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A universally accepted theory of quantum gravity would play a crucial role in a

complete understanding of Nature which has so far eluded physicists. This is illustrated

by the variety and complexity of the many attempts to produce such a theory. A

collection of analyses is presented which investigates a novel, natural approach which

combines general relativity with quantum field theory in the framework of the Wilsonian

renormalization group whilst respecting the conformal instability.

We investigate the structure of this theory at first order in the coupling and verify

that a continuum limit exists. We find that a continuum limit exists only if the theory

is defined outside of the diffeomorphism invariant subspace. In the UV, interactions

are associated to a coefficient function which is parametrised by an infinite number of

fundamental couplings. In the physical limit diffeomorphism invariance is reinstated

such that for a suitable choice of these couplings the coefficient functions trivialise. Dy-

namically generated effective diffeomorphism invariant couplings emerge, in particular

Newton’s coupling.

This investigation is continued to second order in perturbation theory. For pure

quantum gravity, with vanishing cosmological constant, the result of the standard quan-

tisation is recovered. Quantum gravity is renormalizable at second order for kinematic

reasons but the structure is shown to hold in general. It may be the case that a contin-

uum limit exists however with a, phenomenologically inconvenient, infinite number of

fundamental couplings. However a possible non-perturbative resolution, based on the

conformal instability and the parabolic properties of the flow equations, is investigated

which would fix higher order effective couplings in terms of Newton’s constant and the

cosmological constant.

We then explore the properties of these flows with opposite natural direction through

a related asymptotic safety problem, studying whether or not they have complete so-

lutions. Finally we conclude with a discussion of the ramifications of this structure

and possible applications to outstanding physical problems, in particular we investi-

gate how well this structure is extended to arbitrary space-time dimensions and the

physical consequences thereof.
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Chapter 1

Motivation

A universally accepted unification of gravity with quantum field theory continues to

elude physicists. Despite the continued efforts of the physics community there seems to

be no general direction to the research and no experimental data to refute or confirm

models. There is significant motivation for unifying these two key aspects of modern

physics; the expectation is that such a theory would shed light on some of the paramount

questions in physics.

These issues include but are not limited to understanding the universe’s first mo-

ments and the inflationary period, what is the behaviour of space-time beyond a black

hole’s event horizon and in particular the nature of singularities therein, how can we

describe dark energy which makes up some 70% of the energy budget of the universe.

Finally and more relevant to this thesis resolving such a unification of gravity with

quantum field theory would no doubt resolve major questions regarding how one in-

vestigates fundamental physics. Can we continue to use the successful scaffolding of

quantum field theory and the ideas of the renormalization group or will Nature de-

mand that we construct something much different in the pursuit of understanding the

universe around us?

We begin with an introduction to subjects relevant to this thesis, beginning with

the broad concepts of general relativity with a particular focus on the Einstein-Hilbert

action and the graviton field. Following this we review the ideas of renormalization and

the process of eliminating infinities from our calculation to produce physical results.

We then follow these ideas with a broader discussion of the Wilsonian approach to

renormalization in the form of the renormalization group with comments on how these

ideas relate to the exact renormalization group and asymptotic safety amongst others.

It is pertinent to emphasise why gravity is non-renormalizable in this new language and

we do so here. We then take a brief pause to examine contemporary approaches to the

resolution of this quantum gravity problem, focusing on string theory and loop quantum

gravity in particular to give context to the work of this thesis. We then conclude this

introductory section with a chapter detailing a review of the ’dilaton portal’ which

underpins this novel approach to quantum gravity, we also detail the methods of the
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anti-field approach to Becci-Rouet-Stora-Tyutin (BRST) quantisation and associated

subjects.

We begin the analysis of this novel approach to quantum gravity at first order in

perturbation theory in chapter 4. This work will underpin the later research discussed

in this thesis and is the first step in understanding the structure such a theory de-

mands and the consequences one finds when combining general relativity, the exact

renormalization group and a more complete quantisation process.

Chapter 5 follows, here the analysis is progressed to second order in perturbation

theory which is a significant step as now aspects of the theory such as the behaviour

and existence of couplings in the continuum limit can be more completely investigated.

The relationship of the complete theory with the novel behaviour of the dilaton section

of the graviton and the ramifications of this are also considered here.

The consequences of this analysis are further elucidated in chapter 6 and investiga-

tions are made into a physically significant repercussion of this approach to quantum

gravity, namely the existence of contradictory flows for different sectors of the graviton

field. This work is more closely related to the field of asymptotic safety and as such

links are made to this popular research field as well as an overview of the defining

concepts.

There are a significant number of open questions that a theory of quantum gravity

would hope to answer, we briefly discuss how such a theory as discussed here can shed

light on these problems. In particular we investigate whether this work can be extended

to arbitrary space-time dimensions. The idea of this preliminary work stems from a

history of suggestions in theoretical physics that extra dimension may play a role, for

example the idea of Kaluza-Klein compactification. Other applications of this theory

are also discussed here.

Finally we conclude this thesis with comments on the presented results within the

context of modern theoretical physics and discuss the current state of this theory and

where it may progress in the future.

2



Chapter 2

Introduction

2.1 General relativity

We begin by outlining the most relevant results of Albert Einstein’s magnum opus,

General Relativity (GR) [4, 5]. Describing this framework in its entirety as well as the

multitude of consequences and results of this work would fill a document many times

larger than this thesis. Instead we discuss the key results which are relevant to our

work and encourage the reader to review GR for themselves [6, 7].

We begin with the Euclidean Einstein-Hilbert (EH) action of GR

SEH =

∫
d4x LEH with LEH = −2

√
gR/κ2 (2.1)

where κ =
√

32πG and G is Newton’s constant with g = det(gµν). The Ricci scalar,

Ricci tensor and Riemann tensor are given by R = gµνRµν = Rαµαν with [∇µ,∇ν ]vλ =

R λ
µν σv

σ. There are a variety of ways to define the metric gµν which is used to construct

R,Rµν and Rαµρν . In this thesis we will typically choose to expand the metric around

flat space as

gµν = δµν + κHµν (2.2)

where δµν is our flat background and Hµν is our ’complete graviton’. We also define

here the dilaton ϕ

ϕ = 1
2Hµµ (2.3)

which will be of great significance in this thesis, see chapter 3. In this thesis we will be

concerning ourselves primarily with pure gravity, that is to say a theory of gravitons

and dilatons interacting only between themselves. We will however make comments on

the most significant effects one may expect when one extends this theory to include

general matter.

GR and the EH action are (conveniently, for physical measurements) valid in
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Minkowski signature however as we will be working in the Wilsonian Renormaliza-

tion Group (RG) framework, see section 2.3, we will be working with a Euclidian

signature metric. This is because the Wilsonian RG necessitates quasi-local effective

actions constructed from integrating out fluctuations at short distances. As we will

be working with a flat background metric δµν there is no physical difference between

contravariant and covariant objects, however we will continue to follow the Einstein

summation convention out of habit and for legibility, except where it is inconvenient to

do so.

When working with this Euclidean signature we see that the Euclidean partition

function is less well defined than usual. As (2.1) is unbounded from below (with large

positive curvature being the source of the upcoming difficulties) we see that

Z =

∫
Dgµνe−SEH =

∫
Dgµνe2

√
gR/κ2

(2.4)

will fail to converge. Using the expansion (2.2) we find at zeroth order in the coupling

κ the Fierz-Pauli action for free gravitons

LEH = 1
2(∂λHµν)2 − 2(∂λϕ)2 − (∂µHµν)2 + 2∂αϕ∂βHαβ (2.5)

which using a Feynman - De Donder gauge fixing term (∂αHαβ − ∂βϕ)2 and splitting

the complete graviton into its SO(4) irreducible parts

Hµν = hµν + 1
2δµνϕ, (2.6)

(2.5) simplifies to

LEH = 1
2(∂λhµν)2 − 1

2(∂λϕ)2. (2.7)

The minus sign in front of the dilaton kinetic term will prove to be crucial to a novel

approach to Quantum Gravity (QG). We also note that under this expression of the

metric and decomposition of the complete graviton (henceforth we refer to hµν and ϕ

as the graviton and dilaton respectively) we have an overall local rescaling of the metric

gµν = δµν

(
1 +

κ

2
ϕ

)
+ κhµν . (2.8)

In this way we can clearly see that the dilaton ϕ [8, 9] is a a perturbation that leads

to an overall local rescaling of the metric and this splitting of the metric makes the

conformal instability most easily recognisable in (2.7).

In this thesis we will regularly discuss the symmetry of diffeomorphism invariance.

In much the same way SU(3) can be regarded as the symmetry of QCD one can regard

diffeomorphism invariance as the symmetry of GR. This states that the laws of physics

should be invariant under our seemingly arbitrary choice in coordinate frame as there
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does not exist a priori such a frame or indeed any preferred frame in Nature. That is to

say the description of Nature should be invariant from one transformation to another.

