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The Causes and Consequences of Clonal Haematopoiesis 

by 

Ahmed Abdelrazek Zaky Dawoud 

Introduction: Over the past decade, the availability of large population studies has allowed a 

detailed exploration of the relationship between genetics and clinical phenotypes. Clonal 

haematopoiesis (CH) is the expansion of blood cells with genetic features that are often observed 

in patients with haematological malignancies, particularly myeloid neoplasms. CH is a common 

finding in elderly individuals and associated with an elevated risk of developing haematological 

malignancies, cardiovascular diseases, and all-cause mortality. My study has four main aims. First, 

to characterise the inherited and environmental risk factors associated with myeloid CH. Second, 

to characterise the impact of myeloid CH on the risk of developing chronic inflammation-related 

diseases. Third, to investigate the utility of CH measures to predict the risk of myeloid malignancies. 

Fourth, to identify risk factors associated with age-related loss of the Y-chromosome (LOY) in men 

and its relationship to CH. 

Methods: The UK Biobank represents a unique genetic and phenotypic dataset of about 500,000 

individuals with 94.6% white ethnicity. CH was defined in this study by the presence of mosaic 

chromosomal alterations (mCA) and/or somatic driver mutations. I utilised B-allele frequencies, and 

genotypic intensities from single nucleotide polymorphism array data (n = 486,941) to identify mCA, 

and diagnostic data to classify mCA according to their association with myeloid, lymphoid or neither 

of these diseases. Furthermore, I utilised whole exome sequencing data (WES, 1st release, 

n = 49,956; 2nd release, n=150,685) and publicly available databases to identify putative somatic 

driver mutations. LOY calls in men were provided by the UK Biobank from published data.  

Results: The frequency of myeloid CH increased per year of participant age and was associated 

with: two distinct germline predisposition signals within TERT, current smoking, and several blood 

features and clinical phenotypes indicative of chronic inflammation. Somatic loss-of-function 

mutations in ASXL1 were found to be strongly associated with current and past smoking status. 
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Focusing on chronic kidney disease (CKD), myeloid CH was negatively associated with glomerular 

filtration rate (GFR) estimated from cystatin-C which is a marker of CKD but not with GFR estimated 

from creatinine which has previously been reported to be less informative. Furthermore, myeloid 

CH increased the risk of adverse outcomes, defined by a composite of all-cause mortality, 

myocardial infarction or stroke, in CKD cases compared to those without myeloid CH. Machine 

learning (ML) survival models which analysed high dimensional data including CH calls, blood counts 

and biochemistry markers were more predictive of myeloid malignancies in comparison to 

traditional regression-based models. Finally, LOY was significantly associated with CH and also with 

clonality inferred from non-CH somatic mutations. LOY was suggested to be causally associated 

with high levels of sex hormone binding globulin, and this relationship was linked to expression 

Quantitative Trait Locus (eQTL) associated with genes at the DLK1-MEG3 locus.  

Conclusion: This study demonstrates the wide scientific reach of CH and its broad impact on health 

outcomes. My results indicate that the type of CH, the identity of specific driver genes, inherited 

risk variants, and environmental factors are collectively determinants of the fitness of CH and 

influence the potential for development of myeloid neoplasms or non-malignant diseases. My 

findings also provide evidence that blood and serum measures hold additional information that 

helps to determine the clinical significance of CH. 
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Chapter 1 Introduction 

In this Chapter, I will cover the background knowledge relevant to my studies. The first section 

discusses the concept of clonal haematopoiesis (CH) as a precursor to the development of 

haematological neoplasms. Next, I discuss two concepts relating to the pathogenesis of myeloid 

malignancies; the first is the genetic basis of these disorders, and the second is the role of 

inflammation. In the final section, I discuss next generation sequencing (NGS) and other genomic 

technologies used to characterise both CH and myeloid neoplasms. 

 

1.1 Haematopoiesis and clonality 

Haematopoiesis is the canonical differentiation process that generates cells of the blood and immune 

system. Haematopoietic stem cells (HSCs) are at the top of this hierarchical process, and are located 

at various sites, according to the developmental stage. In early gestation, HSCs are located in the yolk 

sac and the aorta-gonad mesonephros (AGM) region. Next, HSCs migrate and are active at the fetal 

liver and spleen until about 2 weeks after birth when they begin to migrate to the bone marrow. 

Finally, in human adults, bone marrow dominates the process of haematopoiesis [1]. HSCs flourish in 

a niche, which is cellular and extracellular matrix generated by stromal cells that provide a suitable 

environment for HSCs to survive, proliferate and differentiate. HSCs have two main characteristics. 

First, they can self-renew, and thus completely regenerate the haematopoietic system, e.g. after bone 

marrow transplantation. Second, they have the capacity to differentiate into haematopoietic 

progenitors that are committed to develop restricted cell types, such as myeloid or lymphoid cells. 

Long-lived progenitor cells are recruited to keep the steady-state blood production during adulthood 

rather than HSCs [2].  

The regulation of haematopoiesis depends on internal and external factors. Externally, it is controlled 

by growth hormones and cytokines to keep the balance between the self-renewal capacity of the 

HSCs, and the promotion of differentiation. Within each cell, growth factor receptors, their signal 

transduction components, and downstream transcription factors control the fate of individual cells 

and thus the haematopoietic system. 
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1.1.1 Clonal haematopoiesis 

Leukaemia and related conditions are clonal disorders whereby an initial somatic mutation in a single 

cell confers a selective advantage. Further mutations may be acquired that confer an additional 

selective advantage and give rise to further subclones that may initiate full blown disease or promote 

disease evolution [3]. It has become apparent, however, that clonality does not necessarily indicate 

malignancy. For example, skewed X-chromosome inactivation (a potential marker of clonality) in 

blood cells is known to be correlated with the age of healthy females who have no evidence of a 

haematological malignancy. This initial observation led to the identification of TET2 mutations as the 

driver of clonality in some cases with skewed X-chromosome inactivation [4]. Other evidence for CH 

in the absence of a discernible haematological disorder came from a number of observations, 

including: (i) the prevalence of JAK2 V617F was much greater than myeloproliferative neoplasms 

(MPN) in randomly selected subjects undergoing hospital-based clinical investigations [5]; (ii) as 

described in more detail below, mosaic chromosome alterations (mCA), many of which were 

characteristic of myeloid neoplasia, were seen in large cohorts ascertained for non-haematological 

conditions [6,7]; (iii) myeloid malignancy-associated driver mutations, most commonly involving 

DNMT3A, TET2 or ASXL1, were found at a much higher frequency than expected in large cohorts also 

ascertained for non-haematological conditions [8-10] and (iv) exome sequencing of de novo acute 

myeloid leukaemia (AML), and matched remission samples identified some somatic mutations, 

particularly in DNMT3A, that persisted in remission suggesting reversion to a previously unsuspected 

pre-leukaemic clonal state [11]. These findings provided the foundation for our understanding of the 

relationship between age-associated clonality and myeloid leukaemia associated genes, as discussed 

in more detail below. The literature has other evidence that connects pre-malignant clonal states to 

haematological malignancies. For example, monoclonal gammopathy of undetermined significance 

(MGUS) is a premalignant clonal disease that is often succeeded by multiple myeloma (MM) [12], with 

a progression rate from MGUS to MM of 1% per year [13]. Similarly, monoclonal B-cell lymphocytosis 

(MBL) is a benign condition in many individuals but may progress to chronic lymphocytic leukaemia 

(CLL).  

1.1.2 Mosaic chromosomal alterations 

The carrying of two or more different karyotypes in different cells of the same individual is defined as 

chromosomal mosaicism. These aberrant events may arise very early in development or in somatic 

cells and include whole chromosome abnormalities (e.g., loss or gain of whole chromosomes), 
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translocations, sub-chromosomal structural abnormalities (deletions or amplifications), and copy 

number neutral events known as uniparental disomy (UPD) or copy number neutral loss of 

heterozygosity (CNN-LOH). In cancer, acquired chromosomal alterations have been used for many 

years as a marker of clonality. In 2012, however, two consecutive studies identified chromosome 

mosaicism in the normal population, and an age-related pattern of incidence. In one of the two 

studies, they analysed 57,853 individuals (31,717 non-haematological cancer cases and 26,136 cancer-

free controls) from 13 genome wide association studies (GWAS). Mosaic abnormalities were identified 

in peripheral blood-derived DNA from about 1% of the cohort. Although this finding was more 

frequent in participants with solid tumours (0.97%) compared to the cancer free group (0.74%), the 

most striking finding was a continuous increase in prevalence with age, ranging from 0.23% of samples 

under 50 years old to 1.91% of samples between 75 and 79 years [7]. In the second study, 50,000 

individuals were analysed from 15 different studies in the Gene Environment Association Studies 

consortium (GENEVA) which identified mosaic alterations in <0.5% of the participants younger than 

50 years old, but the frequency rapidly increased to 2-3% in participants older than 50 years. In 

addition, the mosaic events were associated with a 10-fold increase in the incidence of haematological 

malignancies [6]. These studies were the first comprehensive description of age-related clonality in 

peripheral blood cells of individuals that were not selected for a haematological abnormality. 

1.1.3 Uniparental disomy (UPD) 

UPD is defined as the finding that both homologues of a pair of chromosomes, or sub-chromosomal 

regions, are derived from the same parent. UPD can involve identical homologues in which case it is 

termed “isodisomy”, or non-identical homologues in which case it is called “heterodisomy”. The origin 

of UPD is related to its clinical consequences, and in particular whether it is germline or somatic. 

Constitutional UPD: Germline UPD is associated with rare developmental disorders such as Angelman 

syndrome and Prader-Willi syndrome, conditions that arise by the aberrant expression of imprinted 

genes in the affected regions. Different hypotheses can explain how germline UPD arises. First, the 

gamete complementation hypothesis is based on the high frequency of aneuploidy in human gametes. 

Aneuploidy provides a chance for the fertilization of nullisomic gamete and a disomic gamete of the 

same chromosome, which generates heterodisomic UPD. Second, trisomic rescue is the loss of one of 

the extra-chromosomes in trisomic zygote cells, to save the conceptus. This mechanism may generate 

mosaicism between trisomic cells, and disomic cells, with a theoretical probability of 1/3 that the 

disomic cells are uniparental with respect to the originally trisomic chromosome. The trisomic event 
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arises due to a segregation error in the meiosis 1, or meiosis 2. The first generates a heterodisomic 

UPD, whereas the second generates isodisomic UPD. Third, the compensation mechanism is the 

duplication of a normal chromosomal homologue to compensate for aneuploidy. This takes place at 

mitosis early in development and generates isodisomic UPD. 

Acquired UPD: Non-allelic homologous recombination (NAHR) is the main mechanism for the 

generation of acquired UPD (aUPD), a phenomenon that is commonly associated with cancer, 

including myeloid malignancies. It arises through mitotic recombination between non-allelic 

homologous regions, which generates a region of isodisomic aUPD, usually between the region of the 

recombination and the telomere (Figure 1-1) or interstitially if there are two points of recombination 

[14,15]. Recurrent regions of aUPD are typically associated with somatic cancer driver mutations and 

confer a selective advantage to the cell, most commonly by conversion of a heterozygous mutation to 

homozygosity [16].  

 

 

Figure 1-1: An example of aUPD at chr11q in an AML patient 

Raghavan and colleagues identified aUPD with a breakpoint at chr11q by comparing calls ratio and signal 
intensities ratio between diagnosis and remission samples of an AML patient [17].  Black dots refer to ratio of 
heterozygous to homozygous calls in a window of 20Mb in the diagnosis sample divided by the similar ratio in 
the remission sample. Red dots refer to the ratio of the mean signal, and the blue line indicates the point of 
recombination. 
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1.1.4 The relationship between aUPD and cancer driver genes 

Combining both single nucleotide polymorphism arrays (SNP-A) and NGS is a comprehensive strategy 

to identify pathogenic abnormalities in cancer. SNP-A provides a sufficient density of markers to 

identify most chromosomal abnormalities apart from balanced translocations. It provides quantitative 

data of the allelic frequency as well as the copy number, which can be used to distinguish between 

copy number variants (CNV) and copy number neutral changes (i.e. aUPD) [18]. On the other hand, 

NGS can also identify point mutations, indels and, in the case of whole genome sequencing (WGS) or 

RNA sequencing (RNAseq), fusion genes arising from reciprocal translocations [19]. 

Despite the huge advances in our understanding of cancer genomes there are still opportunities to 

identify new cancer genes in recurrent regions of chromosomal alteration. The analysis of 3,131 

microarrays (Affymetrix 250k) from 26 different cancers identified 76 focal amplifications, and 82 focal 

deletions, most of them with no known cancer genes [20]. Also, the analysis of 4,934 microarrays 

(Affymetrix SNP 6) from the Cancer Genome Atlas data set identified 140 recurrent regions, 102 of 

them with no known cancer related genes [21]. In general, focal somatic CNVs represent more than 

80% of the copy number alterations in cancer, and they can be used to identify new driver genes [20]. 

Despite the huge progress in sequencing cancer genomes and exomes, an analysis based on signatures 

of positive selection indicates that 50% of cancer driver genes remain to be discovered [22].  In 

addition, non-coding regions are potential targets to discover new selection signals. The first evidence 

came from the discovery of two positions in TERT promoters that can be activated by somatic 

mutations [23,24]. Following this, the analysis of 2,658 genomes from the Pan-Cancer Analysis of 

Whole Genomes (PCAWG), identified more non-coding regions altered by point mutations such as 5′-

end mutations in TP53 and 3′ UTRs of TOB1 [25]. Novel open-reading frames (nORFs), that include 

both small ORFs (1-100 amino acids) and alternative ORFs, could represent a new dimension to 

discover new driver mutations [26]. Previous studies had identified some of the cancer associated 

nORFs, such as lncRNA HOXB-AS3 that encodes a 55 amino acid peptide downregulated in colon 

cancer [27]. 

In myeloid leukaemia, aUPD is associated with many known mutated genes. For example, JAK2, MPL, 

and CALR mutations, the main three diagnostic markers of the myeloproliferative neoplasms (MPN), 

are associated with aUPD of chromosomes 9p, 1p, and 19p respectively [28-30] although aUPD is most 

commonly seen in association with JAK2 mutations. Indeed, refinement of the region targeted by 9p 

aUPD was one of the routes by which JAK2 V617F, the most common mutation in MPN, was first 
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identified [28]. This now classic pipeline of identifying mutated genes within regions of aUPD has been 

repeated, for example  inactivating EZH2 mutations in cases with 7q aUPD [31,32], and missense 

substitutions in CBL associated with 11q aUPD that abrogate CBL ubiquitin ligase activity [33,34]. 

Theoretically, the gene level mutation is the initial driver of clonal development and aUPD, or 

hemizygous deletion of the wild type allele, may represent a second hit that drives the development 

of a more aggressive clone with a homozygous or hemizygous driver mutation. For example, patients 

with the homozygous form of JAK2 V617F tend to have a more symptomatic form of the disease, and 

are more likely to transform to primary myelofibrosis [35]. 

1.1.5 Clonal haematopoiesis of indeterminate potential 

Clonal haematopoiesis of indeterminate potential (CHIP) is defined by the finding of clonality, most 

commonly the identification of somatic mutations in the myeloid malignancy-associated genes at ≥2% 

VAF, in the absence of any phenotypic characteristics of malignancy such as an abnormal blood cell 

counts. Following on from the studies of chromosomal mosaicism described above, CHIP was first 

identified as a widespread phenomenon by genomic analysis of large population cohorts under 

investigation for a variety of non-malignant conditions [8,10,36]. 

The prevalence of CHIP varies according to the sensitivity of the mutation assessment technique and 

the population studied. Notably, it is directly proportional with age, ranging from 1% of individuals in 

their 40s to >10% in their 80s, and is associated with a range of frequently mutated genes (DNMT3A, 

TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1) [10,37] (Figure 1-2). In a separate study, 

mutations in DNMT3A, ASXL1 and TET2 were identified in more than 10% of participants over the age 

of 70, and in 1% of participants below the age of 50 using whole exome sequencing with a limit of 

detection (LoD) of 5% variant allele fraction (VAF)  [8]. However, using deep targeted error corrected 

sequencing methods with a LoD of 0.03%, CHIP were found in 95% of participants aged between 50-

60 years old indicating that low level CHIP is very prevalent [38]. Briefly, error corrected sequencing is 

a technique that employs unique labels for each DNA molecule that directly allows technical artefacts 

to be distinguished from true variants by effectively improving the signal-to-noise ratio  [38,39]. 

Individuals with CHIP had more than 10 times elevated risk of developing a haematological malignancy 

but the rate of progression was only about 1-2% per annum [8,10], similar to the rate of progression 

of MGUS to MM, and MBL to CLL [13,40]. Deep sequencing has provided valuable information about 

the incidence of CHIP mutations to the driver gene level among different age categories. Although 

DNMT3A mutations are the most common in all  age categories, with a gradual increase in prevalence 
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by age, the spliceosome genes SF3B1 and SRSF2 were exclusively mutated at age greater than 70 years 

old [41]. 

 These findings have been used to generate a prediction model for the development of AML by using 

deep sequencing to compare pre-AML cases vs controls. The pre-AML cases had more somatic 

mutations, specifically an enrichment in TP53 mutations, SRSF2 and U2AF1 mutations (spliceosome 

genes known to be associated with poor prognosis in AML), and mutations in JAK2, IDH2, and ASXL1. 

DNMT3A and TET2 were frequently mutated in both groups. Surprisingly, NPM1, CEBPA and FLT3-ITD 

mutations were entirely absent, which suggests that these genes are later events that may more 

directly drive clinically manifest AML [42]. Another study identified somatic mutations in IDH1, IDH2, 

TP53, DNMT3A and TET2 as predisposition factors for the risk of developing AML [43]. 

 

 

Figure 1-2: Mutations in the main genes associated with clonal haematopoiesis 
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Comparative data from four large cohort studies of CHIP. The three epigenetic regulator genes, DNMT3A, TET2 
and ASXL1 contribute to more than 90% of somatic driver mutations. Although a long tail of mutated genes 
varies between studies, mutations in splicing genes (SF3B1 and SRSF2), apoptotic regulators (TP53, PPM1D), and 
signal transduction (JAK2) were the most common targets after the epigenetic regulator genes. 

 

1.1.6 The biological function of mutated genes in clonal haematopoiesis and myeloid 

neoplasms 

Most driver mutations associated with CH target a small group of myeloid neoplasia-related genes 

that are implicated in epigenetic regulation, the splicing machinery, apoptosis, and signal 

transduction. I will cover these biological processes and the genes involved in the following sections. 

1.1.6.1 Epigenetic regulator genes 

DNA methyltransferase 3 alpha (DNMT3A): DNMT3A is located at 2p23.3. It encodes a 

methyltransferase enzyme, which adds a methyl group to C5 of cytosine to form 5-methylcytosine at 

CpG dinucleotides. In general, CpG are clustered in regions called CpG islands, and high methylation 

rates are associated with gene silencing. DNMT3A and DNMT3B have similar functions of carrying out 

de novo methylation [44] and differ from DNMT1 which plays a role in maintaining pre-existing 

patterns of methylation. NGS as a game changing technology enabled the discovery of DNMT3A 

mutations in cytogenetically normal de novo AML [45]. The majority of DNMT3A mutations target the 

region encoding the methyltransferase domain, most frequently missense mutations at amino acid 

R882, or frameshift/stop mutations resulting in a truncated protein [46]. The functional effect of 

DNMT3A mutations can arise by different mechanisms; (i) haploinsufficiency, indicating a role as a 

tumour suppressor gene (ii) a dominant-negative effect, as mutated DNMT3A inhibits the activity of 

wild type DNMT3A and DNMT3B [47]. In clinical practice, DNMT3A mutations have been associated 

with a poor prognosis, reduced overall survival in AML [48], and co-occurrence with NPM1, FLT3, and 

IDH1 [45]. However, the finding of DNMT3A mutations without NPM1 present in AML blasts revealed 

the pre-leukaemic nature of DNMT3A mutations [11]. 

Ten Eleven Translocation (TET) methylcytosine dioxygenase 2 (TET2): The TET2 gene, which is located 

at chromosomal position 4q24, belongs to the TET family of proteins. These proteins catalyse DNA 

demethylation by converting 5-methylcytosine into 5-hydroxymethylcytosine. Sequencing of the 

minimal overlap region in MPN patients with 4q mCA led to the finding of LOF mutations in the TET2 

gene [49]. In general, TET2 mutations are highly associated with MDS and are frequently seen in AML, 

and MPNs. The prognostic impact of TET2 is controversial, TET2 mutations in MDS patients have been 
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associated with a higher response rate to azacytidine [50]. Subsequently, TET2 was found to interfere 

with other functional pathways; (i) TET2 is regulated by α-ketoglutarate (α-KG) which is produced by 

isocitrate dehydrogenase (IDH1/2); mutations in IDH1/2 produce 2-hydroxylglutarate (2-HG) that 

competitively inhibits α-KG, and alters the demethylation activity (Figure 1-3) [51]; (ii) TET2 is a 

substrate for AMP-activated kinase (AMPK), which phosphorylates TET2 serine 99 and stabilises TET2 

activity, a finding that connects TET2 to glucose levels [52]; (iii) TET2 is regulated by ascorbate which 

reduces the catalytic site Fe(III) to Fe(II) [53].  

 

Figure 1-3: Pathways inhibiting the demethylation activity of TET2 

TET2 catalyses DNA demethylation by converting 5-methylcytosine into 5-hydroxymethylcytosine Mutated 
IDH1/2 induces the production of 2-hydroxylglutarate (2-HG) that competitively inhibit α-ketoglutarate required 
for the demethylation function of TET2. AMP-activated kinase (AMPK), regulated by glucose levels, 
phosphorylates TET2 at serine 99. Ascorbate increases dioxygenase activity of TET2 by facilitating the 
Fe(III)/Fe(II) redox reaction. 

 

Additional sex combs-like 1 (ASXL1): ASXL1 is located at chromosomal position 20q11. The sequencing 

of a recurrent region of interstitial deletion at 20q led to the finding of ASXL1 mutations in myeloid 

malignancies [54,55]. Mutations in ASXL1 alter chromatin conformation[56] by two mechanisms 

(Figure 1-4): (i) mutations in ASXL1 target the polycomb repressive complex 2 (PRC2) which mediates 

trimethylation of Histone3 lysine-27(H3K27me3), an epigenetic mark associated with downregulation 

of nearby gene expression via the formation of heterochromatic regions  [57]; (ii) ASXL1 and BRCA1-

associated protein 1 (BAP1) form a protein complex called polycomb repressive deubiquitinase (PR-
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DUB) that targets Histone2A lysine-119 (H2AK119) [58]. Histone H2AK119 mono-ubiquitination is 

essential to maintain PRC2-mediated transcriptional repression [59]. In general, ASXL1 is frequently 

mutated in myeloid malignancies and associated with poor prognostic outcomes for AML, MDS and 

MPN patients [60].  

 

Figure 1-4: The role of ASXL1 in chromatin modification 

The ASXL1-BAP1 complex is recruited by the PRC2 complex that is composed of SUZ12, EED, and EZH2 proteins 
to mediate trimethylation of Histone3 lysine-27(H3K27me3). The ASXL1-BAP1 complex also functions by 
removing ubiquitin from histone H2A lysine 119 in regions targeted by the PRC1.4 complex. which is composed 
of PCGF4, RING1A, CBX, and PHCs. 

 

1.1.6.2 Splicing machinery genes 

Genes encoding components of the RNA splicing machinery are frequently mutated in MDS, include 

U2AF1, ZRSR2, SRSF2 and SF3B1 [61,62]. Small nuclear ribonucleoproteins (snRNPs) and other 

dependent proteins aggregate at the 3’ and 5’ splice sites (SS) of pre-mRNA to form the spliceosome. 

The 5’ SS binds to U1 small nuclear ribonucleoprotein particle (snRNP) which in turn binds to the 5′ 

splice site through base pairing (Figure 1-5). The AG bases of the 3’ SS bind to U2AF1. The branch point 

binds to SF1 and the polypyrimidine tract binds to U2AF2. SF3B1 and SF3A1 are components of U2 

snRNP and it is thought that they bind pre-mRNA upstream of the branch site in a sequence-

independent manner to anchor the U2 snRNP to pre-mRNA. SRSF2 is one of the splicing regulators 

(SR) proteins that binds to exon splicing enhancers (ESE) to direct splicing machinery components and 
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to define exon/intron boundaries [63]. The majority of mutations in SRSF2, U2AF1, SF3B1 are 

heterozygous missense point mutations that include SRSF2 P95, U2AF1 Q157, SF3B1 K700 [62].  

 

 

Figure 1-5: RNA splicing machinery 

Orange coloured molecules indicate frequently targeted genes in myeloid malignancies. U1snRNP and U2AF35 
(U2AF1) bind to the 5’ SS, and 3’ SS respectively, whereases the branching point binds to SF1 and U2AF65 
(U2AF2). SF3A1, and SF3B1 guides U2snRNP. SRSF2 binds to the ESE [62]. 

 

1.1.6.3 Apoptosis-related genes 

Protein Phosphatase, Mg2+/Mn2+ Dependent 1D (PPM1D): The serine-threonine phosphatase 

encoded by PPM1D is upregulated in response to DNA damage by a mechanism that depends on p53 

[64]. Recurrent mutations in PPM1D have been identified by sequencing of blood samples from 

healthy individuals [37]. Pre-existing PPM1D mutated cells expand in patients treated with cytotoxic 

agents such as cisplatin [65], an effect mediated by elevated resistance to apoptosis [66]. Genetic 

alterations in PPM1D have been identified in a significant proportion of MPN patients which include 

truncating mutations (n=5/89 of MPN blast phase, n=4/135 of PV and ET), cytogenetic alterations in 

the PPM1D region at 17q23 (1.4%), and over-expression (42% of 31 MPN) [67]. 
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1.1.6.4 Signal transduction genes 

Janus kinase 2 (JAK2): JAK2 is a non-receptor tyrosine kinase and member of the Janus-kinase family. 

JAK2 function is mediated through its association with cytokine receptors that activates Signal 

Transducer and Activator of Transcription (STAT), mitogen activated protein kinase (MAPK) and 

phosphotidylinositol 3-kinase (PI3K) signalling pathways [68] (Figure 1-6). In 2005 several groups 

reported the acquisition of JAK2 V617F in 95% of PV patients, and about 50% of ET and PMF patients 

[28,69-71]. V617F is a point mutation in the catalytically inactive pseudokinase domain (JH2) that 

results in constitutive activity of the JH1 kinase domain [72]. Recent structural modelling has localised 

V617 at the putative interface between JH1 and JH2, with mutation to phenylalanine predicted to 

destabilise the inactive conformation and stabilising the active conformation [73]. 

 

 

Figure 1-6: JAK2 signalling transduction pathways 

Cytokine ligands (triangles) bind to cytokine receptors, resulting in JAK2 activation, phosphorylation and 
recruitment of STAT proteins. The activated signalling pathways include mitogen activated protein kinase 
(MAPK, RAS/RAF/MEK/ERK) signalling proteins and the activation of the phosphotidylinositol 3-kinase (PI3K)–
AKT pathway via phosphorylation of Insulin Receptor Substrate 1/2 (IRS1/2) [74]. 
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1.1.7 Mosaic loss of chromosome Y 

Mosaic loss of chromosome Y (LOY) is the expansion of a 45,X karyotype in a subset of cells in the 

peripheral blood of males. The phenomenon was first identified nearly fifty years ago by karyotyping 

and described as common, occurring in 23% of males, and connected to ageing in generally healthy 

individuals as well as those with a haematological malignancy [75]. Large population studies have been 

performed using SNP-A data to detect LOY and to characterise its association with genetic and non-

genetic risk factors. In a combined cohort of 1,153 men, LOY was associated with a 1.9 times higher 

risk of all-cause mortality, and 3.6 times higher risk for solid cancers [76]. LOY was significantly 

associated with current tobacco smoking in a dose-dependent manner, but not with previous smoking 

in 6014 males [77]. A genome-wide association study  comparing 895 men with LOY against 11,474 

controls detected a prominent association with rs2887399 (OR = 1.57, P = 6.46 × 10−11) which is located 

just upstream of TCL1A [78], a gene which encode a protein that co-activates AKT to enhance 

phosphorylation by signal transduction [79]. Subsequent single cell analysis identified over expression 

of TCL1A in cells with LOY and specifically in B-lymphocytes  [80]. Further studies have discovered 

genetic risk variants for LOY associated with genes involved in cell proliferation and cell cycle 

regulation. A total of 19 genetic loci (18 + TCL1A) that predispose to LOY were identified following the 

analysis of 67,034 males in the UK Biobank [81]. An additional 137 loci (total=156) were discovered by 

assessing the SNP-A data from 205,011 participants from the UK Biobank [80].   

1.1.8 The dynamics of clonal haematopoiesis 

Clonal fitness is the proliferative advantage of mutated cells over normal cells [82]. It is a significant 

factor in determining the contribution of a clone in the pathogenesis of a malignant or benign 

phenotype. Recently, different methods were applied to mathematically model the fitness of a driver 

mutations: 

(i) The first used aggregated VAF measurements and age at detection of a single mutation form 

different subjects [83] to model variant density as a function of VAF and to estimate fitness by 

considering age, mutation rate, number of haematopoietic stem cells (HSCs), and time between 

divisions as shown in the equation below.  According to this formula the fitness of DNMT3A R882H 

was estimated to be 15% ± 1% per year  

ρ(l)=θexp(−el/ϕ) 
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where l = log(VAF), θ = 2Nτμ, and ϕ=(est−1)/2Nτs 

N=Number of HSCs, τ=time between divisions, μ=mutation rate, s=fitness effect 

 

(ii) The second method used a longitudinal design that provided a direct estimation for fitness that 

tracked VAF changes over multiple-time points. Surprisingly, 46% of the identified CHIP with VAF > 

0.02 were found to have VAF <0.02 in the following time points, which indicated the shrinkage over 

the study time [84]. Fluctuating VAFs of some mutations might be explained by natural drift in 

populations of cells and was supported by analysis of synonymous variations that are not expected to 

confer a fitness advantage. Both methods, VAF aggregation and the longitudinal design revealed 

canonical characteristics for CH; (i) the targeted gene was the main feature influencing fitness (ii) 

mutations in the splicing genes SRSF2, and SF3B1 were identified as the most fit mutations in 

comparison to those targeting epigenetic regulator genes [83,84]. However, Watson and colleagues 

pointed to GNB1 K57E as being one of the fittest mutations. GNB1 encodes the subunit β, one of the 

three subunits compose heterotrimeric guanine nucleotide-binding proteins (G-proteins) that links 

signals from receptors to downstream proteins. On the other hand, exogenous factors such as 

radiation and chemotherapy play a fundamental role in influencing CH fitness. Mutations in TP53, 

PPM1D, and CHEK2 confer a selective advantage in the context of treatment with radiation, platinum 

or topoisomerase II inhibitors [85]. In summary, the fitness of CH is controlled by internal factors that 

include the function of the gene concerned and the type of mutation, as well as external factors that 

provide an environment that confers a selective advantage for clones with specific mutated genes. 

1.1.9 Clonal haematopoiesis and the risk of myeloid neoplasms 

The relationship between the risk of developing myeloid malignancies and the finding of CH in healthy 

individuals has been well demonstrated in different cohorts [6,7]. The risk for myeloid malignancies 

varies according to the targeted gene, with mutations in JAK2, SRSF2, U2AF1, IDH2, and RUNX1 

predominant in individuals at higher risk of developing myeloid malignancies [42,86]. Regarding clone 

size, individuals with mutations of VAF > 0.01 are at higher risk of developing myeloid neoplasms, 

however smaller clones had unclear pathogenesis [87]. Individuals with multiple clones are at an even 

higher risk, that is independent of the correlation between point mutation and mCA [86,87]. Different 

studies modelled the risk of myeloid malignancies using features of CH (mutated genes and VAF) as 

independent variables. Abelson and colleagues encoded driver mutations as independent continuous 

variables and used a Cox proportional hazard (COX-PH) model to predict the progression-free survival 
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of AML, the performance of the developed model achieved area under-the-curve Receiver Operator 

Characteristic (ROC) = 0.79 [42]. Saiki and colleagues used a combination of driver mutations and mCA 

to predict the risk of both myeloid and lymphoid malignancies, furthermore, CH was associated with 

higher risk of mortality in haematological malignancies (HR=2.8, for driver mutations and HR=2.6 for 

mCA [86]. 

1.1.10 The relationship between clonal haematopoiesis and non-malignant diseases 

Theoretically, mutated HSCs may have a wider effect on non-haematopoietic organs as blood and 

immune cells are distributed to other tissues, and clonal changes may potentially alter the immune 

response and the inflammatory state. This hypothesis is supported by survival analysis of CHIP that 

identified a 40% increase in all-cause mortality from 2 different studies, that is not explained by 

haematological malignancies alone [8,10]. Indeed, the majority of participants with CHIP who died 

developed other diseases before developing any malignancy (Figure 1-7). Other factors also need to 

be considered for example smoking, the prevalence of which is double in CHIP cases in comparison to 

controls [8]. 
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Figure 1-7: The relationship between age and clonal haematopoiesis 

The colour change represents the acquisition of a new mutation. The orange mutation confers no selective 
advantage and is therefore inconsequential. The red mutation confers a selective advantage and results in CH. 
The yellow mutation confers a further selective advantage and drives progression to blood cancer. 10 to 20% of 
people aged above 70, develop a relatively large clone. They have more than 10 times higher risk of developing 
haematological malignancies but the majority of them will die or develop benign disorders such as 
cardiovascular diseases, before developing any malignancy [88]. 

 

1.1.10.1 Cardiovascular disorders 

Importantly, the presence of CHIP was also associated with cardiovascular disease (CVD), indicating 

that clonality has wider health implications beyond haematological malignancies. Individuals with 

CHIP had four times higher risk of developing myocardial infarction, and 1.9 times of developing 

coronary heart disease [10]. There is functional evidence to support a role for mutations in two of the 

most commonly mutated CHIP genes in the pathogenesis of cardiovascular disease. The 

transplantation of bone marrow from TET2 knock out mice to irradiated low density lipoprotein 

receptor (LDLR) knock out mice generated a double size lesion in aortic roots after 5 weeks of high 

cholesterol diet compared to controls [89]. Also, similar work that used bone marrow from DNMT3A 

knock out mice generated a 40% larger size lesion in aortic roots after 9 weeks of high cholesterol diet 
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compared to controls, accompanied by upregulation of the chemokines CXCL1, CXCL2, CCXL3, and the 

cytokine interleukin 1B (IL1B). At the cellular level there was a reduction in T-lymphocytes, and 

increased macrophage count [90]. The effect was more intense when transplanting bone marrow from 

JAK2 V617F mice: after 7 weeks the atherosclerotic lesions were 60% larger compared with controls 

and this was associated with neutrophilia, neutrophil adhesion to the lesion, and increased 

erythrophagocytosis that resulted in release of pro-inflammatory cytokines from macrophages [91].  

1.1.10.2 Type 2 Diabetes 

On the other hand, CH defined by mCA has been reported to have different clinical consequences in 

comparison to CHIP defined by mutations. A significant association was identified between mCA and 

type 2 diabetes with an odds ratio (OR) = 5.3, a relationship that was more pronounced in non-obese 

participants [92]. Differences in the specific targets of mCA and CHIP might be relevant to the different 

clinical consequences associated with them, e.g. mutations in CHIP most frequently target DNMT3A, 

TET2 and ASXL1 whereas mCA most commonly affects distinct regions e.g. chr9p, chr14q and chr20q. 

The general health condition of individuals with CH may also play a role in triggering some correlations. 

For example, functional analysis identified an overlap between TET2 function and glucose levels. TET2 

protein is stabilised by targeted phosphorylation of serine 99, which is mediated by AMP-activated 

kinase (AMPK), which is regulated by glucose levels. TET2 stability was restored by anti-diabetic 

metformin [52]. 

1.1.10.3 Chronic obstructive pulmonary disease: 

A GWAS of pulmonary function identified a genome-wide significant signal in the TET2 gene, the same 

signal was significant for individuals diagnosed with chronic obstructive pulmonary disease (COPD; 

[93]. Recently, a study of 2530 individuals free of haematological malignancies identified a significant 

association between CHIP defined by TET2 somatic mutations and COPD [94].  

1.1.10.4 Opportunistic infections: 

A link between CH and inherited genomic variation might provide an explanation for some 

correlations. For example, ASXL1 somatic mutations are enriched in myelodysplastic syndrome (MDS) 

patients with inherited GATA2 variants. These inherited variants are also associated with human 

papilloma virus and non-tuberculous mycobacterial infections [95] as well as ASXL1 somatic mutations 

[96]. 
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1.2 The landscape of genetic abnormalities in myeloid malignancies 

Classically, cancer driver genes are those that harbour a mutation which confers a selective growth 

advantage. Driver mutations are independently observed at a higher frequency than expected 

compared to normal background mutations across multiple malignancies. They can be distinguished 

from the random mutations, which may arise during the pre- or post-neoplastic stages, which are 

known as passenger mutations.  

The average number of the exonic somatic driver mutations in leukaemia was estimated to be around 

9.6 per tumour [97], although subsequent analyses have shown that the number is probably an 

overestimate and that the number depends on the type of leukaemia. Mathematical models of 

mutations in self-renewing tissues, such as haematopoietic stem cells, indicate that more than half of 

the somatic mutations associated with malignancy occur before the initiation of the tumour. In 

addition, a direct relationship was found between the number of somatic mutations in the tumour 

and the age of the proband [98]. This mathematical model supports the notion of the random 

accumulation of mutations in the genome of normal HSCs, until the acquisition of a driver mutation 

that confers a clonal advantage [99]. The linking of these studies suggests that most somatic 

mutations, which accumulate in relation to age, are non-pathogenic passenger mutations. Another 

feature of true driver mutations is that they are usually seen recurrently across different individuals 

whereas random passenger mutations are often unique. 

The strong age relationship suggests that focusing analysis on young cancer patients might help to 

avoid the noisy background of mutations seen in the elderly. On the other hand, CHIP mutations 

accumulate with age, and increase the risk of developing haematological malignancies. This new 

knowledge suggests a division of driver genes into two groups, early mutations that initiate clonal 

expansion, and late mutations that promotes characteristic features of the disease including a 

pathological expansion in the size of the clone.  

Although CHIP may develop into myeloid or lymphoid malignancy, development of myeloid 

malignancy is more common and the focus of my study [8,100]. Myeloid malignancies are classified 

into four main groups: AML, MPN, MDS and myelodysplastic/myeloproliferative neoplasms 

(MDS/MPN). 
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1.2.1 Acute myeloid leukaemia (AML) 

AML is an aggressive myeloid disease defined by the presence of more than 20% myeloblasts 

(immature cells) in the bone marrow or peripheral blood, which is indicative of an increase in 

proliferation and a block in the differentiation of myeloid progenitors.  

AML patients harbour a wide range of chromosomal structural abnormalities. Although some of these 

variants are rare, they are well established as diagnostic criteria by the World Health Organisation 

(WHO) classification [101]. Some translocations are associated with favourable prognostic outcomes, 

e.g. AML with either t(8;21), t(15;17) or inv16 [102]. Other karyotypic abnormalities and in particular 

a complex karyotype is associated with a worse outcome [103]. A summary of the prognostic value of 

the cytogenetic and the molecular abnormalities in AML are summarised in Table 1-1. 

 

Table 1-1: Prognostic markers in AML according to European LeukemiaNet 2017 recommendations  

Prognosis Chromosomal alterations Molecular mutations 

Favourable 
• Core binding factor fusions, 

inv(16), t(16;16), t(8;21) 
• t(15;17) 

• NPM1, biallelic CEBPA 

Intermediate 

• Normal karyotype 
• Trisomy 8 
• t(9;11) 

 

• Core binding factor fusions + KIT 

Unfavourable 
(poor) 

• Any complex karyotype 
• Chr 5 monosomy 
• Chr 7 monosomy 
• 5q del 
• inv(3)* 
• t(6;9) 
• t(9;22) 

• Chromatin (ASXL1, STAG2, BCOR, 
MLL-PTD, EZH2, PHF6) 

• Spliceosome (SRSF2, SF3B1, U2AF1, 
ZRSR2) 

• TP53 
• FLT3-ITD 

* translocation (t), inversion (inv), deletion (del), Internal Tandem Duplication (ITD), Partial Tandem Duplication 
(PTD)[104] 

 

Although chromosomal structural variations and defined diagnostic markers are well known, about 

50% of AML patients have a normal karyotype. NGS and targeted sequencing has identified many 

somatically mutated genes that contribute to the clinical picture. NPM1 mutations are identified in 
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more than 25% of all AML patients, and this proportion increases to 50% of patients with a normal 

karyotype [105]. FLT3 internal tandem duplication (ITD) in the juxta-membrane (JM) domain or 

mutations in the tyrosine kinase domain (TKD) occur in about 27% of the AML patients [106]. A large 

set of epigenetic modifier genes are recurrently mutated in myeloid leukaemia, they include TET2, 

DNMT3A, EZH2, ASXL1, and IDH1/2. Splicing factor gene mutations, SRSF2, SF3B1, U2AF1 and ZRSR2, 

are strongly associated with secondary AML, which evolved from clinically covert or overt MDS [107]. 

Prognosis is closely associated with recurrent genetic abnormalities and forms the basis for the 

classification of AML according to the National Comprehensive Cancer Network (NCCN) guidelines, 

and the European LeukemiaNet [104].  

 

Like many cancers, large scale NGS analysis of AML has identified a long list of recurrently mutated 

genes, including many that are mutated infrequently. For example, in 2013, the sequencing of 200 

patients with de novo AML identified 23 significantly mutated genes, but also 237 additional genes 

which were mutated in more than one sample [108]. Very large patient cohorts will be needed to 

understand the clinical significance of rare, recurrent abnormalities and to identify new driver 

mutations. 

1.2.2 Myeloproliferative Neoplasms (MPN) 

Myeloproliferative neoplasms (MPN) are a group of disorders characterised by the clonal proliferation 

of one or more myeloid cells lineage. The most common type is chronic myeloid leukaemia (CML), 

which is characterised by the Philadelphia-chromosome and BCR-ABL1 fusion gene, arising from a 

reciprocal translocation between chromosomes nine and twenty two, t(9;22)(q34;q11). The disease is 

characterised by a slow progression and, in some cases, an ultimate block of the differentiation 

capability of the clonal cells resulting in transformation to acute leukaemia [109]. 

The other main three subtypes of MPN are polycythaemia vera (PV), primary myelofibrosis (PMF), and 

essential thrombocythaemia (ET).  They are related to each other both clinically and in terms of their 

pathogenesis, and they can show transitional states between each other, as well as progression to 

AML. The landscape of driver mutations in MPN is well defined by somatic mutations in JAK2, MPL, 

and CALR [110]. 95% of PV patients have a clonal single substitution JAK2 V617F [69] and some of the 

remaining cases have a somatic gain of function mutations in exon 12 of JAK2 [111]. In addition to 

JAK2 V617F, ET and PMF can be associated with MPL W515 point mutations and CALR indels [112,113]. 

As mentioned above, all three of these mutations are associated with aUPD, with 9p aUPD (associated 
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with JAK2 mutations) being by far the most frequent [29,114]. In addition, sub-clonal or pre-existing 

mutations in epigenetic modifier genes (ASXL1, TET2, DNMT3A, EZH2, and IDH1/2), splicing genes 

(SF3B1, SRSF2 and U2AF1), and TP53 are generally associated with worse clinical outcomes [115-118].  

1.2.3 Myelodysplastic Syndrome (MDS) 

MDS are a group of myeloid neoplasms characterised by bone marrow failure, peripheral blood 

cytopenia and high risk of evolution to AML. More than half of MDS patients have acquired 

chromosomal abnormalities, which are fundamental to the diagnosis and prognosis of these disorders. 

The most common single variants are del(5q), monosomy 7 or del(7q), trisomy 8, and del(20q) [119]. 

The most updated cytogenetic scoring system raised the number of the prognosis categories from 

three to five in the revised international prognostic scoring system for myelodysplastic syndromes 

(IPSS-R) [120,121]. A summary of the prognostic value of the cytogenetic abnormalities in MDS is 

summarised in Table 1-2. 

Acquired somatic mutations are identified in about 90% of MDS patients, with molecular profiling now 

established in the diagnostic work up and prognostication of suspected MDS cases [122,123]. Like 

AML, a very wide range of genes are implicated in the disease, and, with the exception of SF3B1, 

mutated genes do not define specific MDS subtypes. It is interesting however that multiple 

components of the splicing machinery genes are strongly associated with MDS, altering the 3′-splice 

site recognition during pre-mRNA processing [61,62]. 

 

Table 1-2: Prognosis in MDS based on the IPSS-R 

Prognosis Chromosomal abnormality 

Very Good del(11q) 

Good Normal, del(5q), del(12), del(20q) 

Intermediate del(7q), del(17q), +8, +19 

Poor inv(3),t(3;3),del(3q),del(7),del(7q) 

Very poor Complex karyotyping > 3 events 
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1.2.4 Myelodysplastic/myeloproliferative neoplasms 

MDS/MPN are a related group of myeloid clonal diseases which have both dysplastic and proliferative 

features. This group includes chronic myelomonocytic leukaemia (CMML), atypical chronic myeloid 

leukaemia (aCML), juvenile myelomonocytic leukaemia (JMML) and MDS/MPN-unclassified [124]. 

Of these, by far the most common is CMML, accounting for more than 80% of MDS/MPN cases. 

Chromosomal alterations and somatic gene mutations are found in 30%, and 90% of CMML 

patients respectively. Trisomy 8, LOY, del(7), del(7q), trisomy 21 and del(20q) are the most 

common abnormalities, some of which are used for prognostication (Table 1-3) [125].  TET2, SRSF2, 

ASXL1 and the oncogenic RAS pathway, are frequently mutated. ASXL1, RUNX1, NRAS and SETBP1 are 

used for risk stratification according to CMML specific prognostic model (CPSS-Mol) [126]. In 

addition, 35% of patients have aUPD detected by SNP-A [127]. 

 

Table 1-3: Prognosis in CMML 

Prognosis Chromosomal alterations 

Low risk (normal karyotype or –Y) 

Intermediate risk Others (e.g., 20q-, der(3q), +21) 

High risk (trisomy 8, chromosome 7 abnormalities, or complex karyotype 

 

JMML is characterised by mutations in the RAS pathway, including PTPN11, NF1, NRAS, KRAS and 

CBL [128,129]. In addition, secondary mutations in SETBP1 and JAK3 are seen [130]. Atypical CML is 

characterised by myeloid proliferation with low leukocyte alkaline phosphatase values, but with 

absence of BCR::ABL1. SETBP1 and CSF3R mutations are associated with, but are not diagnostic of, this 

subtype [131,132]. 

1.2.5 Genetic predisposition to myeloid malignancies 

The great majority of myeloid malignancies are sporadic, however in recent years it has become clear 

that genetic predisposition also plays an important role, with rare high penetrance predisposition 

genes leading to segregation of disease in families and common low penetrance variants playing a 

more subtle role. 
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Familial predisposition to MDS/AML is known to be associated with inactivating variants in several 

genes and is usually associated with presentation at an age of <40 years. Indeed, ‘myeloid neoplasms 

with germline predisposition’ is now recognised as a distinct entity within the WHO 2016 classification 

of myeloid malignancies [101]. The GATA2 variant mutation p.T345M was identified in 3 families and 

segregated with aggressive MDS that transformed to AML [133]. Several other GATA2 variants were 

subsequently identified and it was found that individuals who develop MDS/AML are enriched in 

ASXL1 somatic mutations [95]. Heterozygous mutations in CEBPA gene were identified in AML cases 

[134], and in particular individuals with biallelic CEBPA mutations (one inherited and the second 

somatic). Germline mutations in ETV6 and ANKRD26 have been identified in families with dominant 

transmission of thrombocytopenia with progression to diverse haematological neoplasms [135], and 

RUNX1 mutations in patients with familial platelet disorder with predisposition to develop AML [136]. 

Although germline mutations in these genes are usually associated with disease at a young age, 

predisposition variants may affect older patients. In particular, germline variants of DDX41 are 

identified in 50% of MDS cases with somatic mutations in the same gene with most affected cases 

being >60 years old [137]. 

In 2009, three groups reported that a JAK2 haplotype called 46/1 (also referred to GGCC) predisposes 

to the development of JAK2 V617F-associated myeloid malignancies, and that the JAK2 mutation 

generally arose specifically on the 46/1 allele [138-140] The haplotype spans a region of approximately 

180kb and although the mechanism by which it predisposes to acquisition of JAK2 V617F has not been 

defined, it has been suggested to involve either hypermutation of the 46/1 JAK2 allele or an interaction 

that makes the outgrowth of a JAK2 V617F mutant clone more likely if the mutation arises by chance 

on the 46/1 allele [141]. However, the predisposition model of JAK2 V617F may be more complicated, 

as haplotype 46/1 may predispose to early alterations of homologous recombination in the JAK2 gene, 

before the development of JAK2 V617F [142].  

GWAS has identified a wider set of genes that predispose to the development of myeloid malignancies. 

A two stage GWAS of 3,437 MPN cases and 10,083 controls had identified a genome wide association 

signals at rs2201862 (MECOM) rs2736100 (TERT) and rs9376092 (HBS1L/MYB) [143]. Recently, a new 

GWAS of 2627 MPN cases, and 755,476 controls had identified 14 genome-wide significance loci near 

11 genes (JAK2, TERT, TET2, MECOM, KPNA4, HMG1, PINT, GFI1B, ATM, SH2B3, and RUNX1) [144], 

also it identified a shared risk between MPN and longer leukocyte telomere length. In the post-GWAS 

analysis, the mapping of the identified loci to functional data identified CHEK2 and GFI1B as altering 

the function of HSCs in relation to an increase in the risk of the disease.  
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1.3 The role of inflammation in myeloid malignancies 

Several lines of evidence support the overlap between neoplasia and chronic inflammation. 

