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We propose a method to enhance the spatial coupling between ballistic exciton-polariton conden-
sates in a semiconductor microcavity based on available spatial light modulator technologies. Our
method, verified by numerically solving a generalized Gross-Pitaevskii model, exploits the strong
nonequilibrium nature of exciton-polariton condensation driven by localized nonresonant optical
excitation. Tailoring the excitation beam profile from a Gaussian into a polygonal shape results in
refracted and focused radial streams of outflowing polaritons from the excited condensate which can
be directed towards nearest neighbors. Our method can be used to lower the threshold power needed
to achieve polariton condensation and increase spatial coherence in extended systems, paving the
way towards creating extremely large-scale quantum fluids of light.

I. INTRODUCTION

Ever since the demonstration of Bose-Einstein conden-
sation of exciton-polaritons (from here on polaritons) in
planar semiconductor microcavities [1] there has been
tremendous effort dedicated to scaling up the number of
coupled condensates to form extended systems. The no-
table candidates for large-scale networks and lattices of
polariton condensates are etched micropillar arrays [2, 3],
metal deposited cavity surface [4], etch-and-overgrowth
techniques [5, 6], surface acoustic waves [7], and struc-
tured nonresonant light source using spatial light mod-
ulators [8, 9]. On one hand, designing lattices of po-
lariton condensates can offer new insight into the non-
Hermitian physics of driven-dissipative quantum fluids
obeying Bloch’s theorem with strong nonlinearities [10].
On the other hand, the large state space and strong
nonlinearities of a coupled polariton condensate network
could offer a platform for classical or even quantum com-
puting protocols [11] given the ease of optical write-in
and read-out of polaritons (being part photonic) [12].
A common challenge in designing extended polariton

condensate systems is making the inter-node coupling
strong enough to overcome the detrimental effects of dis-
order and noise which would otherwise reduce the sys-
tem’s coherence. Good coherence in polariton systems
can give access to both intricate long-range and long-
time condensate dynamics, and also play a role in various
optical applications such as biological imaging [13], infor-
mation processing [14, 15], neuromorphic computing [16],
and metrology [17].
In this paper, we propose an all-optical method to en-

hance the spatial coupling and coherence between non-
resonantly driven ballistic polariton condensates [18]. To
achieve this, we numerically model tailored pump spots
with reduced rotational Cn symmetry which generate,
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refract, and focus high-momentum condensate polariton
waves between nearest neighbors. This can be readily
achieved in practice using liquid crystal spatial light mod-
ulators [19]. As a case study, we demonstrate our idea
by numerically solving the generalized stochastic Gross-
Pitaevskii equation for a honeycomb lattice tiled with tri-
angular pump spots (C3) in comparison to more conven-
tional cylindrically symmetric Gaussian spots. Similar
structures have been exploited in photonic crystal slabs
to generate band gaps [20], but have not been widely ex-
plored in the context of polariton fluids. Our method
can be applied to optically driven lattices of polariton
condensates which have today reached hundreds of co-
herently coupled condensates [9]. Our results could ad-
vance the performance of polariton platforms to explore
XY spin materials [21, 22], topological physics [23, 24],
vorticity [8, 25], and band structure engineering [26, 27].

II. ANISOTROPIC PUMP SHAPES FOR

POLARITON CONDENSATION

The exciton-polariton condensate is denoted a macro-
scopic wavefunction (i.e., order parameter) Ψ(r, t) which
is governed by a generalized Gross-Pitaevskii equation.
The condensate is coupled to a background reservoir den-
sity of incoherent excitons nX(r, t) which are driven by
an external nonresonant excitation source P (r) and de-
scribed by a simplistic rate equation model [28],

i~
∂Ψ

∂t
=

{

−
~
2∇2

2m
+ α|Ψ|2 +G

[

nX +
η

ΓX
P (r)

]

+
i~

2
(RnX − γ)

}

Ψ, (1)

∂nX

∂t
= −

(

ΓX +R|Ψ|2
)

nX + P (r). (2)

Here, m is the effective polariton mass, G = 2g|χ|2

and α = g|χ|4 are, respectively, the repulsive (defocus-
ing) polariton-reservoir and polariton-polariton interac-
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tion strengths, |χ|2 is the excitonic Hopfield coefficient
of the polariton, g refers to the exciton-exciton dipole
interaction strength, R stands for the rate of stimulated
scattering of reservoir excitons into the condensate, γ
and ΓX are, respectively, the polariton and reservoir de-
cay rates, and η determines the ratio of the contribu-
tion of the blueshift from both dark and high-momentum
excitons which do not scatter into the condensate but
are present in the background. We set the parame-
ters similar to our previous works based on slightly neg-
atively detuned cavities with InGaAs quantum wells:
m = 0.28meVps2 µm−2, |χ|2 = 0.4, g = 1µeVµm2,
~R = 2.0g, η = 2, and γ−1 = Γ−1

X = 5.5 ps. The nonres-
onant pump is written P (r) = P0f(r), where P0 is the
power density multiplied with a spatial profile satisfying
max(f) = 1.

