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A B S T R A C T   

When battery and supercapacitor (SC) Energy Storage Systems (ESSs) coexist in electric vehicles, energy man
agement is imperative to ensure efficient power distribution based on the strengths and weaknesses of each ESS. 
The decoupling of highly dynamic power demands into components that match the dynamic nature of each ESS is 
essential. The Discrete Wavelet Transform (DWT) has been widely recommended for this purpose as part of real 
time energy management systems. However, due to DWT signal processing, delays in the frequency components 
can undermine the benefits of hybridization. This paper analyses the contribution of the SC to alleviate the 
battery when the DWT is used with and without time delay compensation using future demand prediction. Four 
different implementation strategies for a DWT based EMS have been evaluated using different metrics to quantify 
energy circulation and SC assistance during acceleration and braking. Simulation results using urban and 
highway driving cycles, show that obtaining the SC current reference as the difference between the real time 
current demand and the DWT low frequency component enhances SC assistance during acceleration and braking 
at the expense of higher energy circulation. The complexity added by future demand prediction does not reap SC 
performance benefits.   

1. Introduction 

The peak performance of an Electric Vehicle (EV) is determined by 
the power density of the Energy Storage System (ESS). The ESS must be 
able to provide/accept high currents that are within its maximum 
specified discharge rate (C-rate) during heavy acceleration and braking. 
Additionally, vehicle autonomy is defined by the ESS's energy density. 
An ESS with high energy and high power densities is necessary for this 
application. The high energy density and long cycle life of lithium-ion 
batteries make them the preferred technology for EVs. However, a 
trade-off between energy and power is inevitable when manufacturing 
battery cells. Those designed for high-energy applications have a rela
tively low power capability, which limits their ability to discharge at 
high current rates and accept high currents during charging. In contrast, 
battery cells designed for power applications can discharge and accept 
high currents, but at the expense of energy density. No battery today 
meets all the requirements of an advanced high performance energy 
storage for EV application [1]. 

EV battery packs consist of a serial-parallel arrangement of high 
energy battery cells that determine the system voltage, energy, and 

power. To account for the battery cycle life, energy, and the required 
power density, battery oversizing is a common practice [2–4]. However, 
this causes an increase in the system's weight, volume, and cost. Hy
bridization of energy storage systems has been widely proposed in the 
literature as an alternative to battery oversizing [5–8]. EV's can be 
equipped with a Hybrid Energy Storage System (HESS) that combines a 
high energy density battery pack and a high power density source. 
Ideally, the high power source should assist the battery to cope with 
sudden power demands caused by changes in acceleration and recover 
all the power generated when braking. An improvement in battery life is 
possible if its load profile is relieved from positive and negative peak 
power [5]. High energy density batteries with low power capability can 
be complemented with a high power density source such as a SC, 
lithium-ion capacitor (LIC) or ultra-high power battery (UHPB), which 
can deliver rapid bursts of power during high power demand and cap
ture power during braking. SCs are able to discharge and recharge at 
high rates without compromising their performance over time, however, 
they suffer from considerable self-discharge. Conversely, UHPB are able 
to discharge at high rates but their charging rate is significantly inferior 
compared with SCs. Moreover, lifetime is still affected by temperature 
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build up, which limits its continuous operation at high rates. In this 
work, SCs are considered due to their capability to charge and discharge 
at high rates without compromising their lifetime. Nevertheless, the 
solution developed in this work still apply to high power batteries, 
however, in this case the EMS must implement additional charge/ 
discharge rate limits to safeguard the lifetime of the power battery. 
Practical implementation of HESS in electric minibuses have demon
strated the performance of lithium batteries and SCs to cope with 
frequent and fast charging cycles and deliver the required power and 
energy [43]. 

To control power flow in a HESS, an EMS that operates in real time is 
fundamental. Different approaches were proposed to achieve this 
objective, which can be broadly classified into optimization and rule 
based control strategies [9]. Rule-based EMSs are convenient for 
implementation in real time controllers due to their simplicity and 
convenience. These methods are based on empiric human expertise 
where a set of rules are generally implemented as lookup tables or if- 
then expressions. Rule-based strategies are classified into deterministic 
approaches, filtration strategies, fuzzy logic, model predictive control, 
and neural network based control. With filtration based approaches, 
power demand can be decomposed into frequency components that 
match each ESS dynamics. In fully active topologies, the battery and SC 
power flows are controlled by allocating the low frequency component 
(LFC) to the battery and the high frequency component (HFC) to the SC. 
In this work, a semi-active control topology is adopted where the SC 
power flow is controlled through a bidirectional DC/DC converter, 
providing the HFC while the battery provides the power difference. 
Details on semi-active and active topologies can be found in [10]. EMS 
strategies based on conventional filters, i.e. low (LPF) and high pass 
filters (HPF), and the Discrete Wavelet Transform (DWT) have been 
proposed to extract frequency components from the power demand. 
With conventional filters, phase shift and group delay can cause the 
filtered signals to exhibit time lags, whereas with the DWT, signal pro
cessing introduces long time delays. Using the delayed HFC to control 
the SC in a semi-active configuration, which is the method preferred by 
most researchers investigating this topic, results in excess energy being 
circulated between the battery and SC via the DC-bus. Excess energy is 
passed through the non-ideal DC/DC converter, which increases the 
system's energy loss. Besides, the battery does not receive adequate 
assistance during peak demand due to the delayed response of the SC 
with respect to real time demand. These issues undermine the SC's pri
mary purpose and the rationale for hybridization. In the literature, the 
effects of these issues on power distribution, SC assistance and the sys
tem's energy efficiency have not been adequately discussed. 