Pathological studies of pre-malignant lesions have identified inflammation mediated by innate 

immunity as a significant contributor to tumour progression [145]. An elevated risk of developing 

myeloid malignancies is reported in patients with autoimmune disorders: both AML and MDS are 

associated with rheumatoid arthritis, but AML is also associated with systemic lupus erythematosus, 

polymyalgia rheumatica, autoimmune haemolytic anaemia, systemic vasculitis, ulcerative colitis and 

pernicious anaemia [146,147]. No significant association, however, is reported with CML. Some of the 

key players in chronic inflammation are discussed below. 

1.3.1 Sex hormones 

Males and females differ in the development myeloid malignancies, that is supported by the 

predilection in the incidence of these neoplasms toward males [148]. Consequently, it has been 

hypothesised that oestrogen could play a protective role in the pathogenesis of malignancies. The 

main evidence supporting this hypothesis was the finding of over expression of oestrogen receptor α 

(ERα) in HSCs is associated with self-renewal and proliferation, furthermore, the activation of ERα by 

tamoxifen induces apoptosis in JAK2 V617F positive HSCs [149]. On the other hand, lower levels of 

testosterone are associated with chronic inflammation in males, a high risk of CVD, and higher levels 

of IL-6 and C-reactive Protein (CRP) [150]. Testosterone has a simulating effect on erythropoiesis [151], 

and androgen medications increase platelets counts in MDS patients with thrombocytopenia [152].   

1.3.2 Interleukin-6  

Interleukin-6 (IL6) is a cytokine that plays an important role in inflammation. It binds to its cognate 

receptor encoded by the IL6R gene, and binding initiates an interaction with the gp130 component of 

the receptor to transduce the signal. Elevated expression of IL6 and other proinflammatory cytokines 

such as tumour necrosis factor alpha (TNFA) are a feature of myeloid neoplasia [153]. Inherited 

variation on exon 9 of IL6R gene (rs2228145; a nonsynonymous change D358A) impairs the function 

of IL6R, and supresses the interleukin 6 inflammation signal [154]. IL6R D358A has reduced expression 

at the cell surface in comparison to wildtype, as a consequence of elevated proteolytic ectodomain 

shedding mediated by ADAM17 [154]. The intronic variant rs4537545 is in linkage disequilibrium with 
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rs2228145, a variant that has been used recently to determine that impaired IL6R function is 

associated with a reduced risk of development of MPN or its driver mutation JAK2 V617F [155]. 

1.3.3 Red blood cell distribution width 

Red blood cell (RBC) distribution width (RDW) is a measure for the range of RBC volume calculated by 

equation: 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆 (𝑀𝑀𝑀𝑀𝑀𝑀)
𝑀𝑀𝑀𝑀𝑀𝑀

 𝑋𝑋 100 

where MCV is mean cell volume and Sd is the standard deviation 

 

 

Figure 1-8: RDW is an indicator for the variation in erythrocyte volume 

Low anisocytosis refers to RBCs of equal size, and high anisocytosis refers to RBCs of unequal size, that 

can be estimated from the ratio of the standard deviation of RBC volume to MCV 
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Elevated RDW is known as anisocytosis, which indicates unequal size of RBCs (Figure 1-8) [156]. This 

measure is known to be high in patients with elevated levels of inflammatory biomarkers [157]. The 

associated elevation of RDW with chronic inflammation can be explained by impairment of iron 

homeostasis, as the inflammatory cytokines such as interferon-γ (IFN-γ) and lipopolysaccharide (LPS) 

decrease iron uptake and increase its retention in monocytes. This effect is reversed by interleukin-

10, an anti-inflammatory cytokine [158]. 

Elevation of RDW was associated with increased all-cause mortality (HR = 2.56) in a cohort of elderly 

diabetic patients with coronary artery diseases [159], and also (HR = 3.8) in a cohort of cases with 

myocardial infarction [160]. In the haematological malignancies, high levels of RDW is associated with 

Fanconi anaemia, one of the inherited bone marrow failure disorders [161]. Also, it is an independent 

predictor of development of MDS in patients of unexplained cytopenia [162]. Recently RDW has 

attracted more attention as it is significantly associated with CH defined by somatic mutations, and 

furthermore it synergises with clonality to increase the mortality rate [10], possibly as an indicator of 

disordered erythropoiesis [8]. 

1.3.4 C-reactive protein 

C-reactive protein (CRP) is a circulating protein composed of five identical subunits, that was originally 

isolated in cases with pneumococcus infection [163]. Years later, CRP was detected in patients with 

myocarditis and rheumatic fever [164]. The majority of CRP is produced by the liver, and regulated by 

inflammatory cytokines such as IL-6, so it is considered a global marker for inflammation [165]. In 

myeloid malignancies, CRP is connected to negative prognosis as myelofibrosis patients with CRP ≥ 7 

mg/L have lower leukaemia-free survival [166]. Furthermore, CRP was significantly associated with 

transformation, death, and thrombosis in patients diagnosed with ET (n=305), and PV (n=172), 

however, CRP values were not related to mutational profile [167]. Recently, CH was identified as a 

new risk factor for other chronic inflammatory diseases such as CVD, and COPD, but the relationship 

between CRP and CH is controversial. In a study of 1887 individuals, CHIP was identified in 427 subjects 

with 21% higher level of CRP in comparison to CHIP-free subjects [168]. However, in a much bigger 

study of CHIP consisting of 97,691 individuals, CRP was not significantly associated with CHIP [169]. 

1.3.5 Smoking as a risk factor 

Smoking is a health hazard that drives chronic inflammation at mucosal surfaces and alters the 

immune response to external pathogens [170]. Early epidemiological studies reported a significant 
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increase in the incidence of blood malignancies among smokers with a predilection toward acute 

features and myeloid phenotype [171]. Subsequent cytogenetic stratification of AML indicated a 

relationship between smoking and acquisition of the t(8,21)(q22,q22) [172]. For age related clonal 

haematopoiesis, CHIP defined by somatic mutations showed a significant association with smoking 

[8], however, mCA were not significantly associated with this risk factor [7]. 

 

1.4 Genetic and genomic screening 

Over the last decades, a wide variety of genetic tests have been developed to satisfy clinical and 

scientific needs. The evolution of NGS provides a cheaper, faster and more accurate technology to 

assess the genome to a single nucleotide level with enormous depth suitable for cancer-related 

applications. I outline below the main genetic tests that have been used for genome screening. 

1.4.1 Conventional methods and cytogenetics 

1.4.1.1 Karyotyping 

Karyotyping is a conventional technique of pairing and ordering all chromosomes captured at 

metaphase and stained by Giemsa to G-band DNA. Cytogenetics is still in wide use and was the first 

whole genome scan, albeit at low resolution. WBCs, bone marrow or other cells of interest are 

cultured and arrested at mitosis in metaphase by the use of colchicine. Next, cells are fixed, spread on 

slide, digested by trypsin and stained by Giemsa [173]. The distinct G-banding of each chromosome 

allows the identification of numerical changes in chromosomes (aneuploidy) and structural variations 

(deletions, inversions, translocations) at a resolution >5-10 Mb. 

1.4.1.2 Fluorescent In Situ Hybridization (FISH) 

FISH is the use of fluorescent probes to hybridise to and highlight target sequences. This method is 

used to detect or identify or confirm large deletions, duplications and translocations [174].  FISH is still 

in routine use and is particularly useful for quick highly targeted screens, e.g. for the PML-RARα fusion 

in AML and for many lymphoid disorders for which it is often difficult to obtain dividing cells in culture. 
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1.4.1.3 Array Comparative Genomic Hybridization (aCGH) 

Arrays provides an efficient technique to scan large regions of the genome to identify CNVs such as 

deletions or duplications [175]. Technically, it is a quantitative comparison of the genomic DNA 

between a sample and a normal control. The enzymatically fragmented DNA from the test sample and 

a normal control are labelled with different fluorophores, and mixed together in equal proportions. 

The mixture is hybridised to unlabelled probes which represent complementary sequence of the 

targeted regions. Increased probe density on microarrays increased the resolution of the technique 

enabling the detection of CNVs in the order of a few kilobases (kb). The intensity of the fluorescence 

signal of each probe is measured and normalised to compare the case sample to the control. Genomic 

aberrations are detected if the ratio biased 2:2 ratio of sample to control, or biased from (log2R = zero), 

taking into consideration the diploid state of the human genome [176]. aCGH may need FISH or 

conventional chromosomal study to confirm its unbalanced translocation results and to overcome its 

weakness in identification of balanced translocations. aCGH is not generally used in the work of 

patients with haematological malignancies but is still widely performed for assessment of some rare 

diseases, e.g. childhood developmental disorders. 

1.4.1.4 SNP microarray 

SNP microarrays are panels of short length oligonucleotides are designed to hybridise to individual 

alleles of specific locus, scanning huge number of loci in the same time and comparing dosage of alleles 

tested to the equivalent value in healthy SNPs database. This technique can detect deletions and 

duplications with a similar resolution to aCGH but can also detect copy neutral changes (UPD or aUPD) 

as well as providing genome wide SNP profiles for genetic analysis, e.g. genome wide association 

studies (GWAS). The success of the SNP consortium in identifying 1.4 million SNPs [177], enabled high 

resolution DNA chips to be developed. This technique has been used in many international projects 

like; HAPMAP and 1000 genome projects, to build a haplotype of genetic variation and to assess 

genetic variations among populations. SNP arrays were used to profile the UK Biobank population 

cohort [178], and this dataset forms one of the core resources of my study. 

1.4.1.5 Sanger sequencing 

Sanger sequencing was until recently the most widely used technology to read the sequence of DNA. 

Developed by Sanger and his colleagues [179], the technique uses “chain termination” with labelled 

dideoxynucleotides (ddNTPs) which lack the 3′ hydroxyl group and thus cannot be extended further 
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by DNA polymerase. In the original version, radiolabelled ddNTPs were used in four parallel reactions 

that were then run on four lanes of a polyacrylamide gel, with autoradiography used to identify the 

base type on the original template. The method was substantially improved by switching to 

fluorescently labelled ddNTPs and capillary electrophoresis [180,181]. Nowadays, Sanger sequencing 

is still used as a gold standard to confirm NGS results, and for targeted mutation analysis although its 

use is rapidly diminishing. It has a limit of detection of 15-20% for somatic mutations and can only 

generate individual sequences of up to 1000 bases, but this technology was massively scaled up to 

enable the initial sequencing of the human genome. 

1.4.2 Next Generation Sequencing 

NGS refers to a bundle of techniques that offer high throughput DNA sequencing at significantly low 

cost in comparison to Sanger-based sequencing technologies. Sequencing by synthesis is the core 

technique of NGS, a process that recruits DNA polymerase enzyme to read large numbers of shredded 

DNA pieces at the same time. The process includes the addition of one fluorescently tagged nucleotide 

at a time enabling visual signal detection, and repeated rounds of synthesis generates multi-read 

outputs that can be computationally assembled [182]. Different commercial platforms have been 

developed, but the technology used by Illumina is described in more detail below as it is by far the 

most widely used for large scale population level genome projects, and it was the first technology to 

achieve a $1000 sequencing cost for a full human genome [183]. 

1.4.2.1 Library preparation 

This is the preparation of an indexed (barcoded) library, ready for targeted capture or sequencing. For 

example the lllumina library preparation [184] process is: 

• Fragmentation: DNA of interest is shredded to small fragments 

• Blunt end repair: T4 DNA polymerase fills in overhanging 5’ and 3’ ends and a phosphate group 

is added 

• P5 and P7 adaptors are ligated, and filled in 

• Indexes are added by PCR amplification 

• Indexed libraries are pooled together ready for targeted capture 
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1.4.2.2 Target enrichment strategies 

Target enrichment is a pre-sequencing step that aims to select and amplify the regions of interest 

[185]. Different targeting technologies have been developed to expand the applications of NGS; PCR 

based methods have an advantage of the high sensitivity of PCR primers to amplify a single, clearly 

defined DNA sequence. Multiplexing PCR is more problematic, as some amplicons and particularly 

those that are GC rich, do not amplify or sequence well, however solutions have been developed such 

as the Illumina Trusight Myeloid sequencing panel for haematological malignancies that consisting of 

568 amplicons covering a region of interest 141Kb in 54 genes. Several other approaches have been 

developed, including molecular inversion probes that use a linear oligonucleotide that anneal to the 

targets and enable capture by circularisation [186], and fluidic platforms such at the Fluidigm system 

that enable multiple singleplex or small multiplex PCRs to be performed prior to pooling [187]. 

The main alternative to PCR-based approaches are hybrid capture techniques in solution which uses 

specific probes that define the region of interest and hybridise to a fragmented DNA library [188]. 

Next, magnetic beads are used for the clean-up, and the captured DNA is eluted for sequencing. This 

approach is commonly used for large panels and whole exome sequencing. 

1.4.2.3 Illumina sequencing by synthesis 

The technology uses a flow cell as a solid surface to bind the DNA templates, prepared as described 

above. To generate clusters of identical copies of each template, solid phase bridge amplification is 

applied that generates millions of clusters per centimetre [189]. In the sequencing cycles, a single 

labelled deoxynucleoside triphosphate (dNTP) is added per cycle that stops the polymerization. The 

dye is imaged to determine which sequence had that nucleotide at the next position (or a run of >1 

instances of that nucleotide), and enzymatically cleaved to allow the addition of the next dNTP (Figure 

1-9). The process is repeatedly cycled through the 4 nucleotides and the result will be base level 

sequencing with the coverage depending on the (i) number of the cycles, (ii) read length, and (iii) 

target length. The Illumina Novaseq platform was used for sequencing the UK Biobank samples. 
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Figure 1-9: Sequencing by synthesis 

Sample libraries, consisting of similarly sized DNA fragments, are washed over the flow cell and bind 

to the complementary solid support via the appropriate adapter. DNA fragments are amplified for 

cluster generation by bridge amplification. DNA polymerase creates a complementary strand using 

the originally attached strand as a template. Next, the double strand molecule is denatured, and the 

original strand is washed away. The reverse strand bends and attaches to the oligo that is 

complementary to the top adapter on the flow cell forming a single strand bridge. DNA polymerase 

creates a complement forming a double strand bridge, that is denatured. The new single strand bends 

again to continue in the amplification process. The sequence of DNA fragments is determined by a 

process known as sequencing by synthesis whereby DNA polymerase is used to add chemically 

modified complimentary bases to the DNA template strand one nucleotide at a time. Each nucleotide 

contains a fluorescent tag and a reversible terminator that blocks incorporation of the next base. 

Computer imaging captures the fluorescent signal that indicates which nucleotide has been added. In 

the next step, the terminator is removed, and the next base is added. 
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1.4.2.4 NGS strategies 

Whole Exome Sequencing: The human genome covers 3 × 109 base pairs, but only 1% of the genome 

(about 30Mb) represents coding sequences (the exome) of the 20,000 human genes.  The exome 

harbours more than 85% of pathogenic mutations associated with genetic diseases and cancer [190] 

and thus targeting the exome by whole exome sequencing (WES) is efficient with regard to cost and 

data analysis. WES has a wide range of applications; (i) characterization of monogenic disorders (ii) 

identification of rare single nucleotide variants (SNVs) associated with complex diseases (iii) 

identification of somatically acquired mutations in cancer.  

Whole Genome Sequencing: is predicted to be more cost efficient for the analysis of human genomes, 

as the capturing step is skipped. The technical advantage of WGS includes optimal exome coverage, 

more uniform coverage across the genome and the capability to identify large structural variations 

(Table 1-4), as well as other metrics of interest in cancer such as tumour mutation burden and 

mutational signatures. The development of data storage, data processing and faster algorithms are 

rapidly breaking down the barriers to widespread use of this technology.  

RNA Sequencing (RNA-seq): is usually the sequencing of all mRNAs in a population of cells and thus 

the focus is on the expressed genes. RNA is isolated and converted into complementary DNA (cDNA) 

that is suitable for library preparation and sequencing [191]. The dynamic and complex nature of the 

transcriptome raises different scientific applications for RNA sequencing, with a particular focus on 

analysis of gene expression. For haematological malignancies, RNA-seq is particularly good at 

detecting fusion mRNAs arising from chromosomal translocations, and many point mutations and 

indels are also detected. RNA-seq combined with single cell sequencing technologies provides a 

powerful combination to understand heterogeneity in cell populations and the identity of specific 

cells. 
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Table 1-4: Variant types identified by SNP array, WES and WGS 

 SNVs Indel Structural 

Variants 

CNV 

 Exonic  Intronic 

SNP array Yes Yes No£ No* Yes 

WES Yes No Yes No Yes 

WGS Yes Yes Yes Yes Yes 

*Structural variations can be detected from SNParray data  if associated with a genomic imbalance 
£ Some markers on SNP array are binary indels 

 

Technical features of NGS: 

Sample Multiplexing is the addition of indexes (barcode) sequences to each DNA fragment library 

preparation which enables the simultaneous sequencing of different samples. The indexes are used 

to sort the sequencing reads before the data analysis. 

Uniform library construction builds a sequencing library of uniform molar concentrations of different 

samples enables cost and time efficiency [192]. 

High sequencing depth is the sequencing of the same region multiple times. The ability to sequence 

regions hundreds of times independently has revolutionised the oncology field, and has enabled the 

detection of heterogeneous clones at low frequencies, e.g. a clone of size 2% defined by a 

heterozygous driver mutation may be detected on average by one read in 100, thus requiring high 

depth sequencing for its reliable detection.  

Paired end sequencing is the sequencing of both ends of a fragment. It generates twice the amount 

of data for analysis and increases the accuracy of the alignment of the reads to the reference genome 

at regions of repeats. As the average distance between each pair of reads is known, this technique 

enables the detection of rearrangements and repetitive elements, and gene fusions. 

Long sequencing reads on average standard NGS reads are 100-200 bp long whereas long sequencing 

using Nanopore (Oxford Genomic Technologies) or PacBio platforms can generate reads of 10-100kb 

or more. These long read sequences generate more sequence overlap, enable the construction of long 

range haplotypes resolving and are useful for de novo assembly of repetitive areas of the genome. 
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However the quality of individual base calls is lower than short read sequencing which makes the 

detection of single nucleotide variants (SNVs) challenging compared to short read sequencing. 

Data analysis and bioinformatics pipelines: The ultimate goal of NGS applications is to identify the 

genomic or transcriptomic variations from the massive throughput of individual reads. In general, NGS 

has outstanding capability to identify SNVs and small indels in the targeted regions. Large indels 

e.g. >20bp-50bp and CNVs may be more difficult depending on the precise methodology employed 

and the depth of coverage. My focus, described in more detail in subsequent Chapters, is on the 

bioinformatics pipeline for processing WES data (Figure 1-10). In brief, raw NGS data are represented 

in FASTQ format files that include identifiers, sequence reads and phred-scaled quality scores for each 

base representing the estimated probability of an error (Figure 1-11). 

 

Figure 1-10: Data analysis pipeline in the light of GATK best practice guidelines. 

For variant calling, each sample is processed independently, but the sample level calls are joined together to 
improve the genotyping quality of the whole project. Raw FASTQ files are pre-processed by read filtering, base 
trimming, and adaptor clipping. Next reads passing QC are aligned by Burrows-Wheeler Aligner mem (BWA-
mem) to the reference genome. The mapped reads in BAM file are marked for duplicates by Picard, and Base 
Quality scores are recalibrated by reference variants against dbSNP and Mills 1000 genome [193] for structural 
variations. Mapped reads are processed for variant calling by the GATK Unified Haplotype Caller. The variant 
calls from multiple samples are merged by GATK GenomicsDBimport, and jointly genotyped by GATK 
GenotypeGVCFs. One of two methods can be used for refining the calls, (i) variant Quality score recalibration (ii) 
hard filters for quality indices. The variants calls passed quality filters are annotated by Annovar, and filtered to 
nominate the pathogenic variants. VCF refers to Variant Call File. gVCF refers to genomic VCF with additional 
data for each interval site. pVCF refers to project level VCF with data from multiple samples.  
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Figure 1-11: An example of a FASTQ file. 

Each read is represented by 4 lines; (i) the sequence identifier provides data about: instrument name, flow cell 
lane, tile number, X and Y coordinate, index number and pair end read number (1 or 2), (ii) sequencing read, (iii) 
A separator, which is simply a plus (+) sign, (iv) base call quality in phred-scaled score using ASCII characters. 

  

Initially, the quality of the raw reads is processed to assess the need for base trimming, read filtering, 

or adaptor clipping. Illumina sequencing reads are characterised by the presence of 3` end adaptor 

(Figure 1-12), and usually a drop in the quality at the end of the reads. The sequencing primer anneals 

to the adaptors, as the synthesis starts from 5' end, so the 5' adaptor is not sequenced, but the 

synthesis may exceed the targeted DNA fragment length and include the 3' adaptor. 

 

Figure 1-12: The positions of primer annealing used in Novaseq paired end flow cells 

Four sequential steps of synthesis are used to generate read1, index1, index2 and read2, respectively. PE PCR 
primer 1.0 (P5), PE PCR primer 2.0 (P7), index 1 (i7), index 2 (i5) 
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Next, the short read sequences need to be accurately mapped to the reference genome in a way that 

preserves any relevant genomic variations. Choosing the proper aligner depends on the application of 

the experiment, for example Burrows–Wheeler Aligner (BWA) is a general purpose aligner that uses 

Burrows-Wheeler transform (BWT) algorithm [194] and is regularly applied to WES and WGS data. On 

the other hand, a splice aware aligner such as HISAT2 is needed to map reads derived from RNA-seq 

experiments [195]. 

The alignment process generates Sequence Alignment Map (SAM) files or their binary version (BAM) 

files. Both include an information header plus read name, read sequence, read quality and alignment 

information. To improve the data quality and accuracy, (i) read duplicates need to be identified and 

flagged. Picard MarkDuplicates [196] is one of the tools that uses 5′ mapping coordinates to identify 

duplicates, and ignores the 3` mapping coordinate which is typically of lower quality. GATK best 

practice guidelines for alignment include; (ii) de novo assembly at indel positions, to improve variant 

calling; (iii) per base quality recalibration considering variables such as the machine cycle, sequencing 

lane, and dinucleotide content of the current and previous base. GATK BaseRecalibrator [197] is an 

example, that excludes known variants e.g. those listed in the dbSNP database. Next, the aligned reads 

are assessed for genetic variations; SNVs, indels and CNVs. Different callers are available, but I have 

focused on two pipelines belong to Genomic Analysis Toolkit (GATK) used in my study: 

GATK Germline short variant discovery: GATK standard pipeline recommends the use of GATK 

HaplotypeCaller [198] to call SNVs and indels simultaneously for single samples. HaplotypeCaller 

reassembles haplotypes in active regions, that show signs of variations, and then align reads to each 

haplotype to generate a matrix of likelihood of haplotypes against reads in each active region. Bayes’ 

rule is applied to calculate the likelihood of each genotype and to choose the most likely genotype, 

and a genome level Variant Call File (gVCF) is generated for each sample. To facilitate next steps, gVCF 

files from all the samples are assembled using a tool such as GATK4 CombineGVCFs [197-199]. Two 

main strategies are recommended by GATK best practice to filter the identified variants, the first is to 

use a machine learning method to recalibrate the variant quality score (VQSR) with the derived VQSR 

score being used for filtration. The second, hard filter method, is applying static cut-off of quality 

indices assigned to each variant. Mainly, (i) QualByDepth, QUAL divided by unfiltered read Depth, 

(QD) > 2.0; (ii) FisherStrand, phred scaled p-value of Fisher test of Strand bias, (FS) < 60.0; 

RMSMappingQuality, the Root Mean Square of the mapping quality of the reads across all project 

samples, (MQ) > 40.0. 
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GATK somatic short variant discovery: GATK best practice suggests the use of Mutect2 to call SNVs  

and indels from tumour-normal pairs or from tumour only using a Panel-Of-Normal to remove 

germline variants and artifacts [200]. Mutect2 uses the same method of reassembling haplotypes in 

regions with signs of variations and generating a matrix of likelihood of haplotypes mapped to reads. 

Mutect2 uses a Bayesian somatic likelihoods model to predict the odds of alleles to be somatic 

variants. Other features that distinguish GATK somatic pipeline include the capability to estimate the 

fraction of reads affected by cross-sample contamination and to filter orientation bias errors.  

Annotation and filtration: the identified and genotyped variants are annotated with respect to 

genomic feature, gene symbols, exons and amino acid change. Annovar is one of the efficient tools 

that can combine data from a wide range of sources, such as Minor Allele Frequencies (MAF) from 

genomic databases such as the 1K genome and ESP6500 [201]. Also, it adds an empirical score from 

different tools to help evaluate the pathogenicity of the identified variants, such as the Combined 

Annotation Dependent Depletion (CADD) score. Attributes about the pathogenicity of the variants can 

be added from diverse sources such as the ClinVar and COSMIC databases. 

The last step is variant filtration. Mainly, this involves removing variants of low quality, in particular 

strand bias (where a variant is seen in one direction only, suggesting of a sequencing artefact), and 

insufficient depth is essential. Other filters can be customised according to the aim of the experiment 

e.g. restricting the analysis to a set of genes of known significance. Also, selecting rare variants in the 

public databases is an efficient strategy. For trio data, i.e. a proband with both parents, the mode of 

inheritance (dominant or recessive) may play an important role in filtering variants. 
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1.5 Thesis hypothesis and aims 

The main hypothesis behind my thesis is “Age-related clonal haematopoiesis is a common 

phenomenon that increases the risk for developing haematological malignancies and non-neoplastic 

disorders”. Although this association had been established for some disorders prior to my study, the 

relationship between CH at the driver gene level, identification of other risk factors, and detailed 

health outcomes were not clear, and form the focus of my study. The introduction focused on 

providing the background knowledge on CH and myeloid malignancies. Also, I discussed the 

technological advances in genetic testing that are used to identify CH. 

My study has four principal aims: 

Aim 1: Assessing the causes and consequences of myeloid-related CH 

Previous studies have focused on CH defined by mCA or somatic mutations but not both. I defined 

myeloid CH by both mCA and somatic driver mutations associated with myeloid malignancies. Chapter 

3 describes the initial results using SNP array data from all the UK Biobank participants and WES data 

from 50,000 participants. Results were compared to age, germline variation, smoking and non-

neoplastic disorders. As a result of this work, I was the first author to report the predominant 

association between ASXL1 and smoking, confirmed the known association between TET2 mutations 

and COPD, and found new associations such as the relationship between TET2 and agranulocytosis 

[202]. WES data from an additional 150,000 UK Biobank participants was used as a replication cohort 

to confirm the findings. 

 

Aim 2: Characterization of the inflammatory stress associated with clonal haematopoiesis 

Chapter 4 describes the expansion of the definition of driver somatic variants from germline calls by 

utilising different filters such as COSMIC, and GnomAD databases. Driver mutations, and previously 

identified mCA were used to define myeloid CH and lymphoid CH in an expanded cohort of 200,631 

participants. Next, I assessed the relationship between CH and chronic kidney diseases defined by 

eGFR scores. Finally, I assessed the impact of myeloid CH on the risk of developing adverse outcomes 

in CKD patients.  This work produced first published study that define the relationship between 

myeloid CH, CKD, and CVD [203].  
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Aim 3: Prediction of the development of myeloid malignancies. 

Chapter 5 describes the use of a somatic-specialised variant caller (Mutect2) to process the UK Biobank 

aligned reads in the absence of a matched normal sample. The method was used to define driver 

mutations in pre-myeloid cases (i.e. participants who developed a myeloid malignancy >1 year after 

study entry), and matched controls. CH, other blood measures, and health characteristics were used 

to model the development of myeloid malignancies by utilising different methods: (i) an Elastic-Net 

regularised COX-PH model, (ii) a random survival model and (iii) gradient boosted models. My work 

defined a small number of features that could predict the risk of developing myeloid malignancies 

with the strongest effect generated by number of lesions in myeloid genes. Different evaluation 

methods were used to compare the performance of different models. Machine learning models 

showed much better performance in comparison to the traditional COX-PH models. 

 

Aim 4: Define the relationship between sex hormones and mosaic loss of chromosome Y 

Chapter 6 describes the use of regression and Mendelian randomisation methods to assess the 

relationship between LOY and sex hormones in the UK Biobank males. Next, eQTL data were utilised 

to assess molecular signals that potentially could be associated with LOY and its associated sex 

hormones. This work identified a new, likely causal relationship between sex hormone binding protein 

and LOY and also characterised the relationship between CH and LOY. 
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Chapter 2 Methods 

2.1 The UK Biobank cohort 

The UK Biobank is a major national resource for health research, established with the aim of improving 

the prevention, diagnosis and treatment of a wide range of serious and life-threatening illnesses 

including cancer, heart disease, stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and 

forms of dementia [178]. The Wellcome Trust and the Medical Research Council (MRC) agreed these 

goals by planning for a cohort of 500,000 UK participants, aged between 40 to 69 years, and to follow 

their medical records long-term. The recruitment strategy was based on targeted invitations to attend 

assessment centres across the country that aimed to enhance the generalisation of the project. 

Baseline information was collected during the participant visit to the assessment centre. He/she was 

asked for consent, undertook a series of questionnaires, physical measurements, and provided 

biological samples (blood, urine, and saliva). Next, the data, and the samples were transferred to the 

UK Biobank coordination centre. The samples were processed in a central laboratory, and the aliquots 

stored in an automated biological archive at – 80oC [178]. A summary of the genotypic and phenotypic 

data used in the thesis were presented in Figure 2-1. 

 

Figure 2-1: Summary of the UK Biobank genotypic and phenotypic data  
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Genotypic data: both SNP array, and WES data from the UK Biobank were used to characterise CH across the 
thesis. BAF segmentation: aggregating the B-allele frequencies of consecutive SNPs was used to identify regions 
of allelic imbalance, and filters were applied to characterise mCA. Long-range phasing in PAR1: long-range 
haplotype phase information in pseudo autosomal region 1 were used to identify allelic imbalance and define 
the loss of chromosome Y (LOY). WES: Three pipelines based on different calling methods, WeCall, DeepVariant, 
and Mutect2, were used to identify variants and filters were applied to detect putative somatic driver mutations. 
SBP pipeline: Regeneron Seal Point Balinese (SPB). OQFE pipeline: Original Quality Functional Equivalence. 
Phenotypic data: the UK Biobank provided lifestyle, physical measurements, and health outcomes. Chapter 3: 
This chapter focuses on the relationship between smoking and CH defined by mCA in 500,000 (500K) participants 
and putative driver mutations in 6 frequently mutated genes in 50K participants with WES data. Findings were 
validated using variant calls from DeepVariant in a subset of 150K participants. Chapter 4: Chapter 4 investigates 
the association between kidney function defined by creatinine and/or cystatin-C estimated glomerular filtration 
rates (eGFR) and CH defined by mCA and somatic driver mutations in a wide range of cancer-related genes using 
DeepVariant calls in 200K participants. Chapter 5: This chapter looks at the incidence of myeloid malignancies 
(AML, MPN, and MDS) as estimated from hospital episodes, death registry, and cancer registry and their 
association with health outcomes and blood measures. Mutect2 calls were used to identify somatic driver 
mutations that were classified according to the name of the targeted gene and their functional impact, 
presented by the VAF value, and utilised as independent variable in different models to predict the risk of 
myeloid malignancies. Chapter 6: This chapter aimed to determine if any common biochemical measures, 
including sex hormone levels in men, are associated with LOY and to understand the interaction between genetic 
and biochemical factors. LOY was based on published findings returned to the UK Biobank.  

 

2.2 The UK Biobank phenotypic data 

A wide range of phenotypic data were collected for each participant [178] which can be classified as: 

Recruitment data: Data collected by electronic questionnaire at the assessment centre, including 

socio-demographic and lifestyle data. This data covers all 500K participants. 

Physical measurement data: includes blood pressure and weight. In addition, a subset of participants 

had an electrocardiogram (ECG), as well as hearing and sight tests. 

Imaging data: includes magnetic resonance image (MRI) for the heart, brain and body. 

Diagnosis and follow up data: supplied by the primary health records and national care records. This 

information covers 4 resources (i) cancer registries (ii) hospital in-patient data (iii) death registry (iv) 

primary care data. In addition, a subset of the participants was invited for repeat assessments every 

few years for calibration of the measurements, and for longitudinal assessment. The diagnostic data 

are encoded using the International Classification of Diseases, ninth revision (ICD-9) and tenth revision 

(ICD-10) coding system [204]. ICD-10 was introduced into the national cancer registry in 1995 and into 

the hospital admissions in 1996. 
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Biological samples measurements: includes complete blood features, and biochemistry measures for 

different biomarkers that relate to kidney and liver function as well as cancer. 

Web based data: data collected by web questionnaire for a subset of the participants, for example 

mental health questionnaire for 150,000 participants in 2016. 

 

2.3 Genotyping data, SNP array 

DNA was extracted from the blood sample taken at recruitment and used for comprehensive genomic 

profiling. At the time of writing (August 2022) this includes genome wide SNP array on nearly all 

participants, and WES on 200,000 participants. WES data from a further 250,000 participants, and 

WGS for 200,000 participants were released in November 2021 and were not included in the analysis. 

The UK Biobank genotypic (SNP array) data includes 488,377 participants. Of these, 85 withdrew 

consent as of January 2019, and reach, 132 by Feb 2021. These samples were genotyped using two 

similar microarrays: first a subset of 49,950 samples were analysed using the UK BiLEVE Axiom Array 

of 807,411 markers (cases selected based on lung function, smoking history and European ancestry), 

and the remaining samples were analysed using the UK Biobank Axiom Array consisting of 825,927 

markers. The two methods share 95% of the markers and are thus highly comparable. The philosophy 

of marker choice in the UK Biobank Axiom Array was based on incorporating 95,490 known 

association markers, 111,904 rare markers with MAF <1%, and 629,368 markers to provide good 

coverage for participants of European ancestry population for imputation and downstream analysis 

[178]. 

DNA extraction was performed in Stockport, UK, in 96 well plates; each plate included 94 samples and 

2 controls.  The extraction procedure used 850μl buffy coat, which was generated from 9ml whole 

peripheral blood samples. The average DNA concentration was 37 ng/μl and the 260nm/280nm ratio 

was 1.91, indicative of good DNA quality. Only a fraction of the DNA was shipped on dry ice for 

genotyping, and the rest was stored for future analysis. 

Genotyping was performed by Affymetrix laboratories, Santa Clara, CA, USA, in 106 batches of around 

4,700 samples. Briefly, a cluster plot was made for each SNP based on the intensity of fluorescently 

labelled probes for the A and B allele in each sample. Genotype calls were then made by determining 

which genotype intensity, either AA, AB or BB, each sample was most likely to belong to.   
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2.3.1 Quality control by Affymetrix 

As the genotyping was done in batches, marker quality was assessed on a batch by batch basis. In 

addition, Affymetrix checked the DNA concentration and the missingness rates. Overall, a total of 

35,014 markers were excluded from the data due to either poor clustering of markers across multiple 

batches or evidence for more than two alleles (multi-allelic markers). 

2.3.2 Marker-based quality control by the UK Biobank 

Marker based quality control (QC) was performed using 463,844 participants, who represented the 

largest ancestral component (European), and the results were applied to the whole cohort. The 

marker-based QC involved six tests and a P-value threshold of 10-12 was used to reject the null 

hypothesis. This threshold is equivalent to the standard value of P=0.05 after adjusting for the number 

of tests, batches, plates, and markers (total 4.6x109 tests). 

Four tests [batch effect, plate effect, Hardy-Weinberg Equilibrium (HWE), and sex effect] were applied 

at the batch level whereby marker genotypes would be set to missing for the whole batch if the marker 

failed any of the four tests. If a marker failed in one of the four tests in all batches, it was excluded for 

all results. The two other tests (array effect and discordance across controls) were applied across all 

the batches, and if a marker failed in one of these tests it was excluded (Table 2-1). 
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Table 2-1: Quality Control tests for microarray markers 

Test Null hypothesis The probability test 

Batch effect A batch has the same genotype 
frequency as all the other 
batches combined 

Fisher’s exact test (2*3 table) 

Plate effect A plate has the same genotype 
frequency as all the other plates 
within this batch 

Fisher exact test 

Hardy–Weinberg equilibrium  Exact test in plink 

Sex effect The gender has no effect on the 
genotype frequency of all 
markers except Y chromosome.  

Fisher’s exact test (2*3 table) 
for the autosomal markers 

Array effect The set of individuals typed on 
the UK Biobank Axiom array has 
the same genotype 

frequencies as those typed on 
the UK BiLEVE Axiom array. 

Fisher’s exact test (2*3 table) 
for the diploid markers 

Discordance across control 
replicates 

Two controls, HG00097 and 
HG00264, from the 1K Genomes 
Project were included in each 
plate 

0.95 concordance is the 
minimum acceptable for a 
marker for each of the two 
controls. 

 

2.3.3 Sample based QC by the UK Biobank 

Although outlier heterozygosity or high rate of missingness may indicate poor sample quality, it may 

also be caused by biological phenomena. The UK Biobank used 605,876 high quality autosomal SNPs 

to calculate heterozygosity rates (the proportion of heterozygous non-missing SNPs). A total of 224 

samples were flagged as having missingness above 0.05, and 744 samples were flagged as having 

outlying level of heterozygosity that could not be explained by admixture or consanguinity (high rates 

of heterozygosity may be caused by mixed ancestry, and low rates of heterozygosity may be explained 

by consanguinity). A further 652 samples were flagged as having sex chromosome karyotypes that did 

not match XY or XX, and 366 samples were flagged as the genotypic gender did not match the sex 

reported by the participants. 
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2.4 Identification of Allelic Imbalance and Loss of Heterozygosity  

SNP arrays provide quantitative data for the probe intensity of both alleles and the copy number of 

each marker. The combination of these data from high density SNP arrays can be used to identify 

chromosomal abnormalities with the power to distinguish three states of allelic imbalance (AI) and 

loss of heterozygosity (LOH) associated with copy number loss (CNL), copy number gain (CNG) or copy 

number neutral changes associated with UPD [205]. 

2.4.1 BAF value in cancer samples 

The B Allele Frequency (BAF) describes the ratio of intensity values for the A and B allele for each SNP 

in a single sample. In a normal genome, BAFs are expected to form three clusters: one close to the 

minimum value of 0 for the complete absence of the B allele (i.e. an AA genotype), one close to the 

maximum value of 1 for the complete absence of the A allele (BB genotype) and one around 0.5 for 

an equal presence of both alleles (AB genotype). Tumour genomes frequently have chromosomal 

alterations such as the gain of regions that harbour oncogenes or deletion of regions that harbour 

tumour suppressors. As a result, the BAF value for heterozygous SNPs in the affected region is shifted 

away from its expected value of 0.5. Theoretically, the expected BAF of one copy gain is either 0.33 

(AAB) or 0.67 (BBA) depending on which allele is gained. However, normal cells in the cancer sample 

frequently have a diluting effect on the expected values, and in addition there may be multiple sub-

clones present. 

2.4.2 Log2 R ratio in cancer samples 

The relative copy number ratio is the logarithmic value of the observed intensity to the expected 

intensity of a marker. In the normal diploid genome, the log2 R ratio (LRR) is expected to be zero. 

Positive shifting of this value is a marker for copy number gain, and negative shifting is a marker for 

copy number loss. 

2.4.3 BAF segmentation of unpaired tumour sample 

For detection of aUPD, comparative analysis of matched normal-tumour samples is desirable to 

remove constitutional homozygous SNPs which may interfere with the application of the 

segmentation algorithm. For solid tumours, normal constitutional DNA is typically obtained from a 
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blood sample but obtaining matched normal DNA for individuals with haematological malignancies is 

challenging.  For the UK Biobank only a single blood sample was taken for analysis. 

For cases with an overt myeloid neoplasm and high white cell count we would expect the great 

majority of peripheral blood leucocytes to be part of the malignant clone and therefore in the absence 

of paired normal DNA it is generally not possible to distinguish aUPD from regions of autozygosity. For 

cases (either CH or myeloid neoplasm) with normal or modest blood counts, however, we expect 

samples to be a mixture of clonal and normal cells. Practically, this dilution effect of the normal DNA 

is valuable to distinguish between germline homozygous SNPs and acquired LOH SNPs due to allelic 

imbalance. This biological phenomenon suggests the use of a fixed threshold to remove non-

informative homozygous SNPs. In individuals with normal blood counts, somatic clones are not 

expected to exceed 90% of the total DNA content, assuming that any clones are restricted to either 

lymphoid or myeloid cells. This dilution effect generates different relationships between BAF and the 

tumour content, according to the LOH state (i.e. CNL, CNG, aUPD). Regarding aUPD, the BAF is directly 

proportional to the tumour content (Figure 2-2). 
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Figure 2-2: The relationship between mirrored mBAF and LRR 

The relationship was used to differentiate between aUPD, CNL and CNG. The dilution effect of normal cells shifts 
the theoretical values of mBAF and LRR in the case of CNL or CNG, but for copy number neutral (CNN) events 
associated with UPD the LRR remains at zero, with a reduced mBAF that is proportional to the fraction of clonal 
cells in the sample [206]. 

 

Thus, for BAF segmentation of unpaired samples, non-informative homozygous SNPs with mirrored 

BAF values (mBAF) greater than 0.9 are removed. This threshold may not remove all non-informative 

SNPs. Any remaining non-informative SNPs are therefore removed by triplet filtering which calculates 

the absolute sum of the difference in mBAF between an investigated SNP and the SNP immediately 

before and after. SNPs with a triplet score exceeding a defined threshold are removed [207].  
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Equation 1: Triplet sum used to filter non-informative homozygous SNPs in BAF Segmentation tool. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠[𝑡𝑡]  =  𝑎𝑎𝑎𝑎𝑠𝑠(𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 𝑆𝑆𝑆𝑆𝑆𝑆]  −  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡])  +  𝑎𝑎𝑎𝑎𝑠𝑠(𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚[𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 𝑆𝑆𝑆𝑆𝑆𝑆]  

−  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡])  +  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡]  −  0.5 

[i] Stands for the investigated SNP. 

The validated cut-off of triplet filter is 0.6 and 0.8 for Affymetrix GeneChipArrays and Illumina Genotyping 
BeadChips, respectively [207]. 

 

2.5 Whole Exome Sequencing 

2.5.1 Library preparation 

In 2018, 50,000 samples were selected for WES by Regeneron Pharmaceuticals. Cases for sequencing 

were prioritised towards those with more complete phenotype data and also a primary diagnosis of 

asthma (16% among sequenced participants, compared to 13% amongst all participants). 100ng of 

blood-derived genomic DNA was enzymatically fragmented, end repaired, dA-tailed and a Y adaptor 

ligated to the fragments. The library was amplified by KAPA HiFi polymerase (KAPA Biosystems) in the 

presence of unique 10 bases barcode. A modified version of IDT’s xGen probe library v1.0, was used 

to capture ~38Mb of the genome. Streptavidin-coupled Dynabeads were used to bind the captured 

fragments, and a stringent wash was used to remove the unbounded fragments. An amplification step 

with KAPA HiFi polymerase was applied before the sequencing using 75bp paired end reads on an 

Illumina Novaseq  6000 platform using S2 flow cells [208]. 

2.5.2 Alignment and variant calling 

The sequencing process yields concatenated base call (CBCL) files of tiles from the same lane. Illumina 

bcl2fastq tool was used to convert CBCL into sample level FASTQ files based on the id barcodes that 

were attached during the library preparation. Three different analysis pipelines were applied by the 

UK Biobank, as shown in Figure 2-3; 

(i) Regeneron Seal Point Balinese (SPB): FASTQ files were aligned to the GRCh38 human reference 

genome using the BWA-mem tool to generate BAM files. Picard MarkDuplicates tool was used to flag 

the duplicated reads. The WeCall variant caller was then used to define the variants and generate a 

gVCF file [209]. gVCF files were jointly genotyped by GLnexus to generate a single pVCF file. 
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(ii) Functional Equivalence (FE): the published FE pipeline [210] was applied, characterised by 

recalibration of base quality score (BQSR). Firstly a model was built of covariation based on the input 

data from 2 resources: dbSNP138 [211], and the Mills_1000genome [193] databases from the GATK 

resource bundle (https://console.cloud.google.com/storage/browser/genomics-public-

data/resources/broad/hg38/v0). Next the BQSR model was applied to adjust the score of each base 

to 4 score bins; 2-6, 10, 20, 30 rounded in probability space. The new BAM output was converted into 

CRAM files. GATK HaplotypeCaller was used to call SNPs and indels simultaneously [210]. 

(iii) Original Quality Functional Equivalence (OQFE):  An updated version of FE protocol was applied 

by keeping the original quality score in CRAM files (OQFE). Next, small variants were called by 

DeepVariant Caller and generated gVCF files. gVCF files were jointly genotyped by GLnexus [212] . 

 

Figure 2-3: A summary of three pipelines used to call variants in the UK Biobank 

FASTQ files were aligned to GRCH38 by BWA-mem with flagging split hits as 2048 “supplementary alignment”, 
100M as the minimum seed length. Picard v2.4.1 was used to mark duplicates. SBP: Regeneron Seal Point 
Balinese uses WeCall to call variants in all samples jointly. FE: Functional equivalent pipeline used GATK Base 
Quality Score Recalibration model built on dbSNP183, and Mills/1000 genome indels. The new score was based 
on 4 bins (2-6, 10, 20,30). OQFE pipeline: Original Quality Functional Equivalence is a modified version of FE that 
retained the original scores 

https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0
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2.6 Identification of candidate somatic variants  

2.6.1 Using germline calls 

WES is mainly used to genotype and identify germline variants across the genome with a relatively 

limited sequencing depth, but it can also identify somatic mutations as long as they have a relatively 

large allelic fraction. Different strategies have been applied to find somatic variants within germline 

calls, and all of these are used in this study: 

(i) Driver somatic mutations are expected to be ultra-rare in genomic databases with MAF < 

0.01. 

(ii) Driver somatic mutation are likely to be harboured in a subset of cells, and consequently 

mutant allele would be present in less than 50% of the sequencing reads arising from that 

genomic site in many cases (Figure 2-4). 

(iii) Recurrence in cancer data bases, mainly Catalogue of Somatic Mutations In Cancer 

(COSMIC) [213]. 

(iv) Informatics evidence such as disruptive mutations. 

(v) High pathogenicity scores such as Combined Annotation Dependent Depletion (CADD) 

 

Figure 2-4: Clonal expansion of putative somatic mutations 

Putative somatic mutations expand in a subset of cells that can be distinguished by an allelic fraction significantly 
less than the value of 50% seen for inherited variants 
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2.6.2 Somatic variant calling 

The ideal strategy for calling somatic mutations is based on comparing tumour-normal pair and 

identifying loci that are present in the tumour sample and absent from the normal sample. Somatic 

calling is tuned to detect variants with a low fraction of mutant reads as tumour samples can be 

contaminated with germline cells, have intra-tumour heterogeneity, or copy number changes. In 

addition, somatic calling omits ploidy in the genotyping likelihood calculations and applies filtration 

strategies to flag common germline variations, multiallelic sites, and recurrent artifacts identified in a 

panel of normal samples. I chose GATK Mutect2 [197] to call somatic mutations as it can run in tumour-

only mode that utilises a panel of normal and germline resources to identify somatic mutations in 

individual samples in absence of matched normal pairs.  

 

2.7 Survival analysis 

Survival analysis is the statistical method of predicting time to an event such as death or disease 

diagnosis. It mainly differs from other regression forms by the capability to deal with censored data, 

i.e. unobserved events during the study time. Two probabilities are estimated in survival analysis, the 

first is the survivor function S(t) that describes the probability of survival between 2 time points, the 

second is the hazard function h(t) that describes the probability of an event at specific time point. 

2.7.1 Kaplan-Meier curves 

The Kaplan-Meier method estimates survival probability S(ti) from observed survival 1− (di / ni) at 

specific time points ti. It is a univariate method that can be applied in a stepwise fashion at the time 

of each event [214] and is suitable for visualisation as a survival curve to show the relationship 

between time ti and survival probability S(ti). The cumulative hazard is an estimation for the cumulative 

force of events at specific time, and it represents -log (survival function). A non-parametric log rank 

test is used to compare the probability of events between two groups at any time point. 



52 

 

2.7.2 Cox proportional hazards model 

The Cox proportional hazards model was developed to adjust survival analysis for other variables that 

affect survival. Cox found that an effect parameter can be estimated for each covariate without 

consideration for the hazard function and the effect of a factor can be reported as a hazard ratio [215]. 

h(t) = h0(t) ×exp(b1x1+b2x2+...+bpxp) =  h0(t)×exp(b1x1) 

2.7.3 Machine learning methods 

The UK Biobank and other large cohort studies acquire data from a wide range of sources that include 

questionnaires, laboratory assays, and hospital records. The vast amount of data sources shows high 

dimensionality, plentiful missingness, and heterogeneity in data types. Cox’s model has problems in 

modelling survival with high dimensional data due to the correlations among factors. The extension 

of machine learning methods to handle censored data have allowed its use in survival analysis and 

previous studies have indicated the outperformance of machine learning over Cox in survival analysis 

[216]. 

2.7.3.1 Random Survival Forest 

Random forest classifier is based on an ensemble of decision trees [217]. Each decision tree uses a 

randomly selected number of subjects and factors.  Random forest achieves a reliable result in 

comparison to other classifiers regarding computational time, and the capability to rank variables. The 

capability of random forest to analyse right censored data, was introduced by developing new splitting 

rules for growing survival trees, and by using conservation-of-events rule that define ensemble 

mortality [218] 

2.7.3.2 Gradient boosted models 

Gradient boosting is a framework to combine the prediction of base learners to improve the overall 

survival model. The additive of each base model in a greedy fashion improves the overall model. 

