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The use of conditional generative adversarial networks has become popular with the advancement of

computer power, and in particular graphics processing units. Large hardware and software companies such

as Google, IBM, and Facebook have been experimenting in this field for over a decade for facial recognition,

image classification and pattern recognition, and deep fake facial and object design. One essential key to their

success is access to large quantities of tagged and classified images, with millions of images typically being used.

In contrast, relatively few similar advances have been seen in the engineering sector, mainly because engineering

analyses that produce suitable images are often very expensive processes that absorb a considerable amount of

effort to generate. In addition, feeding synthetically generated image data back into traditional engineering

workflows is not entirely straightforward. In this paper we show how adversarial networks can be used if order

104 images are available and focused on the problem in hand. In particular we show how such images can then be

augmented with histograms and glyphs to enhance the image content with pictorial representations of numerical

data. This is shown to significantly assist the network training process on our data when used in contexts where

numerical data categorizing individual images are available and numerical performance measures of products

must be predicted. Crucially, it allows for follow-on analyses without the need to use artificially generated flow

fields.

I. Introduction

I N [1] we discussed a study in which a simple two-dimensional
gas-turbine aerodynamic section was varied using 10 shape

variables and 16 noise variables to produce many varying cross
sections, which were subsequently run through a commercial-
grade computational fluid dynamics (CFD) Reynolds-averaged
Navier–Stokes (RANS) solver to extract pressure fields and pres-
sure loss values. We demonstrated the use of various surrogate
models to support robust design optimization problems in this area.
We found and kriging and cokriging to be the most accurate for
smaller amounts of data and shallow neural networks to be the best
tool to use with more than 10,000 data points, being mainly driven
by the high computational costs of training krigs with large data
sets. Run times to train models on 70,000 results ranged from 118 s
using shallow neural nets to 2350 h using Gaussian process regres-
sion krigs.
At present, most engineering design workflows start with a para-

metric geometry model (often based in large commercial computer-
aided design [CAD] systems). The geometry models are typically
meshed and then submitted for fluid dynamic or structural analyses to
establish likely product performance. Such outputs are routinely used
with various classes of optimization software to drive performance
improvement. In such workflows, designing and implementing the
parameterization plays a crucial role and is often the most laborious
step in setting up the process. It often requires very skilled and
intricate work to program a CAD engine to generate a robust system
capable of creating the desired geometry for each new set of param-
eters. In many cases parameterizations will fail for various parameter
combinations due to various interactions that would produce an
infeasible geometry.
Even if the CAD is programmed to perfection and all possible

conditions that create geometrical conflicts are foreseen and dealt
with, the final geometrywill always be defined by the sophistication

of the parameterization, which will be finite in its scope—if too few

parameters are used, only relatively narrow sets of geometry are

possible, whereas if too many are deployed, the search space to be

studied becomes impossibly large. This leads to two fundamental

issues. First, there may be designs that will never be explored

because of the tightly defined nature of the initial parameterization

or the size of the space created. Secondly, workflows designed with

one parametric study in mind are often not easy or impossible to

reuse for other studies, where a fresh parameterization is required.

As a result, research and development teams end up with large

amounts of data that are similar but not parametrically matched,

and therefore the common practice is that when a new study is

required and parameters are added or changed in definition, the

entire design search process starts from the beginning, discarding

potentially useful information.
One type of output that researchers commonly generate, along

with various numerical files, is images such as those of flow and

stress fields. Often they are intended to allow the rapid appraisal of

results or to include in reports and presentations. These images

contain a lot of information, essentially encoded in pixels. At the

same time such images can often show strong similarities between

studies of related problems. For example, the pressure field around a

section of a compressor blade can be very similar to the pressure

field around other turbine blades or any other airfoil. This creates

the opportunity to reuse images from different studies and even

resolutions, by training convolution neural networks (CNNs). In

this paper we aim to utilize such data in the form of image informa-

tion arising from the earlier cited CFD study to create conditional

generative adversarial networks (cGANs). Note that cGANS are a

newly emerging deep learning approach that can both classify and

generate designs based on CNN-based image processing; see, e.g.,

[2–8]. These papers illustrate the rapidly emerging field of imaged-

based approaches to aerodynamics. In this workwe address two key

aspects of the use of cGANs in engineering design: first, if a new

design is generated in the form of an image with associated flow-

field, how do we accurately extract numerical performance data

from the image, and, secondly, if we wish to validate the cGAN-

generated results or perform other analyses, how do we accurately

extract suitably accurate shape information for input to other engi-

neering software? We also confirm that, given GPU processing,

cGANs can be trained in similar times to the surrogates considered

previously.