Reported literature suggests that the frequency components obtained 
with the DWT can be used directly to control the battery and SC power 
contribution despite the delay. Some researchers developed EMS stra
tegies based on 3 levels of decomposition [11–19], while others pro
posed 5 levels [20,21]. With this approach, the delay caused by the DWT 
is fixed. Other researchers proposed adaptive methods to control the 
battery and SC charge/discharge rate by varying the decomposition 
level of the DWT during runtime [22–24]. In this case, however, the 
delay is variable. Wang et al. [21] performed an evaluation of the per
formance of an EMS based on the DWT to determine the level of 
decomposition. This work concluded that for a signal sampled at a rate 
of 1 Hz, 3 levels of decomposition showed better performance than other 
decomposition levels. In [25], the level of decomposition was selected 
by considering the frequency response range of the power sources. For a 
battery-ultracapacitor system, it was concluded that 2 levels were 
appropriate while for a fuel cell-ultracapacitor system, 8 levels were 
recommended. According to our previous analysis [26], a delay of 8 s 
would be introduced in the frequency components with 3 levels of 
decomposition. Similarly, a delay of 4 s is associated with 2 levels of 
decomposition and 256 s with 8 levels, considering the parameters 
presented in [25] and a sampling rate of 1 Hz. Obviously, using the 
frequency component with such a long delay will generate significant 

performance deterioration when applied in real time. With the variation 
of the DWT level of decomposition in adaptive methodologies [22–24], 
the problem with varying delay becomes more challenging. Signal 
processing with the DWT introduces a considerable delay in the fre
quency components, which precludes their direct use in real-time 
applications. 

Zhang and Deng [22], presented an adaptive multi-level Haar 
wavelet transform for allocating power to batteries and SCs. The level of 
decomposition was variable and determined according to the driving 
cycle which was identified using a learning vector quantization neural 
network. It was concluded that a 4th level of decomposition is needed 
for highway driving cycle, a 3rd level for moderate urban cycle and a 
2nd level for congested urban cycle. However, the authors ignored the 
DWT delay and did not consider its implications in real time, especially 
when switching between levels of decomposition. In this particular case, 
the EMS would be required to switch between frequency components 
depending on the changes in the driving cycle, specifically 4 s delay (2 
levels of decomposition), 8 s delay (3 levels of decomposition) and 16 s 
delay (4 levels of decomposition). Peng et al. [39] proposed a method
ology for adaptively varying the DWT level of decomposition between 1 
and 5 based on the SOC of the SC. A similar approach was proposed in 
[23], however this time the level of decomposition varied between 2 and 
5. In [40] an adaptive wavelet transform-fuzzy logic control energy 
management strategy based on driving pattern recognition was pro
posed. The algorithm used cluster analysis to classify driving cycles into 
different patterns according to the features extracted from historical 
driving data in real-time. After recognition results were obtained, an 
adaptive wavelet transform was employed to allocate the high frequency 
components of power demand to the SC, while the low frequency 
component was distributed to battery. Fuzzy logic was used to maintain 
the SOC of the SC within a desired range. The level of decomposition was 
varied between 2 and 5 according to a driving pattern recognition al
gorithm. All the proposed methodologies presented above have been 
suggested for real time operation, however, the presence of significant 
delay in the frequency components was neglected. 

Wavelets with high filter order have also been proposed instead of 
the Haar wavelet to obtain frequency components to control power flow 
in a HESS. Shen et al. [41], proposed an EMS based on a Symlet wavelet 
with 3 levels of decomposition and performed an experimental test to 
validate the strategy. However, important information regarding the 
order of the Symlet wavelet (between 2 and 20), and the sampling rate 
were not provided, which made this work difficult to replicate. To depict 
the delay problem when a high order wavelet is used, suppose that the 
chosen wavelet was symlet2, which has 4 filter coefficients, and the 
sampling rate was 1 Hz. The total delay that would be present in the 
frequency components after 3 levels of decomposition would be 22 s 
with respect to the real time power demand (see Eqs. (3) and (4)). 
Conversely, the Haar wavelet under the same conditions yields a delay 
of 8 s. Song et al. [42] proposed a wavelet-transform-based energy 
management strategy using Daubechies 4 (db4) wavelet and 5 levels of 
decomposition. In this case, the delay introduced by the DWT, consid
ering that the db4 wavelet has 8 filter coefficients, is 218 samples. The 
sampling rate was not provided, but it is most likely to be between 1 Hz 
and 16 Hz as it would yield a frequency sub-band between 0 and 16 mHz 
and 0–250 mHz, which is the range required for this application, with 
corresponding time delays between 218 s and 13.6 s, respectively. 
Higher sampling frequencies would yield high frequency components 
with very small energy content, which would result in the SC providing 
little to no assistance to the battery. Obviously, higher order wavelets 
results in longer time delays. Although the shortest time delay can be 
achieved with the Haar wavelet, dealing with the delay in real time 
applications remains a challenge. 

Other studies have suggested that power demand prediction can be 
used to compensate for the DWT delay to enable real time operation, 
however, they failed to demonstrate the benefits/drawbacks of predic
tion in terms of SC performance. A delay compensation approach was 
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presented in [27], where a nonlinear autoregressive neural network was 
trained to perform power demand predictions to compensate for the 
DWT delay (3.2 s) when the power demand, sampled at 10 Hz, was 
decomposed into 5 levels. The predicted HFC was used to control the SC. 
The neural network consisted of one hidden layer with 10 neurons, 
which was trained to predict 32 future samples based on the previous 60 
samples. The training dataset consisted of a power demand time series 
that resulted from a low speed (24 km/h peak) driving cycle with a 
smooth pattern that was repeated 2 times over a long-time span (13,000 
s). The trained network was, unfortunately, exposed to the same driving 
pattern during testing. In addition, driving cycles representing real- 
world driving schedules, where power demand is highly variable, 
were not used to test the generalization ability of the trained network. 
Furthermore, this study did not compare SC performance before and 
after time delay compensation, making it impossible to determine 
whether the prediction strategy improved the system's performance. 
Zhang et al. [28], proposed a real time EMS for battery-SC HESS based 
on a combination of DWT, neural network, and fuzzy logic. A 2-level 
DWT was used to decompose the power demand signal associated 
with 9 standard driving cycles. The obtained DWT LFC along with the 
load power demand were used as inputs to train the neural network with 
the aim to predict the low frequency power demand. However, the 
chosen prediction window was not in agreement with the delay gener
ated by the DWT. 