Different loss functions and base learners had been used [219]. In my project, I tested each of (i) Cox’s 

partial likelihood with regression tree to maximise the log partial likelihood function (ii) component-

wise least squares base learners which minimises the residual sum of squares (iii) accelerated Failure 

Time (AFT) model with inverse-probability of censoring weighted least squares error. 
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2.8 Mendelian randomisation 

Mendelian Randomisation (MR) is the use of genetic variation to assess causal relationships between 

risk factors and health outcomes [220]. The art of applying MR is based on selecting robust genetic 

variations associated with the study exposure and utilizing statistical methods to consistently estimate 

the effect on outcome. The selection of the genetic variants could be based on biological relevance or 

statistical significance such as the threshold used for GWAS (P < 5 x 10-8) [221]. The selection of genetic 

variants in the same cohort used for outcome investigation would exacerbate any biases, but this is 

overcome by using independent cohorts for genetic association and outcome evaluation. Three 

assumptions must be satisfied by each genetic variable, as shown in Figure 2-5,  (i) the association 

with the exposure (ii) no association with cofounders of the relationship between exposure and 

outcome (iii) independent association with outcome [222]. 

 

 

Figure 2-5: The assumptions of Mendelian randomisation 
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2.8.1 MR with single genetic variant 

The simplest use of MR is the use of a single variant that is supported by biological knowledge. A single 

variant can be enough to describe gene expression or protein synthesis. For examples, IL-6R SNP 

rs7529229, a marker for IL-6R p.Asp358Ala, associated with increased IL-6, and decreased C reactive 

protein, was used to study IL6R blockade from infusions of tocilizumab as a potential therapeutic for  

to prevent coronary heart disease. rs7529229 was associated with a decreased odds of coronary heart 

disease events [223]. 

2.8.2 MR with multiple genetic variants 

Multiple genetic variants can collectively explain more of the risk and have more statistical power than 

a single variant. They can be aggregated into a polygenic risk score (PRS), or be used as individual 

instruments, as I will discuss. 

2.8.2.1 Allele score method 

An allele score is the sum of multiple genetic variants that are associated with the risk factor. On the 

individual level, an unweighted score can be calculated as the total number of risk alleles. Weighted 

scores account for the estimate of the effect of each genetic variant as a weight reflection [224]. The 

calculated allelic score can be used a single instrumental variable to predict the risk of outcome in MR 

analysis.  

2.8.2.2 Multiple instruments methods 

Multiple genetic variants can be used as instrumental variables in a regression model to estimate the 

effect on outcome. Different statistical models have been developed to test different assumption`s, 

as I present in Table 2-2. 
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Table 2-2: some statistical methods used for mendelian randomisation 

Statistical method Description Requirements 

Inverse-variance 

Weighted [225] 

The causal effect is estimated from the 

meta effect of the ratio estimates for 

individual variables.  

All genetic variants are valid instruments 

Weighted median 

[226] 

It uses the average pleiotropic effect as the 

intercept which allows the use of 

instrumental variables with pleiotropic 

effects 

More than half of the variants are valid 

instruments 

MR-Egger [227] The causal effect is estimated as the slope 

from the weighted regression of the ratio 

estimates for individual variables. It uses 

the average pleiotropic effect as the 

intercept which allows the use of 

instrumental variables with pleiotropic 

effects 

Accept variants with pleiotropic effect; the 

pleiotropic effect should be independent of 

the exposure.  The Instrument Strength 

Independent of Direct Effect (InSIDE) 

assumption 

Robust Adjusted 

Profile Score (MR-

RAPS)[228] 

It uses random effects distribution to model 

the pleiotropic effects and provide 

estimates by using profile-likelihood of 

casual effect and the distribution effect. 

 

Normal distributed pleiotropic effect 

 

2.8.3 Populations used in MR studies 

NHLBI Trans-Omics for Precision Medicine (TOPMED) [229] is part of precision medicine initiative, a 

wider framework to develop personalised medicine in USA [230]. WGS data of 97,691 individuals was 

used to characterise somatic driver mutations and identified 4,229 with CH [169]. Next, a GWAS was 

performed using individuals with high likelihood (>1%) of having CH (n=65,405) of them 3,831 CH 
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cases. The study identified four independent signals (TERT: rs34002450, rs13167280; TRIM59: 

rs1210060191; TET2: rs144418061) 

Chronic Kidney Disease Genetics Consortium (CKDGen) is an open consortium that aims to identify 

common genetic risk factors associated with kidney function, estimated by glomerular filtration rate, 

and albuminuria [231].  One of the biggest studies was a meta-analysis of 60 GWAS with total 625,219 

individuals of them 64,164 cases which identified 23 genome wide significant loci [232]. 

Biobank Japan (BBJ) is a disease-based cohort of 260K patients representing 51 common diseases 

[233]. I used BBJ data to study the relationship between SHBG and LOY. Mean log-R ratio (LRR) in 

95,380 men were used to estimate the degree of mosaicism in LOY [234]. GWAS had identified 50 

independent signals associated with LOY in BBJ. 

2.9 Programming tools and statistical tests 

2.9.1 awk 

Awk is freely available programming language for text processing and data extraction [235]. It provides 

a fast and efficient way to process big data in Unix/Linux operating systems with capability of building 

a complicated program using the simple conditioning and looping functions. 

2.9.2 R programming 

R is an open source programming language for statistics and graphics [236]. It has an environment 

capable of handling big data, operating calculations, and displaying graphics. It provides simple 

structured programming tools such as conditioning, and loops. R has a command line interface, but 

different graphical interfaces have been developed to support it such as R studio, and R notebook. 

Different packages are used to accomplish the study; 

karyoploteR: It is a tool that combines many graphical sets in R to plot karyotypes on the genome 

[237]. It process input files that is encoded in GRanges format of GenomicRanges package (Chr, start, 

end, strand) [238]. 

Survival: Survival provides the tools to conduct a survival analysis that mainly includes survival object, 

and Kaplan-Meier and Cox model [239]. 
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Lubridate: it is a tool to deal with dates and calculate the time intervals from different date format 

[240]. 

powerSurvEpi: it is a tool to calculate the power and sample size in the survival analysis [241]. 

TwoSampleMR: it is an R library for performing MR using GWAS summaries in two-sample strategy 

and provides a range of statistical methods to test multiple assumptions. The package allows the use 

of GWAS database of MRC integrative epidemiology unit [242].  

2.9.3 Python 

Scikit-learn: scikit-learn is a Python library for machine learning built on top of SciPy [243] and 

characterised by many algorithms for classification, clustering, and regression [244].  

Scikit-Survival: scikit-Survival [245]is a Python library for survival analysis that utilise the pre-

processing and cross-validation tools available by scikit-learn [244]. Scikit-Survival provides a variety 

of survival algorithms that include Cox proportional hazard models, ensemble-based methods, and 

survival support vector models. 

matplotlib: matplotlib [246] is a visualization library for data and statistics presentation in Python . 

seaborn: Seaborn [247] is a visualization library based on matplotlib for statistical graphics. Seaborn is 

used for the semantic mapping and statistical aggregation to produce informative graphs. 

eli5: eli5 [248] is a package to explain the machine learning models. It is concordant with scikit-learn 

and explains the weights and predictions of its classifier and regressions. Eli5 uses the permutation 

importance rule to evaluate machine learning models by measuring the score decrease when the 

feature excluded. 

2.9.4 BAF Segmentation 

BAF Segmentation is a tool to detect regions of allelic imbalance from B Allele Frequencies of the 

markers on SNP array [207]. The tool can be used for paired tumour-normal samples and unpaired 

samples. Non informative homozygous SNPs are removed from the BAF profiles. Next, circular binary 

segmentation (CBS) is used to combine regions with similar allelic proportions which are called as 

allelic imbalance by comparison to a fixed threshold. 
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The tool can deal with a file of multi-samples or separated single file for each sample with BAF, and 

LRR data for each marker. The output is a list of the identified allelic imbalanced regions, and a set of 

3 plots for each sample; a BAF plot, a mirrored BAF plot, and a log R ratio plot with all SNPs with 

average log R ratios within mBAF segments superimposed. 

2.9.5 Annovar 

Annovar is a functional annotation tool for genetic variants identified from different genomes [201]. 

It deals with simple tab delimited input of (chromosome, start position, end position, reference 

nucleotide and observed nucleotides). Information from a wide range of resources can be added, 

including: (i) annotated reference transcriptomes such as RefSeq to detect the targeted gene, exome, 

and transcript; (ii) annotated genomic intervals that include conserved regions, transcription binding 

sites, and DNAse I hypersensitivity sites (iii) annotated databases such as COSMIC, 1000 genome and 

GnomAd. Also, it can add pathogenicity scores such as SIFT, FATHMM, and polyphen. 

2.9.6 PHESANT 

PHEnome Scan ANalysis Tool (PHESANT) is a phenome scan tool that incorporates R scripts to scan the 

UK Biobank phenotype files and apply different association tests between the phenotypes and the 

trait of interests [249]. The tool can deal with different traits of interest according to the experiment 

design including single SNPs, genetic scores or different genetic features. This makes PHESANT suitable 

to conduct phenome-wide association studies (PheWAS) and Mendelian randomisation approaches. 

Also, it can test the association between different phenotypes, referred as Environmental WAS 

(EnWAS). 

 

After the tool scan and categorisation of the phenotype file, PHESANT runs parallelised regressions for 

the trait of interest on the selected phenotype. The tool chooses the appropriate test for each 

phenotype based on rules documented in the variables file. In general, (i) linear regression is used for 

testing the association of continuous variables e.g., blood counts, after inverse normal transformation 

to counteract departures of continuous variables from normality; (ii) logistic regression is used for 

testing multiple categorical variables e.g., ICD-10 encoded diseases;  (iii) ordinal logistic regression and 

multinomial logistic regression are applied for categorised variables if they have ordered categories 

or unordered categories, respectively. 

 



59 

 

The input data are (i) the UK Biobank phenotype set file (ii) the trait of interest file that varies according 

to the experiment (it may include single SNPs, genetic scores, or different genetic features); (iii) data 

coding information file (iv) a variable information file (v) a cofounder file [249]. 

 

2.9.7 Other statistical tests  

Fisher’s exact test: a test that assesses the null hypothesis of independence of the numbers in the cells 

of a 2x2 contingency table. 

Mann-Whitney U test: a nonparametric test to assess the null hypothesis that it is equally likely that a 

randomly selected value from one population will be less than or greater than a randomly selected 

value from a second population. 

Binomial test: compares the number of successes observed in a given number of trials with a 

hypothesised probability of success. 
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Chapter 3 Characterization of myeloid clonal 

haematopoiesis in the UK Biobank 

 

3.1 Summary 

In this chapter, I describe the investigation of CH in the UK Biobank (n = 502,524, median age = 58 

years, range 40 to 70 years). Utilizing data from SNP arrays (n = 486,941), I identified 8,203 instances 

of mCA in 5,040 individuals, with the prevalence ranging from 0.85% at 40-45 years to 1.29% at 66-70 

years, a significant age-related increase (OR = 1.017; 95% CI = 1.013 - 1.020; P = 1.80x10-19, logistic 

regression test). Classifying these mCAs by chromosomal arm and copy number state identified 17 

abnormalities involving 15 chromosomal arms that were significantly associated with myeloid 

disorders in 506 individuals. The risk of acquiring myeloid mCA (n=506) showed a sharper increase 

with age (OR = 1.10; 95% CI = 1.08 - 1.11; P = 1.57x10-38, logistic regression test).  

Within a subset of the cohort (n=49,956), WES data was used to identify likely somatic driver 

mutations in DNMT3A, TET2, ASXL1, JAK2, SRSF2 or PPM1D that were rare (MAF ≤1%) in population 

databases and were either loss of function mutations or overlapped with known mutations. These 

criteria detected 721 candidate mutations in 678 individuals and, similar to myeloid mCA, were 

associated with age (OR = 1.10; 95% CI = 1.08 - 1.11; P = 5.89x10-47; logistic regression test). In total, 

the analysis yielded 1,166 individuals with myeloid-related CH defined by one or more of myeloid 

associated mCA in 506 individuals (0.1% of subjects who had a SNP array) and/or likely somatic driver 

mutations in one or more of the six genes of interest in 678 individuals (1.4% of cases who underwent 

WES). A total of 18 subjects had both mCA and somatic mutations. Next, I investigated genetic features 

and exposure factors as causes for the development of myeloid CH. 30,892 individuals with WES data 

were selected as controls that were free of any mCA, had no putative somatic mutations in the six 

genes of interest and did not have any haematological malignancies during the study period. Using a 

genome-wide association analysis to compare these groups, I identified two distinct signals 

(rs2853677, OR = 1.32, P = 5.6x10-11; rs7726159, OR = 1.33, P = 4.2x10-11) within TERT that predisposed 

to myeloid CH, plus a weaker signal corresponding to the JAK2 46/1 haplotype. Smoking history was 

significantly associated with myeloid CH: 53% (n=622) of myeloid CH cases were past or current 

smokers compared to 44% (n=13,651) of controls (ORprevious=1.17; ORcurrent=1.76; P = 3.38x10-6; 
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multinomial logistic regression), a difference principally due to current (PFDR = 6.14x10-6, OR = 1.1; 

ordinal logistic regression) rather than past smoking (PFDR = 0.085). Strikingly, breakdown of myeloid 

CH by specific mutation type revealed that ASXL1 loss of function mutations were the most strongly 

associated with combined smoking status (ORpast=1.94, ORcurrent
 = 4.68, P = 1.02x10-5), that was more 

likely due to current smoking status (OR=1.07, PFDR =1.92x10-5), rather than past smoking (OR = 1.04, 

PFDR = 2.60x10-3). This finding was confirmed in a new release of WES data for 150,685 independent 

samples (ORpast = 1.34, ORcurrent
 = 2.97, P = 3.43x10-6), a finding that is largely attributable to current 

smoking status (OR = 1.04, PFDR =2.01x10-7) rather than past smoking status (OR = 1.01, PFDR = 0.05). 

Indeed, 64% of participants with ASXL1 mutations (n=327) were past or current smokers in both 

cohorts. Using meta-analysis to combine these results, the overall risk of carrying a somatic driver 

mutation in ASXL1 was estimated to be 1.05 times higher per unit for current smokers (PFDR = 8x10-13).  

Survival analysis revealed that individuals with myeloid CH and without any diagnosis of 

haematological malignancies (n = 911) have an increased risk of all-cause mortality (HR = 1.44, CI: 1.05 

– 1.99, P = 0.02, Cox-hazard model). This suggests that myeloid CH is associated with other medical 

conditions and not just haematological malignancies. The correlation of myeloid CH with different 

clinical phenotypes, blood features and biomarkers highlighted a qualitative relationship between 

clonality and age-related inflammation. Mainly, myeloid CH was associated with red blood cell 

distribution width (RDW, OR = 1.02, PFDR = 9.7x10-4), and alterations in erythropoiesis and 

thrombopoiesis. However, each mutated gene has specific associations. Importantly, TET2 mutations 

were associated with chronic obstructive pulmonary disease (COPD, OR = 1.16, PFDR = 0.009) and 

significant agranulocytosis (OR = 1.23, PFDR = 0.009), whereas JAK2 V617F and chr9p mosaicism was 

associated with an elevation in platelet counts (OR = 1.04, PFDR = 1.3x10-11) and platelet crit (OR = 1.04, 

PFDR = 7.5x10-12). ASXL1 mutations had an anaemia-like blood profile even after correction for smoking, 

mean corpuscular volume (MCV, OR = 0.98, PFDR = 9.13x10-4), and mean corpuscular haemoglobin 

(MCH, OR = 0.98, PFDR = 2.86x10-3). In general, myeloid CH has a heterogeneous genetic architecture 

that mirrors heterogeneity in age-related inflammation and plays a role in the pathogenesis of several 

diseases of aging. 

3.2 Introduction 

The combined prevalence of all myeloid malignancies, as defined by the 2016 WHO classification 

[101], ranges from between 0.3% for 3 year prevalence to 0.8% for 10 year prevalence with a median 

diagnostic age of 72.4 years [250]. These diseases are rare, tend to occur in elderly people, and are 
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characterised by a wide genetic heterogeneity. The diagnosis of these disorders is very variable. Some 

cases are asymptomatic initially and are picked up by the finding of abnormal blood counts on routine 

assessment or investigation of another condition. Some cases present with non-specific symptoms 

such as easy bruising, lethargy and night sweats whereas others have an acute presentation with 

multiple abnormalities. The diagnosis of myeloid neoplasms has traditionally been made by 

morphological investigation of bone marrow cells along with bone marrow and peripheral blood 

counts, but the finding of blood cell clonality and specific characteristic somatic abnormalities are 

playing an increasingly important role to diagnose myeloid neoplasms, identify the subtype and 

predict prognosis. However, the identification of CH in healthy individuals as a result of pathogenic 

mutations in myeloid malignancy associated genes complicates the diagnosis of true myeloid 

malignancies, as well as raising an interest in assessing large prospective cohort to identify factors that 

promote the development of myeloid neoplasms from pre-existing CH. 

Most CH studies have focused on mutations to define clonality [8,10], but clonality can also be defined 

by mCAs. Although the relationship between mCAs and underlying driver mutations is not 

straightforward, there is a notable overlap between some types of myeloid malignancy associated 

mCA and recurrently mutated genes in CH. For example, TET2 is the second most recurrent CH gene 

in apparently healthy people, and TET2 mutations are recurrently associated with LOH at 4q24 as a 

result of CNL or aUPD [251]. So, clonality can be confirmed by finding a putative driver somatic 

mutation that often represents the first hit, or by finding an acquired mCA event that often represents 

a second hit. However, the pathogenic value of any event can be assessed by testing its association 

with myeloid malignancies. Away from the malignant role of myeloid CH, granulocytes and monocytes 

play key roles in the inflammatory system across all tissues by accumulation at specific sites and by 

releasing inflammation mediators. It is possible that clonal granulocytes and monocytes have altered 

functions that impact or promote non-malignant conditions. 

The UK Biobank provides a wealth of information to test different hypotheses relating to the causes 

of CH and its association with a wide range of benign phenotypes. Some key attributes of the UK 

Biobank are: 

(i) Genotypic (SNP array) data is available for most of the 500,000 participants, with WES 

data from 50,000 at the time of initial analysis in 2019  

(ii) Death registry data provides the date of death enabling survival analysis 

(iii) The electronic questionnaire covered smoking and is thus suitable for assessing the 

relationship between CH and what is expected to be the most significant external factor 
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(iv) The data for individuals who developed health conditions are very detailed, covering 

about 10,000 different ICD-10 diagnoses 

(v) A large number of blood and biochemical measures were performed at recruitment 

 

In this Chapter, I present my results for detecting myeloid CH defined by (i) mCA and (ii) putative 

somatic mutations and their association with the development of myeloid malignancies in the UK 

Biobank. Next, I investigate genetic features and exposure factors as causes for the development of 

myeloid CH. Lastly, I sought to determine the role of myeloid CH in the pathogenesis of non-malignant 

diseases by assessing the relationship between myeloid CH and all-cause mortality, non-malignant 

diseases, blood features and other biomarkers.  

 

3.3 Methods 

3.3.1 Cohort structure 

Participants from the UK Biobank were split into four phenotypic groups: myeloid malignancies, 

lymphoid malignancies, other cancers, and cancer-free based on the International Classification of 

Disease codes (ICD version 10) that were recorded by the national cancer registry (Data-Field 40006) 

and reason for admission to hospital (Data-Fields 41202, 41204, and 41270). ICD-10 codes used to 

define myeloid and lymphoid malignancies are listed in Table 3-1. Other cancers were defined by any 

other ICD-10 codes that were not used for haematological malignancies and were prefixed with a C or 

D0 to D48. The ICD-10 coding system was introduced into the national cancer registry in 1995 and to 

the hospital admissions in 1996. The cancer registry data was accessed as of 31st July 2018, and other 

clinical and phenotype data was accessed as of August 2019 (most recent record February 2018), thus 

providing data for a median of 9.1 years after recruitment and blood sampling, and a median age 58 

at recruitment time. The four phenotypic groups were defined by events that occurred at any time 

between 1995 and 2018, i.e. at this stage of the analysis they included past, present and future 

malignancies with respect to the timing of the blood sample. Stricter definitions that focus on criteria 

for predicting the development of myeloid malignancies will be introduced later. 
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Table 3-1: ICD-10 used to define haematological malignancies 

Group ICD-10 Code 

(i) Myeloid 
malignancies 

 

C92.0:Acute myeloid leukaemia, C92.1:Chronic myeloid leukaemia, C92.3:Myeloid 

sarcoma , C92.4:Acute promyelocytic leukaemia, C92.5:Acute myelomonocytic 

leukaemia, C92.7:Other myeloid leukaemia, C92.9:Myeloid leukaemia, unspecified, 

C93.0:Acute monocytic leukaemia, C93.1:Chronic monocytic leukaemia, 

C94.0:Acute erythraemia and, C94.4:Acute panmyelosis , C94.6:Myelodysplastic 

and myeloproliferative, C96.2:Malignant mast cell, D45:Polycythaemia vera , 

D46.0:Refractory anaemia without sideroblasts, so stated, D46.1:Refractory 

anaemia with sideroblasts, D46.2:Refractory anaemia with excess of blasts, 

D46.4:Refractory anaemia, unspecified, D46.7:Other myelodysplastic syndromes, 

D46.9:Myelodysplastic syndrome, unspecified, D47.0 :Histiocytic and mast cell 

tumours of uncertain and unknown behaviour, D47.1:Chronic myeloproliferative 

disease, D47.3:Essential (haemorrhagic) thrombocythaemia 

(ii) Lymphoid 
malignancies 

 

C77.0 :Lymph nodes of head, face and neck, C77.1 :Intrathoracic lymph nodes, 

C77.2 :Intra-abdominal lymph nodes, C77.3 :Axillary and upper limb lymph nodes, 

C77.4 :Inguinal and lower limb lymph nodes, C77.5 :Intrapelvic lymph nodes, 

C77.8 :Lymph nodes of multiple regions, C77.9 :Lymph node, unspecified, 

C81.0 :Lymphocytic predominance, C81.1 :Nodular sclerosis, C81.2 :Mixed 

cellularity, C81.3 :Lymphocytic depletion, C81.7 :Other Hodgkin's disease, 

C81.9 :Hodgkin's disease, unspecified, C82.0 :Small cleaved cell, follicular, 

C82.1 :Mixed small cleaved and large cell, follicular, C82.2 :Large cell, follicular, 

C82.7 :Other types of follicular non-Hodgkin's lymphoma, C82.9 :Follicular non-

Hodgkin's lymphoma, unspecified, C83.0 :Small cell (diffuse), C83.1 :Small cleaved 

cell (diffuse), C83.2 :Mixed small and large cell (diffuse), C83.3 :Large cell (diffuse), 

C83.4 :Immunoblastic (diffuse), C83.5 :Lymphoblastic (diffuse), C83.7 :Burkitt's 

tumour, C83.8 :Other types of diffuse non-Hodgkin's lymphoma, C83.9 :Diffuse 

non-Hodgkin's lymphoma, unspecified, C84.0 :Mycosis fungoides, C84.1 :Sezary's 

disease, C84.2 :T-zone lymphoma, C84.3 :Lymphoepithelioid lymphoma, 

C84.4 :Peripheral T-cell lymphoma, C84.5 :Other and unspecified T-cell lymphomas, 

C85.0 :Lymphosarcoma, C85.1 :B-cell lymphoma, unspecified, C85.7 :Other 
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specified types of non-Hodgkin's lymphoma, C85.9 :Non-Hodgkin's lymphoma, 

unspecified type, C86.2 :Enteropathy-type (intestinal) T-cell lymphoma, 

C88.0 :Waldenstrom's macroglobulinaemia, C88.4 :Extranodal marginal zone B-cell 

lymphoma of mucosa-associated lymphoid tissue [MALT-lymphoma], 

C88.9 :Malignant immunoproliferative disease, unspecified, C90.0 :Multiple 

myeloma, C90.1 :Plasma cell leukaemia, C90.2 :Plasmacytoma, extramedullary, 

C90.3 :Solitary plasmacytoma, C91.0 :Acute lymphoblastic leukaemia, 

C91.1 :Chronic lymphocytic leukaemia, C91.3 :Prolymphocytic leukaemia, 

C91.4 :Hairy-cell leukaemia, C91.5 :Adult T-cell leukaemia, C91.9 :Lymphoid 

leukaemia, unspecified, C95.7 :Other leukaemia of unspecified cell type, 

C95.9 :Leukaemia, unspecified, C96.1 :Malignant histiocytosis, C96.3 :True 

histiocytic lymphoma, C96.8 :Histiocytic sarcoma, D47.2 :Monoclonal gammopathy 

(iii) ICD-10 
codes 
considered 
myeloid if 
accompanied 
with one of the 
codes in table 
(i) and no 
codes from 
table (ii), 
otherwise 
included under 
'lymphoid' 

 

C95.0 :Acute leukaemia of unspecified cell type, C95.1 :Chronic leukaemia of 

unspecified cell type, C96.7 :Other specified malignant neoplasms of lymphoid, 

haematopoietic and related tissue, C96.9 :Malignant neoplasms of lymphoid, 

haematopoietic and related tissue, unspecified, D47.7 :Other specified neoplasms 

of uncertain or unknown behaviour of lymphoid, haematopoietic and related 

tissue, D47.9 :Neoplasm of uncertain or unknown behaviour of lymphoid, 

haematopoietic and related tissue, unspecified 

 

3.3.2 Calling mosaic chromosomal alterations from SNP array data 

The UK Biobank provides comprehensive project level files for B-allele frequency (BAF: the ratio of 

intensity values for the A and B allele for each SNP in a single sample) and log2 R ratio (LRR: the 

logarithm value to the base 2 of the ratio of the observed intensity to the expected intensity for the 

diploid genome) for each SNP that passed QC (as detailed in Chapter 2). Raw input files were 

generated for each sample. Regions of allelic imbalance (AI) were then detected in in all participants 

for whom the array data passed QC (n=486,941), including X-chromosome imbalances for female 
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participants (n=264,083) using BAF segmentation and the recommended parameters for Affymetrix 

array data [207]: minimum 4 SNPs, detection threshold mirrored BAF (mBAF) ≥0.56 (ΔBAF ≥ 12%), 

SNPs with mBAF > 0.9 were removed  and triplet filter threshold was 0.6 (described in Chapter 2). 

Next, a custom script was used for filtering, and merging events, removing likely constitutional events, 

and generating an empirical score for each event. First, bedtools was used to merge AI regions with a 

minimum density of 1 SNP per 20Kb that were separated by less than 2Mb [252], and removed merged 

events that cover <2Mb. Next, constitutional copy number gains were removed based on the following 

criteria which are similar to those used by other groups [253]. Constitutional CNG has a theoretical 

mBAF = 0.66. To exclude these non-informative events, large events (>10Mb) were removed if they 

had LRR > 0.35 or LRR > 0.2 and mBAF > 0.66. Small events (< 10Mb) were removed if LRR > 0.2 or 

LRR > 0.1 and mBAF >0.6. These thresholds were used by previous studies involving the UK Biobank 

SNP array data [253]. Next, merged AI regions were scored based on the product of (i) number of 

informative SNPs (ii) heterozygosity rate in the targeted region and (iii) coverage of AI regions for the 

merged event. Events that scored over an empirically defined threshold (≥9; described in detail below) 

were defined as mosaic chromosomal abnormalities (mCA), which were further broken down into 

CNL, CNG or aUPD using static LRR cut-offs (CNG > 0.07, CNL < -0.07). The parameters applied are 

estimated to identify clonal fractions larger than 0.1, 0.2, and 0.27 for aUPD, CNL, and CNG, 

respectively [207]. Since mCA may be derived from myeloid or lymphoid cells, we correlated mCA with 

clinical phenotype to specifically define myeloid mCA (detailed in results). 

3.3.3 Identification of putative somatic mutations in WES data 

The gVCF files from the UK Biobank were converted to VCF format and filtered to remove variants 

with low read depth (DP; <7 for SNVs, <10 for indels). SAMtools/Bcftools was used to merge the 

separate files into one multi-sample VCF, split multi-allelic positions into separate variants and to 

normalise the location of indels using their left most position [254]. The multi-sample VCF was 

annotated in relation to genes (RefSeq), public databases of normal variation (1000 genome, 

https://www.internationalgenome.org/; ESP6500, https://evs.gs.washington.edu/EVS; GnomAD, 

https://gnomad.broadinstitute.org), and variant/protein pathogenicity scores using Annovar [201]. 

Putative somatic mutations (regardless of VAF) were identified in six genes known to be associated 

with myeloid neoplasia that were exonic, had an alternate allele frequency ≤1% in public databases of 

common variation (1000 Genome, ESP6500, GnomAD) and were either loss of function (LOF) 

https://evs.gs.washington.edu/EVS
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mutations (TET2, DNMT3A, ASXL1, PPM1D) or known somatic mutations (DNMT3A R882, JAK2 V617F, 

SRSF2 P95). The data workflow is presented in Figure 3-1. 

 

Figure 3-1: Data processing of WES variant calls from the UK Biobank to identify putative somatic 

mutations 

*The selected variants are disruptive mutations in DNMT3A, TET2, ASXL1 and PPM1D plus 3 missense oncogenic 
variants JAK2 V617F, SRSF2 P95 and DNMT3A R882. 

 

To validate the association between CH and smoking detected in 49,956 participants, I used the same 

pipeline to identify driver mutations in 150,685 newly released exomes from the UK Biobank. In 

addition to the previous filters, LOF mutations were considered if inferred as somatic by failing the 
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hypothesis that the alternative allele is normally distributed with a mean of 0.45 and a false positive 

rate of P = 0.05 using a binomial test. 

3.3.4 The association of common variants with clonality 

Samples with SNP array data were split into cases (n = 1,166) and controls (n = 30,892). Cases were 

defined by the presence of one or more features associated with myeloid CH; either mCA in 15 

genomic regions which are associated with myeloid disorders in this study, or at least one putative 

somatic mutation in six driver genes associated with myeloid disorders (JAK2 V617F, SRSF2 P95, 

DNMT3A R882 or frameshift/stopgain mutations in DNMT3A, TET2, ASXL1 or PPM1D). Controls were 

defined as samples without mCA, without likely somatic mutations in the genes of interest (including 

nonsynonymous variants) and without evidence of any haematological malignancy during the study 

period. A total of 265,112 common SNPs (MAF ≥0.1) without deviation from HWE (P>0.001) were 

assessed for association with myeloid CH using allelic chi square tests to compare allele frequencies 

between cases and controls. Association tests were performed using Plink V1.9. [255]. These results 

were visualised using the qqman, qqnorm and qqplot procedures in R to generate a Manhattan plot 

and quantile-quantile plot [256]. In regions with multiple SNPs reaching genome-wide significance, 

conditional logistic regression was used to determine the number of independent signals. All SNPs 

with P<5x10-8 and within 500kb of the index SNP were added to the regression model in order of 

significance. Linkage disequilibrium between SNPs was calculated by LDassoc; an  interactive tool to 

visualise association P-value results and linkage disequilibrium patterns for a genomic region of 

interest [257]. 

3.3.5 Phenotype selection: 

Cigarette smoking data were collected by electronic questionnaire at the first visit to the assessment 

centre and were captured in three data fields: (i) current smoking status “Data-Field 1239, question: 

Are you a current smoker?”; (ii) For participants who were not current smokers “Data-Field 1249”, 

question: Are you a previous smoker?”, and (iii) smoking status “Data-Field 20116” which combines 

data fields 1239 and 1249. 

Phenotypic diagnoses were derived from primary/main diagnosis encoded in hospital inpatient 

records “Data-Field 41202”. These phenotypes were encoded using the international classification of 

disease, version 10 (ICD-10) and covered 7,920 different phenotypes with at least one incident across 

all participants. To minimise false positives due to small sample size, our investigation was limited to 
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395 phenotypes with a frequency >0.1% in the UK Biobank cohort. Irrelevant phenotypes, with ICD-

10 prefixes “O”,”P”,”Q”, ”S” to “Z”, and any cancer related phenotypes, with ICD-10 prefixes “C” and 

“D00” to “D48”, were also excluded. Participants with any evidence of haematological malignancy 

were excluded from the analysis based on diagnoses from the national cancer registry (Data-Field 

40006) and inpatient hospital records (Data-Fields 41202, 41204, and 41270). Blood counts and 

biochemistry were measured or estimated in the UK Biobank and encoded as continuous variables 

(Table 3-2, and Table 3-3). 

 

Table 3-2: 29 blood counts measured, calculated or derived in the UK Biobank 

 Calculated Calculated Derived 

Red Blood Cells Count (x 109 cells/L) Haematocrit (%) Mean Corpuscular Volume (fL) 

Distribution Width (%) 

White Blood Cell  Count (x 109 cells/L)   

Haemoglobin  Concentration (g/dL) Mean Corpuscular haemoglobin (pg) 

Mean Corpuscular (erythrocyte) 
haemoglobin concentration 

 

Platelet Count (x 109 cells/L) Platelet crit (%) Mean platelet volume (fL) 

Platelet Distribution Width (%) 

Lymphocyte Percent (%) Count (x 109 cells/L)  

Monocytes Percent (%) Count (x 109 cells/L)  

Neutrophil Percent (%) Count (x 109 cells/L)  

Eosinophil Percent (%) Count (x 109 cells/L)  

Basophil Percent (%) Count (x 109 cells/L)  

Reticulocyte Percent (%) Count (x 109 cells/L) 

High Light scatter Reticulocytes (x 109 
cells/L) 

Immature Reticulocyte Fraction (Ratio) 

Mean Reticulocyte Volume (fL) 

High Light scatter Reticulocytes (%) 

Mean Sphered Cell Volume (fL) 
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Table 3-3: 29 blood biomarkers measured in the UK Biobank 

Biomarker group Serum Assay 

Liver Albumin, Alkaline Phosphatase, Alanine Aminotransferase, Aspartate 
Aminotransferase, High Sensitivity C-Reactive Protein, Total Bilirubin, Direct 
Bilirubin, Gamma-Glutamyltransferase 

Kidney Uric acid, Urea, Cystatin-C, and Creatinine 

Lipid Cholesterol, Triglyceride, High Density Lipoprotein, Low Density Lipoprotein, 
Apolipoprotein A1, Apolipoprotein B, High Density Lipoprotein, Low Density 
Lipoprotein, Lipoprotein (a) 

Sex Testosterone, Oestradiol, and Sex Hormone Binding Protein 

Bone Calcium, Phosphate, Vitamin D 

Others Total Protein, Glucose, Insulin-like Growth Factor-1, Rheumatoid Factor 

 

3.3.6 The association of myeloid CH with smoking, clinical phenotype, blood traits and 

biochemistry 

The PHEnome Scan ANalysis Tool (PHESANT) was used to test the selected phenotypes from the UK 

Biobank for association [249] with myeloid CH defined by myeloid mCA and/or somatic mutations. 

PHESANT assigned the appropriate test for each phenotype; they include either ordinal logistic 

regression (polr R function for current smoking status and previous smoking status which are ordered 

categorical variables), multinomial logistic regression (multinom R function for combined smoking 

status which has three possible outcomes; never, previous and current), logistic regression (glm R 

function for binary clinical phenotypes; n = 395), or linear regression (lm R function for blood features 

n = 29 or biochemical markers n = 30). All regressions included covariates for age and sex with the 

addition of smoking status for the analysis of clinical phenotypes and blood features. Where 

appropriate, inverse normal transformation was applied to counteract departures from normality, and 

P-values were corrected for multiple testing using False Discovery Rate (FDR) method [258].  

3.3.7 Survival analyses 

To test the association between myeloid CH and either all-cause mortality, myocardial infarction (MI) 

or stroke, the ‘survival’ package [239] in R was used to perform Cox regression analyses with correction 
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for age at study entry, sex and smoking status. Follow-up times were calculated using the ‘lubridate’ 

[240] package to determine the duration between study entry to last registration in either the date of 

death (Data-field 4000), date of MI (Data-field 42000) or date of stroke (Data-field 42006). Participants 

that had an event before the date of entry were excluded (left-truncated).   

3.3.8 Statistical analysis 

Association of mCA categories and somatic driver mutations with phenotypic group. The frequency 

of mCA events, each of its subcategories (aUPD, CNG or CNL) and somatic driver mutations were 

tested for association with either myeloid, lymphoid, or other cancers compared to cancer free 

controls using Fisher’s exact tests in SPSS (Version 25). The average number of mCA events per sample 

in either myeloid, lymphoid, or other cancers were compared against cancer free controls using Mann-

Whitney U tests [259]. 

Association of specific mCAs with haematological phenotype. Autosomal mCAs were stratified by 

type (aUPD, CNL, CNG), chromosome arm (p or q), and position (telomeric or interstitial). Each type 

with at least one observation was tested for association with a haematological phenotype (myeloid or 

lymphoid) in comparison to cancer free controls using Fisher’s exact tests in SPSS (version 25). A total 

of 416 specific mCAs were tested after selecting mCA types with at least one observation. Interstitial 

events that were associated with a myeloid phenotype and not previously recognised as a recurrent 

abnormality were manually reviewed against known associations with myeloid malignancies 

(Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer; 

https://mitelmandatabase.isb-cgc.org/search_menu). After review, events associated with a myeloid 

phenotype were grouped and hereafter referred to as myeloid mCAs.   

Regression of mCA against age. The relationship between mCA and age was tested using 

multivariable logistic regression in SPSS where mCA status was treated as the dependent, age as a 

predictor and including gender as an independent covariate. This analysis was repeated for each 

subcategory of mCA (aUPD, CNG or CNL), myeloid mCAs and myeloid somatic mutations. The effect 

sizes were reported as odds ratios (OR) with 95% confidence intervals (CI). 

Meta-analysis of the relationship between driver mutations and smoking. To validate the association 

of smoking with myeloid CH defined by driver mutations, the new release of WES data (n = 150,685) 

was screened for myeloid CH and tested for association using PHESANT as previously described. 

Results from both WES cohorts were combined using a fixed effect inverse variance weighted meta-
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analysis using STATA version 16 (StataCorp LLC, College Station, TX). Cochran’s Q test was used to 

measure heterogeneity and results were presented as forest plot. 

 

3.4 Results 

3.4.1 Data summary 

The phenotypic breakdown of the UK Biobank cohort is summarised in (Table 3-4), along with cases 

for whom SNP array and WES data were available. The classification shows the expected excess of 

myeloid malignancies in males (1.3 : 1) [250] 

As described in Chapter 2, the SNP array data were provided by the UK Biobank for 488,377 SNPs 

following their own QC. I excluded 1,436 cases due to one or more of poor genotyping quality 

(missingness above 5%; n = 229), outlying levels of heterozygosity that could not be explained by 

admixture or consanguinity (principal component-adjusted heterozygosity above the mean 0.1903, n 

= 744), gender mismatch (n = 373), withdrawal of consent (n = 85), or absence of phenotypic data 

(n=10). 

WES for 49,996 individuals were provided by the UK Biobank. I excluded 40 samples for QC reasons 

that were published by Regeneron [208] who performed the sequencing and initial QC. The reasons 

for exclusion were unmatched sex (n=15), high rates of heterozygosity/contamination (D-stat > 0.4) 

(n = 7), low sequence coverage (less than 85% of targeted bases achieving 20X coverage) (n=1), 

genetically duplicated samples (n = 14), and discordance between WES and SNP array (n = 9). 
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Table 3-4: Summary of the UK Biobank cohort 

 Males n (%) Females n (%) Total 

Phenotypic data 1 229,129 (46) 273,395 (54) 502,524 

Myeloid disorders 2 1,157 (57) 873 (43) 2,030 

Lymphoid disorders 3 5,747 (44) 7,390 (56) 13,137 

Other cancers 49,435 (41) 71,420 (59) 120,855 

Cancer-free  172,790 (47) 193,712 (53) 366,502 

    

SNP array data 4 222,858 (46) 264,083 (54) 486,941 

Myeloid disorders 1,097 (57) 816 (43) 1,913 

Lymphoid disorders  5,566 (44) 6,980 (56) 12,546 

Other cancers 48,101 (41) 68,820 (59) 116,921 

Cancer-free  168,094 (47) 187,467 (53) 355,561 

 

WES data 5 22,714 (45) 27,242 (55) 49,956 

Myeloid disorders 97 (53) 85 (47) 182 

Lymphoid disorders 473 (46) 550 (54) 1,023 

Other cancers 4,972 (41) 7,265 (59) 12,237 

Cancer-free  17,172 (47) 19,342 (53) 36,514 

 
1) Includes cases who had the specified disorder at any time during the study period.  
2) Of 2030 participants with a myeloid disorder, 315 were also diagnosed with another non-myeloid haematological 

disorder during the study period.  
3) 34 cases with unspecified haematological malignancy were included in the lymphoid group 
4) Data available from 488,377 cases of which 1436 were excluded following QC. 
5) Data available from 49,996 cases of which 40 were excluded following QC. 
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3.4.2 Mosaic chromosomal alterations in the UK Biobank 

Genome wide SNP array data was analysed to identify autosomal regions of AI in all participants for 

whom the array data passed QC (n = 486,941), including X-chromosome imbalances for female 

participants (n = 264,083). The default parameters of the published tool “BAF Segmentation” [207] 

were applied, that define a region of AI by 4 consecutive SNPs of mBAF between 0.56 to 0.9. Initially, 

6,546,768 AI signals were identified in 94% of the processed samples, which is vastly higher than the 

expected mCA prevalence of around 1% samples from published studies of other population cohorts 

s. Visualising a selection of the BAF plots suggested two major problems: 

(i) Likely germline events, mainly small interstitial regions and constitutional CNG  

(ii) Artefacts, including regions of poor coverage on the array, regions of low heterozygosity, 

or poor genotyping particularly near centromeres 

A series of filters were applied to minimise signals related to poor marker coverage and the false 

discovery of constitutional copy-number variants, as detailed in methods and summarised in Table 

3-5. 

 

Table 3-5: The number of the identified allelic imbalance regions at each processing step 

Filter Regions of AI (n) Participants (%) 

The UK Biobank SNP array cohort 
 

486,941 (100) 

BAF Segmentation raw results 6,546,768 461,460 (94.8) 

1 SNP/20,000 bp coverage 6,444,606 459,847 (94.5) 

Merge with maximum 2Mb separation  5,838,835 459,847 (94.5) 

≥2Mb coverage size 239,089 95,617 (19.6) 

Remove constitutional CNG1 234,772 92,884 (19) 

Score2 ≥ 9 8,203 5,040 (1) 

1 remove large events (>10Mb) if they had LRR > 0.35 or LRR > 0.2 and mBAF > 0.66. Small events (< 10Mb) were 
removed if LRR > 0.2 or LRR > 0.1 and mBAF >0.6 
2 empirical score calculated as following (number of informative SNPs x mean Het rate x Coverage rate) 
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To further decrease the false discovery rate, the merged AI regions were scored according to the 

product of three parameters that are correlated with the calling accuracy, as indicated in Equation 2. 

Examples of plots with different empirical scores are provided in Figure 3-2. 

 

 

Equation 2: The score assigned to each allelic imbalance event larger than or equal 2Mb size 

𝑆𝑆𝑝𝑝𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡 𝑆𝑆𝑜𝑜 𝑡𝑡𝑝𝑝𝑜𝑜𝑆𝑆𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 𝑥𝑥  𝑠𝑠𝑡𝑡𝑎𝑎𝑝𝑝 𝐻𝐻𝑡𝑡𝑡𝑡 𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 𝑥𝑥 𝑀𝑀𝑆𝑆𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡 𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 

 

1) number of informative SNPs is the total number of SNPs that defines the event with mBAF between 0.56 and 
0.9. 

2) mean het rate is the mean heterozygosity rate at the targeted region of the event. 

3) coverage rate is the size ratio (the sum of individual AI events / total size of the new covered event). 
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Figure 3-2: Plot of mirrored BAF on chromosome 9 in three samples in the UK Biobank. 

Plot A) shows an interstitial AI event (score = 0.7; calculated as 7 SNPs x 0.1 het-rate x 1 coverage). This event 
was filtered out as its score was < 9. Plot B) shows a low level 9p mCA event (score =12.9; calculated 170 SNPs x 
0.2 het-rate x 0.3 coverage). Plot C) shows a very clear 9p mCA event (score=189; calculated 1206 SNPs x 0.16 
het-rate x 0.98 coverage). 

 

Score cut-off selection: three methods were used to determine the empirical score threshold that was 

used to remove false positive AI regions; these 3 methods were used to select a score larger than or 

equal to 9. 

 

The first method examined the frequency of AI events across chromosome 9 using non overlapping 

windows of 100Kb and a range of filtering scores (0 to 17). Our hypothesis was that the most frequent 

region of AI should include the JAK2 gene due to the selective advantage of chromosome 9p aUPD in 

the presence of a somatically acquired JAK2 V617F mutation [28], and the fact that there are no other 
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known targets of 9p aUPD. At a filtering score of 9, the pattern of AI frequency across the chromosome 

stabilised and the most frequent region included JAK2, as hypothesised (Figure 3-3). 

 

 

Figure 3-3: The frequency of mCA across chromosome 9 using different scores. 

The plot was generated by calculating the number of samples with mosaicism within a sliding window of 100kb 
under different thresholds of the score filter. At a filtering score of 9 the pattern of AI frequency across the 
chromosome stabilised with the most frequent region including JAK2; an increase in score stringency provided 
no further improvement. 

 

The second method examined the frequency of AI in the entire genome under a range of filtering 

scores (0 to 30) and six age categories that were defined by 5-year intervals from age 40 to 70 years 

old. Here the frequency of large AI regions (≥2Mb) was expected to be close to 1% over all participants 

given previous estimates of 0.89% [7] and 0.73% [260]. The frequency of large AI regions  was also 

expected to increase with age [6]. At a filtering score of 9, the AI incidence aligned with those expected 

for all participants (1%) and increased with age to a frequency of 1.29% in participants aged 66 to 70 

years old (Figure 3-4).  
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Figure 3-4: Age relationship of mCA using different scores. 

Six age categories defined by 5 year intervals from age 40 to 70 years old were compared with a range of filtering 
scores. At a filtering score of 9, shown by the interpolation lines, the AI incidence aligned with that expected for 
all participants (1%) and increased with age to a frequency of 1.29% in participants aged 66 to 70 years old. 

 
 
The third method was based on the relationship between 9p AI and JAK2 V617F (n=40) in samples 

with WES data. In theory the great majority of samples with 9p AI should also harbour JAK2 V617F. 

Assuming true positive 9p AI were also positive for JAK2 V617F, the sensitivity and specificity were 

calculated under a range of AI filtering scores and shown to increase from 35% without filtering (AI 

score equal to zero) to a plateau of 86% at AI filtering scores of 8 and above (Table 3-6). Combining 

these three lines of evidence, an AI filtering score of ≥9 was chosen as the empirical threshold for 

selecting merged AI regions that were at least 2Mb in size. These regions were defined as mCA. The 

LRR was then used to classify each mCA region as either CNL (LRR ≤ -0.07), CNG (LRR ≥ 0.07) or aUPD 

(LRR ≥ -0.07 and ≤ 0.07) (Figure 3-5). Events were further classified by their genomic location as either 

telomeric if located within 2Mb of the p telomere (excluding acrocentric chromosomes) or 2Mb of the 

q telomere. Other mCA events were classified as interstitial (Figure 3-6). 
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Table 3-6: Specificity for calling mCA under different thresholds of the empirical score. 

Empirical score 
Number of chr9p mCA 
called that cover JAK2 

True chr9p mCA (positive 
for JAK2 V617F) Specificity (%) 

0 48 17 35.42 
1 29 13 44.83 
2 22 12 54.55 
3 18 12 66.67 
4 17 12 70.59 
5 16 12 75 
6 16 12 75 
7 15 12 80 
8 14 12 85.71 
9 14 12 85.71 

10 14 12 85.71 
11 14 12 85.71 
12 14 12 85.71 

 
 

In total, the method identified 8,203 mCA >2Mb in size in 5,040 participants (1% of 486,941 analysed 

samples) which broke down into aUPD (n = 4,224), CNG (n = 659) or CNL (n = 3,320) as shown in 

Supplementary Table 3-1. The myeloid disorders group (n = 1,913) had the largest incidence of mCA 

with 11% of samples (n = 210) affected. Of these, more than 75% (n = 158) were affected by aUPD, a 

highly significant association (OR = 16.39; P = 8.78x10-124; Fisher’s exact test) that exceeded the 

relationship between all other mCA categories and phenotypes (Table 3-7). The frequency of mCA in 

lymphoid disorders was much lower than the myeloid group (363/12546; 2.9%) but the average 

number of events per positive sample (2.1) was significantly higher compared to cancer free controls 

(1.6, P = 4.1x10-6) or myeloid samples (1.5, P = 0.015) according to the Mann-Whitney U tests (Table 

3-7).
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Figure 3-5: The relationship between mBAF and median LRR for telomeric mCA. 
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Table 3-7: Summary of mCA identified across the cohort 

Group 
SNP array 
samples 

Total mCA 
events (per 

sample) 
P* 

Samples with at least one event 
mCA aUPD CNG CNL 

n (%) OR PFDR n OR PFDR n OR PFDR n OR PFDR 
Myeloid 
disorders 

1913 316 (1.5) 4.10x10-6 210 (11) 13.21 3.74x10-145 158 16.39 8.78x10-124 37 40.88 3.10x10-44 34 4.61 2.18x10-12 

lymphoid 
disorders 

12546 768 (2.1) 0.54 363 (2.9) 3.19 1.41x10-105 146 2.15 1.77x10-19 81 14.00 3.09x10-55 194 4.01 1.22x10-83 

Other cancers 116921 1854 (1.6) 0.89 1185 (1) 1.10 4.00x10-3 657 1.03 0.26 67 1.24 0.09 527 1.16 3.6x10-3 
Cancer free  355561 5269 (1.6)  3282 (0.9)   1938   165   1386   

 

The number of mCA identified in each phenotypic group out of the total number of samples with SNP array data passing QC. The number of events for each mCA subcategory 
are also shown: aUPD, CNG and CNL. The mean number of mCA events in participants with either myeloid, lymphoid, or other cancers were compared with cancer free 
controls using Mann Whitney U tests (P*). Fisher’s exact tests were used to compare the number of events which were corrected for 12 tests using the false discovery rate 
(PFDR). 
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Figure 3-6: The chromosomal distribution of the identified mCA (n=8,203) in the UK Biobank 

Relatively large mCA (>2Mb) with imperial score ≥ 9 were classified according to LLR into aUPD (LRR ≥ -0.07 and 
≤ 0.07, n = 4,224, green panel), CNL (LRR ≤ -0.07, n = 3,320, red panel), or CNG (LRR ≥ 0.07, n = 659, blue panel). 
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3.4.3 The association of mCA with age 

The association between mCA and age in years was assessed using logistic regression where mCA 

status was the dependent variable, age was the predictor and adjusting for gender in the model. The 

risk of mCA increased with age, showing a positive association with 1.02 fold annual increase (OR = 

1.017; 95% CI = 1.013 - 1.020; P = 1.80x10-19, logistic regression test). The frequency of mCA ranged 

between 0.85% at 40-45 years to 1.29% at 66-70 years (Figure 3-7). The regression was repeated for 

each category of mCA and the association with age was significant for aUPD (OR = 1.018; CI = 1.014-

1.023; P = 3.14x10-14), CNG (OR = 1.036; CI = 1.021-1.053; P = 1.09x10-6) and CNL (OR = 1.01; CI = 1.05-

1.015; P =3.66x10-4). 