Before discussing this in greater detail in chapter 3 as well as the consequences

of this negative kinetic term we must first elucidate precisely what renormalization

and the renormalization group are in sections 2.2 and 2.3, and in section 2.4 why a

satisfying combination of GR with this framework at the perturbative level has so far

eluded physicists. We will sketch out some of the more popular attempts at this in

section 2.5.

2.2 Renormalization

Renormalization is the systematic process by which the unphysical infinities produced

in the mathematics of Quantum Field Theory (QFT) are eliminated such that the

calculations reflect the physical reality Nature presents us. These infinities arise due

to loops in Feynman diagrams constructed from the ’bare Lagrangian’, the Lagrangian

that is produced when one considers a set of fields, their kinetic terms and a set of all

possible interactions that the symmetries allow. We will briefly review the key results

of this field following [10], before focusing our attention on the more complete approach

afforded by Kenneth Wilson’s renormalization group in section 2.3. We encourage the

reader to review this subject as well as the finer points we do not cover here in the

many articles and textbooks written covering it [11].

The infinities we are concerned with arise from the integration over the entirety

of the momentum space when evaluating Feynman diagrams, these are referred to as

Ultra Violet (UV) divergences1. In the loops of the Feynman diagrams we will find

that evaluating these goes as, schematically for the sake of clarity,∫ Λ

0

d4p

(2π)4

1

p2
∼ Λ2 (2.9)

where Λ is a cut-off we introduce to parametrise this divergence, when we set Λ→∞ the

above will diverge. As these loops are used to calculate physically observable quantities

such as coupling strengths then there is clearly an issue here: these quantities must be

finite. There are two key ingredients to remedying this problem, the first is to render

such calculations finite. The second is to recognise that the Feynman rules used to

produce these diagrams and ergo the resulting calculations are effectively incomplete;

it has used the bare Lagrangian which has not accounted for the effect of these loop

diagrams and to instead re-write these rules using the physical renormalized Lagrangian.

Beginning with the former we can introduce a regulator such as the cut-off Λ above,

which is then taken to∞ once the couplings are redefined such that one gets the desired

1In many textbooks there will also be mention of so-called Infra Red (IR) divergences that arise in
theories with massless particles due to taking the momentum to zero for certain quantities. We do not
cover these in detail here.
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finite result. This is often referred to as the UV or continuum limit. One may also use

processes such as dimensional regularization which do not introduce a cut-off Λ, in this

case it was recognised that these divergences occur in four space-time dimensions and

so calculations are performed in d = 4− ε space-time dimensions, with the limit ε→ 0

returning us to the Nature we are more familiar with. This is equivalent to taking the

Λ→∞ limit above.

The second is resolved via the introduction of counter terms, these are introduced

order by order to account for the infinities produced by the bare Lagrangian in a process

referred to as perturbative renormalization,

SΛ[φ]→ SΛ[φ] + SCT [φ,Λ]. (2.10)

As an example take φ4 theory, this has a bare action

SΛ[φ] =

∫
d4x 1

2∂µφ∂
µφ+ 1

2m
2φ2 +

λ

4!
φ4 (2.11)

and a counter term action

SCT [φ,Λ] =

∫
d4x 1

2δZ∂µφ∂
µφ+ 1

2δm
2φ2 +

1

4!
δλφ4 (2.12)

where δZ , δm2 and δλ represent the freedom to adjust the couplings in the original

action. δZ in particular is the coupling to the kinetic term which is referred to as the

wavefunction renormalization. These counter term couplings will have Λ-dependency

and are representative of the tuning to have the renormalized action reflect reality,

this aspect of tuning is elaborated on in the following section. We note that there

are many different ways to implement this tuning and perturbative renormalization,

depending on the theory considered and the mathematical preferences of the physicists

there are benefits and costs to these different renormalization schemes. The physics

should however be independent of this choice at all times.

This idea of renormalization was at first met with a great deal of criticism and was

considered ad hoc. It was not until the work of Kenneth Wilson and the flourishing of

the ideas of the renormalization group when this work was underpinned by these more

complete, rigorous concepts.

2.3 The renormalization group

We can approach this idea of renormalization and how one best defines a QFT from

the fresh perspective that Kenneth Wilson et al [12–14] gave. We will give here a brief

summary of the ideas of the Wilsonian Renormalization Group (RG) however we again

encourage the reader to discover the finer details of this field for themselves [15–18].

The defining principle behind the RG is the idea of physical scale. More precisely we

describe a theory with respect to some length/energy scales. For example one does not
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need the complexity of some all encompassing theory-of-everything to describe water

in a tea cup, instead a simpler low energy effective theory such as Navier-Stokes will

be more than suitable. Such a theory is fine in this regime however in a high energy

scenario it may not be. Continuing with the water analogy Navier-Stokes would not be

appropriate for attempting to describe the dynamics of dynamite being detonated in

a swimming pool. Nevertheless we can see that one does not need to understand the

full complexity of Nature to describe low energy phenomena. Crucially the high en-

ergy/small distance behaviour will only make its presence known in certain coefficients

in the low energy theory, for example the viscosity of fluids.

This idea of defining a theory at different energy scales2 lends itself naturally to

QFT. In the Wilsonian framework a QFT is defined as an action functional S[φ, gi] of

the fields φ and couplings gi which is constructed from all possible operators that the

symmetries permit. This action depends a priori on an infinite number of couplings

such as mass parameters, couplings for interaction terms and so on. The functional

integral is given by

Z =

∫
dφ eiS[φ,gi] (2.13)

and as we saw in section 2.2 we must have a method with which to resolve the continuum

limit, that is to say find a way such that every physical observable is not simply ∞.

We do so here by introducing cut-offs or regulators which we insert in our kinetic term.

These are introduced such that high momentum modes are suppressed3 in such a way

that we can integrate over all momentum modes and get finite results. The choice

in cut-off is usually a practical one; some are less physical but provide computational

practicality (such as a step function) whilst others are the inverse of this (for example

a more subtle exponentially damped one). Invariably though two aspects must be

considered: that the physical observables are independent of this choice of cut-off and

that introducing the cut-off also brings with it a cut-off scale µ.

We can interpret this cut-off scale µ in several ways. For the purposes of this thesis

we will regard it as a momentum above which we begin to suppress modes by modifying

the action or the measure, we do so by introducing the aforementioned cut-off function.

We can choose µ to match the energy scale of some physical process we are interested

in as then we are only concerned with energy scales at or below the region of interest.

Critically if one defines a physical quantity F(gi;E) where gi are the couplings of the

underlying theory and E is some energy dependence then the idea of the RG is that

one can change the cut-off of the theory such that the physics on energy scales below

µ remain constant. Our arbitrary choice of the cut-off does not affect the physics we

2Henceforth we will use scales to refer to energy scales for simplicity. We will also often use UV to
refer to a high energy regime and IR to a low energy regime. We note that this usage is relative, an
energy may be considered UV in one context and IR in another.

3This is also equivalent to introducing a physical lattice spacing of distance Λ−1 or in perturbation
theory analytically continuing the space-time dimension via dimensional regularization as outlined in
section 2.2.
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observe. For this to occur the couplings themselves however must change as a function

of µ. This consistency of the physical observables can be summed up with the RG

equation

F(gi(µ);E)µ = F(gi(µ
′);E)µ′ (2.14)

where µ′ denotes some new scale.

When one considers the RG we begin in the UV and consider the natural flow to

be towards the IR, this idea of a natural direction for the flow where solutions to the

forthcoming RG equations are guaranteed to exist will be crucial in understanding this

novel approach to QG, in particular in chapter 6. The couplings gi(µ) define a theory

space, an infinite dimensional space where each direction corresponds to one of these

couplings, a path through this space is defined by these couplings. This path is the RG

flow. To ensure (2.14) is satisfied we must integrate out the degrees of freedom between

the two cut-off scales µ and µ′. At first glance this would appear to be a monumental

task due to the infinitely dimensional space we are working in however there are key

properties of the theory space which make this task significantly easier.

The physical observables of a theory are constructed from the action, once the

action is well understood everything follows from that. In this RG approach we must

then understand how the action changes as a consequence of a change in µ, this leads

to the key RG equation.

S[Z(µ)1/2φ;µ, gi(µ)] = S[Z(µ′)1/2φ;µ′, gi(µ
′)]. (2.15)

Here we consider the generic fields φ the action is dependent upon and also recall the

wavefunction renormalization Z(µ).

The actions we consider here are formed of two parts; the kinetic term and a linear

combination of operators Oi(x) which are comprised of fields and their derivatives4 e.g.

