the
following resources [72,76–78].

2.3.1 General formulation of stabiliser codes

We next review the basic properties of stabiliser quantum codes, a particular class of
QECCs that arise by exploiting group theory. The essential group needed for this
formulation is the Pauli group Pn where the subscript indicates the number of physical
qubits acted upon. The Pauli group acting on n qubits is

Pn := ⟨i,Xj , Zj⟩ = {ϕ⊗n
j=1 Pj} (2.3.1)

where j = {1, · · · , n}, ϕ ∈ {±1,±i} and Pj ∈ {I,X, Y, Z} with X, Y , Z the Pauli matrices.
The Pauli group has (2n + 1) generators and its order is 4n+1. It also has numerous key
properties:

1. All elements s ∈ Pn are unitary, i.e. s−1 = s†,

2. Every element s ∈ Pn squares to the identity: s2 = ±I. If s2 = I, then s is Hermitian
(s = s†) however if s2 = −I, then s is anti-Hermitian (s = −s†).

3. Since X,Y, Z all commute when acting upon different qubits and all anticommute
when acting on the same qubit, two elements of the set s1, s2 ∈ Pn only ever commute
or anticommute: s1s2 = ±s2s1.
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The stabiliser approach uses properties of the Pauli group to define subspaces of the
Hilbert space. A stabiliser group S is a subgroup of the Pauli group which is abelian
and does not contain −I. Elements of S are called stabilisers and usually the stabiliser
group has a distinguished set of generators, whose properties will be defined below. All
stabilisers have the eigenvalue 1 and stabilisers are independent if the group they generate
becomes smaller if any of them are omitted.

A stabiliser code C is the eigenspace of all elements of a stabiliser group S

C = {|ψ⟩| s|ψ⟩ = |ψ⟩ ∀s ∈ S}. (2.3.2)

The dimension of the code space is 2n−r where there are r independent generators of S.
Accordingly C encodes k logical qubits where

k = (n− r). (2.3.3)

S has a minimal representation in terms of the r independent generators s1, s2, ..., each
of which functions in the same way as a parity check does on a classical linear code. So,
consider some s ∈ S, a particular error operator E = E†

aEb and some state |ψi⟩ ∈ C.
Should E and s commute, [E, s] = 0, then

sE |ψi⟩ = Es |ψi⟩ = E |ψi⟩ , (2.3.4)

thus the error will remain undetected by the stabiliser generator since E |ψi⟩ will be an
eigenvector of s with eigenvalue +1. However, should E and s anti-commute, {E, s} = 0,
then

sE |ψi⟩ = −Es |ψi⟩ = −E |ψi⟩ (2.3.5)

and the eigenvalue corresponding to s is flipped to −1. Therefore, the error can be detected
by measuring s

⟨ψi|E |ψj⟩ = ⟨ψi| sE |ψj⟩ = −⟨ψi|E |ψj⟩ = 0, (2.3.6)

so the QECC satisfies (2.2.13) when E and s ∈ S anticommute. Since both ⟨ψi|E |ψi⟩
and ⟨ψj |E |ψj⟩ will be null in this instance, (2.2.14) will also be satisfied, hence the Knill-
Laflamme condition (2.2.15) will also be fulfilled. Thus, for all errors Ea, Eb ∈ E , provided
{E, s} = 0 for some element of the stabiliser s ∈ S, with E = E†

aEb, the set of errors will
be be correctable by the code.

Additionally the Knill-Laflamme condition (2.2.15) may also be satisifed in another
way, that is, if E ∈ S. Trivially,

⟨ψi|E |ψj⟩ = ⟨ψi|ψj⟩ = δij . (2.3.7)
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Thus the code will also be able to correct any set of errors {E} if E = E†
aEb ∈ S.

So, a stabiliser code C with stabiliser S can correct {E} provided either:

a.) E†
aEb ∈ S,

b.) There exists at least one generator s ∈ S, such that {s, E†
aEb} = 0,

∀Ea, Eb ∈ E . The stabiliser code will be non-degenerate if there are no E†
aEb operators

satisfy the first condition.

There are however, a set of operators that will remain undetectable by this code:
operators that commute with all elements of the stabiliser S however are not themselves
in S. For example, consider (2.3.4). Here, E and s commute implying E |ψi⟩ ∈ C. But
if E /∈ S then there will be a state in C that will not be fixed by E. In other words, the
logical operators are those elements of the Pauli group that act non-trivially on the code
space but leave the code space as a whole invariant. One defines the normaliser of the
stabiliser group in the Pauli group as

N(S) = {g ∈ Pn| gsg† ∈ S ∀s ∈ S}. (2.3.8)

Clearly S ⊆ N(S) and, since all elements of S have trivial action on the code space,
the elements of N(S)\S form the logical operators. The group of logical operators is
isomorphic to the Pauli group on k qubits, up to phases, and it is therefore usual to
represent the generators of the logical group as X̄1, · · · X̄k and Z̄1 · · · Z̄k. It is trivial to
see that X̄ and Z̄ have the following commutation relations:

[Xi
¯ , Xj

¯ ] = 0, (2.3.9)

[Zī, Zj̄ ] = 0, (2.3.10)

[Xi
¯ , Zj̄ ] = 0 i ̸= j, (2.3.11)

{Xi
¯ , Zī} = 0. (2.3.12)

The distance d of a stabiliser code is the minimum weight of a logical operator

d = ming∈N(S)\Swt(g), (2.3.13)

where the weight wt(g) of a Pauli group element is the number of qubits on which it acts
non-trivially. The distance can be thought of as a measure of how well the code can protect
against qubit errors. Similarly to standard QECCs, stabiliser codes are often denoted as
[[n, k, d]] where n is the number of physical qubits, k is the number of logical qubits and
d is the distance.
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2.3.2 CSS construction

In this section we summarise the main features of the CSS (Calderbank and Shor [169],
and Steane [170]) construction of codes using classical linear codes. The CSS construction
begins with two classical linear codes, W1 ([n, k1]) and W2 ([n, k2]), such that all elements
of W1 and W2 are orthogonal i.e. ⟨a, b⟩ = 0 for all a = (a1, · · · , an) ∈ W1 and b =
(b1, · · · , bn) ∈W2. A stabiliser group can then be constructed as

S = ⟨Xa, Zb | a ∈W1, b ∈W2⟩ (2.3.14)

where
Xa = Xa1 ⊗ · · · ⊗Xan Zb = Zb1 ⊗ · · · ⊗ Zbn (2.3.15)

The group S is Abelian, since Xa and Zb commute; the latter follows from the
orthogonality of W1 and W2. The number of independent generators of S is given by

R = dim(W1) + dim(W2). (2.3.16)

The distance is the minimum weight Pauli operator that commutes with all elements in
S. The check matrix for a CSS code may be expressed in the form[︄

H(W1) 0
0 H(W⊥

2 )

]︄
(2.3.17)

where H(W1) and H(W⊥
2 ) are the check matrices of the associated classical codes.

For any stabiliser code (i.e. not necessarily CSS) we can express the check matrix as an
l× 2n matrix, where there are l = (n− k) independent generators of the stabiliser group.
The left hand side of the matrix (i.e. an l × n matrix) contains ones to indicate which
generators contain X matrices, and zero otherwise. Similarly, the right hand side of the
matrix shows ones for generators containing Z matrices and zero otherwise. If there is a
one in the same position on both sides, then there is a Y in the generator as the product
of X and Z gives Y .

By matrix manipulations, the check matrix for any stabiliser code can be brought into
a standard form:[︄

Ir×r Ar×(n−k−r) Br×k | Cr×r 0r×(n−k−r) Dr×k

0(n−k−r)×r 0(n−k−r)×(n−k−r) 0(n−k−r)×r | E(n−k−r)×r I(n−k−r)×(n−k−r) F(n−k−r)×k

]︄
,

(2.3.18)
where r is the rank of left hand side of the check matrix. In the case of a CSS code, this
standard form simplifies further, with the matrices C and D being zero.
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A well known example of a CSS code is the Steane [[7, 1, 3]] code [170], which is
constructed from [7, 4] and [7, 3] classical codes. The standard form for the check matrix
for this code is discussed in detail in [72],

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 | 0 0 0 0 0 0 0
0 1 0 1 0 1 1 | 0 0 0 0 0 0 0
0 0 1 1 1 1 0 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 1 0 1 1 0 0 1
0 0 0 0 0 0 0 | 0 1 1 0 1 0 1
0 0 0 0 0 0 0 | 1 1 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3.19)

This can be represented in a Tanner graph as shown in Figure 4.5.1.

2.3.3 Examples of stabiliser codes

We now proceed by presenting two examples of stabiliser codes that are commonly featured
in the literature. Firstly, the Shor code presented in section 2.2.1 is a [[9, 1, 3]] stabiliser
code. The eight stabiliser generators are shown in table 2.3.1.

Name Operator
s1
s2
s3
s4
s5
s6
s7
s8

Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X I I I
I I I X X X X X X

X̄

Z̄

X X X X X X X X X
Z Z Z Z Z Z Z Z Z

Table 2.3.1: The stabiliser generators of the [[9, 1, 3]] Shor code.

One can easily check that all single qubit operators are either in the stabiliser S or
anticommute with at least one generator in S, hence not being an element of the normaliser
N(S). For example, consider the single qubit operators X1 and Z4. The product of these
operators X1Z4 obviously commutes with Z1Z2. One could perform this analysis for every
combination of possible operators so consequently, the Shor code is able to correct an
arbitrary, single qubit operator.

The second example of a stabiliser code which is presented here, is the [[5, 1, 3]] quantum
code. As mentioned in 2.2.3, this code saturates the quantum Hamming bound (2.2.17).
Further, as a result it is the smallest possible QECC that encodes a single qubit, being
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able to detect and correct any error in the encoded state on a single qubit. The stabiliser
generators of the [[5, 1, 3]] code are given in table 2.3.2.

Name Operator
s1
s2
s3
s4

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X̄

Z̄

X X X X X
Z Z Z Z Z

Table 2.3.2: The stabiliser generators of the [[5, 1, 3]] code.

Again, one can easily check that each weight-1 or weight-2 Pauli operator
anti-commutes with at least one generator, so the code has distance 3. It is possible to
construct an orthonormal basis of codewords. Begin with some initial state |ψ0⟩ such
that one has the encoding

|Ψ0⟩ =
∑︂
s∈S

s |ψ0⟩ . (2.3.20)

So the logical codewords can be taken to be

|0̄⟩ =
∑︂
s∈S

s |00000⟩ , |1̄⟩ = X̄ |0̄⟩ . (2.3.21)

Then by expanding the sum we obtain

|0̄⟩ = |00000⟩+s1 |00000⟩+s2 |00000⟩+s3 |00000⟩+s4 |00000⟩+s1s2 |00000⟩+s1s3 |00000⟩

+ s1s4 |00000⟩+ s2s3 |00000⟩+ s2s4 |00000⟩+ s3s4 |00000⟩+ s1s2s3 |00000⟩

+ s1s2s4 |00000⟩+ s1s3s4 |00000⟩+ s2s3s4 |00000⟩+ s1s2s3s4 |00000⟩

= |00000⟩+ |10010⟩+ |01001⟩+ |10100⟩+ |01010⟩ − |11011⟩ − |00110⟩ − |11000⟩ − |11101⟩

− |00011⟩ − |11110⟩ − |01111⟩ − |10001⟩ − |01100⟩ − |10111⟩+ |00101⟩ (2.3.22)

and subsequently

|1̄⟩ = X̄ |0̄⟩

= |11111⟩+ |01101⟩+ |10110⟩+ |01011⟩+ |10101⟩ − |00100⟩ − |11001⟩ − |00111⟩ − |00010⟩

− |11100⟩ − |00001⟩ − |10000⟩ − |01110⟩ − |10011⟩ − |01000⟩+ |11010⟩ . (2.3.23)

Trivially both |0̄⟩ and |1̄⟩ are states within C. The [[5, 1, 3]] code is just one example of
a perfect code, i.e. a code that saturates the quantum Hamming bound and numerous
others exist [171,172].



2.3. Stabiliser codes 49

The [[5, 1, 3]] code also uniquely captures the essence of quantum secret sharing [173],
forming the basis of a ((3, 5)) quantum threshold scheme. An ((m,n)) quantum threshold
scheme may be thought of in the following way. Suppose one wished to divide up some
top secret information between n parties. No information can be learnt about the secret
from m − 1 shares, however with m shares it is possible to reconstruct the secret in its
entirety. This can be interpreted in the language of quantum codes, with the secret being
the k logical qubits, encoded and divided such that each party receives one of n = 2m− 1
physical qubits. Thus having m shares of the physical qubits allows total reconstruction
of the logical information since the code can correct for the remaining m− 1 erasures.

In theory, any QECC of the form [[2m− 1, k,m]]D (with D representing the quantum
system is D-dimensional) can demonstrate quantum secret sharing in the form of an
((m,n)) threshold scheme such that there is at least one logical qudit k ≥ 1. However,
in the case of qubits (D = 2), the [[3, 1, 2]] and [[7, 1, 4]] codes do not exist and codes
with m > 3 cannot exist due to the more stringent conditions (e.g. the stronger bound
obtained by Rains presented in [76]). Hence for qubits, the [[5, 1, 3]] code is the only
quantum threshold scheme that exists.
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CHAPTER 3

Holography and quantum information

3.1 Holographic entanglement entropy

In this section we begin to combine the two major concepts from the preceding chapters
emphasising the significance of quantum information theory in holography. The
AdS/CFT correspondence can be understood more deeply as a result, particularly in the
realm of entanglement. We will firstly review the notion of holographic entanglement
entropy, for which there are numerous extensive resources available [30, 31]. This
includes discussion of entanglement first in a more general QFT setting as well as an
introduction to the renowned Ryu-Takayanagi formula [26]. We will then briefly touch
upon the relation between quantum entanglement and the emergent geometry in the
bulk spacetime, exemplified by the thermofield double state in the CFT and its
holographic dual, the eternal AdS black hole.

3.1.1 Entanglement in QFT and the Ryu-Takayanagi conjecture

Just as in quantum mechanics, one can similarly understand entanglement in the language
of quantum field theories. Suppose we have a d-dimensional QFT defined on some manifold
R×Nd−1, denoting the time direction asR and the (d−1)-dimensional space-like manifold
as Nd−1. Then at some fixed time t = t0, we can partition Nd−1 into two regions, A ⊂

51
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Ac

A
∂A −→

Figure 3.1.1: A particular choice of bipartition of space into two regions A ⊂ Nd−1 and
its complement Ac ⊂ Nd−1. Correspondingly the total Hilbert space is decomposed as
H = HA ⊗ HAc . The surface separating the two regions (the entangling surface) is the
boundary of region A, denoted ∂A.

Nd−1 and its complement Ac ⊂ Nd−1, separated by the boundary ∂A. This decomposition
is depicted in figure 3.1.1. Then, analogous to quantum mechanics, theoretically one can
use the von-Neumann entropy (2.1.7) to define the entanglement entropy of subsystem A.

While entanglement is easily understood for pure states in quantum mechanics, fresh
complications arise when studying quantum field theory. Since the Hilbert spaces in a
QFT typically have infinite dimensionality, when calculating von-Neumann entropies of
the form (2.1.7), there are an infinite number of degrees of freedom that must be traced
out. Though there are cases where sensible entropies can be computed for systems with
infinite-dimensional Hilbert spaces (e.g. quantum harmonic oscillators), this hints at the
likelihood of S(ρA) diverging in QFT. In fact, in the continuum limit, the entanglement
entropy between adjoining spacetime regions is indeed UV divergent. Thus, in lattice
simulations, it is natural to introduce a UV cutoff to regulate the theory.

As alluded to, explicitly calculating these entanglement entropies can be difficult.
Significant progress was achieved due the development of the replica trick
technique [156, 174]. This provided a systematic approach to compute entanglement
entropies in lattice regularised QFTs, involving the evaluation of partition functions on
an n-sheeted Riemannian surface, initially realised in the case of (1+1)-dimensional
CFTs [156, 174]. As previously discussed, in these systems S(ρA) scales logarithmically
with respect to the linear length l (2.1.19) and is well approximated by MERA.

It was identified in [155, 175, 176] that for a subsystem A, one always anticipates that
the divergence in S(ρA) is proportional to the boundary ∂A of A:

S(ρA) = γ
Area(∂A)
ad−2 + . . . , (3.1.1)

where a is the lattice spacing (UV cut-off) and γ is some constant dependent upon the
theory of the system. Notice that in the case of (1+1)-dimensional CFTs, the entanglement
entropy satisfies a slightly different relation. This is since here there is only one spatial
dimension and so the power law divergence a−(d−2) reduces to a logarithmic divergence.
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One may promptly notice the similarity between this law and that of the Bekenstein-
Hawking entropy (1.1.2). The two can be hypothesised to be related with the following
logic: On the one hand, we have an observer that only has access to one particular
subsystem in a quantum system, say subsystem A, such that they are unable to receive
information from Ac. On the other hand, consider an observer in spacetime A outside a
black hole horizon. They similarly cannot access information beyond the horizon and so
the black hole interior can be thought to be analogous to Ac. Thus, one could interpret
these entropies to be analogous to one another. This ideology is not totally accurate but
it does motivate the possible existence of a holographic duality.

Figure 3.1.2: Visualisation of the Ryu-Takayanagi formula (3.1.2) quantifying the
entanglement entropy of a subregion A in the boundary CFT. The extremal surface γA in
the bulk is homologous to A, i.e. ∂γA = ∂A.

The true holographic description relating entanglement entropy and the geometry in
the bulk was first proposed by Ryu and Takayanagi [26]. This conjecture states that
the entanglement entropy for some spatial subregion A in the d-dimensional CFT is dual
to the area of an extremal space-like surface γA in the bulk spacetime AdSd+1 that is
homologous to A. In particular, the entanglement entropy of A can be calculated via the
Ryu-Takayanagi (RT) formula,

S(ρA) = Area(γA)
4G(d+1) , (3.1.2)

where the (d−1)-dimensional minimal surface is denoted by γA and has (d−2)-dimensional
boundary satisfying ∂γA = ∂A. Figure 3.1.2 offers a visualisation of this notion.

Curiously, the RT formula can be thought of as a generalisation of the
Bekenstein-Hawking formula (1.1.2), thus the heavy similarities we have touched upon.
Should we consider some subregion A of the boundary CFT and allow it to grow until it
encompasses the entire boundary, one immediately notices that the bulk extremal
surface γA is without boundary. Though from a topology perspective, due to the
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imposed constraint on the homology in our definition, one requires that the only
permitted surfaces are those wrapping the black hole horizon in the bulk. Then if the
area spanned by the minimal surface is exactly the horizon, the entanglement entropy
given in the RT formula (3.1.2) is precisely the Bekenstein-Hawking entropy (1.1.2).

This geometric relation has been shown to satisfy numerous crucial properties of
entanglement entropy, most notably consistency with subadditivity and strong
subadditivity [29], given by

S(ρAB) ≤ S(ρA) + S(ρB) (3.1.3)

and
S(ρB) + S(ρABC) ≤ S(ρAB) + S(ρBC) (3.1.4)

respectively. The proof of strong subadditivity in holography is relatively straightforward
and can be summarised diagrammatically as shown in figure 3.1.3. Additionally, the new
inequality constraining the entanglement between three regions [177],

S(ρA) + S(ρB) + S(ρC) + S(ρABC) ≤ S(ρAB) + S(ρAC) + S(ρBC), (3.1.5)

is often called the monogamy of mutual information (MMI) and was shown to exist
through the study of entanglement entropies of QFTs with holographic duals. Finding
and characterising the complete list of the extra satisfied conditions of the holographic
entanglement entropy is still a topic on ongoing research [178,179].

A B C

Figure 3.1.3: A configuration in AdS3 exemplifying the strong subadditivity of holographic
entanglement entropy. Entanglement entropies S(ρAB) and S(ρBC) are computed
according to 3.1.2 through the red, dashed geodesics while entanglement entropies S(ρB)
and S(ρABC) are computed with the solid, blue geodesics. One can alternatively
interpret the red geodesics as two separate lines, with one homologous to ABC (larger
exterior ‘M’ shape) and one homologous to B (interior ‘n’ shape). Since neither of
these lines are geodesics, their total length must exceed that of their counterparts, thus
S(ρB) + S(ρABC) ≤ S(ρAB) + S(ρBC).
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Another good consistency check for the RT formula is to study the familiar
(1+1)-dimensional CFT and reproduce results using the AdS3/CFT2 correspondence.
Introducing a suitable regulator ϵ, one may fairly trivially check that we obtain the
expected result (2.1.19), identifying c as the Brown-Henneaux central charge (1.2.7).

Ryu and Takayanagi’s original proposal, as we have discussed here, provides a
prescription for calculating the entanglement entropy of a boundary subregion A in a
time-independent environment. In order to describe a dynamical system one must invoke
the Hubeny-Ryu-Takayanagi (HRT) formula [27], the covariant generalisation of (3.1.2),
capable of capturing time-dependent effects.

3.1.2 Geometry, gravity and entanglement

One of the most fascinating implications arising from studying holographic entanglement
entropy is the relation between geometry and entanglement. Due to the presence of the
extremal surface, a geometrical object in the bulk, we are left with the impression that
quantum entanglement at the boundary may have a deeper connection with the geometry.
In order to truly understand the AdS/CFT correspondence, it is desirable to identify the
circumstances for which a QFT state is holographically dual to a smooth semi-classical
gravity geometry. It has been suggested that gravity should not be viewed as a fundamental
force and that it emerges holographically due to quantum degrees of freedom. From this
viewpoint it has been argued that the quantum entanglement between these degrees of
freedom plays a fundamental role in the emergence of the geometry [180,181].

A prevalent example is that of the thermofield double (TFD) state, where we introduce
a CFT comprised of two copies of the same CFT (say CFTL and CFTR), with the Hilbert
space H = HL ⊗HR. Then, the TFD state is defined as the unique pure state

|TFD⟩ = 1
Z(β)

∑︂
n

e−βEn/2 |n⟩L ⊗ |n⟩R . (3.1.6)

Here Z(β) is the canonical partition function and β−1 is the temperature. The two copies
of the CFT are labelled L and R and their energy eigenstates are given by |n⟩L and
|n⟩R respectively. This pure state can then be thought of as an entangling state of these
eigenstates weighted by a Boltzmann factor. The corresponding density matrix of the
doubled QFT can be expressed as

ρtot = |TFD⟩ ⟨TFD| . (3.1.7)

By construction, the reduced density matrix of either system L or R always amounts to
a thermal state. Consider the reduced density matrix of system R, found by tracing out
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the L degrees of freedom:

ρR = 1
Z(β)

∑︂
n

e−βEn |n⟩R ⟨n|R = e−βH . (3.1.8)

Indeed this is the thermal state in HR. Notice how the inverse temperature β controls to
what extent entanglement between the CFTs plays a role, exemplified in two intriguing
temperature limits. When we consider low temperatures, β ≫ 1, the ground state
dominates and entanglement is heavily suppressed while at high temperatures, β ≪ 1,
the state becomes highly entangled. As may be expected since the ground state in a
CFT is holographically dual to AdSd+1, at low temperatures, the holographic dual of the
TFD state can be viewed as thermal AdS. In particular it can be described by two
disconnected copies of AdS spacetime. Alternatively, the dual description of the TFD
state at high temperatures in the bulk is the Hartle-Hawking state |HH⟩ describing an
AdS-Schwarzschild black hole [182].

III

IV

III
CFTL CFTR

r = 0

Black hole interior

r = 0

White hole interior

Figure 3.1.4: The Carter-Penrose diagram depicting an eternal black hole (the extended
AdS-Schwarzschild spacetime). The two asymptotically AdS regions I and II are dual
to the two copies of the CFT (CFTR and CFTL respectively) living at the time-like
boundaries at spatial infinity. Regions III and IV lie inside the black hole and white hole
horizons respectively where the corresponding space-like singularities are contained.

These eternal AdS black hole (maximally extended AdS-Schwarzschild) solutions have a
particularly interesting structure, consisting of two asymptotically AdS regions associated
to one another via a spatial Einstein-Rosen (ER) bridge. They also possess two time-
like boundaries located at spatial infinity as illustrated in figure 3.1.4. The simplest
asymptotically AdS black hole arises in AdS3 and has the metric

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2 dt2 + dr2

(r2 − r2
+)(r2 − r2

−)
+ r2(dy + r+r−

r2 dt)2. (3.1.9)
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This solution is known as a BTZ black hole [115], a namesake to its founders. It has been
suggested that the macroscopic entanglement present in the TFD state is characterised
as holographically dual to the wormhole connecting the asymptotic regions. This is the
underlying argument relating geometry and entanglement first posed by Maldacena and
Susskind in the so-called ‘ER = EPR’ conjecture [183]; Einstein-Rosen bridges (or highly
quantum wormholes) connecting two qubits and entanglement between an EPR pair
(maximally entangled pair of qubits) are fundamentally equivalent. Further, this
hypothesis was initially proposed as a solution to the black hole firewall problem [184].

3.2 Holographic quantum error correcting codes

The following section is dedicated to understanding the relationship between quantum
error correcting codes and the emergence of bulk locality in the AdS/CFT correspondence.
Our focus initially is to introduce the concept of bulk reconstruction, which fundamentally
aims to complete the dictionary between bulk and boundary. Then, following [32], we make
the connection to quantum codes demonstrated using the 3-qutrit code [173]. An enriched
overview of the material presented in this section can be found in the lecture notes [79].

3.2.1 Bulk locality and bulk reconstruction

One extremely significant conundrum in the AdS/CFT correspondence is that locality
in the bulk is not manifestly respected by the boundary CFT. Of course, no problem
arises when considering a usual ‘scattering experiment’ where local boundary operators are
initially acted upon, allowed to interact in the bulk, and then later measured as boundary
operators with the result contained in a CFT correlator e.g. ⟨O(X1)O(X2)O(X3)O(X4)⟩
as depicted on the left in figure 3.2.1. This is since the CFT innately respects locality
in the the d-dimensions present at the boundary. However, should we be interested in a
case such as the one depicted on the right in figure 3.2.1, then this causes some concern.
These arguments are answered by holographic bulk reconstruction, where one investigates
to what extent bulk locality is respected by CFT.

Recall from section 1.3.2 that the solution to the bulk equations of motion for some
bulk field ϕ is always subject to specific boundary conditions. More explicitly, near the
boundary of AdS, the fields are considered to have non-normalisable fall-off;

ϕ(z, x) ∼ zd−∆ϕ(0)(x), (3.2.1)

identifying the non-normalisable modes ϕ(0) as the source for the dual field theory operator
O∆ with conformal dimension ∆. As described in section 1.3.2, we can equivalently use
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?

Figure 3.2.1: Left: A bulk scattering experiment in pure AdS3, described the by the
correlation function ⟨O(X1)O(X2)O(X3)O(X4)⟩. Right: The Carter-Penrose diagram
of the AdS-Schwarzschild spacetime consisting of an experiment in the bulk between
two incoming particles that have been prepared in some initial state. The extrapolate
dictionary does not inform us how the region behind the horizon will be encoded in the
CFT description.

the the integration kernel known as the bulk-to-boundary propagator K to express the
bulk field as

ϕ(x) =
ˆ

∂AdS

ddXK(x;X)ϕ(0)(X). (3.2.2)

A comment of importance is that this equation has no explicit mention of operators in the
dual CFT and solely describes bulk fields along with their asymptotics. From the field-
operator correspondence, one may be motivated to uncover a similar relation consisting
purely of CFT operators. Then, for some local operator O(X) in the CFT,

OBulk(x) =
ˆ

∂AdS

ddXK(x;X)O(X), (3.2.3)

where the local bulk operator OBulk(x) is manifestly non-local in the CFT. Hence, we
deduce local bulk fields are holographically dual to CFT boundary operators that are
non-local [185, 186]. In this context, K(x;X) is often referred to as smearing function
and while it shares similarities with the the bulk-to-boundary propagator, it is clear that
these are distinctly different functions. To see this more explicitly, further details on the
smearing function can be found in appendix A.1.2, while the bulk-to-boundary propagator
has the form stated in (1.3.12). For the sake of brevity, if we wish to consider cases beyond
free field theory and introduce interactions, one can find similar motivation utilising the
bulk-to-bulk propagator (1.3.14) though we do not consider this here. Returning to (3.2.3)
we can specify the range of integration to be over X that are space-like separated from the
bulk point x. Choosing this as the support for K(x;X) in (3.2.3) is often referred to as
the global reconstruction of OBulk(x) [185], since the bulk field has support on the entire
boundary of Cauchy slice Σ.
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There are however, alternative choices for the support of the smearing function K(x;X).
One can further restrict the spatial support to a proper subregion A of the CFT at the
boundary of Σ. Consideration of bulk reconstruction in this sense leads to the idea of the
subregion duality [187–189]: the notion that should we only have access to subregion A in
the CFT, this subregion will provide us with complete information for some subregion in
the bulk.

One of the most compelling forms of bulk reconstruction amalgamating this concept
using boundary subregions is the AdS-Rindler reconstruction [190, 191]. Considering
AdSd+1 and adopting a particular parametrisation of the embedding in new bulk
coordinates, the metric becomes

ds2 = −(ρ2 − 1)dτ2 + dρ2

ρ2 − 1 + ρ2(dx2 + sinh2 x dΩ2
d−2), (3.2.4)

with coordinate ranges ρ > 1, x ≥ 0 and −∞ < τ < ∞. One may also identify that the
final term enclosed by parentheses corresponds to the metric on the (d − 1)-dimensional
hyperbolic ball. Thus we are parametrising a subregion of AdSd+1, illustrated in AdS3 in
figure 3.2.2, named the AdS-Rindler wedge.

Σ AWC [A]

ρ
=

1

τ
=
∞

τ =
−∞

ρ
=
∞

Figure 3.2.2: The AdS-Rindler wedge WC [A] (shaded blue region) depicted in AdS3
spacetime used to reconstruct local bulk operators in some boundary subregion A.

Now, consider some spatial subregion A of the boundary of an asymptotically AdS
geometry. The set of all boundary points that can be reached via an inextendible null or
timelike curve intersecting A is called the boundary domain of dependence D[A]. Then,
the causal wedge of A [187, 188, 192], denoted WC [A], is the set of bulk spacetime events
intersected by a causal curve both originating from and evolving to D[A]. Hence,

WC [A] ≡ J +[D[A]] ∩ J −[D[A]], (3.2.5)
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where J ± represent the bulk causal future/past domains of influence as usual. There
is then an isomorphism between the bulk region of any AdS causal wedge and the AdS-
Rindler wedge. Thus, the idea of bulk reconstruction using the smearing function can
be realised using the causal wedge and due to relations through bulk isometries (or the
boundary conformal transformations in the CFT), this amounts to employing the AdS-
Rindler wedge to do so. Further, this illustrates the concept of subregion duality through
the causal wedge reconstruction conjecture: in asymptotically AdS spacetime, any bulk
field located within the causal wedge of the boundary subregion A can be successfully
reconstructed on the boundary region D[R].

However, one may then notice, there is a clear redundancy to the encoding of the non-
local bulk operators when implementing (3.2.3). Since we can theoretically have infinite
boundary subregions then the same bulk field operator OBulk(x) can lie in multiple of these
regions. The naive interpretation of this would be that a local bulk operator reconstructed
in any wedge corresponds to the same CFT operator. However, this approach cannot be
correct. Consider two causal wedges, WC [A] and WC [B], both containing the bulk point
x, as shown in figure 3.2.3. In order to obtain a CFT operator with support in both
regions A and B to truly reconstruct the bulk field OBulk(x), the only possible solution is
that it has support on A ∩ B. However this is not the case, as x has been chosen to lie
outside of WC [A ∩B], so the operator cannot possess this representation.

Figure 3.2.3: A Cauchy slice Σ of AdS3, consisting of two overlapping causal wedgesWC [A]
and WC [B] associated to the subregions A and B lying at the boundary of slice. Both
wedges contain the bulk point x yet the wedgeWC [A∩B] associated with the intersection
of A and B does not contain x, leading to a paradox.

Further enlightenment is provided, with regards to this contradiction, by considering
the example depicted in figure 3.2.4. In this instance, there are three separate causal
wedges WC [A],WC [B] and WC [C], each associated to a subregion of the boundary CFT
A,B and C respectively. The bulk operator OBulk(x) is defined at a point x in the bulk
that lies outside of all three causal wedges and so cannot be reconstructed on any individual
subregion. However, considering the union of any two of these regions (i.e. A∪B,A∪C or
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B∪C), one is able to fully reconstruct the bulk operator. Clearly, these three reconstructed
operators cannot truly be the same.

The resolution to this paradox was suggested in [32]. The statement is that for each
subregion A in which the bulk field OBulk(x) can be reconstructed, it then must have a
different representation in the boundary CFT. One may notice many parallels between
the redundancy of the encoding of OBulk(x) and the language of quantum error correcting
codes, motivating the discussion in the next section. We note at this point that a different
bulk region may also be chosen for some boundary subregion A, as opposed to the causal
wedge, known as the entanglement wedge WE [A] [193]. We define this wedge to be the
bulk region confined between A, the minimal surface γA (that appears in the HRT formula
generalising (3.1.2)) and its bulk domain of dependence. Under reasonable assumptions,
the causal wedge is actually contained within the entanglement wedge WC [A] ⊂ WE [A]
[28, 194].

x

A B

C

Figure 3.2.4: The boundary of the CFT for Cauchy slice Σ has been split into three
subregions A,B and C. The bulk point x does not lie in any of the subregions causal
wedge however does lie in the causal wedge of the union of any two of the subregions.
This exhibits a redundant encoding since one can reconstruct the bulk operator OBulk(x)
on in any of the causal wedges WC [A ∪B],WC [A ∪ C] or WC [B ∪ C].

3.2.2 Holography and quantum error correction

The thorough description of quantum error correcting codes discussed in section 2.2 can
be summarised as the redundant encoding of quantum information from one system
(consisting of k logical qudits) into another system (consisting of n physical qudits) with
a much larger Hilbert space in order to protect the information from noise induced by
the environment. Since there is a redundancy in how OBulk(x) is encoded in the CFT at
a sub-algebra level, we realise that this phenomena exhibits the same nature as that of a
QECC. Recovery of the information in the bulk (operators localised in the bulk) for one
subregion against particular erasures in the boundary CFT is independent to the same
erasures in the boundary CFT on different boundary subregions. Then we realise a
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QECC through an encoding map storing bulk information (from the k logical qudits) in
the degrees of freedom (n physical qudits) at the boundary. For example, reconstruction
for operators supported at bulk point x at CFT subregion A would then not be possible
if the complement CFT subregion Ac with causal wedge containing bulk point x was
erased.

The degree of sensitivity to which the bulk operator OBulk(x) is to boundary erasures
is necessarily dependent upon its depth into the bulk. Bulk operators that live close to the
asymptotic boundary are extremely sensitive to small erasures since the information will
be totally lost if the CFT subregion, with wedge containing it, is erased. Alternatively,
as one probes deeper into the bulk, the bulk information becomes increasingly protected
against boundary erasures. Figure 3.2.5 emphasises this behaviour visually.

Figure 3.2.5: Three boundary subregions A,B and C such that each of their corresponding
causal wedges contain a bulk point. Erasure of any these subregions causes reconstruction
of the respective bulk point within them to become impossible. As we move deeper into
the bulk, bulk operators are more protected against erasures since larger regions of erasure
are needed to stop reconstruction. The bulk point x4 at the centre of the Cauchy slice is
protected from the erasure of all three subregions.

The understanding of these holographic codes can be enhanced by considering the
simple toy-model proposed in [32] which was further elucidated in [195]. In this model,
one employs the 3-qutrit code [173], thus protecting a single logical qutrit by encoding it
into 3 physical qutrits by means of the map

|0̄⟩ = |000⟩+ |111⟩+ |222⟩√
3

, (3.2.6)

|1̄⟩ = |012⟩+ |120⟩+ |201⟩√
3

, (3.2.7)

|2̄⟩ = |021⟩+ |210⟩+ |102⟩√
3

. (3.2.8)
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Similarly to the [[5, 1, 3]] code discussed in section 2.3.3, this quantum code exhibits the
unique feature that it is a quantum secret sharing scheme.

From the holographic perspective, the three physical qutrits living at the boundary are
associated with the local degrees of freedom at the boundary CFT while the logical qutrit
living in the bulk is the local degree of freedom in the bulk theory. At the particular
point where the logical qutrit lives, the local bulk operators can be understood as logical
operations on that encoded subspace. In this sense, these bulk operators commute with
all local boundary operators in the CFT. Further, one can represent the bulk operators as
operators that act upon only two physical qutrits, establishing a subregion duality between
these boundary qutrits and the information in the bulk.

It is clear that this toy-model is not satisfactory to truly illustrate many of the
technicalities of the AdS/CFT correspondence, especially the intricacies of the geometry
in the bulk. However, the fundamental ideas underlined by this model set the stage for
numerous eloquent constructions that shortly followed. Much of the focus of our work in
this thesis regards the highly influential HaPPY code, a discrete toy-model adopting
tensor network theory, developed by Pastawski, Yoshida Harlow, Preskill [1].
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CHAPTER 4

Holography, cellulations and error correcting codes

4.1 Introduction

In recent years there has been increasing interest in relations between quantum information
and holography. A key connection is the relationship between the hyperbolic plane, viewed
as the spatial slice of AdS3, and quantum error correction codes. AdS/CFT is usually
discussed in continuum language but the quantum code picture of holography relies on
discretisations of the hyperbolic plane with which simple quantum error correcting codes
can be associated.

The best known class of such codes is the HaPPY codes [1]. These are based on
regular uniform tessellations of the hyperbolic plane, with a corresponding graph state
respecting the maximal discrete symmetry group of the tessellation. The codes are related
to perfect tensors and absolutely maximally entangled (AME) states [196], properties
which immediately give rise to Ryu-Takayanagi behaviour [30] for the entanglement i.e.
the entanglement of a boundary region scales with the length of the associated discrete
geodesic through the bulk.

While perfect tensors have elegant properties that facilitate the analysis of the code
properties, the properties of AME/perfect tensor codes do not reflect the expected
behaviour of the dual conformal field theory. For example, correlation functions in a
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conformal field theory have power law fall-off but the correlation functions induced by
AME states do not admit such behaviour. However, there are various ways to adapt the
HaPPY construction to give rise to the expected two-dimensional CFT behaviour,
ranging from using random tensors to almost perfect tensors [33, 34, 36, 37]. Thus for
many purposes the HaPPY construction is viewed as a useful toy model for physical
behaviour.

Despite the considerable study of codes, there are still many important conceptual
questions about quantum error correction codes for holographic spacetimes. Most of the
code constructions are based around two-dimensional spatial slices of static (or
stationary) three-dimensional geometries. Dynamics has been explored in [197–199] but
is primarily restricted to evolutions that respect constant curvature. The code
constructions are associated with discretisations of the spacetime, and the relation to
continuum geometry is not well understood. (See however [200, 201] for discussions of
taking the continuum limit in the context of tensor networks and entanglement.)

While AdS3 gravity is often used as a toy model for holography, it misses important
features of generic holographic dualities. Three-dimensional gravity is not dynamical and
negative Einstein curvature implies constant negative Riemann curvature. In
higher-dimensional gravity dynamics would change the Riemann curvature and any
discrete approach/code mapping should incorporate this feature. Holographic dualities
involve additional fields (scalars, gauge fields, fermions) and the quantum error
correction codes should be able to capture these additional degrees of freedom. There
have been some previous attempts to explore these issues. For example, by generalising
the tensors to represent a Bacon-Shor code, one can include gauge fields in quantum
error correcting codes (in two spatial dimensions) [202,203]. The construction of codes in
dimensions higher than two has been considered in [199]; this approach uses so-called
perturbation gadgets to construct codes associated with discretisations of higher
dimensional spaces. A recent review of holographic quantum error correction can be
found in [204].

The main goal of this work is to initiate the systematic construction of codes
associated with AdS spacetimes in general dimensions. As we discuss in section 4.2, AdS
codes are relevant not only in the context of the standard conformal AdS/CFT dualities.
Reduction of AdS spacetimes on tori gives rise to scalar/gravity theories for which the
holographic duals are theories with dimensionally running couplings. A specific example
of considerable current interest is the reduction of AdS3 on a circle to give JT gravity, for
which the details of the holographic dictionary were studied in [205, 206]. However, the
relation between these bulk scalar/gravity theories and dual quantum field theories with
generalized conformal structure holds much more broadly [119] and it was shown in [207]
that all such dualities could be understood in terms of toroidal reductions of AdS (with
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the torus not necessarily having an integer dimension).

In section 4.2 we discuss how one would carry out a toroidal reduction of a hyperbolic
tessellation, illustrating our discussions with the example of the hyperbolic plane reduced
on a circle, which is relevant for the AdS3/JT gravity case. This discussion shows how
one would obtain codes associated with the lower-dimensional scalar/gravity theories from
higher dimensional hyperbolic codes.

In sections 4.3 and 4.4 we develop the construction of codes associated with regular
uniform tessellations of hyperbolic geometries in three and higher dimensions. The
reason for beginning with a HaPPY type approach based on regular uniform tessellations
is the desirable properties captured by such codes e.g. Ryu-Takayanagi entanglement,
pushing behaviour, greedy algorithm. While one would anticipate the need to adapt the
construction to obtain CFT entanglement and correlation function behaviour, the
two-dimensional HaPPY code is a useful starting point for more realistic constructions.

One of the key aspects of the HaPPY construction is the relationship between perfect
tensors and absolutely maximally entangled states and we review this in detail in section
4.3. For higher dimensional hyperbolic space a number of subtleties are encountered in
using regular uniform tessellations and perfect tensors to construct codes. Firstly, the
number of regular uniform tessellations decreases with dimension e.g. there are only four
such tessellations for three dimensional hyperbolic space. This contrasts with the infinite
number of such tessellations in two dimensions.

Secondly, one cannot assign qudits to the polytope of the tessellation in a way that
the assignment both preserves the discrete symmetry of the polytope and corresponds
to a perfect tensor/absolutely maximally entangled state. The prototype HaPPY code
is based on pentagons and the physical qubits associated to each side of the pentagon
are equivalent to each other in the corresponding graph state. Standard classifications
of absolutely maximally entangled (AME) states [208–211] imply that one cannot, for
example, have the qudits associated with each face of a three-dimensional polytope of a
regular hyperbolic tessellation being equivalent in the corresponding graph state.

This might sound surprising but in fact many hyperbolic plane tessellations are also
incompatible with simultaneously preserving the discrete symmetry of the polygon cell
and corresponding to an AME state. The new issue in higher dimensions is that the
number of regular uniform tessellations is sparse, and all the polytopes corresponding to
these tessellations are not compatible with maximal discrete symmetry and AME states.
In section 4.4 we present two alternative ways of addressing this issue. The first is to
relax the requirement of AME/perfect tensor; we construct codes that respect the discrete
symmetry of each polytope cell of the tessellation but are not AME. The second approach
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is to work with AME codes, but now the assignment of the qudits to polytope cell faces
does not respect the discrete symmetry of the polytope. The latter implies that one has
to be careful with the concatenation of cells and we give an example of how this can be
done consistently. There are many future directions to develop these codes further, which
we discuss in section 4.6.