 

 

Figure 3-7: The relationship between mCA and age. 

(A) Total mCA frequency across different age intervals. The risk of mCA was estimated to increase by 1.02 fold 
per year (P = 1.80x10-19). (B) Box plot showing increased age in subjects with ≥1 mCA (median = 60 years; 
n=5,040) compared to those with no mCA (median = 58 years; n=481,901; P = 1.80x10-19). 
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3.4.4 Myeloid malignancies-associated with mCA 

Inspection of the mCAs shown on Figure 3-6. indicated several changes associated with both myeloid 

and lymphoid disorders. To examine the association with haematological malignancies in detail, I 

classified the autosomal chromosome alterations by type (aUPD, CNL, CNG), chromosome arm (p or 

q), and position (telomeric or interstitial). A total of 416 specific mCAs were tested after selecting mCA 

types with at least one observation in samples with myeloid or lymphoid disease. 

As expected, distinct mCA were associated with myeloid and lymphoid disorders, with 9p aUPD most 

strongly associated with myeloid disorders (OR = 2858, PFDR = 6.28x10-191), and chr13q interstitial CNL 

most strongly associated with lymphoid disorders (OR = 23.16; PFDR = 1.24x10-63). For the downstream 

analysis, I selected all telomeric associated mCA with P ≤ 0.05 plus interstitial mCA of known 

cytogenetic relevance. This resulted in 17 abnormalities involving 15 chromosomal arms to define 

myeloid mCA: mCA for 16 telomeric abnormalities plus chr20q interstitial CNL (Table 3-8). A total of 

25 abnormalities were associated with lymphoid disorders: 23 telomeric abnormalities and interstitial 

CNL targeting chr13q and chr11q (Table 3-9). Since the focus of my study is on myeloid clonality, I did 

not correlate the findings in lymphoid disorders with known cytogenetic aberrations.  

Strikingly, the frequency of the myeloid associated mCA increased more sharply with age (OR = 1.1; 

95% CI = 1.08 - 1.11; P = 1.57x10-38, logistic regression test) compared to all mCA. It ranged between 

0.04% at age 40 to 45 and 0.29% at age 66 to 70 (Figure 3-8). The frequency of the lymphoid associated 

mCA also increased with age (OR = 1.043; 95% CI = 1.033 - 1.053; P = 1.75 x 10-16, logistic regression 

test). 
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Table 3-8: Summary of mCA events significantly associated with myeloid disorders 

Event mCA type Cancer free 
(n=355,561), 
No. positive† 

Myeloid malignancies (n=1,614)* 

No. positive OR PFDR 

chr9p aUPD 7 86 2859 6.30 x10-191 

chr9p CNG 1 15 3335 7.93 x10-33 

chr14q aUPD 23 12 116 2.67 x10-18 

chr9q CNG 1 8 1771 6.93 x10-17 

chr1p aUPD 31 10 72 1.25 x10-13 

chr20iq CNL 36 10 63 3.31 x10-13 

chr4q aUPD 13 8 136 1.04 x10-12 

chr1q CNG 1 4 833 4.26 x10-8 

chr8p CNG 5 4 177 8.45 x10-7 

chr9p CNL 1 3 662 5.82 x10-6 

chr8q CNG 4 3 166 4.03 x10-5 

chr7q aUPD 6 3 110 1.01 x10-4 

chr7q CNL 0 2 - 2.31 x10-4 

chr17p aUPD 4 2 110 2.85 x10-3 

chr19q aUPD 12 2 37 0.01 

chr11q aUPD 24 2 18 0.04 

chr22q aUPD 27 2 16 0.05 

†From a total of 355,561 cancer free sample  

*From a total of 1,614 samples with a myeloid malignancy. 299/1913 myeloid cases were excluded from this 
analysis because they had both myeloid and lymphoid disorders 

iq stands for interstitial events within the q arm 
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Table 3-9: Summary of mCA events significantly associated with lymphoid disorders 

 

Event 

mCA type  Cancer free 
(n=355,561) †  

No. positive 

 Lymphoid malignancies (n=12,546) * 

No. positive OR PFDR 

chr13iq CNL 96 78 23 1.24x10-63 

chr12p CNG 7 34 138 3.00x10-41 

chr12q CNG 7 32 129 1.33x10-38 

chr13q aUPD 25 25 28 7.63x10-22 

chr18q CNG 1 9 255 1.80x10-11 

chr19q CNG 0 8 - 5.02x10-11 

chr3q CNG 1 8 226 4.11x10-10 

chr19p CNG 0 7 - 1.30x10-09 

chr17p CNL 1 7 198 9.54x10-09 

chr18p CNG 1 6 170 2.00x10-07 

chr8p CNL 2 6 85 7.47x10-07 

chr11iq CNL 53 14 8 8.45x10-07 

chr11q CNL 0 4 - 1.43x10-05 

chr3p CNG 0 4 - 1.43x10-05 

chr13q CNL 1 4 113 9.10x10-05 

chr1p aUPD 31 8 7 4.71x10-04 

chr8q CNG 4 4 28 8.84x10-04 

chr14q CNL 1 3 85 1.50x10-03 

chr6q CNL 1 3 85 1.50x10-03 

chr11q aUPD 24 6 7 4.04x10-03 

chr9q aUPD 15 5 9 4.04x10-03 

chr4q aUPD 13 4 9 0.02 

chr20q aUPD 8 3 11 0.04 

chr17q CNG 2 2 28 0.05 

chr7p CNL 2 2 28 0.05 

†From a total of 355,561 cancer free samples  

*From a total of 12,546 lymphoid samples 

iq stands for interstitial events within the q arm 
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Figure 3-8: The relationship between myeloid mCA and age. 

(A) Myeloid mCA frequency across different age intervals showing an annual 1.1-fold increase (P=1.57x10-38). (B) 
box plot showing increased age in subjects with ≥1 myeloid mCA (median = 63 years; n=506) compared to those 
with no mCA (median = 58 years; n=481,901; P=1.57x10-38) 

 

3.4.5 Clonality defined by somatic mutations in the UK Biobank 

Although the WeCall pipeline (see Chapter 2) was not specifically designed to identify somatic 

mutations it did call variants with an allelic bias (lower number of reads supporting variant than 

expected for a germline variant). In my initial analysis I focused on identifying putative somatic 

mutations in 6 genes of known significance in myeloid malignancies (TET2, DNMT3A, ASXL1, JAK2, 

SRSF2 and PPM1D) that are known to account for 95% of cases of CH in previous studies [9]. I focused 

on variants that had a high likelihood of being pathogenic driver mutations: with an alternate allele 

frequency of ≤1% in public databases of common variation (1000 genomes, ESP6500 and gnomAD) 

and were either loss of function mutations in TET2, DNMT3A, ASXL1 or PPM1D or known somatic 

driver mutations in DNMT3A (R882), JAK2 (V617F) or SRSF2 (P95).  

As summarised in Table 3-10 and detailed in Supplementary Table 3-2, I identified 721 candidate driver 

mutations in 678 subjects (1.4% of the 49,956 samples in the first release of WES data), with DNMT3A 

being the most commonly affected gene. Only 37 cases had more than one variant which had a higher 
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frequency of myeloid disorders (11.8%) compared to participants with a single variant (5.8%). Of the 

678 participants with CH defined by somatic mutations, 18 (JAK2, n=11; DNMT3A, n=4; ASXL1, PPM1D, 

TET2, n=1 of each) also had CH defined by mCA.  

As expected, the prevalence of these putative somatic mutations was shown to be greatest in cases 

with myeloid disorders (22.5% versus 1.2% for cancer-free controls, PFDR = 5.83x10-38, OR = 23.7) 

compared to other groups (2.1% for lymphoid disorders versus cancer-free controls; PFDR = 0.02; OR = 

1.7) using Fisher’s exact tests. Looking at individual genes, the only exception was JAK2 V617F which 

was most commonly seen in myeloid disorders. There was a marginal increase in the prevalence of 

myeloid mutations in participants who had non-haematological cancers versus cancer-free controls 

(1.4% vs 1.2%; PFDR = 0.04; OR = 1.2).  

 

 

Table 3-10: Summary of putative somatic mutations by WES. 

 

Mutations Participants 

N VAF  
median (range) Total Myeloid                                                                                                                                                                                                                                                                                                                                   

n= 182 
Lymphoid  
n=1,023 

Other 
Cancer             

n=12,237 

Cancer 
Free 

n=36,514 

DNMT3A LOF 223 0.17 
(0.07-0.50) 222 1 5 64 152 

DNMT3A R882 86 0.17 
(0.11-0.40) 86 1 1 25 59 

TET2 LOF 223 0.18 
(0.06-0.68) 208 9 10 55 134 

ASXL1 LOF 101 0.21 
(0.08-0.49) 100 4 3 24 69 

JAK2 V617F 40 0.27 
(0.12-0.90) 40 25 0 4 11 

SRSF2 P95 20 0.24 
(0.11-0.47) 20 5 0 2 13 

PPM1D LOF 28 0.21                                                                    
(0.10-0.51) 28 0 2 8 18 

TOTAL 721 
0.19 

(0.08-0.90) 
 

678 41 21 174 442 

 

To demonstrate that these selected variants are indeed likely to be somatic, I plotted the variant 

density against VAF estimated by a Gaussian mixture model which showed that the mean VAF in each 
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gene was less than the expected value of near 0.5 for heterozygous germline variants (Figure 3-9). In 

addition, the restricted criteria used to select the putative somatic variants identified C>T transitions 

as the most common type of single nucleotide substitution (n=245; 66%), as expected [261]. 

 

 
Figure 3-9: Density plot of estimated VAFs for variants in the genes of interest. 

Variant density plotted against VAF estimated by a Gaussian mixture model which shows that the mean VAF in 
each gene was less than that expected for germline variants (near 0.5 for heterozygous variants). 
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3.4.6 The association of clonality defined by somatic mutations with age 

The frequency of CH defined by somatic variants also increased with age and ranged between 0.4% at 

age <45 years to 2.8% at age >65 years. The overall age-related increase was similar to that seen for 

myeloid mCA (OR = 1.1; 95% CI = 1.08 - 1.11, P = 5.89x10-47; logistic regression test) and was significant 

for all 6 genes (Figure 3-10). Also, clonality defined by each single gene was significantly associated 

with age as shown in Table 3-11. SRSF2 had the strongest age dependency with an annual increased 

risk of 1.2 fold per year: SRSF2 mutations were absent in participants <50 years old, but their 

prevalence was comparable to PPM1D and JAK2 at age >60 years (Figure 3-10). These results are 

comparable to other studies, as somatic mutation in splicing genes such as SRSF2 and SF3B1 are only 

detected in individuals aged over 70 [41,262]. 

 

 

Figure 3-10: The relationship between putative somatic mutations and age. 

(A) Frequency of individual mutations showing an age-related increase for all genes individually and combined. 
The risk of acquiring a mutation in at least one of these genes was estimated to increase by 1.1 fold per year 
(P=5.89x10-47).  (B) Box plot showing increased age in subjects with ≥1 mutation (median = 63 years; n=678) 
compared to those with no mutations (median=58 years; n=49,278; P=5.89x10-47). 
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Table 3-11: Results of logistic regression between myeloid CH and age, corrected for sex. 

Gene OR CI 2.5% CI 97.5% PFDR No. 
samples 

SRSF2 1.21 1.11 1.34 3.66x10-4 20 

ASXL1 1.13 1.09 1.17 2.33x10-11 101 

TET2 1.11 1.09 1.14 2.62x10-19 223 

JAK2 1.09 1.04 1.14 9.60x10-4 40 

DNMT3A 1.08 1.06 1.10 5.06x10-18 309  

PPM1D 1.06 1.01 1.12 0.03 28 

ALL somatic driver mutations 1.10 1.08 1.11 5.89x10-47 678  

CNG 1.04 1.02 1.05 1.09x10-6 350 

aUPD 1.02 1.01 1.02 3.14x10-14 2899 

CNL 1.01 1.01 1.02 3.66x10-4 2141 

All mCA 1.02 1.01 1.02 1.80x10-19 5040 

Myeloid mCA 1.09 1.08 1.11 1.57x10-38 506 

 

3.4.7 The association of myeloid CH with common genetic variation 

In total, I identified 1,166 individuals with myeloid CH. Of these, 678 had somatic driver mutations, 

and 506 had myeloid mCA of which 18 subjects had both somatic driver mutations and myeloid mCA. 

A previous study has associated germline variation at the TERT locus (rs34002450) with CH in the 

Icelandic population [9]. To examine the influence of genetic variation on myeloid CH in the UK 

Biobank cohort, I performed a GWAS to assess the influence of common variants with MAF >0.1 in the 

1,166 cases with at least one CH event defined by (i) mCA associated with myeloid malignancies (as 

defined in Table 3-8) and/or (ii) somatic mutations in the 6 genes of interest against 30,892 controls 

with WES data that were free of any mCA, had no putative somatic mutations in the six genes of 

interest and did not have any haematological malignancies during the study period. A total of 286,909 

variants passed quality control (QC). The observed P values follow the expected distribution with 

lambda = 1.021 (Figure 3-11) indicating an absence of any systematic bias between cases and controls 

such as residual population stratification. Three SNPs with genome-wide significance were identified 

in the TERT gene 
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Table 3-12). Two of these were associated with an increased risk of developing CH (rs2853677 intron 

2, OR = 1.32, P = 5.6x10-11; rs7726159 intron 3, OR = 1.33, P = 4.2x10-11) while the third and most 

significant single SNP was protective (rs2736100 intron 2, OR = 0.74, P = 3.1x10-12) (Figure 3-12). Two 

of these SNPs (rs7726159, A allele, OR = 1.19, P = 0.003 and rs2853677, G allele, OR = 1.18, P = 0.004) 

were identified as independent association signals using stepwise logistic regression with an additive 

model and treating all three SNPs as covariates. LD analysis for the two primary signals (rs7726159 

and rs2853677; Table 3-13) revealed (i) rs7726159 is in LD with rs7705526 (r2=0.79); (ii) rs2853677 is 

not in LD with rs7705526, (r2=0.19), (iii) rs2736100 is in modest LD with rs7705526 (r2=0.51) (Figure 

3-13). The association of these SNPs with myeloid malignancies was cross referenced with published 

GWAS results of self-reported PV, using the UK Biobank 150K V1 SNP array (http://big.stats.ox.ac.uk/), 

and with meta-analysis of MPN using three independent cohorts (the UK Biobank, 23andMe and 

FinnGen [144]. Only TERT SNPs in intron 2 were significantly associated with self-reported PV in the 

UK Biobank, as shown in Table 3-13 and Figure 3-13. 

A second signal was seen just below the level of genome wide significance (Figure 3-12) and included 

rs3780381, rs17425819 and rs10974944. These SNPs are within JAK2 and are in LD with the 46/1 

haplotype, previously shown to be strongly associated with acquisition of JAK2 V617F [263]. This 

association signal disappeared when cases with JAK2 V617F (n=40) and mCA including JAK2 (n=115) 

were removed from the analysis. 

 

http://big.stats.ox.ac.uk/
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Table 3-12: Results of the allelic association between myeloid CH and common SNPs with MAF > 0.1. 

CHR SNP BP A1 
Gene$ Risk allele frequency (A1)  

A2 CHISQ P* OR 
Cases Controls 

5 rs2736100 1286516 A TERT 0.4249 0.4987 C 48.6 3.14 x 10-12 0.743 

5 rs7726159 1282319 A TERT 0.3946 0.329 C 43.52 4.19 x 10-11 1.329 

5 rs2853677 1287194 G TERT 0.4862 0.4179 A 42.94 5.64 x 10-11 1.318 

9 rs3780381 5114523 C JAK2 0.3202 0.27 A 28.23 1.08 x 10-7 1.274 

9 rs17425819 5114773 T JAK2 0.3184 0.269 C 27.36 1.69 x 10-7 1.269 

9 rs62554837 5266200 T JAK2 0.1911 0.1517 C 26.67 2.41 x 10-7 1.321 

9 rs10974944 5070831 G JAK2 0.301 0.2536 C 26.21 3.06 x 10-7 1.267 

9 rs10989523 104230977 C TMEM246 (PGAP4) 0.1053 0.1392 T 21.65 3.27 x 10-6 0.727 

15 rs319889 35950483 C DPH6 (DAXX) 0.4431 0.492 T 21.45 3.63 x 10-6 0.821 

1 rs80291200 57903916 G DAP1 0.2415 0.2025 T 20.8 5.09 x 10-6 1.254 

9 rs10974900 4987958 T JAK2 0.3666 0.413 C 19.87 8.27 x 10-6 0.823 

* Italic bold indicates genome wide significance. Chromosome (chr); odds Ratio (OR); allelic test chi-square (CHISQ), Allele 1 (A1), Allele 2 (A2), base pair (BP) 

$ nearest gene
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Table 3-13: LD analysis of TERT SNPs that predispose to CH and/or MPN 

SNP ID 

CH 
association 

(p value) 

MPN 
association 
(p value)1 

MPN 
association 
(P value)2 

LD results (r2/D') 

rs34002450 rs7726159 rs7705526 rs2736100 rs2853677 

rs34002450 N/A 1         

rs7726159 4.19x10-11 2.5x10-4 
N/A 

0.705/0.961 1       

rs7705526 N/A 6.8x10-6 5 x 10-54 0.534/0.821 0.788/0.914 1     

rs2736100 3.14x10-12 1x10-5 
N/A 

0.311/0.695 0.516/0.977 0.51/1 1   

rs2853677 5.64x10-11 2.9x10-6 
3 x 10-44 

0.092/0.319 0.181/0.487 0.185/0.507 0.435/0.784 1 

N/A = not available 

CH association is derived from 1,166 cases vs 30,892 controls in the UK Biobank. 
1MPN association: is derived from the published GWAS results of self-reported PV, using the UK Biobank 150K 
V1 SNP array (http://big.stats.ox.ac.uk/). 
2MPN association reported by meta-analysis of MPN in three cohorts the UK Biobank, 23andMe and FinnGen 
rs7705526 was not included in the final version of the UK Biobank v2 SNP array data used for my investigation. 
rs34002450 was significantly associated with CH defined by putative somatic variants [9]. 

 

 

Figure 3-11: Quantile-quantile plot showing observed versus expected P values. 

No evidence was seen for systematic bias between cases and controls, or population stratification 
(lambda=1.021). 

 

http://big.stats.ox.ac.uk/
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Figure 3-12: GWAS results for myeloid CH 

Top panel: Manhattan plot summarising the significance of SNPs across the genome. The red line indicates 
genome wide significance (P < 5x10−8) and the blue line indicates values that were of suggestive significance (P 
< 10−5). Clusters related to TERT and JAK2 are indicated. Lower panel: Locus zoom plot focusing on SNPs in the 
region of TERT at chromosome band 5p15. The lead rs2736100 variant is in purple. 
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Figure 3-13: A visual plot of the coefficient of linkage disequilibrium (D) for 5 SNPs in TERT 

rs2853677, rs7726159, and rs2736100 were assessed in the UK Biobank cohort. The other two SNPs, rs34002450 
and rs7705526, were assessed in other studies [9,253]. 
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3.4.8 The relationship between myeloid CH and smoking 

To assess the relationship between smoking and CH, I used PHESANT to perform regression analyses 

of past, current and combined smoking status in 32,058 participants consisting of the 1166 cases (488 

past smokers and 134 current smokers) with myeloid CH and 30,892 controls (10,952 past smokers 

and 2,699 current smokers). The odds of having ever smoked (combined status) were significantly 

higher in participants with myeloid CH (53% smokers, n = 622) than those without myeloid CH (44% 

smokers, n = 13,651; PFDR = 3.38×10−6, Table 3-14). This effect was associated with current smoking 

status (OR = 1.10, PFDR = 6.14×10−6) rather than past smoking status (OR = 1.02, PFDR = 0.08). 

Strikingly, breakdown of myeloid CH by specific mutation type revealed that variants in ASXL1 were 

strongly associated with current smoking status in ordinal logistic regression analysis (OR = 1.07; P = 

1.92x10-5), and the only abnormality associated with past smoking (OR = 1.04; P = 2.6x10-3). Indeed, 

69% of participants with ASXL1 mutations were past or current smokers. Myeloid CH cases without 

ASXL1 mutations (n=1066) remained significantly associated with current smoking but the effect was 

weaker (P = 8.8x10-4). Both TET2 and DNMT3A variants showed a significant, but relatively modest, 

association with current smoking status but there was no discernible association between smoking 

and variants in JAK2, SRSF2, PPM1D or for acquired myeloid mCA, Table 3-14 and Supplementary Table 

3-3). 

 



 

98 

 

Table 3-14: The relationship between smoking and clonal haematopoiesis. 

Marker1 
No. 

myeloid 

No. of smokers2 Previous smoking3 

  
 

Current smoking3 

  

Combined smoking4 

  Past Current OR PFDR OR PFDR ORa; ORb PFDR 

mCA 506 218 48 1.01 0.39 1.03 0.18 1.19; 1.42 0.091 

ASXL1 LOF 100 49 20 1.04 2.60x10-3 1.07 1.92x10-5 1.94; 4.68 1.02x10-5 

DNMT3A LOF or R882 308 117 35 1.00 1.00 1.05 0.03 1.03; 1.64 0.07 

JAK2 V617F or chr9p mCA 155 64 7 0.99 0.68 0.95 0.18 0.95; 0.54 0.27 

PPM1D LOF 28 15 3 1.02 0.16 1.01 0.68 2.07; 2.05 0.23 

SRSF2 P95 20 10 1 1.01 0.55 1.00 1.00 0.88; 1.82 0.83 

TET2 LOF 208 75 27 0.99 0.5 1.06 6.40x10-3 0.88; 1.82 0.03 

All myeloid CH 1,166 488 134 1.02 0.09 1.10 6.14x10-6 1.17; 1.76 3.38x10-6 

Myeloid CH without ASXL1 1066 439 114 1.01 0.36 1.07 8.8x10-4 1.12; 1.59 5.81x10-4 

Loss of function (LOF); clonal haematopoiesis (CH); mosaic chromosomal alterations (mCA) 

Number of smokers encoded in the combined smoking status in the UK Biobank “Data-Field 20116” 

Results of ordinal logistic regression, total tests = 16, corrected for age, sex and FDR. 

Results of multinomial logistic regression, total tests = 8, corrected for age, sex and FDR. Odds ratios are estimated for past smoking level (a), and current smoking (b) 
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3.4.9 The relationship with all cause of mortality 

To identify any effect on mortality that was unrelated to blood cancer a subset of 911 myeloid CH 

cases were selected that were free of haematological malignancy at any time during the study period. 

These cases were compared with the 30,892 controls that were free of any haematological malignancy 

at any time point, and had no evidence of CH. Within the study period, 42 cases (4.6%) died compared 

to 674 controls (2.2%), a significant difference (P < 2x10-6, log-rank test). Using multivariable Cox 

regression, myeloid CH was shown to be associated with an increased risk of all-cause mortality (HR = 

1.44; P = 0.021; mean follow up = 8.1 years) after adjusting for age and sex. This analysis reveals that 

myeloid CH plays a pathogenetic role beyond predisposition to haematological malignancies (Figure 

3-14). 

I examined the relationship between myeloid CH and the 2 main components of cardiovascular 

diseases, MI and stroke. For this analysis any participant who had an event (MI or stroke, as 

appropriate) prior to sampling was removed from the analysis. For MI, a difference was found in the 

number of events in cases (20/873; 2.1%) compared to controls (419/30,271; 1.4%; P = 0.03, long rank 

sum test), but this was not significant when a multivariate Cox hazard model was applied considering 

age, sex and smoking status as co-variates (HR = 1.16, P = 0.53) (Figure 3-15). Similar results were 

observed for stroke: 12/890 (1.35%) events were observed in cases with myeloid CH compared to 

235/30,472 (0.78%) events in controls (P = 0.06, long rank sum test). On multivariate analysis 

considering age, sex and smoking status as co-variates, stroke was not significantly associated with 

myeloid CH (HR = 1.18; P = 0.58) (Figure 3-16). 
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Figure 3-14: Kaplan-Meier plot with overall survival probability and number at risk of all-cause 

mortality 
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Figure 3-15: Kaplan-Meier plot with overall survival probability and number at risk for myocardial 

infarction. 
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Figure 3-16: Kaplan-Meier plot with overall survival probability and number at risk for stroke 
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3.4.10 The relationship with blood features and clinical phenotype 

To investigate the relationship with blood features and clinical phenotypes the myeloid CH cases 

without haematological malignancies (n=911) and controls without haematological malignancies or 

CH were used (n=30,892). All comparisons were corrected for sex, age, smoking status and multiple 

testing using FDR. Comparisons were performed for all cases as a single group, and for cases stratified 

by subtype (mCA, n = 301; DNMT3A, n = 300; TET2, n = 189; SRSF2, n = 15; ASXL1, n = 93; PPM1D, n = 

26; JAK2 V617F/chr9p mCA; n = 29).  

Clinical phenotype: 

This analysis confirmed an association between TET2 mutations and chronic obstructive pulmonary 

disease (COPD) with acute lower respiratory infection “ICD10= J44.0” (logistic regression, OR = 1.16, P 

= 7.90x10-3). In addition, a significant association was found with TET2 mutations and agranulocytosis 

“ICD-10 = D70” (P = 7.9x10-3, OR = 1.1) and ulcers of the lower limb “L97” (P = 1.99x10-3, OR = 1.28). A 

significant association between myeloid mCA and urinary tract related disorders was seen, specifically 

“urethral stricture unspecified N35.9” (P = 8x10-3, OR = 1.17), and “bladder-neck obstruction N32.0” P 

= 9x10-3, OR = 1.9). No other significant associations were found; results are summarised in Table 3-15, 

and detailed in Supplementary Table 3-4. 

 

Table 3-15: Clinical phenotypes significantly associated with myeloid CH 

Marker Phenotype 
No. 
positive 
cases  

No. 
positive 
controls  

OR 
CI  

2.5% 

CI  

97.5% 
PFDR  

mCA 

n=301 

(N35.9) Urethral stricture, 
unspecified 

10 
(3.3%) 189 (0.6%) 1.169 1.085 1.244 0.008 

N32.0 Bladder-neck obstruction 7 (2.3%) 98 (0.03%) 1.192 1.093 1.280 0.009 

TET2 
n=189 

(L97) Ulcer of lower limb, not 
elsewhere classified 4 (2.1%) 19 (0.06%) 1.276 1.137 1.394 0.004 

D70 Agranulocytosis 4 (2.1%) 51 (0.16%) 1.231 1.101 1.337 0.009 

(J44.0) Chronic obstructive 
pulmonary disease with acute 
lower respiratory infection 

7 (3.7%) 137 
(0.44%) 1.158 1.074 1.230 0.009 
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Blood counts and blood biochemistry: 

Blood measurements (Data Category 100081, n = 29), and blood biochemistry markers (Data Category 

17518, n=30) were also tested for association with myeloid CH using linear regression (Supplementary 

Table 3-5, and Supplementary Table 3-6). Nucleated red blood cell percentage and count were 

excluded because they have skewed binomial distribution. Regression models included sex, age, and 

smoking status as covariates and FDR to adjust P-values for multiple tests. As above, participants with 

any evidence of haematological malignancies were excluded. Overall, myeloid CH showed a significant 

association with elevated RBW, all the platelet related indices, low basophils and haematocrit 

percentage (Table 3-16, Table 3-17). The breakdown of myeloid CH to the driver gene level shows 

specific associations: 

Myeloid-related mCA: the selected set of mCA showed a clear disruption in erythropoiesis, as this 

group is associated with decreases in red blood cellcounts, haemoglobin concentration and 

haematocrit percentage. On the other hand it was associated with high mean corpuscular 

haemoglobin (MCH) and RDW. The biochemistry measures of this group indicated a decrease in high 

density lipoprotein (HDL) cholesterol and apolipoprotein A, and also an association with low 

creatinine, phosphate and albumin levels. 

 JAK2 V617F/chr9p: JAK2 V617F and its related chr9p mCA were associated with an increase in platelet 

counts, percentage and distribution width. Given the established role of JAK2 V617F in the 

pathogenesis of ET, this is likely to be a direct causal effect. TET2 was significantly associated with 

decrease in eosinophils counts and percentage. 

ASXL1 LOF: ASXL1 cases presented an anaemia-like profile as they were associated with low mean 

corpuscular volume (MCV), MCH and mean sphered cell volume (MSCV). ASXL1 was also significantly 

associated with low Insulin Growth Factor 1 (IGF-1). 

SRSF2 P95: SRSF2 cases were associated with a proliferative character of elevated reticulocytes 

indices, but also a decrease in HDL cholesterol. 
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Table 3-16: Significant blood features associated with myeloid markers 

Group Blood feature Units No. 
Mean value 

OR (CI 97.5%) PFDR 
Cases Control 

mCA 

Basophil count 109/L 30272 0.03 0.04 0.92 (0.90-0.94) 9.1x10-13 

Platelet distribution width % 30282 16.69 16.46 1.04 (1.03-1.05) 4.3x10-9 

Haematocrit percentage % 30282 41.05 41.61 0.98 (0.97-0.99) 1.0x10-4 

Basophil percentage % 30272 0.53 0.61 0.97 (0.96-0.99) 2.9x10-4 

Mean corpuscular haemoglobin g/dL 30282 34.43 34.27 1.02 (1.01-1.03) 4.2x10-3 

Red blood cell count 109/L 30282 4.47 4.54 0.98 (0.97-0.99) 4.4x10-3 

Red blood cell distribution width % 30282 13.81 13.5 1.02 (1.01-1.03) 4.9x10-3 

Haemoglobin concentration g/dL 30282 14.13 14.26 0.98 (0.98-0.99) 6.8x10-3 

Mean sphered cell volume fL 28916 83.99 84.5 0.98 (0.97-0.99) 3.0x10-2 

ASXL1 

Platelet distribution width % 30082 16.72 16.46 1.03 (1.01-1.04) 5.9x10-4 

Red blood cell distribution width % 30082 13.93 13.5 1.03 (1.01-1.04) 7.0x10-4 

Mean corpuscular volume fL 30082 90.68 91.8 0.98 (0.97-0.99) 9.1x10-4 

Mean corpuscular haemoglobin Pg 30082 31.03 31.47 0.98 (0.97-0.99) 2.8x10-3 

Mean sphered cell volume fL 28712 83.36 84.5 0.98 (0.97-0.99) 1.0x10-2 

DNMT3A Platelet count 109/L 30289 251.27 242.76 1.02 (1.01-1.03) 1.8x10-2 

JAK2 

Platelet crit % 30019 0.30 0.22 1.04 (1.03-1.06) 7.5x10-12 

Platelet count 109/L 30019 341.46 242.76 1.04 (1.03-1.06) 1.3x10-11 

Red blood cell distribution width % 30019 15.31 13.5 1.04 (1.03-1.05) 3.6x10-9 

Platelet distribution width % 30019 17.14 16.46 1.03 (1.02-1.05) 1.0x10-6 

High light scatter reticulocyte 1012/L 28656 0.02 0.02 1.02 (1.01-1.03) 4.0x10-2 

PPM1D Monocyte count 109/L 30007 0.59 0.48 1.02 (1.01-1.03) 3.5x10-2 

SRSF2 
Reticulocyte percentage % 28643 1.88 1.32 1.02 (1.01-1.03) 1.3x10-2 

High light scatter reticulocyte % 28643 0.62 0.4 1.02 (1.01-1.03) 2.4x10-2 

TET2 

Eosinophil count 109/L 30169 0.15 0.17 0.98 (0.97-0.99) 1.1x10-3 

Eosinophil percentage % 30169 2.18 2.53 0.98 (0.97-0.99) 4.4x10-3 

Monocyte percentage % 30169 7.83 7.06 1.02 (1.01-1.03) 3.0x10-2 

All 
Myeloid 
CH 

Platelet distribution width % 30883 16.57 16.46 1.03 (1.02-1.04) 6.0x10-6 

Basophil count 109/L 30873 0.04 0.04 0.95 (0.93-0.97) 5.9x10-4 

Red blood cell distribution width % 30883 13.71 13.5 1.02 (1.01-1.04) 9.7x10-4 

Platelet crit % 30883 0.23 0.22 1.02 (1.01-1.03) 1.1x10-3 

Haematocrit percentage % 30883 41.46 41.61 0.98 (0.97-0.99) 1.7x10-3 

Platelet count 109/L 30883 248.32 242.76 1.02 (1.01-1.03) 3.3x10-3 

Haemoglobin concentration g/dL 30883 14.22 14.26 0.99 (0.98-0.99) 1.7x10-2 

Basophil percentage % 30883 0.58 0.61 0.98 (0.97-0.99) 4.4x10-2 



106 

 

Table 3-17: Significant biochemical measures associated with myeloid markers 

Group Biochemistry 
measure 

Units N Mean in OR (CI 97.5%) PFDR  

Cases Control 

mCA Creatinine µmol/L 29280 71.452 72.686 0.98 (0.97-0.99)  0.001 

Apolipoprotein A g/L 27335 1.517 1.555 0.98 (0.97-0.99) 0.004 

Phosphate mmol/L 27515 1.169 1.200 0.98 (0.97-0.99) 0.005 

HDL cholesterol mmol/L 27546 1.420 1.474 0.98 (0.97-0.99) 0.010 

Albumin g/L 27576 44.848 45.518 0.98 (0.97-0.99) 0.018 

ASXL1 IGF-1 nmol/L 28977 19.043 21.697 0.98 (0.97-0.99) 0.033 

SRSF2 HDL cholesterol mmol/L 27294 1.237 1.474 0.98 (0.97-0.99) 0.027 

All 
myeloid 
CH 

Cholesterol mmol/L 29874 5.619 5.697 0.98 (0.97-0.99) 0.033 

HDL cholesterol mmol/L 28085 1.450 1.474 0.98 (0.97-0.99) 0.040 

Creatinine µmol/L 29851 72.706 72.686 0.99 (0.98-0.99) 0.041 

 

3.4.11 Validation of the association between ASXL1 and smoking 

In January 2021, the UK Biobank released a new set of variant calls from whole exome sequencing of 

200,631 participants [264] including 49,946 individuals that were previously released and 150,685 

additional individuals. These variants  were identified using a  new pipeline, DeepVariant version 

0.10.0 [265], that employs a deep neural network for variant calling. Analysis of the 200,631 exomes 

will be reported in Chapter 4. To validate the findings in this chapter, I restricted the analysis to the 

new samples (n=150,685) and point mutations of JAK2 V617F, DNMT3A R882, SRSF2 P95, and LOF 

mutations in TET2, DNMT3A, ASXL1 and PPM1D. LOF mutations were considered if inferred as somatic 

by failing the hypothesis that the alternative allele is normally distributed with a mean of 0.45 and a 

false positive rate of P = 0.05 using a binomial test. I identified 1,416 candidate driver mutations in 

1,345 subjects, with DNMT3A being the most commonly affected gene. Only 67 cases had more than 

one variant. Of the 1345 participants with CH defined by somatic mutations, 56 (JAK2, n = 37; 

DNMT3A, n = 5; ASXL1, n = 6, PPM1D, n = 3 TET2, n = 10; SRSF2, n = 4) also had CH defined by myeloid 

mCA. 

In keeping with the previous analysis, I used PHESANT to perform regression analyses of past, current 

and combined smoking status. ASXL1 mutations were most strongly associated with smoking status 
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(ORpast
 = 1.34, ORcurrent

 = 2.97, P = 3.43x106, multinomial regression), current smoking status (OR = 1.04, 

PFDR
 = 2.01x10-7), and past smoking status (OR = 1.01, PFDR = 0.05), Indeed, 61% of participants with 

ASXL1 mutations were past or current smokers. Using meta-analysis to combine evidence from the 

first (n = 49,946) and second (n = 150,685) releases of whole exome data, current smoking (OR = 1.05, 

PFDR = 8 x 10-13) past smoking (OR = 1.01, PFDR = 2 x 10-7) were both associated with ASXL1 mutations 

and without evidence for heterogeneity (Cochran’s Q test, Ppast
 = 0.05 and Pcurrent

 = 0.1). DNMT3A 

mutations were associated with the combined smoking status (ORpast = 1.13, ORcurrent = 1.81 P = 

7.17x10-5), that was due to current smoking (PFDR = 6.12x10-5). TET2 mutations had a significant 

association with past smoking status (OR = 1.01, PFDR = 0.03) Also, there was no discernible association 

between smoking and variants in JAK2, SRSF2 or PPM1D (Table 3-18). In a meta-analysis, DNMT3A 

were significantly associated with both current and past smoking with no heterogeneity (Ppast = 0.36, 

and Pcurrent
 = 0.59), but results for TET2 mutations showed heterogenous results (Ppast=0.04, and Pcurrent

 

= 0.09) as illustrated in Figure 3-17. 
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Table 3-18: The relationship between smoking and clonal haematopoiesis in the validation cohort 

Marker1 Count No of smokers2 Previous smoking3 

“Data-field 1249” 

Current smoking3 

“Data-field 1239” 

Combined smoking4 

“Data-field 20116” 

  Past Current OR PFDR OR PFDR ORa ORb PFDR 

ASXL1 LOF 227 96 43 1.01 0.05 1.04 2.09x10-7 1.34 2.97 5.71x10-7 

TET2 LOF 378 169 28 1.01 0.03 0.99 0.69 1.24 1.01 0.13 

DNMT3A 
R882/LOF 

581 219 79 1.01 0.07 1.04 6.12x10-5 1.13 1.81 7.17x10-5 

JAK2 V617F 101 33 4 0.99 0.10 0.98 0.14 0.67 0.37 0.03 

SRSF2 P95 61 28 7 1.00 0.69 1.01 0.53 1.15 1.48 0.65 

PPM1D LOF 54 26 7 1.01 0.09 1.01 0.30 1.62 2.12 0.14 

1LOF Loss of function 
2Number of smokers encoded in the combined smoking status in the UK Biobank “Data-field 20116”. 
3Results of ordinal logistic regression, total tests = 12, corrected for age, sex, and FDR. 
4Results of multinomial logistic regression, total tests = 6, corrected for age, sex, and FDR. Odds ratios are estimated for past smoking level (a), and current smoking (b). 
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Figure 3-17: Meta analysis of smoking association results. 

Forest plots of A, B, C, D, and E represent ordinal regression of past smoking on data in Data-field 1249.  Forest plots of F, G, H, I, and J represent ordinal regression of current 
smoking on data in Data-field 1239.
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3.5 Discussion 

The prevalence and significance of CH has been reported in several cohorts, but my study has several 

distinctive features. The UK Biobank is a very large population-based cohort that includes an extensive 

repertoire of baseline phenotypic data as well as over 9 years of prospective clinical follow up 

information. Genome wide SNP data is available for the great majority of participants (n = 486,941), 

and WES data for 49,956 initially and 200,641 at the time of writing, which are all derived from a single 

baseline peripheral blood sample taken at study entry. Thus, I was able to assess CH associated with 

both mCA and somatic mutations, albeit with a modest limit of detection compared to some published 

studies. I focused on myeloid mCA, and genes known to be mutated in myeloid disorders with the 

specific aim of understanding the causes and consequences of myeloid CH. 

To identify relevant mCAs, I processed the allelic frequencies and copy number calls from the UK 

Biobank SNP array data (n = 486,941) to identify regions of AI. Next, I developed an evaluation strategy 

to filter out artefacts and likely germline events. This method identified mCAs (n = 8,203) of relatively 

large size (≥ 2Mb) and relatively large clone size (> 10%) in 1% (n = 5,040) of the UK Biobank cohort. 

The incidence of these events increased with age from 0.85% at age 40 - 45 years to 1.29% at age 65 

- 70 years. The age-related increase in risk of acquiring a mCA was greatest for those associated with 

myeloid disorders, with an estimated annual risk of 1.1 fold and an increase in frequency from 0.03 at 

age 40-45 to 0.23 at age 66-70, as shown in Figure 3-18. The relationship between age and CH reflects 

the fitness that depends on the mutation rate and/or the ability to form large clones [83]. 
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Figure 3-18: The age-related increase in myeloid mCA (red line/red squares) is steeper than for all 

mCA (black line/black circles) 

 

3.5.1 Advantages and limitations of calling mCA 

Specific features of our study compared to other studies include (i) the consistent genotyping of all 

samples on two very similar genotyping arrays (UK BiLEVE and UK Axiom arrays) whereas previous 

studies pooled SNP arrays from different projects and (ii) all the markers and samples were processed 

through the same quality control pipeline. On the other hand, the UK Biobank had a limited age for 

recruitment between 40 to 70 years that is much narrower in comparison to other studies. In general, 

though, our results are comparable to the previous publications. In a combined study of 31,717 cancer 

cases and 26,136 cancer-free controls, mCA of size >2Mb were identified in autosomes of 517 

individuals (0.89%), ranging from 0.23% under 50 years to 1.91% between age 75 and 79 [7]. In another 
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major study, mCA > 2Mb in 50,000 subjects from different GWAS was identified in less than 0.5% of 

subjects at age less than 50, rising up to 3% at age 80 years [6]. My study identified mCA in 5040 of 

486,941 individuals that ranged from 0.85% at age 40 - 45 years to 1.29% at age 65 - 70 years. 

Participants diagnosed with myeloid malignancies (n = 1,913) had the largest prevalence of mCA at 

11% (n = 210) with at least one event. In addition, the majority of the myeloid malignancy cases (74%) 

acquired one or more region of aUPD. These results confirm the role of mCA in the pathogenesis of 

myeloid malignancies. I note that the prevalence of mCA in myeloid malignancies from the published 

literature varies according to the diagnosed disease, age, and the applied technique. In a study of 64 

AML cases (median age = 55.5) 20% had aUPD [17]. This frequency is higher in CMML: in a detailed 

study of SNP array data (median age = 77) 55/70 (79%) cases tested had at least one AI event [266]. I 

explain the lower frequency of mCA in the myeloid malignancy group in my study (11%) by; (i) my 

definition of myeloid malignancy included all the diagnosed cases between 1995 and 2018, with no 

differentiation between prevalence or incidence; (ii) limitations of the data and methodology used 

(BAF segmentation) which I discuss below; (iii) the age of the UK Biobank cohort ranges between 40 

and 69 years with median of 58 years 

Regarding my method, the segmentation of allelic frequencies of SNPs to identify regions of AI is a 

proven method that has been used by similar studies [6,7]. But the method has some drawbacks:  

(i) It cannot identify small clones at a frequency less than 10% (however in the clinical context, large 

clones are likely to be more significant with regard clinical phenotype). 

(ii) Large clones at a frequency above 90% cannot be identified since they cannot be distinguished 

from germline events in the absence of a germline control.  

(iii) Due to a high level of artefacts and germline events, I had to customise a scoring and filtration 

strategy to eliminate noise. Although this approach was validated by three approaches, it is unclear 

how many artefacts remained and how many true events were removed. 

To explore these limitations in more detail I manually inspected the mBAF plots for all cases that tested 

positive for chr9p mCA with and without score filter, as they have high likelihood of JAK2 V617F by 

WES. Five cases were identified that had been missed by my method. All had an mBAF close to 0.9, a 

VAF ranging between 0.77-0.91 but a low empirical score (Table 3-19, Figure 3-19). Low scores were 

due to low heterozygosity rate i.e. the method excluded AI regions with very few heterozygous SNPs.  

Importantly, all 5 cases were in the myeloid malignancy group suggesting that it would be useful to 
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manually inspect the mBAF plots for all chromosomes from participants in this group to identify other 

regions of high level aUPD that might have been missed. 
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Figure 3-19: The relationship between mBAF of chr9p mCA and VAF of JAK2 V617F 

Five samples (brown), harboured JAK2 V617F but failed the filtration criteria 
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Table 3-19: Five samples with chr9p aUPD and JAK2 V617F that failed to satisfy the calling criteria 

ID Chr Start End mBAF1 LRR2 Het 
rate* Sum size Total size 

Coverage 
(sum size / 
total size)* 

No of 
informative 

SNPs* 

No of SNPs 
(Total) Density Score 

3228229 9 1102943 22872228 0.88 0.02 0 21769286 21769286 1 33 7365 2955.78 0 

3905325 9 1878831 33166348 0.89 0.05 0 31287518 31287518 1 34 9930 3150.81 0 

2008888 9 342424 19335160 0.89 0.01 0 18992737 18992737 1 17 6795 2795.1 0 

4324853 9 666119 14950193 0.89 0.01 0.01 14284075 14284075 1 32 5309 2690.54 0.32 

4003272 9 334337 35415769 0.88 -0.05 0.01 35081433 35081433 1 133 11370 3085.44 1.33 

* Columns used to calculate score 
1 mirrored B Allele Frequency 

2 median Log R ratio 
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Statistical comparison between myeloid cases and cancer-free controls identified 17 regions of AI at 

15 chromosomal positions. These regions can be classified into (i) highly recurrent regions of known 

aUPD at chr9p, chr14q, chr1p, and chr4q;(ii) less recurrent aUPD regions present in two to three 

samples with a myeloid malignancy involving 7q, 17p, 11q, and 22q. The highly recurrent events in 

myeloid malignancies are known to be associated with JAK2 V617F [28], the imprinted MEG3-DLK1 

locus [267], mutations in MPL [29] and mutations in TET2 [251], respectively. Driver genes associated 

with the less recurrent events have also been identified; EZH2 [32], TP53 [268], CBL [33] and PRR14L 

[269]. I did not identify any instance of aUPD 13q, an event associated with mutations FLT3. This is 

consistent with the late role of FLT3 in leukaemogenesis and the strong association with AML [41]. On 

the other hand, the most significant CNL targeted interstitial region on chr20q, a well-known 

abnormality in myeloid malignancies that is not fully understood but may also target imprinted genes 

[270]. Interestingly, CNG at chr1q and chr9q emerged as significantly associated with myeloid 

malignancies but the driver gene or genes is not known for these targets. Myeloid mCA were identified 

in 506 individuals with no past or present evidence of cancer. Importantly, 205 (40%) of them 

developed a haematological malignancy during the study period. The utility of the UK Biobank genetic 

data for predicting individuals who will develop a haematological malignancy will be explored in 

Chapter 5. 

3.5.2 Limitations of calling driver somatic mutations: 

Next, I focused on identifying myeloid clonality defined by somatic mutations by processing the variant 

calls in the subset of the UK Biobank with available WES data. I used strict criteria to call likely somatic 

mutations compared to published studies (Table 3-20), focusing on likely or known pathogenic 

variants in 6 genes associated with myeloid malignancies that are known to account for the great 

majority of instances of CH in the literature [9]. These genes play distinct roles and how they lead to 

clonal dominance is incompletely understood. However, the three most common genes, DNMT3A, 

TET2 and ASXL1, all influence gene regulation at multiple loci by epigenetic mechanisms. DNMT3A is 

a member of DNA methyltransferase family that includes DNMT1 and DNMT3B. DNMT3A is part of a 

complex that catalyses DNA methylation, which is in turn linked to downregulation of target gene 

expression [271]. Although most DNMT3A mutations in myeloid malignancies are loss of function, 

DNMT3A R882 missense variants are seen recurrently and are believed to exert a dominant negative 

effect, disturbing the transcriptional expression and cell-cycle regulation of haematopoietic cells 

[272,273]. Although DNMT3A R882 is a highly fit mutation, its high mutation rate may be explained by 
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its CpG context [83]. TET2 catalyses the oxidation of 5-methyl cytosine to 5-hydroxymethl cytosine, 

one of the steps in the removal of methylation marks from DNA. In vivo, TET2 LOF increases self-

renewal of stem cells, and promotes myeloproliferation with prominent monocytosis, and 

splenomegaly [274]. ASXL1 mutations result in loss of polycomb repressive complex 2 (PRC2)-

mediated histone H3 lysine 27 (H3K27) tri-methylation, which promote leukaemogenesis [57].  
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Table 3-20: Our study of CH in comparison to previous published studies 

Study Cohort Variant caller Average 
coverage 
(reads) 

Age range Frequency of CH Definition of driver somatic 
mutations 

[202] 
(This study) 

WES 
n=49,956 

WeCall 55 40-70 0.4% and 2.76% in 
age 40-45 and 66-

79 

Disruptive in DNMT3A, ASXL1, TET2, 
PPM1D 

Missense JAK2 V617F, DNMT3A R882, 
SRSF2 P95 

[8] WES  
n=12380 

GATK 95 20-93 1% and 10% in age 
< 50, and > 65 

years 

Disruptive in DNMT3A, ASXL1, TET2, 
PPM1D 

Missense JAK2V617F, and DNMT3A 
exon 7 to 11 

Other variants seen in COSMIC ≥7 
times 

[10] WES 
n=17,182 

Mutect 84 20-108 9.5% and 18.4% in 
age 70-79 and 90-

108 years 

156 genes cross referenced with 
COSMIC, excluding variants at the first 

or last 10% of the reading frame 

[9] WGS 
n=11,262 

GATK 35.6 Median 55 
Maximum 110 

10% in age > 85 18 genes list from [100]; any variant 
seen in COSMIC ≥5 times 

[169] WGS 
n=97,691 

Mutect2 40 Median 55 
Maximum 98 

4.3% Variant in 74 genes found in COSMIC 
Any missense variant in TET2 and CBL 

if pass binomial distribution test  
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Other CH-associated genes are more diverse in function. Missense mutations at SRSF2 P95 are highly 

fit and alter the recognition of specific exonic splicing enhancer motifs that alter splicing of 

haematopoietic regulators [275]. PPM1D is a regulator of TP53, and its LOF mutations target the sixth 

exon, resulting in a C-terminal truncated protein that suppresses the DNA damage response 

checkpoint protein CHEK2 [66]. JAK2 encode a non-receptor tyrosine kinase involved in cytokine and 

interferon signalling. The V617F mutation alter the pseudokinase domain and activates the kinase 

domain resulting in constitutive signalling [28]. 