There is a scarcity of research detailing the implementation of the 
DWT as part of a real time EV EMS in light of delay issues. Most of 
previous studies suggested the direct use of the DWT HFC to control the 
SC [11–19] as evidenced in Table 1, but there is little work done to 
compare this with other possible implementations such as obtaining the 
SC current as the difference between total current and DWT LFC with 
and without prediction. Furthermore, the analysis of whether delay 
compensation improves the SC performance in terms of timely assis
tance during motoring and braking and its influence on energy effi
ciency has not been addressed. The energy efficiency problem arises 
from the fact that in addition to the total amount of energy supplied/ 
recuperated by the HESS to match the load requirements during a given 

driving cycle, additional energy is circulated between the battery and 
the SC through a non-ideal DC/DC converter which results in additional 
power loss. 

Many researchers who applied the DWT method for filtration pur
poses have, unfortunately, overlooked the effect of delay in the practical 
implementation. Moreover, the sampling frequency was not even indi
cated in some published papers, e.g. [11–14,17–20,24], making it 
difficult to calculate the delay and the frequency sub-band allocated to 
the SC. Time delay compensation strategies were suggested in [15,16], 
and [27]. However, no evidence was provided that this has indeed 
improved the performance or efficiency of the system. This work spec
ifies the mechanism used to calculate the delay, assesses the effects of 
the delay on the HESS power distribution, and evaluates the SC's 
effective contribution during motoring and braking with and without 
time delay compensation. There has never been an analysis of this type 
before, and that makes this work unique. 

Table 1, summarises the issues mentioned before as they were 
encountered in published work. 

Considering the background presented, an analysis of the effective 
contribution of the SC to alleviate the battery during motoring and 
braking with respect to real-time implementation of the DWT is missing 
in the literature. Therefore, this paper analyses and compares 4 EMS 
strategies based on the DWT that are different in the way the SC current 
reference is determined. Firstly, the DWT HFC is used directly to control 
the SC. Secondly, a LSTM neural network is trained to perform power 
demand predictions to compensate for the DWT delay and then the 
predicted DWT HFC is used directly to control the SC. Thirdly, the HFC is 
calculated as the difference between the real time current demand and 
the DWT LFC. Finally, the third approach is replicated with the pre
dicted DWT LFC. The performance of the mentioned strategies are 
thoroughly assessed and compared using 4 metrics as follows:  

1. SC effective motoring assistance: amount of energy supplied by the 
SC during positive demand.  

2. SC assistance during positive current rate (peak assistance): SC 
assistance during acceleration (periods of positive current demand 
rate of change)  

3. SC braking energy recovery: amount of energy recuperated by the SC 
(braking assistance).  

4. Energy circulation: energy circulated between the battery and SC. 

A detailed Matlab-Simulink model of an EV is developed to test the 
EMS strategies with a variety of driving cycles representing real-world 
loading conditions including urban and highway scenarios. The contri
butions of this paper are summarized as follows:  

a) Investigation of energy circulation between the battery and SC as a 
consequence of the DWT time delay.  

b) Investigation of different real time implementation of EMSs based on 
the DWT, considering energy circulation and SC assistance during 
motoring, acceleration, and braking.  

c) Design of a LSTM neural network to predict future power demand 
before it is fed to the DWT to compensate for the time delay. Unlike 
neural networks presented in the literature, this network has been 
trained offline using power demand corresponding to 8 different 
standard driving cycles and tested using 4 driving cycles not included 
in the training dataset to ensure network generalization capability.  

d) Evaluation of the effectiveness of time delay compensation in 
improving the SC performance in a HESS controlled with an EMS 
based on the DWT. 

1.1. System modelling 

1.1.1. Vehicle and power train characteristics 
The schematic of the EV model used in this study is shown in Fig. 1. 

Table 1 
List of issues found in previous work.  

Reference Time delay 
addressed? 

EMS 
strategy 

Comments 

[22,23,39] No DWT high 
frequency 
allocated to 
the SC 

Adaptive method to 
switch between 
levels of 
decomposition. 
Variable delay not 
considered. 
Sampling frequency 
not given by [22], 
100 Hz for [23] and 
1 Hz for [24]. 
Frequency sub- 
bands not specified. 

[11–14,17–20,24,28,40–42] No DWT high 
frequency 
allocated to 
the SC 

Fixed level of 
decomposition. 
Sampling frequency 
not given. 
Frequency sub-band 
not calculated 

[15,16,27] Yes Predicted 
DWT high 
frequency 
allocated to 
the SC 

Fixed level of 
decomposition. 
Comparison of 
performance before 
and after prediction 
not included 
[27] tested the 
trained network 
with the same 
dataset used for 
training  
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The vehicle and power train characteristics are presented in Table 2. 
The tractive force required to move the vehicle can be calculated as 
explained in [29]. The electric motor must overcome gravitational fg, 
aerodynamic fAer, inertial facc, and rolling resistance froll forces acting 
against the movement of the vehicle. Thus, the tractive force fTr required 
to move the vehicle can be expressed as: 

fTr = fg + fAer + facc + froll (1)  

fTr = Mvhgsinα+
1
2

ρCdAvhVvh
2 +MvhV̇vh +MvhgcosαCrr (2)  

where Mvh is the mass of the vehicle, g is the gravitational acceleration, α 
is the road gradient angle, ρ is the air density assumed to be that of dry 
air at 20 ◦C, Cd is the aerodynamic drag coefficient, Avh is the vehicle's 
frontal area, Vvh is the velocity of the vehicle, V̇vh is the vehicle accel
eration and Crr is the rolling resistance coefficient. The road gradient 

angle is assumed to be zero. 
The braking strategy is based on a fixed ratio between electric and 

mechanical braking forces as presented in [30]. The braking model 
consists of a parallel braking strategy, where the regenerative torque of 
the motor is exerted on the front driving axle directly in addition to the 
friction brake. In passenger cars with a single motor, regenerative 
braking is better utilized when the electric motor is installed on the front 
axle [30]. The mechanical brake has a fixed ratio distribution of 80 % on 
the front and 20 % on the rear brakes. The electric motor brake is 
controlled by the vehicle controller based on vehicle speed, brake pedal 
position, and the State of Charge (SOC) of the SC. When the wheel speed 
is lower than 15 km/h, due to either very low vehicle speed or wheel 
speed close to lock up, the electric brake produces no braking force and 
braking is produced only by the mechanical system. When the speed is 
higher than a set threshold and the SC is able to accept charge, the 
following braking actions are performed considering the deceleration 
rate:  

a) When the vehicle deceleration is less than 0.15 g (g = 9.81 m/s2), all 
the braking force is produced by electric regenerative braking and no 
mechanical force is applied to the front and rear wheels, emulating 
the internal combustion engine retarding function.  