φn,(φn∂φ)m, more exotic operators can be constructed such as the tower operator we

discuss in chapter 3. The more general expression for the action with a cut-off is the

Wilsonian effective action, given as

S[φ;µ, gi] =

∫
ddx

[
1
2∂µφ∂

µφ+
∑
i

µd−digiOi(x)

]
(2.16)

where di is the classical scaling dimension (also known as the engineering scaling dimen-

sion) of Oi(x). Crucially we have chosen the couplings to be dimensionless by inserting

the appropriate power of the cut-off to carry this dimension, this is necessary as it is

the value of the coupling relative to the cut-off that will be important to the physical

observables. This concept of using scaled variables will also prove to be a crucial tool

4The composition of these operators will be limited not only by the continuous internal symmetries
of the theory one is considering but also more general considerations such as φ→ −φ symmetry as well
as Lorentz invariance. As a result we will often eschew Lorentz indices where it is convenient to do so
to aid explanation.
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in understanding the Wisonian RG.

We now begin to think of the infinitesimal transformations as we change µ, the

famous β-function of a theory is given by

µ
dgi(µ)

dµ
. (2.17)

This function describes the running of the couplings, how they change as we flow along

the RG, by integrating out the beta function equations. Since the dimensionful cou-

plings are given by µd−di the β-function always has the form

µ
dgi
dµ

= (di − d)gi + βquantgi (2.18)

where the first term on the right hand side stems from the classical scaling dimension

of the operators and the second term stems from the non-trivial integrating-out part

of the RG transformation. This also corresponds to the first term consisting of only

tree level diagrams and the latter, loop level diagrams, which would be more apparent

if we re-introduced ~ when not working in natural units (hence the quant label). We

also define the anomalous dimension of a field φ as

γφ = −µ
2

d logZ(µ)

dµ
. (2.19)

In this approach to QFTs it is often easier to consider Green’s functions of fields

as opposed to probabilities of events occuring as the most useful physical observable.

Although the latter may be more natural this will often be difficult to calculate in mass-

less theories where the S-matrix must consider long range interactions. The Green’s

function is given by

〈φ(x1)...φ(xn)〉gi(µ),µ =

∫
µ[dφ] eiS[φ;µ,gi(µ)] φ(x1)...φ(xn)∫

µ[dφ] eiS[φ;µ,gi(µ)]
(2.20)

To maintain the consistency of (2.15) we must generalise (2.14) to take account of

wavefunction renormalization where again our choice in µ should not affect the physics,

Z(µ)−n/2〈φ(x1)...φn(xn)〉gi(µ),µ = Z(µ′)−n/2〈φ(x1)...φn(xn)〉gi(µ′),µ′ . (2.21)

We now begin to approach the most important aspects of the RG which will be

paramount to this thesis. The most crucial aspects of the RG flows are their UV

and IR behaviour, namely what happens when one takes the cut-off to µ → ∞ and

µ→ 0 respectively. We will find that we construct the theory in the UV before flowing

naturally5 down towards the low energy IR, where in reality we are able to make

measurements and verify predicted physical observables against experiment. We begin

5This premise of a natural direction for the flow stems from the full RG equations which we elucidate
in chapter 3.
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with a theory of only massive particles and find that as we flow towards the IR the

ratio of any mass scales in the theory to the cut-off scale, m/µ, increase (µ → 0). In

this limit, a theory with no mass scales6 becomes trivial as all physical masses become

effectively infinite in comparison to the cut-off and so there is nothing to propagate.

We are left with an empty, un-interesting theory.

We must also consider what happens in the UV. We define the critical surface as

the infinite dimensional sub-space of the theory space for which the mass-gap vanishes,

critically the theories in this space will have a non-trivial IR limit where only the

massless degrees of freedom survive. As opposed to the former case in the IR limit for

these theories the massless particles will remain, all the couplings will flow towards a

fixed point of the RG, gi(µ) → g∗i where the β-functions vanish. We note now this is

not to be confused with the Gaussian Fixed Point (GFP) which plays an important

role in these concepts and is the fixed point of a free, non-interacting particles. The

equation for a fixed point7 is given by

µ
dgi
dµ

∣∣∣
g∗j

= 0, (2.22)

these points in the theory space correspond to Conformal Field Theories (CFTs). We

can compare this to (2.17) and see that at the fixed point the β-function is zero, the

couplings no longer evolve. These CFTs are a special class of theories with many novel

features which are of particular interest to alternative approaches to QG, see section 2.5.

They possess only massless particles in addition to having no dimensionful parameters,

as a consequence of this they are said to be scale invariant and this invariance is

promoted to the full group of conformal transformations, hence ‘CFTs’. It is in the

neighbourhood of these CFTs where we will construct non-trivial theories, taking small

perturbations away from the fixed points.

In this neighbourhood, gi = g∗i + δgi we can safely linearize the flow

µ
dgi
dµ

∣∣∣
g∗j+δgj

= Aijδgj +O(δg2
j ) (2.23)

which in a suitable diagonal basis {δgi} which is denoted {σi}

µ
dσi
dµ

= (∆i − d)σi +O(σ2). (2.24)

To linear order the RG flow is then

σi(µ) =

(
µ

µ′

)∆i−d

σi(µ
′). (2.25)

∆i is the scaling or conformal dimension of the operator associated to σi, this is not

6That is to say there are no massive particles and there is no mass-gap.
7A * will typically denote a process or object being evaluated at or in the neighbourhood of the

fixed point.
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the classical or engineering scaling dimension and the difference

γi = ∆i − di (2.26)

is the anomalous dimension of the operator. This scaling dimension and classical scaling

dimension will often differ. For CFTs the Green’s functions are covariant under scale

transformations which will provide important non-trivial constraints, take for example

the two-point Green’s functions 〈φ(x)φ(0)〉 which satisfies (2.15)

Z(µ)−1〈φ(x)φ(0)〉gi(µ),µ = Z(µ′)−1〈φ(x)φ(0)〉gi(µ′),µ′ . (2.27)

At the fixed point g∗i we have Z(µ) = (µ′/µ)2γ∗φ Z(µ′) where γ∗φ = γφ(g∗i ) . We find via

dimensional analysis that

〈φ(x)φ(0)〉g∗i ,µ = µ2dφG(x, µ) (2.28)

where dφ is the classical scaling dimension of the field φ and G(x, µ) contains the details

of the structure. Upon substituting this into the RG equation (2.27) we find

〈φ(x)φ(0)〉g∗i ,µ =
c

µ2γ∗φx2dφ+2γ∗φ
∝ 1

x2∆∗φ
(2.29)

where c is some constant. (2.25) then leads to the classification of couplings (and their

associated operators) into three distinct groups based on this parameter ∆∗φ in the

neighbourhood of the fixed point.

The magnitude of ∆i leads to these three groups:

• For couplings with ∆i < d the flow diverges from the fixed point into the IR (as

µ decreases), these couplings are knows as relevant

• Couplings with ∆i > d the couplings flow into the fixed point and are known as

irrelevant

• The final group is marginal where ∆i = d. In reality as we go beyond first order

there will be slight deviations in the O(σ2) part of (2.24) and the coupling is

then said to be marginally relevant or marginally irrelevant. It is possible for a

coupling to be truly marginal, for example in N = 4 super-symmetric Yang Mills

theories, this implies that the original fixed point is in fact part of a line of fixed

points8

As we approach the UV where the fixed point is said to exist we find that all

particle masses decreases relative to the cut-off µ, in contrast to the behaviour in the

IR discussed previously. A theory with a mass gap will approach the critical surface.

8In this thesis we will typically discuss only relevant or irrelevant couplings, with the higher order
behaviour of marginal couplings assumed to be already resolved in any situation where it is pertinent
to the discussion.
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Regardless of whether or not the theory has a mass gap it will either diverge off to

infinity for some finite µ or approach the fixed point lying on the critical surface as

µ→∞. If we restrict ourselves to the case of two irrelevant couplings and one relevant

as we do in figure 2.1 we can see this structure more clearly. The critical surface is

spanned by the irrelevant directions which flow in towards the fixed point and we have

the single relevant direction flowing away from this fixed point towards the IR [10].

Figure 2.1: The theory space for two irrelevant couplings and one relevant, demonstrat-
ing the critical surface defined by the former as well as the renormalized trajectory,
emanating from the fixed point. Reproduced from [10].

In this simpler case we also begin to see universality. Flows living off of the critical

surface naturally focus around the renormalized trajectory [19, 20], the path for which

there are only relevant couplings.