The underlying principle of the HaPPY code is that logical qubit information is encoded
in each cell of the tessellation with this information pushed to the boundary via physical
qubits. HaPPY and related codes have natural interpretations in terms of spacetime
reconstruction: one can ask questions about which parts of the boundary are necessary
for reconstruction of a given region in the bulk.

While most holographic constructions of hyperbolic codes are based on the principle of
encoding logical information into each cell, this is not the only possible way to construct
codes for hyperbolic spaces. It is known that one can map cellulations of spaces into other
types of quantum error correction codes, namely CSS codes. As we discuss in section 4.5
the logical information in such codes is associated both with the asymptotic boundary of
the space as well as with internal boundaries/defects.

CSS codes associated with the hyperbolic plane have been constructed in earlier
literature. In section 4.5 we review such constructions and explain how CSS codes
associated with higher dimensional hyperbolic spaces can be constructed. We note that
these codes could potentially be used in two distinct ways. Firstly, if the code is
associated with the entire (regulated) hyperbolic space, then the logical information at
the boundary would be interpretable in the dual conformal field theory. One could think
of these codes as in some sense reversing the logic of HaPPY: in these codes, one can ask
questions about how logical information in the boundary is encoded through a physical
qubit network in the bulk.

The second potential use of the CSS code construction is as a way to implement local
holography. Suppose one considers a region of a hyperbolic space with a boundary at
finite distance, and associates a CSS code to a tessellation of this region with logical
information being encoded at the boundary of the region. Each region is thus locally
holographic, with logical information associated with the boundary. One could then
envisage concatenating codes associated with neighbouring regions, pushing the logical
information all the way out to the asymptotic boundary. This approach could be a
natural starting point for incorporating dynamics, with the curvature and encoding in
each region potentially evolving with time.

The outline of this thesis chapter is as follows. In section 4.2 we discuss tessellations
and cellulations for geometries that arise in holographic correspondences. In section 4.3
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we explore in detail the construction of quantum error correction codes associated with
two-dimensional tessellations, focusing particularly on AME states and the
concatenation of codes between cells. In section 4.4 we construct codes associated with
hyperbolic geometries in three and higher dimensions, giving examples of both AME and
non-AME codes. In section 4.5 we discuss alternative constructions of codes associated
with hyperbolic tessellations, CSS codes in which the logical qubits are encoded through
global properties of the tessellation. We conclude and explore directions for future
research in section 4.6.

4.2 Holographic geometries, polytopes and tessellations

Throughout this paper we will be exploring cellulations of holographic geometries and
associated codes using several classes of representative examples. Our examples are
primarily based on maximally symmetric geometries as these are both the best
understood holographic geometries and furthermore their cellulations are well studied by
mathematicians.

Our main example of holographic geometry is perhaps unsurprisingly Anti-de Sitter
for which spatial slices are hyperboloids, as this is the basis for the best understood
holographic correspondence. Earlier literature on holographic codes has been primarily
based around AdS3 whose spatial slices are hyperbolic planes. In this section we will
discuss cellulations of hyperbolic spaces in general dimensions as a first step towards
generalising AdS3 constructions to higher dimensions.

We will also be interested in holographic geometries with compact directions, focussing
on two distinct representative classes of examples. The first class of examples is products
of AdS with spheres which of course arise frequently in holographic dualities. For example,
AdS3 spacetimes often occur as products with two and three dimensional spheres:

ds2 = 1
z2

(︂
dz2 + dx2 − dt2

)︂
+R2dΩ2

n (4.2.1)

where dΩ2
n is the metric on Sn with n = 2 or 3. Here we represent the anti-de Sitter

spacetime in Poincaré coordinates to contrast against the case discussed below but the
spacetime is regular and global coordinates would cover the entire spacetime. The simplest
prototype for compact additional dimensions of this type would be AdS3× S1, for which
we can express the metric as

ds2 = 1
z2

(︂
dz2 + dx2 − dt2

)︂
+R2dy2, (4.2.2)
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where the anti-de Sitter space has unit radius and R is the radius of the circle direction
y. We will discuss tessellation of this prototypical example below.

Our second class of examples relates to toroidal compactifications of higher dimensional
AdS spacetimes. These examples are interesting as from the lower dimensional perspective
they give rise to holographic dualities with running couplings: reducing the CFT on
a torus, the dual field theory is from the lower dimensional perspective a theory with
generalised conformal structure i.e. conformal invariance broken only by a single running
coupling.

Such dualities are amongst the simplest prototypes for non-conformal gauge/gravity
dualities and arise in the context of dualities associated with D-branes and fundamental
strings in [117]. The detailed holographic dictionary for non-conformal branes and the
associated generalized conformal structure was studied in [119]. It was shown in [207]
that generic dualities with generalized conformal structure could be interpreted in terms
of compactifications of AdS on tori, with the dimension of the torus not necessarily being
integral.

As an illustrative case, we can express the metric for AdS(σ+3) in the form

ds2 = 1
z2

(︂
dz2 + dx2 − dt2 + dy · dyσ

)︂
(4.2.3)

where y denotes σ coordinates. When the y coordinates are not periodic the metric simply
describes the Poincaré patch of anti-de Sitter space in (σ+3) dimensions, with the Poincaré
horizon being at z →∞.

If the coordinates y are periodically identified, and thus parameterise a torus T σ, the
metric above has a conical singularity as z → ∞; one cannot view the metric above as
covering part of a regular manifold. Nonetheless this situation is of physical interest: it
corresponds to the dual CFT being compactified on a torus T σ and the conical singularity
can be cloaked by a horizon at finite temperature.

In this setup we can relate negative curvature geometries in (σ + 3) dimensions to
solutions of three dimensional Einstein-scalar gravity as follows. Pure gravity solutions in
(σ + 3) dimensions satisfy the equations of motion following from the action

S = L

ˆ
dσ+3x

√
−G (R(G) + (σ + 1)(σ + 2)) (4.2.4)

where
L = lσ+1

16πGσ+3
(4.2.5)

with l the AdS radius and Gσ+3 the Newton constant.
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Now consider a diagonal reduction ansatz for the metric G:

ds2 = ds2
3 + e

2ϕ
σ dy · dyσ (4.2.6)

The three dimensional metric and scalar field ϕ satisfy the equations of motion following
from the reduced action

S = LVσ

ˆ
d3x
√
−geϕ

(︃
R(g) +

(︃
σ − 1
σ

)︃
(∂ϕ)2 + (σ + 1)(σ + 2)

)︃
, (4.2.7)

where Vσ is the volume of the compactified directions y. One particular solution of these
reduced equations is

ds2 = 1
z2

(︂
dz2 + dx2 − dt2

)︂
eϕ = 1

zσ
, (4.2.8)

i.e. the reduction of the higher dimensional AdS solution. The key conceptual difference
relative to (4.2.2) is that the radii of the circle directions scale with the AdS radius, rather
than being fixed.

The above example relates to three dimensional Einstein scalar theories. However,
the general picture holds in generic dimensions providing a generic class of non-conformal
holographic dualities. A particularly interesting case of considerable recent interest is the
circle reduction of AdS3 itself i.e. in the metric

ds2 = 1
z2

(︂
dz2 + dx2 − dt2

)︂
(4.2.9)

the x direction is taken to be periodic with radius Rx. Reduction of AdS3 gravity on
a circle results in a two-dimensional theory that is equivalent to JT gravity [119, 205],
which is again dual to a (one-dimensional) theory with a dimensionally running coupling.
Such two-dimensional backgrounds have been discussed extensively in the context of SYK
dualities following the well-known work of [212, 213]. In later sections we will discuss
tessellations for these backgrounds and how these may relate to quantum codes.

4.2.1 Tessellations of hyperbolic spaces

In this section will review how classes of holographic geometries can be tessellated and
cellulated by polytopes, beginning with the very familiar case of two dimensional
tessellations. We start with the definition of a tessellation for a two-dimensional
(Riemannian) manifold. A tessellation consists of a covering of the manifold M by a set
of polygons {Pj}, each of which is associated with a distance preserving function
ϕj : Pj → M. This implies that any two points on a polygon which are associated with
(a, b) satisfy

DPj (a, b) = dM(ϕj(a), ϕj(b)) (4.2.10)
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where DPj and dM are distances in the polygon and manifold, respectively. In two
dimensions tessellations are commonly referred to as tilings.

Turning to holographic applications, in the context of AdS3, the spatial section is the
hyperbolic plane H2, tessellations of which are very well studied within the mathematics
literature. From the perspective of physical applications it is often natural to focus on
tessellations that respect discrete symmetry groups that are subgroups of the continuous
symmetry group of hyperbolic space. The most symmetric tessellations are based on
regular uniform tilings.

It is a well known result in mathematics, following the famous work of Coxeter [214],
that the hyperbolic plane admits an infinite number of regular tilings. Regular tilings can
be characterised by the Schläfli pair {p, q}, where p is the p-gonal regular polygon and
q denotes the number of line segments associated with each vertex of the polygon (or
equivalently the number of p-gons at each vertex). Every positive integer pair such that

1
p

+ 1
q
<

1
2 (4.2.11)

gives a hyperbolic tiling. The specific tilings used in the context of the original HaPPY
code [1] are {5, 4} (and dual, see below), which is an example of tiling which is both regular
and uniform.

A uniform tiling is a tiling that has regular polygons as faces and is vertex transitive so
there is an isometry mapping any vertex onto any other. Uniform tilings can be described
by their vertex configuration, a notation for representing the sequence of faces around
the vertex. The vertex configuration gives the number of sides of faces going around the
vertex. For example a.b.c denotes a vertex that has three faces around it, faces with sides
a, b and c. With this notation the regular pentagonal tiling is denoted 5.5.5.5.

Uniform tilings may be regular, if also face and edge transitive, but can also be quasi
regular (edge transitive but not face transitive) or semi-regular (if neither edge nor face
transitive). In the context of holography it is most natural to work with uniform regular
tilings, as one would expect transitivity of faces, edges and vertices. All uniform tilings
generate dual uniform tilings; in the context of two-dimensional tessellations, duality
relates the vertices of one tessellation to the edges of the dual. For the uniform regular
tilings, each tiling {p, q} has a dual tiling {q, p}. For example, the dual of the pentagonal
tiling with four pentagons meeting at each vertex, {5, 4}, is a square tiling with five
squares meeting at each vertex {4, 5}.

The main focus of this paper is generalising codes based on tessellations to spatial
dimensions higher than two. To describe higher dimensional tessellations we first need to
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define the relevant polytopes. A d-dimensional (Euclidean) polytope P is a compact subset
of d dimensional Euclidean space bounded by a finite number k of (d − 1) dimensional
hyperplanes; compactness implies that k > d. A d dimensional polytope has facets which
are (d − 1) dimensional polytopes; these facets themselves have facets that are (d − 2)
dimensional polytopes and so on. The set of all the i dimensional sub-polytopes are
referred to as i cells.

A tessellation of a d-dimensional Riemannian manifold M formally consists of a set
of d-dimensional polytopes {Pj} embedded via isometries ϕj : Pj → M. The images of
the i cells under the mapping are also i cells. Tessellations for which the isometric maps
are replaced by injective homeomorphisms are called cellulations; a cellulation does not
respect distances (and thereforeM need not necessarily admit a metric) but a cellulation
does respect the topology of the manifold.

Given this general definition of tessellations, let us now consider higher dimensional
AdS spacetimes whose spatial sections are hyperbolic. We begin with AdS4, with spatial
section H3. Again, from a physical perspective, it is natural to look first at tessellations
that respect discrete subgroups of the continuous symmetry group, i.e. regular and uniform
tessellations. These are well studied within the mathematics literature.

Three-dimensional hyperbolic space may be tessellated with regular polytopes that are
regular polyhedra and are characterised by Schläfli symbols {p, q}. Here p refers to the
face type of the regular polyhedron while q is the vertex figure, which is the polygon
obtained by connecting vertices that are one edge away from a given vertex. For a regular
polyhedron the vertex figure is always a regular polygon. An example is {5, 3}, the regular
dodecahedron with pentagonal faces and three edges around each vertex. Hyperbolic
geometry is obtained, as in the two dimensional case, when

1
p

+ 1
q
<

1
2 . (4.2.12)

Topologically a regular two-dimensional tessellation may be viewed as a polyhedron such
that the angular defect at the vertex is zero and this is why the Schläfli {p, q} symbols
arise in both contexts.

The polytope clearly does not uniquely define how the three-dimensional hyperbolic
space is tessellated. For regular tessellations (also called honeycombs), the tessellation
is defined by the polytope {p, q} together with the edge figure {r}, i.e. the number of
polyhedra around each edge. This information may be summarised in the Schläfli symbol
{p, q, r}.



74 Chapter 4. Holography, cellulations and error correcting codes

A key difference relative to two dimensions is that the number of regular uniform
tessellations is finite. Indeed, the only four regular compact three-dimensional hyperbolic
honeycombs are shown in Table 4.2.1.

Name Schläfli symbol Polytope Edge figure
Icosahedral honeycomb {3, 5, 3} Icosahedron {3, 5} {3}

Order 5 cubic honeycomb {4, 3, 5} Cube {4, 3} {5}
Order 4 dodecahedral honeycomb {5, 3, 4} Dodecahedron {5, 3} {4}
Order 5 dodecahedral honeycomb {5, 3, 5} Dodecahedron {5, 3} {5}

Table 4.2.1: The four regular compact hyperbolic honeycombs of H3.

Under duality operations, the cells and vertices are interchanged, and the faces and
edges. We illustrate the corresponding Schläfli symbols for these dual honeycombs in Table
4.2.2.

Name Schläfli symbol Dual
Icosahedral honeycomb {3, 5, 3} {3, 5, 3}

Order 5 cubic honeycomb {4, 3, 5} {5, 3, 4}
Order 4 dodecahedral honeycomb {5, 3, 4} {4, 3, 5}
Order 5 dodecahedral honeycomb {5, 3, 5} {5, 3, 5}

Table 4.2.2: Dual honeycombs of H3.

Hyperbolic honeycombs in higher dimensions can similarly be classified [214]. For
tessellations of spatial slices of AdS5, the regular compact honeycombs of H4 are

{3, 3, 3, 5} {4, 3, 3, 5} {5, 3, 3, 5} {5, 3, 3, 4} {5, 3, 3, 3}. (4.2.13)

Analogously to the 3d honeycombs, the Schläfli symbol {p, q, r, s} captures the
four-dimensional polytope {p, q, r} and via s the structure of the honeycomb i.e. how the
polytopes fit together.

The relevant 4d regular polytopes are {3, 3, 3} (5-cell with tetrahedron 3d projection);
{4, 3, 3} (tesseract, with cubic 3d projection) and {5, 3, 3} (120-cell, with tricontahedron
3d projection). Note that the canonical honeycomb for R4 is {4, 3, 3, 4}. For five
dimensional hyperbolic space H5 there is only one regular honeycomb ({3, 4, 3, 3, 3}).
Interestingly, for hyperbolic spaces in dimensions greater than five there are no regular
compact honeycombs.

4.2.1.1 Tessellations of AdS3× Sn

In this section we will consider possible tessellations for holographic geometries involving
compact spheres, using the example of (4.2.1) to illustrate the discussions. The spatial
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sections of AdS3× Sn are H2× Sn. Consider first the prototype case of n = 1. Clearly
since the space is a direct product we can take direct products of tessellations for each
component. For S1 the relevant polytopes are closed line segments; these are regular and
are represented by the Schläfli symbol {}. Uniform regular tessellations of H2× S1 can
thus be characterised as {p, q} × {}. A special case of this is where the circle is covered
by one single segment.

Now consider the case of n = 2, i.e. the two sphere. Uniform tessellations of the
sphere are well documented and in particular the regular uniform tessellations include
{p, q} where

1
p

+ 1
q
>

1
2 . (4.2.14)

There are a finite number of such regular uniform tessellations with p > 2, and the total
number of polygons required to cover the sphere is in each case finite. One can also consider
tessellations of the form {2,m} as this manifestly satisfies the requirement above for any
value of m. Here the sphere is divided into m equivalent segments; for such tessellations
one can take m→∞ i.e. there are an infinite number of possible tessellations.

Having discussed the possible regular tessellations, let us now turn to what would be
the most natural approach in the context of holographic codes. In holographic dualities of
the type (4.2.1) the compact space plays a qualitatively different role to the non-compact
hyperbolic space: the radius of the compact space is fixed and does not depend on the
hyperbolic radial coordinate i.e. the renormalization group scale. As we review later, the
basic idea of the encoding map of a code is to represent interior regions of the hyperbolic
space by logical qubits: the tessellation captures the increase in the number of qubits
required as one approaches the conformal boundary.

As the radius of the compact space is fixed, it is not clear tessellating the compact
space non-trivially would be the natural choice for the encoding map approach to
holography, rather than working with the trivial tessellation which is the compact space
itself (tessellations are {p, q} × S2). The latter manifestly preserves the full symmetry
group of the compact space, while any non-trivial tessellation breaks the symmetry
group to a discrete subgroup.

Thus, for holographic geometries in which the compact part has a fixed radius,
tessellations and associated codes are perhaps most naturally constructed by treating the
code qubits to transform in appropriate representations of the compact space symmetry
group. We will however use non-trivial tessellations of spheres in section 4.5, in the
context of the topologically spherical regulated boundary of hyperbolic space itself.
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4.2.1.2 Toroidal compactification of hyperbolic spaces

Now let us turn to toroidal compactifications of hyperbolic spaces. In this set up the
compact direction has a radius that depends on the holographic scale; toroidal
identifications have fixed points and thus the holographic geometries are not regular
manifolds. Mathematics literature focuses on tessellations and cellulations of regular
manifolds and such irregular toroidal compactifications do not fall within the usual
classifications. Nevertheless, as discussed above, such geometries arise rather generically
in holography and it is interesting to explore how one could relate these to quantum
codes.

We will explore two qualitatively different ways to cellulate a toroidal compactification
which are distinguished by whether they preserve a discrete subgroup of the toroidal
symmetry. Let us illustrate this discussion using the example given in (4.2.3). One can
manifestly cellulate the space locally with cells of the type {p, q}×T σ. The torus itself can
also be non-trivially cellulated by breaking each circle direction into segments. In both
approaches the cellulation will break down as z → ∞, reflecting the conical singularity.
This can be addressed by excising this region i.e. considering a cellulation with a boundary
near to z →∞.

Figure 4.2.3: Compactified hyperbolic plane, tiled by annuli of equal area. The yellow
lines are identified to compactify the plane, creating a conical singularity which is shown
as excised (white region).

This type of cellulation is similar to those discussed in the previous subsection.
However, in the situation described in the previous subsection the scale of the compact
geometry is fixed. For toroidally compactified hyperbolic spaces the scale of the torus is
not constant but varies with z. To capture this feature the volumes of the toroidal
components of the cells T σ cannot be constant but should increase as cells approach the
boundary. The constant negative curvature therefore has to be built in by hand through
the volumes of the cells.
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The simplest example to visualise is the case of the hyperbolic plane itself, with the x
direction periodic; this is relevant for the relationship between AdS3 reduced on a circle to
give JT gravity. The associated tiling is shown in Figure 4.2.3. Each annulus is of equal
proper area, and accordingly the width of the annulus decreases along the radial direction.
One can implement any radius of the x direction by identifications, but these result in a
conical singularity that needs to be excised from the tiling. The identifications are shown
in yellow, and the excised region is shown in white.

A second approach to cellulating a toroidal compactification involves the use of local
regular tessellations such as those described in section 4.2.1 with appropriate
identifications. In this case the cells are of constant proper volume, with the negative
curvature captured by the structure of the cellulation. Again one will need to excise a
hole in the centre of the space, reflecting the singularity as z →∞.

The simplest class of examples relate to circular reduction of the hyperbolic plane.
Consider a generic hyperbolic {p, q} tessellation, with a regular p-gon at the centre. Such
a tessellation has a discrete rotational symmetry Zp associated with the symmetry group
of the p-gon. We can construct from this a cellulation of a negative curvature space with
conical singularity, by removing the central p-gon. One then identifies two of the vertices
of the missing pentagon, which will necessarily be related by a certain Zp transformation.
One then continues to remove pentagons and identify vertices related by the same Zp

transformation.

An example based on a {5, 4} tessellation is shown in Figure 4.2.4. The tessellation
preserves a discrete Z5 symmetry group. The numbered vertices and associated edges
are related by a Z5 transformation and are identified. This identification is clearly only
possible if the central pentagon is removed. The resulting tiling describes a space that
is locally hyperbolic but which has an excised conical singularity. By suitable choice of
{p, q} and discrete symmetry group, one can realise different radii of the x direction.

The generalisation to higher dimensions would work similarly. Tilings based on regular
polytopes have discrete symmetry groups, which are subgroups of the continuous rotation
group of the hyperbolic space. An analogous process of removing the central cell and
identifying faces/edges etc that are related by a discrete symmetry transformation will
result in a tessellation of a space in which one direction is compact and there is an excised
conical singularity.

The two approaches have complementary advantages. The first approach preserves the
continuous symmetry group of the toroidal directions and therefore compactification and
restriction to zero modes on the compact space are straightforward. However, the tiling
is not based on a regular tessellation and therefore does not directly inherit standard
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Figure 4.2.4: {5, 4} tessellation, with central pentagon removed. Numbered vertices, and
the edges that link them, which are all related by Z5 transformations, are identified.

geometric properties associated with tessellations.

The second approach breaks the continuous symmetry group of the toroidal directions
but is obtained from regular tessellations via quotienting and therefore inherits properties
from the original tessellation. However, as the symmetry in the compact directions is
broken, one cannot straightforwardly describe the tiling using only the lower-dimensional
perspective. Dynamically, one often focuses on the zero mode sector of a toroidal reduction,
but in this setup it would not be straightforward to identify and retain only zero modes.
We will comment on the features of codes associated with both classes of tilings in our
conclusions.

4.2.2 Cellulations and graphs

In the final part of this section we review how cellulations of manifolds can be described
by graphs known as Hasse diagrams. These graphs are useful in relating cellulations to
certain classes of quantum error correcting codes, as we discuss in section 4.5.

In a tessellation the polytopes are embedded via isometries as described in section 4.2.1.
If we are primarily interested in embeddings in which the cells do not intersect and the
overlap between the cells is invariant, embedding via isometries may be an unnecessarily
strong condition. The term cellulation refers to embedding of polytopes via (injective)
homeomorphisms. In a cellulation the topology of the manifold is respected but the
manifold does not necessarily have a metric i.e. a notion of distance.
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f1 f2 f3 f4

e1 e2 e3 e4 e5 e6

v1 v2 v3 v4

Figure 4.2.5: Hasse diagram for the tetrahedron.

Hasse diagrams are multipartite graphs that show how cells within a cellulation are
connected. Each node in the diagram represents a cell in the cellulation. Two nodes can
be connected to each other only if

1. The cell corresponding to one node is contained in the cell corresponding to the
other.

2. In addition, the difference of dimensionalities of these cells is one.

Each level in the Hasse diagram thus corresponds to the set of all i-dimensional
subpolytopes (i cells) and the total number of levels for a D-dimensional cellulation is D:
the polytope itself is usually not included as part of the Hasse diagram, so the levels
range from 0 (vertices) to (D − 1).

A simple example of a Hasse diagram is a tetrahedron, shown in Figure 4.2.5. Suppose
that the faces of the tetrahedron are labelled as (f1, f2, f3, f4) and its six edges are labelled
as (e1, e2, e3, e4, e5, e6), with the four vertices being (v1, v2, v3, v4). The Hasse diagram
shows the connections between faces, edges and vertices. Note that this diagram omits
the single 3-cell itself i.e. the tetrahedron.

To connect with quantum codes, we will need to use the following property of
cellulations:

• If ci+1 and ci−1 are nodes at levels (i+ 1) and (i− 1), respectively, then the number
of cells at level i that are connected to both ci+1 and ci−1 is either zero or two.

The significance of this property is that, as reviewed in [215], it relates to the existence of
a map between three consecutive levels of a cellulation and a CSS (Calderbank, Shor and
Steane) code:

• Any subgraph of a Hasse diagram consisting of three consecutive levels defines the
Tanner graph of a CSS code.
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The key properties of CSS stabiliser codes are summarised in section 2.3.2, and we will
explain Tanner graphs further in section 4.5.

4.3 Connecting tessellations with error correcting codes

In this section we will discuss how tessellations of hyperbolic spaces can be related to
quantum error correcting codes, explaining the approach of HaPPY [1], focusing on aspects
of the construction that are key in generalising to higher dimensions. Throughout this
section we will reference various well known properties of quantum error correcting codes,
all of which were previously described in chapter 2. To generalise the construction to
higher dimensions we will in particular need to explore in detail the properties of absolutely
maximally entangled states and how these relate to the tessellation used.

4.3.1 Stabiliser construction of HaPPY codes in two spatial dimensions

Perhaps the best known example of a holographic code is the HaPPY code proposed in [1].
This code is based on a regular {p, q} tessellation of hyperbolic space viewed as a spatial
section of AdS3. The basic premiss of the code is the following. Each of the polygons is
associated with a certain perfect tensor structure. Perfect tensors have an even number of
indices and symmetry properties that relate to the entanglement structure of the associated
quantum state/code. The main example used in [1] is a [[5, 1, 3]] stabilizer code, encoding
one logical qubit into five physical qubits with code distance three.

Before we describe the HaPPY construction in detail, let us summarise the main
geometric features. The realisation is based on a {5, 4} tessellation, shown in
Figure 4.3.1. For every pentagon there is a “logical” qubit associated with the entire
pentagon while edges connecting vertices are associated with five “physical” qubits. The
conformal boundary of the spatial section is regulated and the edges intersecting the
regulated boundary are associated with the physical qubits in a discretisation of the
boundary theory.

There is a rank six perfect tensor describing the code and this is shown in the dual
{4, 5} tessellation, shown in Figure 4.3.2. Each node in the {4, 5} tessellation is associated
with an uncontracted leg of the tensor (the logical qubit). The legs of the tensor associated
with the physical qubits are contracted against the corresponding legs in the neighbouring
pentagon; in the {4, 5} tessellation these are the edges linking nodes.

We next explore in detail the construction presented in [1] from first principles; the
details of this construction are required in developing higher dimensional generalisations
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Figure 4.3.1: {5, 4} Tessellation of hyperbolic plane. Associated with each pentagon there
is one logical qubit and five physical qubits, each of which is associated with an edge.

in the following section. We consider fixed time slices of the bulk space AdS3

corresponding to the two-dimensional hyperbolic plane H2. The models presented are
then realisations of regular, uniform hyperbolic tessellations that discretise H2 in a
maximally symmetric fashion. The HaPPY construction utilises the pentagonal tiling of
two-dimensional hyperbolic space, given by Schläfi symbol {5, 4}. For each pentagon,
one places a single physical qubit on each edge. A final qubit is placed in the centre of
the pentagon which can later be shown to have the interpretation of a logical qubit, see
Figure 4.3.3.

More generally, for each such system of this type, one associates a graph G = (V,E),
where V = {1, . . . , n} is a finite set of vertices and E are the corresponding edges such
that n = 5 for the pentagon. The vertices of this graph are chosen to be the qubits
in the system. In order to preserve maximal symmetry, the graph is chosen such that
neighbouring qubits on the pentagon are connected via an edge. The central qubit of the
pentagon is chosen to be connected to every other qubit in the pentagon. Hence our graph
looks as shown in Figure 4.3.4.

4.3.2 Graph States and AME states

In this section we discuss the relation between graphs and absolutely maximally entangled
states. Given a graph G = (V,E) representing the system, one can define a graph state
|G⟩. One will first construct this in terms of the controlled-Z gate operator CZij , defined
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Figure 4.3.2: {4, 5} Tessellation of hyperbolic plane. In the HaPPY code each node
represents the uncontracted logical qubit leg of the perfect tensor, and each edge represents
the contraction of physical qubit tensor legs.

in A.1.27, before noticing it can be extended to have an interpretation in the stabiliser
formalism. For any graph G consisting of n vertices (system of n qudits), the corresponding
graph state |G⟩ ∈ H⊗n is defined by

|G⟩ :=
∏︂
i>j

CZ
Aij

ij |+⟩
⊗n (4.3.1)

where Aij ∈ Zp are called weights and form the n× n adjacency matrix A ∈ Zn×n
p . Here,

p is prime and the Hilbert space H ∼= Cp. The adjacency matrix encapsulates all the
relevant information about the connectivity of the graph, such that a weight zero operator
represents no edge joining the vertices i and j and weight one operators represent a single
edge connecting them and so on. The initial prepared state |+⟩⊗n represents joint +1
eigenstate of Xi arising from the X-eigenbasis

|+⟩ = F † |0⟩ = 1√
D

D−1∑︂
l=0

ω−0l |l⟩ , (4.3.2)

where F is the Fourier gate. For example in the most simple case, where one considers
qubits; |+⟩ = (|0⟩+ |1⟩)/

√
2, the Fourier gate reduces to the Hadamard gate

H = 1√
2

[︄
1 1
1 −1

]︄
(4.3.3)

and the controlled-Z operator is CZ = |00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10| − |11⟩ ⟨11|.
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Figure 4.3.3: A single pentagon constructed using the HaPPY approach associated with
a single logical qubit (that one diagrammatically represents by placing in it’s centre) and
five physical qubits (one associated with each edge).

Figure 4.3.4: The maximally
symmetric construction of graph G
for a single pentagon.

Figure 4.3.5: The resulting graph
(state) to which G stabilisers are
assigned.

Since graph states are just a special class of stabiliser states, an alternative but
equivalent way of defining a graph state is possible using the generators of the stabiliser
group. Any n-qudit graph state may be represented as n operators,

gi = Xi

n∏︂
j=1

Z
Aij

j , (4.3.4)

which provide the minimal set of generators of the stabiliser group. The graph state can
then be thought of as the common +1 eigenspace of these generators;

gi |G⟩ = |G⟩ , for i = 1, . . . , n. (4.3.5)

One should note that for the case of qubits, graphs can only have edges of weight 0
or 1. This is because if one imposes a weight 2 edge, Z2 = Z0 = 1 and is the same as a
weight zero operator. When extending to qudits of a more general dimension D, one now
has ZD = 1 and so one can have weights Aij from 0 to D − 1. This allows for graphs
to have multiple edges between vertices as indicated in Figures 4.3.6 and 4.3.7. The only
constraints on each adjacency matrix element Aij are that these weights are symmetric
(i.e. Aij = Aji) and that there are no weights connecting a vertex to itself Aii or in other
words, there are no loops present in G.
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i j

Figure 4.3.6: A single Z operator
between 2 nodes corresponds to a
single edge in the graph state.

i j

Figure 4.3.7: Z2 operator between
two nodes. For qubits Z2 = 1 this
is the same as the two nodes being
disconnected.

The generalised Clifford group Cn is the (group-theoretic) normaliser of the Pauli group
Pn. In other words it is the group of unitary operators U which map the Pauli group onto
itself: UPnU

† = Pn. Further, the local Clifford group Cl
n ⊆ Cn is the n-fold tensor product

of the Clifford group of order one (C = C1). When considering the Pauli group acting on
qubits, the Clifford group is simply generated by the Hadamard gate H, the phase gate P
and the CNOT gate UCNOT . One also notes that under conjugation, a unitary operator
U that fixes the stabiliser group S of a quantum error correcting code is an encoded
operation. Hence, S′ = USU † implies that |c′⟩ = U |c⟩ is a codeword stabilised by every
stabiliser element in S′, where |c⟩ is stabilised by every element in S.

As proven in [216], two stabiliser states with generator matrices A and B are equivalent
under the action of the local Clifford group if and only if there exist invertible matrices U
and Y such that B = UAY and where Y can be represented as

Y =
(︄
E F

E′ F ′

)︄
(4.3.6)

where
E = diag(e1, . . . , en), F = diag(f1, . . . , fn), (4.3.7)

E′ = diag(e′
1, . . . , e

′
n), F ′ = diag(f ′

1, . . . , f
′
n), (4.3.8)

and eif
′
i − fie

′
i = 1 ∀i. Another important result of [216] is that every stabiliser state

is equivalent under the action of the local Clifford group to a graph state. This means
that one only needs to consider graph states when considering entanglement properties of
stabiliser states since for any stabiliser state there will exist an equivalent graph state that
shares the same entanglement properties.

Since graph states are a subclass of the stabiliser states, then these arguments trivially
hold for all graph states. Diagrammatically, one can claim that two graph states are
equivalent under local Clifford transformations if and only if one there exists a sequence
consisting of the following operations on a vertex v, such that one can obtain one graph
state from the other;

(i) One multiplies the weight of each edge connected to vertex v by b ∈ Zp and b ̸= 0.

(ii) One transforms the elements of the adjacency matrix as Ajk → Ajk +aAvjAvk where
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a ∈ Zp and j ̸= k.

When considering qubits, operation (i) is always just the identity. For a = 1, the
second operation (ii) is known as local complementation and has been extensively studied
[217, 218]. An example of a local complementation of a graph state is shown in Figure
4.3.8. Here the previous graph state, locally Clifford equivalent to AME(6,2) is considered
(left graph in Figure 4.3.8) and after applying a local complementation, one obtains a new
graph state (right graph in Figure 4.3.8). This new graph state is then still locally Clifford
equivalent to AME(6,2) as can be checked using its stabiliser generators.

Figure 4.3.8: Two possible graph states that are locally Clifford equivalent to AME(6,2).
The two are related by a local complementation.

Key features of the {5, 4} tessellation relate to the graph state given in Figure 4.3.5
being an absolutely maximally entangled state represented by the notation AME(6, 2).
For those unfamiliar with absolutely maximally entangled (AME) states, a brief review is
detailed in section 4.3.3 or, for more detailed discussions, see the expansive literature [208–
211, 219]. There are a number of known AME states that have been shown to be locally
Clifford equivalent to graph states. A mechanism was developed in [209] for determining
bipartite entanglement in graph states and hence being able to determine whether a graph
state corresponds to an AME state.

4.3.3 Absolutely Maximally Entangled States

In this section we define an absolutely maximally entangled (AME) state through several
equivalent definitions and we summarise a method for testing whether a graph state is
AME. Our discussion provides a concise summary of the key results in [209,219] and more
details can be found in these works.

Definition: An absolutely maximally entangled state |Φ⟩ ∈ H is a pure state consisting
of N qudits of local dimension D, with the total Hilbert space H ∼= (CD)⊗N . Therefore,
|Φ⟩ ∈ H1 ⊗H2 ⊗ · · · ⊗ HN where Hi

∼= CD, such that it satisfies the following equivalent
properties.
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1. For any possible bipartition of P = {1, . . . , N} into disjoint sets A and B such that
A ∪B = P , |Φ⟩ is maximally entangled. That is, |Φ⟩ can be expressed as

|Φ⟩ = 1√
Dm

∑︂
k∈Zm

D

|k1⟩B1
· · · |km⟩Bm

|ϕ(k)⟩A , (4.3.9)

where one has assumed m = |B| ≤ |A| = N − m without loss of generality and
⟨ϕ(k)|ϕ(k′)⟩ = δkk′.

2. Every possible subset of parties A ⊂ P with |A| = ⌊N
2 ⌋ gives rise to a reduced density

matrix that is totally mixed; ρA = D−⌊ N
2 ⌋
1

D⌊ N
2 ⌋.

3. Every possible subset of parties A ⊂ P with |A| ≤ N
2 gives rise to a reduced density

matrix that is totally mixed.

4. Every possible subset of parties A ⊂ P with |A| = ⌊N
2 ⌋ gives rise to a von Neumann

entropy that is maximal, S(A) = ⌊N
2 ⌋ logD.

5. Every possible subset of parties A ⊂ P with |A| ≤ N
2 gives rise to a von Neumann

entropy that is maximal, S(A) = |A| logD.

One represents absolutely maximally entangled states defined in this way using the
notation AME(N,D).

The method used to distinguish whether a graph state is AME can be explained in
the following way. This method was presented in [209]; for a more detailed discussion, we
refer the reader to the original paper. In order to proceed, we need to make use of the
following definitions:

Definition: Consider the graph state |G⟩ ∈ H⊗n shared between a set of parties P .
Then for some subset K ⊂ P , the state represented by the graph G such that all vertices in
K, and all edges that are connected to the parties in K, are removed, define the truncated
graph state |G\K⟩.

Definition: The i-th row of the n × n adjacency matrix A ∈ Zn×n
p can be denoted

Ai = (Ai1 . . . Ain). One defines the quantity Ai\K to be the row vector Ai with entries
{Aik1 . . . Aikm} removed such that the elements of the subset K = {k1, k2, . . . km} are
between 1 and n.

Now suppose we have a graph state |G⟩ with adjacency matrix A and the party subsets
K = {k1, k2, . . . km} with m = ⌊n

2 ⌋. Representing Aki
\K as the ki-th row of the adjacency

matrix with elements {Akik1 . . . Akikm} removed, we can show the graph state is absolutely
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3 4
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K

Figure 4.3.9: Bipartition of AME(6,2) into K = {1, 2, 6} and L = {3, 4, 5}.

maximally entangled if and only if the vector quantity Aki
\K are linearly independent in

Zn−m
p .

We now turn to the AME(6,2) state and use its corresponding graph state, given in
Figure 4.3.5, to show that this state is absolutely maximally entangled. This serves as
a concrete example of how one can check whether a graph state is AME and develop
understanding of the method involved.

The first question to ask is which bipartitions must be considered. Bipartitions for
which one set has just a single node are trivial and will clearly provide linearly
independent Aki

\K. Hence the only bipartitions that need to be considered are all
possible combinations of sets of two nodes (corresponding to four nodes in the other set
in the bipartition) and sets of three nodes (corresponding to another three nodes in the
other set in the bipartition). One must consider every possible combination of nodes for
each of these cases; however using the symmetries in the geometry it is obvious that
many of these cases are analogous to each other. For brevity, we only give the example
of a single one of these bipartitions visually here to outline the method; similar graphs
may be drawn for all other possible bipartitions with m = ⌊n

2 ⌋.

Consider the graph state given in Figure 4.3.5. Here we choose to bipartition the sets
into K = {1, 2, 6} and L = {3, 4, 5}, where K has been explicitly drawn in Figure 4.3.9.
Calculating the relevant vectors from the edges connecting nodes in K and those in L

A1\{1, 2, 6} = (0, 0, 1) (4.3.10)

A2\{1, 2, 6} = (1, 0, 0) (4.3.11)

A6\{1, 2, 6} = (1, 1, 1). (4.3.12)

These three vectors are clearly linearly independent of one another.
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Due to the symmetries of the geometry, we would obtain this result for any bipartition
consisting of two nodes that are next to each other on the outer pentagon and the centre
node. There are obviously more possible bipartitions into two sets of three but these can
all be reduced to one of the following due to the symmetry; K = {1, 2, 3} and L = {4, 5, 6},
K = {1, 3, 6} and L = {2, 4, 5} or K = {1, 2, 4} and L = {3, 5, 6}. The vectors obtained
from these cases are given in Table 4.3.10, where we have grouped the three cases into the
three columns of equations. Note that each column’s vectors are linearly independent and
so all bipartitions that split the graph into two sets of three give the correct result.

Case 1: K = {1, 2, 3} Case 2: K = {1, 3, 6} Case 3: K = {1, 2, 4}
A1\{1, 2, 3} = (0, 1, 1) A1\{1, 3, 6} = (1, 0, 1) A1\{1, 2, 4} = (0, 1, 1)
A2\{1, 2, 3} = (0, 0, 1) A3\{1, 3, 6} = (1, 1, 0) A2\{1, 2, 4} = (1, 0, 1)
A3\{1, 2, 3} = (1, 0, 1) A6\{1, 3, 6} = (1, 1, 1) A4\{1, 2, 4} = (1, 1, 1)

Table 4.3.10: Remaining bipartitions of AME(6,2) where K and L both contain 3 elements.

Now we consider the case of bipartitions into one set of two elements and one set of four
elements. All possible cases can once again be reduced due to symmetry, in this case, to
three simple bipartitions; K = {1, 2} and L = {3, 4, 5, 6}, K = {1, 3} and L = {2, 4, 5, 6}
or K = {1, 6} and L = {2, 3, 4, 5}. The vectors are presented in Table 4.3.11, where
they have once again been placed in columns for each bipartition, and in each column
we trivially have linearly independent vectors for each possible bipartition. Hence for all
possible bipartitions of the AME(6,2) graph state given in Figure 4.3.5, each Aki

\K is
linearly independent for all choices of K = {k1, . . . , km} with m = ⌊n

2 ⌋. Therefore the
state is indeed absolutely maximally entangled.

Case 1: K = {1, 2} Case 2: K = {1, 3} Case 3: K = {1, 6}
A1\{1, 2} = (0, 0, 1, 1) A1\{1, 3} = (1, 0, 1, 1) A1\{1, 6} = (1, 0, 0, 1)
A2\{1, 2} = (1, 0, 0, 1) A3\{1, 3} = (1, 1, 0, 1) A6\{1, 6} = (1, 1, 1, 1)

Table 4.3.11: Remaining bipartitions of AME(6,2) where K contains 2 elements and L
contains 3 elements.

Given the graph state formulation of the AME(6,2) state, one may illustrate the
importance of using AME states and connecting them with quantum error correcting
codes. Firstly, it is well known that any AME state AME(N,D) is equivalent to a pure
[[N, 0, ⌊N/2⌋ + 1]]D quantum error correcting code [220]. Further, every pure [[N, k, d]]
code with N, d ≥ 2 gives rise to a family of pure codes [[N − i, k + i, d − i]] where
i = {0, . . . d − 1} [221]. From the graph in Figure 4.3.5, one may describe the full
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stabiliser group by a column vector of stabiliser generators found using 4.3.4;

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2

G3

G4

G5

G6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X Z I I Z Z

Z X Z I I Z

I Z X Z I Z

I I Z X Z Z

Z I I Z X Z

Z Z Z Z Z X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X Z Z X I I

I X Z Z X I

X I X Z Z I

Z X I X Z I

X X X X X X

Z Z Z Z Z Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S ′ (4.3.13)

where in the second step one has used basic matrix manipulations including Gaussian
elimination as well as performing a transformation under the action of the local Clifford
group on the final qubit. This particular transformation came using the Hadamard gate
which has the following effect on the Pauli matrices; X → HXH† = Z, Y → HYH† =
−Y , Z → HZH† = X.

The form given by S ′ in 4.3.13 is the most common presentation of the stabiliser
generators for AME(6,2) in the literature and is the one presented in [1]. Thus, for clarity,
the graph state in Figure 4.3.5 is locally Clifford equivalent to AME(6,2) as indicated by
the use of the symbol ‘≃’. To make the connection with the perfect tensor construction in
HaPPY, we rewrite S ′ in the following way;

S ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Y Z Y I I Z

−Z X Z I I X

Y Y Z I Z I

Z Z X I X I

−Z Y Y Z I I

X Z Z X I I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3 · 6)
(2 · 3 · 4 · 5)

(1 · 4)
(1 · 2 · 3 · 4)

(1 · 3 · 4)
(1)

(4.3.14)

where we have used row multiplication, indicated by the bracketed expression to the right
of each stabiliser generator where each number denotes the original stabiliser generator
multiplied. Note that due to the fact operators are implicitly connected via tensor products
we have simply pulled any overall negative sign of each generator to the front.