III. SHAPING THE POLARITON OUTFLOW

We are interested in the steady-state solutions of
Eq. (1) using pump profiles f(r) tailored to guide the
polariton waves into desired patterns. This is made possi-
ble because a local pumping region (i.e., spot) produces a
co-localized complex potential landscape felt by the gen-
erated polaritons. In the low-density regime (i.e., close
to condensation threshold), this potential is written as

V (r) =
P (r)

ΓX

[

(1 + η)G+ i~
R

2

]

. (3)

From the above equation, one can appreciate two things:
(i) The real part is positive because excitons interact
repulsively (G > 0), which means that polaritons are
blueshifted at the spot location. (ii) The imaginary part
is also positive, which means that above a certain critical
power P0 = Pth, the condensation threshold is reached
(stimulation exceeds losses) and coherent polaritons are
amplified at the spot location until the reservoir clamps
and the condensate stabilizes.
For small pumping spots the resulting steady state is

a ballistic condensate [29, 30], shown in Fig. 1. For cylin-
drically symmetric spots [see Figs. 1(a)–1(c)], the real-
space condensate density is co-localized with the spot
and coherent polariton waves are radially emitted in all
directions with high momentum, as evidenced from the
sharp density ring in momentum space. When multiple
small spots are pumped and displaced from each other,
fascinating phenomena such as spontaneous synchroniza-
tion and multimodal emission can occur due to the com-
plex non-Hermitian coupling between neighboring con-
densates [9, 18, 27, 31]. The condensate coupling is me-
diated by propagating polariton waves in the plane of the
cavity (near field) and should not be confused with out-
of-plane coupling like in the far field of laser arrays [32].
If the pump spot is, however, not cylindrically sym-

metric, then the generated polariton waves will experi-
ence refraction and interference, giving rise to anisotropic

FIG. 1. (a),(d) Circular and triangular pump configurations
and corresponding normalized condensate steady-state solu-
tions |Ψ|2 in (b),(e) real space and in (c),(f) momentum space.
The green arrows in (b) illustrate the condensate flow emit-
ted in all directions, and in (e), the thicker green arrows show
the anisotropic and concentrated condensate flow. Notice how
the triangular-shaped condensate in (e) is rotated by π/3 with
respect to the pump in (d).

streams of condensate polaritons, as shown in Figs. 1(d)–
1(f) for a triangular spot. Such shaping of the pump spot
can be realized using spatial light modulators on the in-
cident excitation, which allows focusing almost arbitrary
excitation patterns onto the microcavity plane [19]. This
has enabled the demonstration of all-optical in-plane po-
lariton waveguides [33, 34], transistor switches [35, 36],
amplification [37], tailored momentum distribution [19],
and microlensing [38]. Notice how the triangular-shaped
condensate in Fig. 1(e) is rotated by π/3 with respect
to its pump pattern in Fig. 1(d). This can be under-
stood from the following consideration. Inside the pump
spot, low-momentum polariton waves (k ∼ 0) are ampli-
fied and subsequently disperse, flowing out of the pump
spot and elastically converting their (pump-induced) po-
tential energy into kinetic energy. The waves which hit
the edges of the triangle close to normal incidence scat-
ter very little, whereas polaritons hitting the corners of
the triangle are at an oblique incidence and scatter more
strongly. This leads to enhanced flow of condensate parti-
cles along the normals of triangle edges, effectively form-
ing the dual pattern of the pump (i.e., pump edges map
to condensate corners). The same holds for higher-order
polygonal-shaped pump spots. This interpretation can
be easily verified by solving an initial value problem of
a two-dimensional Schrödinger equation wherein a Gaus-
sian wave packet centered at k = 0 and r = 0 in mo-
mentum and real space is propagated in time. We will
show in the following that shaping multiple spots into tri-
angles, as opposed to the conventional Gaussian-shaped
spots, focuses and enhances the interaction between ad-
jacent condensates, resulting in lowered threshold and
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FIG. 2. (a),(b) Triangular and circular pump profiles (red
color) with overlaid schematic blue and yellow integration ar-
eas to determine the amount of condensate anisotropy in the
system. (c) Example of pump profiles with zero, intermediate,
and maximal inner curvature denoted κ = 1/R. The white
dotted line indicates the circumscribed triangle. (d) The ratio
of condensate particles (integrated density) between the blue
and yellow areas NA/NB for varying curvature for a fixed
power density above threshold. The white bar in (a)–(c) is
10µm and the circular pump radius is R0 = 11.5µm.

increased coherence in the extended polariton system.