Despite using strict criteria for selecting likely mutations, I identified a significant number of instances 

of clonality (n = 721) in 1.4% of the assessed samples. Thus far, my findings are characterised by (i) a 

restricted list of genes and (ii) a limited depth of sequencing in the UK Biobank (mean = 55x in the 6 

genes resulting in the smallest VAF of 721 mutations being 0.06). Nevertheless, my findings are 

comparable to previous studies of similar sequencing depth, as shown in (Table 3-21). 

 

Table 3-21: Mutations in the UK Biobank compared to a previous study of similar sequencing depth  

 This study A previous study [8] 

Cohort 49,956 12,380 

DNMT3A R882 86 (0.17%) 23 (0.19%) 

DNMT3A LOF 223 (0.45%) 48 (0.39%) 

TET2 LOF 223 (0.45%) 30 (0.24) 

ASXL1 LOF 101 (0.2) 35 (0.28%) 

PPM1D LOF 28 (0.06%) 15 (0.12%) 

SRSF2 P95 20 (0.04%) 5 (0.04%) 

JAK2 V617F 40 (0.08%) 24 (0.19%) 

 

The capture kit used in the Genovese et al study, covered the complete exons of five of the six genes 

of interest (ASXL1, SRSF2, JAK2, PPM1D and DNMT3A) but excluded exons 1 and 2 and part of exon 3 

for TET2. Comprehensive gene level coverage was not provided by Regeneron, but assessment of 
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aligned reads from 10 randomly chosen samples showed that 100% of the targeted regions in our 

genes of interest were covered at ≥20x with a mean coverage of 55x.  

Initially, the UK Biobank used a pipeline called the Regeneron Seal Point Balinese (SPB) for variant 

calling [208] which has a duplicate read marking issue whereby all duplicates within each flow cell lane 

were correctly marked, but duplicates across lanes (maximum of one duplicate per unique read pair) 

were not marked which could lead to false variant calls (the UK Biobank communication to all users, 

August 2019). Of the 721 candidate driver mutations identified in my study, only 3 variants (one each 

in JAK2, ASXL1 and TET2) had just 2 alternative reads (the minimum alternative allele depth used by 

WeCall) along with 7, 21 and 15 reference reads, respectively. I thus believe that the impact of the 

calling error on my study was minimal. 

It is important to note the similarity in the relationship with age for CH defined by myeloid-related 

mCA and somatic mutations. Both showed a 1.1 fold annual increase in the incidence which clearly 

indicates they are similar age-related abnormalities associated with myeloid clonality. There was a 

small degree overlap between the two groups as shown in Table 3-22. In particular, (i) co-occurrence 

of mCA for JAK2/chr9p and other myeloid mCA (n=19), (ii) TET2 is relatively often seen with other 

somatic mutations, most commonly with SRSF2 (n=5, 25%). This combination has previously been 

noted as characteristic of CMML [276]. Indeed, monocyte percentage in all 5 cases were high, with 4 

exceeding the normal range (normal range: 2% - 8%). However, there is a clear difference in terms of 

pathogenicity among the driver events, as 40% of the individuals with mCA had or developed 

haematological malignancy during the study period compared to less than 10% of participants with 

somatic mutations. The age relationship was seen for all mutations and, as has been noted by other 

investigators [41,42,262], SRSF2 P95 mutations (n=20) were seen in participants who were relatively 

old, i.e. ≥60 years. This points to variation in the fitness and pathogenicity among the driver genes, 

and the possibility that the environment, e.g. in the bone marrow, provides different selective 

landscapes with ageing. Indeed, it is well known that the function of the bone marrow environment is 

influenced by the ageing process, and that this impacts on normal haemopoiesis [277]. 
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Table 3-22: The co-occurrence of myeloid mCA and somatic mutations 

 DNMT3A 

N=308 

TET2 

N=208 

ASXL1 

N=100 

JAK2/chr9p 

N=155 

SRSF2 

N=20 

PPM1D 

N=28 

Myeloid mCA 
(excluding chr9p) 

n=395 
3 0 1 19 0 1 

 DNMT3A 11 0 1 0 0 
  TET2 4 3 5 0 
   ASXL1 0 2 1 
    JAK2/chr9p 0 1 
     SRSF2 0 
      PPM1D 

 

3.5.3 Genetic risk factors of clonal haematopoiesis 

By combining myeloid related mCA and putative somatic mutations, I identified 1,166 cases with 

myeloid related clonality cases for further analysis, however, only 21% of these developed any 

haematological malignancies during the study. The remaining 911 individuals are part of a focus to 

understand the role of myeloid CH in the pathogenesis of different diseases, as described below. 

Published GWAS have identified intronic variants in TERT be associated with CH defined by putative 

somatic mutations (rs34002450; intron 2; [9]; MPN and JAK2 V617F associated CH (rs2736100; intron 

3; [143,278] and (rs7705526; intron 3; [279]. Not all these SNPs were included on the array platform 

used by the UK Biobank, but I identified two distinct signals within TERT that achieved genome wide 

significance: rs7726159 and rs2853677. LD analysis for these signals revealed (i) rs7726159 is in LD 

with rs7705526 (r2=0.79) but does not reach genome-wide significance for association with self-

reported PV in the UK Biobank (P=2.5x10-4; http://big.stats.ox.ac.uk); (ii) rs2853677 is not in LD with 

rs7705526, (r2=0.19), but is associated with PV (P=2.9x10-6; http://big.stats.ox.ac.uk); (iii) rs2736100 

is in modest LD with rs7705526 (r2=0.51) and is associated with PV (P=1x10-5; 

http://big.stats.ox.ac.uk). Thus, it appears that variation in intron 2 (rs7726159) is associated with 

myeloid CH but does not predict development of MPN but variation in intron 3 (rs2736100, rs2853677 

and rs7705526) does predict development of MPN. SNP rs2853677 is not in LD with any of the other 

variants and is thus a unique independent signal for both CH and MPN.  
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3.5.4 The association of ASXL1 LOF mutations with smoking 

Smokers have a known predisposition to develop CH defined by putative somatic mutations as well as 

AML [9,172], but no association has been reported between smoking status and acquired mCA [6]. I 

confirmed an association with myeloid CH and smoking and showed for the first time that this effect 

is predominantly, but not exclusively, associated with ASXL1 mutations. ASXL1 mutations have 

recently been associated with smoking in a large cohort of post-therapy cancer patients [85], providing 

support for my findings. CH has previously been associated with chemotherapy and radiotherapy 

[280,281] which, along with the association with ageing, suggest that a link between stress 

haematopoiesis and the development of clonality. Smoking is known to increase mutation rates in 

bronchial epithelial cells [282] and there is some evidence that smoking may increase the mutation 

rate in T-cells [283]. Consequently, it is conceivable that smoking preferentially induces ASXL1 

mutations, however it is perhaps more likely that smoking promotes chronic inflammation which in 

turn creates a suitable environment for the positive selection of ASXL1 mutant clones, i.e. smoking 

alters the fitness landscape. In the context, a Mendelian randomisation study suggested smoking as a 

causal risk factor for CH [284].  This hypothesis is supported by finding a significant association of 

ASXL1 mutations with gastritis, as 1.4% of reported cases of “gastritis of unspecified reason” had an 

ASXL1 mutation, which is 5 times higher than controls, but this association is lost when smoking status 

is considered as a covariate. In addition, ASXL1 is associated with an anaemia-like blood profile that is 

not expected in smokers. Indeed, the association remains after correction for smoking status and may 

relate to the fact that ASXL1 mutations are commonly seen in MDS which in turn is characterised by 

anaemia. A previous study noted an increase in the incidence of C>A transversions in smokers [281] 

but we found the C>A transversion rate in ASXL1 was similar in smokers (18%) compared to non-

smokers (17%). Overall, C>T transitions (n=245; 66%) represented the most common single nucleotide 

substitution, as expected [261]. 

On the functional level, loss of TET2 upregulates inflammatory mediators, including IL-6, 

independently from its established epigenetic role in relation to DNA methylation [285]. This may be 

relevant to the finding of a significant association between CH defined by TET2 mutations and COPD 

[94]. We confirmed this relationship with the specific COPD class “(J44.0) Chronic obstructive 

pulmonary disease with acute lower respiratory infection”. Also, I found further suggestive 

relationships between TET2 and chronic inflammation by its association with “agranulocytosis”, and 

the decrease in “basophils counts and percentage”. Also, I found a significant association between 

TET2 mutations and “ulcers of lower limb”. Although the frequency of this ulcer of feet is low, it would 
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be interesting to investigate the relationship between TET2 and diabetes, and investigate the 

independent effect of TET2 distributive mutations on wound healing in the absence of a diagnosis of 

diabetes [52]. 

3.5.5 Potential bias in the UK Biobank 

A selection bias was evident toward healthy volunteers in the UK Biobank. It had a fast and efficient 

recruitment process, that achieved a relatively small response rate of  5.5% [286]. A large proportion 

(30.5%) of participants were found to have a third degree or closer relative among other cohort 

subjects [178], also the recruitment process was affected by the geographic distribution of Biobank 

assessment centres. Participants were less likely to be obese, to smoke, and to drink alcohol [287]. 

Furthermore, the first release of WES data incorporated 50K participants that were enriched in asthma 

diagnosis (ICD10= J45 or J46; 16% in comparison to 13% in all 500k participants, as well as individuals 

who had undergone assessments by magnetic resonance imaging [208]. It was estimated that ~ 25% 

of participants diagnosed with asthma had self-reported COPD defined by Global Initiative for Chronic 

Obstructive Lung Disease (GOLD), and it is possible that the selection bias may affect the results of 

studying the relationship between CH, smoking, and COPD. The newly released (2022) analysis of the 

UK Biobank sequence data from all participants has highlighted differences between the new exomes 

in comparison to the initial release of 50K exomes data. For instance, genetically predicted IL-6 showed 

different relationships with driver mutations, with the relationship being significant in the initial 50K 

exomes [288], but not in 450K exomes of all other participants [289].  

3.5.6 Limitation in assessing the relationship between CH and specific CVD 

Survival analysis confirmed the association between all-cause mortality in absence of haematological 

malignancies diagnosis during the study time. However, I did not find an association between myeloid 

CH and MI or stroke. The reason that the association between CH and cardiovascular disease is very 

prominent in some studies [10,89], but not others [9,94] is presumably explained by differences in 

cohort structure, follow up time, and definitions of CH. The UK Biobank had an upper recruitment age 

of 69 years and the follow up was only 9.1 years. My analysis is estimated to have 86% power (Figure 

3-20) to detect an association between CH and MI based on a HR of 1.9, as previously reported [89] 

and an overall event rate of 1.4% (439/31144). My definition of CH included both chromosomal and 

mutational events, with a stringent definition of pathogenicity for mutations, and all abnormalities 
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being present at a clonal fraction >10%. Clearly, as more the UK Biobank cases are sequenced and the 

median follow-up is extended, more associations are likely to emerge. 

 

 

Figure 3-20: Power to detect an association between CH and MI 

The plot shows the relationship between estimated power and hazard ratio (HR), under fixed type 1 error rate 
= 0.05; number of participants in the experimental group (cases with CH without evidence of haematological 
malignancy or MI prior to sampling;  n=873); number of participants in control group (participants without CH 
and without evidence of haematological malignancy or MI prior to sampling; n = 30,271); probability of failure 
in experimental group (20 cases in the experimental group had a MI; P = 0.023); probability of failure in control 
group (419 participants in the Control group had a MI; P = 0.014). Analysis was performed using the R statistics 
package "powerSurvEpi". Interpolation line is added at 80% power, corresponding to HR = 1.83. My analysis is 
estimated to have 86% power to detect an association between CH and MI based on an HR of 1.9. 

 

In summary, I investigated CH in the UK Biobank cohort and concluded that the risk of acquiring a 

myeloid associated lesion defined by mCA or driver mutation was estimated to increase by 1.1 fold 

per year. I found both genetic and environmental factors play an important role in the development 

of CH. Smoking history is strongly associated with ASXL1 mutated CH and genetic variation at TERT 

may predispose to CH independently of predisposition to MPN. TERT encodes telomerase reverse 

transcriptase and is essential for telomere maintenance, but it also appears to function as a 

transcriptional co-activator [290] and impacts on the tumour microenvironment via diverse pathways, 

including inflammation. Chronic inflammation provides a link between genetic and environmental 

predisposition to CH. Myeloid CH was significantly associated with all-cause mortality, but 
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haematological malignancies cannot explain the frequency of deaths consistent with the model that 

CH also impacts the pathogenesis of non-malignant diseases, mainly chronic diseases. 
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Chapter 4 The relationship between clonal haematopoiesis 

and chronic kidney disease 

4.1 Summary 

In the previous Chapter, I characterised myeloid-related CH and confirmed its contribution to age-

related inflammation defined by smoking, serum RDW, and COPD. In this Chapter, I sought to 

determine the relationship between CH and chronic kidney disease (CKD). CH, defined as mCA and/or 

driver mutations was identified in 5,449 (2.9%) eligible the UK Biobank participants (n = 190,487 

median age = 58 years). CH was negatively associated with glomerular filtration rate estimated from 

cystatin-C (eGFR.cys; β = −0.75, P = 2.37 × 10–4), but not with eGFR estimated from creatinine, and was 

specifically associated with CKD defined by eGFR.cys < 60 (OR = 1.02, P = 8.44 × 10–8). In participants 

without prevalent myeloid neoplasms, eGFR.cys was associated with myeloid mCA (n = 148, β = −3.36, 

P = 0.01) and somatic driver mutations (n = 3241, β = −1.08, P = 6.25 × 10–5) associated with myeloid 

neoplasia (myeloid CH), specifically mutations in CBL, TET2, JAK2, PPM1D and GNB1 but not DNMT3A 

or ASXL1. In participants with no history of cardiovascular disease or myeloid neoplasms, myeloid CH 

increased the risk of adverse outcomes in CKD (HR = 1.6, P = 0.002) compared to those without 

myeloid CH. Mendelian Randomisation (MR) analysis provided suggestive evidence for a causal 

relationship between CH and CKD (P = 0.03). I conclude that CH, and specifically myeloid CH, is 

associated with CKD defined by eGFR.cys. Myeloid CH promotes adverse outcomes in CKD, highlighting 

the importance of the interaction between intrinsic and extrinsic factors to define the health risk 

associated with CH. 

4.2 Introduction 

In Chapter 3, I provided lines of evidence to support the relationship between myeloid CH and chronic 

inflammation including smoking status [291], RDW [292], agranulocytosis, and COPD [94]. CH is 

associated with an elevated relative risk of developing haematological malignancies compared to age 

and sex matched controls without CH [293] and also an elevated risk of developing non-malignant, 

immune and inflammatory disorders [294,295] such as atherosclerotic cardiovascular disease 

(CVD)[10,89], COPD [94] and premature menopause [296]. Chronic kidney disease (CKD) is persistent 

kidney failure defined by low estimated glomerular filtration rate (eGFR) defined as < 60 
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mL/min/1.73m2 and/or elevated urine albumin to creatinine ratio (uACR) defined as > 3mg/mmol 

[297]. It is a common disease but only a small minority of CKD cases progress to end stage kidney 

disease (ESKD), defined as eGFR<15 and/or uACR>30, and require kidney replacement therapy. 

Inflammation is a component of the pathogenesis of CKD and a marker of adverse outcomes that 

include CVD and mortality [298]. The majority of CKD cases are at an early stage of the disease process 

[299], which remains incompletely defined due to variation in eGFR and albuminuria measurements 

[300-303]. 

 

Like CH, CKD is associated with an elevated risk of CVD and mortality [304]. Atherosclerotic risk factors 

for CVD, such as diabetes, smoking, hypertension and dyslipidaemia, are prevalent in individuals with 

CKD, but there is an excess risk of CVD associated with CKD that is over and above that captured by 

atherosclerotic risk factors alone. In addition to sharing some risk factors, CH, CKD and CVD are 

characterised by persistent low-grade inflammation [305-308], however a specific relationship 

between CH and CKD has not been defined. In this study, I sought to assess the relationship between 

CH and CKD in the UK Biobank. 

4.3 Methods 

4.3.1 Cohort structure 

I focused on participants with both genome-wide SNP array and WES data at the time of analysis 

(n=200,631; median age = 58y, median follow up = 11y). To investigate the relationship between CKD 

and either CH or myeloid neoplasia, the data were split randomly into equally sized discovery and 

validation cohorts. Results from the discovery and validation cohorts were combined using a fixed 

effects inverse variance weighted meta-analysis using STATA version 16 (StataCorp LLC, College 

Station, TX) and Cochran's Q test to measure heterogeneity. 

4.3.2 Prevalent and incident myeloid neoplasia 

Participants with myeloid malignancy were identified from the national cancer registry and hospital 

inpatient records using the ICD10 codes C920, C921, C923, C924, C925, C927, C929, C930, C931, C940, 

C944, C946, C962, D45, D460, D461, D462, D464, D467, D469, D470, D471 and D473. Myeloid 

malignancies were considered prevalent if diagnosed before or within one year of study (n=320) entry, 

or incident (n=419) if diagnosed a year or more after study entry.  The relationship between CH and 
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ESKD in the absence of prevalent myeloid neoplasia was tested using multivariable logistic regression 

in R where ESKD diagnosed after the study entry was used as the dependant and CH as a binary 

predictor and adjusted for the same CKD risk factors. 

4.3.3 Identification of CH 

In the previous Chapter, I described the identification of myeloid, lymphoid or other mCA in the UK 

Biobank from SNP array data [202]. I expanded the definition of mutated genes, defined as myeloid-

neoplasia related (‘myeloid’) according to previously published criteria [89], other genes were defined 

as ‘lymphoid’. The complete list of unique putative somatic driver variants (n=1,611) is shown in 

Supplementary Table 4-1. CH was defined as participants with any mCA and/or any somatic driver 

mutation; myeloid CH was defined as specific mCA events and/or a somatic driver mutation(s) that 

are associated with myeloid disease [89]. Lymphoid CH was defined by lymphoid mCA and/or 

lymphoid mutations, without myeloid mutations or myeloid mCA.  To identify putative somatic driver 

mutations from WES data, individual gVCF files from the DeepVariant version 0.10.0 caller [265], were 

converted to VCF format and merged into one multi-sample VCF using SAMtools/Bcftools [309]. Multi-

allelic variants were split into separate variants  and the location of indels was normalised using their 

left most position [254]. The multisample VCF  was  annotated  using  Annovar  and  the  RefSeq  gene  

database [201].  Variants  were  defined  as  putative  somatic  driver  mutations  if  they  met  the  

following  criteria;  (i)  exonic  or  splice  donor/acceptor site; (ii) the alternative allele had a minimum 

of 3 reads for point mutation and 6 reads for indels; (iii) alternate allele frequency ≤1% in GnomAD 

V2.1 [310]; (iv) predicted to  be  pathogenic CADD phred  score  >20  meaning  that  the  variant  is  

among  the  1%  most  deleterious variants in the human genome [311]; (v) minor allele frequency 

(MAF) ≤ 0.01% in the UK Biobank; (vi) observed in COSMIC version 91 database at least 3 times in 

haematopoietic and lymphoid  tissues [312]; (vii) inferred as somatic by failing the hypothesis that the 

alternative allele is normally  distributed with a mean of 0.45 and a false positive rate of P=0.05 using 

a binomial test as described [8]. Several exceptions to these rules for defining putative somatic driver 

mutations were  made in order to capture all relevant variants in known driver genes: (i) MAF >0.01 

in the UK Biobank for DNMT3A R882 variants, JAK2 V617F and GNB1 K57E; (ii) TP53: all mutations 

seen at least once in COSMIC and validated in  the International Agency for Research on Cancer 

database [313] (iii) TET2: all missense mutations in the  catalytic  domains (amino acids 1104-1481 and 

1843- 2002); [314,315] (iv) any DNMT3A variant seen  at  least  once  in  COSMIC;  (v)  all  frameshift  

indels,  stopgain,  and  splice  site  mutations  in  a  list  of  known  myeloid  neoplasia  related  genes 

[89].  Exceptions to the binomial test were also made for established driver variants with high fitness, 
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e.g. U2AF1 Q157, FLT3 Y842C, JAK3 R657Q, IDH2 R140L, CBL Y371H, and KRAS G12V [83].  Variants 

that were absent from COSMIC were  only  considered if they had a heterozygous “0/1” or 

homozygous “1/1” genotype and high genotype quality. 

4.3.4 Kidney function 

The eGFR in units of mL/min/1.73 m2 was calculated in R using the Nephro package [316] and three 

different formulae as defined by the Chronic Kidney Disease Epidemiology Collaboration: creatinine 

(The UK Biobank field: 30700, eGFR.creat), cystatin-C (The UK Biobank field: 30720, eGFR.cys) or 

creatinine and cystatin-C (eGFR.creat.cys).[317] The creatinine based scores included ethnicity as 

recorded in the UK Biobank field: 21000. With respect to CKD, patients were considered as healthy 

(≥90), mild (≥60 and <90) moderate (≥15 <60) or end stage (<15) for each eGFR threshold.[317] In 

addition, uACR in mg/mmol was calculated as a further measure of kidney disease using albumin in 

urine (The UK Biobank field: 30500) and creatinine in urine (The UK Biobank field: 30510). Shrunken 

pore syndrome (SPS) is typically defined by an eGFR.cys/eGFR.creat ratio of ≤0.6 in the absence of 

factors that interfere with cystatin C or creatinine measurement, such as high muscle mass [318]. I 

used the recognised eGFR.cys/eGFR.creat ratio of ≤0.6 to define SPS. 

4.3.5 The relationship between CH and CKD 

To study the association between CH and CKD, I excluded 10,144 participants with (i) missing 

creatinine or cystatin-C data (n=9,913) or (ii) any form of ESKD (n=231) that was diagnosed before 

study entry according to relevant ICD10 codes (E85.3, N16.5, N18.0, N18.5,  Q60.1, T82.4, T86.1, Y60.2, 

Y61.2, Y62.2, Y84.1, Z49.0, Z49.1, Z49.2, Z94.0, Z99.2) or interventions and procedures (OPCS4: L74.1, 

L74.2, L74.3, L74.4,  L74.5, L74.6, L74.8, L74.9, M01.2, M01.3, M01.4, M01.5, M01.8, M01.9, M02.3, 

M08.4,  M17.2, M17.4, M17.8, M17.9, X40.1, X40.2, X40.3, X40.4, X40.5, X40.6, X40.7, X40.8, X40.9,  

X41.1, X41.2, X41.8, X41.9, X42.1, X42.8, X42.9, X43.1),[319] or if any of the three eGFR scores was 

<15. Participants with ESKD were excluded due to the possibility of dialysis and/or erythropoietin 

treatment that would influence their eGFR scores and blood counts, and because the relationship 

between ESKD and CVD is well characterised. The relationship between CH and CKD was tested using 

multivariable logistic regression in R where CKD was used as the dependant and CH as a binary 

predictor. CKD was coded into cases (1) and controls (0) using the eGFR thresholds of <60 or ≥60 

respectively and the analysis was repeated for each eGFR score (eGFR.creat, eGFR.cys, and 

eGFR.creat.cys).  Logistic regressions were adjusted for potential confounding variables: age, sex, 
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smoking status, systolic blood pressure, diastolic blood pressure, high density lipoprotein (HDL), low 

density lipoprotein (LDL), body mass index (BMI), and the first ten genetic principal components, as 

selected by using backward stepwise conditional (P<0.05) analysis. Effect sizes were reported as odds 

ratios (OR) with 95% confidence intervals (CI). The relationship between eGFR scores and CH were 

tested using multivariable linear regression in R where eGFR status was treated as the dependant and 

CH as a binary predictor and correcting for same confounding variables. The UK Biobank did not 

include follow up biochemical assessments for the great majority of participants and so incident ESKD 

was inferred from recorded hospital episodes as indicated above. 

4.3.6 Mendelian Randomisation 

MR was used to assess the possibility of a causal relationship between CH and CKD by using germline 

SNPs associated with the development of CH as instrumental variables. Following the STROBE 

guidelines [320], I investigated the use of two significance thresholds for selecting instrumental 

variables based on their association with CH defined by driver somatic mutations in a subset of the 

TOPMed cohort (n=65,405 total participants; n=3,831 CHIP cases) [169]. The first used a modest 

threshold (P < 0.001) to select 380 index SNPs after SNP clumping (r2 > 0.001, within 10 Mb) with 

MAF ≥ 0.01 for a liberal analysis which aimed to investigate the evidence for a true null relationship. 

In the second, conservative, analysis I used a stricter threshold (P < 1 × 10–5) to select a subset of 28 

index SNPs that were strongly associated with CH and would provide more robust evidence of 

causality. The effect sizes on CKD were obtained from a meta-analysis of 60 GWAS from the CKDgene 

consortium (n = 625,219, including 64,164 CKD cases [232]. I estimated that approximately ~2.4% of 

individuals from the TOPMed cohort are also included in the CKDgene consortium which could inflate 

false positive findings [321]. To mitigate against this, I performed a sensitivity analysis using the 

estimated effect sizes in a subset of patients from the CKDgene cohort with European ancestry 

(n = 480,698, including 41,395 cases). Detailed information for the SNPs used in both analyses is shown 

in Supplementary Table 4.2. MR was performed using the TwoSamplesMR package in R [242] to apply 

the Robust Adjusted Profile Score (MR-RAPS) methodology which enables the use of weak 

instrumental variables, is robust to pleiotropy and  considers measurement error in the exposure 

estimate [228]. Additional sensitivity analyses were performed using methods that test the different 

assumptions of MR, specifically the inverse-variance weighted (IVW) method which performs a meta-

analysis for the estimates of the instrumental variants [225], the MR-Egger method which uses the 

average pleiotropic effect as the intercept to allow the use of instrumental variables with pleiotropic 
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effects [227], and the weighted median method which allows for a subset of instrumental variables to 

be invalid [226]. 

4.3.7 Prediction of adverse outcomes 

A Cox proportional hazard model (survival package in R) [239] was used to determine if the risk of 

adverse outcome was associated with CH and/or CKD defined by each eGFR score or the uACR. 

Adverse outcomes were defined by a composite endpoint of either death (The UK Biobank data 

release April 2020), myocardial infarction (MI, field 40002, February 2018) or stroke (field 40006, 

February 2018). Participants who suffered MI or stroke before entering the UK Biobank were excluded. 

Follow-up times were calculated using the lubridate package [240] to determine the duration between 

study entry and the earliest of date of death (The UK Biobank field 40000), date of MI (The UK Biobank 

field 40002) or date of stroke (The UK Biobank field 40006). Patients without an adverse outcome 

were censored at the date of last follow-up for MI and stroke or the date they were lost to follow-up 

(The UK Biobank field 191). Univariate survival analyses were performed for all traditional risk factors 

(age, sex, smoking status, LDL, HDL, cholesterol, HbA1c, BMI, hs-CRP, systolic and diastolic blood 

pressure). Variables with P < 0.2 were entered into a multivariate survival analysis in a backward 

stepwise manner and retained if they reached nominal significance (P < 0.05). 

To assess the potential for a non-linear relationship between eGFR scores and adverse outcomes, I 

used a restricted cubic spline function [322] to transform and segment the eGFR scores. Separate 

curves were fitted to each segment to generate a smooth fitted curve. The method was used to 

transform each eGFR score using the rms package in R [323] and default values for the number of 

knots (n = 5) and degrees of freedom (n = 4). The regression included the covariates described above. 

The adjusted spline values were plotted with 95% CI. 

Receiver operating characteristic curves (ROC) and area under the curve (AUC) metrics [324] were 

used to evaluate the prediction accuracy of the multivariable survival models. AUCs were reported for 

three pairs of prediction models with and without CH: (i) traditional risk factors, (ii) traditional risk 

factors and eGFR.cys and (iii) traditional risk factors and uACR. Where relevant, P values for all tests 

were corrected for multiple testing using the false discovery rate (FDR). 
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4.4 Results 

4.4.1 Definition and breakdown on CH in the UK Biobank 

In the previous Chapter, I analysed SNP array data from the entire UK BIOBANK cohort and identified 

8,203 mCA larger than 2 Mb in 5,040 participants.[202] In the subset of participants with available 

WES data (n= 200,631), 3,085 mCA were identified in 2,016 participants, of which 197 (185 

participants) were associated with myeloid neoplasms and 278 (237 participants) were associated 

with lymphoid neoplasms. Analysis of the WES data identified 4,137 putative somatic driver mutations 

(1,611 unique variants) in 3,863 participants (Supplementary Table 4-3). In total, 5,718 (2.9%) 

participants had CH defined by one or more mCA and/or driver mutations and 194,913 participants 

were considered as CH-free controls. For further analysis, these data were split randomly into 

discovery and validation cohorts (Table 4-1). 
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Table 4-1: CH defined by both acquired mCA and/or driver somatic mutations 

 Participants Discovery cohort Validation cohort Total 
  Males Female Total Males Females Total 
  N % N % N % N % 
Total number 45,198 45% 55,118 55% 100,316 44,956 45% 55,359 55% 100,315 200,631 
All CH 1286 45% 1582 55% 2868 1335 47% 1515 53% 2850 5718 
Myeloid CHa 831 46% 960 54% 1791 885 49% 912 51% 1797 3588 
Lymphoid CHb 135 48% 146 52% 281 140 46% 167 54% 307 588 
All mCA 431 42% 585 58% 1016 439 44% 561 56% 1000 2016 
Myeloid mCA 48 53% 42 47% 90 54 57% 41 43% 95 185 
Lymphoid mCA 57 50% 56 50% 113 60 48% 64 52% 124 237 
Other mCA 326 40% 487 60% 813 325 42% 456 58% 781 1594 
All driver mutations 894 47% 1027 53% 1921 941 48% 1001 52% 1942 3863 
Myeloid genesc,d 805 46% 933 54% 1738 854 49% 890 51% 1744 3482 
DNMT3A 295 39% 470 61% 765 348 45% 419 55% 767 1532 
TET2 193 46% 225 54% 418 188 46% 217 54% 405 823 
ASXL1 103 64% 59 36% 162 92 64% 51 36% 143 305 
JAK2 37 58% 27 42% 64 46 57% 35 43% 81 145 
Other myeloid genes 220 54% 190 46% 410 225 52% 207 48% 432 842 
Lymphoid genes 89 49% 94 51% 183 87 44% 111 56% 198 381 
Control (CH-free) 43,912 45% 53,536 55% 97,448 43,621 45% 53,844 55% 97,465 194,913 

a) 79 participants had both myeloid mutations and myeloid mCA; b) Lymphoid CH was defined by lymphoid mCA and/or lymphoid mutations, without myeloid mutations or 
myeloid mCA. 30 participants had both lymphoid mutations and lymphoid mCA; c) 14 participants had both myeloid and lymphoid mutations and were classed as myeloid; 
d) 218 participants had more than one myeloid gene mutation.
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4.4.2 Assessment of the relationship between CH and CKD 

I compared eGFR.cys, eGFR.creat and eGFR.creat.cys in participants with or without CH after excluding 

10,144 ineligible participants with pre-existing ESKD or missing biochemistry measures. After 

excluding ineligible cases, the discovery cohort consisted of 2735 participants with CH and 92,457 CH-

free controls, and the validation cohort compromised of 2714 participants with CH and 92,581 CH-

free controls. As expected, the cystatin-C-derived eGFR score was lower than the scores that included 

creatine [319] and consequently fewer participants were determined to have moderate CKD, defined 

by an eGFR score between 15 and 60, according to eGFR.creat (n = 4194) and eGFR.creat.cys (n = 4433) 

compared with eGFR.cys (n = 8304). The median for all three eGFR scores was lower in participants 

with CH compared to those without CH (Figure 4-1) and the median uACR was higher (1.2 with CH 

versus 1.05 without CH; P < 0.001) indicating impairment of kidney function in association with CH. 

Participants with lower eGFR scores tended to be older, male, smokers, with low HDL, high LDL, high 

BMI, high systolic and diastolic blood pressure, and high albuminuria. (Table 4-2, Table 4-3, and Table 

4-4). 

 

Figure 4-1: CH is associated with lower eGFR scores 

Meta-analysis of discovery and validation cohorts (cases with CH, n=5,449; controls without CH, n=185,038). (A) 
eGFR.cys: CH, median = 84.4; CH-free, median = 88.6 (P <0.001; Mann-Whitney test), (B) eGFR.creat: CH median 
= 88.7; CH-free, median = 90.7 (P<0.001), (C) eGFR.creat.cys: CH, median=87.2; CH-free, median= 90.4 (P 
<0.001). 
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Table 4-2: Regression of CKD defined by eGFR.cys in the discovery cohort 

    Discovery cohort 

Factor   healthy >= 90 mild 60-90 Moderate 15-60 β CI2.5% CI97.5% P 

N N 46408 44638 4146 190487 
  

  

CH N (%) 1060 (2.3) 1476 (3.2) 199 (4.8) -4.01 -4.62 -3.40 <0.0001 

Age Median 53 61 65 -1.03 -1.04 -1.02 <0.0001 

Sex male (%) 19871 21131 (45.5) 1900 (45.8) -0.79 -0.99 -0.58 <0.0001 

Ethnicity* White (coded=1) 43059 (92.8) 42386 (92.3) 3883 (93.7)         

Mixed (coded=2) 423 (0.9) 211 (0.6) 17 (0.4) 6.56 5.33 7.79 <0.0001 

Asian (coded=3) 913 (2) 967 (2.1) 141 (3.4) -1.65 -2.35 -0.94 <0.0001 

Black (coded=4) 1009 (2.17) 461 (1) 41 (0.988) 7.18 6.37 7.99 <0.0001 

Chinese (coded=5) 227 (0.5) 67 (0.1) 3 (0.1) 11.13 9.31 12.95 <0.0001 

other (coded=6) 559 (1.2) 320 (0.7) 31 (0.7) 5.13 4.09 6.17 <0.0001 

Unknown 154 (0.3) 166 (0.4) 19 (0.5) 
   

  

No answer 14 (0.03) 20 (0.04) 2 (0.05)         

Smoking status $ Never (coded=0) 27308 (58.8) 23244 (50) 1848 (44.6)         

Previous (coded=1) 15246 (32.9) 16293 (35.1) 1640 (39.6) -2.32 -2.54 -2.11 <0.0001 

Current (coded=2) 3655 (7.9) 4856 (10.5) 623 (15) -4.63 -4.99 -4.28 <0.0001 
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No answer 149 (0.3) 205 (0.4) 26 (0.6)         

HbA1c Median 34.40 35.80 37.60 -0.43 -0.45 -0.42 <0.0001 

Cholesterol Median 5.62 5.73 5.31 -0.02 -0.11 0.07 0.60 

HDL Median 1.47 1.36 1.23 7.14 6.86 7.41 <0.0001 

LDL Median 3.47 3.60 3.30 -0.55 -0.67 -0.43 <0.0001 

uACR Median 1.01 1.05 1.61 -0.10 -0.11 -0.09 <0.0001 

Basophil count Median 0.02 0.03 0.03 -11.77 -13.78 -9.77 <0.0001 

BMI Median 25.70 27.60 29.70 -0.94 -0.96 -0.92 <0.0001 

systolic blood pressure Median 134.00 141.00 142.00 -0.15 -0.16 -0.15 <0.0001 

diastolic blood 
pressure 

Median 81.00 83.00 81.00 -0.13 -0.14 -0.12 <0.0001 

hs-CRP Median 2.79 1.61 0.99 -0.69 -0.71 -0.67 <0.0001 

Myocardial Infarction N (%) 722 (1.6%) 1835 (4.1%) 411 (9.9%) -10.80 -11.38 -10.22 <0.0001 

Stroke N (%) 706 (1.5%) 1271 (2.8%) 330 (8%) -9.10 -9.76 -8.44 <0.0001 

Death N (%) 1365 (2.9%) 2926 (6.6%) 773 (18.6) -11.07 -11.51 -10.62 <0.0001 

* Ethnicity was encoded in integers from 1 to 6; 'white was used as a reference 

$ Smoking was encoded in integers from 0 to 2; participants that never smoked were used as a reference
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Table 4-3: Regression of CKD defined by eGFR.cys in the validation cohort 

  
Validation cohort   

healthy >= 90 mild 60-90 Moderate 15-60 Β CI2.5% CI97.5% P 

N N 46575 44562 4158 
   

  

CH N (%) 1060 (2.3) 1446 (3.2) 208 (5) -4.38 -4.99 -3.77 <0.0001 

Age median 53 61 65 -1.02 -1.03 -1.01 <0.0001 

Sex male (%) 19612 (42.1) 21221 (47.6) 1885 (45.3) -0.97 -1.17 -0.76 <0.0001 

Ethnicity* White (coded=1) 43276 (92.9) 42324 (95) 3875 (93.2)       

Mixed (coded=2) 399 (0.9) 190 (0.4) 13 (0.3) 6.60 5.32 7.88 <0.0001 

Asian (coded=3) 904 (1.9) 940 (2.2) 161 (3.9) -1.76 -2.46 -1.06 <0.0001 

Black (coded=4) 989 (2.1) 470 (1.1) 46 (1.1) 6.24 5.43 7.05 <0.0001 

Chinese (coded=5) 243 (0.5) 63 (0.1) 4 (0.1) 10.78 9.00 12.55 <0.0001 

other (coded=6) 554 (1.2) 338 (0.8) 26 (0.6) 4.57 3.53 5.60 <0.0001 

unknown 150 (0.3) 169(0.4) 21 (0.5) 
   

  

No answer 15 (0.03) 18 (0.04) 4 (0.1)         

Smoking status $ Never (coded=0) 27608 (59.2) 23109 (51.9) 1878 (45.2)       

Previous (coded=1) 15165 (32.6) 16299 (36.6) 1588 (38.2) -2.47857 -2.69694 -2.26021 <0.0001 

Current (coded=2) 2613 (5.6) 4899 (11) 657 (15.8) -5.09153 -5.4436 -4.73945 <0.0001 
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No answer 145 (0.3) 205 (0.5) 27 (0.6)         

HbA1c median 34.40 35.80 37.60 -0.41 -0.43 -0.40 <0.0001 

Cholesterol median 5.62 5.73 5.32 -0.07 -0.16 0.02 0.139 

HDL median 1.47 1.36 1.23 7.25 6.98 7.52 <0.0001 

LDL median 3.47 3.60 3.23 -0.62 -0.73 -0.50 <0.0001 

uACR median 1.02 1.04 1.57 -0.17 -0.19 -0.16 <0.0001 

Basophil count median 0.02 0.02 0.03 -10.89 -12.96 -8.82 <0.0001 

BMI median 25.70 27.60 29.90 -0.99 -1.01 -0.97 <0.0001 

systolic blood pressure median 134.00 141.00 143.00 -0.15 -0.16 -0.15 <0.0001 

diastolic blood pressure median 81.00 83.00 82.00 -0.13 -0.14 -0.12 <0.0001 

hs-CRP median 2.85 1.61 0.99 -0.67 -0.69 -0.65 <0.0001 

Myocardial Infarction N (%) 654 (1.4%) 1767 (4%) 375 (9%) -10.92 -11.52 -10.33 <0.0001 

Stroke N (%) 652 (1.3%) 1328 (3%) 303 (7.3%) -9.53 -10.20 -8.87 <0.0001 

Death N (%) 1358 (2.9%) 2937 (6.6%) 797 (19.2%) -11.29 -11.74 -10.85 <0.0001 

* Ethnicity was encoded in integers from 1 to 6; 'white was used as a reference 

$ Smoking was encoded in integers from 0 to 2; never smokers were used as a reference
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Table 4-4: Meta-analysis of the regression of CKD defined by eGFR.cys 

  
Meta-analysis   

Cochran’s Q P Cochran's Β CI2.5% CI97.5% P 

CH N (%) 0.72 0.40 -4.19 -4.62 -3.76 3.04× 10–81 

Age Median 0.20 0.65 -1.03 -1.03 -1.02 <1.0× 10–300 

Sex male (%) 1.48 0.22 -0.88 -1.02 -0.73 1.00× 10–32 

Ethnicity* White (coded=1)             

Mixed (coded=2) 0.00 0.96 6.58 5.69 7.46 5.31× 10–48 

Asian (coded=3) 0.05 0.83 -1.70 -2.20 -1.21 1.96× 10–11 

Black (coded=4) 2.58 0.11 6.71 6.14 7.29 2.11× 10–116 

Chinese (coded=5) 0.08 0.78 10.95 9.68 12.22 4.60× 10–64 

other (coded=6) 0.56 0.46 4.846 4.11 5.58 2.92× 10–38 

Smoking status $ Never (coded=0)             

Previous (coded=1) 0.95 0.33 -2.40 -2.56 -2.25 2.26× 10–203 

Current (coded=2) 3.26 0.07 -4.86 -5.11 -4.61 <1.0× 10–300 

HbA1c Median 3.40 0.07 -0.42 -0.43 -0.41 <1.0× 10–300 

Cholesterol Median 0.45 0.50 -0.05 -0.11 0.02 0.16 

HDL Median 0.34 0.56 7.20 7.00 7.39 <1.0× 10–300 
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LDL Median 0.59 0.44 -0.58 -0.67 -0.50 4.48× 10–43 

uACR Median 66.50 0.00 -0.12 -0.13 -0.11 1.29× 10–164 

Basophil count Median 0.36 0.55 -11.35 -12.79 -9.90 9.77× 10–54 

BMI Median 8.09 4.00x10-3 -0.97 -0.98 -0.95 <1.0× 10–300 

systolic blood pressure Median 0.01 0.92 -0.15 -0.16 -0.15 <1.0× 10–300 

diastolic blood pressure Median 0.00 0.95 -0.13 -0.14 -0.12 1.25× 10–294 

hs-CRP Median   
    

  

Myocardial Infarction N (%) 0.08 0.77 -10.86 -11.28 -10.44 <1.0× 10–300 

Stroke N (%) 0.83 0.36 -9.32 -9.78 -8.85 <1.0× 10–300 

Death N (%) 0.49 0.48 -11.18 -11.50 -10.86 <1.0× 10–300 

* Ethnicity was encoded in integers from 1 to 6; 'white was used as a reference 

$ Smoking was encoded in integers from 0 to 2; never smokers were used as a reference 
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To determine the association between CH and CKD, I performed logistic and linear regression analyses 

where CKD was coded as either a binary (1 = moderate CKD eGFR > 15 and <60, 0 = eGFR ≥60) or as a 

continuous trait based on each eGFR score and adjusted for potential confounding variables (Table 

4-5). In the logistic models, CH was associated with an increased risk of moderate CKD estimated from 

cystatin-C scores (eGFR.cys, OR = 1.02 [95% CI: 1.01–1.02], P = 8.44 × 10−8). A weaker association was 

observed for eGFR.creat.cys (OR = 1.01 [95% CI: 1.00–1.01], P = 0.04) and there was no association 

with eGFR.creat (OR = 1.00 [95% CI: 0.995–1.004], P = 0.93), (Table 4-6).  Similar results were obtained 

from linear regression analysis where eGFR scores estimated from cystatin-C were negatively 

associated with CH in the discovery, validation, and meta-analysis (eGFR.cys, β = −0.75, P = 2.37 × 10−4) 

but not eGFR.creat.cys (β = −0.21, P = 0.33), or eGFR.creat (β = 0.43, P = 0.03, not significant in the 

discovery and validation cohorts) (Figure 4-2). For all tests there was no evidence for heterogeneity 

between the discovery and validation cohorts (P > 0.05, Cochran’s Q test). 

 

 

Figure 4-2: CH is specifically and negatively associated with eGFR estimated from cystatin-C 

eGFR.cys: eGFR estimated from cystatin-C, eGFR.creat: eGFR estimated from creatinine, eGFR.creat.cys: 
estimated from both creatinine and cystatin-C. Square sizes represent the precision of each eGFR score. 
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Table 4-5: Initial risk factors identified by linear regression model for eGFR.cys 

  Discovery cohort Validation cohort 

  β CI2.5% CI97.5% P β CI2.5% CI97.5% P 

age -1.03 -1.04 -1.02 < 2 × 10–16 -1.02 -1.03 -1.01 < 2 × 10–16 

sex 1.93 1.73 2.14 < 2 × 10–16 1.85 1.65 2.05 < 2 × 10–16 

Smoking status -1.36 -1.49 -1.23 < 2 × 10–16 -1.44 -1.57 -1.31 < 2 × 10–16 

Diastolic blood pressure -0.03 -0.04 -0.01 3.3 × 10–5 -0.02 -0.03 -0.01 1.06 × 10–3 

Systolic blood pressure 0.03 0.02 0.04 < 2 × 10–16 0.03 0.02 0.03 2.88 × 10–15 

Cholesterol -2.45 -2.88 -2.01 < 2 × 10–16 -2.51 -2.94 -2.08 < 2 × 10–16 

HDL 7.48 7.05 7.91 < 2 × 10–16 7.54 7.11 7.97 < 2 × 10–16 

LDL 2.71 2.18 3.25 < 2 × 10–16 2.74 2.21 3.28 < 2 × 10–16 

HbA1c 0.02 0.00 0.03 0.03 0.01 0.00 0.03 0.04 

BMI -0.67 -0.69 -0.65 < 2 × 10–16 -0.69 -0.71 -0.67 < 2 × 10–16 

hs-CRP -0.30 -0.32 -0.28 < 2 × 10–16 -0.30 -0.32 -0.28 < 2 × 10–16 
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Table 4-6: Logistic regression between CH and CKD coded as a binary variable 

 
Discovery cohort Validation cohort Meta analysis 

Outcome 
defining score 

Cases OR CI 
25% 

CI 
97.5% 

P Cases OR CI 
25% 

CI 
97.5% 

P Cochrans' 
Q 

P 
Cochran's 

OR CI 
25% 

CI 
97.5% 

P 

eGFR creat 2735 1.00 0.99 1.00 0.66 2714 1.00 1.00 1.01 0.67 0.50 0.48 1.00 1.00 1.00 0.93 

eGFR cys 2735 1.02 1.01 1.02 1.52×10–03 2714 1.02 1.01 1.03 1.10× 10–4 0.30 0.58 1.02 1.01 1.02 8.44× 10–8 

eGFR creat.cys 2735 1.00 1.00 1.01 0.39 2714 1.01 1.00 1.01 0.09 0.45 0.50 1.01 1.00 1.01 0.04 
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To investigate the relationship between CH and CKD in more detail, I tested the constituent 

components of CH for association with eGFR.cys as a continuous trait using linear regression. Low 

eGFR.cys scores were associated with myeloid mCA (β = −4.44, P = 8.90 × 10–5) but not lymphoid mCA 

(β = −1.7, P = 0.12) or ‘other’ mCA (β = 0.61, P = 0.15). Alterations involving chr9p were the most 

strongly associated subtype of myeloid mCA (β = −8.06, P = 8.80 × 10−5). For CH defined by somatic 

mutations, myeloid neoplasia-associated genes were strongly associated with lower levels of eGFR.cys 

(β = −1.33, P = 5.52 × 10−7), whereas lymphoid genes were not significant (β = −1.31, P = 0.125). At the 

gene level, the relationship was significant for CH defined by JAK2 (n = 139, β = −1.03, P < 1 × 10–300) 

and TET2 (n = 788, β = −1.94, P = 4.50 × 10–4) variants but not variants in DNMT3A or ASXL1. Again, for 

all tests there was no evidence for heterogeneity between the discovery and validation cohorts 

(P > 0.05, Cochran’s Q test). Full results for the discovery and validation cohorts are presented in Table 

4-7, Table 4-8, and Table 4-9. 

The median VAF of CH defined by myeloid neoplasia associated genes was higher in participants with 

CKD (eGFR < 60) defined by eGFR.cys (median VAF = 0.24) compared to other participants (eGFR ≥ 60) 

(median VAF = 0.21, P = 1.71 × 10–7) but no difference was seen for CKD defined by eGFR.creat (median 

VAF = 0.23 vs. 0.21, P = 0.12) (Figure 4-3). At the level of individual genes, a significant difference was 

only seen for JAK2 with a median VAF of 0.56 in cases with CKD defined by eGFR.cys compared to 

other participants (VAF = 0.20, P = 4.70 × 10–6). 
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Figure 4-3: The relationship between eGFR scores and VAF 

CKD, defined by eGFR <60, is associated with VAF of driver mutations in myeloid related genes in 3,328 
participants. Meta-analysis of discovery and validation cohorts (A) eGFR.cys: CKD (n=293), median = 0.24; CKD-
free (n=3,035), median = 0.21 (P = 1.71x10-7; Mann-Whitney test), (B) eGFR.creat: CKD (n=111), median = 0.23; 
CKD-free (n= 3,217), median = 0.21 (P=0.12), (C) eGFR.creat.cys: CKD (n=144), median=0.23; CKD-free (n=3,184), 
median= 0.21 (P = 2x10-4). 