The stabiliser matrix in the form (4.3.14) can be shown to correspond to a quantum
error correcting code by removing the last qubit, as detailed in [78], converting an [[n, k, d]]
code into an [[n− 1, k+ 1, d− 1]]. In the specific example above this translates a [[6, 0, 4]]
state into a [[5, 1, 3]] code. To summarise the construction, one chooses n − k generators
such that G1 ends in Z and G2 ends in X with the remaining generators G3, . . . , Gn−k

ending with the identity I. Dropping G1 and G2 allows a new stabiliser to form from the
final n−k− 2 generators. Now, restricting G1 and G2 to act only on the first n− 1 qubits
one can show these now become the logical operators Z̄ and X̄. The resulting [[5, 1, 3]]
code is expressed in Table 4.3.12.
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G′
1 Y Y ZIZ

G′
2 ZZXIX

G′
3 −ZY Y ZI

G′
4 XZZXI

X̄1 −ZXZII
Z̄1 −Y ZY II

Table 4.3.12: The [[5, 1, 3]]2 code derived from the AME(6, 2) state.

G′′
1 −ZY Y Z

G′′
2 XZZX

X̄
′
1 −ZXZI

X̄
′
2 ZZXI

Z̄
′
1 −Y ZY I

Z̄
′
2 Y Y ZI

Table 4.3.13: The [[4, 2, 2]]2 code derived from the [[5, 1, 3]]2 code.

X̄
′′
1 −ZXZ

X̄
′′
2 ZZX

X̄
′′
3 XZZ

Z̄
′′
1 −Y ZY

Z̄
′′
2 Y Y Z

Z̄
′′
3 −ZY Y

Table 4.3.14: The [[3, 3, 1]]2 code derived from the [[4, 2, 2]]2 code.

Trivially, from the form presented in (4.3.14), one could continue this process converting
the [[5, 1, 3]] code into a [[4, 2, 2]] code (given in Table 4.3.13) and then even into a [[3, 3, 1]]
code (given in Table 4.3.14). Note that after the case of the [[3, 3, 1]] code, one can not
reduce this further since no stabiliser generators remain.

While any AME state AME(N,D) is equivalent to a pure [[N, 0, ⌊N/2⌋+1]]D quantum
error correcting code, the concept of the resultant quantum error correcting code producing
further codes was explored in [222]. The result is that, every N -qudit stabiliser AME state
generates at least

⌊︂
N
2

⌋︂
different stabiliser codes. In each of these codes, m ∈ {1, . . . ,

⌊︂
N
2

⌋︂
}

logical qudits are encoded into N −m physical qudits.

4.3.4 Perfect Tensors

We now explain the relationship between AME states and perfect tensors, an important
relation in the construction of the holographic codes presented in [1]. This provides the
method used to concatenate AME states across the entire tessellation, forming a tensor
network. This construction provides an isometric mapping from the uncontracted legs in
the bulk to the uncontracted legs at the boundary of the geometric manifold and will be
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explained further in Section 4.3.5. To begin we define a perfect tensor.

Perfect tensors naturally arise when considering AME states. One can always
decompose an AME state into two subsystems HA and HB as

|Φ⟩ =
∑︂
a,b

Tab |a⟩ |b⟩ , (4.3.15)

such that T : HA → HB is a unique linear map between the two Hilbert spaces represented
by a two-index tensor with

T : |a⟩ →
∑︂

b

|b⟩Tba. (4.3.16)

Here one denotes the complete orthonormal basis {|a⟩} for HA and similarly, {|b⟩} for HB.
This map also preserves all inner products; i.e.

∑︂
b

T †
a′bTba = δa′a. (4.3.17)

Hence, each of these linear transformations applied to an AME state may be thought of as
an isometry. Thus one defines the tensors associated with the isometry, isometric tensors.
Similarly, the converse is true. Provided one has a perfect tensor, then one similarly has
a corresponding AME state.

Definition: Suppose one bipartitions the indices of a 2n-index tensor Ta1a2...a2n into
one set A and its complementary set Ac with |A| ≤ |Ac|. Then, T is a perfect tensor if it
is proportional to an isometric tensor from A and Ac, i.e.

∑︂
an+1...a2n

T †
a1...anan+1...a2n

Tan+1...a2nb1...bn = δa1b1 . . . δanbn , (4.3.18)

where one may choose any of the 2n legs of the tensor to be an+1 . . . a2n.

Since one can show that for every possible bipartition, one may use isometric tensors
to define the transformations, then every AME state defines a perfect tensor. Each tensor
can then be placed in each polytope of the tessellation, connected by the outgoing physical
legs (across the facets) which represent the contraction of the tensor indices.

4.3.5 Concatenation and building a tensor network

Here we explain the concatenation process of AME states which results in an isometric
mapping from the uncontracted legs in the bulk to the uncontracted legs at the boundary
through a tensor network built from perfect tensors. We summarise here the case for two
AME states but concatenations of one AME state and one not-necessarily AME state were
explored in [222]. First we note that any AME state can always be expressed such that
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for each of the final m columns, one only has a single X operator, a single Z operator and
everywhere else is the identity [222]; relating to the statement at the end of Section 4.3.3.
The two stabiliser generators that have the X and Z operators acting on a particular
qudit, where all other generators act trivially are the logical operators encoding one qudit.

Now, consider two AME stabiliser states, denoted as left (L) and right (R) states
defined on NL and NR qudits respectively. One can represent an L state as a tensor
product of the form Li ⊗ σi, for i = 1, . . . , NL. Here Li denotes a tensor product of Pauli
operators on qudits l1 to lNL−1 and σi is the Pauli operator individual qudit lNL

. One can
similarly define the R state using the tensor product σj ⊗ Rj where j = 1, . . . , NR, with
σj acting on qudit r1 and Rj acting on qudits r2 . . . rNR

. Then, concatenating these two
states, the joint state NL +NR can be expressed as the first matrix in 4.3.19.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 I I . . . I

L2 I I . . . I
...

...
... . . . ...

LNL−2 I I . . . I

LNL−1 X I . . . I

LNL
Z I . . . I

I . . . I Z R1

I . . . I X R2

I . . . I I R3
... . . . ...

...
...

I . . . I I RNR−1

I . . . I I RNR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

XX−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 I I . . . I

L2 I I . . . I
...

...
... . . . ...

LNL−2 I I . . . I

LNL−1 X I . . . I

LNL
Z Z R1

I . . . X X . . . I

I . . . I X R2

I . . . I I R3
... . . . ...

...
...

I . . . I I RNR−1

I . . . I I RNR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ZZ−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 I I . . . I

L2 I I . . . I
...

...
... . . . ...

LNL−2 I I . . . I

LNL−1 X X R2

LNL
Z Z R1

I . . . X X . . . I

I . . . Z Z . . . I

I . . . I I R3
... . . . ...

...
...

I . . . I I RNR−1

I . . . I I RNR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.3.19)
One then performs two different measurements to obtain the second and third matrices in
(4.3.19). Recall that the process one undergoes after performing a measurement to update
the list of generators of a stabiliser state is the following [72]:

• There is no need to update the list if the measured observable may be constructed
from a product of the stabiliser generators.

• If the measured observable commutes with all the generators of the stabiliser,
however cannot be constructed from these generators, one adds this observable to
the list of generators (with a phase factor determined from the outcome of the
measurement).

• If the measured observable does not commute with at least one stabiliser generator
and cannot be constructed from these generators, one replaces one non-commuting
generator with the measured observable (with a phase factor determined from the
outcome of the measurement). One then multiplies all other generators that do not
commute with the measured observable and multiply them with the generator that
was removed from the list.
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Now in (4.3.19) one first performs a measurement of the observable XX on qudits lNL
and

r1 (assuming the outcome is +1). Clearly there are two generators that do not commute
with this observable, those being the generators that have Z operators acting on either
qudit lNL

or r1. Hence one updates the list using the above rules, replacing one of the
non-commuting stabiliser generators by the measured observable before multiplying the
other non-commuting generator by the one that was removed.

One then performs a similar measurement, this time measuring the observable ZZ, on
the same pair of qudits. The result is indicated on the right hand side of (4.3.19). One can
now see maximal entanglement between qudits lNL

and r1 with no relation to any of the
other qudits present in the system. One therefore may trace these qudits out, removing
the corresponding rows and columns from the matrix:

→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 I I . . . I

L2 I I . . . I
...

...
... . . . ...

LNL−2 I I . . . I

LNL−1 X X R2

LNL
Z Z R1

I . . . X X . . . I

I . . . Z Z . . . I

I . . . I I R3
... . . . ...

...
...

I . . . I I RNR−1

I . . . I I RNR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 I . . . I

L2 I . . . I
...

... . . . ...
LNL−2 I . . . I

LNL−1 R2

LNL
R1

I . . . I R3
... . . . ...

...
I . . . I RNR−1

I . . . I RNR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3.20)

In the case where the local dimension of the qudit is D = 2 (i.e. one is considering
qubits), as in the HaPPY construction, these maximally entangled pairs correspond to
EPR pairs. The final matrix on the right hand side of (4.3.20) is therefore the list of
stabiliser generators created as a result of performing entanglement swapping on a pair
of qudits shared between the two AME states L and R. Firstly, this consists of many of
the original stabiliser generators of R and L that act non-trivially on qudits within their
original domain, but have been extended to act trivially on those outside of their original
domain. Secondly, one has two truncated rows, (LNL−1R2) and (LNL

R1). Recall, that
for the AME state R, a single qudit is encoded into NR − 1 qudits by the logical X and
Z operators, which are R1 and R2. Thus from (4.3.20), one can see that entanglement
swapping across AME states is equivalent to concatenating the corresponding quantum
error correcting codes that arise from these states.
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Hence if we consider the full tessellation, we may use entanglement swapping between
two AME states to concatenate the quantum codes described by them. Expanding the
network by adding more AME states (or equivalently perfect tensors), filling the
tessellation, builds the final holographic code by concatenating all of the codes that arise
from each AME state.

We can also view this as concatenating perfect tensors resulting in a tensor network
that builds an encoding isometry across the geometric manifold for the holographic code.
In the perfect tensor language, isometries can be understood as follows. We simply choose
which indices (legs) of the tensor are incoming and which are outgoing. Usually one
interprets the logical qudit as an incoming leg as well as those legs that are output legs
from previous tensors.

As an example, for the AME(6,2) state, one may have 0, 1, 2 or 3 incoming legs
(including the uncontracted bulk leg corresponding to the logical qudit). Now, suppose
one chooses that the only input leg is the logical qudit so there are five outgoing legs.
This corresponds to the [[5, 1, 3]]2 code encoding one logical qudit to five physical qudits.
However if one considers two input legs, then one would have the stabilisers for the
[[4, 2, 2]]2 code. Thus, each encoding isometry corresponds to the number of logical
qudits being encoded within each AME state.

Hence, by concatenating the AME states, one analogously contracts the perfect
tensors building a tensor network. From the perfect tensor perspective, one is simply
concatenating the isometries of each perfect tensor layer by layer. From the AME state
point of view, one can see this is due to entanglement swapping between pairs of qudits,
as this section has detailed. Clearly the product of isometries is simply an isometry itself.
Hence the tensor network acts as a mapping from the logical qudits in the bulk to the
physical qudits at the boundary. Similarly to the isometries for individual AME states,
this isometry then corresponds to the encoding transformation of the holographic code.

4.4 The HaPPY Construction in higher dimensions

In section 4.3.1 we discussed how we can associate stabiliser generators to the {5, 4}
tessellation of the spatial slices of AdS3. Then, one concatenates these AME states using
EPR pairs building a tensor network (using perfect tensors) that acts as an exactly solvable
toy model for AdS3/CFT2. To extend this construction to higher dimensions we need to
consider in turn the following steps of the construction:

1. Tessellation: Find a tessellation for the spatial slices of AdSd+1 to discretise the
hyperbolic geometry.
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2. Associate qudits to the geometry: One should place both the logical and
physical qudits onto the tessellated hyperbolic geometry. It should be noted that in
the case of AdS3, there are two possible choices for the physical qudits - either
placed on the vertices or edges of the polygons. In HaPPY, one chooses to place
them on edges in order to concatenate via EPR pairs. While there are more choices
of cellulations as the dimension is increased (as can be visualised by the
corresponding Hasse diagram), in order to maintain the concatenation principles in
HaPPY, one should associate the logical qudit with the tessellated d-dimensional
polytope itself and physical qudits with the d − 1 dimensional facet. For example,
when considering the spatial slices of AdS4, one tessellates H3 with
three-dimensional polyhedra associating the logical qudit with the polyhedra and
one physical qudit with each of its two-dimensional faces.

3. Find the corresponding graph state: Once the qudits have been associated to
the geometry, one can build a graph state as explained in section 4.3.1. We will see
that it is at this step that one is forced to drop one of the assumptions implicit in
the two-dimensional HaPPY construction.

4. Build the tensor network: Provided the previous steps have been accomplished,
one may straightforwardly build the tensor network using perfect tensors if AME
states have been used.

In this section we explore whether and how this formulation generalises to higher
dimensions and propose several possibilities of how to overcome potential obstructions.
While we focus specifically on the HaPPY construction, analogous steps would need to
be followed in generalising other approaches to holographic codes to higher dimensions
and we will return to this point at the end of this section.

Figure 4.4.1: Qudits placed on a cube in H3. Here, the one logical qudit associated to the
cube is represented by being placed in it’s centre and the six physical qudits are placed
on faces.
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4.4.1 AdS4: Order-5 cubic honeycomb

A first step towards generalising the HaPPY approach to higher spacetime dimensions
is the case of AdS4. We begin by considering spatial slices given by hyperbolic 3-spaces
H3; regular tessellations of H3 were summarised in Table 4.2.1. The simplest option
to visualise would clearly be the order-5 cubic honeycomb with Schläfi symbol {4, 3, 5}
since the tessellated polyhedron is just the cube. We begin this section by trying to
replicate the HaPPY approach of 4.4.1.1, before drawing the conclusion that the resultant
graph state would not be AME. We then relax the assumption of preserving maximal
discrete symmetry in 4.4.1.2 and force the graph state to be AME to provide an alternate
construction.

4.4.1.1 Non-AME state

As noted in step 2 above, we can associate a single logical qudit to the centre of the
cube and place physical qudits at each of the faces. To associate a graph state with this
tessellation, it is natural to try to preserve maximal discrete symmetry as in the HaPPY
approach. This means that if two faces are connected by an edge then the two physical
qudits living on these faces should be considered as connected in the graph state. If
faces are not connected by an edge, they are not connected. The logic of how the graph
state is formed is illustrated diagrammatically in Figure 4.4.1. The graph drawn in three
dimensions can then be compressed to two dimensions, as shown in Figure 4.4.2, so that
it is in the standard representation of a graph state.

Figure 4.4.2: Resultant graph state for the cube, following the HaPPY approach, that
preserves maximal discrete symmetry.

By construction, since any graph state is by definition a stabiliser state, then Figure
4.4.2 is a stabiliser state. Unfortunately, constructing the state in this way does not
give rise to an AME state. This can be shown straightforwardly using the techniques
explained in the previous section. We draw the graph state as before and choose the
partition {0, 3, 6}|{1, 2, 4, 5} as indicated in Figure 4.4.3.



4.4. The HaPPY Construction in higher dimensions 97

12

3

4 5

60

Figure 4.4.3: Bipartition of the graph state associated with the cube that preserves
maximal discrete symmetry. Here the partition is chosen as K = {0, 3, 6} and L =
{1, 2, 4, 5}. The resultant equations are not linearly independent and thus this graph state
is not AME.

Following the approach described in the previous section, one then obtains

A0\{0, 3, 6} = (1, 1, 1, 1), (4.4.1)

A3\{0, 3, 6} = (1, 1, 1, 1), (4.4.2)

A6\{0, 3, 6} = (1, 1, 1, 1), (4.4.3)

but these are not linearly independent and hence this graph state is not AME. In fact,
this was to be expected since it has been shown in the literature that no AME state exists
for 7 qubits or more [210]. This generic result indicates that extensions of the HaPPY
construction to higher dimensions necessarily require a variation of the approach used in
two dimensions.

The classifications of [210] show that one can have an AME state for 7 qudits or
more for D > 2. This is possible since for D > 2 one can have multiple Z operators
between qudits. The immediate issue in exploiting such AME states for our purposes
is the difficulty in maintaining maximal discrete symmetry. To maintain the discrete
symmetry, if one uses multiple Z operators between any pair of qudits, one has to do so
everywhere. The immediate consequence of this is that none of these states can be AME
since when considering λ ∈ {1, . . . , D − 1} Z operators between D-dimensional qudits,

A0\{0, 3, 6} = λ(1, 1, 1, 1), (4.4.4)

A3\{0, 3, 6} = λ(1, 1, 1, 1) (4.4.5)

A6\{0, 3, 6} = λ(1, 1, 1, 1) (4.4.6)

which can never be linearly independent of one another. This of course generalises for
n ≥ 7 qudits: since no 7 qubit or higher AME state can exist, no maximally symmetric
construction can be formed such that the graph state is AME. Hence, in dimensions d > 2,
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one is either restricted to tessellations such that the d-dimensional polytope has n < 7
(d− 1)-dimensional facets or one lifts one of the previous assumptions.

Since Figure 4.4.2 is not AME, there is now no longer a guarantee that it represents
a quantum error correcting code. In order to check that this construction does indeed
correspond to a graph code, we use the following theorem developed by Schlingermann
and Werner [223]:

SW-theorem: Consider a set of input vertices X and a set of output vertices Y .
Then, given a finite abelian group G and the weighted graph with adjacency (coincidence)
matrix Ξ, a quantum error correcting code vΞ is able to detect an error configuration E ⊂ Y
iff

ΞI
X∪Ed

X∪E = 0 (4.4.7)

with I = Y \E implies
dX = 0, and ΞX

E d
E = 0. (4.4.8)

Here, we focus on the simplest case with local dimension D = 2. The input vertices
X refer to the single logical qubit in the centre of the polytope and the output vertices
are the six physical qubits. The full 7 × 7 symmetric coincidence matrix Ξ [224], that
describes the connectivity of the entire graph, inclusive of both input and output vertices
is given by:

Ξ[[6,1,2]] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.4.9)

and thus the 6 × 6 adjacency matrix Γ, describing the graph state of just the output
vertices may be represented as

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4.10)

We can then write down the stabiliser generators associated with the graph state of
the output vertices given in Figure 4.4.2, following the techniques previously introduced.
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This gives

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0

G1

G2

G3

G4

G5

G6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X Z Z Z Z Z Z

Z X Z Z I Z Z

Z Z X Z Z I Z

Z Z Z X Z Z I

Z I Z Z X Z Z

Z Z I Z Z X Z

Z Z Z I Z Z X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4.11)

Recall the following procedure to convert an [[n, k, d]] code into an [[n− 1, k+ 1, d− 1]]
code: one performs standard matrix manipulations to obtain one stabiliser generator GX

ending with X, one stabiliser generator GZ ending with Z and n − k generators ending
with the identity I. Then by dropping GX and GZ and removing the final qubit, we will
be left with a stabiliser code formed from the remaining n−k−2 generators. The resultant
code has distance d− 1 and thus encodes (n− 1)− (n− k − 2) = k + 1 qubits. Hence by
performing this analysis on the stabiliser generators for the [[7, 0]] state (4.4.11), we can
show the stabiliser generators for the [[6, 1]] code are:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G′
0

G′
1

G′
2

G′
3

G′
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X I I X I I

I X I I X I

I I X I I X

Y −Y I Z Z I

Y I −Y Z I Z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.4.12)

and the corresponding logical operators are given by Z̄ = ZZZZZZ, X̄ = XZZIZZ.

In order to see whether Figure 4.4.2 realises a one-error correcting code, with one input
vertex and six output vertices, we apply error detection (correction) conditions given in
the SW-theorem to the

(︁6
2
)︁

= 15 two-error correction configurations. These are denoted
Ej with j ∈ {1, . . . , 15} and are defined as

E1 = {0, 1, 2}, E2 = {0, 1, 3}, E3 = {0, 1, 4}, E4 = {0, 1, 5}, E5 = {0, 1, 6}, (4.4.13)

E6 = {0, 2, 3}, E7 = {0, 2, 4}, E8 = {0, 2, 5}, E9 = {0, 2, 6}, E10 = {0, 3, 4}, (4.4.14)

E11 = {0, 3, 5}, E12 = {0, 3, 6}, E13 = {0, 4, 5}, E14 = {0, 4, 6}, E15 = {0, 5, 6}. (4.4.15)

For example, consider the error configuration E1 = {0, 1, 2}. The resulting set of equations
from (4.4.7) are given in Table 4.4.4. Solving this set of relations results in d0 = d1 =
d2 = d3 = 0 and thus by the SW-theorem, the error configuration E1 is a detectable error
configuration. Following this logic, one can repeat this analysis for the remaining possible
error configurations. The result of this calculation is that there are three problematic error
configurations: E3, E8 and E12.
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Vertex Equation
3 d0 + d1 + d2 = 0
4 d0 + d2 = 0
5 d0 + d1 = 0
6 d0 + d1 + d2 = 0

Table 4.4.4: Set of equations for error configuration E1.

As in [78], a quantum code with stabiliser S will detect all errors E that are either in
S or anticommute with at least one element in S (i.e. E ∈ S ∪ (Pn −N(S))). For each of
the problematic error configurations, three error operators exist that do not anticommute
with at least one element in S, namely XX, Y Z and ZY . Consider the first set of these
operators; X1X4, X2X5 and X3X6, where the subscript refers to which qubit an operator
acts upon. Each of these three operators is clearly an element of the stabiliser, as can be
trivially read off from (4.4.12). Since these error operators belong to the stabiliser of the
code; X1X4, X2X5, X3X6 ∈ S, they have no impact on the encoded state.

However, the remaining six two-error operators,

Y1Z4, Z1Y4, Y2Z5, Z2Y5, Y3Z6, Z3Y6, (4.4.16)

cannot be corrected for. Thus not all two-error configurations are either detectable or act
trivially on the encoded state and so the graph state given in Figure 4.4.2 is a quantum
error correcting code with distance d = 2, which we denote as [[6, 1, 2]]2. Further evidence
is provided by the Knill-Laflamme bound [165]

n ≥ 2(d− 1) + k, (4.4.17)

which in this instance reduces to the statement that the code distance must satisfy d ≤ 3.
We also note that for any quantum stabiliser code with distance d that if S contains
elements of weight less than d, then it is a degenerate code. Since the minimum weight
operator in S is a weight-2 operator (e.g. X1X4 ∈ S) and d = 2, the [[6, 1, 2]]2 code
presented here is non-degenerate.

The next step is to tessellate the full spatial slices of AdS4 in the form of the order-
5 cubic honeycomb, tessellating cubes by associating labels to each face and consistently
gluing together them together. Since our code is not AME, we need to be careful to ensure
that the concatenation is consistent. In [38], the authors create a consistent construction
of the {7, 4} tessellation of the spatial slice of AdS3 using block-perfect tensors. Essentially
the tessellation is constructed in levels, with the first level being some central heptagon,
the second level being all adjacent heptagons to those in the first level and so on. We
adapt this approach in the following construction of the concatenation of cells, so let us
first describe how this works.
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Figure 4.4.5: {7, 4} tessellation of hyperbolic plane H2. One shows subsequent levels
beginning from some central polytope defined to be at level L = 1 and adding a level for
each polytope adjacent to a polytope at the previous level.

For every heptagon hL at level L, one assigns the set of labels ei with i ∈ {1, . . . , 7} to
its edges. For every i, the labelled edge ei at level L must then be glued to some other
edge of a heptagon at level L′. In this instance, for each i, L′ must be either level L − 1
or L + 1 but it cannot be both simultaneously. Thus all edges labelled ei at level L are
glued to the same level L′.

As an example, look at level L = 2 in [38]. Each edge e6 is glued to an edge in level 1
(L− 1). Similarly, edges ej with j = {1, 2, 3, 4, 5, 7} at level L = 2 are always glued to an
edge at level 3 (L + 1). A sketch depicting the levels in this example is shown in Figure
4.4.5.

Note, when one reaches level L = 3, one encounters an issue. There is an inconsistency
of edges connecting to other levels. Some L = 3 heptagons are adjacent to two L = 2
heptagons and five L = 4 heptagons while others are only connected to one level L = 2
heptagons and six L = 4 heptagons. Fortunately, there is a simple fix for this. One simply
treats the two cases to be distinct, as if they were there own levels (i.e. one could think
of them as sub-levels L = 3.A and L = 3.B), that collectively make up level L = 3. Due
to the symmetry of tessellations with 4 edges meeting at each vertex (q = 4 in the Schläfi
symbol), as one increases the level, there will always be two sub-levels for each level L
from level L = 3 onwards.
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Figure 4.4.6: {4, 5} tessellation of hyperbolic plane H2. One shows subsequent levels
beginning from some central polytope defined to be at level L = 1 and adding a level for
each polytope adjacent to a polytope at the previous level.

The ideas behind this construction can be generalised to concatenate the non-AME
code across the cubic honeycomb on H3. The construction is however more subtle than
the two-dimensional case above. In order to visualise the 3d tessellation, we note that
the structure is analogous to that of the {4, 5} tiling in H2. We may proceed by labelling
edges (corresponding to faces) and building the tessellation in levels as before. The result
after three levels is shown in Figure 4.4.6.

The immediate issue arising is that one has inconsistencies, similar to that of the {7, 4}
tiling when level L = 3 is reached. However, these are now more intricate than before due
to the difference in symmetries between the two tilings. At L = 3, on one hand there are
some polytopes where one edge will be glued to a polytope at level L = 2 and three edges
will be glued to polytopes at level L = 4. On the other hand, there are some polytopes
where one edge will be glued to level L = 2, one edge glued to another edge at level L = 3
and two edges that will be glued to a polytope at level L = 4. Hence, while one can choose
one labelled edge to be glued to level L = 2 and two to be glued to level L = 4, one edge
will sometimes be glued to level L = 3 and sometimes to level L = 4. Thus, one seems
to have an inconsistent construction. Similarly, for the order-5 cubic honeycomb, one will
analogous issues, where one face may be connected to level L = 2, and two faces to level
L = 4 while one face will sometimes be glued to level L = 3 and sometimes to level L = 4.
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The key issue arising is that one now has polytopes at level L adjacent to other
polytopes at level L. In the {4, 5} tiling, this issue arises from the fact that the
tessellation has an odd number of polytopes around each vertex (i.e. for Schläfi symbol
{p, q}, one has q odd). Similarly, for the {4, 3, 5} tiling this originates from the odd
number of polytopes around each edge (i.e. for Schläfi symbol {p, q, r}, one has r odd).

Level L Number of sub-levels
L = 1 1
L = 2 1
L = 3 2
L = 4 2
L = 5 3
L ≥ 6 3

Table 4.4.7: Number of sub-levels required at each level L in the {4, 3, 5} order-5 cubic
honeycomb to form a consistent construction.

It is possible to resolve these subtleties and obtain consistent concatenations of codes
between cells. By dividing levels into sub-levels and treating each as if it were its own
level, as previously explained, consistent constructions can be obtained. Table 4.4.7 shows
the required number of sub-levels at each level L in order to maintain consistency, where
we note that one sub-level simply means only the level L itself.

If we are using a tessellation with an even structure (q even in 2d or r even in 3d), we
can obtain a consistent construction using a similar approach to that in [38]. We illustrate
this for the order-4 dodecahedral honeycomb tessellation of H3 with Schläfi symbol {5, 3, 4}
(noting here r is even) in section 4.4.2.

4.4.1.2 AME state

Now let us turn to an alternative approach to associating codes to H3 spatial slices of
AdS4. If one lifts the assumption that the cells preserve maximal discrete symmetry, then
graph states that are AME can be obtained. For example, for the case where the cube is
the polyhedron tessellated (such as the order-5 cubic honeycomb tessellation of H3), one
requires a graph state consisting of six physical qudits and a single central logical qudit.
The graph state given in Figure 4.4.8 satisfies this requirement while also being absolutely
maximally entangled. Here the unit of quantum information used is the qutrit (D = 3),
allowing for up to two Z operators between pairs of qutrits.

While this graph state does not possess maximal symmetry, since it is AME, many of
the arguments presented in [1] will still hold for this graph state. Importantly, this means
this graph state still corresponds to a perfect tensor, and so when concatenated into a
full tensor network, the bulk can be reconstructed using operator pushing. Now, suppose
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Figure 4.4.8: Graph state corresponding to the 7 qutrit AME state.

this suggestion can be implemented, representing the connectivity of the 6 physical qutrits
that sit on each of the cube’s faces and the single logical qutrit in its centre.

One can now try to consistently glue these cubes together when forming the full
tessellation of H3. For similar reasons to the logic presented in section 4.4.1.1, finding a
consistent construction for the {4, 3, 5} honeycomb is subtle due to there being an odd
number of cubes around each edge (i.e r is odd). To begin this discussion, we will
consider first the construction of the cubic honeycomb with Schläfi symbol {4, 3, 4} that
tessellates Euclidean 3-space R3, depicted in Figure 4.4.9, noting for this tiling that r is
even. To our knowledge this construction has not been presented in any existing
literature, and it will prove useful when considering the order-4 dodecahedral honeycomb
in section 4.4.2. This tessellation belongs to a family of hypercube honeycombs with
Schläfi symbols {4, 3, . . . , 3, 4} and so the following arguments should extend
straightforwardly to higher dimensions.

Figure 4.4.9: Visualisation of the cubic honeycomb with Schläfi symbol {4, 3, 4} that
tessellates R3.

When considering this tessellation, the first step is to find a representation of the graph
state within the cube that preserves as much symmetry as possible. Clearly the logical
qutrit (labelled ‘0’) is maximally connected to all other qutrits so it is omitted from the
following discussion. One can produce a construction that preserves as much symmetry
as possible in the following way:
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1. Consider the cyclically ordered set of all faces F = {F1, F2, F3, F4, F5, F6} and label
a single vertex vα for some α ∈ {1, . . . , 6}. Then label the adjacent faces
Fα−1, Fα, Fα+1. For example, label a single vertex v1 and then label the adjacent
faces F6, F1, F2.

2. By construction, there will now be another vertex where both Fα and Fα+1 meet.
This vertex must then be labelled vα+1. There will also be one unlabelled face that
is adjacent to both Fα and Fα+1, which one labels Fα+2. In the previous example
one can hence label v2 and F3.

3. This process can be repeated until all faces are labelled together with the 6 vertices
v1, . . . v6. One can then place a single qutrit on each of these faces labelled Q1, . . . , Q6

for faces F1, . . . , F6 respectively. The resultant diagram representing the assignment
of these qutrits is shown in Figure 4.4.10.

4. One can now connect qutrits Q1, . . . , Q6 according to the graph state representation
of the AME(7,3) state (Figure 4.4.8). The resulting graph state embedded in the
cube is visualised in Figure 4.4.11.

Q5

Q3

Q4
Q2

Q6

Q1

v2

v6

v3

v4

v5

v1

Figure 4.4.10: Assignment of qutrits to preserve the most symmetry when embedding the
AME(7,3) state into a cube.

Now that we have a representation for the AME(7,3) state embedded on the cube, we
can ask the question of how the qutrits living on the cube’s faces can be concatenated.
Consider two cubes C and C ′, with qutrits Q1, . . . , Q6 and Q′

1, . . . , Q
′
6 living on each of the

cube’s faces respectively, assigned as depicted in Figure 4.4.11. We can concatenate C and
C ′ by joining them facewise and since the graph states are AME, we can then maximally
entangle the pair of qutrits (one from each face) using entanglement swapping as shown
in section 4.3.5.
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Figure 4.4.11: AME(7,3) graph state embedded on a cube C.

To maximise the symmetry of the resulting graph in the tessellation building H3, one
aims to consistently match pairs of qutrits. Qutrits can be categorised based on the weights
of the incoming edges in the graph state, for example in Figure 4.4.11, qutrits Q1, Q2, Q5

and Q6 are associated to one weight-1 and one weight-2 operator, while qutrits Q3 and
Q4 are associated with two weight-1 operators (in neither case including the one weight-1
operator connected with the logical qutrit).

The simplest way to match pairs based on this, is to match qutrits Qi and Q′
i,

i ∈ {1, . . . , 6} when concatenating cubes C and C ′. However, in order to successfully
accomplish this, it is trivial to see that one cannot simply match the two cubes faces
together without performing some operation on cube C ′ (e.g. rotating the cube about
some central axis).
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F4
I

Figure 4.4.12: Inversion of C mapping to C ′.

In order to preserve the internal structure of the graph state within the cube, one can
attempt to choose a particular transformation mapping C to C ′ that exploits the innate
symmetries of the cube. This transformation can be chosen to be an inversion, denoted
I : C → C ′. Inversions in this context indicate mapping each vertex of the cube to the
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opposing vertex, and similarly with mapping each face to its opposing face, such that the
centre of the cube lies at the origin.

This is implemented by considering two cubes such that, the first, C, has the structure
shown in Figure 4.4.11 and the second, C ′, is the inversion of C. This transformation can
be visualised as shown in Figure 4.4.12. The left side represents the vertices of the original
cube C, while the right side gives the cube’s inversion C ′. Using the particular choice of
the labelling of vertices in C, as indicated on the left hand side of Figure 4.4.12, one may
define the inversion operator as

I : C → C ′ := {I(xi) = xi+4 | ∀xi ∈ C} (4.4.18)

given xi are the vertices of C, with i ∈ {1, . . . , 8} and such that the arithmetic is modulo
8 (i.e. the element i+ 4 ∈ Z8). Clearly the faces bound by four vertices are also switched
with their opposing face as a result.

Written in terms of the permutations of vertices, the inversion can be expressed as;

I(C) = (x1x5)(x2x6)(x3x7)(x4x8). (4.4.19)

Note that an inversion can be completed from the combination of a rotation by an angle
of 180◦ (π rad) about an axis defined to pass through the centre of a face and the opposing
face, together with a reflection in the plane perpendicular to that axis. For example, define
a set of axes such that the z-axis passes through the centre of faces F3 and F6 in C, as
shown on the left hand side of Figure 4.4.13.
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Figure 4.4.13: Rotation of vertices around the z-axis mapping C to C̃.

We define the operator Rzπ : C → C̃ as the rotation of each vertex in C, about the
z-axis by π radians. Applying the rotation Rzπ to the cube C corresponds to the following
permutations of vertices;

Rzπ(C) = (x1x3)(x2x4)(x5x7)(x6x8), (4.4.20)
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Figure 4.4.14: Reflection of vertices in the plane z = 0 mapping C̃ to C ′.

mapping C to C̃. This mapping can be seen in Figure 4.4.13.

We can subsequently apply the reflection through the plane z = 0, denoted by γz, to
the new cube C̃, with permutations

γz(C̃) = (x1x7)(x2x8)(x3x5)(x4x6), (4.4.21)

as shown in Figure 4.4.14. This results in the cube C ′, thus showing this set of
transformations is equivalent to the inversion shown in Figure 4.4.12.

We should note that performing an inversion on a cube does not change the structure
of the graph state within C, but simply provides a ‘mirror’ of it. Since faces of C and C ′

are opposite by construction, when building a tessellation and thus concatenating states,
one may join C and C ′ in any direction. For example, in C, F4 is on the ‘right’ face
whereas in C ′, F4 is on the ‘left’ face (as indicated in Figure 4.4.12). Thus these can be
joined, concatenating qubits Q4 in C and Q′

4 in C ′.

We could do this with each face of cube C. This central cube would thus be joined to
six cubes at its faces such that each of these adjacent cubes are the inversions of C, given
by C ′. However, one could also provide a construction so each cube C ′ may be attached to
six cubes such that all of the adjacent cubes are given by C. Since applying the inversion
operator twice results in the identity I2 = e, and hence I(C ′) = I2(C) = C, these two
constructions are the same and can be consistently built.

Thus one can tessellate the entirety of R3 with cubes C and C ′ such that qubits Qi

are only ever concatenated with qubits Q′
i and C ′ is the inversion of C. This construction

may be thought of as a 3-dimensional checkerboard where one draws all cubes C to be
white cubes and all cubes C ′ to be grey cubes, in turn filling H3, as depicted in Figure
4.4.15. Clearly, this construction has no preferred direction and while not maximising
symmetry on a single polytope (which is achieved by the construction in Figure 4.4.1),
there is a clear structure with remarkably high symmetry, when considering the full three-
dimensional space.
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Now let us return to the cubic tessellation of H3. In H3 five cubes meet at each edge and
accordingly the construction described above does not work and one cannot consistently
concatenate the AME codes associated with each cube in hyperbolic space. It is possible
that a similar construction may exist however it is extremely non-trivial, thus one presents
the simpler case of the {5, 3, 4} honeycomb in the following section.

Figure 4.4.15: Tessellation of cubes C and C ′ forming a checkerboard cubic honeycomb in
R3.

4.4.2 AdS4: Other regular tessellations

Turning to the other regular tessellations of H3 (the icosahedral honeycomb {3, 5, 3},
the order-4 dodecahedral honeycomb {5, 3, 4} and the order-5 dodecahedral honeycomb
{5, 3, 5}), the main conclusions are unchanged: one cannot realise AME states with qubits.
The polytope tessellated in the icosahedral honeycomb is the icosahedron {3, 5} and both
other cases are constructed from the dodecahedron {5, 3}. Just as for the cubic case one
can construct two types of graph states corresponding to each polytope.

Interestingly, in this construction, the graph state is a graph corresponding to the
connectivity of the faces of the polytope. However, when representing Platonic solids as
graphs, one usually considers the graph corresponding to the connectivity of the vertices
and this is how many graphs have been stated in the literature. Hence, when sketching a
graph state for a polytope p, one can effectively think of drawing the graph G for the dual
polytope p̃, corresponding to the connectivity of the vertices.

For example, drawing the graph state for the icosahedron, gives rise to the graph that
is often named the ‘dodecahedral’ graph. Similarly, the graph state for the dodecahedron
corresponds to what is commonly referred to as the ‘icosahedral’ graph. Note that for
the cube this issue was not discussed since the cube’s dual is simply the cube itself. The
two graph states corresponding to tessellations of H3 consisting of dodecahedrons and
icosahedrons which preserve maximal discrete symmetry are depicted in Figure 4.4.16 and
Figure 4.4.17 respectively.
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As for the previous discussion for the order-5 cubic honeycomb using a cubic
tessellation, since one cannot have graph states with n ≥ 7 qudits that is both AME and
preserves maximal discrete symmetry, we must choose to relax one or both of these
assumptions. In this section, we present both a construction using non-AME graph
states that preserves maximal discrete symmetry and a construction using AME states
that eases the restriction on maximal discrete symmetry.

Figure 4.4.16: Graph state preserving maximal discrete symmetry for regular, uniform
tessellations of H3 consisting of dodecahedrons, commonly referred to as an ‘icosahedral
graph’ in the mathematics literature.

Figure 4.4.17: Graph state preserving maximal discrete symmetry for regular, uniform
tessellations of H3 consisting of icosahedrons, commonly referred to as a ‘dodecahedral
graph’ in the mathematics literature.
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4.4.2.1 Order-4 dodecahedral honeycomb non-AME state

Similarly to the order-5 cubic honeycomb, we first try to build a maximally symmetric
model for the order-4 dodecahedral honeycomb. We begin by embedding the graph state
(Figure 4.4.16) into a single dodecahedron. Here, each of the qudits is placed such that
one lives on each face of the dodecahedron with a singular logical qudit represented in the
centre of the dodecahedron. Thus, edges connecting qudits in the graph state correspond
to two faces being adjacent.

Since we already know this graph state cannot be AME, we do not need to explicitly
check this. However, it is required to check that this graph does in fact represent a quantum
error correcting code. Here we choose the local dimension to be D = 2 for simplicity to
demonstrate that the graph is a code.

The resulting stabiliser matrix for the graph state in Figure 4.4.16 can therefore be
expressed as:

S13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X Z Z Z Z Z Z Z Z Z Z Z Z

Z X Z I Z Z I I I Z I I Z

Z Z X Z Z I I I I I I Z Z

Z I Z X Z I Z Z I I I Z I

Z Z Z Z X Z Z I I I I I I

Z Z I I Z X Z I Z Z I I I

Z I I Z Z Z X Z Z I I I I

Z I I Z I I Z X Z I Z Z I

Z I I I I Z Z Z X Z Z I I

Z Z I I I Z I I Z X Z I Z

Z I I I I I I Z Z Z X Z Z

Z I Z Z I I I Z I I Z X Z

Z Z Z I I I I I I Z Z Z X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4.22)

We can then repeat the analysis used for the maximally symmetric graph state for a
cube (Figure 4.4.2) however this time using the dodecahedron graph state (Figure 4.4.16).
We note that it is easier to use the restated version of the SW-theorem presented in [225]:

Restated SW-theorem: Consider a set of input vertices X and a set of output
vertices Y . Then, given a finite abelian group G and the weighted graph with adjacency
(coincidence) matrix Ξ, a quantum error correcting code vΞ is able to detect an error
configuration E ⊂ Y iff given

dX = 0, and ΞX
E d

E = 0 (4.4.23)
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then
ΞI

X∪Ed
X∪E = 0⇒ dX∪E = 0 (4.4.24)

with I = Y \E .

We need to apply this theorem to the
(︁12

2
)︁

= 66 possible two-error configurations. Here
we omit the full details of this lengthy calculation but after performing this analysis it turns
out that the graph state shown in Figure 4.4.16 is indeed a valid quantum error correcting
code. While further analysis detailing some of the properties of this code would be very
interesting, we do not deeply investigate them here as it is sufficient for our construction
to show that one is indeed working with a quantum error correcting code.

We now construct the tessellation of the spatial slices of AdS4 in the form of the
order-4 dodecahedral honeycomb by using a consistent method to tessellate the
dodecahedrons together, associating labels to each face and gluing them together. For
simplicity, we present the arguments for the two-dimensional analogue of the order-4
dodecahedral tessellation, which corresponds to the familiar pentagonal tiling of H2, with
Schläfi symbol {5, 4}. We may then simply use the method presented in section 4.4.1.1,
where one associates a distinct set of labels ei to each pentagon (where now
i ∈ {1, . . . , 5}) at level L and glues pentagons by edges accordingly to level L′. The
relevant diagram showing the {5, 4} tessellation and subsequent levels beginning from
some central pentagon at level L = 1 is shown in Figure 4.4.18.

Similarly to the {7, 4} tessellation of H2, we must divide levels into sub-levels from level
L = 3 onwards for the {5, 4} tessellation. However, as explained in section 4.4.1.1, since
we are now working with a case in which q = 4, there are only two sub-levels for all levels
L > 3. Hence, one can continuously build this consistent tessellation for any number of
discrete levels approaching the spatial boundary of the spacetime.

The construction works in the exact same manner for the full three-dimensional
order-4 dodecahedral honeycomb although it is more difficult to visualise. Here,
polytopes are matched face-wise rather than edge-wise but otherwise the construction
trivially generalises. The important feature is that one now has Schäfi symbol {5, 3, 4}
and thus there are four dodecahedra around each edge (since r = 4), analogous to the
four pentagons around each edge in the {5, 4} tessellation. Therefore, one will similarly
have only two sub-levels for all levels L > 3.
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Figure 4.4.18: {5, 4} tessellation of hyperbolic plane H2. We show subsequent levels
beginning from some central polytope defined to be at level L = 1 and adding a level for
each polytope adjacent to a polytope at the previous level.