Received 15 December 2021; revision received 11 July 2022; accepted for
publication 18 July 2022; published online 1 August 2022. Copyright © 2022
by Rolls-Royce plc. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. All requests for copying and permission
to reprint should be submitted to CCC at www.copyright.com; employ the
eISSN 1533-385X to initiate your request. See also AIAA Rights and Per-
missions www.aiaa.org/randp.

*Professor of Computational Engineering, Aeronautics and Astronautics.
†Senior Research Fellow, Aeronautics and Astronautics.

Article in Advance / 1

AIAA JOURNAL

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
A

M
PT

O
N

 o
n 

A
ug

us
t 4

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
15

44
 

https://doi.org/10.2514/1.J061544
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J061544&domain=pdf&date_stamp=2022-08-04


II. Airfoil Images

To begin this study we start from the base design of a gas turbine
compressor airfoil section, where we use a series of Hicks–Henne
functions‡ [9] to alter its overall shape, using 10 design variables (as
in Fig. 1, upper). We additionally use 16 noise variables to represent
manufacturing, damage, and erosion effects (as in Fig. 1, lower). The
noise variables make three sets of changes to the baseline airfoil that
attempt to represent modeling of manufacturing uncertainty, model-
ing of foreign object damage, and modeling of flank erosion: 1) The
manufacturing variability changes use multiple Hicks–Henne func-
tions that affect the entire section, but paying particular attention to
the leading edge. 2) The foreign object damage changes are localized
to the leading edge using a singleHicks–Henne function that can only
remove material, but which can vary in position and shape as well as
depth. 3) The erosion changes are localized to the flank, again using a
single Hicks–Henne function that can vary in position and shape as
well as depth and can only remove material. These changes are all
carried out using the proprietary Rolls-Royce Parametric Design and
Rapid Meshing (Padram) code [10].
The Padram geometry modification process also permits the auto-

mated adaptation of high-quality OCH meshes around the airfoil
section in a setting appropriate for application to gas-turbine blade
design (here “OCH” refers to the shapes of the various mesh blocks,
their being ring like, cup shaped, or with legs). These are distorted
around the localized erosion geometries introduced when studying
leading-edge damage or flank erosion. Here the “O” mesh is four
cells deep and slightly over 27,000 cells were used in total. The
topology of this mesh was unchanged throughout the image gener-
ation process so that any effects caused by re-meshing were avoided.
Having set up themesh, a full steady-state RANS flow analysis can

be carried out using the parallel version of the Rolls-Royce Hydra
RANS CFD code in around 2 minutes on a 12-core personal com-
puter [11]. The section is run in isolation with boundary conditions
of inlet temperature 290 K, inlet total pressure 63,400 Pa, whirl
angle −37.3 deg, and outlet static pressure 52,000 Pa. Typical root-
mean-square (RMS) flow residuals are 4.7E-9 and RMS turbulence

residuals 2.4E-15. Compressor designers use a variety of total pres-

sure loss measures such as mixed out (MO) average total pressure

loss, mass averaged total pressure loss, and total Denton loss; see,

e.g., Cumpsty [12]. Here we adopt the MO average pressure loss as

the main performance metric to categorize the pressure flowfield

images, normalized by dividing by that for the datum design to

preserve confidentiality.§ This formulation averages the area- and

mass-based losses and is found to best represent the overall design

performance. Figure 2 illustrates the variation of normalized MO

pressure loss seen during these studies, while Fig. 3 (left) shows a

typical flowfield.

Fig. 1 Maximum extent of overall geometry variation (upper), leading-edge damage (lower left), flank erosion (lower right).

Fig. 2 A histogram showing the variation of normalizedmixed out total
pressure loss seen across the data set used in this work.