Since different pumping profiles usually have differ-
ent condensation threshold power density, the triangular
spot needs to be calibrated against the circular (Gaus-
sian) spot so that they share the same threshold power
density, Pth,T = Pth,C . Under this condition, polaritons
experience the same blueshift at their respective spots
and thus populate the momentum components of similar
magnitude in Fourier space [compare Fig. 1(c) with 1(f)],
enabling a fairer comparison. This calibration is achieved
by fixing the parameters of the model (1) and adjusting
the side length of the triangle until Pth,T = Pth,C for a
given full width at half maximum of the circular spot.

After calibrating the system, we quantify the
anisotropy of the ballistic flow from the condensate
steady state by integrating the particle density N =
∫

|Ψ|2dr over two segmented regions, denoted NA and
NB, shown schematically in Figs. 2(a) and 2(b) for vary-
ing curvature κ = 1/R of the triangle spot sides. For the
circular pump, the curvature satisfies κR0 = 1 where
R0 is its radius, whereas for the circumscribed trian-
gle, κ = 0 [see Fig. 2(c)]. For a cylindrically symmetric
spot, the ratio is NA/NB = 1 [see Fig. 2(d)], as expected
since the condensate steady state also becomes cylindri-
cally symmetric. Approaching the equilateral triangle
shape, κ→ 0, the ratio increases dramatically to almost
NA/NB ≈ 16, underlining the strong focusing of the bal-
listic polariton outflow from the sides of the triangular
pump spots.

Next, we characterize the coupling strength between
adjacent condensates pumped with triangular spots of
different relative orientation. We focus on four distinct
hexagonal pumping patterns [Figs. 3(a)–3(d)] and their
corresponding condensate densities |Ψ|2 at P0 = 1.1Pth

[Figs. 3(e)–3(h)]. The first three patterns can be catego-

FIG. 3. Pump profiles structured into a hexagon with differ-
ent relative orientation of the triangular spots: (a) side-side-,
(b) side-vertex-, and (c) vertex-vertex-facing nearest neigh-
bors. (d) A reference hexagon of circular spots. (e)–(h) Corre-
sponding normalized condensate densities at P0 = 1.1Pth. (i)
Corresponding number of condensate particles for increasing
power density marking the different condensation thresholds
for each configuration.

rized as side-side-, side-vertex-, and vertex-vertex-facing
triangles. In Fig. 3(i), we show the population of the con-
densateN =

∫

|Ψ|2 dr when scanning the pumping power
density in time (linearly) while numerically integrating
Eq. (1). The results show that the lowest threshold be-
longs to the side-side-facing pattern in Fig. 3(a), whereas
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FIG. 4. (a) Normalized time-integrated condensate density 〈|Ψ|2〉 for triangular pump spots arranged into a honeycomb
lattice. (b) Corresponding extracted mutual complex coherence function µ1n. The color scale and arrow orientation depict the
magnitude |µ1n| and phase θ1n, respectively. The central black arrow indicates the reference spot with zero phase. (c) The
modulus of the coherence function as a function of absolute distance between the first and n-th spots |r1 − rn| = d1n. The
black line is a fit of the stretched exponential function 9 which gives effective coherence length of Lcoh = 279.3 µm.

the highest threshold belongs to the vertex-vertex-facing
pattern in Fig. 3(c). This result intuitively makes sense
because the polariton outflow is strongest from the sides
of the triangular pump spots which enhances the over-
lap and coupling between neighbors, and weakest from
the vertices, in agreement with the results from Figs. 1
and 2.

IV. SPATIAL COHERENCE ENHANCEMENT

The enhanced coupling between side-side-facing trian-
gular pump spots shown in Fig. 3 implies stronger spatial
coherence in an extended system of polariton conden-
sates which is an essential property to study large-scale
emergent phenomena such as macroscopic vorticity [25],
universal behaviors and Kibble-Zurek scaling [39], and
simulation of spin systems [21? ]. Here, we demonstrate
this enhancement of the condensate coherence length by
tiling a large honeycomb lattice of side-side-facing trian-
gular pump spots like in Fig. 3(a). The resulting conden-
sate solution is shown in Fig. 4(a).