4.4.2.2 Order-4 dodecahedral honeycomb AME state

When discussing the order-5 cubic honeycomb in section 4.4.1.2, we began by considering
the graph state corresponding to the 7 qutrit AME state denoted AME(7,3). If we wish to
begin with an analogous construction for the order-4 dodecahedral honeycomb, we require
a 13 qudit AME state since a dodecahedron possesses 12 faces, on each of which one of
these qudits lives, with one qudit associated with the dodecahedron itself.

Clearly the AME(13,2) state does not exist [210] due to the theorems we have previously
mentioned. It turns out that in local dimension D = 3, no AME state containing 13 parties
exists [226] (i.e. AME(13,3) does not exist) due to constraints imposed by the so-called
shadow inequalities. In fact, there is very little literature about the existence of any
AME(13,D) state. The AME(13,7) and AME(13,8) states are thought to exist due to
arguments presented in [227] (e.g. the existence of the [[14, 0, 8]]7 QMDS code), though
little is known about their properties.

Since not much is known about AME(13,D) states, to our knowledge no corresponding
graph states have been produced in the literature. However, one would expect that some
states do exist provided the AME state is a stabiliser state. In what follows, we assume
that for a certain local dimension D there does exist a stabiliser state AME(13,D) and
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that one can draw a corresponding graph state.

The advantage of tessellating H3 using the order-4 dodecahedral honeycomb over the
order-5 cubic honeycomb is that when considering their Schläfi symbols {p, q, r}, the order-
4 dodecahedral honeycomb has r even, while the order-5 cubic honeycomb has r odd.
Further, since r = 4, one can draw many parallels with the order-4 cubic honeycomb that
tessellates R3. Recall the procedure we used for this Euclidean tessellation. We began by
attempting to maximise the symmetry of the embedded graph state within the polytope
(cube). Then we explicitly defined an inversion mapping I as a product of a rotation Rzπ

and a reflection γz, such that it possessed the property I2 = e, where e is the identity. We
then had two possible cubes, C and its inversion C ′. When tessellating R3, each face of
C associated with a qutrit Qi would be glued to a face of C ′ associated with a qutrit Q′

i

and vice versa (see Figure 4.4.15).

Figure 4.4.19: Checkerboard of the {5, 4} tessellation of H2, analogous to the checkerboard
construction of the order-4 dodecahedral honeycomb in H3.

In order to produce a similar construction for the order-5 dodecahedral honeycomb, we
would begin as for the order-4 cubic honeycomb in R3 case by attempting to maximise
the symmetry of the embedded graph state within the polytope. Since dodecahedrons
have a more complex structure than cubes, it is likely this would be less straightforward.
One would then define an inversion for the dodecahedron analagous to that of the cube
consisting of rotations and reflections, so that after the inversion, all faces and vertices
are ‘opposite’ to those in the original dodecahedron. One would once again then have
two types of polytope, the original and it’s inversion. One can think of this tessellation
therefore to be alternating between black dodecahedra and white dodecahedra. Since
visualising this tessellation in hyperbolic geometry is challenging, we present its analogous
counterpart in Figure 4.4.19, alternating between black and white pentagons forming a
checkerboard in H2.
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4.4.3 AdS5 and higher dimensions

One may wonder whether the obstructions encountered in applying the HaPPY
construction to AdS4 apply generically in higher dimensions. It is straightforward to
show that they indeed do, exemplifying the discussion with AdS5. Spatial slices of AdS5

correspond to the hyperbolic 4-space H4 and its possible regular uniform tessellations
are given by the Schläfi symbols given in (4.2.13). Since four dimensional objects are
hard to visualise, it is useful to introduce the configuration matrix C, an object that
stores all of the relevant information about a polytope within a single matrix.

Definition: For any regular n-dimensional polytope consisting of Ni i-faces with 0 ≤
i < n, one can write its configuration matrix such that for each i-face element Ni, the
number of j-faces incident is denoted Nij , where i ̸= j. Trivially,

NiNij = NjNji. (4.4.25)

One can construct a matrix from these configurational numbers with Ni = Nii as the
diagonal elements and Nij as the non-diagonal elements;

⎡⎢⎢⎢⎢⎢⎣
N0,0 N0,1 N0,2 . . . N0,n−1

N1,0 N1,1 N1,2 . . . N1,n−1
...

...
... . . . ...

Nn−1,0 Nn−1,1 Nn−1,2 . . . Nn−1,n−1

⎤⎥⎥⎥⎥⎥⎦ . (4.4.26)

From (4.2.13), we note that the first possible hyperbolic tessellation of H4 is the order-
5 5-cell honeycomb with Schläfi symbol {3, 3, 3, 5}. The convex, regular 4-dimensional
polytope associated with this tessellation is the 5-cell (also referred to as the 4-simplex),
with Schläfi symbol {3, 3, 3} and it is bounded by five regular tetrahedra. Hence, provided
one follows the HaPPY approach, for each 5-cell there will be five physical qudits (one
for each tetrahedra) and one logical qudit associated with the 5-cell, represented by being
placed in it’s centre.

In order to draw the maximal discrete symmetry-preserving graph state, we need to
know which tetrahedra are connected via faces to one another. In this instance we can
show each tetrahedron is connected to four other tetrahedra - one for each of its faces.
The configuration matrix is rather useful to summarise all of this information

C5 =

⎡⎢⎢⎢⎢⎢⎣
5 4 6 4
2 10 3 3
3 3 10 2
4 6 4 5

⎤⎥⎥⎥⎥⎥⎦ . (4.4.27)
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The diagonal shows that the 5-cell has a total of 5 vertices, 10 edges, 10 faces and 5
cells. Importantly, the element in the fourth row and third column indicates that each cell
has 4 faces showing these are comprised of tetrahedra. Since each physical qudit lives on
its own tetrahedron, each physical qudit must therefore be connected to 4 other physical
qudits in the graph state. However, since there are only 5 physical qudits in the system,
the graph state must be maximally connected, as shown in Figure 4.4.20, also imposing
the central logical qudit is connected to each physical qudit.

Figure 4.4.20: Graph state preserving maximal discrete symmetry for regular, uniform
tessellations of H4 consisting of 5-cells, a 4-dimensional polytope bounded by five
tetrahedra.

Trivially, since this graph is maximally connected, then for any bipartition, one cannot
obtain linearly independent vectors when performing the standard check and so this state
is not AME. This result can similarly be obtained using the fact that Figure 4.4.20 is not
locally Clifford equivalent to the AME(6,2) state. Hence as before one must either ease the
maximal discrete symmetry assumption allowing one to work with an AME state (where,
in this case one could use the AME(6,2) state) or alternatively, one can work with states
that are not AME but preserve maximal discrete symmetry.

Other possible regular compact tessellations of H4 are given in (4.2.13), but these can
be reduced to considering the tessellations of the 120-cell (120-cell honeycomb {5, 3, 3, 3},
order-4 120-cell honeycomb {5, 3, 3, 4} and order-5 120-cell honeycomb {5, 3, 3, 5}) and that
of the tesseract/four-dimensional hypercube (order-5 tesseractic honeycomb {4, 3, 3, 5}).
The 120-cell has Schläfi symbol {5, 3, 3} and configuration matrix C120 while the tesseract
has Schläfi symbol {4, 3, 3} and configuration matrix C8 where

C120 =

⎡⎢⎢⎢⎢⎢⎣
600 4 6 4
2 1200 3 3
5 5 720 2
20 30 12 120

⎤⎥⎥⎥⎥⎥⎦ , C8 =

⎡⎢⎢⎢⎢⎢⎣
16 4 6 4
2 32 3 3
4 4 24 2
8 12 6 8

⎤⎥⎥⎥⎥⎥⎦ . (4.4.28)
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Following the previous arguments, since both of these polytopes would provide n > 7
physical qudits (120 for the 120-cell and 8 for the tesseract), neither polytope can be
used to create an AME graph state that also preserves maximal discrete symmetry. For
completeness, Figure 4.4.21 is the corresponding maximally symmetric graph state for the
tesseract. We do not show the graph state for the 120-cell since it is very complex and
does not add anything new to the discussion.

Figure 4.4.21: Graph state preserving maximal discrete symmetry for regular, uniform
tessellations of H4 consisting of tesseracts, a 4-dimensional polytope bounded by eight
cubes.

Since there are no compact, regular tessellations of H5 or higher dimensional space,
these constructions cannot be explored using the construction that has been presented.
Hence, if one wanted to consider AdS6 or higher dimensions using a HaPPY type
approach, then spatial slices would need to be discretised in a different manner. One
could consider paracompact, regular tilings for H5 but none of these exist for hyperbolic
spaces of dimension 6 or higher. In order to be able to extend to general
(d + 1)-dimensional spacetime AdSd+1, it seems that one would need to consider
non-compact regular tessellations of the spatial slices Hd or use a qualitatively different
approach based on irregular tessellations. We will return to this point in the following
subsection as well as in section 4.6.

4.4.4 Summary

In this section we have shown that the HaPPY construction can be generalised to
uniform regular tessellations of hyperbolic space in higher dimensions, but with
important differences relative to two dimensions. Firstly, one either needs to relax the
assumption of maximal discrete symmetry of the graph within the cell to get an AME
code, or one needs to work with non AME states, with corresponding subtleties in
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concatenating cells. Secondly, only a sparse number of such codes can exist in d > 2, due
to the limited number of uniform regular tessellations.

In previous literature it has been noted that the perfect tensor/absolutely maximally
entangled properties are constraining and various alternatives have been proposed in the
context of two spatial dimensions. One class of approaches is based around relaxing the
perfect tensor condition, for example to block perfect tensors as in [38, 228]. A block
perfect tensor is one which is isometric for partitions into adjacent sets of indices and
with this approach one can associate codes to 2d hyperbolic tilings that are not
compatible with perfect tensors. There are many other approaches that are similarly
related to generalisation to different types of tensors [36, 37]. These constructions are
very much analogous in spirit to the non-AME constructions above.

In two dimensions, more complicated generalizations of HaPPY have been considered.
For example, one can consider hyperbolic tilings that are not regular but alternate different
polygons [202,203]; these can represent Bacon-Shor type codes which include gauge degrees
of freedom. Generalizing this approach to higher dimensions would be interesting and
would rely on classifications of hyperbolic tessellations involving more than one type of
polytope. For example, one could envisage using rectified honeycombs, which alternate
different polytopes, as well as runcinated honeycombs which alternate polytopes and have
irregular vertex figures. In higher dimensions where no compact regular tessellations exist
one would need to use semi-regular honeycombs as a basis for constructing codes.

Other generalizations of HaPPY include adding degrees of freedom on a tensor network
connected to copies of HaPPY by an isometry, to give models for bulk gauge fields and
gravitons [229]. Clearly for this construction to be lifted to higher dimensions one would
need to first develop an AME code before connecting this code to an auxiliary tensor
network.

4.5 CSS stabilizer codes and tessellations

In this section we will consider a qualitatively different class of quantum error correcting
codes that can be associated with hyperbolic tessellations. This class of codes has the
advantage that the generalisation from two to higher dimensions is straightforward as
the structure of the code follows directly from the properties of the tessellation. We will
compare and contrast this construction to the AME/perfect tensor approach used in the
previous section.
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The codes discussed in this section are CSS codes, a specific class of stabilizer codes,
the best known example of which is perhaps the Steane seven qubit code that is reviewed
in section 2.3.2. As in earlier sections, the basic principle of stabilizer codes is to encode
k logical qubits in n physical qubits1 using a code space that is the eigenspace of a set
of commuting stabilizers [78]. To make the link with tessellations and cellulations the
relevant feature of a CSS code is that the parity check matrix, which characterises the
error upon corruption of the message, can be expressed in terms of 1

2(n − k) generators
that consist of (only) X operations on qubits and 1

2(n−k) generators that consist of (only)
Z operations on qubits. For example, we can express one of the three X (only) generators
on the Steane seven qubit code as X1X5X6X7 where the subscripts denote the physical
qubits on which the operators act. The remaining five independent generators are given
in (2.3.19).

Figure 4.5.1: Tanner graph for the [[7,1,3]] Steane code. This graph is tripartite with
the middle row of nodes representing the physical qubits and the top and bottom rows
representing Z stabiliser checks and X stabiliser checks respectively.

The Tanner graph for a CSS code provides a visualisation for the parity check matrix.
The middle row of a Tanner graph shows the physical qubits as nodes. Stabilizer checks
are shown as boxes in the top (Z) and bottom (X) row, with there being an edge between
the stabilizer and a qubit if the operator acts on that qubit. Tanner graphs are tripartite,
with the partitions being the qubits, the X-checks and the Z-checks. From the check
matrix for the Steane code given in (2.3.19) we can draw the associated Tanner graph,
shown in Figure 4.5.1.

The main fact that we will use in this section is that any three layer Hasse diagram
for a cellulation may be reinterpreted in terms of a Tanner graph for a CSS code. In
the case of the tetrahedron shown in Figure 4.2.5, the top row of faces represents the
Z checks; the middle row of edges represents the physical qubits and the bottom row of
vertices represents the X checks. However, one needs to take into account that not all of
the checks are linearly independent. For example, the four Z checks are:

Z1Z2Z3 Z1Z4Z5 Z2Z5Z6 Z3Z4Z6, (4.5.1)

where as above we use subscripts to denote the qubit on which the check acts. Clearly the
product first three gives the fourth, and therefore only three of the Z checks are linearly

1From here onwards we restrict to qubits, although the constructions can straightforwardly be extended
to qudits.
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independent. Similarly, only three out of four of the X checks are linearly independent.
Accordingly this code is trivial, as the number of checks is equal to the number of physical
qubits, and therefore no logical information can be encoded.

However, even though the code associated with the individual cell encodes no logical
qubits, a cellulation constructed from tetrahedrons may encode logical qubits, as explained
below. In other words, this approach to constructing codes thus relies inherently on the
global properties of the tessellation, rather than on the properties of the individual cells,
as the codes in the previous section did.

To exemplify cellulations associated with non-trivial codes, let us consider the case of
{r, s} regular tessellations of the hyperbolic plane. We can identify {r, s} tessellations
with CSS codes as follows, see [230]. Each stabilizer X check corresponds to a vertex of
the tessellation, acting on all edges incident to the vertex, so has weight s. Each stabilizer
Z check corresponds to a face of the tessellation, acting on all associated edges, so has
weight r. Starting from a single r-gon, one can reflect in its edges to generate further
r-gons, and then keep repeating the process. The polygons of each iteration are labelled
by their level, starting from the original polygon (level 1) and continuing to level k. This
process clearly generates a tessellation with a boundary.

However, the code associated with such a tessellation encodes no qubits. Associated
with each vertex is an X check, but there is one linear dependency between these checks,
so the total number is V −1, with V the number of vertices. Associated with each face is a
Z check and these are linearly independent, so the total number is F , with F the number
of faces. The graph is planar and therefore the standard relationship between edges E, F
and V holds:

E = V − 1 + F. (4.5.2)

The number of edges is identified with the number of physical qubits, and therefore the
total number of physical qubits is equal to the total number of stabilizers, so the code is
trivial. More generally, the properties of a code are determined by homology, see Appendix
A.1.3. The number of encoded qubits is zero since the first homology class is trivial.

To obtain non-trivial codes one clearly needs constructions with non-trivial first
homology class. There are several distinct approaches to obtaining non-trivial codes in
two dimensions and there is considerable literature on the subject. One approach to
consider codes associated with closed two-dimensional surfaces; the homology of a closed
surface is generically non-trivial, and can be understood in terms of the identifications
made to close the surface. A second approach was initiated in [230], which gave a
systematic procedure for removing certain X and Z checks at the boundary of an open
surface so that the code encodes (k − 1) qubits; we will discuss this further below.
Adding holes and defects in the interior also gives non-trivial homological codes [231].
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One of the main topics of exploration is how to maximise the distance of the code, for
a given ratio of logical to physical qubits (k/n), see for example [232–234]. While much
of the focus has been on planar and toric codes, recent literature has also explored codes
associated with hyperbolic surfaces, see for example [235] which in particular studies codes
associated with closed hyperbolic surfaces i.e. quotients H2/Γ. Here it is assumed that the
symmetry group Γ has no fixed points although it could be interesting to generalise these
constructions to quotients associated with the spatial sections of wormholes [236,237].

Much of the literature has focused on codes associated with tessellations of
two-dimensional manifolds. However, the procedure for associating a code with a
cellulation works in any dimension. For physical applications, one clearly needs to be
able to implement the code in a system with three spatial dimensions but various
properties of higher dimensional codes have nevertheless been explored in the literature,
see [235, 238–245]. For example, codes associated with tori have been constructed not
just for three dimensional tori, but also four dimensional tori [238]. To make contact
with holography, we will again focus on codes associated with hyperbolic space and these
have been studied in a number of recent works [235,243–245].

In a three-dimensional cellulation one identifies qubits with faces (2-cells), and stabilizer
checks with edges (1-cells) and 3-cells. The interpretation of the vertices is that their
connections with the edges define linear codes acting on the X-checks. By contrast there
is no such linear code acting on the Z checks, and Z checks are linearly independent.

A toy example of a 3d code is illustrated in Figure 4.5.2. The top row shows the Z
stabilizers, the second row shows the qubits and the third row shows the X stabilizers.
The bottom row is associated with the vertices, and shows the action of the linear code on
the X checks. Note that this is a toy example, as in realistic 3d cellulations there would
be many more nodes, and many more connections between nodes: the graph captures all
cells within the cellulation and the code properties relate to the global structure of the
cellulation.

Figure 4.5.2: Tanner graph for toy example of a 3d code.

For four dimensional cellulations, codes have been constructed by again identifying
qubits with faces, and stabilizers with edges and 3-cells. In four dimensions there are
linear codes acting on both the X checks and the Z checks, associated with the vertices
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and 4-cells, respectively. The Tanner graph in this case would have one additional row
relative to Figure 4.5.2, above the Z checks, capturing the action of the linear code on these
stabilizers. While in principle the construction of codes could be extended to arbitrary
dimensions, there does not appear to be previous literature discussing codes in dimensions
higher than four.

Most of the four-dimensional hyperbolic codes discussed in the literature are
associated with closed manifolds. Properties of codes associated with tessellations of
closed 4d hyperbolic manifolds were explored in [241]. Geometric arguments were used
to show that such codes would have constant rate (k/n constant) while the distance
scales as nϵ with 0 < ϵ < 0.3. Explicit examples of codes associated with closed 4d
hyperbolic cellulations have been constructed recently in [235, 243–245]. These are based
on the local regular H4 cellulations (4.2.13), identifying 3-cells to give a closed manifold.
A well-known example of such a closed 4d hyperbolic manifold is the Davis manifold,
obtained by identifying boundary dodecahedra in the {5, 3, 3, 5} (120-cell) tessellation.
The properties of the associated code can be determined from homology, see appendix
A.1.3, and the homology of the David manifold was derived in [246]. The examples of
closed 4d hyperbolic codes given in [235,243–245] are based on analogous constructions.

4.5.1 CSS codes for the hyperbolic plane

In this section we will describe the explicit construction of non-trivial CSS codes associated
with hyperbolic planes with boundary. From the discussions above, the code associated
with a hyperbolic tessellation generated by iterative reflections of a cell is trivial, due
to the trivial homology. For holographic applications the most natural way to generate
a non-trivial code is following a construction analogous to that of [230], i.e. modifying
the qubits and checks at the boundary. We first review the two-dimensional construction
of [230] and then explain how this approach can be generalised to higher dimensions. We
will illustrate the two-dimensional construction with hyperbolic tessellations following the
discussions in [235].

For an {r, s} tessellation our starting graph is obtained by iterative reflection of
polygons, beginning from a single r-gon. The starting graph encodes no qubits and all of
the boundaries are smooth boundaries: the edges of the polygons, at which a string of
X-errors can start and end. The reason why X-errors can start and end on smooth
boundaries is because the X stabilisers act on all qubits on edges adjacent to vertices;
the weights of the X checks at the boundary are two or s (for even s) or (s− 1) (for odd
s) while in the interior the X checks have weight s.

Suppose the starting graph is generated by k reflections of the original cell. The
boundary then consists of the edges that the level k polygons would be reflected in to
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generate the graph of (k + 1) reflections. The idea is to divide this boundary into 2k
equally sized regions. Half of these are smooth boundaries while the other half are so-
called rough boundaries at which Z-errors can start or end. The process for creating a
rough boundary used in [230,235] is:

• Remove all boundary X-checks of weight two that have two edges within the
boundary region considered.

• Remove all qubits on which only a single Z-check acts.

• Add certain weight two ZZ checks to the stabilizer (which ensures that Z-errors can
only run between rough regions).

With such a construction the code can encode (k − 1) logical qubits [230]. Note that
one can interpret the smooth and rough boundaries in terms of the lattice and its dual,
see discussions in [230,235]. Here the logical Z̄i operators run from the ith to the (i+1)th
rough boundary with i = 1, · · · , (k − 1). Similarly the logical X̄i operators run from the
ith to the (i + 1)th smooth boundary. (The definition of logical operators for stabiliser
codes is reviewed in section 2.3.) An example with eight boundary segments is illustrated
in Figure 4.5.3.

While the details of the construction can be adjusted e.g. to remove boundary X-checks
of higher weight within the rough regions, the number of logical qubits was argued in [230]
to be optimised at around k for a tessellation based on k symmetry operations acting on
an initial cell. Conceptually this limit follows from demanding that the distance between
rough regions is minimised by going through the bulk, rather than along the boundary.

Z̄1

X̄1

Z̄2
Z̄3

X̄2 X̄3

Figure 4.5.3: Example with eight boundary segments. Logical string operators running
between rough and smooth boundaries, respectively, are shown.
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If the rough regions can be connected via a shorter distance along the boundary, there
are no logical qubits encoded, and this leads to the optimal division of the boundary into
around 2k (equal sized) regions.

4.5.2 CSS codes for hyperbolic manifolds in d > 2

Here we outline the construction of CSS codes for higher dimensional hyperbolic manifolds,
emphasising the differences relative to two dimensions. In two dimensions the boundary of
the starting graph generated by k reflections of the original cell is topologically a circle, and
the boundary is tessellated by segments. The construction above is based on alternating
rough and smooth segments.

Now let us consider three dimensional hyperbolic space as the simplest prototype for
higher dimensions. Our starting configuration is obtained by iteratively reflecting
polyhedra beginning from a single cell. This starting configuration as above encodes no
qubits: the boundary is topologically a sphere and using the homology as described in
Appendix A.1.3 one can show that no logical qubits are encoded.

While the CSS code approach does not inherently rely on uniformity or regularity,
let us first consider the case of uniform regular tessellations of hyperbolic space. The
two dimensional boundary of the starting configuration will by construction be a regular
monogonal tessellation i.e. all of the cells of the tessellation are one type of regular
polygons. However, the boundary tessellation will not be vertex transitive (isogonal).

One can see the latter immediately from considering cubic tessellations for which the
boundary sphere is tessellated by squares. The only uniform regular isogonal tessellation
of a sphere by squares is by six squares, with three edges meeting at each vertex; this
tessellation is of course associated with the cube itself. Now consider a tessellation of
Euclidean space by cubes, as shown in Figure 4.4.15. Clearly the boundary is topologically
a sphere, tessellated by squares, but there are two types of vertices, of order four and three
respectively, and it is not isogonal. The boundary of the hyperbolic cubic honeycomb is also
not isogonal, but has vertices of order four, three and six. As one reduces the symmetry
of the bulk tessellation, the symmetry of the boundary correspondingly decreases, with
the number of different vertices and the size of the fundamental region increasing.

Figure 4.5.4: Rough and smooth segments of one-dimensional boundary.

For a one-dimensional boundary one can subdivide the boundary in a binary way into
rough and smooth segments, with rough regions separated from each other as shown in
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Figure 4.5.4. For a higher dimensional boundary the vertices in the boundary tessellation
are of order greater than two and such a binary division is not possible.

Let us consider a uniform square tessellation, illustrated in Figure 4.5.5, as a simple
prototype. The simplest generalization of the lower-dimensional construction is to define
distinct operations on each of the four cells in the fundamental region, and repeat these
throughout the tessellation. Just as above, we can define roughing of boundary area
elements through removing qubits and X checks. However, we will need to define two
distinct types of roughing R1 and R2 for diagonally opposite cells, shown in blue and cyan.
The corresponding adjoining smooth regions are also of two distinct types, reflecting the
removal of different X checks on adjoining edges etc. These smooth regions S1 and S2 are
shown in red and magenta. For a square tessellation with 4k2 cells, one would accordingly
obtain ≈ k2 qubits encoded, associated with logical string operators extending in the bulk
between neighbouring regions.

Figure 4.5.5: Square Euclidean tessellation. Rough area elements are shown in blue and
cyan while smooth elements are shown in red and magenta.

Now let us consider how such an encoding would work over the entire spherical
boundary, illustrating with the case of a cubic tessellation of Euclidean space, as shown
in Figure 4.5.6. One can use the construction outlined above to encode logical qubits
associated with vertices of order four. However, there are also vertices of order three (the
corners of the cube projected onto the sphere) and one would need to adjust the
roughing and smoothing at these vertices. As discussed above, cubic tessellations of
hyperbolic space are associated with boundary tessellations in which the vertices are of
order three, four and six. Accordingly one would need to define alternating roughing and
smoothing over the entire fundamental region of the tessellation to construct a consistent
code. We leave the detailed construction for future work, but based on the arguments
above one would expect to be able to encode around k2 qubits starting from a level k
tessellation. Note that constructions of Euclidean surface codes in three dimensions can
be found in works such as [247,248].



126 Chapter 4. Holography, cellulations and error correcting codes

Figure 4.5.6: Cubic tessellation and bounding sphere.

4.5.3 Summary and holographic interpretation

In this section we have discussed CSS codes associated with hyperbolic tessellations.
While logical information is encoded in every cell of a HaPPY type construction, the
logical information in these CSS code constructions is inherently associated with the
boundary of the tessellation. As in the HaPPY approach, we again encounter subtleties
in extending from the two dimensional constructions in the literature to higher
dimensional constructions. In two dimensions one can divide the boundary into rough
and smooth segments, associated with logical Z̄ and X̄ operators respectively. Since the
vertices in the boundary tessellation are of order higher than two in higher dimensions,
one will need to use more types of area elements associating them with distinct logical
operators. The boundary tessellation is not isogonal and the rough/smooth construction
will need to be defined over the fundamental region of the tessellation.

These code constructions are interesting in their own right for quantum information
theory. From the perspective of holography, one could envisage two distinct applications
of these constructions. The first is to take the limit of large k so that the code is associated
with the entire bulk holographic space. The logical string operators running through the
bulk should then have an interpretation in terms of the dual gauge theory, perhaps in
terms of correlations between operators inserted at the boundary locations.

The second application could be in the context of local holography. A level k code
would encode around k2 qubits. One could envisage gluing together different finite k

constructions to cover the full holographic space i.e. using each CSS building block code
as an analogue of the unit cell in the HaPPY construction. Consistent concatenation
of these CSS codes to cover the bulk would require approaches of the type discussed in
the previous section. This approach could be viewed as local holography, in that the
boundary of each block is associated with the encoding of logical information within the
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block. Using local building blocks to cover the full space is a natural first step towards
dynamics: one could envisage that dynamical evolution could change the CSS codes in
each block, reflecting the local changes in curvature through dynamics.

4.6 Conclusions and outlook

The main goal of this section has been to generalise quantum error correction codes to
new classes of holographic geometries. Much of our discussion focuses on hyperbolic
manifolds of dimensions greater than two. We noted at the beginning of the paper that
general classes of Einstein/dilaton theories can be understood in terms of toric reductions
of negative curvature Einstein spaces so our constructions provide the starting point for
analysing these holographic dualities also.

To associate a code with (the spatial section of) a holographic geometry, we discretise
the geometry; associate a graph state to each cell; analyse the properties of the code
corresponding to the graph state and then explore the concatenation between cells. We
begin by exploring the generalisation of the HaPPY construction to dimensions greater
than two, i.e. working with uniform regular tessellations and associated perfect
tensors/AME states. While it is well-known that HaPPY does not give rise to the
required behaviour of entanglement and correlation functions for a 2d CFT [36], many
code constructions are based on adaptations of HaPPY e.g. modifications of the tensors
to be nearly perfect [33, 34]. In two dimensions quasiperiodic boundaries of regular
hyperbolic tilings can on average give correlation function decays in line with those of
CFTs, see [204, 249, 250]. Beginning with HaPPY type constructions therefore seems like
a natural starting point for higher dimensional codes.

We have shown that non-trivial codes based on uniform regular hyperbolic tessellations
can be constructed. However, there are key differences relative to the two-dimensional
construction. Firstly, there are only a finite number of uniform regular tessellations in
H3 and H4, with no uniform regular compact tessellations at all for Hd with d > 5.
Accordingly the number of codes is much more sparse than in two dimensions.

Secondly, we are forced to break the maximal discrete symmetry associated with the
polytope of the tessellation. If we work with AME codes/perfect tensors, the breaking of
the symmetry automatically arises in the mapping between the AME state and the cell,
and follows immediately from the properties of AME states. In the codes constructed
from non-AME states, the graph state apparently respects the discrete symmetry of the
polytope cell, but in concatenating cells one does not preserve transitivity i.e. different
faces/edges are not equivalent. Our constructions very much mirror the constructions of



128 Chapter 4. Holography, cellulations and error correcting codes

2d codes based on block perfect tensors [38], for which there is also no vertex and edge
transitivity.

It would be interesting to establish in future work the performance properties of these
codes, together with the behaviour for entanglement and correlation functions in the dual
theory which they capture. The relative sparsity of AME codes in dimensions higher than
two may be linked with the fact that AME codes do not capture CFT behaviour. It
would be intriguing to explore whether AME behaviour in dimensions higher than two is
parametrically more distant from CFT behaviour than it is in two dimensions i.e. one may
not be able to obtain CFT behaviour from small corrections to perfect tensors as in [33].

In section 4.2 we noted that general classes of non-conformal holographic dualities can
be obtained from reducing hyperbolic spaces on tori and we illustrated this discussion in
section 4.2.1.2 with the example of the reduction of the hyperbolic plane on a circle, which
is relevant in the context of AdS3 and JT gravity. We noted that there are two distinct
ways of dealing with tessellations of toroidally reduced spaces: one can either choose the
tessellation to respect the toroidal symmetry (at the price of imposing by hand equal
area of cells) or one can exploit the discrete symmetry of the hyperbolic tessellation to
make identifications in the toroidal directions. Either way one has, as expected, a regulated
boundary excising the conical deficit in the interior of the space. It would be interesting to
extend the circle reduction discussed in section 4.2.1.2 to more general toroidal reductions
of higher dimensional hyperbolic tessellations, and to explore the properties of the codes
obtained by discrete identifications.

In section 4.5 we have discussed an alternative approach to associating codes to
hyperbolic tessellations, based on the relation between Hasse diagrams of cellulations
and Tanner graphs of CSS codes. In this approach the logical qubits are encoded
through global properties, rather than being associated with each cell. There are several
distinct ways to obtain non-trivial encoding, from including defects in the bulk lattice to
topologically non-trivial identifications.

For codes associated with manifolds with boundary, it is natural to use the approach
of adjusting the boundary tessellation, adding and removing checks and qubits. Here
we discussed the encoding of logical qubits through dividing the boundary into different
sections, with logical operators running between disconnected sections of the boundary.
In two-dimensional cellulations the boundary is one-dimensional and can be divided in
a binary way between rough and smooth regions. In higher dimensions one would need
more complicated constructions, with the number of different types of regions increasing
with the order of the vertices in the boundary tessellation. Leaving aside applications to
holography, our hyperbolic CSS codes would be interesting in their own right and their
properties will be explored further in future work.
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From a holographic perspective, one could envisage two distinct applications of the
hyperbolic CSS codes. In the case that one takes the number of levels of the tessellation
k to be very large, the tessellation could be viewed as being associated with the entire
regulated hyperbolic spatial slice. The logical operators would then be viewed as logical
strings running through the bulk between disconnected regions on the boundary. This
seems somewhat analogous to capturing the correlation between local operators in the
boundary by geodesics running through the bulk. It would be interesting to explore
potential interpretations of the logical strings from the perspective of discrete versions
of the AdS/CFT correspondence [251, 252], as well as connections to the codes in lattice
CFTs explored in [253].

One could also consider gluing together finite k hyperbolic CSS codes, to obtain a
discretisation of hyperbolic space in which each CSS block captures a certain amount of
logical information. This could provide a way to think about local holography with each
extended block capturing logical information, cf each individual cell within the HaPPY
type codes. The concatenation of the blocks would determine the entanglement and
correlation functions structure in the dual field theory.

Throughout this paper we have focused on the spatial slice of (static) holographic
geometries and the code construction uses explicitly the constant negative curvature.
AdS gravity in three dimensions is not dynamical and all gravitational solutions have
constant negative curvature. For AdS gravity in higher dimensions gravity is dynamical
and Einstein solutions generically have non-trivial Riemann curvature. Accordingly, even
without including matter fields, one would expect that the lattice should be such that
dynamics can change it in spatial dimensions higher than two i.e. dynamics should be
able to change from exactly hyperbolic lattice to a lattice with local curvature variations.
This issue would seem to link with the long running attempts to discretise dynamical
gravity in dimensions higher than two, and all the associated challenges that are
encountered. It could also potentially relate to dynamical hyperbolic networks described
by simplicial complexes, see for example [254].

Finally, we note that graphs associated with the hyperbolic plane are used in certain
deep learning algorithms [255–257]. Networks associated with hyperbolic geometry have
various advantages, including reduction in model parameters and over-fitting of data. The
constructions of graphs associated with hyperbolic geometry in this work could be used to
generalise these deep learning algorithms with potential applications in natural language
processing and image classification [257].
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CHAPTER 5

Introduction to gravitational lensing

5.1 Gravitational lensing: the general concepts

The phenomenon described by the deflection of light rays due to the presence of a
gravitational body, is commonly referred to as gravitational lensing. Predicted by
Einstein [39, 45], it is an effective method of testing general relativity using astrophysical
observations. The governing theory was pioneered by [49, 51], providing the necessary
properties of the point mass lens.

The first observation of gravitational lensing was in [54], where the source 0957+561
produced twin images A and B, that were quasi-stellar objects (QSOs) with the same
redshift z = 1.405, separated by 5.7 arcseconds. Following this discovery publications in
both observational and theoretical work erupted and a number of other gravitational lens
systems were observed, most prominently galaxies behind clusters [56, 57] and the first
observation of the Einstein ring [58]. Continuous work from both the theoretical physics
and astrophysics community has helped lensing develop into a very active research area.

In the following section, we describe all of the general concepts that arise in
gravitational lensing, all based in the Schwarzschild regime. For a more detailed
discussion of the broad topic of gravitational lensing, we refer the reader to the
monographs [83,258–261], in particular for microlensing see [84].

133



134 Chapter 5. Introduction to gravitational lensing

5.1.1 Light deflection in gravitational fields

For arbitrary curved spacetimes, describing the propagation of light is perceived to be
rather difficult computationally. As with most observations in cosmology, we assume an
accurate depiction of the universe is one where it is both homogeneous and isotropic, and
as such, its geometry can be well approximated by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric [262–266]. In this cosmological
model, gravitational lensing phenomena arises due to matter inhomogeneities which are
accounted for as local perturbations. We can think about this in the following way: light
propagates through the unperturbed (locally flat, Minkowski) spacetime when
approaching the lens from a particular source before passing the lens and heading back
out to spatial infinity. In the region when this light ray is satisfactorily near the
gravitational lens, this spacetime is weakly perturbed by a gravitational potential Φ of
mass distribution comprised from the lens. Thus, assigning the metric
ηµν = diag(1,−1,−1,−1) to the unperturbed spacetime, the weakly perturbed metric
can be given the line element

ds2 = gµνdx
µdxν =

(︃
1 + 2Φ

c2

)︃
c2dt2 −

(︃
1− 2Φ

c2

)︃
(d #„x )2. (5.1.1)

We have used the notion of ‘weakly’ perturbing the spacetime here. When using this
phrase, one means we have adopted the assumption that the gravitational potential is
significantly smaller than c2, i.e. |Φ|/c2 ≪ 1, and that the velocity of the lens mass
distribution with respect to the cosmological rest frame is also small, i.e. the peculiar
velocity v satisfies v/c≪ 1. From the perspective of astrophysics, this condition is satisfied
by virtually every case we are interested in. For example, the potential in a typical galaxy
cluster satisfies |Φ|/c2 ≲ 10−5, while peculiar velocities are around v ≲ 600kms−1.

Utilising the condition specified by the propagation of light, ds = 0, we can resolve
the line element (5.1.1) to find the effective speed of a ray of light in a gravitational field.
Then we obtain the expression

c′ =
⃓⃓⃓⃓
d #„x

dt

⃓⃓⃓⃓
= c

⌜⃓⃓⎷1 + 2Φ
c2

1− 2Φ
c2
≈ c

(︂
1 + 2Φ

c2

)︂
, (5.1.2)

where, in the final approximation, we have performed a first-order Taylor expansion.
Following geometrical optics, we can characterise the phenomena describing a change in
velocity of a light ray propagating through space by introducing an effective index of
refraction n. Defining it in the most conventional manner, n = c/c′, the effective index of
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refraction for a weak gravitational field is

n =
(︂
1 + 2Φ

c2

)︂−1
≈ 1− 2Φ

c2 . (5.1.3)

Of course by construction, the Newtonian gravitational potential is taken to be negative
in order to normalise it such that it vanishes at infinity, Φ ≤ 0, and so the effective index
of refraction exceeds unity, n > 1, thus requiring that the effective light speed c′ is smaller
than the vacuum speed of light c.

One may now directly solve for an equation describing the behaviour of paths of light
by using Fermat’s principle [267,268]. The principle states that any path, #„x (l), connecting
a fixed starting point A and a fixed end point B, will only be a light path if the following
variation vanishes;

δτ = δ

ˆ B

A
n[ #„x (l)]dl = 0, (5.1.4)

where τ is the optical path of an observer. Notice we are presented with a standard
variational problem so achieving our goal amounts to solving for the Euler-Lagrange
equations of (5.1.4). Parametrising the path using an appropriate affine parameter λ and
expressing the integral in terms of the Lagrangian L( #„ẋ , #„x , λ), the Euler-Lagrange
equations reduce to

d

dλ
(n #„e )− #„∇n = 0 ⇒ n #„ė = #„∇n− #„e ( #„∇n · #„e ) = #„∇⊥n, (5.1.5)

where we have used the standard vector notation #„e ≡ #„ẋ to describe the tangent vector #„ẋ ≡
d #„x/dλ. The second equality arises by realising the entire middle expression corresponds
to the gradient of n perpendicular to the path of light, #„∇⊥n. Constraining ourselves
according to |Φ|/c2 ≪ 1,

#„ė ≈ − 2
c2

#„∇⊥Φ. (5.1.6)

The change in the tangent vector #„e from the incident ray to the outgoing ray must then
characterise the angle of deflection. Hence, we can more formally define the deflection
angle #„α̂ to be the integral

#„α̂ = −
ˆ λB

λA

#„ė dλ = 2
c2

ˆ λB

λA

#„∇⊥Φ dλ. (5.1.7)

Of course, explicitly computing this integral is highly non-trivial since one is required to
integrate along the entire light path. However, the deflection angle is typically very small
for cases of astrophysical interest, as may be expected from the approximation |Φ|/c2 ≪ 1.
Hence as an approximation, it is suitably justifiable to integrate over the unperturbed light
ray (thus integrating over a straight line), akin to the Born approximation [269] used in
scattering theory within the realm of quantum mechanics. This is most clearly illustrated
using an example.
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Consider a light ray propagating with alignment parallel to the z-axis (i.e. light rays
beginning at + #„e z passing through a gravitational lens at z = 0) before encountering some
gravitational lens with impact parameter ξ. The total deflection angle of the light ray can
be found to be

#„

α̂(ξ) = 2
c2

ˆ +∞

−∞

#„∇⊥Φ dz. (5.1.8)

Furthermore, suppose this lens is a point mass, and so the Newtonian gravitational
potential can be expressed as

Φ(ξ, z) = − GM

(ξ2 + z2)1/2 , (5.1.9)

where the impact parameter is given by ξ =
√︁
x2 + y2. Then, the unperturbed light path

along the z direction is

#„∇⊥Φ(ξ, z) =
(︄
∂xΦ
∂yΦ

)︄
= GM

(ξ2 + z2)3/2

(︄
x

y

)︄
= GM

#„

ξ

(ξ2 + z2)3/2 . (5.1.10)

Then (5.1.8) takes the form,

#„

α̂(ξ) = 2GM #„

ξ

c2

ˆ +∞

−∞

dz

(ξ2 + z2)3/2 , (5.1.11)

which can be directly solved to give

#„

α̂( #„

ξ ) = 4GM #„

ξ

c2ξ2 . (5.1.12)

Thus taking the norm of (5.1.12) and recalling that the Schwarzschild radius of a point
mass lens is given by Rs = 2GM/c2,

| #„α̂(ξ)| = 4GM
c2ξ

= 2Rs

ξ
. (5.1.13)

For example, as a light ray passes by the surface of the sun, the angle of deflection is,

α̂⊙ = 4GM⊙
c2ξ⊙

≃ 4× 6.674× 10−11m3kg−1s−2 × 1.989× 1030kg
(2.998× 108ms−1)2 × 6.957× 108m ≃ 8.492× 10−6rad.

(5.1.14)
We close this section by briefly discussing the Shapiro delay [270]. As we have already
mentioned, under the influence of a gravitational field, the speed at which light propagates
is reduced, c′ = c/n. Thus, there must be a delay in the arrival time of a light ray in the
gravitational field relative to light rays propagating freely in the vacuum. This delay can
explicitly be quantified to be

∆t =
ˆ
dl

c′ −
ˆ
dl

c
= 1
c

ˆ
(n− 1) dl = − 2

c3

ˆ
Φ dl, (5.1.15)
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performing the integration over the light path between the observer and the source.

5.1.2 The general lens and thin-screen approximation

Since the distance between the observer and and the lens as well as the distance between
the source and the lens are both significantly larger than the distance scale at which
the light deflection occurs, we deem the gravitational lens itself as a geometrically-thin
lens, consisting of a particularly small segment of the light path. With such lenses, one
has substantial evidence to use the thin-screen approximation: one can project the mass
distribution of the lens along the line of sight onto the so-called lens plane. The lens plane
is a plane orthogonal to the line of sight intercepting the ‘centre’ of the lens, characterised
by the surface mass density distribution Σ( #„

ξ ) as

Σ( #„

ξ ) =
ˆ
ρ( #„

ξ , z) dz, (5.1.16)

where #„

ξ is a two-dimensional vector in the lens plane. Now as the deflection angle #„

α̂(ξ)
as given in (5.1.13) has linear dependence on the mass M , deflection angles of an array of
point masses can linearly be superposed. Thus suppose one has N point masses, sparsely
distributed on a plane, the deflection angle #„

α̂ at position #„

ξ may be given by

#„

α̂( #„

ξ ) =
N∑︂

i=1

#„

α̂ i(
#„

ξ − #„

ξ i) =
N∑︂

i=1

4GMi

c2

#„

ξ − #„

ξ i

| #„ξ − #„

ξ i|2
, (5.1.17)

where #„

ξ i describes the position in the lens plane and Mi the masses of the N point masses,
while #„

ξ is the position where the light ray intersects the lens plane.