 

The link between myeloid neoplasms and reduced kidney function is well established and was 

replicated in a subset of the UK BIOBANK participants which included 320 participants with a prevalent 

myeloid neoplasm (diagnosed before or within a year of study entry) that was associated with lower 

eGFR.cys score (β = −5.22, P = 7.77 × 10–10). Excluding these cases, eGFR.cys was still associated with 

myeloid CH (n = 3,330, β = −1.05, P = 8.80 × 10–5), including both myeloid mCA (n = 148, β = −3.36, 

P = 0.01) and myeloid related-genes (n = 3241, β = −1.08, P = 6.25 × 10–5). Stratification at the gene 

level identified associations between eGFR.cys and mutations in CBL, TET2, JAK2, PPM1D and, to a 

lesser degree, GNB1 (Table 4-10) assesses the relationship between myeloid CH and the risk of 

developing ESKD in participants without prevalent myeloid neoplasms or prior ESKD. Myeloid CH 

(n = 3330) was weakly but significantly associated with ESKD incidence (n = 307, β = 0.002, P = 0.006). 
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Specifically, 0.33% (11 out of 3330) of participants with myeloid CH developed ESKD after study entry 

compared with 0.16% of controls (296 of 184,811). 
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Table 4-7:  Association between CH and eGFR scores as continuous variables in the discovery cohort 

    Discovery cohort   

Outcome defining 
score 

Predictor Cases β CI 25% CI 97.5% P 

eGFR.creat CH 2735 0.46 -0.02 0.95 0.12 

eGFR.cys CH 2735 -0.87 -1.41 -0.34 6.22x10-3 

eGFR.creat.cys CH 2735 -0.25 -0.74 0.23 0.45 

eGFR.cys Somatic mutations 1829 -1.42 -2.08 -0.77 2.22x10-4 

eGFR.cys Somatic mutations (myeloid genes) 1658 -1.41 -2.09 -0.72 4.64x10-4 

eGFR.cys Somatic mutations (lymphoid genes) 171 -1.58 -3.71 0.55 0.26 

eGFR.cys DNMT3A 731 -0.40 -1.41 0.61 0.58 

eGFR.cys TET2 398 -2.21 -3.63 -0.78 9.38x10-3 

eGFR.cys ASXL1 152 -0.93 -3.17 1.31 0.57 

eGFR.cys JAK2 62 -1.03 -1.04 -1.02 0.00 

eGFR.cys somatic mutations other myeloid 396 -3.11 -4.50 -1.73 1.42x10-4 

eGFR.cys any mCA >= 2Mb 973 -0.51 -1.40 0.38 0.40 

eGFR.cys mCA associated with myeloid and lymphoid 198 -3.66 -5.64 -1.68 1.90x10-3 
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eGFR.cys any mCA >= 2Mb (exclude myeloid and lymphoid) 775 0.28 -0.72 1.27 0.70 

eGFR.cys myeloid mCA 86 -4.22 -7.14 -1.31 0.02 

eGFR.cys mCA (lymphoid) 112 -3.18 -5.88 -0.48 0.05 

eGFR.cys chr9p mCA 22 -6.94 -12.61 -1.26 0.05 

eGFR.cys mCA (myeloid excluding chr9p)  64 -3.25 -6.65 0.15 0.12 

eGFR.cys myeloid CH  1704 -1.35 -2.03 -0.68 6.68x10-4 

eGFR.cys Myeloid CH in prevalent myeloid malignancies 37 -10.20 -15.05 -5.35 3.38x10-4 

eGFR.cys Myeloid CH in no prevalent myeloid malignancies  1667 -1.18 -1.86 -0.50 3.10 x 10-3 

  CH free (Base line) 92457         

eGFR.cys Myeloid malignancies 162 -5.63 -7.78 -3.47 7.17x10-6 

  Control 95030       0.12 
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Table 4-8:  Association between CH and eGFR scores as continuous variables in the validation cohort 

    Validation cohort   

Outcome defining 
score 

Predictor Cases β CI 25% CI 97.5% P 

eGFR.creat CH 2714 0.39 -0.09 0.88 0.21 

eGFR.cys CH 2714 -0.64 -1.17 -0.10 0.05 

eGFR.creat.cys CH 2714 -0.16 -0.65 0.33 0.64 

eGFR.cys Somatic mutations 1857 -1.22 -1.87 -0.58 1.42x10-3 

eGFR.cys Somatic mutations (myeloid genes) 1670 -1.24 -1.92 -0.56 1.97x10-3 

eGFR.cys Somatic mutations (lymphoid genes) 187 -1.08 -3.05 0.88 0.42 

eGFR.cys DNMT3A 729 0.71 -0.31 1.73 0.28 

eGFR.cys TET2 390 -1.67 -3.07 -0.27 0.05 

eGFR.cys ASXL1 138 -2.73 -5.03 -0.43 0.05 

eGFR.cys JAK2 77 -1.02 -1.03 -1.01 0.00 

eGFR.cys somatic mutations other myeloid 418 -3.30 -4.65 -1.96 2.24x10-5 

eGFR.cys any mCA >= 2Mb 945 0.26 -0.64 1.16 0.69 

eGFR.cys mCA associated with myeloid and lymphoid 207 -2.20 -4.11 -0.30 0.06 

eGFR.cys any mCA >= 2Mb (exclude myeloid and lymphoid) 738 0.96 -0.05 1.98 0.12 
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eGFR.cys myeloid mCA 90 -4.65 -7.57 -1.72 7.58x10-3 

eGFR.cys mCA (lymphoid) 117 -0.42 -2.92 2.08 0.81 

eGFR.cys chr9p mCA 28 -8.91 -13.84 -3.98 1.97x10-3 

eGFR.cys mCA (myeloid excluding chr9p)  62 -2.34 -5.97 1.30 0.32 

eGFR.cys myeloid CH  1709 -1.24 -1.91 -0.56 1.90x10-3 

eGFR.cys Myeloid CH in prevalent myeloid malignancies 46 -12.27 -16.17 -8.37 2.06x10-8 

eGFR.cys Myeloid CH in no prevalent myeloid malignancies  1663 -0.91 -1.59 -2.28× 10–01 0.03 

  CH free (Base line) 92581         

eGFR.cys Myeloid malignancies 158 -4.77 -7.02 -2.51 3.38x10-4 

  Control 95137         
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Table 4-9: Meta analysis of the association between CH and eGFR scores as continuous variables 

    Meta analysis 

Outcome defining 
score 

Predictor Cochrans' Q PCochran's β CI2.5% CI97.5% P 

eGFR.creat CH 0.04  0.85 0.43 0.08 0.78 0.03 

eGFR.cys CH 0.39 0.54 -0.75 -1.13 -0.38 2.37x10-4 

eGFR.creat.cys CH 0.07 0.79 -0.21 -0.55 0.14 0.33 

eGFR.cys Somatic mutations 0.18 0.67 -1.32 -1.78 -0.86 1.35x10-7 

eGFR.cys Somatic mutations (myeloid genes) 0.12 0.73 -1.33 -1.81 -0.84 5.52x10-7 

eGFR.cys Somatic mutations (lymphoid genes) 0.11 0.74 -1.31 -2.76 0.13 0.13 

eGFR.cys DNMT3A 2.29 0.13 0.15 -0.57 0.88 0.73 

eGFR.cys TET2 0.27 0.60 -1.94 -2.94 -0.93 4.50x10-4 

eGFR.cys ASXL1 1.21 0.27 -1.81 -3.41 -0.21 0.05 

eGFR.cys JAK2 0.50 0.48 -1.03 -1.04 -1.01 0.00 

eGFR.cys somatic mutations other myeloid 0.04 0.85 -3.21 -4.18 -2.24 1.01x10-9 

eGFR.cys any mCA >= 2Mb 1.44 0.23 -0.13 -0.76 0.50 0.73 

eGFR.cys mCA associated with myeloid and lymphoid 1.08 0.30 -2.90 -4.28 -1.53 1.07x10-4 

eGFR.cys any mCA >= 2Mb (exclude myeloid and lymphoid) 0.88 0.35 0.61 -0.10 1.33 0.15 
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eGFR.cys myeloid mCA 0.04 0.84 -4.44 -6.50 -2.37 8.90x10-5 

eGFR.cys mCA (lymphoid) 2.16 0.14 -1.70 -3.54 0.14 0.12 

eGFR.cys chr9p mCA 0.27 0.61 -8.06 -11.78 -4.35 8.80x10-5 

eGFR.cys mCA (myeloid excluding chr9p)  0.13 0.72 -2.82 -5.30 -0.35 0.05 

eGFR.cys myeloid CH  0.05 0.82 -1.29 -1.77 -0.82 5.47x10-7 

eGFR.cys Myeloid CH in prevalent myeloid malignancies 0.44 0.51 -11.47 -14.51 -8.44 2.97x10-12 

eGFR.cys Myeloid CH in no prevalent myeloid malignancies  0.30 0.59 -1.05 -1.53 -0.56 8.90x10-5 

  CH free (Base line)             

eGFR.cys Myeloid malignancies 0.29 0.59 -5.22 -6.78 -3.66 7.77x10-10 

  Control             
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Table 4-10: Association between myeloid CH and eGFR.cys in the absence of prevalent myeloid neoplasia 

    Discovery cohort   Validation cohort   Meta analysis 

Outcome 
defining 
score 

Predictor Cases β CI2.5% CI97.5% P Cases β CI2.5% CI97.5% P Cochrans' 
Q 

P 
Cochran's 

β CI2.5% CI97.5% P 

eGFR.cys myeloid 
CH 

1667 -1.19 -1.87 -0.51 2.95× 10–3 1663 -0.91 -1.60 -0.23 0.03 0.31 0.58 -1.051 -1.54 -0.57 8.80x10-5 

eGFR.cys myeloid 
mCA 

76 -3.32 -6.46 -0.18 0.09 72 -3.40 -6.75 -0.05 0.10 0 0.972 -3.358 -5.647 -1.068 9.11x10-3 

eGFR.cys myeloid 
genes 

1619 -1.25 -1.94 -0.56 1.97× 10–3 1622 -0.91 -1.60 -0.22 0.03 0.48 0.489 -1.081 -1.566 -0.596 6.25x10-5 

eGFR.cys DNMT3A 725 -0.39 -1.41 0.62 0.58 721 0.70 -0.33 1.73 0.30 2.16 0.14 0.14 -0.59 0.87 0.73 

eGFR.cys TET2 393 -1.91 -3.35 -0.48 0.03 385 -1.57 -2.98 -0.16 0.07 0.11 0.74 -1.74 -2.74 -0.73 1.84x10-3 

eGFR.cys ASXL1 150 -0.83 -3.09 1.43 0.61 133 -2.41 -4.74 -0.08 0.09 0.92 0.338 -1.59 -3.21 0.03 0.09 

eGFR.cys JAK2 42 -4.23 -8.47 0.00 0.10 50 -5.07 -8.97 -1.18 0.03 0.08 0.78 -4.69 -7.56 -1.82 3.21x10-3 

eGFR.cys GNB1 39 -4.22 -8.39 -0.04 0.10 47 -2.86 -6.85 1.14 0.27 0.21 0.65 -3.51 -6.40 -0.62 0.04 

eGFR.cys SRSF2 33 -3.65 -8.59 1.29 0.26 34 -1.14 -6.17 3.88 0.77 0.49 0.49 -2.415 -5.935 1.105 0.27 

eGFR.cys TP53 30 -0.18 -4.93 4.58 0.96 32 0.15 -4.42 4.72 0.96 0.01 0.92 -0.01 -3.30 3.29 1.00 

eGFR.cys PPM1D 33 -6.35 -11.29 -1.41 0.04 28 -5.35 -10.49 -0.22 0.09 0.07 0.79 -5.87 -9.43 -2.31 3.08x10-3 

eGFR.cys SF3B1 22 -2.11 -8.29 4.07 0.63 30 -2.55 -7.57 2.48 0.46 0.01 0.91 -2.37 -6.27 1.52 0.32 
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eGFR.cys FLT3 22 1.05 -5.33 7.43 0.81 14 -2.96 -10.39 4.46 0.58 0.65 0.42 -0.65 -5.49 4.19 0.81 

eGFR.cys GNAS 20 1.26 -4.57 7.08 0.77 13 2.84 -4.27 9.94 0.58 0.11 0.74 1.89 -2.61 6.40 0.49 

eGFR.cys NF1 12 -0.39 -8.20 7.42 0.96 16 -1.48 -8.06 5.10 0.77 0.04 0.83 -1.03 -6.07 4.01 0.73 

eGFR.cys CBL 10 -3.92 -12.65 4.81 0.53 18 -16.79 -23.36 -10.21 0.00 5.32 0.02 -12.14 -17.40 -6.88 3.44x10-5 

eGFR.cys STAG2 14 6.95 0.10 13.80 0.10 13 -0.48 -8.68 7.73 0.96 1.85 0.17 3.90 -1.37 9.16 0.23 

eGFR.cys PRPF40B 12 0.32 -7.92 8.55 0.96 14 4.77 -2.05 11.60 0.28 0.67 0.41 2.96 -2.29 8.21 0.35 

eGFR.cys CREBBP 9 -0.52 -9.86 8.83 0.96 15 -4.38 -10.98 2.21 0.30 0.44 0.51 -3.10 -8.49 2.30 0.34 

eGFR.cys KDM6A 11 1.43 -7.31 10.16 0.81 11 -5.93 -13.71 1.86 0.24 1.52 0.22 -2.68 -8.49 3.14 0.45 

eGFR.cys BRCC3 15 -2.65 -10.10 4.80 0.61 6 -0.01 -10.06 10.04 1.00 0.17 0.68 -1.72 -7.70 4.27 0.66 

eGFR.cys IDH2 7 2.28 -8.76 13.33 0.77 7 -15.29 -27.59 -2.98 0.04 4.33 0.037 -5.56 -13.78 2.67 0.28 

eGFR.cys KMT2D 4 -6.75 -19.10 5.61 0.42 9 -1.78 -10.48 6.92 0.77 0.42 0.52 -3.43 -10.54 3.69 0.44 

Control   92335         92476       
 

          
 

ESKD myeloid 
CH 

5 0.002 -0.001 0.004 0.210 6 0.002 0.000 0.005 0.06 0.33 0.567 0.002 0.001 0.003 6.00x10-3 

  control 158         140                     
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4.4.3 MR analysis to test causal effect of CH on kidney function  

The possibility of a causal relationship between CH and kidney function was assessed using MR. In a 

liberal analysis, 380 independent SNPs associated with CH at (P < 0.001) [169] were used to estimate 

the effect of CH on CKD (Supplementary Table 4-2). To test the different assumptions and scenarios, 

several MR methods were used as recommended and the results corrected for multiple testing [321]. 

Only the MR-RAPS method, which is adapted to test weak instrumental variables as applicable to my 

study, identified a positive causal relationship [OR = 1.01; P = 0.029]. However, this relationship failed 

to reach significance (P = 0.81) in a more conservative analysis that applied stricter threshold 

(P < 1 × 10–5) to select 28 SNPs associated with CH (Figure 4-4). Due to the potential limited overlap 

between cohorts used to select instrumental variables, I performed a sensitivity analysis using a subset 

of samples with European American ancestry which yielded similar results for the causal association 

between CH and CKD [OR = 1.02; P = 0.029]. Detailed results are presented in Table 4-11. 

 

Figure 4-4: The relationship between CH and CKD using mendelian randomisation methods 

MR using robust adjusted profile score (MR-RAPS) to estimate the effect of SNPs associated with CH against 
their effect in relation to CKD. (A) Liberal analysis using 380 independent SNPs associated with CH at P <0.001. 
The MR-RAPS test estimated a significant positive effect of CH on CKD (OR=1.014, CI 95%:1.003-1.024; P=0.03). 
B) Conservative analysis using 28 SNPs associated with CH at P <1x10-5. The line of regression is indicated in blue 
and the axes show β coefficients for SNP effects on CH and CKD. 
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Table 4-11: Mendelian randomisation results adjusted for multiple tests by false discovery rate 

CKD Population p value cut-
off 

MR method n SNPs β se P 

All 1.00× 10–3 RAPS 380 0.01 0.01 0.029 

European American 1.00× 10–3 RAPS 369 0.02 0.01 0.029 

All 1.00× 10–3 IVW 380 0.01 0.00 0.063 

European American 1.00× 10–3 IVW 369 0.01 0.01 0.079 

All 1.00× 10–3 MR Egger 380 0.02 0.01 0.115 

European American 1.00× 10–3 MR Egger 369 0.03 0.01 0.115 

All 1.00× 10–3 Weighted median 380 0.01 0.01 0.131 

European American 1.00× 10–3 Weighted median 369 0.01 0.01 0.292 

All 1.00× 10–5 RAPS 28 0.01 0.02 0.806 

European American 1.00× 10–5 RAPS 28 0.00 0.02 0.912 

All 1.00× 10–5 IVW 28 0.03 0.04 0.624 

European American 1.00× 10–5 IVW 28 -0.02 0.05 0.624 

All 1.00× 10–5 MR Egger 28 0.01 0.02 0.744 

European American 1.00× 10–5 MR Egger 28 0.01 0.02 0.810 

All 1.00× 10–5 Weighted median 28 0.00 0.02 0.862 

European American 1.00× 10–5 Weighted median 28 -0.01 0.02 0.862 

 

4.4.4 Prediction of adverse outcomes by myeloid CH in CKD 

As expected, established risk factors (myeloid CH, age, sex, ethnicity, smoking status, cholesterol, 

HbA1C, HDL, LDL, blood pressure, BMI, uACR, hs-CRP and eGFR scores) were associated on univariate 

analysis with an adverse outcome as defined by a composite endpoint of death, MI, or stroke (Table 

4-12, Table 4-13, and Table 4-14).
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Table 4-12: Regression of adverse outcomes defined by a composite end point of death, myocardial infarction, stroke (univariate analysis) in the discovery 

cohort 

    Discovery cohort 

Factor   adverse outcomes-free adverse outcomes HR CI2.5% CI97.5% P 

N N 85128 4707 
    

myeloid CH N (%) 1386 (1.63%) 180 (3.82%) 2.32 2.00 2.69 <0.001 

Age median 57.00 63.00 1.10 1.09 1.10 <0.001 

Sex male 36821 (43.2%) 2850 (60.5%) 1.98 1.87 2.10 <0.001 

Ethnicity* White 79804 (93.7%) 4472 (95%) 
    

Mixed 594 (0.7%) 28 (0.6%) 0.87 0.60 1.26 0.45 

Asian 1825 (2.1%) 77 (1.6%) 0.79 0.63 0.99 0.04 

Black 1373 (1.6%) 58 (1.2%) 0.81 0.63 1.05 0.11 

Chinese 281 (0.3%) 7 (.2%) 0.46 0.22 0.97 0.04 

other 837 (1%) 33 (0.7%) 0.73 0.52 1.03 0.08 

unknown 298 (0.3%) 22 (0.5%) 
    

No answer 32 (0.03%) 3 (0.06%) 
    

Smoking status Never 48165 (56.8%) 1942 (41.3%) 
    

Previous 28914 (34%) 1927 (41%) 1.64 1.54 1.74 <0.001 
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Current 7652 (9%) 800 (17%) 2.51 2.31 2.72 <0.001 

No answer 313 (0.4%) 31 (0.6%) 
    

Cholesterol median 5.70 5.56 0.89 0.87 0.92 <0.001 

HbA1c median 35.10 36.40 1.03 1.03 1.03 <0.001 

HDL median 1.42 1.31 0.49 0.45 0.53 <0.001 

LDL median 3.55 3.49 0.91 0.88 0.94 <0.001 

systolic blood pressure median 138.00 145.00 1.02 1.01 1.02 <0.001 

diastolic blood pressure median 82.00 83.00 1.01 1.01 1.01 <0.001 

hs-CRP median 1.27 1.85 1.04 1.03 1.04 <0.001 

BMI median 26.60 27.45 1.03 1.03 1.04 <0.001 

uACR median 1.03 1.30 1.00 1.00 1.00 <0.001 

eGFR.cys median 90.42 79.75 0.97 0.96 0.97 <0.001 

eGFR.creat median 92.89 89.68 0.98 0.98 0.98 <0.001 

eGFR.creat.cys median 91.90 84.56 0.97 0.96 0.97 <0.001 

* Ethnicity was encoded in integers from 1 to 6; 'white' was used as a reference   

$ Smoking was encoded in integers from 0 to 2; never smoked was used as a reference 

£ a composite end point includes death, MI and stroke   
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Table 4-13: Regression of adverse outcomes defined by a composite end point of death, myocardial infarction, stroke (univariate analysis) in the validation 

cohort 

    Validation cohort 

Factor   adverse outcomes-free adverse outcomes HR CI2.5% CI97.5% P 

N N 85420 4834         

myeloid CH N (%) 1392 (1.6) 187 (3.9) 2.35 2.03 2.72 <0.001 

Age median 57 63 (1.3) 1.09 1.09 1.10 <0.001 

Sex male 36707 (43) 2916 (60.3) 1.98 1.87 2.10 <0.001 

Ethnicity* White 80153 (93.8) 4582 (94.8)         

Mixed 562 (0.7) 19 (0.4) 0.61 0.39 0.96 0.03 

Asian 1795 (2.1) 95 (2) 0.97 0.79 1.19 0.78 

Black 1377 (1.6) 61 (1.3) 0.83 0.64 1.07 0.15 

Chinese 291 (0.3) 6 (0.1) 0.38 0.17 0.84 0.02 

other 832 (1) 34 (0.7)  0.75 0.53 1.05 0.09 

unknown 289 (0.3) 27 (0.6) 
   

  

No answer 31 (0.04) 3 (0.1)         

Smoking status Never 48425 (56.7) 2019 (41.8)         

Previous 28921 (33.9) 1969 (40.7) 1.61 1.52 1.72  <0.001 
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Current 7670 (9) 810 (16.8) 2.45 2.26 2.66  <0.001 

No answer 315 (0.4) 29 (0.6)         

Cholesterol median 5.692 5.591 0.90 0.87 0.92 <0.001 

HbA1c median 35 36.5 1.03 1.03 1.04 <0.001 

HDL median 1.419 1.303 0.50 0.46 0.54 <0.001 

LDL median 3.544 3.514 0.92 0.89 0.95 <0.001 

systolic blood pressure median 137 144 1.02 1.01 1.02 <0.001 

diastolic blood pressure median 82 83 1.01 1.01 1.01 <0.001 

hs-CRP median 1.27 1.87 1.04 1.03 1.04 <0.001 

BMI median 26.6 27.5 1.04 1.04 1.05 <0.001 

uACR median 1.027156 1.269318 1.01 1.01 1.01 <0.001 

eGFR.cys median 90.51316 79.91814 0.96 0.96 0.97 <0.001 

eGFR.creat median 92.82222 89.46282 0.98 0.98 0.98 <0.001 

eGFR.creat.cys median 91.9188 84.45468 0.97 0.96 0.97 <0.001 

* Ethnicity was encoded in integers from 1 to 6; 'white' was used as a reference 

$ Smoking was encoded in integers from 0 to 2; never smoked was used as a reference 
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Table 4-14: Meta-analysis of regression of adverse outcomes defined by a composite end point of death, myocardial infarction, stroke (univariate analysis) 

    Meta analysis 

Factor   Cochran's Q P (Cochran's) HR CI2.5% CI97.5% P 

N N             

myeloid CH N (%) 0.02 0.90 2.34 2.10 2.59 3.19× 10–57 

Age median 0.47 0.49 1.10 1.09 1.10 <1.0× 10–300 

Sex male 0.00 0.99 1.98 1.90 2.06 7.92× 10–234 

Ethnicity* White             

Mixed 1.34 0.25 0.75 0.57 1.01 0.05 

Asian 1.74 0.19 0.89 0.76 1.03 0.12 

Black 0.02 0.90 0.82 0.68 0.98 0.03 

Chinese 0.14 0.71 0.42 0.24 0.72 1.79× 10–03 

other 0.01 0.93 0.74 0.58 0.94 0.01 

unknown   
    

  

No answer             

Smoking status Never             

Previous 0.10 0.75 1.63 1.56 1.70 6.99× 10–103 

Current 0.15 0.70 2.48 2.34 2.63 2.22× 10–207 
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No answer             

Cholesterol median 0.02 0.90 0.90 0.88 0.91 3.26× 10–32 

HbA1c median 5.69 0.02 1.03 1.03 1.03 <1.0× 10–300 

HDL median 0.11 0.74 0.49 0.46 0.52 1.68× 10–117 

LDL median 0.16 0.69 0.91 0.89 0.93 1.62× 10–14 

systolic blood pressure median 0.17 0.68 1.02 1.01 1.02 4.44× 10–199 

diastolic blood pressure median 0.61 0.44 1.01 1.01 1.01 5.92× 10–27 

hs-CRP median 0.34 0.56 1.04 1.03 1.04 2.97× 10–164 

BMI median 2.56 0.11 1.04 1.03 1.04 1.58× 10–75 

uACR median 49.84 0.00 1.00 1.00 1.00 1.63× 10–20 

eGFR.cys median 2.00 0.16 0.96 0.96 0.97 <1.0× 10–300 

eGFR.creat median 0.04 0.85 0.98 0.98 0.98 5.11× 10–236 

eGFR.creat.cys median 0.90 0.34 0.97 0.96 0.97 <1.0× 10–300 

* Ethnicity was encoded in integers from 1 to 6; 'white' was used as a reference 

$ Smoking was encoded in integers from 0 to 2; never smoking was used as a reference 
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To understand the influence of myeloid CH and CKD on adverse outcomes, I focused on participants 

without prevalent myeloid neoplasms (n = 320) or any prior history of CVD (n = 8459). Initially, Cox 

proportional-hazard analysis was used to identify risk factors unrelated to CH and CKD (Table 4-15, 

and Table 4-16) and then these factors were added into the model. To determine which of the three 

eGFR scores was most appropriate to use in the model, I tested the linearity of each score in relation 

to outcome using a restricted cubic spline test, as described previously [319]. Although all three scores 

were associated with adverse outcomes, eGFR.cys was more linear and negative compared to the 

scores that used creatinine in both the discovery and validation cohorts (Figure 4-5). Focusing on 

eGFR.cys, the risk of adverse outcomes was higher in subjects who had CKD (HR = 1.9, n = 1180/6970) 

compared to CKD free participants (n = 8295/172,857; P = 8.4 × 10–65) (Table 4-17). The risk of adverse 

outcomes was estimated to be 1.56-fold higher (P = 1.4 × 10–11) in cases with myeloid CH 

(n = 338/3078) compared to myeloid CH-free participants (n = 9137/176,749). Testing each 

component of adverse outcomes confirmed the previously reported features of the UK Biobank cohort 

[288] that CH was associated with all-cause mortality (HR = 1.91, P = 2.5 × 10–10) but did not reach 

significance for MI (HR = 1.13, P = 0.38) or stroke (HR = 1.28, P = 0.15) considered independently, in 

accordance with previous findings [155,202] (Table 4-18). ROC analysis was used to assess the 

predictiveness of multivariable models that incorporated myeloid CH, eGFR.cys and uACR. The 

baseline model consisting of age, sex, smoking status, HDL, HbA1c, systolic blood pressure, hs-CRP, 

BMI (Table 4-18) and corrected for 10 genetic principal components had an AUC of 73.3% (72.8–

73.9%). The addition of myeloid CH as a binary factor or eGFR.cys as a continuous trait improved the 

predictiveness of the model to an AUC of 73.4% and 74%, respectively, and including both further 

improved the AUC to 74.1% (73.5–74.6%), with very similar results achieved in both the discovery and 

validation cohorts (Figure 4-6, and Table 4-19). 
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Figure 4-5: Restricted cubic spline to test the linearity of eGFR scores. 

Adjusted spline of each eGFR score was plotted against HR for outcome with default values for the number of knots (n=5) and degrees of freedom (n=4). The upper and the
 lower dotted lines indicate 95% confidence intervals. A, B, and C refer to the discovery cohort. D, E, and F refer to the validation cohort for each eGFR score.
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Table 4-15: The initial model of risk factors identified by Cox proportional-hazard analysis 

  Discovery cohort     Validation cohort     

  OR CI2.5% CI97.5% P OR CI2.5% CI97.5% P 

age 1.09 1.08 1.09 < 2 x 10-16 1.09 1.08 1.09 < 2 x 10-16 

sex 1.65 1.53 1.78 < 2 x 10-16 1.72 1.60 1.85 < 2 x 10-16 

Smoking status 1.44 1.38 1.51 < 2 x 10-16 1.35 1.29 1.42 < 2 x 10-16 

Diastolic blood pressure 1.00 0.99 1.00 0.06 1.00 0.99 1.00 0.1814 

Systolic blood pressure 1.01 1.00 1.01 1.57 x 10-6 1.01 1.00 1.01 9.12 x 10-6 

Cholesterol 1.09 0.94 1.26 0.27 0.95 0.82 1.10 0.50 

HDL 0.68 0.59 0.79 4.03 x 10-7 0.82 0.70 0.95 8.00 x 10-3 

LDL 0.90 0.75 1.08 0.25 1.07 0.89 1.28 0.49 

HbA1c 1.02 1.01 1.02 < 2 x 10-16 1.02 1.02 1.02 < 2 x 10-16 

BMI 1.01 1.00 1.02 0.03 1.02 1.01 1.02 3.10 x 10-5 

hs-CRP 1.03 1.02 1.03 < 2 x 10-16 1.03 1.02 1.03 < 2 x 10-16 
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Table 4-16: The final model of risk factors identified by Cox proportional-hazard analysis in the final model 

  Discovery cohort Validation cohort 

  OR CI2.5% CI97.5% P OR CI2.5% CI97.5% P 

age 1.09 1.08 1.09 < 2 x 10-16 1.09 1.08 1.09 < 2 x 10-16 

sex 1.65 1.54 1.78 < 2 x 10-16 1.7 1.58 1.83 < 2 x 10-16 

Smoking status 1.45 1.39 1.52 < 2 x 10-16 1.35 1.29 1.42 < 2 x 10-16 

Systolic blood pressure 1.00 1.00 1.01 2.55 x 10-6 1.00 1.00 1.01 4.91 x 10-6 

HDL 0.73 0.65 0.81 2.97 x 10-9 0.78 0.71 0.87 4.14 x 10-6 

HbA1c 1.02 1.02 1.02 < 2 x 10-16 1.02 1.02 1.02 < 2 x 10-16 

BMI 1.01 1.00 1.02 0.05 1.02 1.01 1.02 7.39 x 10-5 

hs-CRP 1.027 1.022 1.032 < 2 x 10-16 1.027 1.022 1.031 < 2 x 10-16 
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Figure 4-6: Risk factors for adverse outcome. 

The baseline risk factors included age, sex, smoking status, HDL, HbA1c, systolic blood pressure, hs-CRP, BMI and 
was corrected for 10 genetic principal components. The effect on AUC of adding in CH, eGFR.cys, and uACR 
relative to the baseline model is shown (meta-analysis of discovery and validation cohorts). 
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Table 4-17: Prediction of adverse outcomes in participants with CKD (eGFR.cys<60) in the absence of prior myeloid malignancy or prior CVD 

Group OR CI2.5% CI97.5% P At risk Incident event 

  Discovery cohort 

Adverse outcomes (CKD) 1.83 1.65 2.04 1.00x10-15 3439 560 

Adverse outcomes (CKD-free)         86263 4111  
Validation cohort 

Adverse outcomes (CKD) 1.97 1.78 2.19 1.00x10-15 3531 620 

Adverse outcomes (CKD-free)         86594 4.18E+03  
Meta analysis 

Adverse outcomes (CKD) 1.90 1.77 2.05 8.4x10-65 6970 1180 

Adverse outcomes (CKD-free)         172857 8295 
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Table 4-18: Prediction of adverse outcomes associated with myeloid CH in the absence of prior myeloid neoplasia or prior CVD 

Group Discovery cohort 
  

OR CI2.5% CI97.5% P At risk Incident 
event 

  

Adverse outcomes (CH) 1.61 1.36 1.91 1.74×10–7 1537 168 
  

Adverse outcomes (CH-free)         88165 4503 
  

Death (CH) 1.91 1.57 2.32 5.87×10–10 1537 129 
  

Death (CH-free)         88165 2878 
  

Myocardial Infarction (CH) 1.07 0.72 1.58 0.74 1537 31 
  

Myocardial Infarction (CH-free)         88165 1273 
  

Stroke (CH) 1.1 0.66 1.84 0.74 1537 19 
  

Stroke (CH-free)         88165 755 
  

 
Validation cohort 

  

Adverse outcomes (CH) 1.5 1.26 1.79 1.07× 10–5 1541 170 
  

Adverse outcomes (CH-free)         88584 4634 
  

Death (CH) 1.68 1.37 2.06 1.87× 10–6 1541 125 
  

Death (CH-free)         88584 3001 
  

Myocardial Infarction (CH) 1.19 0.82 1.71 0.41 1541 37 
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Myocardial Infarction (CH-free)         88584 1245 
  

Stroke (CH) 1.41 0.93 2.14 0.13 1541 29 
  

Stroke (CH-free)         88584 835 
  

 
Meta-analysis Q P Cochran's 

Adverse outcomes (CH) 1.56 1.37 1.76 1.4×10–11 3078 338 0.32 0.58 

Adverse outcomes (CH-free) 1 1 1   176749 9137     

Death (CH) 1.91 1.57 2.321 2.5×10–10 3078 254 0.01 0.94 

Death (CH-free) 1 1 1   176749 5879     

Myocardial Infarction (CH) 1.13 0.86 1.48 0.38 3078 68 0.15 0.70 

Myocardial Infarction (CH-free) 1 1 1   176749 2518     

Stroke (CH) 1.28 0.93 1.76 0.15 3078 48 0.54 0.46 

Stroke (CH-free)         176749 1590     
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Table 4-19: ROC analysis to compare the prediction accuracy of the models with and without CH and 

CKD measures 

  Discovery cohort 

Predictors AUC (CI95%) Addition of CH  

Risk factors 73.5% (72.7%–74.3%) 73.6% (72.8%–74.4%) 

Risk factors + eGFR.cys 74.1% (73.3%–74.9%) 74.2% (73.4%–75.0%) 

Risk factors + uACR 72.3% (71.1%–73.6%) 72.5% (71.2%–73.7%)  
Validation cohort 

Risk factors 73.3% (72.5%–74.1%) 73.3% (72.5%–74.1%) 

Risk factors + eGFR.cys 73.9% (73.1%–74.7%) 74.0% (73.2%–74.8%) 

Risk factors + uACR 72.7% (71.4%–74.0%) 72.7% (71.5%–74.0%)  
Combined cohort 

Risk factors 73.3% (72.8%–73.9%) 73.4% (72.9%–74.0%) 

Risk factors + eGFR.cys 74% (73.4%–74.5%) 74.1% (73.5%–74.6%) 

Risk factors + uACR 72.3% (71.4%–73.2%) 72.4% (71.5%–73.3%) 
 

To further investigate the relationship between CH and adverse outcome in participants with CKD, I 

stratified the cohort (excluding prior CVD and prevalent myeloid malignancies), into participants with 

moderate renal impairment (eGFR.cys ≥15 to <60), mild impairment (eGFR.cys ≥60 to <90) and normal 

kidney function (eGFR.cys ≥90). I then tested the effect of CH in each subset using Kaplan–Meier 

survival analysis. CH increased the risk of adverse outcome in all groups but was particularly marked 

(HR = 1.6, 95% CI 1.2–2.14, P = 0.002) for participants with moderate CKD (n = 59/226 with myeloid CH 

compared to n = 1121/6744 without myeloid CH) (Figure 4-7, Figure 4-8, and Table 4-20). Much of the 

risk of adverse outcomes was related to incident myeloid neoplasms which were diagnosed in 19 

participants at a median of 3.6 years after study entry. Of these, 11 (58%) had adverse outcomes in 

comparison to 48/207 (23%) who did not develop a myeloid neoplasm during the study period. 

Excluding the incident cases reduced but did not eliminate the risk of adverse outcomes (HR = 1.4, 

P = 0.05). 
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Figure 4-7: Myeloid CH predicts adverse outcomes in CKD 

The forest plots show data stratified according to eGFR.cys as healthy (≥90), mild CKD (≥60 to <90) and moderate CKD (≥15 to <60). The risk of adverse outcomes was 
predicted by myeloid CH in all groups but was particularly marked (HR=1.6, P=0.002) for participants with moderate CKD. 
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Figure 4-8: Kaplan–Meier survival estimates for the three CKD groups according to absence or presence of myeloid CH. 

A) Moderate CKD B) mild CKD C) Normal. Log-rank test P values are reported for each group, and numbers at risk at 0, 2.5, 5, 7.5, and 10 years after study entry 
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Table 4-20: Adverse outcomes in relation to myeloid CH stratified by eGFR.cys score 

  Discovery cohort     
Group OR CI2.5% CI97.5% P At risk Incident 

event 
    

eGFR.cys ≥15 to <60 (CH) 1.56 1.01 2.41 0.06 110 27 
  

eGFR.cys ≥15 to <60 (CH-free)   
   

3329 533 
  

eGFR.cys ≥60 to <90 (CH) 1.59 1.28 1.97 6.65x10-5 877 109 
  

eGFR.cys ≥60 to <90 (CH-free)   
   

40683 2643 
  

eGFR.cys ≥90 (CH) 1.65 1.14 2.38 0.01 550 32 
  

eGFR.cys ≥90 (CH-free)         44153 1327      
Validation cohort 

  

eGFR.cys ≥15 to <60 (CH) 1.64 1.11 2.42 0.02 116 32 
  

eGFR.cys ≥15 to <60 (CH-free) 
    

3415 588 
  

eGFR.cys ≥60 to <90 (CH) 1.46 1.16 1.83 2.09x10-3 859 102 
  

eGFR.cys ≥60 to <90 (CH-free) 
    

40715 2708 
  

eGFR.cys ≥90 (CH) 1.42 0.98 2.05 0.09 566 36 
  

eGFR.cys ≥90 (CH-free)         44454 1338 
  

 
Meta-analysis Cochran's Q P Cochran's 

eGFR.cys ≥15 to <60 (CH) 1.60 1.20 2.14 2.12x10-3 226 59 0.03 0.87 
eGFR.cys ≥15 to <60 (CH-free) 1 1 1 

 
6744 1121 

  

eGFR.cys ≥60 to <90 (CH) 1.53 1.30 1.79 3.48x10-7 1736 211 0.26 0.61 
eGFR.cys ≥60 to <90 (CH-free) 1 1 1 

 
81398 5351 

  

eGFR.cys ≥90 (CH) 1.53 1.17 1.99 2.12x10-3 1116 68 0.31 0.58 
eGFR.cys ≥90 (CH-free) 1 1 1   88607 2665     
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4.4.5 Relationship between myeloid CH and shrunken pore syndrome 

I identified 966 (0.5%) of the UK Biobank participants with potential SPS (eGFR.cys/eGFR.creat ratio 

≤0.6). Of these, 6% (n=58) had myeloid CH. In comparison, 2.9% (n = 5391) participants had myeloid 

CH and eGFR.cys/eGFR.creat ratio > 0.6 (OR = 2.2, 95% CI = 1.6–2.9; P = 2.9 × 10–7 Fisher’s exact test). 

After eliminating these SPS cases, myeloid CH remained associated with an adverse prognosis in CKD 

(HR = 1.61, 95% CI 1.17–2.21, P = 0.003) and remained most pronounced for participants with 

moderate renal impairment (Figure 4-9). 

 

Figure 4-9: Kaplan-Meier survival estimates for the three CKD groups according to absence or 

presence of myeloid CH and excluding participants with potential SPS. 

The analysis excluded the 966 participants with potential SPS. A) Moderate CKD B) mild CKD C) Normal. Log‐rank 
test P values are reported for each group, and numbers at risk at 0, 2.5, 5, 7.5, and 10 years after study entry. 
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4.5 Discussion 

In this study I identified that CH, and specifically myeloid CH, is associated with CKD. The association 

was not seen with all markers of CH and, strikingly, not with mutations in DNMT3A or ASXL1, two of 

the most common drivers of clonality, although there was an overall association with clone size. These 

findings confirm previous observations that not all CH is equal [169,202,325], as well as the 

importance of having sufficiently large studies to understand the granularity of CH with respect to 

clinical outcomes. 

I found that myeloid CH is specifically associated with eGFR.cys but not eGFR.creat and only marginally 

with eGFR.cys.creat. Similarly, recent studies have reported the superior utility of eGFR.cys in 

predicting the incidence of CVD and mortality in patients with CKD [319,326,327]. In the UK, the cost 

to measure cystatin C is 10-fold higher than that to measure serum creatinine, and consequently 

eGFR.creat is widely used for initial assessment of possible CKD. Although eGFR.cys is recommended 

to confirm CKD, this is not believed to be common practice, at least in the UK [319]. My findings 

provide further weight to the argument that eGFR.cys is more informative than eGFR.creat to define 

CKD. 

 

The finding that myeloid CH is associated with eGFR.cys also provides further evidence for the 

importance of chronic inflammation in CH-related disorders. Levels of cystatin C correlate generally 

with oxidative stress and inflammation [319,328], a well-recognised feature of CKD [305] that is also 

associated with an elevated risk of development of CVD [298,329]. Other biomarkers of chronic 

inflammation have been associated with CH, e.g. C-reactive protein and IL-6 [169,306]. CH predisposes 

to haematological malignancies, particularly myeloid neoplasms [100], and both CKD and chronic 

inflammation have been described as features of myeloproliferative neoplasms [330,331].  My data 

show that myeloid CH increases the risk of adverse outcomes in the context of CKD and that this 

increase is only partly explained by incident myeloid neoplasms or SPS, a recently described 

phenomenon that may be observed in both children or adults with normal or reduced eGFR and is 

associated with increased mortality and morbidity in a variety of settings [318]. Although my analysis 

was corrected for hs-CRP, it is possible that part of the increase in adverse outcomes is due to chronic 

inflammation induced by CH. 
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MR uses genetic variation as a natural experiment to estimate causality in observational data [321] 

and has been used, for example, to detect a causal effect of cystatin C on risk of stroke [332]. My initial 

analysis of 380 SNPs that predispose to CH provided suggestive evidence for a causal relationship 

between CH and CKD (P = 0.03), but this link was not supported by a more conservative analysis of 28 

SNPs that have lower P-value . Given that two of the most common CH genes (DNMT3A and ASXL1) 

were not associated with CKD, and that the 380 SNPs only explain 3.6% of the heritability of CH [169], 

the use of MR in this context is clearly challenging, and may be compounded by the possibility of other 

factors such as horizontal pleiotropy but these concerns are partly mitigated by the large sample size 

of the GWAS used for CH and CKD. 

 

In summary, the role of CH in the pathogenesis of benign diseases varies widely and depends on 

intrinsic factors that define the clone as well as extrinsic factors that impact the inflammatory 

environment [88,202]. In this study, I have shown that CH is associated with CKD and confers an 

adverse prognosis over and above conventional risk factors for this common disorder. My findings 

suggest that screening for CH in CKD may be of clinical value to help predict outcomes. 
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Chapter 5 Prediction of myeloid malignancies in healthy 

individuals 

 

5.1 Summary 

In this Chapter, I describe the use of high dimensional data including CH metrics, blood counts, 

biochemistry measures, and healthcare data to predict the risk of developing myeloid malignancies in 

the UK Biobank cohort. The study base line was individuals with no reported myeloid neoplasm either 

before recruitment or up to one year after recruitment to exclude undiagnosed conditions. The 

analysis was conducted on 726 pre-myeloid cases, i.e. individuals who fulfilled the study base line 

criteria but developed a myeloid neoplasm during the study period (median follow-up from 

recruitment to diagnosis = 7.1 years, range = 1-13.4), and 7,260 controls (median follow-up = 11.7 

years, range = 0.08-14.6) that were free from myeloid malignancies during the study period and were 

matched for age (mean age = 61.2) and sex (males = 53%). Participants were randomly split into a 

training set (80%) for model development and test set (20%) for evaluation. CH was defined by both 

mCA and driver mutations. mCA were classified according to their physical location, copy number state 

using log R ratio and estimated level of clonality using mBAF as described in Chapter 3. Driver 

mutations were identified by the Mutect2 somatic caller, classified according to gene name and 

mutation type (nonsynonymous, stopgain, frameshift-deletion, frameshift-insertion, or splicing 

mutation), and encoded by their VAF values.  The model included four new features which 

represented the number of lesions targeting myeloid genes, myeloid mCA, lymphoid genes, and 

lymphoid mCA. As expected from previous studies, epigenetic regulators (DNMT3A, TET2, and ASXL1) 

were the most frequently mutated myeloid genes in both pre-myeloid cases and controls (49% and 

73% of mutated genes, respectively). However, the pre-myeloid group was enriched in mutated 

splicing genes (SRSF2, SF3B1, and U2AF1, P= 3.18x10-50), JAK2 (P= 1.71x10-49), IDH1/2 (P= 5.33x10-16), 

in addition to epigenetic regulator genes (P= 4.68x10-30). Interestingly, the number of lesions per 

individual were significantly higher in the pre-myeloid group compared with controls (P=3.02x10-119, 

Mann–Whitney U test). This result is driven by the larger number of myeloid CH lesions in the pre-

myeloid group versus controls (myeloid genes, P=7.17x10-119; myeloid mCA, P=3.20x10-67) and not 

lymphoid CH (lymphoid genes, P=0.04; lymphoid mCA, P=0.18). Several models were tested for 
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prediction of myeloid malignancies, the first was an Elastic-Net-regularised Cox proportional hazards 

(COX-PH) model. The best regularised COX-PH model for prediction of disease risk consisted of six 

features with non-zero coefficients. The number of lesions (myeloid genes) had the largest coefficient, 

and the other selected features were JAK2 V617F, SRSF2 P95, red cell distribution width (RDW), 

platelet count, and number of lesions (myeloid mCA). This model achieved a concordance index (C-

index, defined as the proportion of concordant pairs divided by the total number of possible 

evaluation pairs) of 0.57 in the test data. Next, different machine learning models were tested which 

included all the features in a single model. These machine learning models out-performed the COX-

PH model (C-index >0.57) when evaluated on the test data. Random Survival Forest (RSF) was the most 

predictive machine learning (ML) model, which achieved a C-index of 0.78 in the test data, a time-

dependent AUC ranging between 0.9 and 0.74 at 2 years and 12.5 years from recruitment, 

respectively, and attributed the largest weights to platelet indices and number of lesions (myeloid 

genes). This research demonstrates that the number of mutated myeloid genes is a significant 

predictor for the risk of myeloid malignancies. In addition, ML survival models can deal effectively with 

large datasets combining both CH and other healthcare data in a single model with performance that 

exceeds the traditional COX-PH models. 

 

5.2 Introduction 

The finding of CH in healthy individuals years before the diagnosis of an overt myeloid malignancy 

[11,43] has raised the interesting prospect of utilising CH observations to predict the risk of these 

malignancies in healthy individuals from a single blood sample. CH is a measurable event with a 

dynamic nature that can be defined by (i) targeted gene (ii) clone size (iii) age at detection (iv) number 

of genetic lesions. Previous studies have demonstrated the potential of CH measures for prediction of 

myeloid malignancies [42,43,86]. On the gene level, mutations in epigenetic regulator genes were the 

most common in healthy individuals, however, mutations in the splicing genes SRSF2, SFB31 and 

U2AF1, were notably enriched in pre-AML cases [42], and associated with high myeloid-related 

mortality compared to controls [86]. Mutant VAFs have been used to estimate clone size, which also 

help to predict subsequent AML [42,43]. In addition, individuals with a larger number of clones were 

at higher risk of developing myeloid malignancy, and this feature was independent of the correlation 

between point mutations and mCA, i.e. the number of clones remains significantly associated with the 

risk of developing myeloid malignancies after excluding samples with point mutations/mCA pairs such 
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as JAK2 V617F/9p UPD [86,87]. Although these studies which utilised CH measures were predictive of 

myeloid malignancies, the models had some limitations such as: (i) treating CH measures as 

independent variables without considering other risk factors such as blood counts [101]; (ii) a focus 

on specific subclasses of myeloid disorders such as AML despite the clear relationship between 

different types of myeloid neoplasms which have similar genetic profiles [101]; (iii) frequent use of 

the COX-PH model which  cannot deal with model nonlinearity and interactions between variables. 

Much of these limitations are related to the high dimensionality of myeloid-neoplasm risk factors that 

traditional methods struggle to accommodate, resulting in reduced accuracy, overfitting, and longer 

time to train the model. Machine learning (ML) has been established as a modern method to improve 

cancer prediction, diagnosis and prognosis [333]. The expansion of ML methods to handle censored 

data allows its use in survival analysis [334].  

In this Chapter, I aimed to predict the risk of developing myeloid malignancies in the UK Biobank 

subjects by considering healthcare data, CH metrics, blood counts, and biochemistry measures. Within 

the work (i) I applied a regularised COX-PH model to select small number of features that can predict 

the disease (ii) I tested different machine learning approaches and evaluated them against COX-PH 

model. 

 

5.3 Methods 

5.3.1 Study Cohort 

The UK Biobank phenotype data from May 2021 was used that included updated follow-up data for 

hospital inpatient episodes, death registries and primary care for a subset of participants (45%). 

Focusing on participants with available WES data at the time of analysis, cases of myeloid neoplasms 

were identified based on hospital inpatient records (FID: 41202-41205, 41270, 41271), death registry 

(FID: 40001-40002), cancer registry (FID: 40006, 40013), self-reported medical conditions (FID: 20001, 

20002), and primary-care data. The model development was conducted on cases that were diagnosed 

at least one year after recruitment (pre-myeloid group), according to the date of first occurrence from 

primary care, hospital inpatient data, and death registries. Participants with prevalent myeloid 

malignancy, i.e. those diagnosed before recruitment or up to a year after recruitment were excluded 

from the analysis. For the control group, participants were selected to be free from myeloid 
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malignancies according to the registries listed above but were not selected to be free from other types 

of cancer.  A propensity score matching method in R [335] was used to select ten controls per case 

and to match for age and sex in comparison to the myeloid incidence group. 