For a given space-time dimension d there is naturally a finite number of relevant

couplings. Consider for example scalar field theory with d = 4 which satisfies φ→ −φ
symmetry, the only (marginally) relevant couplings (ignoring for now the kinetic term)

are those associated to the φ2 and φ4 operators. In contrast to that we have the infinite

tower of irrelevant couplings associated to φ6, φ8... and φn(∂φ)m type operators. The

number of relevant couplings is few and finite compared to the infinite number of

irrelevant couplings. This universality is crucial to our fundamental understanding of

UV complete QFTs. This means that the behaviour of theories in the IR is controlled

by this small number of relevant couplings, hence this focusing effect, as opposed to

the infinite number of all possible couplings. This small set of universality classes is

governed by these relevant couplings. In essence it is this behaviour of the RG that

leads to predictivity in QFT.

Finally we can define in a rigorous way the continuum limit of a QFT. As we have

discussed, a well defined QFT should not be dependent on our arbitrary choice in µ,
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this should be taken to infinity whilst maintaining the physics, i.e. keeping the physics

below µ the same. This is a very non-trivial issue. As we send µ → ∞ in practice

this means that gi(∞) is a fixed point of the RG, in the case that this is a non-trivial

theory this is what Weinberg calls asymptotic safety. See section 2.5 and chapter 6 for

more discussion on this approach to QG. The resulting flow through the theory space,

gi(µ), is this renormalized trajectory which is defined on all energy scales. As we can

see in figure 2.1 the renormalized trajectory lies on the part of theory space where

all irrelevant couplings are zero9. The intuition here may be that this is an unlikely

scenario however universality renders finding such a theory possible.

A theory may be able to live within or near the universality class of the space

such that gi(∞) is within the domain of attraction of the UV CFT. As figure 2.2 [10]

demonstrates when taking the UV limit in a careful way the theory will evolve with a

non-zero irrelevant coupling and remain in this domain. The IR physics remains the

same if the limit is taken properly, crucially the flow back towards the UV is defined

by the number of relevant couplings in the IR. Being in the domain of attraction of the

fixed point will mean that we eventually flow back into the fixed point where we have

this continuum limit.

Figure 2.2: The continuum limit of a theory flowing in the domain of attraction of a
UV CFT (the shaded area). Reproduced from [10].

The concepts of the RG are crucial to having a well defined QFT with a continuum

limit, not only when we concern ourselves with quantum gravity but for all QFTs. It

enables us to discuss seriously the ideas of predictivity and with only a finite number

of relevant couplings it helps explain how we can construct UV complete theories.

9We note that the renormalized trajectory in this illustrative example is a one dimensional line
however it will in general be some finite dimensional subspace.
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2.4 Gravity as a non-renormalizable theory

Given the subject of this thesis it is worth elucidating in what way a continuum theory

of QG fails when approached in a näıve way from the perspective of the Wilsonian RG

as well as its perturbative non-renormalizability [21–24]. The failure to produce a well

defined theory of QG with a continuum limit ultimately stems from our only coupling,

the gravitational coupling κ, being irrelevant about the GFP

[κ] = −1. (2.30)

When one constructs a UV complete theory we do with so with only relevant or

marginally relevant couplings. In this way we can tune these parameters such that

when we flow back into the UV the flow lands on the critical surface, this is the basis

for attraction for the UV fixed point (when flowing from the UV to the IR) from which

we construct the theory. As a result we then flow along the renormalized trajectory

in a well defined theory. If our only non-zero coupling is irrelevant then when we flow

back into the UV we flow away from this fixed point. Those theories that are defined

on this critical surface have a non-trivial IR limit where only the massless fields remain,

this may be acceptable for gravity but renders a suitable combination of gravity and

the Standard Model (SM) of modern particle physics [25] impossible. Crucially also in

gravity there are no relevant couplings which can be used to tune this flow such that

it is in the neighbourhood of the renormalized trajectory and so eventually flows back

into the neighbourhood of the UV fixed point.

We note however that having an infinite number of couplings does not necessarily

imply that the theory has no predictive power [26–30]. In particular this is typically

true in an effective theory containing negative mass-dimension couplings, which can

nevertheless be renormalised order by order in perturbation theory at the expense of

introducing new couplings at each new loop order [31]. Gomis and Weinberg showed

that such theories can be renormalised in this effective sense, also in the case where

gauge invariance (including diffeomorphism invariance) is involved. They did so using

BRST methods [32].

As κ is a very fundamental part of gravity, at least in the näıve approach, this seems

to put us at an impasse. It would seem then that a theory of QG necessitates either

a wholly new approach entirely or a new interpretation of how to describe κ. In this

thesis we will explore the latter in great depth however we first comment on approaches

to understand QG in the former paradigm.

2.5 Approaches to quantum gravity

We now briefly comment on some of the more popular approaches to resolving this

problem of marrying the fundamental ideas of QFT to gravity, we do this to give

context to the work discussed in this thesis with respect to the wider field and give a
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brief glimpse into the state of the art of this research area. This discussion will also help

illustrate how this novel approach to QG is far closer to the well understood framework

of QFT employed with great success to understand the SM of physics compared to the

different approaches being used in the investigation of QG. We will briefly outline the

most significant aspects of these approaches and provide references for further reading.

We begin with Asymptotic Safety (AS) [33–40]. We outline this briefly here however

the concepts of AS will be very relevant to chapter 6 where there is a more complete

introduction. As outlined in section 2.3 a QFT is a dynamic object which transforms at

different energy scales which, as one flows from the IR to the UV along the renormalized

trajectory (if the theory is properly defined with relevant couplings/operators only),

flows into the fixed point. Recall that the GFP is a special case where the fixed point

is the free theory with all relevant couplings now zero as the theory is deep in the UV

and all irrelevant couplings have already been fixed to be zero. The proposition of AS

is that this is not the end of the story. It is possible for non trivial fixed points to exist

whose β-functions are zero. Such a theory would be UV complete as one could take

the continuum limit and the couplings and associated calculations would be finite. If

the non-trivial fixed point was associated to gravity this would be a theory of QG with

a well defined continuum limit, that is to say exactly what we are looking for.

Another popular approach to the construction of a theory of gravitons is that of

string theory [41–43]. Like many topics in this introduction we could discuss this

approach without end, instead we note the broad ideas and encourage the reader to

discover this subject for themselves [44, 45]. String theory ultimately stems from treat-

ing the different elements of Nature (the fermions and bosons we are familiar with) not

as effective point particles but instead as extended objects, initially as one dimensional

strings and later to general n-dimensional branes in M-theory [46, 47]. Rather than a

variety of different particles there would be instead one fundamental object, the string

(and once the theory was more completely understood, in branes). At scales larger than

the string its properties such as the mass, charge, spin etc would be dictated by the

vibrational modes. Crucially this introduces a massless spin 2 mode which fulfils the

role of the graviton. As a consequence string theory would be not only a theory of QG

but also a promising candidate for a general complete theory-of-everything as it would

include the other particles and forces such as Quantum Electro-Dyanmics (QED) and

Quantum Chromo-Dynamics (QCD) one needs to completely describe Nature. Such a

theory would also ideally include new physics that is necessary to explain outstanding

problems such as dark matter [48], the Muon g − 2 problem [49] etc . Although this

seems tailor made to resolve some of the most interesting outstanding questions in the-

oretical physics this framework is not without its own problems. The calculations are

often prohibitively difficult and the number of vacua which could describe our universe

seem negligibly small compared to the total number of possible vacua, the so-called

string theory landscape problem [50]. Despite this the field continues to be an exciting

area of research for many physicists with many promising avenues.
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One such avenue of particular prominence which we note here is the so-called Anti-

de Sitter/Conformal Field Theory (AdS/CFT) correspondence [51–53]. This proposes

a relationship between theories of gravity in a d + 1 dimension AdS space and CFTs

living on the d dimensional boundary. Crucially calculations that would be difficult to

resolve on the gravity AdS side have an equivalent on the CFT side, the calculations here

are often significantly more malleable. The correspondence is a strong-weak duality;

a strongly coupled theory on one side (again where calculations may be prohibitively

difficult) will correspond to a weakly coupled theory on the other side where powerful

perturbative techniques can be used. Although not useful for our investigations into

QG a consequence of this is that strongly coupled CFT problems can be resolved on

the weakly coupled AdS gravity side of the correspondence.

The final approach to QG we discuss here is that of Loop Quantum Gravity (LQG)

[54–58] which focuses on the geometric aspects of Einstein’s GR and was originally

a constrained system quantization of the EH action. In this way space and time are

discretized in much the same way energy and spin are in quantum mechanics, from this

space-time is itself described as a network of these fundamental ‘atoms’ of space-time

which form large networks. In this way gravity is not described as a fundamental force

in the traditional sense but instead as an artefact of interactions within this network.

As a result of this granular approach to space-time there is a concept of a minimum

length, distances below this have no physical meaning and so this helps resolve the

problem of taking the continuum limit.

We have listed here only a handful of the more popular areas of research for finding

a theory of QG, the number of approaches we have not been able to discuss here is vast.

This great variety in the number of directions in this field of research illustrates that

there is no general consensus in the community in which method is the most promising.