b) When the vehicle deceleration is between 0.15 g and 0.7 g, 80 % of 
the total braking force is allocated to the front axle and 20 % to the 
rear axle. The electric and friction brakes work together to meet the 
required braking force on the front axle. The rear axle brake is purely 
mechanical. The maximum electric force is generated when the 
deceleration is close to 0.15 g and minimum when it is close to 0.7 g. 
The reduction in the electric braking force is linear.  

c) Any deceleration above 0.7 g is considered emergency braking and 
therefore braking is performed by the mechanical system only. 

Fig. 1. System schematic.  

Table 2 
Vehicle and powertrain characteristics.  

Vehicle characteristics 

Mass (kerb weight) 1662 kg 
Aerodynamic drag  0.28  
Rolling resistance coefficient  0.012  
Front area  2.27 m2 

Air density  1.204 kg/m3   

Powertrain characteristics 

Maximum torque  340 Nm 
Maximum Power  160 kW  
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1.1.2. Hybrid energy storage system 

1.1.2.1. Battery model. The battery model is based on the work pre
sented in [31], which constitutes the basis for the generic battery model 
readily available in Matlab-Simulink. This model represents accurately 
the battery voltage dynamics in the presence of variable charging and 
discharging currents by considering the open circuit voltage as function 
of SOC. The parameters for this model can be easily extracted from the 
battery manufacturer's discharge curve in steady state. The battery pa
rameters used in this paper are summarized in Table 3. 

1.1.2.2. Supercapacitor model. The SC is based on the Stern-Tafel model 
which reproduces the double layer capacitance related to the nonlinear 
diffusion dynamics by a combination of the Helmholtz's capacitance and 
the Gouy-Chapman's capacitance [32]. This model is the basis of the 
generic SC block available in Matlab-Simulink. Default Simulink pa
rameters for the Stern equation are selected along with the character
istics shown in Table 4. 

Sizing the HESS requires the development of a multi-objective opti
mization algorithm that accounts for the weight, volume, cost, and 
operation parameters. The development of such optimization algorithm 
is beyond the scope of this work. For this paper, the battery capacity is 
similar to that of the first generation Nissan Leaf battery (40 kWh), while 
the SC pack was sized as a single string of 3400F SCs with a total voltage 
of 405 V. 

2. Energy management system 

2.1. The Discrete Wavelet Transform 

The DWT is a technique that allows the translation of a time domain 
signal into a signal localized in both the time and frequency domains 
with pre-specified detail resolutions. The DWT analysis provides infor
mation about the frequency content of the original signal and also re
tains information about when each particular frequency occurs. This is 
particularly useful for compressing and de-noising signals and images 
while preserving important features. Additionally, the multi-resolution 
decomposition obtained with the DWT offers a very powerful method 
for the analysis of signals that feature HFCs short durations and LFCs for 
long durations [33]. HFCs are obtained from the DWT detail coefficients 
while the LFC is obtained from the DWT approximation coefficient. The 
decomposition process results in one DWT approximation coefficient 
(lowest frequency sub-band) and a number of DWT detail coefficients 
that depend on the sampling frequency and chosen level of decompo
sition. The sampled version of the original signal can be perfectly 
reconstructed from the DWT coefficients by means of the inverse DWT. 
Specific frequency sub-bands can be isolated and reconstructed with this 
procedure. However, the reconstructed DWT frequency components 
carry a delay that is influenced by the sampling frequency, the target low 
frequency sub-band (approximation component), and the chosen 

wavelet function. This delay makes the direct use of the DWT frequency 
components troublesome in real time controllers. The delay results from 
adding the current sample time period (Ts) to the product between Ts 
and number of previous samples Ns required to perform a given level of 
decomposition. The delay (Td) is given by: 

Td = Ts(1+Ns) (3)  

where Ns can be calculated according to [34] such as: 

NS =
∑j

i=1

(
Nf − 1

)
2i− 1 (4)  

Nf is the order of the filter, characterized by the number of coefficients 
associated with the chosen orthogonal wavelet base, i is the current level 
of decomposition and j is the final level of decomposition. The number of 
samples grow exponentially with the increase of levels of decomposi
tion. The delay is exacerbated as the order of the filter increases when 
using different wavelet bases other than the Haar wavelet. Haar is the 
simplest wavelet with the smallest filter order (Nf = 2). 

2.2. DWT in EMS, energy circulation and SC assistance 

To illustrate energy circulation between the battery and SC in a semi- 
active topology, the SC current reference is first obtained with a con
ventional first order HPF. This will enable the observation of the exac
erbated energy circulation when the SC current reference is obtained 
later with the DWT. At certain frequency range, the output of the HPF 
has a response that is proportional to the time derivative of the input. 
Thus, when the slope of the current demand signal (measured at the DC- 
bus) changes from positive to negative, the output of the HPF will also 
change from positive to negative. For example, when the driving cycle 
demands a reduction in acceleration i.e. from acceleration to cruising, 
the current demand declines but remains positive. However, this drop in 
current demand can appear as a negative signal at the output of the filter 
even though there is no braking command requested. Fig. 2 illustrates 
this event with a conventional first order HPF with a cut-off frequency of 
125 mHz. The current demand and the vehicle speed from t = 20s to t =
37 s of the Federal Test Procedure 72 (FTP72) driving cycle are dis
played. At time t = 26 s the slope of the current demand changes from 
positive to negative because of the drop in the power demand caused by 
an adjustment in speed. Although speed keeps rising from 26 km/h at t 
= 26 s to 28 km/h at t = 27.6 s (i.e. no braking command), the HPF 
output becomes negative. As the SC is controlled with the output of the 
HPF, energy circulation occurs as the SC is commanded to recharge 
(negative current command represented as green shades) even when no 
braking power is generated. The SC is recharged from the battery (or
ange shades), which transfers power to the SC through the DC/DC 
converter. The areas shaded in light blue represent the effective 
contribution of the SC during motoring and braking. 