In order to calculate the mutual coherence between
any two spatial locations of the condensate in the lattice,
we use a stochastic generalized Gross-Pitaevskii equa-
tion in the truncated Wigner approximation [40]. This
leads to a simple Langevin-type equation for the conden-
sate dynamics which is sufficient to extract the relative
improvement between triangular and circular pumping
configurations. We note that the truncated Wigner ap-
proximation remains valid as long as γ ≫ g/∆A, where
∆A is the simulation grid pixel area. A complex white-
noise operator i~dW/dt is appended to Eq. (1), repre-
senting small random fluctuations added at every time

step, with correlators satisfying

〈dWidWj〉 = 0, (4)

〈dW ∗

i dWj〉 =
γ +RnX

2∆A
dtδi,j . (5)

Here, i and j refer to different spatial grid points in the
numerical simulation and ∆A = ∆x∆y is the area of the
grid cells.
The spatial coherence across the lattice is quantified

using the normalized complex first-order coherence func-
tion (sometimes denoted as g(1)) between each pair of
condensates written as

µnm =
〈ψ∗

nψm〉
√

〈ψ∗

mψm〉〈ψ∗

nψn〉
, n,m = 1, 2, . . . (6)

where ψn(t) = Ψ(rn, t) is the phase and amplitude of
the nth condensate at the center of their respective
pump spot location rn. The time average is defined as
〈ψ∗

mψn〉 =
1
T

∫

T
ψ∗

mψn dt, where T is the duration of the
simulation which is taken to be much greater than any
other characteristic timescale in the model parameters. It
is worth noting that in experiment, the mutual coherence
function can be measured through multislit interferome-
try [9]. The modulus of the first-order coherence function
|µnm| 6 1 serves as a normalized measure of coherence
between any two condensates in the lattice, whereas its
argument represents their average phase difference,

θnm = arg(µnm). (7)

Figure 4(a) shows an example condensate time-
integrated density for a finite-size honeycomb lattice of
side-side-facing triangular spots at a given lattice con-
stant and pump power. Clear interference fringes can
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FIG. 5. The modulus of the mutual coherence function |µ1n| for increasing absolute condensate neighbor distance d1n and
different power densities (colors) for (a) triangular spots and (b) circular spots. Solid and dotted lines are fit using a stretched
exponential function. (c) Corresponding power density scan of the mutual coherence between the first and the second condensate
|µ12| for both configurations. (d) Corresponding effective coherence length extracted from fitting for both configurations. The
color of the markers directly corresponds to the values on the horizontal axis in (c).

be seen between the pumped condensate bright spots,
implying robust synchronization even in the presence of
noise. Closer to the edge of the lattice, transverse losses
due to the strong polariton outflow are more effective,
which results in weakened edge density.
In Fig. 4(b), the arrows denote the phase θ1n between

all pairs of condensates with respect to the central one
(denoted with a black arrow) with a color scale depict-
ing the coherence amplitude |µ1n|. As expected, the co-
herence drops radially because of the decreased coupling
between distant neighbors. Note that the arrows have
arranged themselves antiparallel with respect to nearest
neighbors, which implies antiphase (π) synchronization
between the condensates for the given lattice parameters.
Other lattice parameters can result in a condensate solu-
tion characterized by in-phase synchronization between
the lattice nodes [18]. In either case, our conclusions re-
main the same. We also point out the slight twist in the
arrow angles at the edge of the lattice shown in Fig. 4(b).
This twist was observed recently in experiment [9] and
stems from the polariton flowing out of the lattice, which
corresponds to a phase gradient between the condensates.
In Fig. 4(c), we plot the modulus of the coherence func-

tion |µ1n| for increasing absolute distance between the
central condensate node and the rest, |r1 − rn| = d1n.
We obtain a good fit using a stretched exponential func-
tion [39] (black curve), written as

µ(d) = Ae−(d/B)C , d > 0. (8)

Here, A,B,C are fitting parameters. Integrating µ(d)/A
from 0 → ∞, we obtain an expression for the effective
coherence length of the system [39],

Lcoh =
B

C
× Γ

(

C−1
)

, (9)

where Γ is the gamma function. Equation (9) can be
regarded as the spatial relaxation length of first-order
correlations in the condensate.