5.3.2 Whole Exome Sequencing: 

Processed CRAM files, released in February 2021, were obtained from the UK Biobank. These files 

were generated using  an updated Functional Equivalence (FE) protocol [210] to map reads to the 

reference human genome sequence (version GRCh38) and retain Original Quality scores. The resulting 

CRAM files are referred to as OQFE.  

5.3.3 Somatic variants calling 

Somatic mutations were called using GATK (Version 4.1.9) and Mutect2 [336] to process individual 

CRAM files in the tumour-only mode. Following best practice guidelines 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035531132), a Panel Of Normal (PON) and 

germline resources were used to remove artefacts and germline variants (Figure 5-1). First, Mutect2 

was run using an option to output read count statistics ( --f1r2-tar-gz) for subsequent orientation bias 

modelling, and the following input files (i) individual CRAM file, (ii) reference genome sequence used 

by the UK Biobank, (iii) PON from the Broad institute (1000g_pon.hg38.vcf.gz) that were generated 

using Mutect2 to process samples from the 1000 genomes project and identify recurrent artifacts, (iv) 

germline variants from GnomAD (af-only-gnomad_grch38.vcf.gz) and (v) a list of regions targeted by 

the WES experiment (xgen_plus_spikein.b38.bed). This step generated a list of raw variants in VCF 

format including number of reads in the F1R2 orientation that were used to learn the orientation bias 

model and exclude potential artefacts. Second, GetPileupSummaries was run to summarise reads for 

a set of germline variants from EXAC data (somatic-hg38_small_exac_common_3.hg38.vcf.gz). Third, 

contamination was estimated by CalculateContamination that determines the fraction of reads 

resulting from cross-sample contamination and estimates the allelic copy number segmentation. 

Fourth, the orientation bias model was fitted. Fifth, Mutect2 raw calls were filtered based on the 

previously generated contamination data and orientation model. 

Publicly available resources were obtained from the Broad institute (gs://gatk-best-practices/somatic-

hg38) and 1000 genomes project: 

(ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/GRCh38_reference_genome/ ) 

https://gatk.broadinstitute.org/hc/en-us/articles/360035531132
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Figure 5-1: Bioinformatic pipeline used to call somatic mutations  

The pipeline was run on each sample independently: 1) raw variants were called by Mutect2 by utilising the 
CRAM file, panel-of-normal, list of targets sequenced by WES, and reference human genome sequence (GRCh38) 
used by the UK Biobank to generate CRAM files; 2) Getpileup was run on CRAM files and utilised common 
variants information from EXAC data, and 3) these information were used in step 3 to estimate contamination; 
4) F1R2 data were used to fit the orientation model;  5) Data from Mutect2, calculate contamination, and learn 
read orientations were used to filter variants generated in step 1. Finally, the filtered VCF file was annotated by 
Annovar adding information from the COSMIC database.   

 

5.3.4 Driver mutations characterization: 

To identify putative somatic driver mutations, the analysis was restricted to rare variants with a 

MAF<0.01 in GnomAD and a minimum number of reads supporting the mutated allele: 3 reads for 

point mutations and 6 reads for indels. Variants that satisfied either of the following criteria were 

selected: 

First, the variant was defined as a driver mutation in our previous study [203] and did not have any of 

the following errors in the new Mutect2 calls;  strand bias, mapping quality, or clustered events. 

Second, ultra-rare  singleton variants in genes from the cancer gene census list [337] that passed all 

Mutect2 filters and had a VAF between 0.1 and 0.2 [9]. These variants were further restricted to those 

with (i) CADD ≥ 20 or (ii) loss of function effect. Driver mutations were classified into myeloid according 
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to the targeted gene using a published list of myeloid genes [89], driver mutations targeted other 

genes (non-myeloid) were classified as lymphoid. 

5.3.5 Predicting the risk of myeloid malignancies 

5.3.5.1 Independent variables 

(i) Four new features were generated to represent the number of lesions: 1) number of myeloid driver 

mutations; 2) number of lymphoid driver mutations; 3) number of myeloid mCA; 4) number of 

lymphoid mCA. 

(ii) Driver mutations were classified according to the name of the targeted gene, and their functional 

impact (nonsynonymous, stopgain, frameshift-deletion, frameshift-insertion, or splicing mutation), 

and presented by the largest VAF value identified in each group per individual as a representation of 

the founding clone. 

(iii)  In previous work, mCA associated with myeloid and lymphoid disease were identified as described 

in Chapter 3 [202]. I presented mCA by mirrored B-allele frequency (mBAF) of each event. 

(iv) Observations of LOY were extracted from previous studies which used a modified version of the 

MoChA tool and 1,239 germline variants from the Biobank SNP array data to identify regions of allelic 

imbalance in the PAR1 region [80,253]. The LOY calls were presented by the reported change in BAF. 

(v) 29 blood counts and 29 blood biochemistry variables were measured or estimated in the UK 

Biobank and presented as continuous variables (Table 3-2, and Table 3-3). 

(vi) other clinical features used were age, sex, systolic and diastolic blood pressure, smoking status, 

alcohol consumption status, and BMI. 

5.3.5.2 Dependent variable 

Incidences of myeloid malignancy were coded as a binary variable (yes/no) and treated as the 

prediction object. Follow-up times were determined using the “lubridate” [240] package in R to 

calculate the duration between recruitment and either disease incidence for cases or end of follow-

up for controls (The UK Biobank field 191). Data were split randomly into a training and test set with 

80% to 20% split, respectively. 
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5.3.5.3 Developed models 

Data imputation, model building, and method evaluation were applied using the available tools in 

scikit-learn (v.0.23.2), and scikit-survival (v. 0.14.0), Python packages [244,245]. Missing values were 

replaced by the mean along each independent variable by SimpleImputer class in scikit-learn. 

Regularised Cox-proportional hazard’s model: A Cox-proportional hazards model was fitted to the 

training data and regularised using the Elastic Net method [338] to overcome the correlations among 

the large number of features, and to determine the final model with the most efficient number of 

features. The Elastic Net method adds a combined ℓ1 (Ridge) and ℓ2 (LASOO) penalty which 

respectively shrink the coefficients to almost zero and select a subset of features that are more 

predictive with non-zero coefficient. A default ℓ1:ℓ2 ratio of 0.9 was used along with five-fold cross 

validation to evaluate a range of 100 hyperparameters (α) with a minimum α value of 0.01 to control 

shrinkage. The best model was selected according to the α value that achieved the largest C-index in 

the training data. 

Random survival forest (RSF) model is the ensemble of trees method that was extended to deal with 

right censored time to event data. Bootstrapped data are used to build the base tree, whereby each 

tree is built on different samples, and each node is split on different features from the original data. 

Finally, prediction is a result of combining individual trees.  Recommended settings were used for the 

number of estimators (n=1000), minimum samples split (n=10), and minimum samples leaf (n=15) 

[218]. To identify the most important features in the model, permutation was applied using the ELI5 

library (https://pypi.org/project/eli5/), which is compatible with scikit-survival. 

Gradient Boosted models: A Gradient Boost model is a sequential ensemble of small models. The 

method was applied to three different base models (i) Cox’s partial likelihood with regression tree to 

maximise the log partial likelihood function, (ii) component-wise least squares base learners which 

minimises the residual sum of squares, (iii) accelerated failure time (AFT) model with inverse-

probability of censoring weighted least squares error. 

5.3.5.4 Evaluation methods: 

The performance of each model was evaluated on the test data using Harrell’s C-index [339]. In 

addition, time-dependent area under the ROC was estimated at different time points across the study 

time and with intervals of 0.5 years using the cumulative_dynamic_auc command in scikit-survival 

[245], and the results were plotted in a line chart. 
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5.3.6 Statistical tests for the association of CH with the risk of myeloid malignancies, age, and 

VAF 

The frequency of CH and each of its subcategories (myeloid and lymphoid), were tested for association 

with the risk of developing myeloid malignancies compared to controls using Fisher’s exact tests in 

statistical functions (scipy.stats) in python. Median age and median VAF distributions were compared 

between pre-myeloid participants and controls using the Wilcoxon rank-sum test that was applied 

using scipy.stats. Mann–Whitney U test was used to assess the mean number of lesions between pre-

myeloid participants and controls. 

5.4 Results 

A total of 1,266 out of 200,631 participants with WES data in the UK Biobank had evidence of myeloid 

malignancy. The study was conducted on the 726 of these individuals who developed myeloid 

malignancies at least 1 year after recruitment (pre-myeloid; median = 7.1 years, range = 1-13.4). These 

726 individuals included MPN (n=321), AML (n=155), MDS (n=141), and others (n=109) as presented 

in Figure 5-2. As controls, 7,260 individuals were selected that were free from myeloid malignancies 

at the end of follow-up (median follow-up = 11.7, range = 0.08-14.6) and were matched for age and 

sex (mean age = 61.2, and males = 53%). 
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Figure 5-2: The distribution of pre-myeloid cases across the study time 

A histogram showing pre-myeloid cases (n=726), who developed myeloid malignancies after 1 year of 
recruitment; MPN (n=321), AML (n=155), MDS (n=141), and others (n=109). The x-axis shows the time between 
recruitment and diagnosis. The y-axis shows count of individuals in each category. 

  

5.4.1 The frequency of CH associated with myeloid and lymphoid disease 

In my previous work described in Chapter 3, mCA and driver mutations were identified in 5,040 (1%) 

and 3,863 (2%) participants with SNP array or WES data respectively [202]. In this work, specialised 

software (Mutect2) and new criteria were used to identify driver mutations in the absence of matched 

germline samples. This new analysis increased the number of participants with driver mutations from 

182 to 264 in pre-myeloid group and from 186 to 896 in the control group (Table 5-1). 
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Table 5-1: A comparison between GATK calls and Mutect2 calls 

 Pre-myeloid$ (n=726) Control£ (n=7260) 

 Old criteria 

(GATK) 

New criteria 

(Mutect2) 

Old criteria 

(GATK) 

New criteria 

(Mutect2) 

All drivers 240 (182) 409 (264) 197 (186) 1110 (896) 

DNMT3A 36 (36) 67 (63) 80 (80) 238 (235) 

TET2 47 (39) 41 (39) 40 (39) 69 (64) 

ASXL1 20 (20) 11 (11) 17 (17) 18 (18) 

JAK2 48 (48) 49 (49) 3 (3) 6 (6) 

Others 89 (73) 241 (160) 57 (55) 779 (634) 

* Number of affected individuals was added between brackets 
$ individuals who developed myeloid malignancies after 1 year of recruitment 
£ individuals who were free from myeloid malignancies 

 

The frequency of CH was significantly higher in pre-myeloid participants versus controls (37.9% versus 

13.2%, P = 5.87x10-56, Fisher’s exact test, Table 5-2). When focusing on myeloid CH, defined by 

alterations in myeloid-related genes or chromosomal regions (mCA), the difference between pre-

myeloid individuals and controls were even more striking (31% versus 6%, P=1.4x10-79, Table 5-2. In 

contrast, the frequency of lymphoid CH was similar between pre-myeloid participants and controls 

(6% versus 5%, P=0.12, Fisher’s exact test, Table 5-2). 
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Table 5-2: Summary of CH events and their relationship with pre-myeloid cases 

 mCA* Driver mutations* Clonal Haematopoiesis Fisher’s exact test 

 Pre-
myeloid 

(n=726) 

Control 

(n=7260) 

Pre-
myeloid 

(n=726) 

Control 

(n=7260) 

Pre-myeloid 

(n=726) 

Control 

(n=7260) 

OR P 

Myeloid CH 36 (32) 3 (2) 295 (219) 453 (429) 222 431 6.98 1.4x10-79 

Lymphoid 
CH 

3 (3) 14 (9) 114 (68) 658 (537) 46 360 1.32 0.12 

All CH 75 (47) 125 (83) 409 (264) 1110 (896) 275 957 4.1 5.87x10-56 

*  Number of events are indicated, with the number of affected individuals in brackets 

 

Mutations in DNMT3A were the most frequent alteration in both groups, occurring in 9% (n=63/726) 

and 3% (n=235/7260) of pre-myeloid and control participants (Figure 5-3) and accounting for 29% (n= 

63/219) and 55% (n=235/429) of CH defined by myeloid genes, in cases and controls respectively. In 

total, epigenetic regulators (DNMT3A, TET2 and ASXL1) were the most frequently mutated myeloid 

genes and accounting for 48.9% (n=107/219), and 73% (n=313/429), in cases and controls respectively. 

When grouped by gene function, the pre-myeloid group was enriched for mutations in genes encoding 

splicing factors (OR = 39.97; P = 3.18x10-50, Fisher’s exact test), JAK2 (OR = 110.66; P = 1.71x10-49), and 

IDH1/2 (OR = 101.62; P = 5.33x10-16).  The full data are summarised in Table 5-3. 
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Figure 5-3: The distribution of mutated myeloid genes between pre-myeloid and control groups 

 

Table 5-3:  The difference in mutated genes between pre-myeloid and control 

CH group Pre-myeloid versus controls Age comparison between CH and 
CH free groups 

OR Fisher exact (P) Median age$ Wilcoxon rank-sum  

All CH 4.12  5.87x10-56 64 1.67x10-11 

Myeloid CH (genes + mCA) 6.98 1.40x10-79 64 5.46x10-16 

Myeloid CH (myeloid genes) 6.87 8.43x10-78 64 1.28x10-15 

Myeloid CH (myeloid mCA) 1.67 1.18x10-31 63 0.17 

Lymphoid CH (genes + mCA) 1.32 0.04 63 0.12 

Lymphoid CH (Lymphoid genes) 1.29 0.055 63 0.11 

Lymphoid CH (Lymphoid mCA) 2.00 0.29 62 0.76 

Epigenetic regulator genes 4.64 4.68x10-30 64 4.34x10-13 

DNMT3A 3.63 8.45x10-15 63 2.65x10-5 

ASXL1 8.28 1.92x10-6 65 0.00054 

TET2 8.26 6.00x10-19 66 5.84x10-11 
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JAK2 110.66 1.71x10-49 63  0.39 

Splicing genes 39.97 3.18x10-50 65 8.13x10-6 

IDH1/2 101.62 5.33x10-16 63 0.77 

Damage genes (PPM1D/TP53) 1.69 0.35 63 0.067 

GNAS/GNA1 2.46 0.22 66 0.01 

Ligase (CBL/CBLB) 5.08 0.04 63 0.32 

$ median age of CH-free controls is 62 

 

5.4.2 Number of lesions 

The mean number of lesions per individual increased with age and was significantly higher in the pre-

myeloid group compared with controls (P=3.02x10-119, Mann–Whitney U test). This result is driven by 

the larger number of myeloid CH lesions in the pre-myeloid group versus controls (myeloid genes, 

P=7.17x10-119; myeloid mCA, P=3.20x10-67) and not lymphoid CH (lymphoid genes, P=0.04; lymphoid 

mCA, P=0.18). Number of lesions is shown in Table 5-4, and the mean number of lesions in each age 

group is shown in Figure 5-4. 

 

Figure 5-4: The relationship between number of lesions and age 

In both groups pre-myeloid (A) and control (B), the mean number of lesions, defined by both myeloid or 
lymphoid events increase with age. Number of lesions per individual was significantly higher in the pre-myeloid 
group in comparison to controls (P=6.85x10-36, t-test). 
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Table 5-4: Number of recurrent alterations in cases and controls 

 Pre-myeloid Control 

N Myeloid 
genes 

Myeloid 
mCA 

Lymphoid 
genes 

Lymphoid 
mCA 

Myeloid 
genes 

Myeloid 
mCA 

Lymphoid 
genes 

Lymphoid 
mCA 

0 506 694 658 724 6825 7258 6711 7250 

1 157 28 53 1 412 2 472 6 

2 53 4 11 1 22 0 50 4 

>2 10 0 4 0 1 0 27 0 

 

 

5.4.3 Clone size 

The median VAF was significantly different between pre-myeloid (median=0.15, range= 0.03 - 0.9) and 

control (median = 0.12, range = 0.03 - 0.5) as (P=1.81x10-24, Mann–Whitney U test), this difference is 

due to mutations in myeloid-related genes (P=6.53x10-26) rather than lymphoid related genes (P= 

0.43). The distribution of VAF is illustrated in Figure 5-5. 

 

Figure 5-5: The distribution of VAF of driver mutations in pre-myeloid and control 



192 

 

Median VAF was significantly higher in pre-myeloid samples (median = 0.15, range = 0.03 - 0.9) compared with 
controls (median = 0.12, range = 0.03 - 0.5). 

 

5.4.4 Prediction of myeloid malignancies by a subset of features 

In clinical practice, we need to select a small number of predictors to model the risk of developing 

myeloid malignancies in healthy individuals. The optimal Elastic-Net regulated COX-PH model was 

used to achieve this using an alpha value of 0.046 and the following 6 features that are listed in 

descending order of coefficient size; (i) number of lesions in myeloid genes, (ii) VAF for JAK2 V617F, 

(iii) RDW, (iv) platelet counts, (v) VAF for SRSF2 P95, and (vi) number of myeloid mCA (Figure 5-6). 

When evaluating the optimal Elastic-Net regulated COX-PH model on test data it achieved a C-index 

of 0.57 which indicates that the model was better at predicting an outcome than random chance. 

 

Figure 5-6: The selection of best COX-PH regularised by the Elastic-Net method 

A) The relationship between C-index and 100 alpha ranged between 0.01 and 1 and the best model has the 
highest alpha. B) The selected best model has only six features with non-zero coefficient. 

 

5.4.5 Prediction of myeloid malignancies by machine learning model 

Machine learning models have the benefit of utilising high dimensional data. A Random Survival Forest 

model comprising 1000 trees and default parameters for the minimum number of samples in a leaf 

node (n=15) and  splitting an internal node (n=10) was the most predictive which achieved a C-index 

of 0.78 and attributed the largest weights to platelet indices and number of lesions (myeloid genes) 

(Figure 5-7 and Figure 5-8). 
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Figure 5-7: Top 20 features according to importance in the random survival forest model 

Platelets indices and the number of lesions in myeloid genes were given the largest weights in the random 
survival model. 

 

Three gradient-boosted models were evaluated under a range of different estimators for each model 

(i) Cox’s partial likelihood with regression trees (ii) component-wise least squares base (iii) Accelerated 

Failure time model (Figure 5-8). The performance increase was much faster for the Cox’s partial 

likelihood with regression trees which attained a larger C-index with 100 estimators (C-index = 0.76) 

than the component-wise least squares base (C-index = 0.7), and Accelerated Failure Model (n = 0.69) 

at the same number of estimators (Table 5-5). 
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Figure 5-8: Evaluation of the gradient boosting models under three different base learners in 

comparison to number of estimators 

Gradient boosting models were used to enhance 3 different base learners. The performance of each model was 
evaluated under a range of different estimators with intervals of 10. Cox’s partial likelihood with regression trees 
learner (A) had the best performance and fastest increase in C-index at the lowest number of estimators in 
comparison to other models (B) and (C) 

 

 

Table 5-5: The performance of models used in predicting the risk of myeloid malignancies and 

evaluated on the test data in the UK Biobank 

Model 
Parameters C-index 

Elastic-Net regularised Cox-PH Alpha=0.046 0.57 

Random Survival Forest n=1000 trees 0.78 

Gradient boosted models 

Cox’s partial likelihood with regression trees 
learner 

n-estimators=100 0.76 

Component-wise least squares base n-estimators=100 0.70 

Accelerated Failure time n-estimators=100 0.69 

 

In survival models, the risk of the disease is not fixed but changes over time. At every time point, there 

are participants who developed a myeloid neoplasm before this time point, and there are participants 

who did not develop the disease yet. Consequently, the survival model performance becomes time 

dependent. I estimated the area under ROC for each model on test data at time intervals of 0.5 year 

across the study period, as shown in Figure 5-9. The time dependent AUC achieved the best 



195 

 

performance with AUC of 0.64 at 6 years after recruitment (Figure 5-9). The random survival forest 

shows the best performance at all time points. In addition, all the tested models showed an expected 

decrease in performance with increasing time. 

 

Figure 5-9: Time-dependent area under the ROC of three models evaluated to predict the risk of 

myeloid malignancies. 

Each point presents the relationship of area under the ROC evaluated at time intervals of 0.5 years (years from 
enrolment) and estimated in the test data. The Random Survival Forest model (B) showed the best performance 
across all the time points in comparison to Elastic-Net regularised COX-PH model (A), and gradient boosted COX’s 
partial likelihood (C). The performance of the ML models gradually decreased with increase of time from 
enrolment, as shown in (D). 
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5.5 Discussion 

5.5.1 Models to predict the development of myeloid neoplasms 

Several studies have reported the utility of CH in predicting the risk of myeloid malignancies in healthy 

individuals. These studies collectively proved that the risk of developing myeloid neoplasms was 

significantly associated with acquiring mutations in myeloid related genes with relatively high VAF. In 

addition, the number of lesions was a predictor for myeloid malignancies [42,86,87]. The UK biobank 

provides the opportunity to assess CH defined by both mCA from SNP array data, and driver mutations 

from WES data. In my analysis, a COX-PH model was regularised with Elastic-Net method to control 

the high dimensionality of the data by adding a penalty to coefficients that shrink coefficients to 

almost zero, and to select a subset of features to predict myeloid malignancies. The optimisation of 

the regularised COX-PH model produced a model that included six features with the number of 

myeloid targeted genes as the best predictor. Other features include RDW, platelet counts, JAK2 

V617F, SRSF2 P95, and number of lesions (myeloid mCA).  Using time-dependent area under the ROC 

analysis of the raw values of the six features (without fitting a model, Figure 5-10), the number of 

lesions (myeloid genes) have similar performance to RDW, a known chronic inflammation marker 

associated with CH [10], and an independent predictor for MDS [162].  
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Figure 5-10: Time-dependent area under the ROC of six features selected by best model of Elastic-

Net regularised COX-PH 

Real-valued features, without fitting a survival model, were used to estimate the performance (area under the 
time-dependent ROC) of each feature at different time points. Number of lesions (myeloid genes) and RDW were 
the most discriminative features. 

 

The best model of regularised COX-PH had a low performance when evaluated on test data that 

achieved C-index = 0.57, and time-dependent AUC ranges between = 0.54 and 0.64 during the study 

time. ML models were developed to handle censored data, which allowed the extension to survival 

analysis with capability to handle high dimensionality of data. All tested ML models achieved better 

performance in comparison to the regularised COX-PH model, but the RSF model was the best 

predictor in test data C-index=0.78, and AUC ranging between 0.9 and 0.74 at 2 years and 12.5 years 

from recruitment, respectively. In general an AUC between 0.7 to 0.8 is considered acceptable, 0.8 to 

0.9 is considered excellent [340]. For prediction, data from individual patients is assigned to each tree 

in the forest to reach a terminal node. A predictive risk score is the average of risk scores calculated 

across all trees, as the number of expected events at each terminal node. Platelet indices, and the 

number of lesions (myeloid genes) have the highest weight in the model. For example, individuals with 
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three mutated myeloid genes have a much higher score in comparison to individuals with no mutated 

genes (Figure 5-11). In addition, we can notice that the predicted survival probability of individuals 

with three mutated genes is less than 80%, and 55% after 5 and 10 years, respectively. On the other 

hand, the selected controls with no mutations have a predicted survival probability of > 90% across all 

the study time. Clearly the predictive power of the model needs to be validated in an independent 

cohort, and this could be achieved using the remaining 250,000 UK Biobank participants for whom 

WES data has been released since my analysis was performed. 

 

Figure 5-11: Predicted survival plot of 4 selected subjects according to number of lesions (myeloid 

genes) using RSF model 

The survival plot shows 4 individuals. Two pre-myeloid subjects (pre-myeloid 1, and pre-myeloid 2) were chosen 
randomly from individuals with 3 lesions in myeloid genes. They developed myeloid malignancies after 2.05 and 
3.02 years, respectively. Two controls (control 1, and control 2) were chosen randomly from individuals with no 
clonal lesions. They had follow-up time of 5.6 and 11.35 years, respectively. Survival portability at specific time 
point, is the mean value computed from all trees across the ensemble at the selected time point. 

 

My analysis was based on using all features, driver mutations, mCA, blood counts, blood biochemistry, 

and lifestyle to build a model to predict myeloid malignancies, using the capability of ML models to 

handle high dimensional data. Other frameworks could be implemented but with higher 

computational and time cost. Ensemble-based integrative framework could be implemented by 

building separate models for, genetic data, blood biomarkers, and lifestyle factors. Next, the three 

models could be integrated by using different methods that include bagging, stacking, and blending 

[341]. 
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In my model, predicted risk scores are largely dependent on platelet indices and number of lesions in 

myeloid genes. This suggests that platelet counts in particular should be recommended for follow up, 

e.g. by 6 monthly or annual blood tests. Overall, my study has highlighted that a small number of 

features that can predict myeloid malignancies. In addition, ML survival models can deal efficiently 

with large information combining both CH and other healthcare data in a single model with much 

higher performance in comparison to the traditional COX-PH models.  The performance of the COX-

PH model (C-index = 0.57) falls behind the previously published models that used CH to predict 

myeloid malignancies [42], but the best model, RSF model, had C-index 0.78 that was comparable with 

the previous study [42]. In addition, the performance of my model was likely negatively affected by 

the heterogeneity of myeloid malignancies that I included, and potentially by the low depth of-

coverage of WES compared to targeted sequencing. To the best of my knowledge, no previous model 

has used biochemistry markers to predict myeloid malignancies in healthy individuals. My findings 

highlight the significant value of evaluating kidney function to stratify the risk of myeloid malignancies. 

 

5.5.2 Strengths and limitations 

Our definition of myeloid malignancies is based on aggregating data from different resources in the 

UK Biobank. However, the completeness of these resources varies in terms of the number of subjects 

with data and the date of last reported information. For example, primary care data was only available 

for 45% of the cohort, and cancer registry data was last updated in 2016. Although, these resources 

complement each other, we opted to exclude subjects that were diagnosed within one year of 

recruitment to minimise the number of undiagnosed cases.  In addition, the UK Biobank cohort has a 

“healthy volunteer” bias and achieved a low recruitment response rate of only 5.5% [287,342,343]. 

Another kind of bias could occur due to high proportion of MPN (n=321) among our pre-myeloid 

subjects (n=726); other components were AML (n=155), MDS (n=141), and others (n=109). JAK2 V617F 

is the most common somatic mutation in MPN [344], which may explain the high weight for platelet 

indices (1st and 2nd), and JAK2 V617F (4th) in the RSF model. The prevalence of MPN in the UK Biobank 

might be explained by the fact that participants were recruited by invitation. It is notable that other 

cohorts have markedly different structures, for example a study of CH in the Biobank Japan included 

215 subjects with myeloid malignancies: AML (n=90), MDS (n=100), MPN (n=5), and others (n=20) 

[86].  The median follow-up of our study was 11.7 years, and the median time to diagnosis was 7.1 

years after recruitment. This is similar to the study to predict the risk of AML (median diagnosis = 7.6 



200 

 

years) [42]. Survival analysis deals with unfixed status of the disease across time such that the AUC 

varies according to time. In my analysis, the performance of the tested models decreased with follow-

up time, so I expect that there will be no significant improvement in the models by increasing the 

follow-up time. Improvements in the predictive power of the model might have been improved by 

sequential molecular analysis to monitor changes in clone size over time and the appearance of new 

mutations, but the UK Biobank was limited to analysis of a single baseline sample. Finally, I considered 

myeloid malignancies as a single group and it will be important to break down predictive factors for 

AML, MDS and MPN as specific entities. 

My study demonstrates the importance of blood measures in addition to CH to predict the risk of 

myeloid malignancies. For example, cystatin-C is a kidney function biomarker, and glomerular 

filtration rate (GFR), estimated from cystatin-C, was negatively associated with CH as showed in 

Chapter 4 [203]. In the random survival forest model, cystatin-C has the highest weight among 29 

blood biochemistry measures and 5th among all features to predict the risk of myeloid malignancies. 

Regarding the applied models, my analysis provided enough evidence for the superior performance 

of ML models, specifically RSF, over traditional COX-PH, however my analysis was restricted to the 

available ML models in the scikit-survival package. Other ML models could be tested such as Extreme 

Gradient Boosting (XGB), that uses decision trees in a gradient boosting model to support the decision, 

and is widely used in health settings [345]. Our models were evaluated by two methods: Harrell’s C-

index, and time-dependent AUC, and a permutation based-method implemented in Eli5 package was 

used to detect features that were important in the random survival forest model, but other tools could 

be applied to explain the model such as SHapley Additive exPlanations (SHAP) values , a method that 

calculates a value for each feature to explain the model [346]. This method was not compatible with 

RSF model developed by scikit-survival. As mentioned above, the true value of the models needs to 

be evaluated using an independent validation cohort of patients. 

In summary, my study has shown that the use of ML models allows the integration of available data 

and generation of a model with good performance to predict the risk of myeloid malignancies, 

although with decreasing predictive value with increasing of follow-up time. An extension of my 

analysis could include the development of specialised models for predicting the risk of myeloid 

malignancies subclasses, AML, MPN, and MDS. 
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Chapter 6 Sex hormone binding globulin promotes the risk 

of age-related loss of the Y chromosome 

6.1 Summary 

Mosaic loss of the Y-chromosome (LOY) is the most common somatic alteration in men and a marker 

of clonal mosaicism. I aimed to assess the relationship between LOY and serum biomarkers in the UK 

Biobank (n=222,835 men; 44,558 with LOY) and explore the interaction with genetic factors. LOY was 

strongly associated with levels of sex hormone binding globulin (SHBG, β=0.11, PFDR=2.34x10-86), a key 

regulator of testosterone bioavailability associated with diverse disorders including cancer and 

autoimmune diseases. Furthermore, LOY was associated with total testosterone (TT, β=0.09, 

PFDR=6.8x10-56), but not bioavailable testosterone (PFDR=0.11) or free testosterone (PFDR=0.06). 

Mendelian randomisation indicated a causal effect of SHBG on LOY in the BioBank Japan using 8 SNPs 

(P=6.58x10-4). There was no evidence for a causal effect of LOY, defined by 40 SNPs, on SHBG (P=0.46). 

Assessment of cis-eQTLs for 13 genes associated with LOY identified two that were also associated 

with levels of SHBG, however only rs7141210 (imprinted DLK1-MEG3 locus) modified the relationship 

between SHBG and LOY (rs7141210-T/T; Pinteraction=0.04) with low levels of SHBG seen specifically in 

men without LOY (β=-0.02, P=0.001), but not those with LOY (P=0.41). CH defined by somatic driver 

mutations was not associated with sex hormone levels but was associated with LOY defined as >30% 

of cells (OR=1.52, P=2.92x10-4) and was even stronger for CH without discernible driver mutations 

(OR=2.46, P=5.09x10-34). TET2, TP53, and CBL mutations were enriched in LOY cases defined as >30% 

of cells, but not DNMT3A and ASXL1 mutations. My findings thus characterise the relationship 

between LOY, sex hormones and CH, and highlight an independent role for SHBG mediated by DLK1-

MEG3. 
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6.2 Introduction 

Age-related somatic loss of the Y-chromosome (LOY) in peripheral blood leukocytes is the most 

prevalent chromosomal alteration in men.[76] LOY has been identified in as many as 20% of the UK 

Biobank male participants (median age = 58), but only 10% of these (2% of all men) had LOY 

involving >20% of leukocytes [80,347,348]. A series of genome wide association studies (GWAS) have 

characterised inherited genetic variation that predisposes to LOY,[76,80,347] with 156 independent 

loci explaining up to 34% of the heritability [80,349]. LOY has also been causally linked to smoking 

behaviour [76,77,347], indicating that the environment as well as genetics is an important factor. LOY 

is associated with all-cause mortality, cancer mortality [76,350,351], and a wide range of non-

malignant conditions [76,234,352-354]. LOY is also associated with variation in blood cell counts 

[348,355] and has long been recognised as a recurrent clonal cytogenetic finding in haematological 

malignancies where, in the absence of other changes, it is associated with a good prognosis [121]. LOY 

with large clone size has been linked to the presence of somatic mutations associated with 

haematological malignancies and an elevated risk of developing myeloid neoplasia in two recent, small 

studies of selected cases [356,357]. It has been suggested that LOY might be a broad marker of 

genomic instability across different tissues and may exert its effects by altering immune cell function 

[80,358]. 

 

CH is a widespread phenomenon characterised by the presence of expanded mutated clones of blood 

cells [293], predominantly in individuals over the age of 60. Large autosomal chromosomal alterations 

including gains, losses and copy number neutral loss of heterozygosity (CNN-LOH) inferred from SNP 

array data have been used to identify clonality [6,7], but CH is more commonly recognised by sequence 

analysis and the finding of pathogenic driver mutations associated with haematological malignancies, 

most commonly in the epigenetic regulators DNMT3A, TET2, and ASXL1 but also a wide range of other 

genes [8-10,37,89,169,359]. Broad screens by whole exome sequencing (WES) or whole genome 

sequencing (WGS) have revealed that clonality in the absence of known driver mutations (unknown 

driver CH) is even more prevalent than CH with driver mutations [9]. Like LOY, CH has been linked to 

a wide range of malignant and non-malignant diseases [10,89,203,294,295,325,360]. Most 

prominently, CH defined by autosomal chromosomal alterations or driver mutations confers a 10-fold 

higher risk for the development of haematological malignancies, and recent studies showed a lineage-

specific risk for mutations in genes associated with myeloid or lymphoid neoplasms [86,361]. The 

clinical consequences of unknown driver CH have not been defined, and the reason for clonality in 
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these cases remains unclear. Furthermore, the extent to which mosaic LOY can be considered as CH 

has not been defined. 

 

Although age is the major risk factor for both CH and LOY, it has become clear that there is significant 

overlap between genetic factors that predispose to both of these abnormalities. However this shared 

risk is complex, for example the T allele of rs2887399, located in the promoter of TCL1A at 14q32, is 

associated with a lower risk of LOY [78] as well as a lower risk of common forms of CH defined by 14q 

CN-LOH and TET2 mutations [253,362]. This allele, however, is associated with an elevated risk of CH 

defined by DNMT3A mutations [363,364]. Broadly, inherited variants in cancer susceptibility genes 

and genes that are mutated in cancer feature prominently as risk factors for both CH and LOY 

[80,169,263,347,349,365]. As for external factors, prior chemotherapy is associated with CH 

characterised by PPM1D and TP53 mutations [281], whereas smoking is associated with ASXL1 

mutations as well as LOY [202]. 

 

It is widely accepted that biochemical profiles change with age in a manner independent of specific 

disease states, for example ageing is associated with depletion of sex hormones [366]. Sex hormone 

binding globulin (SHBG) is a glycoprotein that binds to steroids with high affinity, with both 5α-

dihydrotestosterone and testosterone binding much more strongly than oestradiol [367]. In men, 

circulating testosterone levels are regulated by SHBG, with on average 58% bound to SHBG, 40% 

bound to albumin, and 2% as free testosterone (FT) [368,369]. Binding to albumin is weak and so all 

non-SHBG-bound testosterone is considered as bioavailable testosterone (BAT) [370]. Ageing is 

associated with a decline in TT, FT and BAT and an increase in SHBG [366]. In this study I aimed to 

determine if any common biochemical measures, including sex hormone levels, are associated with 

LOY and to understand the interaction between genetic and biochemical factors. 
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6.3 Methods 

6.3.1 Study cohort 

The UK Biobank is a large prospective cohort described in detail elsewhere [178] involving 

approximately 500,000 individuals aged between 40 and 69 years at recruitment. Genome wide SNP 

data derived from peripheral blood leucocytes was available for most participants, and WES data for 

200,631 participants at the time of analysis.  

6.3.2 Mosaic loss of the Y chromosome 

A previous study used the UK Biobank SNP data to identify males with mosaic LOY (n=44,588; 20% of 

evaluable males) using a method which compared allelic intensities for statistically phased haplotypes 

of the pseudo-autosomal region 1 (PAR1) [80]. This method for detecting LOY was considered to be 

less error prone than those based on the median genotyping intensity over the non-pseudoautosomal 

region of the Y chromosome and was able to detect mosaicism with a clonal fraction down to 1% 

[80,253]. The spectrum of LOY was categorised according to clonal fraction by considering the median 

change of B-allele frequency (BAF), specifically BAFs of 0.026, 0.056, and 0.088 corresponding to clonal 

fractions of 10%, 20%, 30%, respectively as described [78]. 

6.3.3 Biochemistry markers and sex hormones 

Measurements of 29 biochemistry markers were available from serum samples collected on 

recruitment to the UK Biobank [178]. Mass action equations were used to calculate FT and BAT from 

measurements of SHBG, TT and albumin as described [371]. Further details regarding the biochemical 

assay methods and external quality assurance are available at 

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf. 

 

6.3.4 The relationship between biochemistry markers and LOY  

I focused on the subset of male UK Biobank participants who were evaluable for LOY assessment 

(n=222,835) [80]. The relationship between LOY and each of 31 biomarkers (29 measured and 2 

calculated) was tested using multivariable linear regression in R. Continuous measures for each sex 

hormone were transformed into a normal distribution using inverse normal rank transformation and 
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used as the dependant variable. The independent variables were LOY as a binary predictor, age, 

smoking status (never, previous, current), and the first 10 genetic principal components (10 PCA). 

Effect sizes were reported as beta coefficients (β) with 95% confidence intervals (95% CI). P-values 

were adjusted for 31 tests using the False Discovery Rate (FDR) method [258]. The average measure 

of sex hormones in participants with LOY were compared to those in LOY free controls using Mann–

Whitney U tests. 

6.3.5 Allelic SHBG score  

Thirteen genetic variants were associated with circulating SHBG levels by a previous two-stage GWAS, 

including 10 variants that achieved genome wide significance plus 3 independent cis variants that 

were identified by conditional analysis of the SHBG gene [372]. After excluding one SNP with 

heterogeneity towards females (P = 0.02, rs440837) and a second SNP on the X-chromosome 

(rs1573036), 11 SNPs were considered in relation to LOY. To consider both precision and power, two 

allelic scores were constructed. The first consisted of all 11 SNPs (rs12150660, rs1641537, rs1625895, 

rs6258, rs17496332, rs2411984, rs293428, rs780093, rs7910927, rs8023580 and rs4149056) while the 

second was based only on the 4 SNPs located in the vicinity of SHBG (rs12150660, rs1641537, 

rs1625895 and rs6258). Each score was calculated as the sum of number of risk factor-increasing 

alleles per SNP weighted by their corresponding genetic effect size. The allelic scores were calculated 

using Plink V1.9,[255] and transformed into a normal distribution using inverse normal rank 

transformation. A multivariable logistic regression model adjusted for age, sex, smoking status and 10 

PCA was used to assess the relationship between LOY status (binary, dependent) and SHBG allelic 

scores (independent, continuous). 

6.3.6 Mendelian Randomisation 

Mendelian randomisation (MR) was used to assess the possibility of a causal relationship between 

SHBG and LOY using germline SNPs associated with circulating SHBG as instrumental variables, 

following the STROBE guidelines [320]. Eight SNPs were used as instrumental variables without 

considering estimated genetic effect sizes for LOY in 95,380 men recruited to the BioBank Japan (BBJ) 

[81]. Three of the eleven SNPs that were used to generate the allelic score (rs12150660, rs6258 and 

rs2411984) were excluded as genotypes were unavailable and/or non-informative in BBJ. I applied an 

inverse variance weighted model (IVW) with fixed effect using the TwoSamplesMR package [242]. To 

explore the effect of SNP selection, I repeated the MR analysis using a genome wide significance 
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threshold (P < 5x10-8) to select four SNPs (rs1641537, rs1625895, rs293428 and rs7910927) associated 

with SHBG [372]. I also performed leave-one-out analysis to evaluate the effect of each SNP on the 

analysis. To assess the effect of LOY on SHBG levels I examined SNPs (n=50) previously associated with 

LOY [81] in BBJ. 10 SNPs were excluded as genotypes were unavailable and/or non-informative in the 

UK Biobank. The remaining 40 SNPs were used as instrumental variables without considering 

estimated genetic effect sizes for SHBG in the UK Biobank men. 

6.3.7 Identification of CH 

A propensity score matching method in R [335] was used to select one control per case and to match 

for age in comparison to participants with LOY. Somatic mutations were called in LOY samples and 

matched controls using GATK (Version 4.1.9) and Mutect2 [336] to process individual CRAM files in 

the tumour-only mode. Following best practice guidelines (https://gatk.broadinstitute.org/hc/en-

us/articles/360035531132), a Panel Of Normal (PON; version 23rd August 2017) from the Broad 

Institute that were generated using Mutect2 on samples from the 1000 genomes project to identify 

recurrent artifacts, and germline variants from GnomAD were used to remove artefacts and germline 

variants. To identify putative somatic driver mutations, the analysis was restricted to rare variants 

with a minor allele frequency (MAF) <0.01 in GnomAD and a minimum number of reads supporting 

the mutated allele: 3 reads for point mutations and 6 reads for indels. Variants that satisfied either of 

the following two criteria were selected: first; recurrent driver mutations as defined in Chapter 4, 

second  singleton variants that passed all Mutect2 filters with variant allele frequencies (VAF) between 

0.1 and 0.2 [9]. Driver mutations were classified into myeloid or lymphoid according to a published list 

of genes associated with myeloid neoplasms (n=76) [89] and genes associated with acute 

lymphoblastic leukaemia or chronic lymphocytic leukaemia in the Cancer Gene Census (CGC),[337] 

respectively (Table 6-1). Participants with variants in myeloid genes were considered as having 

myeloid CH (n= 2,890), and those with variants in lymphoid genes as having lymphoid CH (n=532). 

Cases with mutations in genes involved in both myeloid and lymphoid neoplasms were considered as 

myeloid CH. To identify participants with evidence of clonality in the absence of pathogenic mutations 

in known driver genes, I also identified variants in all coding genes that were not defined as myeloid 

or lymphoid. Participants with singleton variants in any gene with VAF range between 0.1 and 0.2 not 

defined as myeloid or lymphoid were considered as having unknown driver CH (n=15,874).  

https://gatk.broadinstitute.org/hc/en-us/articles/360035531132
https://gatk.broadinstitute.org/hc/en-us/articles/360035531132
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Table 6-1: Genes used to define myeloid CH and lymphoid CH 

Myeloid 

genes 

ASXL1,ASXL2,BCOR,BCORL1,BRAF,BRCC3,CBL,CBLB,CEBPA,CREBBP,CSF1R,CSF3R,CTCF 

CUX1,DNMT3A,EED,EP300,ETNK1,ETV6,EZH2,FLT3,GATA1,GATA2,GATA3,GNA13,GNAS, 

GNB1,IDH1,IDH2,IKZF1,IKZF2,IKZF3,JAK1,JAK2,JAK3,KDM6A,KIT,KRAS,LUC7L2,MLL,MLL2, 

MPL,NF1,NPM1,NRAS,PDS5B,PDSS2,PHF6,PHIP,PPM1D,PRPF40B,PRPF8,PTEN,PTPN11, 

RAD21,RUNX1,SETBP1,SETD2,SETDB1,SF1,SF3A1,SF3B1,SRSF2,SMC1A,SMC3,STAG1, 

STAG2,SUZ12,TET2,TP53,U2AF1,U2AF2,WT1,ZRSR2,CALR 

Lymphoid 

genes 

ABL1,AFF3,AFF4,BCL11B,BCL9,BCR,CCNC,CCND1,CDK6,CDKN1B,CNOT3,CRLF2,DNM2, 

ECT2L,ELN,EPS15,EWSR1,FBXW7,FCGR2B,FOXP1,HLF,IGH,IL7R,IRS4,KMT2A,LCK,LEF1, 

LMO1,LMO2,LYL1,LYN,MLLT11,MLLT3,MYCL,NCKIPSD,NOTCH1,NT5C2,NUP214,OLIG2, 

P2RY8,PAX5,PBX1,PICALM,PML,PTPRC,RAP1GDS1,RB1,RPL10,RPL5,SET,SH2B3,SMAD4, 

STIL,TAF15,TAL2,TBL1XR1,TCF3,TFPT,TLX1,TLX3,TRA,TRB,ZNF384,ZNF521,BCL11A,BCL2, 

BCL3,BCL6,BIRC3,BTG1,BTK,CCND2,CHD2,CHST11,DDX3X,FAT1,FSTL3,LRP1B,MAPK1, 

MYC,NFKBIE,POT1,TCL1A,XPO1,ABCA12,ACSL3,ATM,CCND3,CCR7,DYRK1A,FGFR2,FOXO3, 

GPR158,HIST1H1C,ITPR2,KMT2C,KMT2D,LRP5,MST1,MYD88,NFE2,PTPRA,RBBP4,RPS3A, 

SIN3A,STAT3,STAT5B,TMEM30A,VMA21,VSTM4,ABCD2,AKAP11,BTBD10,CACNA1C, 

CARD11,CCDC18,CD70,CD79B,CHL1,CROCC,CRTC1,CTSS,CWH43,CXXC1,FBXO7,FNDC3B, 

FRYL,GABRG3,GRID2,HERC2,HNRNPCL1,IGLL5,IRF4,ITGA1,ITIH5,KIF3A,KIF5B,KLHL6, 

KLHL7,MED12,MTFR2,NLK,NOTCH2,PABPC1,PIM1,PLSCR1,POSTN,POU2F2, 

PSMD10,RPL37,SLC16A7,SLC17A6,TBC1D32,TPR,TUBB2A,VAV1,ZYG11B 

 

6.3.8 The relationship between LOY and CH 

The association between LOY and all variants, driver variants, myeloid CH, lymphoid CH, and unknown 

driver CH were tested using logistic regression in R. I further assessed the relationship with LOY clone 

size categories (≤10%, 10%-20%, 20%-30%, and >30%) using Fisher’s exact tests. The strength of the 

association was reported as odds ratio (OR) with 95% CI. P-values were adjusted for 20 tests using the 

FDR method. To test the relationship at the individual driver gene level, the analysis was focused on 

genes mutated in ≥3 males with LOY in >30% of cells. 
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6.3.9 Assessment of the co-existence of LOY and CH 

The co-existence of CH and LOY was tested by assessing the relationship between the BAF for LOY and 

VAF of driver mutations. For cases with two or more mutations the highest VAF was used. To avoid 

excess CH with VAF between 0.1-0.2, the analysis for myeloid and lymphoid CH was restricted to VAFs 

detected for recurrent driver mutations as defined in chapter 4. I assessed the relationship with LOY 

in ≤10% and >10% of cells. The dependent variables were VAF, age and smoking status (never, 

previous, current). The strength of the association was reported as β coefficient with 95% CI. P-values 

were adjusted for 6 tests using the FDR method. 

6.3.10 The relationship between CH and sex hormones 

The association between CH and sex-hormone levels were tested using linear regression in R, with 

normally transformed sex hormone as the independent variable. The dependent variables were driver 

mutation state as a binary predictor, age, smoking status (never, previous, current), and 10 PCA. The 

association was reported as β coefficient with 95% CI. P-values were adjusted for 4 tests using the FDR 

method. 

6.3.11 Expression quantitative trait analyses 

The eQTLGen database incorporates expression quantitative trait locus (eQTL) data from blood 

samples from a total of 31,684 individuals [373]. To select a genetic proxy for gene expression, I 

filtered cis-eQTLs within a distance <1 Mb, and FDR < 0.05 and selected the SNP with the smallest FDR 

value, with no other genes showing a stronger association with the selected SNP to minimise 

horizontal pleiotropy. I restricted the analysis to directly genotyped SNPs with MAF >0.05 in the UK 

Biobank. 19 SNPs associated with LOY were associated with 27 genes by position, biological function, 

expression, or nonsynonymous variants in the gene [347]. My analysis was restricted to 13 of these 

genes for which an expression proxy was identified. 

6.3.12 The assessment of the interaction between eQTL, LOY and SHBG levels 

The most significant eQTL SNP for each gene was encoded according to an additive model for the risk 

allele (0/1/2) in the UK Biobank and was factorised in each model with 0 as the reference (0/1 for 

heterozygous, and 0/2 if homozygous for the risk allele). The following statistical tests were applied, 

and adjusted for age, smoking, 10 PCA, and multiple tests by the FDR method. First, the relationship 
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between each eQTL and LOY was assessed using logistic regression in R where LOY (binary) was the 

dependent variable and eQTL was the independent variable. Second, the relationship between eQTLs 

and SHBG levels was assessed using linear regression in R where SHBG (continuous) was taken as the 

dependent variable and transformed to a normal distribution using rank transformation, and eQTLs 

were the independent variable. Finally, if an eQTL was significantly associated with both LOY and 

SHBG, the interaction effect of the eQTL and LOY on SHBG regression was assessed by linear regression 

in R. Inverse normal rank transformed SHBG was considered as a continuous dependent variable, and 

each of eQTL, LOY, and eQTL x LOY (interaction effect) as the independent variable.  To visualise the 

interaction effect in my models, I used ‘interactions’ in R, a tool that was developed to interpret 

statistical interactions in regression models [374]. 
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6.4 Results 

6.4.1 The relationship between LOY and biochemistry markers 

To investigate the relationship between LOY and serum biomarkers, I used previously published calls 

of LOY that were generated by utilizing long-range phasing information to analyse allele-specific 

genotyping intensities of 1,239 variants in the pseudo-autosomal region 1 [80]. I restricted my analysis 

to the 222,835 males who passed QC, of whom 44,558 (20%) had LOY. Of these, the majority 

(n=31,952; 72%), had an estimated LOY clonal fraction of <10%. I compared the presence or absence 

of LOY with 29 biochemistry parameters that were directly measured by the UK Biobank, as well as 

estimated levels of FT (median = 0.21 nmol/L; range = 0.003 - 1.93) and BAT (median = 5.1 nmol/L; 

range = 0.09 - 45.68) that were derived from measurements of SHBG, TT and albumin [375]. 