‡Note that z � zinitial �
P

n
i�1 aisin

ti �πxln �0.5�∕ ln �hi�� for i Hicks–Henne
functions of amplitude ai, width ti, and nondimensional location hi wrapped
around the initial shape z.

§A full description of the procedure needed to calculate the MO pressure
loss lies outside the scope of this paper, but see Prasad [13] for details of the
required calculations.
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This design problem has been extensively studied in a series of
previous papers, where full details of the geometry definition, mesh-
ing, and CFD processes can be found [14–17]. At the start of the
present work we therefore had access to a large quantity of results
files that we could draw on.
We have to-date accumulated over 370,000 images of this type,

where the shape of the airfoil varies with each design. Due tomemory
limitations on the GPU devices we use for training (high-end gaming
GPU cards—NVIDIA RTX 3080), we need to scale these images
down to 256 × 256 pixels or less for convolution network training
because, even at this limit, the mini-batch size used in training can
hold only 47 images on these GPUs. Higher resolution images lead to
smaller batches and then the batch renormalization statistics become
too noisy, giving rise to fluctuations that swamp the training process.
This gives rise to the fundamental problems noted above: at resolu-
tions suitable for CNN training, the variations of the shapes in the
airfoil cannot be read back from the generated image files with
sufficient accuracy for direct CFD analysis given the subtle changes
being investigated. Rolls-Royce typically defines blade geometry to
0.1 mm accuracy or better, and for the blades in question this would
require a resolution of at least 2048 × 2048 pixels. In addition, it is
very difficult to impute section performance directly from a pressure
field without knowing a great many other details of the local flow-
field. Thus even if a cGANcan generate a likely design and flowfield,
with current generations of hardware, one is not able to simply assess
its quality—sections pressure losses cannot be read directly from the
images and the shape cannot be recovered sufficiently accurately to
compute such quantities using CFD.
To tackle these problems, we have enriched our images by over-

laying histograms and half-sector glyphs on them, as in Fig. 3 (right).
Here, each bar represents a scaled design or noise variable value and
the half-sector glyph represents the value of the section pressure loss,
rather like a car fuel gauge. This overlay has been applied to all our
images to provide a database, ready for CNN training, placing the
added material in areas where either there is no other data or the
pressure field variation is very small between images.¶ The images
are also tagged into 10 groups corresponding to their normalized
pressure loss values as computed during initial creation—category 1
being the lowest (best) loss and category 9 being the highest loss.
Category 10 is used for infeasible designs where the value of com-
puted loss is unrealistically high but a flowfield has still been com-
puted, which is generally caused by meshing or convergence

problems. The width of each category is chosen so that each of the
first nine contains a minimum of 10,000 designs in our database.
These overlays serve two purposes: First, they provide extra infor-
mation to the cGAN during training by providing additional dis-
crimination between similar images. Secondly, when the cGAN
generates a new image it allows the design and noise parameters to
be readily extracted from the image, and these can then either be used
directly or inserted into the original CFD process to create a fully
accurate flowfield for the extracted parameter set.

III. Conditional Generative Adversarial Networks

Generative adversarial networks are a deep learning image
processing architecture that combines two independent CNN net-
works that are trained against each other. They allow thegeneration of
new images based on, and similar to, a training set. Conditional
generative adversarial networks (as illustrated in Fig. 4), in addition,
allow the user to steer the output so that generated images tend to lie in
particular regions of the input image set as defined by a category
variable. They consist of a discriminator,which is trained to classify if
an image belongs to a predefined category (In essence, is it a fake or a
true image, and does it belong to the required category?), and a
generator, which is trained to generate an image of a particular
category [18]. The exact image generated depends on both the desired
category used to steer the generator and a set of latent variables used
to providevariety in its outputs.During training, these latent variables
are generally set as random numbers with a normal distribution so
that a wide range of possible images are considered.**

Each of the networks contains a number of neural layers, as
described in the MATLAB tutorial and illustrated in Fig. 5 with
settings as detailed in Table 1, as recommended in reference [18].
The training process consists of updating the weight and biases of
each neuron in these layers using an ADAMS optimizer that attempts
to minimize a predefined loss function [19]. As noted in [20]:

The discriminator learns to classify input images as “real” or
“generated”. The output of the discriminator corresponds to
a probability Ŷ that the input images belong to the class
“real”. The generator score is the mean of the probabilities
corresponding to the discriminator output for the generated
images:

scoreGen � mean�ŶGen�

Fig. 3 Left: An image produced by the Rolls-Royce plc CFD (Hydra) code. Right: Pressure field with bars for the design (lower left) and noise (upper
right) variables and a half-sector glyph for themixed out total pressure loss value (specific variable and contour values are not provided as these results are

industrially sensitive).