Energy circulation is exacerbated when the DWT is used, as the HFC 
is delayed with respect to the real time demand. In Fig. 3a, the SC fol
lows the HFC current reference obtained with the DWT. The current 

Table 3 
Battery characteristics.  

NCR21700A, 5000mAh 

Cell specific energy 264.2 Wh/kg 
Cell weight 70 g 
Pack nominal voltage 350 V 
Pack maximum Capacity 120 Ah 
Fully Charged voltage 407 V 
Cut-off voltage 262.5 V 
Pack configuration 96 series, 24 parallel 
Pack energy 42 kWh 
Pack internal resistance 48 mΩ 
Pack specific Energy 163 Wh/kg 
Cont./pulse discharge C-rate (2C/3C) 240/360 A 
Charge C-rate max (0.6C) 72 A  

Table 4 
Supercapacitor characteristics.  

Maxwell BCAP 3400 

Cell capacity 3400 F 
Cell Equivalent DC series resistance 0.15 mΩ 
Cell Rated voltage 3 V 
Cell specific power 14.5 kW/kg 
Cell weight 496 g 
Pack configuration 135 series, 1 parallel 
Pack Voltage (max) 405 V 
Pack capacity 25.2 F 
Pack resistance 20 mΩ 
Pack Specific Energy 5.36 Wh/kg  
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Fig. 2. 1st order HPF. Energy circulation.  

Fig. 3a. DWT HFC as SC current, sampling = 1 Hz.  

Fig. 3b. DWT HFC as SC current, sampling = 32 Hz.  
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demand is sampled at 1 Hz and then decomposed into 2 levels to obtain a 
frequency sub-band of 125–500 mHz. The drop in the current demand 
that starts at t = 26 s results in a delayed drop in the DWT HFC that starts 
at t = 30s (delay = 4 s). Thus, the use of the DWT HFC results in the SC 
recharging when there is no braking power (green shaded areas), forcing 
the battery to provide power to keep the system's balance (orange 
shaded areas). Consequently, more stress is imposed on the battery 
rather than alleviating it, and poor SC contribution is observed during 
motoring and braking (light blue shaded areas). Moreover, efficiency 
decreases as energy needs to be circulated via a non-ideal DC/DC 
converter. 

DWT HFCs with more details (smoother signal) can be generated 
with higher sampling rates and adequate levels of decomposition. In 
Fig. 3b, sampling rate of 32 Hz and 7 levels of decomposition result in 
frequency sub-band of 0.125 Hz–16 Hz. The delay remains unchanged 
(4 s). 

Both Figs. 3a and 3b show that the SC is not assisting the battery 
during acceleration and is partially recovering power generated during 
braking. This is evident between t = 20 and t = 26, and between t = 33 
and t = 36, respectively. 

To quantify the effectiveness of the SC assistance during motoring 
and braking, a comparison with a benchmark reference is necessary. To 
determine this reference, the following factors have been considered:  

1. The first derivative of the positive current demand is calculated to 
define time windows that correspond to positive current demand 
changes. Only positive values are considered. Time windows are 
shown in Fig. 4 for t = 19 s to t = 42 s of the FTP72 driving cycle.  

2. During positive current rate, the benchmark current reference is set 
to match the first derivative of the current as long as the derivative is 
less than the total current demand, otherwise it is set to match the 
total current demand. This makes the benchmark reference propor
tional to the rate of change of current but without exceeding the total 
current demand. This defines the areas where SC assistance would be 
most beneficial.  

3. During braking, all the generated energy should be absorbed by the 
SC if its SOC allows it. Otherwise, it will be allocated to the battery 
observing the maximum charging C-rate. This area is given by the 
negative current demand. 

The effectiveness of SC assistance with different EMS approaches can 
be assessed by comparing the energy provided by the SC against the 
energy of the benchmark reference area. The energy E in Wh is calcu
lated as follows: 

E =
1

3600

∫t

0

IX ×VDC− linkdt (5)  

where IX is the current of the variable being analysed i.e. total, battery, 
and SC currents. VDC− link is the voltage of the DC-link. Positive current 
demand is used to calculate motoring energy and negative current de
mand to calculate braking energy. For each EMS strategy presented in 
this paper, the areas shown in Fig. 5 are calculated. The orange shading 
represents the circulation energy (unit is Ah) supplied by the battery and 
received by the SC (green shading), or viceversa. The blue shaded areas 
represent the SC effective contribution during the motoring and braking 
stage. The purple area represents the current reference based on the 
current rate of change. These areas are used to quantify the SC assistance 
during motoring, acceleration, braking and total energy circulation for 
different EMS strategies. 

2.3. Long-short term memory neural network 

Power demand prediction has been proposed in the literature as a 
way to mitigate delay and enable the DWT to work in real time. LSTM 
neural networks are a type of Recurrent Neural Networks (RNNs) that 
perform well when learning long term temporal dependencies. RNNs 
carry out prediction of future steps by considering previous data. The 
internal structure of the network learns from earlier stages and uses this 
previous data along with new data to forecast future steps. However, 
typical generic RNNs can remember only a few previous steps in the 
sequence and therefore fail to remember long sequences of data [35]. On 
the other hand, long term memory is possible by using LSTM networks, 
which are designed to capture and store data. The LSTM cell behaves 
like a memory with the ability to write, read and delete data according 
to the decisions stipulated by its input, output, and forget gates. Details 
about the functions and characteristic equations of each gate can be 
found in [36,37]. In this work, the hyper-parameters of the LSTM 
network were determined by testing several architectures and 
comparing their prediction Mean Squared Error (MSE) as shown in 
Table 5. A good fit learning curve is identified when the training and 
validation losses decrease to a point of stability with a minimal gap 
between the two final loss values [38]. 