 

On multivariate analysis adjusted for age, sex, 10 PCA, smoking and multiple tests, I found that LOY as 

a binary predictor was most strongly associated with elevated levels of SHBG (β = 0.11, 95% CI: 0.10 - 

0.12, P = 2.34x10-86). SHBG binds steroids [367] and it is notable that the second strongest positive 

association was with TT (β = 0.09, 95% CI: 0.08 - 0.10, P = 6.80x10-56). There was no association, 

however, between LOY and FT (P = 0.06) or BAT (P = 0.11) (Figure 6-1 and Table 6-2). Participants with 

LOY had higher levels of SHBG and TT (SHBG: median nmol/L = 41.54 vs 35.86, P < 0.001; TT: median 

nmol/L = 11.74 vs 11.58, P < 0.001; Mann-Whitney U tests) but lower levels of FT (median nmol/L = 

0.19 vs 0.20, P < 0.001), and BAT (median nmol/L = 4.78 vs 5.18, P < 0.001). My observational results 

points to a direct relationship between levels of SHBG and LOY, that cannot be explained by age, 

smoking, population stratification, or free/bioavailable testosterone (Figure 6-2). 
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Figure 6-1: The relationship between LOY and biochemistry markers 

The relationship between LOY and each of 31 biomarkers (29 measured and 2 calculated) was tested using 
multivariable linear regression in R in 222,835 UK Biobank males. 

 

Table 6-2: Linear regression results of LOY against 31 biochemistry markers. 

  Coefficient 95% confidence intervals P(FDR) 

SHBG 0.11 0.10 0.12 2.34 x 10-86 

Testosterone 0.09 0.08 0.10 6.80 x 10-56 

HDL cholesterol 0.07 0.06 0.08 1.59 x 10-30 

Apolipoprotein A 0.04 0.03 0.06 2.37 x 10-13 

Vitamin D 0.04 0.03 0.05 5.27 x 10-12 

IGF-1 0.04 0.02 0.05 5.41 x 10-10 

Phosphate 0.04 0.02 0.05 1.01 x 10-8 

Oestradiol 0.02 -0.02 0.06 0.33 

Free Testosterone 0.01 0.00 0.02 0.06 
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Glycated haemoglobin (HbA1c) 0.01 0.00 0.02 0.07 

Bioavailable Testosterone 0.01 0.00 0.02 0.11 

Lipoprotein A 0.01 0.00 0.02 0.26 

Total protein 0.01 -0.01 0.02 0.37 

Calcium 0.00 -0.01 0.01 0.74 

Direct bilirubin -0.01 -0.02 0.01 0.37 

Urea -0.01 -0.02 0.00 0.26 

Albumin -0.01 -0.02 0.00 0.18 

Alkaline phosphatase -0.02 -0.03 0.00 0.01 

Cholesterol -0.02 -0.03 -0.01 4.79 x 10-3 

C-reactive protein -0.02 -0.03 -0.01 4.28 x 10-3 

LDL direct -0.02 -0.03 -0.01 8.01 x 10-4 

Total bilirubin -0.02 -0.03 -0.01 7.55 x 10-5 

Glucose -0.03 -0.04 -0.02 5.33 x 10-7 

Creatinine -0.03 -0.05 -0.02 1.92 x 10-9 

Apolipoprotein B -0.04 -0.05 -0.03 1.93 x 10-10 

Aspartate aminotransferase -0.04 -0.05 -0.03 2.51 x 10-11 

Cystatin C -0.04 -0.06 -0.03 3.67 x 10-16 

Alanine aminotransferase -0.07 -0.08 -0.06 1.62 x 10-31 

Gamma glutamyltransferase -0.07 -0.09 -0.06 3.70 x 10-37 

Urate -0.08 -0.09 -0.07 1.99 x 10-43 

Triglycerides -0.10 -0.11 -0.09 1.34 x 10-71 
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Figure 6-2: The relationship between LOY and levels of sex hormones 

The box plots summarise serum sex hormone measurements in participants without LOY (n=178,277) and with 
LOY (n=4,458). SHBG: median nmol/L = 41.54 vs 35.86, P < 0.001; TT: median nmol/L = 11.74 vs 11.58, P < 0.001; 
FT: median nmol/L = 0.19 vs 0.20, P < 0.001; BAT: median nmol/L = 4.78 vs 5.18, P < 0.001. 

6.4.2 The relationship between genetically defined SHBG and LOY 

Published GWAS have identified multiple genetic determinants of SHBG levels in serum [372]. To 

understand the relationship between LOY and SHBG I generated allelic scores to summarise the 

genetic variation associated with SHBG and evaluated the scores as predictors of LOY. Since the allelic 

scores were derived from independent cohorts they represent unbiased instruments to assess the 

relationship with LOY in the UK Biobank [224]. I found that genetically predicted SHBG was significantly 
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associated with the finding of LOY in the UK Biobank using the score estimated from 11 independent 

SNPs (OR = 1.02, 95% CI: 1.01 – 1.04, P = 5.59x10-5). 

 

To assess the possibility of a causal relationship between SHBG and LOY I performed MR analysis 

(Figure 6-3). In a liberal analysis, 8 independent SNPs were used to estimate the effect of SHBG on LOY 

(Table 6-3). Using an IVW model with fixed effect I identified a positive causal relationship (β = 0.15, 

95% CI: 0.06 - 0.23, P = 6.58x10-4). In a more conservative analysis restricted to 4 SNPs associated with 

SHBG with P < 5x10-8, the effect of SHBG on LOY was confirmed (β = 0.17, 95% CI: 0.07 - 0.26, P = 

7.28x10-4). Leave-one-out analysis (  
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Table 6-4) found that significance was lost when rs7910927 at 10q21.3 within JMJD1C was excluded 

(liberal analysis: β = 0.08, 95% CI: -0.02 - 0.17, P = 0.13; conservative analysis: β = 0.07, 95% CI: -0.04 - 

0.19, P = 0.22). To assess the possibility of bidirectional effect I utilised 40 SNPs with P < 5x10-8 

associated with LOY in Japanese men [81] to measure their effect on SHBG levels in the UK Biobank 

men [376] but no significant relationship was found (β = 0.02, 95% CI: -0.88 - 0.13, P = 0.46). 

 

 

Figure 6-3: Mendelian randomisation using an inverse variance weighted model to estimate the 

causal relationship between SHBG and LOY 

(A) Liberal analysis using 8 independent SNPs associated with SHBG. The IVW test estimated a 

significant positive effect of SHBG on LOY (P = 6.58x10-4). (B) Conservative analysis using 4 SNPs (P = 

7.28x10-4). (C) analysis using 40 independent SNPs associated with LOY. The IVW test estimated no 

effect of LOY on SHBG (P = 0.46). The line of regression is indicated in blue, and the axes show β 

coefficients for SNP effects on SHBG and LOY. 
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Table 6-3: Mendelian randomization using 8 SNPs associated with SHBG as instrumental variables to assess the causal effect of SHBG on LOY 

SNP 
Position Effect 

allele 

Other 

allele 

Gene β exposure β outcome Se outcome P outcome P exposure Se exposure Main 
analys
is 

strict 
analysis 

rs4149056 12:21331549 T C SLCO1B1 0.03 4.34 x 10-3 0.01 0.5 1.50 x 10-5 6.30 x 10-3 Y N 

rs8023580 15:96708291 T C NR2F2 -0.03 -1.88 x 10-3 4.45 x 10-3 0.65 5.00 x 10-6 5.61 x 10-3 Y N 

rs780093 2:27742603 T C GCKR -0.03 -1.40 x 10-3 4.29 x 10-3 0.72 7.00 x 10-8 5.10 x 10-3 Y N 

rs17496332 1:107546375 A G PRMT6 -0.03 -1.98 x 10-3 4.61 x 10-3 0.69 2.00 x 10-7 5.10 x 10-3 Y N 

rs293428 4:69591782 A G UGT2B15 -0.03 -4.43 x 10-3 4.34 x 10-3 0.33 3.00 x 10-8 5.10 x 10-3 Y Y 

rs7910927 10:65138910 T G JMJD1C -0.05 -0.02 4.26 x 10-3 2.60E-5 1.00 x 10-25 4.59 x 10-3 Y Y 

rs1625895 17:7578115 T C SHBG -0.06 -0.01 0.01 0.35 1.75 x 10-21 6.00 x 10-3 Y Y 

rs1641537 17:7545721 T C SHBG -0.06 -2.88 x 10-3 4.32 x 10-3 0.52 1.20 x 10-24 6.00 x 10-3 Y Y 

exposure represents the information provided by the GWAS of SHBG 

outcome represents the information provided by the GWAS of LOY 

beta coefficient (β), P-value )P) , and standard error (se) 
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Table 6-4: Leave-one-out analysis 

  Analysis with all 8 SNPs Analysis with 4 SNPs 

Excluded SNP Coefficient 95% confidence interval P Coefficient 95% confidence interval P 

rs1641537 0.22 0.11 0.32 1.11 x 10-4 0.30 0.16 0.44 2.70 x 10-5 

rs1625895 0.14 0.06 0.23 9.65 x 10-4 0.16 0.07 0.26 1.09 x 10-3 

rs293428 0.15 0.06 0.23 1.15 x 10-3 0.17 0.07 0.27 1.27 x 10-3 

rs7910927 0.08 -0.02 0.17 0.13 0.07 -0.04 0.19 0.22 

rs17496332 0.15 0.06 0.24 6.55 x 10-4 
   

  

rs4149056 0.15 0.06 0.23 8.72 x 10-4 
   

  

rs8023580 0.15 0.06 0.24 6.61 x 10-4 
   

  

rs780093 0.15 0.07 0.24 5.82 x 10-4 
   

  

All 0.15 0.06 0.23 6.58 x 10-4 0.17 0.07 0.26 7.28 x 10-4 
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6.4.3 The effect of gene expression on the relationship between SHBG and LOY 

A previous GWAS identified 19 genomic regions associated with LOY, all of which were confirmed in a 

subsequent follow up study [80,347] and thus can be considered as robust associations. To try and 

understand the mechanism underlying the relationship between SHGB and LOY I aimed to investigate 

the impact of gene expression in these regions on the relationship between SHBG and LOY. Using the 

eQTLGene [373] database I identified SNPs that serve as valid proxies for the expression of 13 genes 

(ACAT1, BCL2, DLK1, HM13, MAD1L1, QKI, RBPMS, SEMA4A, SENP7, SENP8, SETBP1, SMPD2, TCL1A, 

and TSC22D2) from 13 of the 19 regions.  

 

I found that the heterozygous state of 8/13 eQTLs and the homozygous state of 9/13 eQTLs were 

associated with LOY in the UK Biobank.  The eQTL for TCL1A at 14q32.13 had the strongest association 

with LOY status (rs11849538_G/C, OR = 0.83, 95% CI = 0.80 - 0.85, P = 6.32x10-34; rs11849538_G/G, 

OR = 0.63, 95% CI: 0.56 - 0.69, P = 1.48x10-16), as shown in Figure 6-4 and Table 6-5. Only 2 of the 13 

genes, however, were significantly associated with levels of SHBG as shown in Table 6-6. MAD1L1 at 

7p22.3 was positively associated with SHBG (rs10247428_A/A, β = 0.02, 95% CI = 0.01 - 0.03, P = 

0.003), but this was in the opposite direction to its relationship with LOY. The DLK1-MEG3 eQTL at 

14q32.2 was negatively associated with SHBG (rs7141210-T/T, β = -0.02, 95% CI = -0.03 - 0.007, P = 

0.02) and also negatively associated with LOY (Table 6-5). Of these two signals, only rs7141210-T/T 

modified the relationship between LOY and SHBG (Pinteraction = 0.04) (Figure 6-5, Table 6-7). There was 

no influence of rs7141210-T on TT, FT or BAT (Table 6-8) indicating that the interaction was specific 

for SHBG. 
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Figure 6-4: The relationship between the predicted expression of 13 genes and each of LOY and 

SHBG. 

eQTL SNPs were used as proxies for gene expression and as assessed as predictors for LOY (panel A) and SHBG 
levels (panel B) incorporating age, smoking status, and 10 PCA as covariates. 
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Table 6-5: The relationship between 13 eQTLs and LOY 

  
 

  Heterozygous Homozygous 

Gene SNP Allele 
assessed 

OR 92.5% CI 97.5% CI P OR 92.5% CI 97.5% CI P 

MAD1L1 rs10247428 A 0.94 0.92 0.97 9.64 x 10-6 0.87 0.84 0.90 1.39 x 10-13 

DLK1 rs7141210 T 0.91 0.89 0.93 8.04 x 10-13 0.82 0.78 0.85 1.92 x 10-20 

TCL1A rs11849538 G 0.83 0.80 0.85 6.32 x 10-34 0.63 0.56 0.70 1.48 x 10-16 

SEMA4A rs6701295 C 1.03 1.00 1.06 0.06 1.07 1.04 1.11 1.53 x 10-4 

SENP7 rs7628681 T 1.13 1.10 1.16 8.38 x 10-19 1.24 1.20 1.29 1.71 x 10-30 

SMPD2 rs7773095 C 0.90 0.88 0.93 1.01 x 10-13 0.77 0.73 0.80 1.71 x 10-30 

SETBP1 rs11876015 C 0.95 0.92 0.98 0.00 0.81 0.69 0.95 0.01 

TSC22D2 rs1868673 A 0.99 0.96 1.01 0.34 0.96 0.93 1.00 0.08 

ACAT1 rs12361905 C 0.99 0.96 1.02 0.46 0.95 0.92 0.98 5.17 x 10-3 

BCL2 rs4940576 T 0.99 0.97 1.02 0.65 0.99 0.94 1.05 0.74 

QKI rs1234977 C 1.01 0.97 1.04 0.65 0.97 0.84 1.11 0.70 

HM13 rs6060260 T 0.85 0.83 0.88 5.50 x 10-28 0.70 0.64 0.76 1.13 x 10-17 

RBPMS rs2978263 T 1.03 1.01 1.06 0.02 1.01 0.96 1.07 0.70 
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Table 6-6: The relationship between 13 eQTLs and SHBG 

  
 

  Heterozygous Homozygous 

Gene SNP Allele 
assessed 

β 92.5% CI 97.5% CI P β 92.5% CI 97.5% CI P 

MAD1L1 rs10247428 A 0.01 0.00 0.02 0.06 0.02 0.01 0.04 2.823 x 10-3 

DLK1 rs7141210 T -0.01 -0.02 0.00 0.27 -0.02 -0.04 -0.01 0.02 

TCL1A rs11849538 G -0.01 -0.02 0.00 0.30 -0.03 -0.07 0.00 0.20 

SEMA4A rs6701295 C 0.00 -0.01 0.01 0.78 -0.01 -0.02 0.00 0.27 

SENP7 rs7628681 T 0.01 0.00 0.02 0.51 0.01 0.00 0.02 0.39 

SMPD2 rs7773095 C -0.01 -0.02 0.01 0.78 -0.01 -0.02 0.00 0.55 

SETBP1 rs11876015 C 0.02 -0.03 0.07 0.78 0.01 -0.01 0.02 0.58 

TSC22D2 rs1868673 A 0.00 -0.01 0.02 0.78 0.00 -0.01 0.01 0.58 

ACAT1 rs12361905 C 0.00 -0.01 0.02 0.78 0.00 -0.01 0.01 0.58 

BCL2 rs4940576 T 0.00 -0.02 0.02 0.78 0.00 -0.01 0.01 0.58 

QKI rs1234977 C -0.01 -0.06 0.04 0.78 0.00 -0.01 0.01 0.76 

HM13 rs6060260 T 0.00 -0.01 0.01 0.96 0.01 -0.02 0.03 0.78 

RBPMS rs2978263 T 0.00 -0.01 0.01 0.96 0.01 -0.01 0.03 0.78 
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Table 6-7: The effect of genes expression on the relationship between LOY and SHBG 

  
  Heterozygous Homozygous 

Gene SNP Allele assessed β 92.5% CI 97.5% CI P β 92.5% CI 97.5% CI P 

MAD1L1 rs10247428 A 0.018 -0.005 0.041 0.257 -0.008 -0.040 0.024 0.624 

DLK1 rs7141210 T 0.008 -0.015 0.030 0.507 0.044 0.007 0.080 0.040 
 

 

Table 6-8: The effect of rs7141210-T  on the relationship between LOY and other sex hormones 

  Heterozygous Homozygous 

Gene β 92.5% CI 97.5% CI P β 92.5% CI 97.5% CI P 

Total testosterone 2.73 x 10-3 -0.02 0.03 0.82 0.02 -0.02 0.06 0.30 

Free testosterone -2.36 x 10-3 -0.02 0.02 0.84 -0.02 -0.05 0.02 0.41 

Bioavailable testosterone -3.10 x 10-4 -0.02 0.02 0.98 -0.01 -0.05 0.02 0.54 
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Figure 6-5: The interaction between genetically predicted expression of DLK1-MEG3 and MAD1L1, 

according to LOY status and SHBG levels 

Summary of SHBG values for men with and without LOY for (A) rs7141210 as a proxy for DLK1-MEG3 expression 
and (B) rs10247428 as a proxy for MAD1L1 expression. The interaction effect of each eQTL and LOY on SHBG 
was assessed by linear regression and was significant for rs7141210-T/T (green; left panel) in comparison to 
(C/C, blue). No significant difference was seen between rs10247428 genotypes. 

 

6.4.4 The relationship between LOY and CH 

To assess the impact of somatic driver mutations and other markers of clonality on the relationship 

between SHBG, testosterone and LOY, I first assessed the relationship between somatic variants 

(driver and non-driver) and LOY. WES data was available for 17,759 participants with LOY, of whom 

28% (n=4,981) were estimated to have an LOY clone size ≥ 10% of leucocytes. For comparison, I 

randomly selected the UK Biobank age-matched controls (n=17,702) that were negative for LOY. I 

identified recurrent somatic mutations in driver genes associated with myeloid CH and lymphoid CH, 

plus likely somatic variants in other genes that indicated clonality in the absence of known driver 

mutations, which I refer as unknown driver CH. Overall, the frequency of each CH subtype (myeloid, 

lymphoid, unknown) was similar between cases with LOY and controls. Striking differences emerged, 

however, when LOY was stratified by clone size. All CH (myeloid plus lymphoid plus unknown driver) 

was significantly associated with LOY in ≥ 10% of cells with a clear increase in the strength of the 

association with increasing LOY clone size (10-20% LOY, OR = 1.17, P = 1.81x10-4; 20-30% LOY, OR = 

2.20, P = 4.25x10-27; ≥30% LOY, OR = 3.43, P = 2.42x10-52). Both myeloid CH (OR = 1.42, P = 4.52x10-3), 

and lymphoid CH (OR = 1.93, P = 0.01) were significantly associated with LOY in ≥30% of cells but not 

LOY of smaller clone size. The relationship was most prominent, however, for unknown driver CH (OR 
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= 2.46, P = 5.09x10-34). Full results are presented in Figure 6-6 and Table 6-9. None of the three CH 

subtypes were associated with SHBG or the three measures of testosterone, indicating no effect of 

driver mutations on the relationship between LOY and sex hormones (Table 6-10).  

 

 

Figure 6-6: The relationship between LOY and CH 

LOY was stratified according to the clonal size (<10%, 10%-20%, 20%-30%, and ≥30%) and the proportion of 
participants with CH within each group was compared with controls. (A) myeloid CH, (B) lymphoid CH, (C) 
unknown driver CH. 
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Table 6-9: The relationship between LOY and driver mutations 

  
 

Control LOY OR 95% confidence 
interval 

  

LOY clonal size Driver 
mutations 
(CH) 

No CH CH No CH CH PFDR 

All mutations (myeloid + lymphoid + unknown) <10% 8284 9418 6059 6719 0.98 0.93 1.02 0.38 

All mutations (myeloid + lymphoid + unknown) 10-20% 8284 9418 1394 1854 1.17 1.08 1.26 1.81 x 10-4 

All mutations (myeloid + lymphoid + unknown) 20-30% 8284 9418 260 650 2.20 1.90 2.56 4.25 x 10-27 

All mutations (myeloid + lymphoid + unknown) ≥30% 8284 9418 168 655 3.43 2.88 4.10 2.42 x 10-52 

Known driver genes (myeloid + lymphoid) <10% 15951 1751 11656 1122 0.88 0.81 0.95 2.32 x 10-3 

Known driver genes (myeloid + lymphoid) 10-20% 15951 1751 2920 328 1.02 0.90 1.16 0.76 

Known driver genes (myeloid + lymphoid) 20-30% 15951 1751 807 103 1.16 0.93 1.44 0.25 

Known driver genes (myeloid + lymphoid) ≥30% 15951 1751 705 118 1.52 1.24 1.87 2.92 x 10-4 

Known driver genes (myeloid) <10% 16199 1503 11836 942 0.86 0.79 0.93 9.70 x 10-4 

Known driver genes (myeloid) 10-20% 16199 1503 2983 265 0.96 0.83 1.10 0.62 

Known driver genes (myeloid) 20-30% 16199 1503 826 84 1.10 0.86 1.38 0.50 

Known driver genes (myeloid) ≥30% 16199 1503 727 96 1.42 1.13 1.78 4.52 x 10-3 

Known driver genes (lymphoid) <10% 17454 248 12598 180 1.01 0.82 1.22 0.96 

Known driver genes (lymphoid) 10-20% 17454 248 3185 63 1.39 1.04 1.85 0.04 
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Known driver genes (lymphoid) 20-30% 17454 248 891 19 1.50 0.88 2.41 0.17 

Known driver genes (lymphoid) ≥30% 17454 248 801 22 1.93 1.18 3.01 0.01 

unknown driver genes <10% 10035 7667 7181 5597 1.02 0.97 1.07 0.50 

unknown driver genes 10-20% 10035 7667 1722 1526 1.16 1.08 1.25 3.16 x 10-4 

unknown driver genes 20-30% 10035 7667 363 547 1.97 1.72 2.27 2.03 x 10-22 

unknown driver genes ≥30% 10035 7667 286 537 2.46 2.12 2.86 5.09 x 10-34 
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Table 6-10:  The relationship between CH and sex hormones 

    Coefficient 95% confidence interval P 

All mutations (myeloid + lymphoid + unknown) Sex hormone binding protein -0.01 -0.03 0.01 0.48 

All mutations (myeloid + lymphoid + unknown) Total testosterone -0.01 -0.03 0.02 0.63 

All mutations (myeloid + lymphoid + unknown) Free testosterone 0.00 -0.02 0.02 0.87 

All mutations (myeloid + lymphoid + unknown) Bioavailable testosterone 0.01 -0.02 0.03 0.60 

Known driver genes (myeloid + lymphoid) Sex hormone binding protein 0.01 -0.02 0.05 0.54 

Known driver genes (myeloid + lymphoid) Total testosterone 0.01 -0.03 0.05 0.70 

Known driver genes (myeloid + lymphoid) Free testosterone 0.00 -0.03 0.04 0.94 

Known driver genes (myeloid + lymphoid) Bioavailable testosterone 0.01 -0.03 0.04 0.75 

Known driver genes (myeloid) Sex hormone binding protein 0.01 -0.03 0.05 0.58 

Known driver genes (myeloid) Total testosterone 0.00 -0.04 0.04 0.85 

Known driver genes (myeloid) Free testosterone -0.01 -0.05 0.03 0.53 

Known driver genes (myeloid) Bioavailable testosterone -0.01 -0.05 0.03 0.67 

Known driver genes (lymphoid) Sex hormone binding protein 0.01 -0.08 0.10 0.80 

Known driver genes (lymphoid) Total testosterone 0.07 -0.02 0.16 0.13 

Known driver genes (lymphoid) Free testosterone 0.08 -0.01 0.16 0.08 

Known driver genes (lymphoid) Bioavailable testosterone 0.08 0.00 0.17 0.05 

unknown driver genes Sex hormone binding protein -0.01 -0.03 0.01 0.35 

unknown driver genes Total testosterone -0.01 -0.03 0.02 0.55 

unknown driver genes Free testosterone 0.00 -0.02 0.02 0.85 

unknown driver genes Bioavailable testosterone 0.01 -0.02 0.03 0.63 



228 

 

To understand the relationship between CH and LOY in more detail, I assessed the association 

between somatic mutations in specific driver genes in participants with LOY in >30% cells (n=823) 

compared to LOY free controls (n=17,702). TET2 was the most significantly enriched mutated gene in 

LOY cases (4% versus 1.5% in controls, OR = 2.64, P = 9.58x10-5) with TP53 (OR = 6.96, P = 7.62x10-3) 

and CBL (OR = 7.43, P = 0.04) mutations also showing a significant enrichment (Table 6-11). Other 

genes, including DNMT3A and ASXL1, showed no enrichment in high level LOY cases. 

 

Table 6-11: The relationship between LOY with clone size >30% and driver genes 

  
 

Control LOY OR 95% confidence 
interval 

  

LOY clonal size Driver 
mutations 
(CH) 

No CH CH No CH CH PFDR 

> 30% TET2 16199 253 727 30 2.64 1.73 3.90 9.58 x 10-5 

> 30% TP53 16199 16 727 5 6.96 1.99 19.95 7.62 x 10-3 

> 30% CBL 16199 9 727 3 7.43 1.29 29.84 0.04 

> 30% NF1 16199 15 727 3 4.46 0.83 15.80 0.09 

> 30% DNMT3A 16199 637 727 18 0.63 0.37 1.01 0.11 

> 30% SF3B1 16199 36 727 4 2.48 0.64 6.93 0.14 

> 30% STAG2 16199 113 727 8 1.58 0.66 3.23 0.33 

> 30% SRSF2 16199 40 727 3 1.67 0.33 5.27 0.49 

> 30% ASXL1 16199 167 727 7 0.93 0.37 1.98 1.00 
 

The possibility that LOY and CH as defined by somatic mutations might co-exist in the same clone was 

assessed by analysing the relationship between LOY BAF and the VAFs of driver mutations.  Figure 6-7 

shows a summary of the results at different ranges of LOY. Myeloid CH VAFs predicted BAF levels in 

samples with LOY >10% (β = 0.10, 95% CI = 0.05 - 0.15, P = 1.12x10-4). Similar results were seen for 

lymphoid CH (β = 0.20, 95% CI = 0.06 - 0.35, P = 0.02) and also unknown driver CH (β = 0.19, 95% CI = 

0.14 - 0.24, P = 3.72x10-12), which by definition was restricted to VAFs of 0.1 - 0.2 (Table 6-12). 
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Figure 6-7: The relationship between LOY clonal size and CH VAFs 

Boxplots summarizing the distribution of VAFs of somatic mutations in controls and cases with LOY broken down 
by clone size. (A) myeloid CH, (B) lymphoid CH, (C) unknown driver CH. The red lines connect median values. 

 

 

Table 6-12: The relationship between driver mutations and LOY 

  LOY clonal size Beta coefficient 95% confidence interval P 

Myeloid genes < 10% 0.00 0.00 0.00 0.89 

Myeloid genes > 10% 0.10 0.05 0.15 1.12 x10- 4 

Lymphoid genes < 10% 0.00 -0.01 0.01 0.89 

Lymphoid genes > 10% 0.20 0.06 0.35 0.02 

Unknown driver gene < 10% 0.00 -0.01 0.00 0.06 

Unknown driver gene > 10% 0.19 0.14 0.24 3.72 x10-12 
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6.5 Discussion 

Age-related mosaic LOY in peripheral blood leukocytes is known to be influenced by both genetic and 

environmental factors. I have found that LOY is also strongly associated with levels of SHBG in serum, 

and that this association is independent of known confounders (age, smoking history and the first 10 

principal genetic components). Furthermore, using Mendelian randomisation I found that SHBG levels 

are likely causally linked to LOY, but LOY has no effect on SHBG. SHBG regulates the level of circulating 

testosterone and, although I found that both FT and BAT were lower in men with LOY compared to 

those without LOY, there was no significant relationship between LOY and either FT or BAT on 

multivariate analysis. This finding is inconsistent with the free hormone hypothesis, which proposes 

that only the unbound fraction of testosterone is biologically active in target tissues [377], and instead 

suggests that involvement of other pathways such as binding and internalization of SHBG-bound 

testosterone by specific cell types, including B-cells [378,379]. The mechanism by which SHBG 

promotes LOY is unclear, but from a genetic perspective the effect is not explained by variation at 

SHBG alone. Other loci are involved, particularly JMJD1C which encodes a histone demethylase 

previously linked to SHBG levels [372]. 

 

To understand the influence of genetic factors on the relationship between SHBG and LOY in more 

detail, I focused on genetically predicted expression of genes linked to the development of LOY. I found 

that rs7141210-T, a marker for expression of genes in the DLK1–MEG3 region at 14q32 [373], was 

associated with elevated LOY and SHBG, and that homozygosity for the T-allele of rs7141210 modified 

the relationship between LOY and SHBG. DLK1-MEG3 is a large and complex imprinted cluster of genes 

and non-coding RNAs. The methylated paternally derived chromosome expresses the protein-coding 

genes DLK1, RTL1 and DIO3, while the non-methylated maternally derived chromosome expresses the 

non-coding genes MEG3, MEG8, asRTL1, multiple miRNAs and lncRNAs [380]. Constitutional 

uniparental disomy (UPD) at 14q32 is associated with the developmental disorders Temple syndrome 

(maternal UPD) and Kagami–Ogata syndrome (paternal UPD) whereas somatically acquired paternal 

UPD is associated with CH and myeloid malignancies.[267] Genome wide significant signals have been 

identified near DLK1 in association with CH defined by acquired 14q UPD [362] and somatic driver 

mutations [289] as well as LOY [80,81,347]. Furthermore, a parent of origin specific effect of 

rs1555405-A linked to differential methylation has been defined in relation to platelet counts [381]. 

This SNP is in linkage disequilibrium with rs7141210 (D’=1, R2=0.7), with rs7141210-T allele being 
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correlated with rs1555405-A allele. Collectively these findings suggest a potential parent of origin 

impact of rs7141210-T on the relationship between SHBG and LOY. 

 

I have defined the relationship between CH and LOY in the UK Biobank. LOY in ≥30% of cells was 

associated with both myeloid and lymphoid CH, with 14% of affected individuals having one or more 

somatic driver mutation compared to 10% of controls (P = 2.92 x 10-4; Table 6-9). At the level of 

individual genes, the most striking finding was that mutated TET2 was associated with LOY, but not 

DNMT3A or ASXL1. Collectively, mutations in one of these genes accounts for 90% of cases of CH 

defined by sequence analysis, and my findings are consistent with the notion that CH with TET2 

mutations is different from CH with DNMT3A or ASXL1 mutations. With larger studies, specific disease 

associations are emerging, for example CH with TET2 mutations has been linked to chronic obstructive 

pulmonary diseases [94], but not CH with DNMT3A mutations.  

 

Most strikingly, however, unknown driver CH was seen in 65% of cases with high level (≥30% of cells) 

LOY compared to just 43% of controls (P = 5.09 x 10-34). Overall, 80% of cases with high level LOY had 

mutational evidence of clonality, with LOY in ≥10% of cells clearly associated with unknown driver CH. 

For the first time, therefore, my findings provide broad molecular confirmation that LOY ≥10% is 

indeed clonal, and I predict that comprehensive sequencing by WGS will confirm clonality in most 

cases. Importantly for my study, neither overall CH nor any CH subtype was associated with SHBG or 

measures of testosterone (Table 6-10). The driver of clonality in cases with LOY and unknown driver 

CH remains unclear but I found that the degree of LOY was strongly predicted by the VAF of the 

somatic variants used to define CH (P = 3.72x10-12). This suggests that LOY might itself be a driver of 

clonality, as has been postulated recently from whole genome sequence data of single cell-derived 

haematopoietic cells colonies [382], and that LOY therefore accounts for an appreciable proportion of 

unknown driver CH. 
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Chapter 7 Conclusion and future plans 

This thesis describes the prevalence of CH in healthy volunteers from the UK Biobank, aged between 

40 and 69 years at recruitment, and dissects the relationship between CH and risk factors including 

smoking status as an environmental exposure, genetic predisposition, blood counts and serum 

biomarkers (Chapter 3). In addition, my study extends the scientific knowledge about the impact of 

CH on chronic inflammatory diseases focusing on adverse outcomes associated with CKD (Chapter 4), 

and the utility of machine learning survival models to predict the risk of myeloid neoplasms from 

highly dimensional data (Chapter 5). Furthermore, my study elucidates the impact of endogenous sex 

hormones, somatic driver mutations, and gene expression on the risk of developing LOY in men 

(Chapter 6).   

Age is a well-established risk factor for CH having been reported across many studies and using 

different genetic lesions to define CH, specifically SNVs or indels in genes associated with 

haematological malignancies, mCAs and LOY [6,7,10,347]. I detected mCAs, either CNG, CNL, or UPD, 

of relatively large size (≥ 2Mb) and clone size (> 10%) in 1% of the UK Biobank cohort and showed that 

their incidence increased significantly with age from 0.85% at age 40 - 45 to 1.29% at age 65 - 70 years 

(Chapter 3). The relationship between age and the risk of acquiring an mCA was strongest for specific 

lesions associated with myeloid disorders with an estimated annual risk of 1.1 fold, which is similar to 

that observed for driver mutations in myeloid genes. Recent models of stem cell dynamics that 

incorporated age, mutation rate, and population size of HSCs, detected an independent fitness 

advantage for each mutation [83]. These results were mirrored in a recent longitudinal analysis of 

driver mutations and their VAFs which showed that the majority of clones expand at a constant 

exponential rate over time but the growth rate varies according to the mutated gene [383]. The 

greatest annual risk of acquiring an mCA associated with myeloid malignancies could be explained by 

a faster growth rate as suggested by a recent study which found a positive correlation between dN/dS 

(the rate of substitutions at non-silent site/ the rate of substitutions at silent site) calculated 

coefficient for individual position and its correlation strength to myeloid malignancy [383]. However, 

these findings cannot explain the poor relationship between GNB1 K57E and myeloid malignancies. 

GNB1 K57E is a highly fit mutation identified in healthy individuals [83]. In my analysis of 200,631 

exomes from the UK Biobank, GNB1 K57E (n=90) was the third most frequent mutation after DNMT3A 

R882 and JAK2 V617F but only two individuals with GNB1 K57E developed a myeloid neoplasm after 

recruitment. Furthermore, GNB1 K57E was found in only 10 samples with haematological and 
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lymphoid origin in the COSMIC database (version 91) in comparison to 41,923 samples for JAK2 V617F, 

and 886 samples for DNMT3A R882H. These data suggest that growth rate alone is not enough to 

determine the malignant potential of a mutation. 

Environmental exposures are a mixture of chemical and physical substances in air, water, food, or soil 

that may have a harmful effect on a person’s health. Smoking has been connected to higher risk of 

somatic driver mutations, and LOY [8,77]. I confirmed the observed relationship between smoking and 

CH and extended these previous findings to show that the relationship is most prominent for ASXL1 

mutations due to current rather than previous smoking. This potentially indicates a specific 

mechanism for the broad health benefit of quitting smoking (Chapter 3). The association between 

ASXL1 and smoking was confirmed in an independent validation cohort from the UK Biobank, and in a 

published study of post-therapy cancer patients [85]. Although the observational analysis indicated 

an association between CH defined by driver mutations and smoking history, the results from two MR 

studies were heterogenous. The genetically defined ‘lifetime smoking index’ in the UK Biobank was 

not associated with CH defined by driver mutations detected in the TopMed cohort [384]. However, 

a meta-analysis of genetically defined smoking involving 1.2 million individuals [385], detected a 

significant association with CH defined by driver mutations in the UK Biobank with concordant results 

for DNMT3A and TET2 [284]. In addition, exposure of TET2 -/- transplanted mouse model to cigarette 

smoke or e-cigarette aerosol promoted a clonal expansion over time [386]. The investigation of CH 

defined by driver mutations in 628,388 individuals from the UK Biobank and the MyCode Community 

Health Initiative cohort indicated a significant association between CH and lung cancer that was 

independent of smoking [289]. A recent WGS study of single colonies from bronchial epithelial cells 

indicated a high impact of smoking on mutational burden and the number of driver mutations, but 

the study also found significant inter-individual and intra-individual heterogeneity that reached as 

much as 10 fold between individual cells [384]. Single cell analysis is required to assess if similar 

heterogeneity exists in HSCs among smokers.  

CH has a relatively small heritability of 3.6%[169] in comparison to heritability of LOY which has been 

estimated at 34%[387], but common variants in TERT were linked to all types of CH as well as LOY 

(Figure 7-1). The TERT gene encodes the catalytic subunit of telomerase, an essential enzyme for the 

de novo synthesis of telomeres. TERT expression is usually low in normal somatic cells but often 

elevated in cancer. Different mechanisms have been associated with its activation including non-

coding mutations in the promoter of TERT. On analysis of the first UK Biobank release of WES data, I 

identified two independent signals within TERT that achieved genome-wide significance for 
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association with myeloid CH: rs7726159 and rs2853677 (Chapter 3). In addition, linkage disequilibrium 

data and GWAS data of myeloid disorders in the UK Biobank indicated that variation in intron 2 

(rs7726159) is associated with CH but does not predict development of MPN whereas variation in 

intron 3 (rs2853677) does predict development of MPN (http://big.stats.ox.ac.uk). My analysis 

confirmed that inherited variation in TERT is associated with CH but with different levels of phenotypic 

risk. A recent study of CH defined by driver mutations in a larger cohort of the UK Biobank participants 

(n=200,453) identified three independent signals near TERT (rs2853677, rs13156167 and rs2086132,) 

in the main analysis, and two additional signals on conditional analysis (rs7705526, rs13356700) [284]. 

rs7726159 is in LD with rs7705526 (r2=0.79) and thus findings of [284] confirm and extend my 

observations (Figure 7-1). Significantly associated variants near TERT were concordant for both 

DNMT3A and TET2 mutated CH, but variations near TCL1A gene were not concordant, as rs2887399-

T increase the risk of DNMT3A-mutated CH, but decrease the risk of TET2-mutated CH [169,363]. 
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Figure 7-1: Heatmap matrix of LD statistics in TERT common variants associated with detectable CH 

The squared correlation coefficient between pairs of loci (r2) is shown in shades of red. The coefficient of linkage disequilibrium (D’) is shown in shades of blue. The heat map 
of D’ and r2 includes genome wide significant signals in the region of TERT  from four different studies, shown in the left table, in addition to my findings.. In this thesis, I 
identified two independent signals within TERT for association with myeloid CH, which have both been confirmed by other studies: (i) rs7726159 is in LD with rs7705526 
(r2=0.79),  which has previously been associated with all driver mutations, TET2, and mCA.  (ii) rs2853677 was confirmed for association with all driver mutations and extended 
mCA. 
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The relationship between CH and the elevated risk of all-cause mortality, haematological 

malignancies, and CVD provides a link between aging and low-grade inflammation. I confirmed the 

relationship between myeloid CH and both RDW and all-cause mortality after adjusting for age, sex, 

and smoking status. Next, I reported an association between CH and eGFR estimated from cystatin-C, 

and moderate CKD defined by eGFR between 15-59 mL/min/1.73 m2, and that the relationship was 

due to myeloid rather than lymphoid CH. My findings support the previous argument that eGFR.cys is 

more informative than eGFR.creat to define CKD [319]. Myeloid CH increases the risk of adverse 

outcomes in CKD and this increase is only partly explained by incident myeloid neoplasms. My findings 

were confirmed in a new study, which showed that the 2 and 5 years probability of ESKD calculated 

by kidney failure risk equations [388] was much higher in individuals with CKD and CH defined by 

somatic driver mutations in comparison to CKD without CH.[389] Murine models have characterised 

the relationship between CH and atherosclerosis development mediated by the elevation of the 

inflammatory markers, such as IL-6, and IL-1β. [89,390] but future studies are essential to investigate 

the impact of CH on the histopathological features of CKD such as glomerular sclerosis and interstitial 

fibrosis.  

The low-grade inflammation associated with CH was marked by higher RDW, IL-6 levels, and CRP 

levels. On the gene level, the relationship between myeloid CH and CKD was significant for CH defined 

by putative somatic mutations in CBL, TET2, JAK2, PPM1D and GNB1 but not DNMT3A or ASXL1. In the 

CANTOS clinical trial, individuals with TET2 mutations had a better response to Canakinumab, a human 

monoclonal antibody that targets IL-1β, and reduces the risk of major events (non-fatal myocardial 

infarction, non-fatal stroke, or cardiovascular death), in  patients with myocardial infarction and 

increased inflammation as indicated by an CRP > 2 mg/L [391]. My results suggest that the possibility 

of using myeloid CH to stratify patients with high risk of CVD and high CRP may extend to CKD patients. 

The impact of CH on the response to therapeutic monoclonal antibodies, however, is unknown. 

Ziltivekimab, an IL-6 inhibitor, decreases biomarkers of inflammation and thrombosis such as CRP, and 

fibrinogen in CKD patients and reduces the risk of adverse outcomes [392]. The incorporation of CH 

assessment in future clinical trials should be considered to assess the impact of CH on the response to 

anti-inflammatory medications in CKD patients. 

LOY is the most common genetic lesion in men. I observed that LOY is strongly associated with levels 

of SHBG in serum, and MR analysis suggested a causal effect of SHBG on LOY, but LOY has no effect 

on SHBG. Furthermore, the calculated levels of BAT and FT were not associated with LOY on 

multivariate analysis, thus arguing against the long-standing hypothesis of the free-hormone pathway. 
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SHBG has cell-specific mechanisms for binding and internalisation that varies between T-cells and B-

cells [379]. My findings implicate both JMJD1C and DLK1–MEG3 as being involved in the link between 

SHBG and LOY but further investigations are required to understand the role of these genes.  

The link with DLK1-MEG3 is particularly interesting. Utilising eQTL data from blood samples, I found 

that rs7141210-T, a marker for expression of genes in the DLK1–MEG3 imprinted region at 14q32.2 

[373], was associated with higher risk of LOY and elevated SHBG serum levels, and that homozygosity 

for the T-allele of rs7141210 modified the relationship between LOY and SHBG. Although the 

mechanism is not obvious, this finding suggests that DLK1-MEG3 might mediate or at least influence 

the effect of SHBG on LOY. Previous parent of origin studies have identified a specific relationship 

between paternal rs7141210-T allele and age at menarche in females [393], and the maternal 

rs7141210-T allele and platelet counts [381]. The DLK1-MEG3 locus falls in the minimal affected region 

of acquired 14q UPD which is associated with both MPN and CH, and has a methylation pattern 

indicative of loss of maternal 14q and gain of paternal chromosome 14q [267]. In addition, genome-

wide significant signals near the DLK1-MEG3 locus have been associated with different forms of CH 

defined by 14q UPD (rs7141110), driver mutations (rs72698720), and LOY (rs72698720) [80,289,362]. 

It will be interesting in future studies to assess the role of the parent of origin of rs7141210 in relation 

to the link with SHBG, and potentially this might be achieved by utilising inferred parent of origin 

information of individual alleles generated by modelling identity by decent sharing with second and 

third relatives in the UK Biobank [394]. 

I assessed the relationship between LOY and CH and identified a significant association between CH 

and LOY ≥ 10% of cells. At the driver gene level, the relationship was significant between LOY in ≥ 30% 

cells and mutations targeting myeloid or lymphoid genes, with the effect being most prominent for 

mutations in TET2, TP53 and CBL but not with DNMT3A and ASXL1. The relationship was even more 

prominent between LOY and unknown driver CH, an observation that confirms LOY is clonal. In 

addition, analysis of VAFs indicated a co-occurrence between LOY and CH both in the absence and 

presence of known driver mutations, an observation that is consistent with the hypothesis that LOY 

may be a direct driver of clonality. This result is concordant with single cell analysis which showed that 

many expanded clades within have LOY in the absence of other driver mutations of clonality [382]. A 

possible mechanism might be  loss of UTY (also known as KDM6C) located at Yq11.221 since this gene 

and its paralogue UTX on the X-chromosome both demonstrated tumour suppressive properties in a 

mouse model of AML [395].  
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Sex biases have been identified among markers of CH. As a whole, mCA are more frequent in males 

[7] but specific mCA are known to have unusual sex biases [253,362] for example chromosome 15 CNG 

is more frequent in men, while 16p11.2 CNL and 10q CNL are more prevalent in females. Loss of the X 

chromosome has been reported in 5% of females but the widespread finding of LOY in comparison to 

other sex biases is consistent with the hypothesis that LOY may be subject to positive selection. 

Overall, therefore, these findings indicate that LOY, at least of clone size >10%, should be considered 

as a form of CH and that detailed analysis of outcomes and clinical phenotypes should evaluate all 

forms of CH, including LOY, and any overlap between them. 

Although CH has been shown to confer a highly elevated HR for development of a myeloid neoplasm, 

the actual probability that a myeloid neoplasm will develop is relatively low and translates to a rate of 

roughly 1-2% of CH cases per year [293]. It would be highly desirable therefore to identify other factors 

that might help to identify individuals at elevated risk of progression. CH is a measurable event based 

on the targeted genes, VAF and individual age. All of these factors have been used to predict the risk 

of myeloid malignancies in healthy individuals. Previous studies have used univariate methods such 

as a Kaplan-Meier estimate and log-rank test [43], multivariable models such as regularised COX-PH 

[42], and Fine–Gray regression [86] to deal with time to event data. However, these methods are not 

suited for modelling high dimensional data. The expansion of ML models to handle censored data has 

enabled the prediction of health outcomes with a capability to model highly dimensional data. I used 

ML survival models to predict the risk of myeloid neoplasms in healthy individuals by utilising CH data, 

blood counts, and serum biomarkers as predictive features. The RSF model was the best predictor in 

test data and attributed the largest weights to platelet counts, platelet crit, and number of lesions in 

myeloid genes. However, the RSF model showed the importance of combining data from CH calls, 

blood counts, and serum biomarkers, and that no single feature was weighted more than 1% in the 

model. Interestingly, three serum biomarkers (cystatin-C, glucose and phosphate) were among the 

top 10 features in the generated RSF model. These markers may indicate the importance of evaluating 

kidney function and glucose levels as early signs to predict the risk of myeloid malignancies. This model 

is concordant with my findings described in Chapter 4 that myeloid CH was significantly associated 

with moderate CKD defined by eGFR.cys between 15-59. In routine clinical practice, it may not be easy 

to generate all the CH metrics as well as blood counts and biochemistry measures to forecast the risk 

of developing myeloid neoplasms in healthy individuals. Instead, it may be more productive to focus 

on individuals at high risk such as moderate CKD patients, and utilise CH to stratify the risk of myeloid 

malignancies. 
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The work presented in this thesis was developed using data from the UK Biobank, which provided a 

wide variety of detailed genotypic and phenotypic information for my project across the last 4 years.  

Many different research groups have been interested in CH and used data from the UK Biobank as 

well as other large genetic cohorts such as TOPMed and BBJ in their investigations. These studies 

collectively provide a valuable resource to validate my results and to elucidate the limitations of my 

study, for example (i) the UK Biobank cohort has a “healthy volunteer” bias that may be a consequence 

of the low recruitment response rate [287]. In comparison, the TOPMed cohort was enriched in lung, 

heart, and blood related diseases (>60% of participants); (ii) the UK Biobank phenotypic data lacks 

harmonisation, e.g the definition of myeloid malignancies, CKD, and CVD may vary between research 

groups; (iii) the UK Biobank lacks direct measures for inflammatory cytokines such as IL-6, an IL-1β; 

(iv) the UK Biobank lacks longitudinal information, which means that CH cannot be tracked over time. 

This last point is particularly important given the fact that clonal dynamics over time vary substantially 

between individuals. [382,383,396] Recently, the UK Biobank released WGS data that will allow the 

study of more genetic features related to CH such as non-coding driver mutations, and mutational 

signatures. In addition, the release of NMR-metabolomics will improve our understanding of 

inflammation associated with CH e.g. glycoprotein acetyls is an inflammatory biomarker associated 

with cardiovascular risk that should provide more sensitive estimates of the inflammatory state in 

comparison to CRP [397].  

In summary, this thesis provides further evidence for the wide reaching significance of CH. The future 

implementation of CH as a marker to predict the risk of developing haematological malignancies, non-

malignant diseases, or the response to anti-inflammatory medications will need the following actions: 

(i) more extensive genetic and phenotypic data is required to develop more detailed clinical insights 

at the driver gene level; (ii) large numbers of samples with non-European ancestry will need to be 

included and considered separately, e.g. rs144418061 near TET2 was specifically associated with CH 

in African individuals; (iii) design of a fast and cheap sequencing assay to detect CH will be needed to 

enable large longitudinal studies of CH, e.g. a recent study has developed a cost-effective panel of 11 

genes associated with CH using a single-molecule molecular inversion probe sequencing approach 

[398]; (iv) development of a standard method for processing NGS data, and calling driver mutations in 

blood samples, and (v) introduction of CH measurements into clinical trials of anti-inflammatory 

medications to enable the clinical utility of CH in predicting therapeutic response to be determined, 

as well as the effect on CH clone size to be evaluated. I anticipate that the very rapid progress in 

understanding the causes and consequences of CH is likely to lead to real health benefits in the coming 

years. 
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Appendices 

The supplementary data were deposited under DOI: https://doi.org/10.5258/SOTON/D2351 

Appendix A: Supplementary Data File  

Description: the accompanying Excel spreadsheet presents supplementary tables (n=6) of Chapter 3 

Filename: chapter 3 supplementary tables submit.xls 

Appendix B: Supplementary Data File 

Description: the accompanying Excel spreadsheet presents supplementary tables(n=3) of Chapter 4 

Filename: chapter 4 supplementary tables submit.xls

https://doi.org/10.5258/SOTON/D2351
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