¶Note that cGANs are based on convolution methods that are designed to
deal with two-dimensional image data rather than the vector structures used in
traditional surrogate modeling approaches, and this is why the additional data
are embedded in image format.

**See https://arxiv.org/abs/1701.00160 for an excellent tutorial introduc-
tion to GANs and their underlying mechanics.
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where ŶGen contains the probabilities for the generated

images. Given that 1 − Ŷ is the probability of an image
belonging to the class “generated”, the discriminator score
is themean of the probabilities of the input images belonging
to the correct class:

scoreDisc �
1

2
mean�ŶReal� �

1

2
mean�1 − ŶGen�

where ŶReal contains the discriminator output probabilities
for the real images and the numbers of real and generated
images passed to the discriminator are equal.

In our work the discriminator loss is given by lossDisc �
−�mean�ln �0.9 × scoreReal�� �mean�ln �1 − scoreGen�� and the

generator loss by lossGen � −mean�ln �scoreGen��.

There are a number of learning parameters that can be adjusted to
help the learning process, which also vary with the size of the images
the network is being trained on (see Table 1). This training process
can be slow and is generally only feasible if a powerful GPU is used.
For this study we have used NVIDIA cards. At each epoch the
network is presented with all available images but they are not loaded
intomemory all at once, being handled in smaller batches. The size of
the batches is determined by the amount ofGPUmemory available on
the card in use. Smaller batch sizes require a higher number of
updates and eventually lead to instability in calculating renormaliza-
tion statistics, which leads to instability in the training process.When
using 128 × 128 images the maximum batch size possible on our
GPUs is 84, whereas if we increase the image size to 256 × 256 it
decreases to 47.With an image size of 512 × 512 this reduces down to
a batch size of just two, which is completely unstable. In future work
we intend to study image sizes that are not square and in powers of
two, but this will involve further code development. In our case,

Fig. 5 Network design of cGAN; see Train Conditional Generative Adversarial Network (CGAN)–MATLAB& Simulink–MathWorks United Kingdom.

Fig. 4 Conditional generative adversarial network (cGAN).
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typical training times are 300 h if the full set of images is used at a
resolution of 256 × 256. We have found, however, that good results
can be obtained with as few as 20,000 images in the training set,
provided that they are well chosen to represent the range of perfor-
mance categories being studied and then training can be completed in
70 h. By way of comparison, in our previous study [1] Gaussian
process regression models took between 650 and 2350 h to train on
data sets containing 70,000 CFD runs.
It is not possible to validate the network directly on a predefined

validation set, because the output is random, due to the nature of the

latent space. Instead, our validation process is based on generating
200 images from the first three categories and 100 for the remaining
categories of the cGAN being tested, then extracting the design
parameters from the embedded histograms to create a full blade
geometry that can be analyzed through the CFD process that gen-
erated the original training set of 20,000. The values of pressure loss
extracted from the cGAN-generated image are then compared with
the freshly computed CFD value.
The different learning rates for the discriminator and the generator

can also have significant impact on the training process, as well as the
definition of the loss and gradient functions, such as by dampening
the score of the discriminator such that it always is a bit unsure of its
classification. This can be used to prevent the discriminator learning
faster than the generator. Agoodbalance, however, takes some care to
achieve, especially with varying number of neurons in the layers,
which is determined by the image sizes, the stride, number of filters,
the filter size, the number of latent variables, etc., detailed in Table 1.
We have observed, however, that the score values for the generator
and the discriminator can become divergent, without significant
detrimental impact on the quality of the final generated images (see
Fig. 6). The subtleties of choosing these and other tuning factors will
be subject of future publications.