We repeat the calculation for the lattice of triangles
from Fig. 4(c), but now for several different power den-
sities collated into Fig. 5(a) in different colors. Yellow
is the weakest power and blue is the strongest power.
For comparison, modulus of the coherence function for a
lattice of circular spots is shown in Fig. 5(b). The com-
parison is more clearly visualized in Figs. 5(c) and 5(d),
where we plot only the coherence between the central
nearest-neighbor condensates |µ12| and the effective co-
herence length Lcoh, respectively. The former [Fig. 5(c)]
shows that the condensate coherence is stronger for trian-
gular pump spots across all powers, as expected. It also
displays a sharp increase in both cases followed by a sat-
uration, which is similar to past observations [9, 41]. At
even higher powers (not shown here), the coherence starts
dropping as the condensate becomes unstable and starts
fragmenting into multiple energy components [18]. This
result underlines the enhanced spatial coupling between
triangularly pumped condensate nodes as compared to
circularly pumped nodes. Note that the amplitude of
the noise for a given power density P0 is the same for
triangular and circular spots according to Eq. (5) since
nX ∝ P0. Therefore, the increased coherence for the
triangular spots cannot be attributed to different levels
of noise, as compared to circular spots, but rather the
focused ballistic emission of polaritons between nearest-
neighbor condensate nodes in the lattice.

The latter [Fig. 5(d)] verifies that not only has the
condensate coherence increased using triangular pump
spots, but the relaxation of spatial correlations in the
condensate lattice is much slower, implying longer coher-
ence lengths, than for the circular spots across all powers
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tested. On average, over all pump powers tested here, the
improvement in coherence is ≈ 36%. A more exhaustive
numerical study over the parameter space of the model
will help to accurately quantify the improvement.

V. CONCLUSIONS

We have shown that by tailoring the shape of an
incident nonresonant light source which excites ballistic
exciton-polariton condensates, we can enhance the spa-
tial coupling between separately pumped condensates.
The reduced symmetry of the tailored pump spots,
as compared to typical Gaussian spots, refracts and
focuses outflowing high-momentum polaritons from
their pumped condensate centers. The coherent flow
of polaritons can be focused towards nearest neighbors
to enhance condensate spatial coupling. We verify our
method by numerically solving the stochastic generalized
Gross-Pitaevskii equation for a honeycomb lattice of
triangular pump spots which displays a lowered thresh-
old and larger effective coherence lengths as compared
to a lattice of circular (cylindrically symmetric) pump

spots. Our method can be applied on today’s optical
microcavities using standard spatial light modulator
technology to generate macroscopic fluids of light with
improved coherence scales. It can be used to help with
exploration into complex long-range dynamics in dissi-
pative quantum fluids, design of large-scale structured
coherent light sources in the strong-coupling regime, and
development of less noisy analog computing platforms
based on polariton networks [11].

All data supporting this article are available on the
University of Southampton’s online repository [42].
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M. Szymańska, R. André, J. Staehli, et al.,
Nature 443, 409 (2006).

[2] C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R.
Gulevich, H. Schomerus, D. Vaitiekus, B. Royall,
D. M. Whittaker, E. Clarke, I. V. Iorsh, I. A.
Shelykh, M. S. Skolnick, and D. N. Krizhanovskii,
Phys. Rev. Lett. 120, 097401 (2018).

[3] V. Goblot, B. Rauer, F. Vicentini, A. Le Boité,
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ario, F. Claude, S. Pigeon, Q. Glorieux, A. Amo,
J. Bloch, A. Bramati, and E. Giacobino,
Advanced Quantum Technologies 3, 2000052 (2020).

[11] A. Kavokin, T. C. H. Liew, C. Schneider,
P. G. Lagoudakis, S. Klembt, and S. Hoefling,
Nature Reviews Physics 4, 435 (2022).

[12] I. Carusotto and C. Ciuti,
Rev. Mod. Phys. 85, 299 (2013).

[13] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schu-
man, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte,
K. Gregory, C. A. Puliafito, and J. G. Fujimoto,
Science 254, 1178 (1991).

[14] K. Hotate and T. Okugawa,
Journal of Lightwave Technology 12, 1247 (1994).

[15] Y. Chen, S. A. Ponomarenko, and Y. Cai,
Applied Physics Letters 109, 061107 (2016).

[16] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P.
Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal,
Nature Photonics 15, 102 (2021).

[17] V. Giovannetti, S. Lloyd, and L. Maccone,
Science 306, 1330 (2004).
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Phys. Rev. B 93, 235301 (2016).

[38] Y. Wang, H. Sigurdsson, J. Töpfer, and P. Lagoudakis,
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