This may be unfortunate for those of a more phenomenological persuasion who would

like concrete predictions, which up to this point the field has been lacking. However,

for those who are more interested in the formal construction of these theories there is a

great deal to be excited about. With the surface of this vast field of research just barely

scratched we now turn our attention to our novel approach to QG. This builds on the

topics discussed in this introduction and combines them in a way which is inherently

very natural and intuitive.
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Chapter 3

The dilaton portal

It is clear following the previous discussions that QG is, as it stands, a problem without

a satisfying resolution. In this section we will examine the structure of a theory different

to previous attempts to find such a resolution to the QG problem which is however in

many respects very similar to the current QFT techniques employed with great success.

In the broadest terms this new approach stems from applying this ERG approach to

QFT to the EH action, the final crucial ingredient is a more complete quantisation

which is necessary when considering the wrong sign kinetic term for ϕ . When working

in the RG we demand Euclidian signature such that |x − y| → 0 as x → y which

yields this famous negative kinetic term for ϕ (2.7). This issue is typically resolved

in Minkowski signature[9] via continuing the functional integral for this sector to the

imaginary axis ϕ→ iϕ. We do not apply this ad hoc resolution to the conformal factor

instability and instead keep it and look to resolve the instability via a more complete

quantisation procedure which leads to an exciting new approach to QG.

We begin with the example of a scalar field theory with positive kinetic term, a

physical situation that is more typically found in QFTs, to familiarise the reader with

the mechanisms of this quantisation procedure. This process has always been present

when creating a QFT however it is only due to the presence of this negative kinetic term

that we must return to the fundamentals to examine the consequences of this change in

sign. We follow this by applying this procedure to the conformal factor instability and

this leads in turn to the so-called ’tower operator’ which underpins much of the work

of this thesis. This operator brings with it a range of physically interesting behaviour

however the most paramount of this is the negative scaling dimension which would make

it seem almost tailor made to the resolution of the non-renormalizability of gravity as

outlined in section 2.4.

We then turn our attention to outlining BRST quantisation and the more powerful

anti-field formalism that succeeds it, this will be necessary when gauge fixing our theory

and will prove to be a powerful tool, signficantly reducing the number of operators that

may be permitted with the new found freedom the novel tower operator permits. We

then extend the treatment to the Legendre effective action which is more convenient
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for calculations and elaborate on how one reinstates diffeomorphism invariance in the

physical limit.

3.1 Scalar field theory with positive kinetic term

We illustrate this more complete quantisation procedure with an example of a scalar

field with a positive kinetic term, in particular we note that the eigenoperator spectrum

is described entirely by a set of orthonormal polynomial interactions that one is more

typically familiar with. We begin with an expression for the Wilsonian effective action

for some scalar field ϕ (not to be confused with the dilaton field we describe in more

detail in section 3.2 although both are presented here simply as scalar fields). We begin

with the Wilsonian effective action [19, 59]

Stot,Λ[ϕ] = SΛ[ϕ] +
1

2
ϕ · (∆Λ)−1 · ϕ (3.1)

where

∆Λ(p) :=
CΛ(p)

p2
(3.2)

is the massless propagator which is regularised by a smooth UV cut-off profile CΛ(p) :=

C(p2/Λ2), see figure 3.1. We note for future reference that ∆Λ will always be defined as

positive as the above, particularly when considering the negative kinetic term. This UV

cut-off profile behaves as follows, for |p| < Λ, CΛ(p) ≈ 1 and pre-dominantly leaves the

modes unaffected, when |p| > Λ the modes become suppressed. To ensure the flow is

complete we demand that C(p2/Λ2) is monotonically decreasing such that CΛ(p)→ 1

for |p|/Λ→ 0 and for |p|/Λ→∞, CΛ(p)→ 0 sufficiently fast to ensure all momentum

integrals are regulated in the ultraviolet.

The interactions must satisfy the Wilson-Polchinski equation [19, 60]

∂

∂Λ
SΛ[ϕ] = 1

2

δSΛ

δϕ
· ∂∆Λ

∂Λ
· δS

Λ

δϕ
− 1

2tr

[
∂∆Λ

∂Λ
· δ

2SΛ

δϕδϕ

]
(3.3)

and this in turn is trivially solved by the GFP SΛ(ϕ) = 0. We then find eigenoperators

by linearising around this fixed point

∂

∂Λ
δSΛ[ϕ] = −1

2tr

[
∂∆Λ

∂Λ
· δ2

δϕδϕ

]
δSΛ[ϕ] (3.4)

We define the scaled variables, denoted by a tilde, and noting the ’RG time’ t,

xα = x̃α/Λ, ϕ = Λϕ̃, V = Λ4Ṽ , t = ln(µ/Λ). (3.5)

This RG time increases in the IR direction, we also re-introduce the arbitrary (although

typically chosen at an energy scale we are interested in) energy scale µ. We define
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Figure 3.1: A schematic diagram of the UV cut-off function CΛ, where modes are
smoothly suppressed for some |p| > Λ. Note that CΛ(p) is simply another notation for
C(p2/Λ2), which emphasises that it is a UV cut-off. It should be contrasted with the
associated IR cut-off CΛ(p) = 1− CΛ(p) .

δSΛ = ε

∫
d4x V (ϕ, t), (3.6)

where ε is a small parameter. Note that if the linearised effective action δSΛ[ϕ] contains

only such a potential interaction, this is preserved by the flow equation (3.4), since the

only terms generated by the right hand side are tadpole interactions. Such integrals

carry no external momentum dependence. Equivalently in position space, they do not

generate derivative interactions. To see this in detail substitute (3.6) into the right

hand side of (3.4):

tr

[
∂∆Λ

∂Λ
· δ2

δϕδϕ

]
δSΛ[ϕ] = ε

∫
d4y d4z

∂∆Λ(y, z)

∂Λ

δ2

δϕ(y)δϕ(z)

∫
d4x V (ϕ(x), t)

= ε

∫
d4y d4z

∂∆Λ(y, z)

∂Λ

δ

δϕ(y)
V ′(ϕ(z), t)

= ε

∫
d4y d4z

∂∆Λ(y, z)

∂Λ
δ(y − z)V ′′(ϕ(z), t)

= ε

∫
d4y

∂∆Λ(y, z)

∂Λ
V ′′(ϕ(y), t).

(3.7)

Now we note that the ∆Λ(y, y) is independent of y and given by
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ΩΛ := |〈ϕ(y)ϕ(y)〉| =
∫

d4p

(2π)4
∆Λ(p). (3.8)

We comment that f ′(ϕ) denotes taking the derivative with respect to the field ϕ for

some quantity f(ϕ) in the usual way. Thus substituting (3.7) into (3.4) we simply get

∂

∂Λ
V (ϕ, t) = −1

2

∂ΩΛ

∂Λ
V ′′(ϕ, t). (3.9)

In particular this step should not be confused with the so-called LPA (Local Poten-

tial Approximation) [61] where the restriction to potential interactions is enforced by

truncation, i.e. as a result of a crude model approximation introduced by hand.

Eigenoperators are those with a well defined scaling dimension 4 − λ and when

expressed in these scaled variables take the form

Ṽ (ϕ̃, t) =

(
µ

Λ

)λ
Ṽ (ϕ̃). (3.10)

The pre-factor is the RG evolution of the scaled coupling g̃λ = εeλt at linearised order

with the associated dimensionful coupling being gλ = εµλ with operators being relevant,

marginal or irrelevant if λ > 0, λ = 0, λ < 0 respectively as outlined in section 2.3.

Now we simply substitute V (ϕ, t) = Λ4 Ṽ (ϕ/Λ, t) into (3.9) as implied by (3.5),

and use (3.10) and (3.12) below, to get:

− λṼ (ϕ̃)− ϕ̃Ṽ ′(ϕ̃) + 4Ṽ (ϕ̃) = − Ṽ
′′

2a2
. (3.11)

By dimensions on substituting p = Λp̃ we see that

ΩΛ =
Λ2

2a2
(3.12)

where a is a non-universal number dependant on the shape of C(p̃2) [41] and defined

by

1

2a2
=

∫
d4p̃

(2π)4

C(p̃2)

p̃2
. (3.13)

Note that our cut-off function is positive and must regulate. Thus the integral is positive

and finite. This is also true on the left hand side if a is non-vanishing (since a2 > 0 no

matter the sign of a). For clarity we choose a > 0 from now on.