Now, should the thin-screen approximation hold, we may sum the contribution of all
the mass elements in the lens plane, defining dM = Σ( #„

ξ )d2ξ, replacing the sum in (5.1.17)
with an integral, or in other words, taking the continuum limit in (5.1.17):

#„

α̂( #„

ξ ) = 4G
c2

ˆ
R2
d2ξ′ Σ( #„

ξ ′)
#„

ξ − #„

ξ i

| #„ξ − #„

ξ i|2
. (5.1.18)

Before moving on, we reiterate that this result is only valid when we consider lensing in
the presence of weak gravitational fields and so deflections must be small. While these
conditions are almost always satisfied for most astrophysical phenomena, certain situations
cannot be described by this analysis. For example, the propagation of light in close vicinity
to regions of extremely strong gravity, such as black holes, cannot be modelled using these
expressions.
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5.1.3 Lens geometry and lens equations

The typical gravitational lensing geometry is illustrated in Figure 5.1.1. The optical axis
is defined such that it passes through the observer and is perpendicular to both the lens
and source planes. The source S at redshift zs emits a null ray that is deflected by an
angle #„

α̂ by the gravitational lens L at redshift zl, before reaching the observer at O. The
distance between the passing light ray and the lens L is given by the impact parameter #„

ξ .
We assume the deflector has mass distribution M and is separated from the observer with
angular distance Dd. Similarly, we denote the distance between the lens and the source
as Dds. The true angular separation between the lens and the source is given by #„

β and
the distance between them is Ds, with the distance between the source and the optical
axis quantified by #„η = #„

βDs. Finally, the angle between the optical axis and the image
position I is denoted #„

θ .

Ds

Dd

Dds

Lens Plane

ξ⃗

Source Plane

η⃗

O

S
I

β
α

θ

α̂

Figure 5.1.1: The gravitational lensing geometry for a spherically-symmetric spacetime
(e.g. Schwarzschild). A point mass lens is situated a distance Dd from observer O. The
null ray emitted at the source S travels along the solid black line, passing a lens with
impact parameter ξ and is subject to deflection α̂. The source is positioned at distance Ds

from O, with angular separation β from the optical axis. The image seen by the observer
is positioned at angular separation θ from the optical axis with θ = ξ/Dd.

Due to the deflection of the null ray, the observer receives the light as if the image
located at angle #„

θ emitted it. Provided that #„

β , #„

θ and #„

α̂ are all suitably small, one
can form a relation solely constructed from the geometry (as shown in Figure 5.1.1 for a
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spherically-symmetric lens),
Ds

#„

β +Dds
#„

α̂ = Ds
#„

θ , (5.1.19)

noting that #„

θ = #„

ξ /Dd. It is often convenient to also define the reduced deflection angle,

#„α = Dds

Ds

#„

α̂ . (5.1.20)

Thus, these two expression can easily be combined to provide a rather simple yet extremely
interesting relation between the source and image positions:

#„

β = #„

θ − #„α( #„

ξ ). (5.1.21)

This equation is commonly referred to as the lens (ray-tracing) equation. While this
equation may look exceptionally straightforward, it does indeed contain some subtleties.
In order for (5.1.21) to hold for general curved spacetimes, one must consider angular-
diameter distances. When using a Euclidean background metric, it is of course trivial
for the distances to satisfy Ds = Dd + Dds. However, since one is considering angular-
diameter distances, there is no requirement that distances here are additive. Thus in the
most general sense, Ds ̸= Dd +Dds.

Since the impact parameter satisfies #„

ξ = Dd
#„

θ by definition, one can substitute (5.1.13)
into (5.1.21), giving the expression

#„

β = #„

θ − 2Rs
Dds

DdDs

#„

θ

| #„θ |2
. (5.1.22)

This is another common form of the lens (ray-tracing) equation for a Schwarzschild lens.
Due to the spherical symmetry that emerges from the Schwarzschild geometry, we can
always switch the coordinate origin to be at the centre of this symmetry and as such,
reduce the deflection of light to be modelled in one-dimension. Consequently, we will now
drop the vector notation, reducing objects to their one-dimensional scalar counterparts.

Further interesting symmetries arise in (5.1.22) in the special case β = 0. This
corresponds to the particular situation where the observer, the source and the lens are
co-linear (when the source lies directly behind the lens) and the entire configuration is
rotationally symmetric about the optical axis. The result is a ring-like image whose
angular radius is named the Einstein radius.

For the Schwarzschild lens, setting β = 0 in (5.1.22), one therefore defines the Einstein
radius as

θE =
[︃
2Rs

Dds

DdDs

]︃1/2
. (5.1.23)
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The Einstein radius may be naturally thought of as an angular scale for gravitational
lensing. Returning to (5.1.22), one can see that it can be reformulated conveniently in
terms of the Einstein radius:

β = θ − θ2
E

θ
, (5.1.24)

where we have adopted the notation β = | #„β | and θ = | #„θ |. Performing a simple re-scaling
of both the angular separation between the lens and the source, β, and the angular position
of the image, θ, with respect to θE ,

β̃ = β

θE
, θ̃ = θ

θE
. (5.1.25)

This leads to the simplest and most attractive form of the lens equation,

β̃ = θ̃ − 1
θ̃
. (5.1.26)

Solving this equation for the image positions, θ, leads us to the conclusion that one will
always obtain two images for any isolated background source. We can characterise the
positions of these two images from the two possible solutions

θ̃± = 1
2

(︃
β̃ ±

√︂
β̃

2 + 4
)︃
. (5.1.27)

The images lie either side of the source with the first, θ̃−, lying in the interior of the
Einstein radius while the other, θ+, lies in the exterior of the Einstein radius (|θ̃−| < 1
and θ̃+ > 1). As the angular distance to the source β increases, the outer image, θ+,
will approach the true position of the source, growing in magnification towards unity.
On the contrary, during this process, the inner image, θ−, will become increasingly faint,
approaching the lens.

5.1.4 Magnification

During the gravitational lensing process, image distortion occurs due to bundles of the null
rays being differentially deflected. Here surface brightness is preserved and so the surface
brightness I of a gravitationally lensed image exactly matches the surface brightness of
the unlensed source. Consequently, the total flux received from this image is only altered
according to the solid angle subtended by the image in the sky (since it is the product
of the solid angle and the surface brightness). Then, defining the magnification µ as the
ratio between the image flux and the flux of an unlensed source,

µ = ∆w
(∆w)s

, (5.1.28)
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O

L

AS

AI

Figure 5.1.2: Solid angle distortion due to gravitational lensing. At the observer O, the
solid angle (∆w)s is subtended by the area spanned by the source AS in the absence of
lensing. Hence, (∆w)s = AS/D

2
s . Introducing the gravitational lens, the solid angle of

the image differs from (∆w)s and is described by ∆w = AI/D
2
d. As the surface brightness

I is conserved during the light deflection process, the magnification of the total flux is
proportional to ∆w.

where ∆w and (∆w)s are the solid angles of the image and source respectively. This
situation is described diagrammatically in figure 5.1.2. In fact, this distortion of the
images can be expressed as the determinant of the Jacobian matrix of the form

(∆w)s

∆w = AS

AI

(︃
Dd

Ds

)︃2
= |detM|, M≡ ∂

#„

β

∂
#„

θ
. (5.1.29)

such that #„

β and #„

θ are the corresponding source and image positions. Therefore one
can quantify the magnification factor µ as the inverse of the determinant of the Jacobian
matrix M

µ = 1
detM . (5.1.30)

Returning our focus to the Schwarzschild lens, one can explicitly calculate µ. For any
axially symmetric lens, the determinant of the Jacobian A can always be described as

detM = β̃

θ̃

∂β̃

∂θ̃
=
(︃

1− 1
θ̃

2

)︃(︃
1 + 1

θ̃
2

)︃
= 1−

(︃1
θ̃

)︃4
. (5.1.31)
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Hence the magnification factor of the two images given in (5.1.27) is given by

µ± =
[︄
1−

(︃ 1
θ̃±

)︃4]︄−1

= β̃
2 + 2

2β̃
√︂
β̃

2 + 4
± 1

2 . (5.1.32)

The magnification of the inner image can be shown to always be negative, µ− < 0, since
θ− < θE . In this instance we say this image has negative parity with respect to the source,
i.e. an observer will see a mirror-inverted image of the original source. A complication
arises in the limit of β → 0, resulting in a divergence in the magnification. Fortunately,
this ‘infinite magnification problem’ can be resolved when considering extended sources,
which always return finite magnifications, thus in reality the source is not actually infinitely
bright.

The total magnification of flux measurable for the point mass lens µp is the sum of the
absolute values of the inner and outer image magnifications,

µp = |µ+|+ |µ−| =
β̃

2 + 2

β̃

√︂
β̃

2 + 4
. (5.1.33)

5.1.5 Microlensing and occultation

A simple model used to describe a specific class of gravitational lensing phenomena where
the relative size of the lens is much smaller than that of the scale of the lensing system is
known as microlensing. This arises when the multiple images of the source are in too close
of a proximity to one another in the sky to be resolved by the observer. The lensing can
still be detected however, since these ‘micro-images’ still appear as a single celestial object
undergoing an an apparent increase in brightness. Thus one can classify a microlensing
event as the apparent increase in magnification of a source object that peaks at some
maximum before symmetrically returning back to normal over a given time period, that
consists of sufficiently small lens masses and sufficiently large separations between source,
lens and observer. Usually Einstein radii considered here are smaller than a milli-arcsecond
and masses lie in the range 10−6 ≤M/M⊙ ≤ 106.

The most prominent application of microlensing was first proposed by Paczynski [55],
suggesting observing background stars in the Large Magellanic Cloud (LMC), a satellite
galaxy to the Milky Way, as a means to search for dark matter. The idea was that one
could detect compact objects distributed in the Galactic halo and thus the presence of dark
matter (evidenced to exist due rotating curves of spiral galaxies [271–273] etc.), through
microlensing - since this instance of gravitational lensing is only dependent up the mass of
the lens. These dark baryonic objects of approximately solar mass are appropriately named
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MACHOS (Massive Astrophysical Compact Halo Objects) and are traditionally very faint
or invisible objects. Typical MACHO candidates include brown dwarfs (< 0.1M⊙), old
white dwarfs (∼ 0.5M⊙), neutron stars (∼ 1.5M⊙) and black holes (> 2M⊙). Many
different groups such as MACHO, EROS and OGLE continued to search the LMC, Small
Magellanic Cloud (SMC) and the Galactic bulge and have produced numerous papers
recording their findings [274–278].

Though it is now widely believed that MACHOs are not true dark matter candidates
due to observations of cosmic microwave background radiation and
nucleosynthesis [279, 280] and further theoretical arguments [281, 282], microlensing has
developed into an impressive tool with a diverse range of astrophysical
applications [283–286]. The field has indeed progressed immensely since the first
discoveries of microlensing events in the seminal works [274, 278]. As a matter of fact,
according to [277, 287], it is suggested approximately 2,000 microlensing events are
discovered on an annual basis.

Closely related to the concept of microlensing is the idea of occultation; an event where
the source is hidden by the lens as it passes between the source and the observer. In fact,
microlensing and occultation are just two different limits of the same phenomena when
one body passes in front of another [288]. While occultation of the inner image does
indeed occur fairly often in galactical microlensing, RL ≪ RE , these effects are usually
remarkably faint. However, inclusion of both microlensing and occultation has shown
to be of grave importance when considering the case where the order of magnitude of
the Einstein radius is similar to that of the radius of the lensing body, RE ∼ RL. These
effects are often present when considering lensing by giant stars or when studying eclipsing
binaries consisting of compact objects [289,290]. More specifically, defining the size of the
lens star scaled to that of the Einstein radius as rL = RL/RE , where RE = θEDd is the
Einstein radius, we find there are two possible cases for occultation to occur.

Firstly, suppose the Einstein radius is greater than the radius of the lens star, rL < 1.
Should the inner image satisfy the inequality, |θ−| < rL, then it will be occulted. As a
consequence of (5.1.26), rewriting in terms of the source this inequality is β > r−1

L − rL,
so the inner image is occulted when the distance between the source and the lens is large
but unoccults as the source approaches the lens. Secondly, consider the case where the
radius of the lens star exceeds the Einstein radius, rL > 1. Now, the outer image will be
occulted for θ+ < rL and the inner image will always be occulted. This is the case for a
source close to the lens star, and correspondingly β < rL−r−1

L . We display this behaviour
graphically in figure 5.1.3.
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(a) Occultation plot for M = 2.4× 106M⊙ and binary separation rs = 0.023 AU.

(b) Occultation plot for M = 2.5× 106M⊙ and binary separation rs = 0.023 AU.

Figure 5.1.3: Microlensing and occultation plots for the Schwarzschild lens with fixed
binary separation (astrophysical separation between the source and the lens) rs = 0.023
AU for various different masses, where µtot is defined as in (5.1.34). For occultation
to occur for separations of this order, the lens mass must be of order 106M⊙; i.e.
approximately the mass of Sagittarius A*, the supermassive black hole situated at the
Galactic Centre of the Milky Way.

In order to include the features displayed by occultation, we adjust the definition of
magnification to represent this phenomena. Then, the total magnification for a point
source microlensing event, including occultation effects is

µtot = µ+Θ(rLβ − r2
L + 1) + µ−Θ(1− r2

L − rLβ), (5.1.34)
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where we have introduced the Heaviside step function

Θ(x) =

⎧⎨⎩1, x > 0,

0, x ≤ 0,
(5.1.35)

and µ± are defined as in (5.1.32). Note that in the plots presented in figure 5.1.3, we have
associated the quantity (t − t0)/tE with the x-axis, as is often the case in astrophysics
literature. Thus we are illustrating the magnification at different instances in time t as
the microlensing event unfolds. We define the instance t0 to be the time at which perfect
alignment occurs, noting that in the Schwarzschild regime, this is equivalent to the instant
at which magnification is maximised. The quantity tE , often referred to as the Einstein
crossing time, corresponds to the time the lens requires to cross the Einstein radius RE

(i.e. tE ≡ RE/vt where vt is the velocity of the lens), thus it provides a natural time scale
for the duration of the microlensing event.

5.2 General framework in the Kerr geometry

All the discussion presented so far in this section assumes the gravitational lens is
approximated by Schwarzschild. While this may be an appropriate model for some
celestial bodies, there are many bodies possessing larger spin parameters, such as
neutron stars and black holes, where a full extension to a Kerr background may be
needed for accurate predictions. It was Carter, [85], who first shed light on the behaviour
of null geodesics in Kerr spacetime, by illustrating the separability of the
Hamilton-Jacobi equation and showing the existence of another constant of motion, the
Carter constant. The parameter space was initially explored in [86] and numerous
studies followed, as summarised in the detailed monograph [87].

The null geodesic equations of motion were first resolved in the weak deflection limit
in [88] up to and including second order corrections in M/ξ and a/ξ where M and a are
the mass and the spin of the lens respectively and ξ is the impact parameter. Light rays
passing outside a spinning star were considered in [291] using the framework of the Lense-
Thirring metric. The paper that inspires much of what follows, [2], succeeded in resolving
the null geodesic equations up to third order corrections, following the same procedure as
in [88].

While weak gravitational lensing has produced many key results of general relativity,
much effort has also been exerted trying to understand the strong gravitational lensing
regime. In order to solve for relativistic images [292], this regime is necessary, hence one
cannot make approximations and must use the full Kerr null geodesic equations [85, 86].
Strong lensing was first studied analytically in a spherically symmetric and static spacetime
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in [293, 294]. Extending to the case of Kerr, the deflection angle of light rays in the
equatorial plane were found explicitly in [295], and there have been a number of papers
[296–298] considering quasi-equatorial rays, though the approximations used break down
when observers move far away from the equatorial plane.

The phenomenology of strong field gravitational lensing by a Kerr black hole and a
calculation for the positions and magnification of all images, given an observer and source
located far away from the black hole, with arbitrary inclinations, is a harder problem.
Accordingly, several numerical investigations attempted to model this phenomena [89,
299–301], most notably [89], where a general procedure to compute image positions and
their corresponding magnifications was developed for a distant source and observer, at
arbitrary inclinations.

In recent years, significant attention has been given to gravitational lensing in the
context of Kerr black holes due to the incredible advancement of observational facilities
[90–92, 302, 303], further elevated by a substantial increase in interest due to the famous
Event Horizon Telescope (EHT) observations [7]. The full set of solutions for the angular
path integrals was expressed in [90] while the complete, fully analytic solutions of all path
integrals in the Kerr exterior were consequently found in [91] before being nicely placed
within the context of gravitational lensing in [92].

In this section, we aim to perform an overview of gravitational lensing for rotating
celestial bodies in the most general possible sense, following [91, 92]. We focus our
discussion on the geodesic equations (which form an analogue of the standard lens
equations), the geometrical construction describing this phenomena and the deeper
meaning behind the Carter constant. For an even deeper review, we highly recommend
the comprehensive monograph [87].

5.2.1 Geodesic equations

As we have already stated, gravitational lensing in the Kerr background is significantly
more complicated (than in Schwarzschild background), since the addition of the celestial
body’s rotation breaks much of the symmetry utilised for the Schwarzschild case. Before
discussing the geometrical implications that arise when extending to Kerr lensing, we will
begin our discussion by analysing the null geodesic equations in Kerr spacetime.
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The metric of Kerr spacetime can be expressed in Boyer-Lindquist coordinates
(t, r, θ, ϕ), with line element

ds2 = −∆
Σ (dt− a sin2 θdϕ)2 + Σ

∆dr2 + Σdθ2 + sin2 θ

Σ
[︁(︁
r2 + a2)︁dϕ− adt]︁2, (5.2.1)

where we have used natural units, G = c = 1, for simplicity. For the sake of brevity, we
have also introduced the length scales

Σ(r, θ) = r2 + a2 cos θ, ∆(r) = r2 − 2Mr + a2. (5.2.2)

This metric describes the geometry of a spacetime surrounding a celestial object of mass
M that rotates with angular momentum J = Ma, such that one restricts 0 < a < M (in
order to avoid the case of the naked singularity at a = 0 and ensure the object does not
spin faster than the speed of light). In the case of a black hole, the inner/outer horizons
arise from the roots of ∆(r),

r± = M ±
√︁
M2 − a2. (5.2.3)

Geodesic motion in the Kerr geometry is entirely characterised by three conserved
quantities. The first two of these quantities, interpreted as the total energy of the free
particle at infinity and the angular momentum of the free particle parallel to the axis of
symmetry are associated with the existence of two Killing vectors ∂t and ∂ϕ. These Killing
vectors, admitted by the metric, generate time-translational symmetry and axisymmetry
isometries respectively. Thus,

E = pµ∂
µ
t = −pt, Lz = pµ∂

µ
ϕ = pϕ, (5.2.4)

where pµ denotes the four-momentum of a free particle. Particularly, in our case of interest
when studying null geodesics, this free particle is of course a photon, hence

gµνpµpν = 0. (5.2.5)

The third constant of motion is more elusive and its physical interpretation is much less
well understood. This is further discussed in section 5.2.4. Its existence arises due to
there being a third isometry generated by the Kerr metric; an irreducible symmetric
Killing tensor

Kµν = −Jγ
µJγµ, J = a cos θ dr∧(dt−a sin2 θ dϕ)+r sin θ dθ∧[(r2+a2) dϕ−a dt]. (5.2.6)

The third conserved quantity, known as the Carter constant, is therefore given by

k = Kµνpµpν = p2
θ +

(︃
pϕ

sin θ + a pt sin θ
)︃2
, (5.2.7)
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which can clearly be seen to be manifestly positive. This final conserved quantity was
initially shown to exist in [85], as a consequence of the separability of the Hamilton-
Jacobi equation. For our purposes, it is useful to work with a slightly different separation
constant, sometimes referred to in the literature as the Carter integral:

Q = k − (Lz − aE)2 = p2
θ − a2p2

t cos2 θ + p2
ϕ cot2 θ. (5.2.8)

In fact, in order to minimise the number of parameters, it is convenient to rescale the
null ray’s angular momentum, Lz, about the spin axis and the Carter integral, Q, by the
energy at infinity E in the following manner:

λ = Lz

E
, η = Q

E2 . (5.2.9)

These new parameters λ and η play an important role when looking specifically at the
geometrical construction of gravitational lensing in Kerr spacetime. As a matter of fact,
they replace the single impact parameter ξ that appears in the Schwarzschild case, but we
will save this discussion for section 5.2.3.

One can now invert the above equations for the constants of motion {E,Lz, k} and
explicitly form an expression describing a the instantaneous four-momentum p = pµdx

µ of
particle following a null geodesic in the Kerr geometry. Then, by the appropriate choice of
affine parameter for null geodesics, the four-momentum pµ describing the trajectory of the
null geodesics in the Kerr spacetime can be constructed to give the Carter equations [85]

Σ
E
pr = ±r

√︂
R(r), (5.2.10)

Σ
E
pθ = ±θ

√︂
Θ(θ), (5.2.11)

Σ
E
pϕ = a

∆(r)(r2 + a2 − aλ) + λ

sin2 θ
− a, (5.2.12)

Σ
E
pt = r2 + a2

∆(r) (r2 + a2 − aλ) + a(λ− a sin2 θ), (5.2.13)

where the signs ±r and ±θ indicate the signs of the four momenta pr and pθ respectively.
Here we have introduced the radial and angular potentials

R(r) = (r2 + a2 − aλ)2 −∆(r)
[︁
η + (λ− a)2]︁, (5.2.14)

Θ(θ) = η + a2 cos2 θ − λ2 cot2 θ, (5.2.15)

quantities that are defined such that their zeros correspond to the turning points of the
motion in the r and θ directions.
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These geodesic equations can be recast as integrals of motion, where one integrates
along the trajectory connecting two spacetime events, xµ

s = (ts, rs, θs, ϕs) and
xµ

o = (to, ro, θo, ϕo), such that the subscripts s and i indicate the event relates to the
source or observer respectively. In integral form, the geodesic equations are

Ir = Gθ, (5.2.16)

∆ϕ := ϕo − ϕs = Iϕ + λGϕ, (5.2.17)

∆t := to − ts = It + a2Gt, (5.2.18)

where
Ir =

 ro

rs

dr

±r

√︁
R(r)

, (5.2.19)

Gθ =
 θo

θs

dθ

±θ

√︁
Θ(θ)

, (5.2.20)

Iϕ =
 ro

rs

a(2Mr − aλ)
±r∆(r)

√︁
R(r)

dr, (5.2.21)

Gϕ =
 θo

θs

csc2 θ

±θ

√︁
Θ(θ)

dθ, (5.2.22)

It =
 ro

rs

r2∆(r) + 2Mr(r2 + a2 − aλ)
±r

√︁
R(r)

dr, (5.2.23)

Gt =
 θo

θs

cos2 θ

±θ

√︁
Θ(θ)

dθ. (5.2.24)

The symbol
ffl

is used to specify that these integrals should be understood as path
integrals along the trajectory of the photon. While only a single angular turning point
will be encountered in the weak deflection limit, the photon may encounter several
angular inversion points in the strong deflection limit, giving rise to numerous relativistic
images [292,293,296].

Much work [90, 91] has gone into finding and classifying the roots of the radial and
angular potentials, R(r) and Θ(θ), especially finding what the allowed regions for the null
geodesics are in the (r, θ)-plane. Gravitational lensing is just one of the possible scenarios
that arise when analysing the null geodesic equations and as such, is constrained to specific
regions in the (λ, η) parameter space.

Once an allowed region has been established, one can find a real, smooth antiderivative
for each integral Gi or Ii over this range in r or θ. The nice property of these antiderivatives
is that they all reduce to manifestly real Legendre elliptic form or, in other words, they
can be described using incomplete elliptic integrals F (φ | k2), E(φ | k2) and Π(n;φ | k2).
These elliptic integrals become complete in the case φ = π/2, and these are denoted by
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K(k2) = F (π/2 | k2), E(k2) = E(π/2 | k2) and Π(n; k2) = Π(n;π/2 | k2). Further details
on elliptic integrals, including their formal definitions, can be found in Appendix B.1.1.
To stay consistent, we will use calligraphic symbols to indicate antiderivatives, choosing
the positive sign in the integrand.

5.2.1.1 Angular integrals

When analysing the potential, Θ(θ), for turning points in the θ-plane and the angular
integrals, it is essential to specify which region of conserved quantity space one is working
in, since the behaviour of the angular integrals differs in each region. Assuming one has
0 < θ < π, thus avoiding spherical coordinate system singularities, and setting u = cos2 θ,
the roots u± for null geodesics can be found from setting Θ(θ) = 0, giving

u± = ∆θ ±
√︃

∆2
θ + η

a2 , ∆θ = 1
2

(︃
1− η + λ2

a2

)︃
. (5.2.25)

Hence in terms of θ, the four roots of Θ(θ) are given by arccos(±√u±),

θ1 = arccos(√u+), (5.2.26)

θ2 = arccos(√u−), (5.2.27)

θ3 = arccos(−√u−), (5.2.28)

θ4 = arccos(−√u+), (5.2.29)

coinciding only when u+ = u− or if one of the sets of roots is null (i.e u+ = 0 or u− = 0).
We can use these conditions to divide the (λ, η)-plane into various regions giving a clear
structure to the parameter space. Within each region, the number of real roots of the
angular potential and the sign of the potential on each side of them is fixed.

The resulting structure reveals a large portion of parameter space is forbidden, and
motion is only allowed when u+ > 0 and u− < 1 giving a lower bound for η:

η ≥

⎧⎨⎩0 for |λ| ≥ a,

−(|λ| − a)2 for |λ| ≤ a.
(5.2.30)

There are now two qualitatively different regions within the allowed parameter space
describing the oscillatory motion:

A. Ordinary geodesics (η > 0): Oscillatory motion between two real turning points,
θ− = θ1 ∈ (0, π/2) and θ+ = θ4 ∈ (π/2, π), crossing the equatorial plane each
libration.
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B. Vortical geodesics (η < 0): Vortical motion between two real turning points that
never crosses the equatorial plane, 0 < θ− < θ+ < π/2 or π/2 < θ+ < θ− < π,
defining two distinct types of motion. Either (θ−, θ+) = (θ1, θ2) and the geodesics
are confined to a cone lying entirely in the northern hemisphere. Alternatively,
(θ+, θ−) = (θ3, θ4) and the geodesics are similarly confined in the southern
hemisphere.

Here we quickly discuss the interpretation of the limiting case η = 0. If there are no
turning points, this simply represents equatorial orbits corresponding to a limit of type
A motion. If however, one allows non-equatorial turning points, a limit of type B motion
is achieved, corresponding to the cone of oscillation reaching the equatorial plane (i.e.
θ2 → π/2 or similarly θ3 → π/2), developing a nonintegrable singularity for the integrals,
thus the motion can only have a single libration1.

Note, that for the purposes of gravitational lensing, one restricts to ordinary geodesics
(η > 0). While the case for η < 0, corresponding to vortical motion, can also be analysed
[91], it can be shown that excluding these geodesics only removes a small part of the
gravitational lensing region, in a region that is usually dark (the region in the centre of
the observer’s screen) [92].

The turning points θ± for null geodesics satisfying η > 0 are found from setting Θ(θ) =
0, giving

θ± = arccos(∓√u+) (5.2.31)

where u+ is defined as in (5.2.25). As η > 0 corresponds to type A motion, these turning
points satisfy θ− = θ1 ∈ (0, π/2) and θ+ = θ4 ∈ (π/2, π). Furthermore, the equator acts as
a line of symmetry so θ+ = π− θ−. Thus one is interested in solving the angular integrals
(5.2.20, 5.2.22), in the allowed region satisfying u− < 0 ≤ cos2 θ ≤ u+ < 1.

Now, as u+/u− is negative, one can find the antiderivatives of the integrals of motion
by unpacking the path integral as described in [91] by

Gi = mĜi ±o Go
i ∓s Gs

i . (5.2.32)

Here Ĝi indicates value of the corresponding integral Gi over one half-libration,

Ĝθ =
ˆ θ+

θ−

dθ√︁
Θ(θ)

= 2√︁
−u−a2K

(︂u+
u−

)︂
, (5.2.33)

Ĝϕ =
ˆ θ+

θ−

cosec2θ√︁
Θ(θ)

dθ = 2√︁
−u−a2 Π

(︂
u+
⃓⃓⃓u+
u−

)︂
, (5.2.34)

1We use the term libration throughout this work to refer to an oscillation between two turning points
θ±.
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Ĝt =
ˆ θ+

θ−

cos2 θ√︁
Θ(θ)

dθ = − 4u+√︁
−u−a2E

′
(︂u+
u−

)︂
, (5.2.35)

and m represents the number of angular turning points encountered along the trajectory.
The antiderivatives Gi are given by

Gθ = − 1
2a

ˆ uj

0

du√︁
u(u+ − u)(u− u−)

= − 1
a
√−u−

F

(︃
arcsin

(︃ cos θ
√
u+

)︃⃓⃓⃓⃓
u+
u−

)︃
, (5.2.36)

Gϕ = − 1
2a

ˆ uj

0

du

(1− u)
√︁
u(u+ − u)(u− u−)

= − 1
a
√−u−

Π
(︃
u+; arcsin

(︃ cos θ
√
u+

)︃⃓⃓⃓⃓
u+
u−

)︃
,

(5.2.37)

Gt = − 1
2a

ˆ uj

0

u du√︁
u(u+ − u)(u− u−)

= 2u+
a
√−u−

E′
(︃

arcsin
(︃ cos θ
√
u+

)︃⃓⃓⃓⃓
u+
u−

)︃
, (5.2.38)

where
E′(φ|k2) := ∂k2E(φ|k2) = E(φ|k2)− F (φ|k2)

2k2 (5.2.39)

and we have used the substitution u = u+t
2 to ensure positivity and realness of each

integral. The signs ±i denote the signs of four momenta pθ
i at either the source or observer

point (i = s and i = o respectively). One should note that since sign(pθ) alters after every
turning point, these signs can be related by the constraint

±s = ±o(−1)m. (5.2.40)

So, the full set of angular path integrals for η > 0 can be expressed in terms of elliptic
integrals [90,91]:

Gθ = 1
a
√−u−

[︃
2mK

(︃
u+
u−

)︃
±s F

(︃
Ψ+

s

⃓⃓⃓⃓
u+
u−

)︃
∓o F

(︃
Ψ+

o

⃓⃓⃓⃓
u+
u−

)︃]︃
, (5.2.41)

Gϕ = 1
a
√−u−

[︃
2mΠ

(︃
u+

⃓⃓⃓⃓
u+
u−

)︃
±s Π

(︃
u+; Ψ+

s

⃓⃓⃓⃓
u+
u−

)︃
∓o Π

(︃
u+; Ψ+

o

⃓⃓⃓⃓
u+
u−

)︃]︃
, (5.2.42)

Gt = − 2u+
a
√−u−

[︃
2mE′

(︃
u+
u−

)︃
±s E

′
(︃

Ψ+
s

⃓⃓⃓⃓
u+
u−

)︃
∓o E

′
(︃

Ψ+
o

⃓⃓⃓⃓
u+
u−

)︃]︃
, (5.2.43)

where
Ψ+

j = arcsin
(︃cos θj√

u+

)︃
(5.2.44)

and we have used the notation E′(k2) = E′(π/2|k2) as in the other elliptic integrals.

If one considers the particular case of Schwarzschild lensing, a = 0, there is a singular
turning point at

um = η

λ2 + η
. (5.2.45)

One is required then to have η > 0 and the oscillation is described by type A motion.
Further, the allowed region one considers is 0 ≤ cos2 θ ≤ um < 1 and the angular integrals



5.2. General framework in the Kerr geometry 153

reduce to
G̃θ =

√︃
um

η

[︃
πm±s arcsin

√︃
us

um
∓o arcsin

√︃
uo

um

]︃
, (5.2.46)

G̃ϕ = 1
√
η

√︃
um

1− um

[︃
πm±s arcsin

√︄
us

um

(︃1− um

1− us

)︃
∓o arcsin

√︄
uo

um

(︃1− um

1− uo

)︃]︃
, (5.2.47)

G̃t = 1
2

[︃
umG̃θ −

√︃
um

η

(︁
±s

√︂
us(um − us)∓o

√︂
uo(um − uo)

)︁]︃
. (5.2.48)

It is also worth noting that inverting the Gθ integral for either the observer angle θo or
the source angle θs, allows us to express θo or θs as a function of Gθ [90,91,304]. Denoting
the Jacobi elliptic sine function by sn(φ|k2), explicitly performing this inversion gives

cos θs√
u+

= sn
(︃
F
(︂

arcsin
(︂cos θo√

u+

)︂⃓⃓⃓u+
u−

)︂
±o sign(η)a

√
−u−Gθ

⃓⃓⃓⃓
u+
u−

)︃
. (5.2.49)

5.2.1.2 Radial integrals

One can perform a similar analysis of the radial potential, R(r), in order to gain an insight
into the radial behaviour. In order to find the roots at R(r) = 0, it is convenient to rewrite
our expression in the form

R(r) = r4 + (a2 − η − λ2)r2 + 2Mζr − a2η = 0, (5.2.50)

where
ζ = η + (λ− a)2 ≥ 0, (5.2.51)

and its positivity is necessary in order for the motion to be in the region allowed by η ≥ 0.
(Note: this inequality is necessary for the stronger case when considering both ordinary
and vortical motion.) It is important to notice that the following analysis does not include
trajectories at ζ = 0 since these correspond to principal null congruences [87]. In that
specific instance, the conserved quantities λ and η satisfy

(λ, η) = (a sin2 θo,−a2 cos4 θo), (5.2.52)

therefore the roots of the radial potential in this case are trivially

r = ±ia cos θ0. (5.2.53)

As shown in [91], it is possible to calculate the roots by combining numerous techniques,
where one now excludes principal null congruences ζ = 0. One can implement Ferrari’s
method in order to find a general solution to the quartic equation, together with Cardano’s
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method to solve the resolvent cubic. Here we simply state the solution, but to see these
methods performed in depth to solve R(r) = 0, one refers the reader to [91]. The roots
can then be found to be

r1 = −z −

√︄
−a

2 − η − λ2

2 − z2 + 2Mζ

4z , (5.2.54)

r2 = −z +

√︄
−a

2 − η − λ2

2 − z2 + 2Mζ

4z , (5.2.55)

r3 = z −

√︄
−a

2 − η − λ2

2 − z2 − 2Mζ

4z , (5.2.56)

r4 = z +

√︄
−a

2 − η − λ2

2 − z2 − 2Mζ

4z , (5.2.57)

where

z =

√︄
ξ0
2 > 0 (5.2.58)

and ξ0 is any root of the resolvent cubic. In our case, it is given by

ξ0 = ω+ + ω− −
a2 − η − λ2

3 , (5.2.59)

where

ω± = 3

⌜⃓⃓⃓
⎷−Q2 ±

⌜⃓⃓⎷(︃P
3

)︃3
+
(︃Q

2

)︃2
(5.2.60)

such that
P = −(a2 − η − λ2)2

12 + a2η, (5.2.61)

Q = −a
2 − η − λ2

3

[︃(︃
a2 − η − λ2

6

)︃2
+ a2η

]︃
− M2ζ2

2 . (5.2.62)

Due to lack of an r3 term in the expression for the radial potential (5.2.50), the sum of
the roots vanish,

r1 + r2 + r3 + r4 = 0, (5.2.63)

which is to be expected since this is a general law for depressed quartic equations.

An in depth analysis of all the different classifications of roots is performed in [91], using
a similar type of analysis to that for the angular integrals. The basic idea is to determine
where the radial roots {r1(λ, η), r2(λ, η), r3(λ, η), r4(λ, η)} coincide as these critical cases
provide the boundaries of the various regions in the (λ, η)-plane. One further applies the
angular restrictions on the parameter space (5.2.30) in order to find where all possible
radii where any of the radial roots coincide.
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For each of these double, triple or quadruple roots r̃, one may find corresponding
equations for λ̃(r̃) and η̃(r̃). This results in the construction of two critical curves C± in
the (λ, η)-plane. Similarly to the analysis of the angular integrals, these critical curves C±

divide the allowed parameter space, the (λ, η)-plane, into four further subregions.

For each subregion, we know the exact number of real roots which we detail shortly
and due to the smoothness of the roots {r1, r2, r3, r4}, any real roots with ordering, retain
this ordering. Here, the roots have purposefully been labelled such that r1 < r2 < r3 < r4

in the case that they are all real. Similarly, at the inner and outer horizons one obtains
a double root, thus this ordering remains when moving through the horizons within each
region.

Thus to determine the general properties for each region of the (λ, η)-plane that a
solution of radial roots may lie in, it is sufficient to evaluate one set of radial roots
{r1, r2, r3, r4} via (5.2.54, 5.2.55, 5.2.56, 5.2.57) at a single point in that region of the
parameter space. This results in the general classification:

I. Four real roots such that two lie outside the horizon: r1 < r2 < r− < r+ < r3 <
r4.

II. Four real roots that all lie within the horizon: r1 < r2 < r3 < r4 < r− < r+.

III. Two real roots that both lie within the horizon: r1 < r2 < r− < r+ and r3 = r̄4.

IV. No real roots: r1 = r̄2 and r3 = r̄4.

Further, we may then find the allowed ranges of r when considering each of these
subregions. This can be achieved by determining the sign of the radial potential R(r)
for a particular choice of conserved quantities λ and η. Should the radial potential be
positive, the range is considered to be allowed, ensuring real solutions to the integrals
(5.2.19, 5.2.21). Exploring this avenue, and restricting oneself to consider only motion
outside the horizon, the relevant ranges are as follows:

Now we have discussed the allowed parameter space for the radial integrals, we begin
to focus on our case of interest. When considering gravitational lensing, it is important
to note that in this paper we are assuming a distant observer i.e. ro →∞.

In order to find whether the light ray encounters a turning point, it is sufficient to
calculate r4(λ, η) and determine its position. If r4 lies outside the horizon and is real, the
ray has a turning point at r4, otherwise it does not encounter any turning points. Trivially,
a ray reaching an observer at infinity originates from either the event horizon (in the case
of a white hole) or from infinity.
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Ia. White hole to black hole: r+ < r < r3 - the null ray is
emitted from the white hole before reaching a turning point
r = r3 and subsequently falling into the black hole.

Ib. Scattering: r4 < r <∞ - the null ray originates from
infinity prior to reaching a turning point at r = r4, before
returning to infinity (the case of interest corresponding to
gravitational lensing).

II, III, IV. Flying in or out: r+ < r <∞ - the null ray either
originates from infinity and falls into a black hole horizon or is
emitted from a white hole horizon and ends at infinity.

Therefore one can express the total of the radial integral Ir for a null ray reaching
infinity as

Itotal
r =

⎧⎪⎨⎪⎩
2
´ ∞

r4
dr√
R(r)

, r+ < r4 ∈ R,
´ ∞

r+
dr√
R(r)

, otherwise,
(5.2.64)

and similarly for the other radial integrals Iθ and Iϕ. Here we summarise the basic ideology
for Ir, noting that similar calculations can be performed for Iθ and Iϕ, which can be viewed
in full in [91]. For the purposes of our work, we are only interested in the case where r4 is
greater than the horizon r+, since for astrophysical purposes we wish to focus on null rays
originating at infinity, corresponding to case (2) in Appendix B of [91]. So, the relative
antiderivative is given by

I(2)
r (r) = 2

√
r31r42

F

(︃
arcsin

√︄
r − r4
r − r3

r31
r41

⃓⃓⃓⃓
r32r41
r31r42

)︃
, (5.2.65)

where we have introduced the notation rij = ri − rj . Thus, the complete radial integral
(5.2.64) is then expressed as

Itotal
r = 4

√
r31r42

F

(︃
arcsin

√︃
r31
r41

⃓⃓⃓⃓
r32r41
r31r42

)︃
. (5.2.66)

For simplicity, we define the following quantities:

Ψ = arcsin
√︃
r31
r41

, k2 = r32r41
r31r42

(5.2.67)

and so
Itotal

r = 4
√
r31r42

F (Ψ | k2). (5.2.68)
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The same analysis can be performed for the second radial integral Iϕ. Thus, the second
radial integral takes the form,

Itotal
ϕ = 2

ˆ ∞

r4

a(2Mr − aλ)
∆(r)

√︁
R(r)

dr = g
2∑︂

i=1
Γi[(1− β2

i )Π(α2
i ; Ψ | k2) + β2

i F (Ψ | k2)], (5.2.69)

where
g = 4a
√
r31r42

, Γi = Ki

r4 − ri
, (5.2.70)

ri = M + (−1)i+1
√︁
M2 − a2, Ki = M + (−1)i+1M

2 − aλ/2√
M2 − a2

, (5.2.71)

α2
i = (ri − r3)r41

(ri − r4)r31
, β2

i = ri − r4
ri − r3

, (5.2.72)

provided a ̸= M .

To close this section, one makes some short comments discussing the special case where
one considers an extremal Kerr geometry, a = M . For maximally spinning celestial objects,
the roots of the radial potential R(r) takes a particularly nice form

r = ±1∆r ±2

√︂
(∆r ∓1 M)2 +M(λ− 2M), (5.2.73)

where
∆r = 1

2

√︂
η + (λ−M)2 (5.2.74)

and there are four possible independent configurations based on the choice of signs. We
note that in the particular situation where there is a double root of the radial potential
(i.e. R(r) = R′(r) = 0), the double root r̃ must satisfy

(r̃2 + a2 − aλ)2 − (η + (λ− a)2)∆(r̃) = 0 (5.2.75)

and
4r̃(r̃2 + a2 − aλ)− 2(η + (λ− a)2)(r̃ −M) = 0. (5.2.76)

Then if r̃ = M , as a consequence, the only possible solutions are where a = M and
λ = 2M : a special case of (5.2.73). Interestingly, this corresponds to the superradiant
bound of an extremal black hole. As in the finite a case, the form of the first integral
for the extremal case, Ir, is (5.2.68). The second radial integral, however, takes a more
complicated form when a = M . Using partial fractions, Iϕ can be expressed as

Iϕ = 2M2
ˆ ∞

ra

[︃ 2M − λ
(r −M)2 + 2

r −M

]︃
dr√︁
R(r)

. (5.2.77)
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Now using the standard integrals and integration techniques in [305]:

Iϕ = gM

r4 −M

{︃
β2
[︃
2+β2(2M − λ)

r4 −M

]︃
u+2(1−β2)

[︃
1+β2(2M − λ)

r4 −M

]︃
p+(1− β2)2(2M − λ)

r4 −M
V

}︃
,

(5.2.78)
where

V = 1
2(α2 − 1)(k2 − α2)

[︃
α2E(u)+(k2−α2)F+(2α2(k2+1)−α4−3k2)P−α

4snu cnu dnu
1− α2sn2u

]︃
.