LSTM structure 7 from Table 5 is chosen. The selected hyper- 
parameters correspond to those where the training and validation los
ses converged and reached a minimum, 12.78 and 12.50, respectively. 
This was achieved using the stochastic gradient descend optimization 
algorithm ADAM, a learning rate of 0.001, and hyperbolic tangent 
(TANH) activation. The neural network structure consists of a sequence 

Fig. 4. Reference signal to assess SC performance.  
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input layer receiving 8 samples, 2 fully connected hidden layers with 50 
LSTM units each, and a regression layer with 5 outputs, corresponding to 
the number of predicted samples. The network was trained with 85 % of 
the dataset and tested with 15 %. The model's hyper-parameters were 
tuned to achieve good performance considering the following 
conditions:  

a) The network must predict from the measured real time raw data, as 
there is no time to perform data pre-processing such as de-noising, 
normalization, and standardization, which would introduce more 
delay.  

b) The network must be able to perform the prediction with minimum 
delay.  

c) Prediction error must be minimal for any driving condition. 

Forecasting based on raw data has some limitations and drawbacks, 
such as computationally demanding training phases, the need for a big 
dataset, a large number of hyper-parameters, and sensitivity to mea
surement noise. The LSTM neural network was created and trained in 
Keras, a deep learning Application Programming Interface (API) written 
in Python, using a dataset (duration = 8465 s) containing the power 
demand obtained by simulating the vehicle with a battery only ESS with 
the following 8 driving cycles:  

1. Artemis Urban  
2. Urban Dynamometer Driving Schedule (HUDDS)  
3. Highway Fuel Economy Test (HWFET)  
4. JC08 Japanese Chassis Dynamometer Test  
5. Unified Dynamometer Driving Schedule LA92  
6. Chassis Dynamometer Test SC03  
7. EPA Driving Schedule for Light-Duty Vehicles and Trucks (US06)  
8. Worldwide Harmonized Light Vehicle Test Procedure (WLTP3). 

The power demand associated with any driving cycle depends on 
several factors including driving style, road condition, road gradient, 
weather, traffic conditions, etc. This makes accurate prediction difficult. 
Due to the complex non-linearity of the power demand associated with 
driving, prediction errors are inevitable, especially with multi-step time 
series forecasting. The generalization capability of the trained network 
is tested with 4 driving cycles not seen by the network during training, 
obtaining a prediction Root Mean Squared Error (RMSE) of 8.91 kW for 
the FTP72, 5.75 kW for the Inspection and Maintenance Driving 
Schedule (IM240), 3.31 kW for the Extra Urban Driving Cycle (EUDC), 
and 16.19 kW for the Artemis Motorway, when predicting 5 future 
samples. Additionally, the prediction RMSE for the US06 driving cycle is 
11.79 kW and 3.59 kW for the WLTP3 driving cycle, which were used 
during the training stage. Predictions were executed in a machine with 
an 8th generation Intel Core i5, 32 GB RAM, 1.9 GHz processor. On 
average, the network took 0.9 s to execute the predictions. This extra 
delay is variable and is highly dependent on the performance of the 
computer used. In our previous work [26], this delay was around 2 s 
when a computer with an older processor and smaller memory was used. 
This extra delay is added to the DWT delay yielding a total of ~4.9 s. 
Power demand is sampled at 1 Hz, hence the prediction window of 5 
samples. 

3. Ems performance evaluation 

In this section, 4 different real-time implementation strategies for the 
DWT are evaluated in terms of SC assistance during motoring, peak 
assistance, braking energy recuperation and energy circulation. The 4 
strategies depend on how the SC reference current is determined, i.e. Iref 
(SC) is given by:  

A. DWT HFC  
B. Predicted DWT HFC  
C. Difference between the real-time current demand and the DWT LFC  
D. Difference between the real-time current demand and the predicted 

DWT LFC 

Fig. 5. Calculated areas to compare the performance of the SC with different EMS strategies  

Table 5 
LSTM network architectures. 

LSTM 
Structure

Layers 
and 

Neurons
Epochs

Training 
Loss MSE 

(kW)

Validation 
Loss MSE 

(kW)
1 1x10 10 59.16 29.65

2 1x10 50 51.71 32.64

3 2x10 50 55.44 28.18

4 1x50 100 37.57 30.03

5 2x50 100 22.01 41.62

6 2x50 150 13.89 14.78

7 2x50 170 12.78 12.50

8 3x50 150 20.23 15.16

9 1x60 100 34.61 32.71

10 1x100 100 25.59 34.31

11 1x600 50 19.24 12.46

12 1x800 50 17.29 9.56

13 1x1000 50 21.49 14.50

14 1x1100 50 17.91 11.66

15 1x1500 50 24.34 11.30
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A schematic of these 4 strategies is shown in Fig. 6. The detailed EV 
model developed in II is implemented in Matlab-Simulink along with the 
DWT strategies and tested using a variety of driving cycles representing 
real-world loading conditions including urban and highway scenarios. 
The battery and SC initial SOC is set to 80 % for simulations. The sam
pling frequency is 1 Hz and the DWT level of decomposition is 2, which 
produces a time delay of 4 s. 

3.1. DWT high frequency component 

The current demand associated with the FTP72 driving cycle is 
sampled at 1 Hz and decomposed into 2 levels. The DWT HFC (125 mHz 
− 500 mHz) is used directly to control the SC power flow. Because the 
control signal is delayed, energy is circulated between the battery and 
the SC, putting greater stress on the battery as it supplies more power to 
recharge the SC while receiving minimal assistance during the periods of 
positive changes in current demand. This is evident in Fig. 7, where at t 
= 57 s, the current demand is 41 A, but the battery supplies 68 A as the 
SC is commanded to recharge. In addition, the SC does not provide 
assistance during the initial acceleration (t = 20s to t = 26 s) and fails to 
recuperate braking power, which is mostly absorbed by the battery. SC 
assistance during motoring and braking is represented by the shaded 
areas to highlight the effective contribution of the SC. 