Let us emphasis again that this is an exact equation for the evolution of the potential

interaction linearised around the GFP and has nothing to do with the local potential

approximation. Nevertheless within the local potential approximation [61–63] versions

of this equation have also appeared often in the literature, see for example references

[64–67]

Critically equation (3.11) is of Sturm-Liouville type and its quantised solutions are
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Hermite polynomials [68]

On(ϕ̃) = Hn(aϕ̃)/(2a)n = ϕ̃n − n(n− 1)ϕ̃n−2/4a2 + ... (3.14)

where λ = 4− n and n is a non-negative number. To see this we simply note that the

Hn(x) are the quantised solutions of Hermite’s (eigenvalue) equation:

u′′(x)− 2xu′(x) + 2λHu(x) = 0, (3.15)

with λH = n (see e.g. [69]) This is the same as equation (3.11) if we identify x = aϕ̃

and λH = 4−λ. The scaling dimension of the operator On is therefore 4−λ = n which

coincides with the classical scaling dimension [ϕn]. The lower powers in (3.14) are there

to correct for operator mixing as Λ is varied and appear with increasing powers of ~,

they arise from tadpole corrections and are the only quantum corrections remaining at

the linearised order.

From the Sturm-Liouville theory [68, 70] we know that the operators On form an

orthonormal set : ∫ ∞
−∞

dϕ̃ e−a
2ϕ̃2On(ϕ̃)Om(ϕ̃) =

1

a

(
1

2a2

)n
n!
√
πδnm (3.16)

which is complete in L+, the natural space for Wilsonian interactions around a positive

kinetic term. This is a Hilbert space of functions that are square integrable under

the Sturm-Liouville measure e−a
2ϕ̃2

where we place emphasis on the minus sign. As a

consequence of this we set the scaled couplings to

g̃n =
a√
π

(2a2)n

n!

∫ ∞
−∞

dϕ̃e−a
2ϕ̃2On(ϕ̃)Ṽ (ϕ̃), (3.17)

the norm-squared of the remainder vanishes as we extend to an infinite series

∫ ∞
−∞

dϕ̃ e−a
2ϕ̃2

(
Ṽ (ϕ̃)−

N∑
n=0

g̃nOn(ϕ̃)

)2

→ 0 as N → ∞. (3.18)

Let us sketch how this follows from the Sturm-Liouville theory. The first step is to

put (3.11) in Sturm-Liouville form

H̃Ṽ (ϕ̃) =
d

dϕ̃

[
p(ϕ̃)

d

dϕ̃
Ṽ (ϕ̃)

]
+ q(ϕ̃)Ṽ (ϕ̃) = −λ ω(ϕ̃)Ṽ (ϕ̃). (3.19)

By inspection this can be done by setting the Sturm-Liouville measure to ω(ϕ̃) =

e−a
2ϕ̃2

, with the other functions proportional to this: q = −4ω and p = −ω/(2a2). In

this form it is clear by integration by parts that H̃ is self-adjoint:∫
dϕ̃O1(ϕ̃)H̃O2(ϕ̃) =

∫
dϕ̃H̃O1(ϕ̃)O2(ϕ̃) (3.20)
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provided that the perturbation falls off sufficiently fast at large field to drop the bound-

ary terms at ϕ̃ = ±∞. Let O1(ϕ̃) and O2(ϕ̃) be two such eigenoperator solutions with

eigenvalues λ1 and λ2 respectively. Then from (3.19) and (3.20) we have

λ2

∫
dϕ̃ω(ϕ̃)O1(ϕ̃)O1(ϕ̃) = λ1

∫
dϕ̃ω(ϕ̃)O1(ϕ̃)O1(ϕ̃) (3.21)

and this eigenoperators belonging to different eigenvalues are orthogonal under the

Sturm-Liouville measure. The integrals make sense here only if the eigenoperators

are square-integrable under ω, and this is enough also to ensure (3.20) holds. Given

that they are square-integrable, they can also be normalised, and thus we see that the

eigenoperators can be chosen to form an orthonormal set. The proof of equation (3.18)

is more involved. To do this one uses the Green’s function spectrally expanded over

the eigenoperators and forms the integral of a square of the solution. For details we

refer the reader to the literature [68, 70].

In this sense all perturbations in L+ are described by a countable infinity of cou-

plings g̃n and their RG evolution is simply given by the RG of these couplings. We

form the bare action at some initial energy scale Λ = Λ0, this is an initial condition

for our flow equation (3.3) and we must also choose the bare couplings at this scale

g̃λ0 := g̃λ(Λ0). We must first define the bare irrelevant couplings. The simplest choice

would be to set them all to zero, the more general choice is to set them to some fi-

nite non-zero value. The relevant couplings have less freedom as, as in standard in

the Wilsonian approach, the structure demands they vanish in the limit Λ0 → ∞. In

particular at the linearised level g̃λ0 = gλΛ−λ0 where gλ is a fixed finite dimension-λ

coupling if λ > 0. It is important to note that as Λ0 →∞ the linearised approximation

for the relevant couplings becomes more and more valid at scales close to the bare scale.

The effective action (3.1) in this way provides us with the bare action and we

can therefore study the evolution away from the latter case. We must then begin to

construct the apparatus to investigate physical quantities, we do so by first replacing

the cut-off CΛ in (3.2) with a new cut-off

CΛ0
k (p) = CΛ0(p)− Ck(p) (3.22)

which is regulated both in the UV by Λ0 and in the IR at a scale k. With this IR

cut-off we can then write the more useful Legendre effective action as

Γtot,Λ0

k [ϕ] = ΓΛ0
k [ϕ] +

1

2
ϕ ·
(
∆Λ0
k

)−1 · ϕ (3.23)

where

∆Λ0
k = ∆Λ0 −∆k (3.24)

where we note that, up to discarding a field independent part on the right hand side,

we have the identity

22



ΓΛ0
Λ0

[ϕ] = SΛ0 [ϕ]. (3.25)

This provides an initial condition when considering the flow under an IR cut-off,

this takes the form

∂

∂k
ΓΛ0
k [ϕ] = −1

2
tr

[(
1 + ∆Λ0

k ·
δ2ΓΛ0

k

δϕδϕ

)−1 1

∆Λ0
k

∂∆Λ0
k

∂k

]
(3.26)

where we note that at the GFP the Legendre effective action is simply the field inde-

pendent part ΓΛ0
k [ϕ] = −1

2tr ln∆Λ0
k . At the linearised level we have

∂

∂k
δΓΛ0

k [ϕ] = −1

2
tr

[
∂∆k

∂k
· δ2

δϕδϕ

]
δΓΛ0

k [ϕ]. (3.27)

Now notice that this equation is in fact identical to (3.4), with k now playing the

role of the UV cut-off. To get some intuition for why this is so, note that at the

linearised level the flow equation becomes insensitive to the UV cut-off Λ0 and so we

can send this to infinity for free. We then note that ΓΛ := Γ∞Λ is related to SΛ by a

Legendre transform [20, 59, 71–73] and now carries the purely quantum one particle

irreducible parts of SΛ. At the linearised level there are only the quantum corrections

to consider and so the flow equations coincide. We can make this expression more

explicit by defining

δΓΛ0
k [ϕ] = ε

∫
d4x V (ϕ(x), k) (3.28)

where ε denotes a small quantity, this interaction potential will satisfy the eigenoperator

equation (3.11) with k replacing Λ in (3.5) and (3.10).

We are free to perturb this solution by adding gnO(n)
Λ0

(ϕ) to the bare action at

k = Λ = Λ0. By inspection we see that in scaled units at the linear order these

operators will evolve in a self similar way, in particular(
Λ0

k

)4−n

g̃n(Λ0) =
gn
k4−n = g̃n(k) (3.29)

and using (3.5) the dimensionful interaction is

gnO(n)
k (ϕ) = k4 gn

k4−nOn(ϕ/k) = gn

(
ϕn − n(n− 1)

k2

4a2
ϕn−2 + ...

)
(3.30)

i.e.

O(n)
Λ (ϕ) = ΛnOn(ϕ/Λ) = ϕn − n(n− 1)

Λ2

4a2
ϕn−2 + ... (3.31)

We return the ’physical limit’ when k → 0, where we find the universal physical interac-

tion as it appears in the Legendre effective action, namely O(n)(ϕ) := limk→0O
(n)
k (ϕ),

i.e.
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gnO(n)(ϕ) = gnϕ
n (3.32)

We can see that for relevant operators this is finite and gn corresponds to the physical

coupling whereas in the UV limit Λ0 →∞ the irrelevant ones will tend to zero.

Before proceeding to the case of the negative kinetic term we make some final

remarks about the positive case. Firstly we note that these arguments can be extended

to operators with space-time derivatives, beyond linearised order and investigate further

the marginal operators. To do so here would be to mask the key characteristics of

this structure and we do not go into further detail here, this standard knowledge is

available in the references listed thus far in this section. We can also comment on

the non-polynomial solutions to (3.11), these can not be understood using Feynman

diagrams as they rely on non-perturbative physics. To summarise these results briefly

for the sake of clarity such solutions will not survive as they lie outside of L+ and in

the large field regime the linearised approximation breaks down. We will find that in

the negative kinetic term case these failings of the non-polynomial solutions will have

a much different fate, it is only these which can satisfy the eigenoperator equation.