IV. Validation and Parameter Extraction

At each point during training, the designs generated by the net-
works can be tested and validated against CFD runs. The images
shown in Fig. 7 illustrate the following sequence: First, a trained
generator network is used to create an image of category 1 (best

Fig. 6 Training of cGAN, showing typical generated images and the training history after 27 epochs using all 373,011 images in the data set (the total
elapsed training time being 433 h).

Fig. 7 Reading the areas of the bars in pixels, by separating the color channels to extract the bars and then identifying the areas, midpoints, and widths.

Table 1 Conditional generative adversarial network
parameter settings

Image size 128 × 128 256 × 256

Number of classes 10 10
Number of latent inputs 20 20
Mini batch size 84 47
Number of filters 96 96
Embedding dimension 50 50
Projection size [12,12,1024] [28,28,1024]
Filter size 5 5
Stride generator [1,2,2,2] [1,2,2,2]
Stride discriminator [2,2,2,2] [2,2,2,2]
Learn rate discriminator 0.0001 0.0001
Learn rate generator 0.0002 0.0002
Gradient decay factor 0.5 0.5
Flip factor 0.5 0.5
Squared gradient decay factor 0.999 0.999

Article in Advance / KEANE AND VOUTCHKOV 5

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
A

M
PT

O
N

 o
n 

A
ug

us
t 4

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
15

44
 



pressure loss values). Because the network is trained on images that
contain histograms and sector glyphs, these are also present in the
generated image. The number of pixels representing the 10 shape
variables and the 16 noise variables are extracted from the red bars
and converted to real values, as shown in the figure. Color images
consist of red, green, and blue channels, and these can be readily
separated. With some subtraction and filtering operations, the red
color of the histograms can be separated, and the number of pixels
representing the length of a bar extracted: this Boolean filtering
operation is illustrated in Fig. 7, where gC and rC are the matrices
for the green and the red channels, respectively. This process and its
accuracy are addressed shortly.
The extracted values are then used to reconstruct the shape of the

airfoil parametrically, following the original 26-parameter-based
method detailed earlier, to construct a mesh and finally run the
CFD, which results in a new pressure loss value and pressure field.
An example is shown alongside the original image in Fig. 8. Crucially
the parameter encoding obviates the need to try and interpret the
airfoil recorded in the image directly and allows the shape required
for analysis to be constructed to the same precision as the originals
used in the training step. Note that the histogram bars are essentially
identical between the two images because they represent the same
values (the very slight differences are due to the pixel resolution used
to encode real values), but the sector glyph representing the resultant
loss values differs. In this studywe do not need a quantifiedmetric for
the accuracy of the flowfield image because new designs are created
using the embedded data bars and then validated by subsequent CFD
analysis—the whole purpose of the present study is to escape from
the need for highly accurate flowfield predictions. However, the two
images may be subtracted from each other, and here the difference is
displayed in the third image of Fig. 8. Although themagnitudes of the
differences are not given here to preserve the confidentiality of the
data, this figure allows the reader to see where differences occur.
White areas represent no difference. Similar differences are found
across the whole range of cGAN-generated images.
It takes only few seconds to generate large numbers of images from

the cGAN generator, even without using a GPU. This is useful to
know, as the process only requires a GPU to train the network, but not
to exploit it, allowing a trained network to be deployed on a wide
range of devices—lower-end desktop computers, laptops, or tablets,
giving a designer the ability to quickly predict what the CFDpressure
field might look like for various designs, without running the actual
CFD. This is made possible because the section performance is also
directly available from the generated images by counting the pixels in
the sector glyph.
Following the process described above, and to assess the accuracy

of the cGAN and its embedded information, we have generated 1200
images—200 for the first three categories and 100 for each of the rest,
using a uniform [−1; 1] latent variable range, and analyzed their
performance usingCFD. In Fig. 9we plot the pressure loss versus run
number—the categories are easily recognizable, showing the ability
of the network to recreate images for a given category and the strong
correlation of the histograms to the desired parameter settings. The