The total energy required by the system during motoring is 1668 Wh 
and the energy produced during braking is 470.8 Wh. This is calculated 
according to (5) using the current demand. The same procedure is used 

to calculate the battery and SC energies using the battery and SC current, 
respectively. The battery provides a total of 1765 Wh during motoring 
and recovers a total of 569.4 Wh during braking. The SC provides 426 
Wh during motoring and recovers 399.4 Wh during braking. 

Fig. 8 shows the energy balance for the motoring stage. The battery 
and the SC provided a total of 2191 Wh (1765 Wh + 426 Wh) of 
motoring energy which is equivalent to 31.3 % (523 Wh) more energy 
than the required (1668 Wh) during the driving cycle. From the 426 Wh 
provided by the SC during the motoring stage, 227.4 Wh are effectively 
contributed to motoring. A total of 7 Wh is lost due to DC/DC conver
sion. The remaining 191.6 Wh are transferred to the battery, producing a 
loss of 5.7 Wh. On the other hand, from the 1765 Wh provided by the 
battery, 1440.6 Wh are effectively contributing towards motoring while 
324.4 Wh are transferred to the SC through the DC/DC converter. This 
generates a loss of 9.7 Wh. Conversion losses are calculated assuming a 
DC/DC converter efficiency of 97 %. 

The SC provides a total of 227.4 Wh of effective assistance during the 
motoring stage, which correspond to the positive blue shaded areas in 
Fig. 7. However, only 67.5 Wh corresponds to assistance during positive 
changes in the current rate. This is shown as the positive blue shaded 
areas in Fig. 9, which depicts a comparison between the SC current and 
the benchmark reference (see Fig. 4). 

The energy balance for the braking stage is shown in Fig. 10. The SC 
recovers only 84,7 Wh of the 470.8 Wh generated during braking 
(negative areas in Fig. 9). The battery absorbs the remaining 383.5 Wh. 
The same analysis is performed for the other strategies presented in this 

Fig. 6. a) Direct DWT HFC, b) predicted DWT HFC, c) Difference between current demand and DWT LFC, d) Difference between current demand and predicted 
DWT LFC. 

Fig. 7. DWT HFC allocated to the SC.  
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paper as detailed in the next subsections. 

3.2. Predicted DWT high frequency component 

In Fig. 11, the predicted DWT HFC is allocated to the SC according to 
the strategy presented in Fig. 6b, relieving the battery from excessive 
energy circulation when compared to approach A (see Fig. 7) as a 
consequence of delay compensation. However, the battery still lacks SC 
assistance during acceleration and braking. With the predicted DWT 
approach, the battery recoups most of the generated braking power. 
Delay compensation with the prediction approach reduces energy cir
culation but it is still not sufficient to fulfil the objective of the SC in the 
HESS as it doesn't assist the battery during acceleration and fails to 
recover all the braking power. The effective contribution of the SC is 
represented by the shaded areas. 

3.3. High frequency derived as the difference between the real-time 
current demand and the DWT low frequency component 

Current demand (ITotal) is decomposed (2 levels) with the DWT into 

low and high frequencies. The LFC is subtracted from the current de
mand (ITotal) to obtain the SC current reference according to Fig. 6c. The 
SC assists the battery during acceleration and peak demand during 
motoring (positive current demand) and recuperates most of the braking 
current generated as shown in Fig. 12. However, energy circulation in
creases between the battery and SC, for example between t = 30s to t =
36 s. With this approach, the SC provides higher energy to assist the 
battery during motoring and further relieves the battery from braking 
compared to strategies A and B. 

3.4. High frequency derived as the difference between the real-time 
current demand and the predicted DWT Low frequency component 

Using the difference between the current demand and the predicted 
DWT LFC (Fig. 6d) results in the SC providing assistance during peak 
demand which is evident between t = 20s to t = 25 s, t = 40s to t = 45 s 
and from t = 54 s to t = 56 s in Fig. 13. Additionally, the SC recovers most 
of the power generated during braking. Shaded areas depict the SC 
effective contribution. 

Fig. 8. Motoring stage energy balance.  

Fig. 9. Comparison between the SC current and current rate reference.  
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3.5. Performance comparison 

It is obvious that strategies C and D offer the best results in terms of 
SC assistance during motoring and braking. However, a meaningful 
comparison requires an analysis of the effective contribution of the SC, 
especially the assistance given during positive current rate, and braking. 
These are referred as SC performance. Table 6 shows the results for the 
EMS strategies presented in this paper with four different driving cycles. 

3.5.1. Direct DWT HFC (Strategy A) vs predicted DWT HFC (Strategy B) 
The direct use of the DWT HFC to obtain the SC current reference 

(strategy A) results in low SC effective assistance caused by a delayed 
response of the SC with respect to the real time demand. The percentage 
of SC effective motoring assiatance is calculated as the ratio between the 
SC positive energy contribution to the total positive energy demand 
(FTP72 = 13.6 %, WLTP3 = 8.1 %, US06 = 15.7 %, Artemis = 12.2 %). 
Prediticting the DWT HFC (strategy B) results in a reduction of the SC 
performance influenced by the prediction error. The SC performance 

during motoring and braking is reduced for the FTP72, US06 and 
Artemis driving cycles which have RMSE of 8.91 kW, 11.79 kW and 
16.19 kW, respectively. For the FTP72 the SC effective contribution is 
reduced from 13.6 % to 12.8 % for the US06 it is reduced from 15.7 % to 
9.6 %, and for the Artemis motorway is reduced from 12.2 % to 9.4 %, as 
shown in Table 6. The smaller prediction error obtained for the WLTP3 
driving cycle (RMSE = 3.59 kW) results in a marginal improvement in 
the SC effective contribution, as it rises from 8.1 % to 9.9 %. However, 
SC performance during braking is reduced from 15 % to 13.1 %. 

With regards to energy circulation, predicting the power demand to 
compensate for the DWT HFC delay (Strategy B) leads to an expected 
reduction when compared to direct use of the DWT HFC (Strategy A). 
This is observed for each driving cycle. As less energy is circulating 
between the battery and SC, less energy is lost due to DC/DC conversion. 
Results show that the complexity added by predicting the DWT HFC 
does not reap benefits in terms of SC performance. 

Fig. 10. Braking stage energy balance.  