3.2 The tower operator

We now turn our attention to the ramifications of the change in sign of the kinetic term,

extending on the analysis of the previous section. We must first generalise expressions

such as the flow equation and the Wilsonian effective action. This would initially seem

unphysical as the functional integral in the partition function will no longer converge

and the momentum cut-off profile will also exacerbate the problem. However, if we are

to understand gravity in Wilsonian terms whilst maintaining the conformal instability

Nature demands this generalisation. We will see that there are routes out of this

seemingly catastrophic impasse.

We begin by replacing (3.1) and (3.23), respectively, with

Stot,Λ[ϕ] = SΛ[ϕ]− 1

2
ϕ · (∆Λ)−1 · ϕ (3.33)

Γtot,Λ0

k [ϕ] = ΓΛ0
k [ϕ]− 1

2
ϕ ·
(
∆Λ0
k

)−1 · ϕ. (3.34)

We have effectively made the transformation ∆→ −∆ and so the flow equations become

∂

∂Λ
SΛ[ϕ] = −1

2

δSΛ

δϕ
· ∂∆Λ

∂Λ
· δS

Λ

δϕ
+

1

2
tr

[
∂∆Λ

∂Λ
· δ

2SΛ

δϕδϕ

]
(3.35)

∂

∂k
ΓΛ0
k [ϕ] = −1

2
tr

[(
1−∆Λ0

k ·
δ2ΓΛ0

k

δϕδϕ

)−1
1

∆Λ0
k

∂∆Λ0
k

∂k

]
(3.36)
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∂

∂k
δΓΛ0

k [ϕ] = −1

2
tr

[
∂∆Λ0

k

∂k
· δ2

δϕδϕ

]
δΓΛ0

k [ϕ] (3.37)

It is noted here that this change in sign makes the equations backwards-parabolic which

in-turn means the Cauchy Initial Value Problem (CIVP) for flow towards the IR is not

well posed, this will have significant consequences which will be discussed in chapter

6. Before this we discuss the above equations and other consequences of this change in

sign in more detail, first considering non-derivative interactions at the linear level.

3.2.1 Non-derivative eigenoperators

The linearised flow for the potential is given by

∂tV (ϕ, t) = −ΩΛV
′′(ϕ, t) (3.38)

and can be recast as a heat diffusion equation with a ‘time’ T = Λ2 which naturally

runs towards the UV

∂

∂T
V (ϕ, T ) =

1

4a2
V ′′(ϕ, T ). (3.39)

This notion of a ‘natural direction’ for the flow of these heat equations will continue to

be raised several times in this thesis, particularly when constructing non-perturbative

arguments in chapter 5 and the effects of it in the findings of chapter 6 [74–76]. Cru-

cially, for a general initial potential V (ϕ, T ) a well defined flow exists only in this natural

direction, in this case towards the UV. This contrasts to the natural direction of the

flow of hµν towards the IR as a consequence of its positive kinetic term that is more

typical in the Wilsonian point of view. Continuing the flow in the ‘unnatural’ direction

almost always results in an incomplete, unphysical flow which ends in a singularity

however this is not guaranteed for all values of the initial potential V (ϕ, T ). Flows in

the natural direction, here towards the UV, diffuse out (one can compare this to heat

diffusion in the heat equation as the potential smooths out over time) with unnatural

flows developing a singularity at some critical time T = Tp := a2Λ2
p > 0 where a is

some non-universal number. We will return to this object Λσ in section 3.3 where it

will play a significant role in the implementation of diffeomorphism invariance.

Let us expand further on this point to show it also mathematically. The heat

equation (3.39) has a Green’s function

G(ϕ− ϕ0, T ) =
a√
πT

exp

(
− a2(ϕ− ϕ0)2

T

)
. (3.40)

As can be verified by direct substitution, V (ϕ, T ) = G(ϕ − ϕ0, T ) is a solution for all

T > 0. Since (3.39) is a linear equation we know that therefore also
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V (ϕ, T ) =

∫ ∞
−∞

dϕ0 G(ϕ− ϕ0, T ) V0(ϕ0), (3.41)

is a solution to (3.39) for all T > 0 and for any V0(ϕ0) for which the integral converges.

On the other hand one readily confirms that∫ ∞
−∞

dϕ0 G(ϕ− ϕ0, T ) = 1. (3.42)

Since G→ 0 for all ϕ− ϕ0 6= 0 as T → 0+ (i.e. so that T is kept positive while taking

the limit), it follows that

lim
T→0+

G(ϕ− ϕ0, T ) = δ(ϕ− ϕ0). (3.43)

Then we see that (3.41) is a general solution of the heat equation such that the initial

heat distribution is V (ϕ, 0) = V0(ϕ). We have thus shown that for any initial heat

distribution (that does not grow so fast as to invalidate (3.41)), a solution is guaranteed

to exist for all later times T > 0.

The proof breaks down for flows backwards in time. Not only is the Green’s function

imaginary for negative T but its exponential is such that it diverges for all ϕ 6= ϕ0

as T → 0−. This reflects the physics of heat flow as we pointed out above: flows in

the ‘unnatural’ direction almost always end in a singularity. That singularity is clearly

visible in the behaviour of (3.43). If we insist on trying to push the general solution

(3.41) into negative T , i.e. to analytically continue it into the negative T region, it

will then in general diverge everywhere as T passes through T = 0 and then becomes

complex. This behaviour is clearly unphysical.

Another example is provided by

V (ϕ, T ) = G(ϕ− ϕ0, T + T0). (3.44)

This is a solution of the heat equation for all T > −T0. If we set T0 > 0 then we can

flow backwards in time for a finite time, but then we hit the singularity at T = −T0.

Using this in place of the Green’s function in (3.41), we can construct general solutions

which work for all later times but cease to make sense if we try to go earlier than the

negative time T = −T0. We will prove in sec. 3.2.2. that this is an inevitable feature:

all solutions become complex once they pass through the singularity. So this singular

point is a genuine end of the flow for physical (and thus real) solutions.

Given this reversal of the natural direction it would be anticipated that universality

would be found in the UV around the GFP rather than in the IR. We will find that the

GFP in fact supports eigenoperators of arbitrarily high relevancy, replacing the role of

the usual hierarchy of irrelevant operators and that render the theory non-predictive.

There will however be significant restrictions on these operators once diffeomorphism

invariance has been implemented as well as further constraints we will discuss in chapter
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5.

We must now scale our variables to realise the Wilsonian RG, this gives

Λ
∂

∂Λ
ṼΛ(ϕ̃)− ϕ̃Ṽ ′Λ(ϕ̃) + 4ṼΛ(ϕ̃) = Ṽ ′′Λ (ϕ)/(2a2) (3.45)

and setting ṼΛ(ϕ̃) = eλtṼ (ϕ̃) yields the eigenoperator equation (3.11) except with a

crucial plus sign on the right hand side

− λṼ (ϕ̃)− ϕ̃Ṽ ′ + 4Ṽ =
Ṽ ′′

2a2
. (3.46)

As a result of this change in sign between the ϕ̃Ṽ ′ and Ṽ ′′ terms for large values of

the field there will no longer be exponentially growing solutions. Indeed, keeping only

these terms the equation is exactly soluble. The solution is

± ϕ̃Ṽ ′ = Ṽ

2a2
=⇒ Ṽ = Ae±a

2ϕ̃2
+B, (3.47)

where A and B are the integration constants. We see explicitly the exponentially

growing solution has turned into an exponentially decaying solution. This analysis

is valid if the derivative terms are the most important terms and by inspection for

this solution it is indeed true that Ṽ ′ � Ṽ and Ṽ ′′ � Ṽ for large ϕ̃. The remaining

solution is one in which the derivatives are the least important terms so that now one

can neglect Ṽ ′′. Doing this the solution is the leading term in (3.48). Again one can

verify the assumed behaviour: Ṽ ′′ � ϕ̃Ṽ ′ ∼ Ṽ for large ϕ̃. Thus, instead the solutions

will behave, at worst, as

Ṽ ∝ ϕ̃4−λ +
(4− λ)(3− λ)

4a2
ϕ̃2−λ +O(ϕ̃−λ) (3.48)

which is generically an asymptotic series which is also subject to exponentially decaying

solutions ϕ̃λ−5e−a
2ϕ̃2

. For λ > 2 the solutions justify linearisation of the right hand

side of (3.36) and are not ruled out by large field analysis however for λ < 2 the

mean field analysis will permit these perturbations since it simply returns the correct

multiplicative evolution i.e. (Λ0/k)λ Ṽ . To summarise the large field test rules out

none of these solutions.