(5.2.79)
Here, g is as defined in (5.2.70), of course with a→M . Similarly,

α2 = (M − r3)r41
(M − r4)r31

, β2 = M − r4
M − r3

. (5.2.80)

and one also uses the following shorthand to denote elliptic integrals,

F = F (Ψ | k2), P = Π(α2; Ψ | k2). (5.2.81)

5.2.2 Critical rays

As previously illustrated, the radial potential has four distinct roots for generic values of
the conserved quantities λ and η. If however, these variables take specific values λ̃ and η̃,
then at a certain radius r̃, the radial potential emits a double root,

R(r) = R′(r) = 0. (5.2.82)

We use the tilde notation to denote these ‘critical values’. The critical radius r̃ only exists
for r̃ > r+ if and only if [86, 91]

λ̃ = a+ r̃

a

[︃
r̃ − 2∆̃

r̃ −M

]︃
, (5.2.83)

η̃ = r̃3

a2

[︃ 4M∆̃
(r̃ −M)2 − r̃

]︃
, (5.2.84)

such that r̃ lies in the range r̃ ∈ [r̃−, r̃+] where

r̃± = 2M
[︃
1 + cos

(︃2
3 arccos

(︃
± a

M

)︃)︃]︃
. (5.2.85)

The existence of this double root indicates there are orbits that have a fixed
Boyer-Lindquist radius r̃, which one associates with bound photon orbits. These are
circular, equatorial orbits located at the boundaries r̃±, as given in (5.2.85), where r̃+

indicates retrograde motion and r̃− corresponds to prograde motion. Intermediate radii
librate between turning points θ± and so the region where bound photon orbits span the
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Kerr spacetime, form a spherical shell, the ‘photon shell’, thats maximum thickness
occurs at its equator, varying to its minimum at the pole. Some interesting limits worth
noting are the non-rotating case (a→ 0) and the extremal limit (a→M):

lim
a→0

r̃± = 3M, lim
a→M

r̃+ = 4M, lim
a→M

r̃− = M. (5.2.86)

The non-rotating case results in the usual ‘photon sphere’ as the shell becomes vanishingly
thin everywhere, while in the extremal limit, one is left with the largest thickness shell.

5.2.3 Kerr gravitational lensing geometry

Now we have analysed the geodesic equations in a Kerr spacetime, it is important to
understand the geometry of our system. Since we are interested in non-planar orbits,
one cannot apply many of the symmetries used in the Schwarzschild case. We will now
explicitly derive a set of Cartesian coordinates, often called the ‘screen coordinates’ or
alternatively the ‘celestial coordinates’, consisting of the orthogonal impact parameter
(α, β), following [86,306].

x

y

z

β α

Observer

Source

(αi, βi)

Figure 5.2.1: The geometric construction of a gravitational lens associated with the Kerr
metric. A distant observer (ro →∞) can establish a reference Cartesian coordinate system
{x, y, z} with the lens lying at its origin such that from infinity the lens is chosen to rotate
about the z-axis. The observer and source positions are given by (ro, θo, ϕo) and (rs, θs, ϕs)
respectively and the straight line from the observer that intersects the origin is normal
to the celestial plane. The tangent vector of a null geodesic emitted by the source then
intersects the celestial plane at some point (αi, βi).



160 Chapter 5. Introduction to gravitational lensing

To begin, we consider a geometry where the gravitational lens is placed at the origin
and the observer and source positions are given by (rs, θs, ϕs) and (ro, θo, ϕo). For large ro

curvature becomes negligible and thus the Boyer-Lindquist coordinates may be expressed
as a reference Cartesian coordinate system {x, y, z}, which is chosen such that the lens
object rotates around the z axis (where a > 0 assumes the counterclockwise direction).
One can choose θo such that the observer lies in the upper hemisphere (i.e. θo ∈ [0, π/2))
using a reflection symmetry. Now without loss of generality, we may use axisymmetry to
set the observer azimuthal angle to be zero, ϕo = 0. With this set up, an incoming null
ray can be described in the observers reference frame using a parametric curve

r⃗γ = (x(r), y(r), z(r)), (5.2.87)

such that r2 = x2 + y2 + z2 and r is the radial coordinate in Boyer-Lindquist coordinates.

One now introduces a plane intersecting with the origin describing the image as seen
by the observer. We refer to this plane as the either the ‘observer’s sky’, the ‘celestial
plane’ or simply the (α, β)-plane. Similarly, α and β are known as ‘celestial’ or ‘screen
coordinates’. The unit vectors in the celestial plane are related to the Cartesian coordinate
system by

α̂ = − sinϕox̂+ cosϕoŷ, (5.2.88)

β̂ = ∓ cos θo(cosϕox̂+ sinϕoŷ)± sin θoẑ. (5.2.89)

Here, the upper (lower) sign corresponds to an image situated in the northern (southern)
hemisphere of the observer’s sky. The apparent position of the source on the screen,
(αi, βi), can then be expressed as

(αi, βi) = αiα̂+βiβ̂ = −(αi sinϕo±βi cos θo cosϕo)x̂+(αi cosϕo∓βi cos θo sinϕo)ŷ±βi sin θoẑ.

(5.2.90)
An alternative way to obtain the apparent position of the source is to extend the unit
tangent vector v⃗γ of the null ray by a distance ro. Expressing the unit tangent vector in
terms of the four-momentum of the null ray at the observer pµ

o ,

vi
o = pi

o

pt
o

, i ∈ {1, 2, 3} (5.2.91)

and noting the unit vectors appropriate for spherical coordinates are

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ, (5.2.92)

θ̂ = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ, (5.2.93)

ϕ̂ = − sinϕx̂+ cosϕŷ, (5.2.94)
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one can find

(αi, βi) = −r2
o

[︃(︃
cos θo cosϕo

pθ
o

pt
o

− sin θo sinϕo
pϕ

o

pt
o

)︃
x̂−

(︃
cos θo sinϕo

pθ
o

pt
o

+ sin θo cosϕo
pϕ

o

pt
o

)︃
ŷ + sin θo

pθ
o

pt
o

ẑ

]︃
. (5.2.95)

Now we are left with two expressions (5.2.90), (5.2.95) which can trivially be equated so

αi = −r2
o sin θo

pϕ
o

pt
o

, βi = ±r2
o

pθ
o

pt
o

. (5.2.96)

These celestial coordinates can now be evaluated by substituting in the known expressions
for the four momenta (5.2.11), (5.2.12) and (5.2.13) and taking the assumption that our
observer is distant ro →∞. So our equations reduce to

αi ≈ −
λ

sin θo
, βi ≈ ±

√︂
Θ(θo). (5.2.97)

There are two possibilities when considering the origin of the ray from the observer’s
perspective; either it came from the white hole2 or from the celestial plane. This origin
can be traced backwards to see whether it started at r = r+ or r →∞. Consequently, there
exists a boundary between the two possibilities in which, tracing back, the null ray will
indefinitely orbit the lens approaching some bound orbit located at radius r̃. This bound
orbit is the critical curve C and the conserved quantities of rays trapped here correspond
to λ̃(r̃) and η̃(r̃), as given in (5.2.83) and (5.2.84) respectively. One can then use these
critical conserved quantities to parametrise the critical curve in the celestial plane using
(5.2.83), (5.2.84) and (5.2.97), constraining the (α, β) parameter space in gravitational
lensing to only lie outside of C. This can be shown more explicitly in figure 5.2.2.

Now, (5.2.97) can be put into another useful form,

λ ≈ −αi sin θo, (5.2.98)

η ≈ (α2
i − a2) cos2 θo + β2

i , (5.2.99)

where the conserved quantities λ, η are now the subjects of the equations.

In order to test if screen point (αi, βi) is inside or outside the horizon, one substitutes
(5.2.98), (5.2.99) into (5.2.57). If we find r4(αi, βi) is real and outside the horizon then
(αi, βi) is outside C. Otherwise, r4(αi, βi) lies inside the critical curve C.

2We note that while white holes are fascinating mathematical constructs, from an astrophysical
standpoint, white holes are not expected to truly exist as they would violate the second law of
thermodynamics.
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Figure 5.2.2: Critical curves for Kerr gravitational lenses at various spins in the observer’s
sky, restricting to η > 0 and assuming we are in the equatorial plane. Only null geodesics
outside of the critical curves in the (α, β)-plane are subject to a single turning point r4
and thus represent the desired scattering required for gravitational lensing. Consequently,
from the perspective of a distant observer, a gravitationally lensed Kerr black hole would
appear to have the shape of its critical curve C, should the magnified source have a larger
angular size than that of the black hole. This dark region in the observer’s sky is often
referred to as the shadow of the black hole.

Another useful expression to formulate is the angular position of the source in the
absence of a lens {B1, B2}, in terms of the sources angular Boyer-Lindquist coordinates
{θs, ϕs}. Rigorously studying the geometry of the Kerr gravitational lens (as depicted in
figure 5.2.1) provides the general expressions

tanB1 = rs sin θs sinϕs

ro − rs(sin θo sin θs cosϕs + cos θo cos θs) , (5.2.100)

tanB2 = rs(sin θo cos θs − cos θo sin θs cosϕs)
ro − rs(sin θo sin θs cosϕs + cos θo cos θs) . (5.2.101)

Expressing these equations such that they have consistent notation with the usual
Schwarzschild gravitational lensing variables, we are able to define the following
distances:

Dd = ro, (5.2.102)

Dds = −rs(sin θo sin θs cosϕs + cos θo cos θs), (5.2.103)

Ds = Dd +Dds. (5.2.104)
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As in the previous chapter, Ds represents the distance along the optical axis from the
observer to the source plane, Dds the distance along the optical axis between the lens and
source planes, while Dd is the distance between the observer and the lens. Thus, equations
(5.2.100) and (5.2.101) reduce to

Ds tanB1 = rs sin θs sinϕs, (5.2.105)

Ds tanB2 = rs(sin θo cos θs − cos θo sin θs cosϕs). (5.2.106)

These equations will play an essential role in what follows, specifically when we try to
solve the Kerr lens equations (5.2.16), (5.2.17) in the weak deflection limit. More details
on this will follow in chapter 6.2.1.

We now take a slight detour away from the specifics of Kerr gravitational lensing in
order to try and understand the physical meaning behind the mysterious, third constant
of motion that arises, the Carter constant.

5.2.4 The Carter constant

The interpretation of two of the constants of motion, E and Lz, generated by the Killing
vectors ∂t and ∂ϕ respectively, are relatively straightforward and are well-known. The
first, E, represents the total energy of the free particle at infinity (as seen by a distant
observer), while Lz is the axial component of the particle’s angular momentum. Of course
when considering general free particles, we also have a third constant of motion in the
form of that particle’s rest mass m. Since in this discussion we are only concerned with
modelling null rays, we only need to consider massless particles.

As previously mentioned, [85] discovered there was an additional constant of motion
arising from separability of the Hamilton-Jacobi equation for a free particle in a Kerr
geometry. This separation constant is generated from the symmetries of the Kerr metric
(5.2.1), specifically the existence of the irreducible symmetric Killing tensor Kµν given in
(5.2.6).

While we have a clear description of the Carter constant mathematically, its physical
meaning is somewhat more ambiguous. When considering the case of the Schwarzschild
limit, a→ 0, the expression for the Carter constant k (5.2.7) can be drastically simplified

k = p2
θ +

(︃
Lz

sin θ

)︃2
, (5.2.107)

recalling that pϕ = Lz. Since we have the freedom to rotate coordinates in the
Schwarzschild limit, one may trivially place this orbit in the equatorial plane θ = π/2,
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so pθ = 0 and
k = L2

z. (5.2.108)

Thus, in the Schwarzschild limit, the Carter constant has the physical interpretation of
the square modulus of the total angular momentum of the particle (projected in the
equatorial plane) as measured by a distant observer. However, the meaning behind the
Carter constant in Kerr spacetime is not so straightforward. While one may intuitively
think that it should have similar meaning to the a → 0 case, and it does seem to (from
a ̸= 0 corrections), it is clear that the meaning certainly is not strictly the same.

Recalling the equation for the Carter constant k (5.2.7) and explicitly implementing
the constants of motion where relevant,

k = p2
θ +

(︃
Lz

sin θ − aE sin θ
)︃2
. (5.2.109)

Following the analysis of [307], it is useful to define a new separation constant K where
K = k + 2aELz such that

K = p2
θ + L2

zcosec2θ + a2E2 sin2 θ. (5.2.110)

Since they are the exact same expressions that appear when studying the Schwarzschild
case, the first two terms in (5.2.110) are trivially identifiable, corresponding to the
declination and azimuthal components of angular motion with reference to the origin O

of the coordinate frame. The only term that provides uncertainty is the final one, arising
in the Kerr case as one introduces the spin, a, into the framework. Clearly, since we are
considering photons and the Kerr metric is asymptotically flat, E2 corresponds to the
square modulus of the photon’s linear momentum at infinity. One may of course check
this by considering the Kerr metric gµν as r → ∞. Then, under this new metric gµν

∞ , we
can express the square modulus of the photon’s linear momentum as

p2 = |pr|2 + |pθ|2 + |pϕ|2 = grr
∞p

2
r + gθθ

∞p
2
θ + gϕϕ

∞ p2
ϕ. (5.2.111)

Clearly, evaluating these expressions as r →∞, the only non-trivial solution is

grr
∞p

2
r

r→∞−−−→ E2 = p2 (5.2.112)

as expected. Thus for a photon at asymptotic infinity, the total four-momenta of the
photon p2 comes solely from the radial term |pr|2. Hence, one can rewrite (5.2.110) as

K = p2
θ + L2

zcosec2θ + |pr|2a2 sin2 θ. (5.2.113)
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In fact, as shown in [307], a similar result with equivalent interpretation holds for the
case of massive particles and though we do not discuss that here the physical meaning of
the Carter constant is much the same as for massless particles.

So, the separation constant K does not have the physical meaning of the ‘square
modulus of the ‘usual’ angular momentum of the photon’ (i.e. the angular momentum
derived by considering θ and ϕ motion only), as is the naive interpretation in the
Schwarzschild case. Instead it is the algebraic sum of the squared angular momenta,
taking into account all three contributions from angular motion θ, ϕ and radial motion r.

One should note that similarly to when interpreting the physical meaning of E as the
total energy at infinity and Lz as the axial angular momentum at infinity, discussion of the
interpretation of the Carter constant presented in this section assumes one is considering
the weak-field region of the Kerr metric. Further, obviously the identifications of these
constants of motion discussed here are as seen by a distant observer. For additional
material involving the interpretation of the Carter constant, see [307,308]

5.3 Uncovering fundamental physics

There are several motivations to explore the lensing properties of near-extremal black
holes from a fundamental theory perspective. In this thesis, it is our intention to try and
provide incentive to utilise gravitational lensing to study two specific notions in
fundamental theory. We dedicate this section to providing a very brief description of
these concepts, the first being the fuzzball proposal, originally posed in [93, 94]. The
topic is most broadly reviewed in the following works [95, 96]. Secondly we turn our
attention to the Kerr/CFT correspondence [97, 98], an extension to the more
well-recognised AdS/CFT correspondence [25] which was heavily discussed in Part I.

5.3.1 The fuzzball proposal

Motivated by the information loss problem [104], there have been many proposals within
the literature for black hole geometries having small deviations from Einstein solutions
close to the black hole horizon. These small deviations typically capture the nature of
the specific black hole microstate. One of the best studied proposals is the fuzzball (or
black hole microstate) hypothesis. The fuzzball proposal [93–96] states that individual
black hole microstates are captured by geometries that resemble the black hole up to near
horizon scales, but the microstate geometries differ very close to the horizon and do not
have sharp horizons.
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When studied in full generality, microstate geometries must be understood as full
solutions of quantum gravity i.e. string and quantum effects are required to describe the
microstate in detail. These configurations are especially complicated, quantum stringy
objects which cannot (yet) be described using current tools, however subsets of fuzzballs
may be constructed using supergravity solutions. Furthermore, the region outside the
black hole can be understood in terms of gravitational solutions, in which there are
additional fields as well as the metric and typically there is no exact rotational or time
translation symmetry.

Fuzzball geometries are best understood in the context of near extremal (low
temperature) black holes, as they have been extensively explored within string theory in
this regime [309–328]. While it becomes increasingly difficult to find microstate
geometries which are non-supersymmetric, various have been constructed [329–339],
though most consider overspinning compact objects (similar to the case of a > M when
considering a Kerr black hole). With regards to the asymptotics of near-horizon
extremal Kerr (NHEK), microstate geometries have rather recently been uncovered [340].
The construction of microstates for Schwarzschild black holes is considerably less
well-understood and these are believed to be captured less well by gravity with
additional fields.

5.3.2 The Kerr/CFT correspondence

A second important motivation for exploring lensing of near extremal black holes is the
Kerr/CFT correspondence. The Kerr/CFT correspondence [97, 98] proposes that near
extremal Kerr black holes can be described holographically by a conformal field theory3.
The terminology of ‘conformal field theory’ is imprecise: the proposed dual field theory
is actually not a relativistic conformal field theory, but rather a non-relativistic warped
theory with scale invariance.

Moreover, the Kerr/CFT correspondence is not understood to the level of detail as
AdS/CFT. In Kerr/CFT the relations between bulk fields and dual operators of specific
scaling dimension are understood, but relatively few features of the dynamics have been
explored. Nevertheless, the Kerr/CFT correspondence has proven to be useful in
understanding the structure of certain infalling (plunge) orbits in near extremal Kerr
geometries. More specifically, the Kerr/CFT correspondence made manifest underlying
symmetries of the plunge orbit equations related to the scale invariance (see for
example [341–343]), and these could be exploited to understand better the structure of
these orbits.

3For more details on holography and the AdS/CFT correspondence, see Part I.



CHAPTER 6

Gravitational microlensing in Kerr spacetime

6.1 Introduction

Judging from the Galaxy’s current stellar population, there appears to be an abundance
of black holes contained within the Milky Way. In fact, current predictions quantify
the total number of black holes present in our Galaxy to be of order ≃ 108 [344–346],
under the assumption that stars greater than ∼ 20M⊙ end their lives as black holes
[347–351]. The most prominent success with regards to the discovery of black holes stems
from astrophysical observations of binary systems in which a compact object (neutron
star or black hole) accretes matter from its companion star resulting in the emission of
X-rays [352]. Significant study of these X-ray binary systems and the development of
numerous modelling techniques (for reviews see [352, 353]) has led to detection and mass
determination of various black holes (e.g. [354–356]).

While various dynamical methods may be implemented to determine the mass of
compact objects (e.g. [353]), explicitly obtaining the mass using gravitational lensing has
historically been difficult, often relying on methods involving the microlensing
parallax [357, 358]. Despite this, great persistence has led to many intriguing
results [285, 286]. One of the most staggering properties of the observed mass
distribution for these compact objects is the apparent existence of a ‘mass gap’ between
low-mass black holes and high-mass neutron stars (e.g. binary radio pulsars [359, 360]);

167
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i.e. there had been no observations of compact remnants for which masses lie within the
range 2M⊙ − 5M⊙. While observations of accreting binary systems consisting of black
holes and their companion stars (via their X-ray emission spectra) has provided a
glimpse into the nature of astrophysical black holes, there is sufficient evidence
suggesting these systems only make up a significantly small proportion of binaries within
our Galaxy [361,362].

When considering binary systems in this paper, we mainly study (the self-lensing
effects of) non-accreting systems that may be considered pristine; i.e. the compact
objects within have never accreted any material since they were formed so maintain
much of their innate structure. In most recent times, examples of non-accreting or
weakly accreting compact objects with masses contained within the mass gap have been
found in a number of binary systems [363–365]. Further, an enormous population of
binary systems consisting of different combinations of black holes and neutron stars
(binary black holes, black hole - neutron star pairs and neutron star binaries) has
recently been unveiled by the Laser Interferometry Gravitational Wave Observatory
(LIGO) and Virgo Collaboration [6], a direct consequence from the first detection of
gravitational waves. In the subsequent work [366, 367], the corresponding black hole
masses present in the pre-merger systems was inferred to be in the range 6M⊙ − 95M⊙,
albeit with two distinct outliers present in the secondary masses. These low-mass
compact objects were projected to have masses of 2.6M⊙ and 2.8M⊙, lying in the mass
gap thus with the potential to be characterised as either black holes or neutron stars.

It has become extremely evident that understanding this mass gap is crucial to gain
insight into black hole/neutron star formation and the supernova process [368, 369].
Since pristine compact objects have not accreted any mass since their initial formation,
there is considerable reason to suggest that their mass distributions will unravel a more
detailed description of the supernova explosion mechanism than possible from studying
X-ray binaries. Binaries that do not exhibit accretion can be detected most notably
using signatures obtained from self-lensing [370] (a form of microlensing) though other
methods exist (such as those presented in [371,372]).

Gravitational microlensing [45] is an observed astrophysical phenomenon consisting of
isolated or binary lenses (stars, compact objects and even exo-planets) that pass between
a background source and an observer. With the continuous evolution of modern
instruments [373, 374] microlensing has indeed become a very effective tool for the
discovery and characterisation of faint objects that may be invisible to other conventional
methods. One of its most vital applications is its ability to constrain the available
parameter space for the mass in massive compact halo objects (MACHOs) [375].
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A specific type of microlensing may occur when studying binary systems consisting of
a compact object and its optically bright companion star. As the two celestial objects
come into alignment from the perspective of an observer, the compact object acts as a
gravitational lens for its companion star [370]. This phenomenon is referred to as self-
lensing. At the time of writing, a total of five binaries have been observed to exhibit self-
lensing, each accommodating at least one white dwarf [376–378]. Studies of self-lensing
populations in optical surveys [362] have shown the vast majority (≳ 99%) of neutron
star and black hole gravitational lenses present in self-lensing are indeed pristine compact
objects. Thus, these systems become a natural object to study, from the perspective of self-
lensing, to explore both the black hole formation mechanism (via core collapse supernova)
and the binary evolution process.

In this section, we focus our attention to the modelling of self-lensing binaries as well
as the even more elusive microlensing of isolated compact objects. For both phenomena,
we consider the particular instance where the minimum distance between the light ray and
the compact object (lens) always lies far outside of the gravitational radius of the lens (i.e
in the weak deflection limit) and the system is subject to large astrophysical separations.
Similar to binaries of pristine compact objects, isolated compact objects are unlikely to
have been drastically altered by external effects since their formation and so probing
them offers a potentially unique outlet to understanding the supernova process. Recent
advancements were made with the initial detection and subsequent mass measurement of
isolated stellar-mass black holes (or neutron stars) [285,286].

Although many fascinating phenomena have been detected using current astrophysical
models, there is an obvious limitation. Since all of these models assume a regime in which
the lens can be described using a Schwarzschild background metric, the effect of the spin of
the compact object has been negated. While this may provide a sufficient characterisation
for low-spinning compact objects and one expects gravitational lenses that possess higher
spins to have similar behaviour, in order to appropriately model these highly spinning
compact objects, it is essential to adopt a Kerr background metric.

Enlightenment on the behaviour of null geodesics in Kerr spacetime was first provided
by Carter [85] and has been extensively studied since [2, 86–92, 295–302, 306, 379]. On
one hand, significant focus has been dedicated to understanding the effects of strong
field gravitational lensing [89–92, 296, 300–302, 306] for Kerr black holes and finding the
positions of the resultant relativistic images [292]. Most recently, the publication of the
interferometric observations of the Galactic black hole M87 by the Event Horizon Telescope
(EHT) collaboration [7–12] has inspired various works concerning black hole shadows and
photon rings (e.g. [302,303]).
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On the other hand, the weak deflection limit has received much less attention when
considering gravitational lensing in a Kerr background [2, 88]. Utilising the expansions
of [2], we aim to show the importance of the inclusion of the spin of the compact object.
While the magnification of the source in the Schwarzschild case is dependent upon the
astrophysical (or binary) separation, the mass and the radius of the compact object, we
will see that the spin plays an equally important role.

Although the utilisation of microlensing to model these astrophysical phenomena may
be the most obvious application of the analysis contained within these works, one may
wish to purse alternative avenues, particularly those concerning fundamental theory.
Accordingly, we can place this work under the context of both the fuzzball (black hole
microstate) proposal [93–96] and that of the Kerr/CFT correspondence [97, 98] through
the use of extremal (or near-extremal) black holes. Extremal black holes have provided
an abundant supply of novel concepts and techniques within the realms of quantum
gravity and quantum field theory [25,97,103,212,213].

Our best understanding of fuzzball geometries stems from the study of near-extremal
(low temperature) black holes, with significant work dedicated to exploring this regime
[309–328]. Further, microstate geometries for non-extremal and non-supersymmetric black
holes remain elusive and so there are many difficulties that arise when attempting to
compare observations of astrophysical black holes to observational results expected from
microstate geometries. For example, Schwarzschild black holes microstate structure is
poorly understood and is believed to be captured less well by gravity with additional
fields.

In recent literature [380–382] there have been a number of suggestions of ways to
characterise near extremal black hole microstates astrophysically. Effects described from
the analysis of lensing and occultation may provide a new way to physically distinguish
between black holes and microstate geometries.

Similarly, extremal black holes play an essential role in the Kerr/CFT
correspondence. This conjecture states that these near-extremal Kerr black holes are
dual to a non-relativistic warped theory with scale invariance1, according to the
holographic principle. Analytic solutions of the gravitational lens equations in Kerr
spacetime [2, 89–92] could indeed help uncover a fresh understanding of underlying
symmetries of the dynamics and give us new insights from the perspective of the dual
field theory.

In section 6.2, we review the analytic formulation of gravitational lensing by a
rotating, compact object in the weak deflection limit [2, 88]. Then, in section 6.3, we

1While the terminology refers to the dual field theory as a CFT, it is not actually a relativistic CFT.
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discuss the deep implications of the spin asymmetry that arises in Kerr lensing. More
explicitly, we illustrate these effects by considering the point source magnification curves
for various different spin and inclination configurations, comparing them to the
analogous magnification curves that would arise in the Schwarzschild case. We then
extend this analysis by considering extended sources and limb darkening effects in
section 6.4, before concluding and exploring future directions for research in section 6.5,
providing insight to applications in both astrophysics and fundamental theory.

6.2 Kerr gravitational lensing: the weak deflection limit

As we have touched upon, gravitational lensing is extremely well understood in the
Schwarzschild regime, but considerably less studied using a Kerr background. While the
full geodesic equations, (5.2.16) and (5.2.17), are required when considering the case of
strong gravitational fields [89, 293, 294] and thus studying relativistic images [292], in the
weak deflection limit, the situation dramatically simplifies. Following the analysis
in [2, 88], in this section we describe Kerr lensing in the weak deflection limit, from a
purely analytical perspective.

The weak deflection limit is founded upon the assumption that the point of closest
approach is situated far beyond the Schwarzschild radius of the gravitational lens. Since
there is only a single turning point r4 present in the weak deflection limit [88] and the
impact parameter can be well approximated (exactly equal to in the spherically symmetric
case) by

ξ =
√︂
α2 + β2 ≃

√︂
λ2 + η, (6.2.1)

then we are in the weak deflection limit if rsch ≪
√︁
λ2 + η. Consequently, one introduces

the two new independent quantities, M̂ and â, defined as functions of the constants of
motion λ and η,

M̂ = M√︁
η + λ2 , â = a√︁

η + λ2 . (6.2.2)

By definition, both M̂ and â must be suitably small and can therefore be used as expansion
parameters. When performing any expansions using these parameters, we do so up to order
O(ϵ3) where we adopt the notation that terms of order O(ϵn) consist of terms of order
O(M̂ i

âj) with n = i+ j.

Note it is very clear that two terms of the same formal order such as O(M̂2
â) and

O(M̂3) (both order O(ϵ3)) do not necessarily have the same physical order. The only
expansions in which this would indeed be true is for the particular case of an extremal (or
near-extremal) Kerr black hole, since in this instance, |a| ∼ M . In appendix B.1.2.2, the
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minimum radial distance r4 between a light ray and the gravitational lens is shown to be

r4 ≈ (λ2 + η)1/2
{︃

1− rsch

2
√︁
λ2 + η

− a2λ2

2(λ2 + η)2 + arschλ

(λ2 + η)3/2 −
3r2

sch
8(λ2 + η) −

r3
sch

2(λ2 + η)3/2

+ 3aλr2
sch

2(λ2 + η)2 −
λ2a2rsch

(λ2 + η)5/2 −
λ2(λ2 − 4η)a4

8(λ2 + η)4 + λ(λ2 − η)rscha
3

(λ2 + η)7/2 + (8η − 51λ2)r2
scha

2

16(λ2 + η)3

+ 3λr3
scha

(λ2 + η)5/2 −
105r4

sch
128(λ2 + η)2 +O(ϵ5)

}︃
. (6.2.3)

This series expansion was first performed in [88] up to order O(ϵ3) before being extended
to O(ϵ4) in [2].

6.2.1 Lens equations in the weak deflection limit

One may view the lens equations (5.2.16, 5.2.17) as a map between the angular source
position {µs, ϕs} and the image position {θ1, θ2}, where we define µs = cos θs. The starting
point is to represent the lens equations as a function of the conserved quantities {λ, η},
through a series expansion using the small parameters M̂ and â. In doing so, one must
resolve the entire set of angular and radial integrals present in (5.2.16) and (5.2.17), to
which we provide the supplement materials in appendices B.1.2.1 and B.1.2.2 to detail
this analysis. Subsequently, the first lens equation (5.2.16) may then be expressed rather
concisely as

µs = −µo cos δ + (−1)k sin δ
(︃

η

λ2 + η
− µ2

o

)︃1/2
, (6.2.4)

with

δ = 2rsch√︁
λ2 + η

+ 15πr2
sch

16(λ2 + η) −
4λrscha

(λ2 + η)3/2 + 16r3
sch

3(λ2 + η)3/2 −
15πλar2

sch
4(λ2 + η)2

+
(︃
µ2

o + 5λ2 − 3η
λ2 + η

+ η
λ2µ2

o
µ2

o−1 + η

)︃
rscha

2

(λ2 + η)3/2 − (λ2 + η)1/2 ro + rs

rors
− (λ2 + η)3/2

6
r3

o + r3
s

r3
or

3
s

+ a2µ2
o(1− µ2

o)
√︁
λ2 + η

2(λ2µ2
o − η(1− µ2

o))
ro + rs

rors
+O(ϵ4), (6.2.5)

where we have used the expansions (B.1.36) and (B.1.54). The second geodesic equation
that describes the azimuthal motion, (5.2.17), can be expressed as

−ϕs = λ

|λ|
π+ λδ√︁

λ2 + η

1
1− µ2

o

[︃
1−(−1)kδ

µo√︁
1− µ2

o

√︃
η

λ2 + η
− µ2

o

]︃
+ 2arsch
λ2 + η

+δϕs, (6.2.6)

where one has used the expansions (B.1.47) and (B.1.56). Here, δϕs is a small contribution
of order ∼ ϵ3 given by
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δϕs = 5πr2
scha

4(λ2 + η)3/2−
8λr3

sch(2(λ2 + η)µ4
o + (2λ2 − η)µ2
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− 2(ro + rs)rsch
rors

+ 4r2
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]︃
ro + rs

rors
. (6.2.7)

These two, fairly compact forms of the lens equations were first derived in [88] up to order
O(ϵ2), prior to further extensions to O(ϵ4) in [2].

Now, it is desirable to express the lens equations in the Kerr background to have a
form that aligns with the one that appears in the Schwarzschild description. Hence, one
is required to introduce the angular image positions {θ1, θ2}, representing the angular
position of the image situated on the observer’s sky. We use the geometric description
introduced in (5.2.3), writing the apparent position of the source (αi, βi) previously defined
in (5.2.97), in terms of the traditional angular image positions:

ro
tan θ1√

1 + tan2 θ
= − λ

sin θo
, (6.2.8)

ro
tan θ2√

1 + tan2 θ
= ±

√︂
Θ(θo). (6.2.9)

Here, θ is the separation of the image from the lens and tan2 θ = tan2 θ1 +tan2 θ2. Clearly,
prograde photons (i.e. photons that traverse the equatorial plane in the same direction as
the axis of rotation of the lens), specified by λ > 0, η = 0, produce images positioned to
the left of the optical axis (θ1 < 0) and correspondingly retrograde photons (i.e. photons
that traverse the equatorial plane in the opposite direction as the axis of rotation of the
lens), specified by λ < 0, η = 0, produce images positioned to the right of the optical
axis (θ1 > 0). Now, recall the equations for the angular positions of the source given
in (5.2.105) and (5.2.106), with distances (5.2.102), (5.2.103) and (5.2.104). Combining
these equations with (6.2.8) and (6.2.9), one can establish an expression that resembles
the original form of the lens equations

B1 = B1(θ1, θ2), (6.2.10)

B2 = B2(θ1, θ2). (6.2.11)

In order to reduce these to a similar form, as we did for Schwarzschild, one introduces a
series expansion parameter related to the angular Einstein ring. This small parameter has
the form

ϵ = θE

4D, (6.2.12)
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where

θE =
[︃
2 rsch

rs

ro(ro + rs)

]︃1/2
(6.2.13)

and D ≡ rs/(ro + rs). It should be noted that this definition of the Einstein radius
uses radial distances, however in usual analysis within the weak deflection limit, distances
measured along the optical axis are used (as in (5.1.23)). After applying this rescaling, we
assume that the angular image positions can be expressed as series expansions in ϵ,

θ1 = θE

(︂
θ1(0) + ϵ θ1(1) + ϵ2θ1(2) +O(ϵ3)

)︂
, (6.2.14)

θ2 = θE

(︂
θ2(0) + ϵ θ2(1) + ϵ2θ2(2) +O(ϵ3)

)︂
, (6.2.15)

the details of which we will delve into in the next section. The full angular separation of
the image from the lens is

θ = θE

(︂
θ(0) + ϵ θ(1) + ϵ2θ(2) +O(ϵ3)

)︂
. (6.2.16)

Now, one is able to rescale the source position by βi ≡ tanBi/θE . Further, assuming the
thin lens approximation (i.e. all angles are small), we may reduce the lens equations to a
familiar, simple form:

B1 = θ1 −Dα̂1(θ1, θ2), (6.2.17)

B2 = θ2 −Dα̂1(θ1, θ2), (6.2.18)

where α̂ represents the angle of deflection of the null ray as defined previously and we
have included terms up to ∼ ϵ2 [2].

6.2.2 Image Positions

Consider the perturbative solutions to the lens equations, (6.2.17) and (6.2.18). These can
be solved term by term, assuming the series expansions (6.2.14), (6.2.15) and (6.2.16), to
find the image positions {θ1, θ2}. To lowest order in ϵ, the Kerr lens equations reduce to
the familiar Schwarzschild lens equations,

β1 = θ1(0)

(︃
1− 1

θ2
(0)

)︃
, (6.2.19)

β2 = θ2(0)

(︃
1− 1

θ2
(0)

)︃
, (6.2.20)
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such that θ2
(0) =

√︂
θ2

1(0) + θ2
2(0). Then consequently the corresponding image positions are

given by

θ±
1(0) = 1

2

(︃
1±

√︄
1 + 4

β2

)︃
β1, (6.2.21)

θ±
2(0) = 1

2

(︃
1±

√︄
1 + 4

β2

)︃
β2, (6.2.22)

with β2 = β2
1 + β2

2 . In [2], terms are computed up to O(ϵ2), with the lens spin parameter
a appearing for the first time at order O(ϵ). Below, we state the second order terms in
order to show how the expansion varies when a is first introduced:

θ1(1) = θSch
(1)

θ1(0)
θ(0)

+
(1− θ2

1(0) + θ2
2(0))

√︁
1− µ2

o

1− θ4
(0)

a

M
, (6.2.23)

θ2(1) = θSch
(1)

θ2(0)
θ(0)

−
2θ1(0)θ2(0)

√︁
1− µ2

o

1− θ4
(0)

a

M
, (6.2.24)

where
θSch

(1) = 15π
16(1 + θ2

(0))
. (6.2.25)

When studying these second order contributions, one notices interesting behaviour: a
degeneracy arises between lenses in the Kerr background and ‘shifted’ lenses in the
Schwarzschild background. This degeneracy becomes manifest such that these shifted
Schwarzschild lenses have undergone a displacement from the optical axis along the
equatorial plane at {θ1, θ2} ≃ θE{a

√︁
1− µ2

oϵ, 0}. From the perspective of the observer,
the two weak field images produced would appear to have undergone an anti-clockwise
rotation about the optical axis, with respect to line intercepting the unperturbed image
in the Schwarzschild regime [383].

The third order contributions take the form
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, (6.2.26)
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where
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Taking into account these non-linear couplings between the physical parameters a and M
(i.e considering expansions of order O(ϵ2)) results in the degeneracy between Kerr lenses
and the shifted Schwarzschild lenses being broken [383].

The total angular separation of an image with respect to the lens has the coefficients

θ(1) = θSch
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M
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, (6.2.29)
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6.2.3 Magnification

Recall from section 5.1.4 that the luminous amplification of an image or its magnification
is given by the inverse of the Jacobian determinant of the lens mapping (5.1.29). In this
instance, we are interested in the angular areas of the image in the observer’s sky, dθ1dθ2,
and correspondingly, the source in the absence of lensing, dB1dB2. Thus (5.1.29) reduces
to

µ =
[︃
∂B1
∂θ1

∂B2
∂θ2

]︃−1
(6.2.31)

recalling µ = (detM)−1. Should a source be emitting null rays isotropically, it is known
that the unlensed source seen by the observer is smaller than as seen by an observer at
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the lens position, more specifically by a factor of (rs/ros)2 [384]. Hence,

detM =
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rs

ros

)︃2[︃∂µs

∂θ1

∂ϕs

∂θ2

]︃
, (6.2.32)

where ros is the linear path from the source to the observer along the optical axis.
Therefore, one can express the Jacobian determinant, detM, as a Taylor expansion in
the expansion parameter ϵ

detM = 1− 1
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Then, we can trivially invert this series to obtain the corresponding magnification
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(6.2.34)

Thus the magnification factor for Kerr gravitational lensing in the weak deflection limit
only has dependence on the lens spin parameter a by means of terms proportional to
a
√︁

1− µ2
o. This formula for magnification can alternatively be presented as the two

separate magnifications for positive and negative parity images, originally presented
in [385], expressed in terms of the source position β. Then,
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We obtained these expressions by implementing (6.2.21), (6.2.22), (6.2.23) and (6.2.24)
into (6.2.34). We do not explicitly include terms of order ϵ2 here since they will not enter
our discussion but one could trivially do so following the same procedure. Further, we
note that the sum of the signed magnifications is

µ+ + µ− = 1− 15π
8(4 + β2)3/2 ϵ+O(ϵ2). (6.2.37)

One may notice that this sum is devoid of any terms involving the spin parameter a
and therefore exactly matches the analogous expression for the Schwarzschild lens at this
order. In reality, the resolution of the two weak field images is rather difficult and the
only microlensing observable is the total absolute magnification. Considering the absolute
magnifications for each of the images, |µ+| = µ+ and |µ−| = −µ−, the total absolute
magnification for Kerr spacetime is

µtot = |µ+|+ |µ−| = β2 + 2
β
√︁
β2 + 4

+ 8β1
β3(β2 + 4)3/2

a
√︁

1− µ2
o

M
ϵ+O(ϵ2). (6.2.38)

As expected [386], when reducing the configuration such that we have a circularly
symmetric lens, either by considering a = 0 or placing the observer on the gravitational
lens’s axis of rotation (i.e. θo = 0), the O(ϵ) term vanishes.

6.3 Implications for fundamental physics and astrophysics

Understanding the properties of gravitational lensing using a Kerr background has
fascinating implications not only in astrophysics, but also in fundamental physics. In
order to gain a clear insight of these effects, we must consider the essential ingredient in
any microlensing analysis, the distribution of magnification. Consequently, when
studying a particular lensing system (in the weak deflection limit), we focus our
attention on the simulation of magnification curves utilising the series expansions in [2].

6.3.1 Regularisation for point sources

Since the consideration of a point source, in the instance of perfect alignment (the observer,
lens and source all lying on the optical axis, i.e. β = 0) naturally gives rise to an infinite
magnification, one must find a mechanism to subjugate the influence this has on the
magnification curve. In order to do so, we first consider the significantly more understood
Schwarzschild lens, where astrophysical observations clearly provide a quantifiable, finite
peak to the magnification curve should β = 0. Thus, should we wish to suitably model the
astrophysical system exhibiting gravitational lensing phenomena, we desire to supplant
the purely mathematical infinity at the peak of the curve (and equally values so close
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to perfect alignment that they supersede the true, measured magnifications), with finite
values that match astrophysical observations.

We achieve this goal by introducing an appropriate regularisation term δ ≪ 1. Rather
than considering a system that lies exactly in the equatorial plane θo = θs = π/2, we
instead approximate this planar alignment such that the source angle remains fixed in the
equatorial plane, θs = π/2, while the observer angle is shifted by the infinitesimally small
angle δ,

θo = π/2 + δ. (6.3.1)

Thus during the microlensing event, as the background source passes behind the lens and
then subsequently re-emerges (i.e as the azimuthal angle to the source ϕs evolves in time),
the magnification curve reaches a smooth, finite peak and the value for the magnification
at each source position, (θs, ϕs) is extremely well-approximated. Equivalently, one may
think of this regularisation term as effectively removing the source from the optical axis
(i.e. hence β2 ̸= 0) thus removing the divergence to infinity.

It is certainly worth mentioning that when considering true astrophysical
configurations, sources are not point-like but instead finite, and as such, possess a fixed
radius Rs. Allowing for the inclusion of these extended sources provides a similar means
to avoid divergent magnifications at perfect alignment, thus the appearance of the
Einstein ring has finite brightness. Whilst we save the full discussion of extended sources
until section 6.4, we note that for a fixed system, restricting the radius of the source
object to have a finite size (at perfect alignment) is degenerate to introducing a lower
bound to β2 when considering point sources.

Of course to obtain an appropriate value for δ we must ensure the peak of the curve,
µδ

peak, matches astrophysical observations. We consider various gravitational lensing
systems, for which we know the true magnification at the peak of the curve, µpeak

2.
Then, since at the peak of the Schwarzschild magnification curve, we know β1 = 0 yet
choose β2 ̸= 0 to regularise, then

µpeak = β2
2 + 2

β2
√︂
β2

2 + 4
, (6.3.2)

from (5.1.33). Implementing the known value for the peak magnification, one simply
inverts this equation to find the value of β2. For example, implementing the peak
magnification obtained from the central panel of figure 8 from [3], returns us the source
position β2 ∼ 0.15, aligning our results with theirs. Once we have β2 and appropriately

2We know the true magnification at the peak either by simulating with an extended source model,
using real astrophysical data or in the particular case where we consider a supermassive black hole (figure
6.3.1c), utilising the peaks in [3] so that our results directly align with theirs.
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scale with the Einstein radius θE (i.e. using β2 ≡ tanB2/θE) to obtain B2 we can
similarly invert (5.2.101) to find an appropriate approximation for δ. More explicitly,
since θs = π/2, (5.2.101) reduces to

tanB2 = −rs cos θo cosϕs

ro − rs sin θo cosϕs
. (6.3.3)

Then, since θo is now defined as in (6.3.1) and ϕs = π in this instance,

tanB2 =
rs cos(π

2 + δ)
ro + rs sin(π

2 + δ) . (6.3.4)

Using well-known trigonometric identities and noting that δ should satisfy small angle
approximations,

cos
(︂π

2 + δ
)︂

= cos π2 cos δ − sin δ sin π2 = sin δ ∼ −δ, (6.3.5)

sin
(︂π

2 + δ
)︂

= sin π2 cos δ + sin δ cos π2 = cos δ ∼ 1, (6.3.6)

hence
tanB2 = − rsδ

ro + rs
= −Dδ, (6.3.7)

recalling that D ≡ rs/(ro + rs). Therefore we define our small shift to the observer angle,
θo, to take the form

δ = −(ro + rs) tanB2
rs

= −tanB2
D

≪ 1, (6.3.8)

where B2 is computed by inverting (6.3.2) and scaling appropriately, where we know the
value of µpeak.