dashed lines in the figure show the width of each category. Circled
designs are those that have cGAN-predicted losses within 2% of the
actual CFD result, providing a visual illustration of the most accu-
rately generated designs. It is, of course, difficult to achieve designs
that have very low loss values, and as the number of designs in the
initial database with very low loss was not large, the width of the first
category has to be set wider to include sufficient points.
Figure 10 (left) shows the accuracy of the loss values indicated by

the generated pressure loss glyph by plotting these losses against
those computed by CFD using the design and noise variables
extracted from the histograms. The R2 correlation between cGAN
andCFDvalues comes to 0.924—such a strong correlation allows the
user to have confidence that generated designs will live up to their
predictionswhen subject to further analysis. Note that the accuracy of
this prediction is of course impacted by the resolution of the gen-
erated images and the ability to read thevalues of the design and noise
variables accurately—we examine this aspect shortly.
It is interesting to also note that there are a good number of CFD-

generated pressure loss values that are better than the cGAN-
predicted equivalents. These are the points below the 45° line, which
we have then used to further enrich the data pool and subsequently
populate category 1 with more designs allowing us to reduce the
width of this category while still containing a large number of images
and make the network prediction more accurately in this crucial
region—a form of design optimization and self-learning that has
been popular in other fields of artificial intelligence (AI).

A. Effect of Latent Space

The cGAN networks used here have been trained using latent
variables with a simple normal distribution as is recommended for
such work in [18]—this leads to values lying in the range�4.3. The
subsequent designs studied in Figs. 9 and 10 (left) were obtained
using latent variables with a uniform random distribution in the range
of�1 to capture the peak of the bell-shaped curve of possible outputs.
This follows several experiments where various ranges and distribu-
tions were used while trying to focus on the best possible outputs.
Figure 10 (right) shows the effect of increasing this latent variable
range. Wider ranges produced a wider spread of cGAN-generated
pressure loss values and even greater range of calculated CFD loss
values. In our experiments, the use of a uniform �1 latent variable
range provided a good balance between exploitation and exploration,
increasing the percentage of CFD better than cGAN designs from 38
to 45%.Due to the randomnature of the latent space, the spread of the
values is expected and even desirable. The aim of this studywas to see
if we can train a network that can produce low-pressure loss designs.
Clearly, the spread of the designs can be controlled to some extent by
restricting or relaxing the bounds of the random latent variables.
Reducing the range even further to�0.03 increased the percentage

of designs with improved loss to 74% as shown in Fig. 11 (left). We
have also used a genetic algorithm optimizer (GA) to manipulate the
latent variables to minimize the cGAN pressure loss prediction. This
also results in narrowed bands for the cGAN prediction as seen in
Fig. 11 (right). Note that although reducing the width of the latent

Fig. 8 Comparison of cGAN- vs CFD-generated images and difference plot. (Note: Specific variable and contour values are not provided as these results
are industrially sensitive; also the image resolution shown here is that used in the cGAN process and is thus deliberately more pixilated than would
normally be used in journal paper publications.)
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variable space when sampling for new designs necessarily reduces the

range of predicted loss values, the equivalent CFD loss value ranges

cannot be controlled anything like so well due to the inherent limi-

tations of the cGANmodels being built—the use of higher resolution

imageswithmore powerfulGPUswill be investigated in future studies

to see if increased image resolution in training helps to better focus the

results from subsequently generated images. Our general observation

is that, using the adopted resolution images, narrowing the ranges of

the latent space does not necessarily produce better designs but can

steer the designs toward the bounds of each category.
These various processes can also be used to target and enrich the

data pool for a particular category as desired by the user. The

increased quantity of data can then be used to narrow the width of
that category, which leads to improved cGAN prediction and higher
correlation to CFD results in any given category. In addition, these
approaches can be combined with the shallow neural network meth-
ods detailed in [1] that directly link design parameters to pressure loss
performance without the use of image data.

B. Accuracy of the Parameter Extraction Process

To understand the R2 values obtained from the cGAN v’s CFD
runs, we also need to factor in the errors introduced by the process of
extracting parameter values from the embedded histograms. Before
we started the learning process, described above, we first converted

Fig. 10 The effect of latent space sampling: (left) [−1: 1]; (right) [−4.3: 4.3]; the dotted lines are the 45° lines of perfect correlation.