Fig. 11. Predicted DWT HFC allocated to the SC.  
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3.5.2. Difference between the real-time current demand and the DWT LFC 
(Strategy C) vs Difference between the real-time current demand and the 
predicted DWT LFC (Strategy D) 

With strategy C, the SC takes over the current demand during the 
delay, consequently improving the SC assistance performance. A sig
nificant improvement of SC effective assistance during motoring, posi
tive current rate, and braking is observed when comparing strategies C 
and D with strategies A and B for each driving cycle, as shown in Fig. 14. 
However, this improvement comes at the cost of higher energy circu
lation between the battery and SC, which increases energy losses due to 
DC/DC conversion. 

With strategy D, energy circulation and its associated energy losses 
are reduced as a consequence of delay compensation, when compared 
with strategy C. Meanwhile, SC performance does not improve for urban 
or mixed driving cycles (FTP72, WLTP3), but it does for highway driving 
cycles (US06 and Artemis Motorway). Strategy D provides good results 
over strategies A and B, however, its implementation in real time is 
complex. Furthermore, the variable prediction error obtained for 
different driving cycles as well the variable time required for the pre
diction algorithm excecution influences SC performance. Considering 
that the role of the SC is to assist the battery to cope with sudden power 
change and recover all regenerative braking, strategy C provides the best 
option as improves the SC performance in all driving conditions and it is 
easier to implement in real time. This, however, comes at a relatively 
higher cost of energy circulation which increases the system energy loss. 

Given the high efficiency of modern DC/DC converters, the advantages 
outweigh the disadvantages of this strategy. 

4. Conclusions 

In this paper, 4 different implementation strategies for a DWT based 
EMS, which produces frequency components with a delay of 4 s with 
respect to the real time demand, have been evaluated using different 
metrics to quantify energy circulation and SC assistance during motor
ing, acceleration, and braking. The 4 strategies depend on how the SC 
reference current is determined from the DWT with and without time 
delay compensation. For this purpose, a LSTM neural network to predict 
future power demand before it is fed to the DWT has been designed in 
order to compensate for the DWT time delay. Results show that 
obtaining the SC current reference as the difference between the real 
time current demand and the DWT LFC (strategy C) improves the SC 
assistance during motoring and braking when compared to the predic
tion based method in all driving conditions. Prediction proves to 
compensate for the delay and reduce energy circulation but it does not 
improve the SC performance. With aggressive driving cycles such as the 
US06 and Artemis motorway, the best results are obtained with a current 
reference calculated as the difference between the real time current 
demand and the predicted DWT LFC (strategy D). Real time imple
mentation is, however, more difficult. Therefore, strategy C is chosen as 
the best control strategy to enable a DWT based EMS with 4 s delay 

Fig. 12. Current distribution when Iref(SC) = Itotal − DWTLFC  

Fig. 13. Current distribution when Iref(SC) = Itotal − predicted(DWTLFC).  
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frequency components to perform in real time. 
There are some disadvantages to DWT filtration in comparison to 

conventional digital filters, including limited design flexibility as well as 
increased implementation complexity. A digital filter with an Infinite 
Impulse Response (IIR), for example, is usually implemented using 
analogue equivalents, which are used to find the continuous time filter 
transfer functions that approximate the frequency domain specifications 
using well established methods such as Butterworth, Chebyshev, 
Elliptic, and least squares. In contrast, DWT is limited by factors such as 
the choice of mother wavelet, where the Haar wavelet is the only valid 

option as it produces the smallest delay, and sampling rate, which affects 
the complexity of the DWT decomposition and reconstruction dyadic 
tree. 

Further work involves the development and experimental validation 
of an EMS based on a digital filter to obtain the SC current reference. The 
aim of the EMS will be to distribute energy efficiently by reducing en
ergy circulation in the system, allocate all the generated braking energy 
to the SC and assist the battery during peak power demand. A compar
ison of the performance achieved with an EMS based on DWT and other 
based on digital filters will be carried to fill the gap in the literature 

Table 6 
SC performance comparison. 

Driving 
cycle

Strategy
(ranking)

Energy Circula�on 
(Wh)

(Addi�onal Energy on 
top of:

FTP72=1668 Wh,
US06=2601 Wh,
WLTP3=3616 Wh

Artemis=5525 Wh)

Effec�ve motoring 
assistance (Wh)

(FTP72 Max=1668 Wh)
(US06 Max=2601 Wh)

(WLTP3 Max=3616 Wh)
(Artemis=5525 Wh)

Assistance during posi�ve 
current rate (Wh)

(FTP72 Max=306.6 Wh)
(US06 Max=587.4 Wh)

(WLTP3 Max=366.2 Wh)
(Artemis=979.6 Wh)

SC braking recovery 
(Wh)

(FTP72 Max=470.8 Wh)
(US06 Max=452.9 Wh)

(WLTP3 Max=755.7 Wh)
(Artemis=565 Wh)

FTP72
(Urban)

A(3) 31.4% 13.6% 22.0% 18.0%
B(4) 19.0% 12.8% 18.5% 10.9%
C(1) 44.0% 34.7% 59.8% 63.4%
D(2) 33.9% 19.9% 41.1% 22.5%

WLTP3
(Mixed)

A(4) 17.4% 8.1% 21.9% 15.0%
B(3) 16.5% 9.9% 23.3% 13.1%
C(1) 33.0% 26.0% 76.7% 57.0%
D(2) 20.6% 17.4% 55.3% 24.5%

US06
(Motorway)

A(3) 27.6% 15.7% 17.0% 22.1%
B(4) 18.5% 9.6% 8.8% 11.4%
C(2) 34.6% 32.5% 44.0% 57.0%
D(1) 33.3% 44.3% 73.5% 95.4%

Artemis 
Motorway

A(3) 20.5% 12.2% 20.5% 16.6%
B(4) 14.2% 9.4% 19.1% 16.7%
C(2) 24.7% 23.9% 42.0% 70.1%
D(1) 14.7% 51.2% 70.2% 97.7%

Fig. 14. Results comparison.  
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regarding this topic and aid engineers in the selection of the most 
appropriate frequency sharing technique. 
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