Magnification curves produced in this way, for various different Schwarzschild lensing
systems, are shown in figure 6.3.1. Figures 6.3.1a and 6.3.1b depict the total absolute
magnification for two astrophysical systems, with the former in the self-lensing regime
(smaller separations) and the latter in the microlensing regime (larger separations),
where µpeak is evaluated using an extended source model (see section 6.4.1). We note
that in figure 6.3.1b, we consider a high magnification event. Magnifications of this scale
are realised astrophysically, exemplified by the recent detection of the high magnification
MOA-11-191/OGLE-11-462 microlensing event, describing an astrophysical system
containing an isolated stellar-mass black hole [285]. For a different approach, in figure
6.3.1c, we have exploited the magnification curve presented in the central panel of figure
8 from [3], such that β2 ∼ 0.15 and our results align with those studied in this work. In
what follows, we will analyse each of these cases by modelling the deflection of light rays
due to gravitational lensing utilising a lens imbued with the Kerr metric such that we are
in the weak deflection limit.
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(a) Magnification curve for a Schwarzschild lens of mass M = 10M⊙ with binary separation
rs = 47 AU and Einstein radius RE = 0.92R⊙.

(b) Magnification curve for a Schwarzschild lens of mass M = 10M⊙ such that the separation
between the source and the lens is rs = 4.7 × 106 AU and the Einstein radius is RE =
291.83R⊙.

(c) Magnification curve for a Schwarzschild lens of mass M = 3.61 × 106M⊙ [387],
constituting the supermassive black hole Sagittarius A*. In agreement with [3], distances
are chosen such that ro = 7.62 kpc and rs = 4.85× 10−5 pc.

Figure 6.3.1: Magnification curves for three distinct gravitational lensing systems of
interest; a self-lensing binary system and a microlensing system for solar-mass black holes
as well as a particular case involving the supermassive black hole Sagittarius A*.
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Before studying the direct consequences associated with the inclusion of spin, we note
that should we wish to extend this regularisation process to consider Kerr gravitational
lenses, we can use a similar methodology. Should the system similarly lie in the equatorial
plane (β2 = 0), infinitely bright critical curves appear as the source approaches a point-
like caustic (βcau

1 , 0) = (a/(θEro) + O(ϵ3), 0). In this case, our arguments can remain
unchanged and we can choose δ in the same manner.

However, should we wish to consider different inclinations, we must slightly adjust our
definitions. Since the effects of microlensing will only ever be visible when we are in the
small angle approximation, we may restrict ourselves to the situation θo + θs ≃ π where
equality corresponds to perfect alignment3. Consequently, the regularisation term δ may
more generally be defined by

θo = π − θs + δ, (6.3.9)

where δ ≪ 1.

6.3.2 Magnification curves for Kerr microlensing

There are various different parameter combinations of the Kerr gravitational lensing
system that can alter the luminous amplification of incident light rays, that are either
not present or do not have an impact in the Schwarzschild regime. As we have
continuously alluded to throughout this work, the quintessential property that drives
this change in magnification, is the lens spin parameter a. In figure 6.3.2, we illustrate
the magnification curve for a system with identical parameters to those presented in
figure 6.3.1c, however in this instance considering a gravitational lens in the Kerr
background. Note, that the plots in figure 6.3.2 are such that both the observer and
source lie in the equatorial plane θo = θs = π/2.

Since the corrections due to spin are only present in terms ϵ or higher, there is no
reason to expect a significant difference in the behaviour of the magnification curves as
we dial up the spin. Studying a single curve at spin a = 0 alone, we see that as the
background source and the compact object constituting the gravitational lens approach
perfect alignment from the perspective of the observer (i.e. when β1 < 0), we observe
a gradual increase in steepness to the total absolute magnification from µtot = 1. Post-
alignment (i.e. when β1 > 0), we see the opposing effect.

3In fact, if we consider instances of gravitational lensing where observable magnification is possible but
θo + θs ̸≃ π (i.e. strong lensing), then by definition, since we do not have near-perfect alignment, there is
no ‘infinite magnification problem’ and one does not need to mitigate for it.
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(a) Magnification curves for the supermassive black hole system with the parameters defined
below for both non-spinning (a = 0) and extremal (a = 1) black holes.

(b) Magnification curves for the supermassive black hole system with the parameters defined
below for Kerr black holes at incrementally increasing spins a.

Figure 6.3.2: Magnification curves for a gravitational lensing system involving the
supermassive black hole Sagittarius A* for a source and observer situated in the equatorial
plane, in analogy to figure 6.3.1c. Specifically, each plot consists of a Kerr lens of mass
M = 3.61 × 106M⊙ with astrophysical separations, ro = 7.62 kpc and rs = 4.85 × 10−5

pc, where each curve represents different values for the spin parameter a. Furthermore,
we note that the plots are fitted by choosing an appropriate δ, such that β2 ∼ 0.15 in
alignment with [3].
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Now, plotting distinct, finite values for the spin a, as in figure 6.3.2, one can characterise
a number of captivating features from the behaviour of the magnification curves that differ
from the a = 0 distribution. Firstly, there is a clear rightward shift in the magnification
curve, peaking at a larger azimuthal angle ϕs or in other words, at a later instance in time
relative to the motion of the source. As may be expected, should we reverse the spin axis
of rotation to be clockwise as opposed to anti-clockwise, the shift in the magnification
curve would be reversed such that we have a leftward displacement.

During astrophysical observations, this shift in the magnification signature will not be
visible within the measured dataset since the variation of the azimuthal angle to the source
ϕs is generally unknown at given time increments and the Einstein crossing time is used
as the dependent variable instead. Thus, simple symmetry arguments imply astrophysical
measurements will always be encoded such that the peak of the curve is centralised.

The most noteworthy property of the magnification curves in figure 6.3.2 is the
definitive growth in the total magnitude for increasing spins a, with the peaks reaching
higher maximum values. The astrophysical implications of this relationship between a

and the total magnification of the incident light rays are vast. Since compact objects
described in a Kerr background with linearly increasing spins (0 < a < 1) lead to
proportionally larger magnifications than their non-spinning counterparts (a = 0), we
find that higher populations of supermassive black holes are detectable than one would
predict should we exclude spin effects.

From an astrophysical perspective one expects this asymmetric behaviour for
rotating, compact lenses due to the introduction of spin. More explicitly, this asymmetry
arises between photons that co-rotate with the deflector (prograde photons) and those
that counter-rotate opposing the lens (retrograde photons). It is well-known that the
deflection angle for prograde and retrograde photons differ; for example in the case of
equatorial motion (θo = θs = π/2), the bending angle reduces to

α̂ = 2rsch
ξ

ξ1
ξ

+ 15π
16
(︂rsch
ξ

)︂2 ξ1
ξ

+ 2arsch
ξ2 + 16π

3
(︂rsch
b

)︂3 ξ1
ξ

+ a2rsch
ξ3

ξ1
ξ

+ 5π
2
ar2

sch
ξ3 +O(ϵ4),

(6.3.10)
where ξ =

√︂
ξ2

1 + ξ2
2 =

√︁
λ2 + η is the impact parameter and ξ1 = −λ. Consequently, for

retrograde photons the bending angle becomes enhanced, while for prograde photons it
is reduced. This topic has been vastly studied in the literature [297, 388, 389]. For our
purposes, prograde photons (λ > 0, η = 0) are seen by observers as the source approaches
perfect alignment (i.e. when θ1 < 0) and retrograde photons (λ < 0, η = 0) are seen by
observers after perfect alignment has occurred (i.e. when θ1 > 0) and the source heads
back to infinity.
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(a) Magnification curves for the supermassive black hole system with the parameters defined
below for Kerr black holes at incrementally increasing spins a. Here we consider the source
at θs = 3π/4 and the observer at θo = π/4.

(b) Magnification curves for the supermassive black hole system with the parameters defined
below for Kerr black holes at incrementally increasing spins a. Here we consider the source
at θs = 5π/6 and the observer at θo = π/6.

Figure 6.3.3: Magnification curves for a gravitational lensing system involving the
supermassive black hole Sagittarius A* for sources and observers situated at different
inclinations. Specifically, each plot consists of a Kerr lens of mass M = 3.61 × 106M⊙
with astrophysical separations, ro = 7.62 kpc and rs = 4.85 × 10−5 pc, where each curve
represents different values for the spin parameter a. Furthermore, we note that the plots
are fitted by choosing an appropriate δ, such that β2 ∼ 0.15 in alignment with [3].
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The final interesting feature arising in figure 6.3.2 is the existence of an apparent
intersection point between all magnification curves and the peak of the magnification curve
at a = 0. Mathematically, this simply arises since this point of intersection corresponds
to β1 = 0 and so the correction to the magnification at order O(ϵ) simply vanishes. When
considering higher order corrections, however, we do see that this behaviour no longer
persists.

When modelling astrophysical objects, the exact geometric configuration is often
unknown and it is highly unlikely we will be in the situation where both the source and
observer lie in the equatorial plane (though this is the case for self-lensing binaries which
are very close to edge-on (θs = θo = π/2)). For isolated lenses however, the geometric
construction must be considered in the most general sense, thus it is essential we analyse
the effect that different inclinations have on the image magnifications.

In figure 6.3.3, we plot the magnification curves for numerous spins a at different source
and observer inclinations, once again focusing our attention on gravitational lensing by
Sagittarius A*, in analogy with figure 6.3.2. The immediate connection we establish is
that the further the inclinations deviate from the equatorial plane, the lesser effect the
spin has on the resultant magnification. This behaviour is to be expected since the spin
only ever appears in the expansion through the coupling a

√︁
1− µ2

o.

Figure 6.3.4: Magnification curves for a gravitational lensing system involving the
supermassive black hole Sagittarius A* using different combinations of parameters.
Specifically, both curves model a Kerr lens of mass M = 3.61× 106M⊙ with astrophysical
separations, ro = 7.62 kpc and rs = 4.85×10−5 pc. However, for each curve we implement
different combinations of spin a and inclination θs (and accordingly θo).
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The most challenging aspect that we must still overcome to perform astrophysical
simulations arises from the similarities that are exhibited between two entirely different
gravitational lensing systems. It can become incredibly difficult to distinguish between
the two systems despite the fact that they have different physical parameters and may
even consist of different astrophysical objects.

We demonstrate this issue by illustrating a number of qualitatively different
magnification curves that look remarkably similar in figure 6.3.4. While both systems
consist of a Kerr lens with mass M = 3.61 × 106M⊙ and have the same astrophysical
separations, rs = 4.85 × 10−5pc, ro = 7.62kpc, they possess different combinations of
alignment and spin. Our hope is that by having full spin-mass distributions, as opposed
to just mass-distributions for the relevant lensing systems we study, one will be able to
somewhat mitigate this problem.

6.3.3 Self-lensing and microlensing

The formalism we have presented in this section considering the phenomena of
gravitational lensing in the weak deflection limit, describing light rays deflected by a
gravitational lens associated with the Kerr metric, admits exciting astrophysical
extensions. The qualitative differences observed in the magnification curves for the
supermassive black hole Sagittarius A*, combined with ongoing spectroscopic and
photometric studies, could indeed provide a mechanism to measure the spin parameter,
a, of Sagittarius A* and test the cosmic censorship conjecture, as suggested in [385].

While gravitational lensing studies of Sagittarius A* in the weak deflection limit
certainly warrants further research, we focus our attention on astrophysical systems in
which the compact object constituting the lens is a stellar-mass black hole (i.e. a black
hole with mass 5M⊙ < M < 50M⊙). In particular, we are interested in pristine binary
systems exhibiting self-lensing behaviour as well as isolated compact lenses in systems
with large separations (so that we are in the microlensing regime) and we will begin our
discussion with the former.

Indeed, should one successfully find pristine self-lensing binary systems and probe them
accordingly, the determination of their mass distributions can directly provide us with
insights into the supernova mechanism (e.g. [390]). Should we also be able to determine
their joint spin-mass distributions, one may be able to understand this process in even
further depth. Similarly, should we apply this analysis to neutron stars, one may be able
to test their internal structure. We will discuss these potential applications further in
section 6.5.
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Now, once again consider the self-lensing binary system we studied in the case of
Schwarzschild (associated with the magnification curve in figure 6.3.1a). In figure 6.3.5
we plot the change in the total magnification µtot that arises solely as a consequence of
contribution terms involving the spin parameter a, denoting this change in magnification as
δµtot. As should already be obvious by now, for astrophysical spins in the range 0 ≤ a ≤ 1,
the larger the value of a, the more prominent its influence of the total magnification.

Figure 6.3.5: The change in the total magnification µtot, denoted δµtot, solely due to to
contributions involving the spin parameter a for a self-lensing binary system, plotted for
a discrete range of spins 0 ≤ a ≤ 1. The self-lensing binary system involves a Kerr lens
of mass M = 10M⊙ with astrophysical binary separation rs = 47 AU and Einstein radius
RE = 0.92R⊙, for a source and observer situated extremely close to the equatorial plane
(incrementally shifted off-equatorial by δ).

As may be expected, at early and late times, terms involving the spin do not play a
significant role. Similarly, at perfect alignment (β1 = 0), all spin profiles intercept such
that δµtot = 0 and the total magnification reduces to Schwarzschild. We have already
explained the origin of this interception point in section 6.3.2, and in order to avoid
repetition, we will not discuss it further here. The most crucial segments of the profiles
for our interests are those where the absolute value of δµtot is maximised, i.e. the turning
points in figure 6.3.5. Since the spin, a, modifies the total magnification µtot by the most
significant amount here, this is the most likely portion of the profile that we will be able to
observe astrophysically. Further, the values we obtain for δµtot (of order ∼ 10−5) in regions
near these turning points are within the detection capabilities of existing observational
instruments [391].
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(a) The change in the total magnification µtot, solely due to to contributions involving the
spin parameter a for a microlensing system, plotted for a discrete range of spins 0 ≤ a ≤ 1.
Here, the source and observer situated extremely close to the equatorial plane (incrementally
shifted off-equatorial by δ).

(b) The change in the total magnification µtot, solely due to to contributions involving the
spin parameter a for a microlensing system, emphasising the importance of the inclination
(i.e. different combinations of the observer and source angles, θo and θs). Solid lines indicate
that the system is equatorial whereas dashed lines correspond to inclinations where θs =
5π/6 (and θo = π/6− δ accordingly).

Figure 6.3.6: Two plots illustrating the change in the total magnification µtot, denoted
δµtot, solely due to to contributions involving the spin parameter a for a microlensing
system for different combinations of parameters. Specifically, the microlensing system
consists of a Kerr lens of mass M = 10M⊙ such that the astrophysical separation between
the lens and the source is rs = 4.7 × 106 AU and the corresponding Einstein radius is
RE = 291.83R⊙.
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One comment which we should disclose is that the rightward shift in the magnification
curve that our plots demonstrate may be harder to distinguish astrophysically. This
is due to the fact that observationally, magnification curves will always be centralised
in time by their peak. Consequently, should this problem be unavoidable by means of
current modelling techniques, the observable effects due to spin will therefore be smaller.
We note that even in this case, the minimum observable effect will be the total change in
magnification (due to spin) at the peak of the magnification curves post-alignment4, δµA

peak.
Our current predictions estimate that for this self-lensing system, δµA

peak ∼ 1.6×10−9 when
a = 1 and finding a value for the total observable effect (should we be forced to align the
curves) is subject to ongoing work. While this initial value may be beyond the capabilities
of current observational instruments, as we enter a high-precision era of astronomy, one
indeed expects these effects to become detectable in the near future.

We note here that current optical survey predictions of self-lensing binary populations
have only considered Schwarzschild backgrounds [362]. While one may anticipate that
these are underestimates of true detectable population sizes, since the spin parameter a
has a direct influence on the total magnification µtot, because the detectable changes are
so small, we expect that this effect on population predictions is negligible. Thus, the total
number of observable self-lensing events that can be detected with current instruments
will remain unchanged when accounting for the compact object’s spin.

We now move on to our second, equally exciting potential application: testing
astrophysical scenarios that exhibit microlensing, such as those recently detected
in [285, 286], in which the gravitational lens is an isolated, compact object.
Understanding and testing microlensing for isolated compact objects is essential as there
is strong evidence to suggest a substantial portion of stellar-mass black holes are indeed
single and do not belong to binaries (e.g. because around 30% of massive stars are born
single and the compact object is its remnant [392, 393]). Testing the spins for these
objects could provide the additional information required to classify the specific remnant
encountered. More discussion on this front will follow in section 6.5.

Now, although the analysis in this section has so far only considered observers and
sources that lie equatorially (since binaries are always edge-on), it is essential we consider
different inclinations when constructing models for isolated, compact lenses. As illustrated
in section 6.3.2, since the spin parameter always appears in the magnification coupled
with an inclination term (i.e. as a

√︁
1− µ2

o), spin effects are maximised in the equatorial
plane θo = θs = π/2. As we consider inclinations that become increasingly further from
equatorial, the effect of spin becomes increasingly smaller, before vanishing at the poles
θo = θs = 0.

4Post-alignment here refers to the situation after we have aligned the magnification curves such that
their peaks are aligned at (t − t0)/tE = 0.
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We now return to the microlensing system we studied for Schwarzschild lensing
(associated with the magnification curve in figure 6.3.1b). As for the self-lensing case, we
plot the change in the total magnification δµtot that arises solely as a consequence of
contribution terms involving the spin parameter a for the microlensing case, as depicted
in 6.3.6a. We also demonstrate how different inclinations can influence these shifts in
figure 6.3.6b. In this instance, the curves exhibit the same behaviour as described in the
self-lensing case, though we note that the scale of the effect due to spin here is much
larger (e.g. for the extremal case a = 1, we see peaks in δµtot at approximately 0.03).
Similarly, should we be forced to accept that the magnification curves, for each spin a,
must be aligned at their peaks (if no mechanism exists to maintain the rightward shift in
time) when considering true astrophysical observations, our initial findings predict the
total change in magnification at the peak is approximately δµA

peak ∼ 5× 10−7 in the case
where a = 1. Either way, spin contributions can have a significantly larger magnitude
when considering microlensing systems, as opposed to self-lensing binaries, thus there is
an increased likelihood that the behaviour displayed will be detectable within this
regime.

6.3.4 Extremal Kerr black holes

A particular class of compact objects, namely extremal black holes (a = 1), are of
particular interest to us. When considering objects that are well described by the Kerr
metric, the relevant angular momentum of the compact object is restricted by the
cosmic-censorship hypothesis and so the spin is bounded such that 0 < a < 1. Further,
according to the third law of black hole thermodynamics [17], no process exists that will
evolve a non-extremal black hole into an extremal one.

It certainly is surprising then that astrophysical black holes that come close to being
extremal, such as GRS 1905+105 [394–396] and Cygnus X-1 [397, 398], have indeed been
claimed to exist. Near-extremal black holes exhibit some of general relativity’s most
exhilarating features and so studying them can provide us further insight into both the
core theory and astrophysical observations.

Further, extremal black holes lie at the epicentre of various other intriguing concepts
and techniques, most prominently in the realm of quantum gravity and field theory.
These fundamental ideas have been developed into extremely valuable mathematical
theories but require validation from experimental observations. In this thesis, we believe
the most interesting avenues to explore within fundamental theory are those relating to
the fuzzball proposal [93–96] and the Kerr/CFT correspondence [97, 98]. Our ideas to
utilise gravitational lensing to shed light on these theories is provided in section 6.5.
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When considering strong gravitational lensing, the full lens equations (5.2.16, (5.2.17))
must be solved. In this instance, when considering the extremal case, one obtains a
unique solution for the second radial integral Iϕ, as given in (5.2.78). However in the weak
deflection limit, the expansion holds true for a = 1 and the case need not any special
consideration.

Figure 6.3.7: The change in the total magnification µtot solely due to the spin for a self-
lensing binary system considering numerous different near-extremal spins a in the region
0.8 < a ≤ 1. Specifically, this system consists of a Kerr lens of mass M = 10M⊙ with
astrophysical binary separation rs = 47 AU and Einstein radius RE = 0.92R⊙, for a source
and observer situated in the equatorial plane.

As can be seen from all the previous figures in this section, magnifications curves in the
extremal limit a→ 1 exhibit the same pattern of behaviour as those with spins 0 < a < 1.
To demonstrate this behaviour explicitly and show the extremal case is simply an analytic
extension of the non-extremal case for rotating, compact objects in the weak deflection
limit, we plot the spin-only contributions to the magnification for spins approaching a→ 1
in figure 6.3.7. In other words, we plot the change in total magnification due to spin, δµtot,
considering the spin parameter in the region 0.8 < a ≤ 1 in the same self-lensing regime
that we have already previously explored in figures 6.3.1a and 6.3.5.

6.4 Extended sources

As we have already discussed, modelling the phenomena of gravitational lensing can
indeed be well described utilising point sources, though these arguments break down as
one approaches perfect alignment β = (β1, β2) = (0, 0). This is since the image
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magnifications diverge resulting in the appearance of an infinitely bright Einstein ring.
In true astrophysical scenarios however, the object constituting the source must have a
finite radius that smooths the peak of the magnification curve to be finite. In this
section, we focus on describing the image configuration, and more crucially, the arising
magnification, due to the gravitational lensing of an extended source by a point mass
lens.

6.4.1 Extended uniform sources in Schwarzschild spacetime

We begin our discussion by summarising the methodology used to describe extended
sources in Schwarzschild spacetime, pioneered by the seminal work [399]. For these
purposes, we consider circular sources with finite radius Rs and emit light rays such that
the surface brightness is uniform. Since this extended source is now a two-dimensional
object, one introduces complex notation to define a lens equation of the same
dimensionality [399],

ζ = z − 1
z̄
. (6.4.1)

In this language, ζ is the complex coordinate associated with the source plane, z = x+iy is
the complex coordinate associated with the lens plane and z̄ denotes the complex conjugate
of z. Further, these quantities are normalised to possess units of REDs/Dd and RE

respectively by normalising the radius of the extended source as

Rs = RsDd

REDs
. (6.4.2)

In analogy with the point source lens equation (5.1.26), we notice that |β⃗| = |ζ| and
|θ⃗| = |z|.5 One may trivially solve (6.4.1) to obtain the two image positions

z± = ζ

2

(︃
1±

√︄
1 + 4

ζζ̄

)︃
, (6.4.3)

which similarly represents the complex analogue of (5.1.27). We make the assumption that
the source has uniform brightness in the circular region described by ζ(r, ϕ) = ζ0 + reiϕ.
Here we choose ζ0 to be real and positive and constrain our parameters to the ranges
0 ≤ r ≤ Rs and 0 ≤ ϕ ≤ 2π. One can accordingly express the image positions to be
parametrised by r and ϕ so that

z± = ζ0 + reiϕ

2

(︃
1±

√︄
1 + 4

ζ2
0 + 2rζ0 cosϕ+ r2

)︃
. (6.4.4)

5We note here that β and θ here refer to the source and image positions normalised by θE .
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Now, for an extended source with surface brightness profile I(β⃗), the general formula for
the magnification due to gravitational lensing is [83],

µe =
´
d2β⃗ I(β⃗) µp(β⃗)´

d2β⃗ I(β⃗)
, (6.4.5)

where β⃗ = (β1, β2) is the position of source and µp(β⃗) denotes the point source
magnification for a source at position β⃗ (which has been normalised to have units in RE)
given in (5.1.33). The brightness profile I(β⃗) can always be chosen to be normalised so
that the denominator of (6.4.5) simply becomes the area of the source. Thus, for a
circular source with radius Rs, the denominator of (6.4.5) may always be reduced to give

ˆ
d2β⃗ I(β⃗) =

ˆ
dβ1dβ2 I(β⃗) = πR2

s, (6.4.6)

hence
µe = 1

πR2
s

ˆ
d2β⃗ I(β⃗) µp(β⃗). (6.4.7)

With regards to the numerator of (6.4.5), for our current purposes we are interested in
the discussion of sources that are uniformly bright, therefore one has the luxury that the
brightness profile is satisfied by I(β⃗) = 1. Thus, one must simply evaluate the simplified
equation

µe = 1
πR2

s

ˆ
d2β⃗ µp(β⃗). (6.4.8)

In order to understand how we intend to evaluate this integral, it is useful to visualise
the situation from the perspective of an astrophysical observer, as shown in figure 6.4.1.
Recalling |β⃗| = |ζ|, one can explicitly write

|β⃗(ζ)| = ζζ̄ =
√︂
ζ2

0 + 2ζ0r cosϕ+ r2. (6.4.9)

Thus, each point on the extended source is separated from the optical axis by an angular
distance |β⃗(ζ)|. In the particular case in which we consider the centre of the extended
source, we would have Rs = 0 and so the angular distance would become |β⃗(ζ = ζ0)|.

So, when we are evaluating the integral in (6.4.8), we must evaluate the point source
magnification such that µp(β⃗) = µp(β⃗(ζ)). Since we wish to integrate over a circular
boundary, the integration is most easily computed by utilising polar coordinates.
Therefore our final equation for the magnification of an extended source with uniform
surface brightness is

µe = 1
πR2

s

ˆ 2π

0

ˆ Rs

0
µp(β⃗(ζ)) r drdϕ. (6.4.10)
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Background source

Rs

L

|β⃗(ζ = ζ0)|

|β⃗(ζ)|

Figure 6.4.1: The perspective of the observer of the gravitational lensing event, where a
background source with radius Rs passes behind a compact object L that distorts incident
rays. The angular distance between the optical axis and the centre of the extended source
is given by |β⃗(ζ = ζ0)| while the angular distance between the optical axis and an arbitrary
point on the extended source is given by |β⃗(ζ)|.

We close this section by demonstrating the qualitative similarities and differences one
observes when considering an extended source with uniform surface brightness as opposed
to a point source. Most notably, the magnification curve for extended sources becomes
much broader (more rounded) when considering an extended source with a significantly
less sharp peak. In figure 6.4.2, we plot the magnification curves associated with the
self-lensing and microlensing cases we previously illustrated in the top and middle panels
in figure 6.3.1, though this time we consider sources possessing a fixed, finite radius.
In particular, the curves presented in figure 6.4.2 consider extended sources with radius
Rs = 1R⊙ that are situated in the equatorial plane θo = θs = π/2.

Firstly, we notice that the curves match at peak magnifications with their analogous
curves in figure 6.3.1. We recall that this is of course by construction and due to our
choice of δ. However since the geometric construction is indeed different for our point
source model and extended source model (as the extended source is situated equatorially
as opposed to being shifted by δ), we note that these are distinct from one another. In
fact, point sources can indeed have slightly larger or smaller peak magnifications than
extended sources (with a fixed radius) for the exact same geometric configurations. For
brevity we do not discuss this in more depth here, but the intricate details connecting
point source magnifications and extended source magnifications are explicitly illustrated
in [399].
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(a) Magnification curve for a Schwarzschild lens of mass M = 10M⊙ with binary separation
rs = 47 AU and Einstein radius RE = 0.92R⊙. Here we consider an extended source with
fixed radius Rs = 1R⊙ and uniform surface brightness.

(b) Magnification curve for a Schwarzschild lens of mass M = 10M⊙ such that the separation
between the source and the lens is rs = 4.7 × 106 AU and the Einstein radius is RE =
291.83R⊙. Here we consider an extended source with fixed radius Rs = 1R⊙ and uniform
surface brightness.

Figure 6.4.2: Magnification curves for two distinct gravitational lensing systems of interest;
a self-lensing binary system and a microlensing system analogous to those presented in
figure 6.3.1. In both astrophysical scenarios we consider an extended source with fixed
radius Rs = 1R⊙ and uniform surface brightness.
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6.4.2 Extended uniform sources in Kerr spacetime

Now we have discussed the mechanism in which we describe extended uniform sources for
systems containing Schwarzschild lenses, we now illustrate how one would broaden our
approach to include Kerr lensing systems in the weak deflection limit. While gravitational
lensing extensions from Schwarzschild to Kerr for point sources tend to require one to
add an additional dimension to the problem (since one breaks the azimuthal symmetry so
that the observer’s sky becomes two-dimensional as opposed to one-dimensional), we note
that we are not required to here. This is since extended sources similarly require that the
problem is no longer one-dimensional.

In fact, the first step in the generalisation to Kerr can be performed by simply breaking
the previous assumption invoked that ζ0 be real and positive. In the Schwarzschild regime,
by making this assumption, one is effectively fixing the centre of the extended source to
lie in the equatorial plane. In other words, when considering extended sources, we have
projected a circle of radius Rs around the source position of a point source. For example,
we take a point source with source position β⃗ = (β1, β2) = (ζ0, 0) and project a circular
region around it providing the position of the extended source:

β1 = ζ0 + r cosϕ, β2 = r sinϕ. (6.4.11)

Hence the total angular distance between each point within our finite source and the
optical axis is given by the function

|β⃗(ζ)| =
√︂
β2

1 + β2
2 =

√︂
ζ2

0 + 2ζ0r cosϕ+ r2, (6.4.12)

as we already discussed in section 6.4.1. Thus, since we restrict ζ0 to be real, the centre of
the extended source always lies on the equatorial plane. As we have extensively explained,
the angles of inclination θo and θs play an essential role in describing geodesics in Kerr
lensing and so one must consider cases away from the equatorial plane. Then, we simply
allow ζ0 to have both real and complex components;

ζ0 = ζR
0 + iζI

0 . (6.4.13)

Thus, we centre our extended sources around a singular point with position β⃗ = (β1, β2) =
(ζR

0 , ζ
I
0 ) so that the source positions of our extended sources can be parametrised by

β1 = ζR
0 + r cosϕ, β2 = ζI

0 + r sinϕ. (6.4.14)

Now, although we are still able to express the region encompassing the uniformly bright
source using ζ(r, ϕ) = ζ0 + reiϕ, we clearly cannot use the lens equation (6.4.1). Since
we are considering Kerr lensing in the weak deflection limit however, we can invoke the
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lens equations (6.2.4) and (6.2.6) in order to evaluate the image positions. Fortunately,
using this formalism involves implementing the source positions in component form (i.e.
as β1 and β2), so one can repeat the previous method explored in section 6.2, however now
evaluating by using the source positions in (6.4.14). That is to say, the image positions
are still given by the series expansions

θ1 = θE

(︂
θ1(0) + ϵ θ1(1) + ϵ2θ1(2) +O(ϵ3)

)︂
, (6.4.15)

θ2 = θE

(︂
θ2(0) + ϵ θ2(1) + ϵ2θ2(2) +O(ϵ3)

)︂
, (6.4.16)

with the full angular separation of the image from the lens being

θ = θE

(︂
θ(0) + ϵ θ(1) + ϵ2θ(2) +O(ϵ3)

)︂
, (6.4.17)

where the expressions for each of the terms remain unchanged but are now evaluated such
that β1 and β2 are defined as in (6.4.14).

The formula for the total absolute magnification for a uniform extended source when
considering Kerr gravitational lensing remains unchanged from the Schwarzschild case,

µe =
´
d2β⃗ I(β⃗) µp(β⃗)´

d2β⃗ I(β⃗)
, (6.4.18)

though upon evaluation we note that β1 and β2 are defined as in (6.4.14) and µp(β⃗) now
denotes the point source magnification at source position β⃗ = (β1, β2), given by equation
(6.2.38). We can make the same simplifications as in the Schwarzschild case to reduce
(6.4.18) to be

µe = 1
πR2

s

ˆ
d2β⃗ µp(β⃗). (6.4.19)

We once again illustrate a visual interpretation of the astrophysical configuration from
the perspective of the observer, as shown in figure 6.4.3. The discussion from the previous
section remains true, however since ζ0 is now complex, there is no constraint restricting
the centre of the source to lie equatorially. Thus, in this case,

|β⃗(ζ)| =
√︂
β2

1 + β2
2 =

√︂
|ζ0|2 + 2ζR

0 r cosϕ+ 2ζI
0r sinϕ+ r2. (6.4.20)

As before, the integration must be performed in (6.4.19) over a circular boundary therefore
it is convenient to express it using polar coordinates. So, the total absolute magnification
for an extended source of uniform brightness when considering Kerr lensing in the weak
deflection limit is

µe = 1
πR2

s

ˆ 2π

0

ˆ Rs

0
µp(β⃗(ζ)) r drdϕ, (6.4.21)
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Background source

Rs

L |β⃗(ζ = ζ0)|

|β⃗(ζ)|

Figure 6.4.3: The observer’s perspective of the Kerr gravitational lensing event,
constituting the passing of a background source with radius Rs behind a compact object
L. The angular distance between the optical axis and the centre of the extended source is
given by |β⃗(ζ = ζ0)| while the angular distance between the optical axis and an arbitrary
point on the extended source is given by |β⃗(ζ)|. In the case of Kerr lensing, the centre of
the source is no longer fixed to lie on the equatorial plane.

where µp(β⃗(ζ)) is the point source magnification described in (6.2.38) and β1 and β2 are
given by (6.4.14).

Concluding this section on extended uniforms sources in Kerr spacetime, we consider
the total change in magnification, δµe, due to the influence of spin. In figure 6.4.4, we
explicitly illustrate these effects for the same astrophysical system considered in figure
6.4.2a, with higher spins demonstrating larger values of δµe, as may be expected from our
previous analysis utilising point sources.

We note here that in order to reduce the total runtime of our model significantly, we
have plotted our results for positive times only, i.e. (t − t0)/tE > 0. We have chosen to
do so since numerical instabilities arise as one approaches (t− t0)/tE = 0 and in order to
reduce them and smooth the curve, one must perform the integration in (6.4.21) over an
increasing number of loops (requiring larger runtimes). Secondly, should we consider the
region (t− t0)/tE < 0, one will simply see the same plot reflected in the y = −x axis (e.g.
reminiscent of the point source behaviour in figure 6.3.5) and this additional symmetry
adds no interesting behaviour of note.
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Figure 6.4.4: The change in the total magnification δµe, solely due to to contributions
involving the spin parameter a for a self-lensing binary system, plotted for a discrete range
of spins 0 ≤ a ≤ 1. The self-lensing binary system involves a Kerr lens of mass M = 10M⊙
with astrophysical binary separation rs = 47 AU and Einstein radius RE = 0.92R⊙, for
an extended, uniform source (with radius Rs = 1R⊙) and an observer situated in the
equatorial plane.

6.4.3 Limb darkening

So far we have considered extended sources that have a constant surface brightness. In
reality, the surface brightness of the source object is not uniform and instead varies
according to its position within the source. Further, one expects the source to have the
highest surface brightness at its centre, and lowest surface brightness at its edge. This
occurs since photons transported from the centre of the stellar disk originate from deeper
regions in the stellar atmosphere than at the edge of the source. Consequently, these
photons are excited by higher temperatures and as a result will have a higher luminosity
at the associated wavelength. This phenomenon is colloquially known as the limb
darkening of the source. Thus, when simulating magnification curves, the inclusion of
this effect is vital as the total magnification becomes larger and thus the impact of the
spin a differs from the case of the extended, uniform source. The addition of limb
darkening into the formula for the total magnification for an extended source (6.4.18)
arises through the brightness profile, which we now formally define to be [83],

I(β⃗(ζ)) = I0 f

(︃ |β⃗(ζ)|
Rs

)︃
(6.4.22)

as opposed to simply being reduced to I(β⃗(ζ)) = 1 in the case of a uniform source. I0 here
refers to the surface brightness present at the centre of the source (i.e. at β⃗(ζ = ζ0)) which
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imposes an upper limit on the exact brightness profile, I0 ≥ I(β⃗(ζ)). The function f is
the function that encodes the relevant limb darkening law, which we will shortly discuss.

Explicitly including the dependence on ζ, (i.e. substituting β⃗ = β⃗(ζ)), the integral we
desire to evaluate has the form

µe =
´
d2β⃗ I(β⃗(ζ)) µp(β⃗(ζ))´

d2β⃗ I(β⃗(ζ))
, (6.4.23)

and subsequently we once again find it is most conveniently expressed using polar
coordinates,

µe =
´ 2π

0
´ Rs

0 I(β⃗(ζ)) µp(β⃗(ζ)) r drdϕ´ 2π
0

´ Rs

0 I(β⃗(ζ)) r drdϕ
, (6.4.24)

where the brightness profile is described by (6.4.22). Then the only remaining term left
to discuss is the function f which imposes our choice of limb darkening law. The only
constraints one has is that the function should reduce the surface brightness as we deviate
away from the centre of the source and we are restricted by the upper bound I0 ≥ I(β⃗(ζ))
which implies that f(|β⃗(ζ)|/Rs) ≤ 1. We of course note that the bound is saturated when
we are at the centre of the source ζ = ζ0. Since this function will be heavily dependent
upon ζ0, it makes sense to write it in a slightly different manner;

f

(︃ |β⃗(ζ)|
Rs

)︃
= g

(︃ |β⃗(ζ − ζ0)|
Rs

)︃
. (6.4.25)

This can be interpreted in an even easier manner. Since ζ − ζ0 = reiϕ, then

|β⃗(ζ − ζ0)| =
√︂

(β1(ζ − ζ0))2 + (β2(ζ − ζ0))2 = r. (6.4.26)

Hence, our function really takes the form

f

(︃ |β⃗(ζ)|
Rs

)︃
= g

(︃
r

Rs

)︃
. (6.4.27)

Then, we must simply define a function with dependence on r/Rs and since we know that
g should become smaller as we deviate further from the centre of the source (now at r = 0
in polar coordinates), this becomes rather trivial. For our purposes we choose a function,
g, that encodes a quadratic limb darkening law (as in [400]). In particular,

g

(︃
r

Rs

)︃
= I(β⃗(ζ))

I0
= 1− γ1(1− σ)− γ2(1− σ)2, (6.4.28)

where

σ =

⌜⃓⃓⎷1−
(︃
r

Rs

)︃2
(6.4.29)
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(a) Magnification curves considering a Schwarzschild lens of mass M = 10M⊙ with binary
separation rs = 47 AU and Einstein radius RE = 0.92R⊙. Here we consider both an
extended source with uniform surface brightness and one obeying a quadratic limb darkening
law.

(b) Magnification curves considering a Schwarzschild lens of mass M = 10M⊙ such that the
separation between the source and the lens is rs = 4.7× 106 AU and the Einstein radius is
RE = 291.83R⊙.

Figure 6.4.5: Magnification curves for two distinct gravitational lensing systems of interest;
a self-lensing binary system and a microlensing system analogous to those presented
in figures 6.3.1 and 6.4.2. In particular, in both astrophysical scenarios we consider
an extended source with uniform surface brightness and one obeying a quadratic limb
darkening law. Specifically, we choose the source to have a fixed radius Rs = 1R⊙ and
γ1 = γ2 = 0.3 where we consider limb darkening.
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and γ1 and γ2 are free parameters satisfying the relation γ1 + γ2 < 1. We note that
there are various choices of limb darkening laws that have been studied in the literature
(e.g. [401–405]), though for our purposes the quadratic law will suffice. Further, we can
check that at the centre of the source r = 0, our function reduces to g(0) = 1 as desired.

Thus, to summarise, our models compute the total absolute magnification of a limb-
darkened extended source by numerically evaluating the integral

µe =
´ 2π

0
´ Rs

0 g
(︁

r
Rs

)︁
µp(β⃗(ζ)) r drdϕ´ 2π

0
´ Rs

0 g
(︁

r
Rs

)︁
r drdϕ

, (6.4.30)

where g(r/Rs) is defined by the quadratic limb darkening law (6.4.28) and µp(β⃗(ζ)) is the
point source magnification (6.2.38) for a source at position β⃗.

Figure 6.4.6: The change in the total magnification, δµe, solely due to spin contributions
considering a self-lensing binary system for both an extended source with uniform surface
brightness and one obeying a quadratic limb darkening law, such that a = 1 and γ1 =
γ2 = 0.3. In particular, the source is chosen to have a fixed radius Rs = 1R⊙ and our
astrophysical system consists of a Kerr lens of mass M = 10M⊙ with binary separation
rs = 47 AU and Einstein radius RE = 0.92R⊙.

In figure 6.4.5, we once again plot the Schwarzschild extended uniform source
magnification curves (as in figure 6.4.2) for the self-lensing and microlensing scenarios we
have continuously used throughout this chapter. This time however, we plot a second
curve, where we have assumed the surface brightness satisfies a quadratic limb darkening
law (i.e is described by (6.4.28)) such that we have taken γ1 = γ2 = 0.3. As we have
already mentioned, by adding limb darkening to the model, we can explicitly see that the
profile not only has a sharper peak, but the total peak magnification takes a larger value
than in the case of a uniform extended source. While we have already justified this
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behaviour from the perspective of astrophysics, mathematically one could interpret this
as ‘effectively reducing β2’.

Finally, the addition of limb darkening not only increases the peak magnification but it
has consequences for the change in magnification due to spin contributions, δµe, as can be
seen in figure 6.4.6. In particular, we have plotted δµe (for the same self-lensing system)
for an extended uniform source and a limb-darkened source with γ1 = γ2 = 0.3 and such
that a = 16. It would certainly be interesting to understand conceptually why the limb
darkening broadens and shifts the profile and we plan to investigate this in more depth in
upcoming work.

6.5 Discussion

In this thesis chapter we have attempted to address the necessity for the use of the Kerr
metric when considering astrophysical gravitational lensing problems. Qualitative
differences immediately emerge in the magnification curves subject to the asymmetry
associated with introduction of spin. In order to achieve this, we considered the case of
the weak deflection limit, utilising the geodesic equations of null rays and perturbatively
solving for the appropriate lensing quantities following [2]. Thus, we include corrections
up to order O(a2rsch) and O(ar2

sch) noting that quantities that are purely spin terms
(e.g. terms ∝ a2, a3) do not contribute to any observables.

Indeed, it would be especially useful to draw insight from the strong deflection limit
to see how our results generalise to cases that the weak deflection do not describe (e.g.
considering relativistic images and photon rings of Kerr black holes). Doing so would
provide enlightenment on astrophysical phenomena where the separations in the system
are significantly smaller than in the weak deflection limit and the prime candidate to study
would likely be X-ray binaries [352]. However, the fundamental difficulty residing in this
extension is that should we wish to consider systems that are not edge-on (such as isolated,
compact objects), one must consider a significantly larger parameter space, particularly
for the choice of source and observer angles. Both analytic [90–92, 296, 302, 303, 384, 406]
and numerical [89, 299–301] studies have been undertaken to try to best model the lens
equations in these scenarios.

The mass and spin measured in the vast majority of black hole X-ray binaries is unlikely
to be natal, as the accretion process which allows them to be located, results in large
amounts of mass and angular momentum being transferred to the compact object [407].
Consequently, one cannot study the object’s initial mass and we are unable to deduce

6We note that we have once again chosen to only plot for (t−t0)/tE > 0 to reduce runtime (as explained
in section 6.4.2).
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whether the natal spin is low (as expected where the helium core is spinning slowly prior
to collapse, e.g. [390]).