Fig. 9 The cGAN-predicted and CFD-calculated normalized mixed out total pressure loss values (loss versus run ID and bin class—circled designs lie

within 2% of the predicted loss).
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all PortableNetworkGraphic (PNG) images to include the histograms

and the sector glyphs as in Fig. 3. During this process the number of

pixels that represent each valuewas recorded for different image sizes

and a pixel-to-value-to-pixel map created. To evaluate the accuracy of

this process, a set of 1000 imageswere randomly selected. Eachone of
these has its own particular loss value. Using the process described

above, the pixel counts for the bars were extracted, and a new design

was generated and the correspondingCFD result recorded as the CFD

pressure loss. The correlation between the two losses was established

and R2 calculated, as in Fig. 12.
It was observed that theR2 � 0.9237 obtained during this process

was very similar to theR2 � 0.9243values for the cGANversusCFD
predictions described earlier, which leads us to believe that if we

could increase the accuracy of the data embedding process, we could

possibly improve on the accuracy of the cGAN prediction; i.e., the

cGAN accuracy is being limited by our ability to extract parameter

values from the generated images, even using the embedded histo-

gram technique. This is why we use a half-sector glyph to represent

the crucial pressure loss property—by using such a glyph we can

encode the loss more accurately with finite pixel resolution than is

possible with simple histogram bars—it is area and angle based, and
each value is thus represented by a higher number of pixels that

change in a more graduated fashion than simple bars, hence improv-

ing its accuracy. We would ideally use such glyphs for all the

quantities of interest, but this would require the room to place 16
such items in the already crowded image space.

C. Impact of Embedded Data on cGAN Training

We have also investigated whether embedding data into the image
sets has any impact on the training process used to set up the cGAN.
To do this we used a subset from our data set containing 50,000
images and trained cGANs both with and without the embedded
information. The training histories are presented in Figs. 13 and 14,
respectively. The training times are essentially the same, but it is clear
from the discriminator score for the images without added data that
training stalls—the score stabilizes at 0.5 after around 10,000 iter-
ations (20 epochs), meaning that the discriminator cannot tell the
difference between fake and real, and the relevant gradients in the
training process have collapsed to zero. Moreover, close scrutiny of
the resulting generated images reveals a much more grainy texture to
the flowfields. It seems that if the images are too similar to each other
this impedes training as might be expected—the presence of the
histograms that show significant changes from image to image seems
to help the process work. The cGAN generated without embedded
data can, however, be used to seed the training of the enhanced data
set—this speeds up the subsequent training process substantially.
To test this we used the network trained without the histograms
and glyphs to initiate training of the images with the added data.

Fig. 12 Assessing the accuracy of the histograms and the glyph.

Fig. 11 Optimizing over the latent space. Left: Narrowrange randomuniform sampling [−0.03; 0.03].Right:GAoptimizedwith latent variables allowed
to vary in the same narrow range; the dotted lines are the 45° lines of perfect correlation.
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Compared to training from scratch, the training process adapted to the
presence of this extra information within seven epochs, while a fresh
network required 200 epochs for converged training.

V. Conclusions

Until recently, graphical information was mainly used for visuali-
zation purposes in engineering design workflows and was typically
deemed insufficiently accurate to give a more detailed representation
in quantitative terms. Image information is generally based on pixels
as opposed to CAD representations that are mainly based on nonra-
tional B-splines and numerical information stored in matrices and
spreadsheets.With the advancement of cGANs, computer power, and
specifically GPUs, it has become possible to utilize image informa-
tion for machine learning purposes in an engineering sense. This
paper has demonstrated the use of deep learning cGAN methods to
generate airfoil shapes and pressure fields that have been validated
against much more expensive CFD runs. We have shown a method
using histograms and glyphs to encode numerical information inside
the training image set that provides a bridge between a purely

pixelated image and a parameterized CAD geometry. It can be used
in situations where the variation of the geometry is too small to
directly read with sufficient accuracy from an image. It also seems
to help support the cGAN training process itself. These methods
augmentmore traditional surrogatemodeling process usingGaussian
process regression or shallow neural networks.
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