As we have already alluded to, the majority of the self-lensing systems we expect to
detect in upcoming surveys [362] will be pristine, i.e. unchanged in mass and angular
momentum since their formation. By modelling the self-lensing events, we can obtain an
estimate for the compact object masses via dynamics (i.e. with a period, magnification
and mass estimate for the secondary star) and, utilising the full Kerr metric, the spin.
Thus, we have provided the initial steps to build a model that will allow us to obtain the
natal properties and make direct comparisons to predictions from core collapse supernova
models.

It is commonly believed that one can immediately identify any gravitational lens with a
sufficiently large mass, M , or a spin, a > 0.3, as a black hole (e.g. since the fastest spinning
pulsar has a ∼ 0.3 [408]). In regions where neutron stars are unambiguously located (i.e.
with masses 1−2M⊙), limits on the spin together with pulse periods detected in the radio
would allow the moment-of-inertia to be explored, constraining the equation-of-state.

Alternatively, the lensing profiles are sensitive to the object’s radius (i.e. a large
radius leads to additional occultation), and we hypothesise that these may allow a direct
measurement of the compactness, again constraining the equation-of-state should data
quality be sufficiently high. Since we assume large distances in our models (as we are in
the weak deflection limit), occultation effects are unlikely to occur and so we are unable
to explicitly test this. However, should we extend this work to include strong lensing
effects, magnification curves will indeed be prone to occultation effects and one can
investigate this avenue in more detail.

Further, recent results from LIGO imply that the population of merging black holes
have low spins when compared to X-ray binaries [409]. This could point towards
different evolutionary tracks; certainly accretion given long enough can change the black
hole spin [407]. Since our model provides the tantalising opportunity to constrain the
spin/inclination distribution of isolated black holes detected by microlensing surveys
(e.g. [285, 286]) and test whether the non-accreting black holes, ejected from the natal
supernova could eventually be the seeds for mergers.

But, as we have alluded to, astrophysical applications are not our only source of
interest in this work. Gravitational microlensing has the potential to be an effective tool
to understanding key concepts in fundamental theory. Furthermore, it may lay the
groundwork to further investigate two particularly fascinating ideas: the fuzzball
proposal [93–96] and the Kerr/CFT correspondence [97,98].
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The lensing and occultation effects explored in this thesis may provide a new way to
physically distinguish between black holes and microstate geometries. For example, the
lack of rotational symmetry of black hole microstates may change qualitatively the shapes
of the occultation curves. These curves can be measured over extended timescales, hence
allowing detailed analysis of the curve shape. It is important to note that deviations
between black hole microstates and the Einstein black hole solutions are expected to be
very small even close to the black hole horizon, so these effects may be too small to see
with current observational capabilities. However, establishing a qualitative feature that
distinguishes between microstates and black holes is conceptually important even if beyond
the limits of current detectability.

Similarly, it would be interesting to explore whether the structure of lensing and
occultation of near extremal rotating black holes can similarly be understood in
Kerr/CFT. There has been progress recently in finding analytic solutions for lensing
equations in Kerr [91, 92]. Analysis of the equations and the occultation curves in the
limit of a → 1 could give rise to new understanding of underlying symmetries of the
dynamics. It would also be interesting to explore whether one could describe the
occultation curves in the language of the dual field theory.

Finally, the study of Einstein gravity coupled to axions is well motivated, as axions
are often invoked as a key component of dark matter. Moreover, axions often arise in top
down constructions of beyond the standard model physics e.g. in string theory
compactifications. Phenomenological implications of axions have been studied
extensively in recent years [410], with a particular focus on gravitational wave
observations. The study of microlensing and occultation in axionic models would allow
new regimes to be tested, imposing additional constraints on the parameter space of such
models.
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The primary purpose of this thesis was to explore the nature of spacetime by investigating
two distinct areas of theoretical physics, namely holographic quantum error correcting
codes and gravitational lensing in Kerr backgrounds. We dedicated Part I to the former
branch of research and investigated the latter discipline in Part II. We end our journey by
providing a summary of the contained work, together with the subsequent conclusions we
have drawn. We also provide a brief outlook on our future objectives arising as a result
of these studies and how these extensions could more broadly influence their respective
fields. For the sake of brevity and in order to avoid repetition, we point the reader to
the more detailed conclusion sections present at the end of their respective chapters (i.e.
sections 4.6 and 6.5).

The opening chapters of this thesis were dedicated to reviewing previous literature
relevant for our studies in chapter 4. A prominent focus was given to introducing the
holographic principle and its most explicit realisation, the AdS/CFT correspondence, in
chapter 1. In chapter 2 we shifted our attention to the extensive subject of quantum
information theory, summarising particular aspects such as the phenomenon of quantum
entanglement, tensor networks and most notably, the notion of quantum error correcting
codes. The key properties of these codes was discussed, prior to introducing a particular
class of codes known as stabiliser codes [78]. Chapter 3 established the confluence of these
two major fields of study, providing insight into the fascinating connections between them.
In particular, we devoted ourselves to exploring how quantum information concepts present
in the CFT can be translated into geometrical features in the dual gravitational theory in
AdS. We thus illustrated the ideas behind holographic entanglement entropy [30, 31], the
Ryu-Takayanagi conjecture [26,27] and holographic codes [1, 32,79].

209
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In chapter 4, we detail the work of [80]. This consists of a systematic study of
holographic codes associated with holographic geometries in higher dimensions, in which
we construct analogues of the HaPPY code [1] for three-dimensional hyperbolic space
(AdS4), utilising both absolutely maximally entangled (AME) and non-AME codes. Our
codes are based on uniform regular tessellations of hyperbolic space and our
investigations lead us to the revelation that no AME codes exist that preserve the
discrete symmetry of the polytope of the tessellation above two dimensions. We then
take a different approach to the study of holographic codes, constructing stabiliser codes
for hyperbolic spaces in which the logical information is associated with the boundary,
before discussing their potential interpretation. We explain how our codes may be
applied to interesting classes of holographic dualities based on gravity-scalar theories
through toroidal reductions of hyperbolic spaces.

Chapter 5 consists of a comprehensive literature review for the second part of this
thesis, concerning gravitational lensing. We provide a general overview of Schwarzschild
lensing, introducing the lens equations, deriving the deflection angle and providing a
concise summary of microlensing. Accounting for the addition of spin, we then explain
how one may generalise this theory by understanding the behaviour of null geodesics in
Kerr spacetime. This chapter is concluded by reviewing two particularly fascinating
concepts with regards to the fundamentals of spacetime, namely the fuzzball proposal
and the Kerr/CFT correspondence.

In chapter 6 we discuss our ongoing work exploring the importance of the spin
asymmetry that arises in Kerr lensing in the weak deflection limit (i.e. for large
astrophysical separations), utilising the expansions in [2]. We analyse these effects by
studying the point source magnification curves for various geometrical configurations
constituting different combinations of inclinations and spins. We extend this work
through the consideration of more realistic astrophysical models encompassing spherical
(finite) sources of uniform brightness as well as cases involving limb darkening effects.

There are numerous directions in which our studies can be taken further for both
holographic quantum error correcting codes and gravitational lensing in Kerr spacetime,
so we split our concluding remarks accordingly beginning with discussion of the former
research branch.

Firstly, it would be interesting to investigate the performance properties of the codes
we constructed by breaking the maximal discrete symmetry associated with the polytope
of the tessellation. Further, it would be worthwhile to dedicate future works to studying
the behaviour of specific quantities in the dual theory, most notably the entanglement
entropy and correlation functions. One may uncover a potential connection between the
relative sparsity of AME codes in dimensions higher than two and the dual theory, with



Conclusions and outlook 211

the possibility that CFT behaviour will no longer be captured by AME codes. In other
words, by providing small correction to perfect tensors, one may not be able to reproduce
CFT behaviour in the dual theory.

In section 4.2, we discussed toroidal compactifications of hyperbolic spaces and
exemplified these concepts by considering the reduction of the hyperbolic plane on a
circle. We would be intrigued to understand the properties of the codes that arise by
discretising these unique geometries as well as those of more general toroidal reductions
of higher dimensional hyperbolic tessellations.

We discussed an alternative approach with regards to the association of quantum
codes to hyperbolic tessellations in section 4.5. We would find it stimulating to study the
hyperbolic CSS codes we developed in this section in enhanced depth, both exploring
their interpretation from a holographic standpoint as well as investigating their
capabilities and potential applications.

Another possible avenue to investigate concerns the qualitative differences we observe
between hyperbolic codes with dimensions d = 2 and those with d > 2. More specifically,
we notice that considering geometries with d > 2 leads to an increasing sparsity in the
number of tessellations that exist, constraining possible code constructions. Since the case
where d = 2 corresponds to studying AdS gravity in (2 + 1)-dimensions (which is non-
dynamical7), it would be interesting to explore whether this sparseness has a relation to
the arising dynamics present in higher-dimensional AdS gravity.

One of the most exciting directions for further work involves the underlying
association between graphs in the hyperbolic plane and deep learning
algorithms [255–257]. Moreover, hyperbolic space has advantageous geometrical
characteristics that may provide significant improvements in model performance,
especially when considering data possessing a hierarchical structure. Our constructions
of graphs/codes associated with high-dimensional hyperbolic geometries may provide a
means to generalise these deep learning algorithms, with notable applications including
natural language processing and image classification [257].

We now discuss future avenues in which our studies of gravitational lensing can be
explored. Upcoming surveys [362] predict that the vast majority of self-lensing systems
we expect to detect will be pristine. In other words, their mass and angular momentum
remain unaltered (by effects such as subsequent mass accretion) since their formation.
Combining our model with existing resources allows us the unique opportunity to estimate
both the mass and the spin of a compact object, which may provide the stepping stones that

7This is since the Riemann curvature trivially reduces to be the Ricci curvature so all gravitational
solutions possess constant negative curvature.
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allow us to directly draw comparisons with current predictions describing the explosion
mechanisms of core collapse supernova.

Of course, while our model is capable of describing gravitational lensing scenarios
where astrophysical separations are large, it would be extremely useful to generalise this
to situations where separations are smaller. Doing so would require us to consider strong
lensing effects and could provide enlightenment on astrophysical phenomena such as X-ray
binaries and the photon rings of Kerr black holes. Similarly, by studying the occultation
effects in strong lensing systems, one may be able to perform a direct measurement of the
compactness of neutron stars. Thus by considering mass ranges where neutron stars are
unambiguously located (i.e. with masses 1 − 2M⊙), one could constrain the equation-of-
state should the quality of data be sufficiently high.

Another intriguing potential direction stems from the emergence of new populations of
binary systems that arose in conjunction with the first detection of gravitational waves [6].
Further analysis of these systems revealed that the black holes contained within these
systems have much lower spins than those present in X-ray binaries [409]. Since our
models explicitly consider spin effects, they could provide new insight into the nature of
isolated black holes, thus we intend to draw comparisons with data collected from recent
microlensing surveys (such as those detected in [285,286]) in the near future.

Our work may also provide a foundation to furthering our understanding of key concepts
in fundamental theory that would be rather interesting to investigate. We focus on three
particularly fascinating ideas; the fuzzball proposal, the Kerr/CFT correspondence and
axion black holes. Firstly, extending our studies to include microstate geometries may
allow us to perceive deviations from the Kerr black hole case, providing a potential method
to differentiate between the two phenomena, though we emphasise that these effects are
likely too small to see with current observational capabilities. We could also explore
whether one can fathom the gravitational lensing structure of near extremal rotating black
holes from the perspective of the Kerr/CFT correspondence. Analysis of the lens equations
and the magnification curves in the extremal limit could provide a fresh perspective of
underlying symmetries of the dynamics while having a fascinating interpretation in the
language of the dual field theory.

Finally, top down constructions of beyond the standard model physics often give rise
to the appearance of axions, hypothetical elementary particles and dark matter
candidates that resolve strong CP problem present in quantum chromodynamics.
Studying microlensing effects in scenarios where Einstein gravity is coupled to axions is
duly justified and may allow us to further constrain the parameter space for axionic
models which are currently under investigation utilising gravitational wave
observations [410].
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APPENDIX A

Appendix for part I: Holographic codes

A.1 Appendix for part I

Contained within these sections are any supplementary materials to the main text in
Chapter 1, which revolves around the material relating to holographic codes. For
expediency, we try to summarise the details of each section in the most concise fashion
possible but should the reader be interested in further details, many longer texts exist
covering each of these topics.

A.1.1 Conformal compactifications and the conformal boundary

Throughout this thesis, one often refers to the conformal boundary of AdS spacetime.
Similarly, we have defined asymptotically locally AdS spacetime as Einstein metrics with
a negative cosmological constant that can be conformally compactified to have the same
conformal structure as AdS. In the following section, we define these concepts more
formally.

In order to begin, we consider the notion of conformal compactification [411]. Consider
some non-compact manifoldM possessing the metric gµν . Introducing a defining function
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Ω, one can rescale the metric under the conformal transformation

ḡµν = Ω2gµν , (A.1.1)

such that Ω is a smooth function. This metric is conformally compact if a smooth manifold
M̄ = M∪ ∂M exists with boundary ∂M, adjoining ∂M to M, provided the defining
function satisfies

Ω(∂M) = 0, dΩ(∂M) ̸= 0, Ω(M) > 0. (A.1.2)

The definition can be understood as trying to bring the diverging distances to within a
finite distance. Thus Ω must continuously decrease, reaching zero on the boundary itself.
Now consider an embedding Φ : M → M̃ where M̃ is another manifold forming the
spacetime (M̃, g̃). This manifests as the ‘push-forward’ of g̃,

Φ∗(g̃) = Ω2g, (A.1.3)

with respect to Φ, embedding the manifold M with boundary ∂M in M̃. The process of
performing this embedding is known as the conformal compactification of the spacetime
(M, g) and one defines the conformal boundary to be

∂M≡ ∂(Φ(M)) ⊂ M̃. (A.1.4)

A.1.2 Details on the smearing function and the AdS-Rindler
reconstruction

In section 3.2.1, we introduced the concept of the smearing function, defined in (3.2.3).
The smearing function therefore provides a well-motivated prescription to represent a field
in the bulk as a non-local operator in the CFT. This intuition follows by considering the
canonical quantisation of a free scalar field in AdSd+1. In particular, we consider the
specific background to be given by the AdS-Rindler wedge with metric (3.2.4) which we
restate slightly differently here for the convenience of the reader;

ds2 = −(ρ2 − 1)dτ2 + dρ2

ρ2 − 1 + ρ2dH2
d−1, (A.1.5)

with the final term being rewritten such that dH2
d−1 is the usual metric on the hyperbolic

ball in d− 1 dimensions, H2
d−1. The corresponding solution in the Heisenberg picture for

a free real scalar field is then

OBulk(ρ, τ, α) =
ˆ ∞

0

dω

2π
∑︂

λ

(︂
fωλ(ρ, τ, α)aωλ + f∗

ωλ(ρ, τ, α)a†
ωλ

)︂
, (A.1.6)
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where one chooses fωλ(ρ, τ, α) to be a basis of solutions to the Klein-Gordon equation,
explicitly taking the form

fωλ(ρ, τ, α) = e−iωτYλ(α)ψωλ(ρ). (A.1.7)

Here, the spherical harmonic Yλ(α) is an eigenfunction of the Laplacian on the
hyperbolic ball, with corresponding eigenvalue λ. Using standard differential equation
solving techniques, the final element ψωλ(ρ) in the AdS-Rindler background can be
shown to be

ψωλ(ρ) = Nωλ ρ
−∆
(︃

1− 1
ρ2

)︃− iω
2
F
(︃
− (d− 2)

4 + ∆
2 −

iω

2 + 1
2

√︄
(d− 2)2

4 − λ,

− (d− 2)
4 + ∆

2 −
iω

2 −
1
2

√︄
(d− 2)2

4 − λ,∆− d− 2
2 ,

1
ρ2

)︃
(A.1.8)

where F is a hypergeometric function that reduces to unity as ρ→∞, the constant

Nωλ = 1√︁
2|ω|

Γ
(︃
− (d−2)

4 + ∆
2 + iω

2rs
+ 1

2

√︃
(d−2)2

4 − λ
r2

s

)︃
Γ
(︃
− (d−2)

4 + ∆
2 + iω

2rs
− 1

2

√︃
(d−2)2

4 − λ
r2

s

)︃
Γ
(︃

∆− d−2
2

)︃
Γ
(︃

iω
rs

)︃
(A.1.9)

ensures the modes ψωλ(ρ) are appropriately normalised1 to one and the conformal
dimension is given by

∆ = d

2 + 1
2
√︁
d2 + 4m2. (A.1.10)

Furthermore, we note that the normalisation has been chose so that the creation and
annihilation operators, a†

ωλ and aωλ, satisfy the usual algebra. Substituting (A.1.6) and
(A.1.8) into the so-called extrapolate dictionary,

lim
r→∞

r∆OBulk(ρ, τ, α) = O(τ, α), (A.1.11)

where O(τ, α) represents the local CFT operators at the boundary, we obtain

O(τ, α) =
∑︂

λ

Nωλe
−iωτYλ(α)aωλ. (A.1.12)

Thus taking the Fourier transform gives

aωλ = 1
Nωλ

ˆ
dτdαeiωτY ∗

λ (α)O(τ, α), (A.1.13)

1This is achieved utilising the Klein-Gordon inner product < g, f >≡ i
´

Σ ddx
√

γnµ(g∗∂µf − ∂g∗f).
The surface one integrates over, denoted Σ is a Cauchy slice, nµ the unit normal to Σ and γ the induced
metric on Σ.
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and subsequent substitution back into (A.1.6) gives us the desired form of our equations,

OBulk(ρ, τ, α) =
ˆ
dτ ′dα′K(ρ, τ, α; τ ′α′)O(τ ′, α′), (A.1.14)

where one has formally exchanged the τα integral with the ωλ sum/integral. Then one
can read off the smearing function to explicitly be

K(ρ, τ, α; τ ′α′) =
ˆ ∞

−∞

dω

2π
∑︂

λ

1
Nωλ

fωλ(ρ, τ, α)eiωτ ′
Y ∗

λ (α′) (A.1.15)

Thus it has the interpretation as a kernel for which one constructs a bulk solution of
the Klein-Gordon equation in the AdS-Rindler wedge under provided arbitrary boundary
conditions at spatial infinity.

A.1.3 Relation between CSS codes and homology of cellulations

Any cellulation of a manifold can be associated with a CSS code and the properties of
the code are associated with homological properties of the cellulation. Let the i cells (the
number of which is denoted dim(Ci)) be associated with qubits i.e. n = dim(Ci). The
boundaries of the (i+ 1) cells are used to define Z checks and the coboundaries of (i− 1)
cells define X checks. The number of each is denoted dim(Bi) and dim(Bi) respectively.
The number of encoded qubits k is calculated by subtracting the number of stabilisers
from the number of physical qubits:

k = dim(Ci)− dim(Bi)− dim(Bi) = dim(Hi), (A.1.16)

where Hi is the ith homology group.

The generating sets of stabilisers are not in general independent. For the Z checks, the
number can be expressed in terms of the number of cells with dimension greater than i

and the dimensions of the homology groups of dimension greater than i:

dim(Bi) =
D−i∑︂
j=1

(−1)j+1 (dim(Ci+j)− dim(Hi+j)) , (A.1.17)

where we have used recursively the relationship

dim(Bi) = dim(Ci+1)− dim(Hi+1) + dim(Bi+1). (A.1.18)

Similarly for the X checks the relation is

dim(Bi) =
i∑︂

j=1
(−1)j+1

(︂
dim(Ci−j)− dim(H i−j)

)︂
. (A.1.19)
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In the case of a D = 2 cellulation that is topologically a disk, only H0 = 1 is non-trivial:
the number of Z checks is equal to the number of faces, while the number of X edges is
equal to the number of vertices minus one.

The distance of the code is the same as the minimum length of an essential i cycle in
the cell complex, or its dual.

A.1.4 Codes and Hilbert spaces

Quantum error correcting codes are those in which all the information within the code
subspace of the Hilbert space is accessible from a subset of the physical degrees of freedom.
Accordingly, the full Hilbert space H can be expressed as a direct product

H = HR ⊗HR̄ (A.1.20)

where

• All logical operators may be represented on R.

• There is no correlation between R̄ and the encoded information.

Suppose that the Hilbert space HR factorises as

HR = HR1 ⊗HR2 , (A.1.21)

where the dimension of HR1 is the same as the logical dimension; HR1 is the logical
subspace. The other factor is associated with the redundancy that protects from errors.
In this context we can represent a state in the code subspace as

|ψ̃⟩ = UR
(︂
|ψ⟩R1 |χ⟩R2R̄

)︂
, (A.1.22)

where |ψ⟩R1 is the logical state; |χ⟩R2R̄ is an entangled state and UR is a unitary operator
on HR. In the context of holography, R is associated with a subset of the conformal
boundary where R̄ is its complement.

Suppose that we want to encode k logical qudits into n physical qudits i.e. the
dimension of the code subspace is dk and that of the full Hilbert space is dn. The
quantum Singleton bound says that the information encoded in the logical qudits can be
recovered from m qudits where

m ≥ 1
2 (n+ k) . (A.1.23)

For holographic encodings associated with two dimensional geometries, the encoding map



220 Appendix A. Appendix for part I: Holographic codes

is related to a tensor structure i.e.

Ti1···in;j1···jk
∝ ⟨i1 · · · in|j̃1 · · · j̃k⟩, (A.1.24)

where the physical qudits are denoted by ii · · · in and the logical qudits are denoted by
j̃1 · · · j̃k.

A.1.5 Generalised Pauli Operators

The generalised Pauli operators [412–414] for the D-dimensional qudits can be defined as

Z |k⟩ := ωk |k⟩ , (A.1.25)

X |k⟩ := |k + 1⟩ , (A.1.26)

where ω = e2πi/D and k ∈ ZD. One can similarly generalise controlled gates to qudits, for
example the controlled-Z operator between two qudits, i and j can be implemented as

CZij :=
D−1∑︂
k=0
|k⟩ ⟨k|i ⊗ Z

k
j =

D−1∑︂
k,l=0

ωkl |k⟩ ⟨k|i ⊗ |l⟩ ⟨l|j . (A.1.27)

Trivially, one can check the commutation relation is

ZX = ωXZ (A.1.28)

and each generalised operator has the property that when applied to a state D times, one
is simply left with the identity operator; i.e. ZD = XD = CZD = 1. Another useful
operator is the Fourier gate

F = 1√
D

D−1∑︂
k=0

ωkl |k⟩ ⟨l| , (A.1.29)

which allows one to transform between the Z-eigenbasis and the X-eigenbasis;

|k̄⟩ = F † |k⟩ = 1√
D

D−1∑︂
l=0

ω−kl |l⟩ . (A.1.30)

Hence, this is simply the generalisation of the Hadamard gate.

Stabiliser states can also be written in terms of generalised operators when extending
from qubits to qudits [415, 416]. The generalised Pauli group acting on n qudits can be
defined as

Pn := {ωa ⊗n
j=1 Pj}, (A.1.31)

where ω = e2πi/D and a ∈ ZD.



APPENDIX B

Appendix for part II: Gravitational lensing

B.1 Appendix for part II

Contained within these sections are any supplementary materials to the main text in
part II. Here we first discuss the conventions used with regards to the Legendre elliptic
integrals. Then, much of the following content within this section consists of the explicit
calculations of specific instances of these integrals that we omitted from the main text in
order to preserve a clear focus on the predominant subject matter.

For further details regarding elliptic integrals, the reader is recommended to study [417]
and for the original papers discussing the weak deflection limit expansion of the elliptic
integrals in the Kerr geodesic equations (5.2.16, 5.2.17), see [2, 88].

B.1.1 Elliptic integrals

Throughout part II of this thesis, we frequently make use of Legendre’s elliptic integrals.
This section of the appendix is dedicated to define the conventions we adopt for these
elliptic integrals, which we choose in order to align with Mathematica 12’s built-in
implementation.
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B.1.1.1 Incomplete elliptic integrals

In trigonometric form, one defines the incomplete elliptical integral of the first kind F to
be

F (φ | k2) =
ˆ φ

0

dθ√
1− k2 sin2 θ

. (B.1.1)

Equally, performing the substitution t = sin θ results in the Legendre normal form:

F (φ | k2) =
ˆ sin φ

0

dt√︁
(1− t2)(1− k2t2)

. (B.1.2)

The incomplete elliptical integral of the second kind E in trigonometric form is defined
as

E(φ | k2) =
ˆ φ

0

√︁
1− k2 sin2 θ dθ. (B.1.3)

Similarly to the incomplete elliptic integral of the first kind, performing the substitution
t = sin θ results in the Legendre normal form:

E(φ | k2) =
ˆ sin φ

0

√
1− k2t2√
1− t2

dt. (B.1.4)

We will also make use of the derivative of E(φ | k2) with respect to k2 , which we denote
as

E′(φ | k2) ≡ ∂

∂k2E(φ | k2) = −1
2

ˆ sin φ

0

t2√︁
(1− t2)(1− k2t2)

dt. (B.1.5)

The incomplete elliptical integral of the third kind Π in trigonometric form is defined
as

Π(n;φ | k2) =
ˆ φ

0

1
(1− n sin2 θ)

dθ√
1− k2 sin2 θ

. (B.1.6)

Similarly to the previous integrals, performing the substitution t = sin θ results in the
Legendre normal form:

Π(n;φ | k2) =
ˆ sin φ

0

1
(1− nt2)

dt√︁
(1− t2)(1− k2t2)

. (B.1.7)

It is worth noting that the notation in much of the literature for the Legendre elliptic
integrals is rather inconsistent. As a result, while we have adopted a particular notation
here, should the reader be interested in many of the sourcebooks for these integrals (such
as [417]), they will notice multiple different conventions are used.
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B.1.1.2 Complete elliptic integrals

Should any of the previous incomplete elliptic integrals have amplitude satisfying φ = π/2,
then the result is a ‘complete’ elliptic integral. For example, the complete elliptical integral
of the first kind K may be defined as

K(k2) = F
(︂π

2

⃓⃓⃓
k2
)︂

=
ˆ π

2

0

dθ√
1− k2 sin2 θ

. (B.1.8)

We can also define this complete elliptic integral as in terms of the ordinary hypergeometric
function 2F1 as

K(k2) = π

2 2F1
(︂1

2 ,
1
2; 1; k2

)︂
. (B.1.9)

Similarly, the complete elliptical integral of the second kind E may be defined as

E(k2) = E
(︂π

2

⃓⃓⃓
k2
)︂

=
ˆ π

2

0

√︁
1− k2 sin2 θ dθ. (B.1.10)

Again, we can define this complete elliptic integral as in terms of the ordinary
hypergeometric function as

E(k2) = π

2 2F1
(︂1

2 ,−
1
2; 1; k2

)︂
. (B.1.11)

The complete elliptical integral of the third kind Π may be defined as

Π(n, k2) = Π
(︂
n; π2 | k

2
)︂

=
ˆ π

2

0

1
(1− n sin2 θ)

dθ√
1− k2 sin2 θ

. (B.1.12)

This integral can most neatly be expressed as

Π(n, k2) = π

2 F1
(︂1

2; 1
2 , 1; 1; k2, n

)︂
, (B.1.13)

where F1 is the hypergeometric Appell function.

B.1.2 Computation of elliptic integrals in the weak deflection limit

In order to form the Kerr lensing equations in the weak deflection limit, (6.2.4, 6.2.6),
we recast the initial geodesic equations, (5.2.16), (5.2.17), by implementing the expansion
parameters, (6.2.2). In order to do so, there are various elliptic integrals that must be
resolved, namely the two angular integrals, (5.2.20, 5.2.22), and the two radial integrals,
(5.2.19, 5.2.21). While we solved the integrals here independently, they were initially
resolved up to order ϵ2 in [88] and were further explored to order ϵ3 in [2].
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B.1.2.1 Angular integrals

One begins by considering the angular integrals, initially starting with Gθ. Expressing the
angular potential Θ(θ) defined in (5.2.15) as a function of a new variable u = cos2 θ,

Θ(θ) = ηu+ u2(−η − λ2 + a2)− a2u3

u(1− u) . (B.1.14)

Thus the integral (5.2.20) may also be expressed in terms of u:

Gθ =
ˆ us

uo

du

2
√︁
ηu+ u2(−η − λ2 + a2)− a2u3 . (B.1.15)

Since we wish to manipulate this integral according to the weak deflection limit described
in section 6.2, the closest point of approach must lie far outside the gravitational radius;
rsch ≪

√︁
λ2 + η. Thus, following the logic previously presented, one introduces two new

independent quantities, m̂ and â, defined as in 6.2.2. By simple substitution,

Gθ = 1
2
√︁
η + λ2

ˆ us

uo

du√︂
η

η+λ2u+ ((â2 − 1)u2 − â2u3)
. (B.1.16)

Recall, when considering the case of a Schwarzschild lens (i.e. when a = 0), the turning
points in θ are given by (5.2.45),

um = η

η + λ2 . (B.1.17)

Here one adopts this notation for simplicity and so the form of the integral Gθ takes a
relatively convenient form

Gθ = 1
2

√︃
um

η

ˆ us

uo

du
√
u
√︂
um − â2u2 − (1− â2)u

. (B.1.18)

In order to further develop this integral such that it has the desired form, we require that
the quadratic equation in u appearing in the denominator of the integrand be factorised.
So introducing new variables ū1 and ū2, the integral takes the form

Gθ = 1
2

√︃
um

η

ˆ us

uo

du
√
u
√︂

(ū1 − u)(ū2 + â2u)
, (B.1.19)

such that ū1 and ū2 satisfy the following relations:⎧⎨⎩ū1ū2 = um,

ū1(â2u)− ū2u = −(1− â2)u.
(B.1.20)

One can obtain expressions for ū1 and ū2 explicitly by solving the simultaneous equations
(B.1.20) perturbatively utilising the scaled spin variable â2. Performing this anlysis, we
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find that

ū1 = um + um(1− um)â2 + um(1− 3um + 2u2
m)â4 +O(â6), (B.1.21)

ū2 = 1− (1− um)â2 + um(1− um)â4 +O(â6). (B.1.22)

One should note that performing this change in variables adjusts the turning point of θ to
be ū1, therefore when considering integrals that must be evaluated at the turning point,
one should replace um with ū1 at finite a. We can now expand the integral (B.1.19) as a
series around the point â = 0,

Gθ = 1
2

√︃
um

η

[︃ 1√
ū2

ˆ us

uo

du√︁
u(ū1 − u)

− â2

2ū3/2
2

ˆ us

uo

√︃
u

ū1 − u
du+ . . .

]︃
. (B.1.23)

As previously shown, angular integrals are unpacked as multiple integrals between 0 and
uj or ū1 where uj represents a generic upper integration limit uj ∈ {uo, us}. For efficiency
purposes, we evaluate the integrals using one of the generic upper limits uj to begin with
before investigating the turning point integral. Expressing Gθ as the sum of each of the
integrals present in (B.1.23), we can evaluate Gθ with integration limits (0, uj) as

G
uj

θ = G
u′

j

θ +G
u′′

j

θ + . . . (B.1.24)

such that the first integral in (B.1.23), which we denote G
u′

j

θ , can be evaluated as

G
u′

j

θ = 1√
ū2

ˆ uj

0

du√︁
u(ū1 − u)

= 2√
ū2

arcsin
√︃
uj

ū1
, (B.1.25)

while the second becomes

G
u′′

j

θ = − â2

2ū3/2
2

ˆ uj

0

√︃
u

ū1 − u
du = − â2

2ū3/2
2

[︃√︂
uj(ū1 − uj)− ū1 arcsin

√︃
uj

ū1

]︃
. (B.1.26)

Substituting in ū1 and ū2 explicitly according to the relations (B.1.21) and (B.1.22), we
can obtain Gj′

θ and Gj′′

θ as series expansions at â = 0,

G
u′

j

θ = 2 arcsin
√︃
uj

um
+ â2(um − 1)

(︃√︄
uj

um − uj
− arcsin

√︃
uj

um

)︃
+ . . . , (B.1.27)

G
u′′

j

θ = − â
2

2

[︃√︂
uj(um − uj)− um arcsin

√︃
uj

um

]︃
+ . . . . (B.1.28)
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Clearly this calculation can be performed for each integral in the series (B.1.23), hence
independently evaluating each of these terms and summing them,

G
uj

θ = 2 arcsin
√︃
uj

um
− â

2

2

(︃√︂
uj(um − uj)−2(um−1)

√︄
uj

um − uj
+(2−3um) arcsin

√︃
uj

um

)︃
+. . . .

(B.1.29)
One can perform similar analysis at the turning point integral (i.e. the series (B.1.23)
with upper integration limit ū1), which for finite a is

Gū1
θ = 1√

ū2

ˆ ū1

0

du√︁
u(ū1 − u)

− â2

2ū3/2
2

ˆ ū1

0

√︃
u

ū1 − u
du+ . . . . (B.1.30)

Explicitly computing this integral,

Gū1
θ = 2√

ū2
arcsin

√︄
ū1
ū1
− â2

2ū3/2
2

[︁√︂
ū1(ū1 − ū1)− ū1 arcsin

√︄
ū1
ū1

]︃
+ . . . , (B.1.31)

which trivially reduces to

Gū1
θ = π√

ū2
− â2

2ū3/2
2

[︃
− ū1π

2

]︃
+ . . . . (B.1.32)

Substituting in the series expansions for ū1 and ū2 given in (B.1.21) and (B.1.22), we
return the expansion in terms of the original variables

Gū1
θ = π + π(2− 3um)

4 â2 + . . . . (B.1.33)

Combining these various different unpacked elements of (B.1.23) provided by the multiple
possible integration limits returns the full resolved expansion of the angular integral

Gθ = 1
2

√︃
um

η
(2mGū1

θ +Gus
θ −G

uo
θ ), (B.1.34)

which can now be expressed as a series in the small parameter â:

Gθ =
√︃
um

η

[︃
πm+arcsin

√︃
us

um
−arcsin

√︃
uo

um
+ â2

4

{︃
uo(uo + 2− 3um)√︁

uo(um − uo)
−us(us + 2− 3um)√︁

us(um − us)

+ (2− 3um)
(︃
πm+ arcsin

√︃
us

um
− arcsin

√︃
uo

um

)︃}︃
+ . . .

]︃
. (B.1.35)

Finally, in order to express um and â back in terms of the initial parameters (i.e the
conserved quantities λ, η and spin parameter a) one re-substitutes these variables back in
using (5.2.45) and (6.2.2). Thus we have the final equation for the angular integral Gθ:

Gθ = 1√︁
λ2 + η

[︃
πm+arcsinµs−arcsinµo+ a2

4(λ2 + η)2

{︃
(2λ2−η)

(︃
πm+arcsinµs−arcsinµo

)︃
+
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(2λ2 − η(1− µ2
o)) µo√︁

1− µ2
o

− (2λ2 − η(1− µ2
s)) µs√︁

1− µ2
s

+ . . .

}︃]︃
(B.1.36)

where µj =
√︂
uj/um as in [2].

We can follow this approach to also gain a series expansion for the second angular
integral Gϕ. Once again, since we are interested in resolving the integrals in the weak
deflection limit, we use the small expansion parameters (6.2.2) and similarly introduce the
notation for um as in (B.1.17). The resulting integral takes the form

Gϕ = 1
2

√︃
um

η

ˆ us

uo

1
√
u
√︂
um − â2u2 − (1− â2)u

du

1− u. (B.1.37)

Factorising the quadratic equation in the denominator of the integrand as before by
introducing ū1 and ū2, this becomes

Gϕ = 1
2

√︃
um

η

ˆ us

uo

1
√
u
√︂

(ū1 − u)(ū2 + â2u)

du

1− u, (B.1.38)

where ū1, ū2 again satisfy (B.1.20) and consequently can be solved perturbatively to be
(B.1.21) and (B.1.22) respectively. Performing a series expansion about the point â = 0
thus results in

Gϕ = 1
2

√︃
um

η

[︃ 1√
ū2

ˆ us

uo

du

(1− u)
√︁
u(ū1 − u)

− â2

2ū3/2
2

ˆ us

uo

du

1− u

√︃
u

ū1 − u
+ . . .

]︃
. (B.1.39)

Accordingly, we can evaluate each term in (B.1.39) independently for a generic upper
integration limit uj using the notation,

G
uj

ϕ = G
u′

j

ϕ +G
u′′

j

ϕ + . . . (B.1.40)

where

G
u′

j

ϕ = 1√
ū2

ˆ uj

0

du

(1− u)
√︁
u(ū1 − u)

= π√
ū2
√

1− ū1
−

2 arctan
√︂

ū1−uj

uj(1−ū1)√
ū2
√

1− ū1
(B.1.41)

and

G
u′′

j

ϕ = â2

2ū3/2
2

ˆ uj

0

du

1− u

√︃
u

ū1 − u
= â2

2ū3/2
2

[︃
π√

1− ū1
−

2 arctan
√︂

ū1−uj

uj(1−ū1)√
1− ū1

− 2 arcsin
√︃
uj

ū1

]︃
.

(B.1.42)
Substituting in ū1 and ū2 using (B.1.21) and (B.1.22) and combining each of the unpacked
integrals as Guj

ϕ = G
u′

j

ϕ + G
u′′

j

ϕ + . . . , one forms the following expression for the series
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expansion at â = 0:

G
uj

ϕ =
2 arctan

√︃
uj(1−um)

um−uj√
1− um

+ â2
[︃

arcsin
√︃
uj

um
−
√︄

uj

um − uj

]︃
+ . . . , (B.1.43)

noting here that we have used the trigonometric identity arctan x = π/2− arctan(1/x). A
similar expansion can be obtained when evaluating the turning point integral, following
the same procedure we previously performed for the first integral. We compute this to be

Gū1
ϕ = π√

1− um
+ π

2 â
2 + . . . . (B.1.44)

From here, we may multiply through by the prefactor and sum the appropriate terms of
the form,

Gϕ = 1
2

√︃
um

η
(2mGū1

ϕ +Gus
ϕ −G

uo
ϕ ), (B.1.45)

resulting in a full expression for the integral

Gϕ =
√︃
um

η

[︃
πm√

1− um
+

arctan
√︂

us(1−um)
um−us√

1− um
−

arctan
√︂

uo(1−um)
um−uo√

1− um

+ â2
{︃
πm

2 + 1
2 arcsin

√︃
us

um
− 1

2

√︃
us

um − us
− 1

2 arcsin
√︃
uo

um
+ 1

2

√︃
uo

um − uo

}︃
+ . . .

]︃
.

(B.1.46)

Finally, writing this equation in terms of λ, η and a, one has

Gϕ = πm

|λ|
+

arctan
(︁ λµs√

λ2+η
√

1−µ2
s

)︁
|λ|

−
arctan

(︁ λµo√
λ2+η
√

1−µ2
o

)︁
|λ|

+ a2

2(λ2 + η)3/2

[︃
πm+ arcsinµs − arcsinµo −

(︃
µs√︁

1− µ2
s

− µo√︁
1− µ2

o

)︃]︃
+ . . . . (B.1.47)

B.1.2.2 Radial integrals

In order to compute the radial integrals, we manipulate the expression following [88] and
then perform an expansion using the suitably small parameters M̂ and â as defined in
(6.2.2). First, we note it is possible to solve the quartic equation R(r) = 0 asymptotically
to find the radial roots. For the purposes of this problem, one is only interested in the
largest root r4, which we expect to be of order (λ2 + η)1/2 for small deflections. This
is since for θo = π/2 and large ro, one has αi ≈ −λ and β ≈ ±√η. Thus given the
assumption,

r4 ≈ (λ2 + η)1/2
[︂
1 +

∑︂
j

cjxj

]︂
, (B.1.48)
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we asymptotically solve R(r) = 0, where we have used cj to represent real coefficients,
while xj denotes the expansion terms in M̂ and â. Then, expressed as a power series, we
find that

r4 ≈ (λ2 + η)1/2
{︃

1− rsch

2
√︁
λ2 + η

− a2λ2

2(λ2 + η)2 + arschλ

(λ2 + η)3/2 −
3r2

sch

8(λ2 + η) −
r3

sch

2(λ2 + η)3/2

+ 3aλr2
sch

2(λ2 + η)2 −
λ2a2rsch

(λ2 + η)5/2 −
λ2(λ2 − 4η)a4

8(λ2 + η)4 + λ(λ2 − η)rscha
3

(λ2 + η)7/2 + (8η − 51λ2)r2
scha

2

16(λ2 + η)3

+ 3λr3
scha

(λ2 + η)5/2 −
105r4

sch

128(λ2 + η)2 +O(ϵ5)
}︃
. (B.1.49)

Now we have found an expression for the radial turning point r4, we can unpack the radial
integrals (5.2.19, 5.2.21) in the usual manner and explicitly compute the relevant pieces.
Our intention is to firstly solve the radial integral (5.2.19),

Ir =
 ro

rs

dr

±r

√︁
R(r)

≈ 2
ˆ ∞

r4

dr√︁
R(r)

− rs + ro

rsro
. (B.1.50)

Now, as in [88], it is convenient to introduce the new variable x = r4/r as well as the
functions

f(x) = η(1 + x2)
λ2 + η − a2 , g(x) = −2

[︃(λ− a)2 + η

λ2 + η − a2

]︃[︃
x2 + x+ 1
x+ 1

]︃
. (B.1.51)

Then we are able to express the first radial integral Ir in a compact and practical manner

Ir ≈ 2
ˆ ∞

r4

dr√︁
R(r)

= 2
(λ2 + η − a2)1/2

ˆ 1

0
dx

[︃
(1− x2)1/2

(︃
1 + a2

r2
4
f(x) + M

r4
g(x)

)︃]︃−1/2

(B.1.52)
which simplifies to

Ir ≈
2

(λ2 + η − a2)1/2

ˆ 1

0

dx

(1− x2)1/2

[︃
1− a2

2r2
4
f(x)− m

2r4
g(x) + 3M2

8r2
4
g2(x)

]︃
. (B.1.53)

Performing the full series expansion of (B.1.53) using small expansion parameters (6.2.2)
together with the series expansion for r4 (B.1.49), one therefore obtains

Ir ≈
π√︁
λ2 + η

+ 2rsch

λ2 + η
+ 15πr2

sch

16(λ2 + η)3/2 −
4λarsch

(λ2 + η)2 + a2π(2λ2 − η)
4(λ2 + η)5/2 + a4(6λ2 − 2η)rsch

(λ2 + η)3

− λ2 + η

6r3
o

− λ2 + η

6r3
s

− 1
ro
− 1
rs

+ . . . (B.1.54)

We can perform the exact same method to obtain the second radial integral (5.2.21),

Iϕ ≈
2

(λ2 + η − a2)1/2

ˆ 1

0

a(2Mr4
x − aλ)

∆( r4
x ) (1− x2)1/2

[︃
1− a2

2r2
4
f(x)− m

2r4
g(x) + 3M2

8r2
4
g2(x)

]︃
dx,

(B.1.55)
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using the same transformations (B.1.51) where x = r4/r. Then, using (6.2.2) and (B.1.49),

Iϕ ≈
2rscha

λ2 + η
− πa2λ

2(λ2 + η)3/2 −
4λrscha

2

(λ2 + η)2 + 5πr2
scha

4(λ2 + η)3/2 + . . . . (B.1.56)
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