The general solution of this equation is in terms of a linear combination of two

Kummer functions [77]:

Ṽ = C1ϕ̃M

(
λ

2
− 3

2
,
3

2
,−a2ϕ̃2

)
+ C2M

(
λ

2
− 2, 1

2 ,−a
2ϕ̃2

)
, (3.49)

in terms of the Kummer M-function [78] and constants Ci, the first function being odd

in ϕ̃ and the second one even in ϕ̃. Here one can arrange for zero coefficient for the

asymptotic series in (3.48) on one side of the equation with ϕ̃ → ±∞, leaving behind

the exponentially decaying corrections. On the other side there will be ϕ̃→ ∓∞ (note
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the opposite sign), it will therefore have (3.48) as its asymptotic behaviour. For λ

an integer one of the two Kummer functions will degenerate and produce two discrete

spectra. At λ = 4− n there are polynomial solutions On(ϕ̃) = Hn(iaϕ)/(2ia)n and for

λ = 5 +n we see the first glimpse of our novel tower operator. This change in value for

λ will seed the solution for the irrelevancy problem in QG. This is an infinite tower of

exponentially decaying ’super-relevant’ eigenoperators

δn(ϕ̃) :=
a√
π

∂n

∂ϕ̃n
e−a

2ϕ̃2
=

a√
π

(−a)nHn(aϕ̃)e−a
2ϕ̃2

, λ = 5 + n (3.50)

where n is a non-negative integer and the dimension of this operator is thus

[δn] = 4− λ = −1− n. (3.51)

Such solutions existed for the positive kinetic term case, see (3.11), however they

were exponentially growing and thus in the large field limit they did not evolve correctly

as was briefly discussed. As we will see shortly the presence of this tower operator is

justified further as a consequence of the quantisation process.

The second expression for the tower operator (3.50) follows from the substitution

Ṽ → Ṽ e−a
2ϕ̃2

into (3.46) and comparing it to (3.11). The first is found via substituting

the Fourier transform

Ṽ (ϕ̃) =

∫ ∞
−∞

dπ̃

2π
Ṽ(π̃)eiπ̃ϕ̃ (3.52)

where π̃ = πΛ is the scaled conjugate momentum, this gives the general solution

Ṽ(π̃) = (iπ̃)λ−5exp(− π̃2

4a2
). (3.53)

This has power law asymptotics (3.48), generated by the singularity at π̃ = 0 except

where the singularity is absent when λ = 5 + n where it gives (3.50).

We note that (3.46) is still of Sturm-Liouville type however now the Sturm-Liouville

weight function is now e+a2ϕ̃2
where we have placed extra emphasis on the positive sign

of the exponent which contrasts that of the weight function in the standard positive

kinetic term case. We define L− to be the space of square integrable functions under this

measure and comment that the polynomials and the continuous spectrum of Kummer

functions lie outside this space. The exponentially decaying solutions lie within this

space L− and form a complete orthonormal basis for this Hilbert space:∫ ∞
−∞

dϕ̃ea
2ϕ̃2

δn(ϕ̃)δm(ϕ̃) =
a√
π

(2a2)n n! δnm (3.54)

and using the second equation in (3.50) so that if Ṽ (ϕ̃) ∈ L− and

g̃n =

√
π

2na2n+1n!

∫ ∞
−∞

dϕ̃ ea
2ϕ̃2

δn(ϕ̃)Ṽ (ϕ̃) (3.55)
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the norm-squared of the remainder vanishes as we extend to the infinite series:

∫ ∞
−∞

dϕ̃ ea
2ϕ̃2

(
Ṽ (ϕ̃)−

∞∑
n=0

g̃nδn(ϕ̃)

)2

→ 0 as N →∞. (3.56)

3.2.2 Quantisation condition

We now consider the definition of this Hilbert space L− and operators that lie within it

or on its boundary as a consequence of this change in sign of the exponent of the Sturm-

Liouville weight function. We do not necessarily have to exclude solutions outside of L−

by their large field RG properties however we can exclude them by choice and we will

also find in any case that in the physical limit they are poorly defined. We are therefore

demanding that any interactions lie within L−. This is our quantisation condition.

If we consider a finite sum of the basis operators (3.50) then this quantisation

condition is clearly respected by the RG at the linear level since the operators evolve

multiplicitly . At some initial bare scale Λ = Λ0, δn(ϕ̃) appears with a sufficiently small

coupling g̃n = gn/Λ
5+n
0 and then at some other scale it will be g̃n = gn/Λ

5+n where

gn is held fixed. We can then switch on an infinite number of couplings and by the

quantisation condition we require

ṼΛ0(ϕ̃) =
∞∑
n=0

g̃nδn(ϕ̃) ∈ L−. (3.57)

As before if Ṽ is small enough to trust the linear RG then at another scale Λ we simply

replace Λ0 in equation (3.57) with Λ i.e.

ṼΛ(ϕ̃) =

∞∑
n=0

g̃nδn(ϕ̃) ∈ L−. (3.58)

We can then use (3.54) to calculate the norm-squared of the evolved potential

∫ ∞
−∞

dϕ̃ ea
2ϕ̃2

Ṽ 2
Λ (ϕ̃) =

a

Λ10
√
π

∞∑
n=0

n! g2
n

(
2a2

Λ2

)n
, (3.59)

by (3.57) we note that series on the right hand side converges for Λ = Λ0. Crucially we

thus see that ṼΛ(ϕ̃) ∈ L− and remains small for all Λ ≥ Λ0. This underpins why we

interpret the quantisation condition ṼΛ(ϕ̃) ∈ L− as operating at the bare level. We will

find that all the couplings gn are relevant as a consequence of the super-relevant tower

operator and so we set them to be finite at some physical scale and they will therefore

parametrise the most general RG trajectory.

These properties ensure that the Wilsonian effective action continues to satisfy the

quantisation condition along the entire flow all the way up to Λ → ∞. As one would

expect in the Wilsonian framework we also find that ṼΛ(ϕ̃) → 0 in this continuum

limit i.e. it emanates from the GFP and then describes the RG trajectory. Since we
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can regard this as the continuum limit then we would consider this to be an ultimately

fundamental theory, that is to say there is no need to consider this as an effective

theory for some microscopic theory. With that being said if the possibility of such a

microscopic theory were considered this quantisation condition could shed some light

on the form of such a theory.

It is also found that for a generic case the gn will result in (3.59) having a finite

radius of convergence 1/Λ = 1/(aΛσ) where, by (3.57), Λσ ≤ Λ0. Then the potential

has flowed out of this Hilbert space i.e. ṼΛ(ϕ̃) 6∈ L− for all Λ < aΛσ. This amplitude

suppression scale Λσ will be crucial in the implementation of diffeomorphism invariance

and a return to standard results in the latter stages of this thesis. In any case once

ṼΛ(ϕ̃) 6∈ L− the expansion over the basis (3.50) no longer converges and we no longer

have a well defined operator.

There are two possible reasons for why ṼΛ(ϕ̃) fail and exit L−, either ṼΛ(ϕ̃) has

developed its own divergences or it grows too fast such that ϕ̃ the integral in (3.59) no

longer converges as ϕ̃→ ±∞. In the former case this is because the flow ceases to exist,

this can be recognised via a comparison to the reverse heat equation where singularities

will cause the flow to end prematurely. The singularity is fatal to the solution: it does

not exist as a real solution below this critical value Λ = aΛσ. To see this note that

we have just excluded the case where ṼΛ(ϕ̃) grows too fast. Working with the flow

equation written in the form (3.39) we therefore know that

∂

∂T

∫ ∞
−∞

dϕ

[
V (ϕ, T )

]2

= − 1

2a2

∫ ∞
−∞

dϕ

[
V ′(ϕ, T )

]2

, (3.60)

Where the right hand side follows by applying (3.39) and integrating by parts using

the fact that the boundary terms vanish. This is true since we know from (3.59) that

for this solution V vanishes exponentially fast for large ϕ. If V is real, the right hand

side is negative since (V ′)2 ≥ 0. That means as we lower T , the integral on the left

hand side must increase. This is consistent with the fact that as T decreases towards

the critical scale value T = Tc = a2Λ2
σ, the integrals (on both sides) diverge. If V stays

real for T below Tc, we see that V must remain singular since the integral of V 2 is

already infinite. The only way we can get a finite solution for V once T passes below

the critical value is if the right hand side now contributes an infinitely positive part.

But that is only possible if V is both complex and divergent.

In the latter case where the integral in (3.59) no longer converges the evolution

can still be described by the appropriate flow equation (3.45) or in more general terms

(3.35) and (3.36). The flow is first order in Λ and it can be uniquely determined by

supplying as boundary conditions the expansion over the basis for any Λ > aΛσ. At

a formal level we can continue to write ṼΛ(ϕ̃) as an expansion over the basis, even for

Λ < aΛσ. At the linearised level it will continue to be (3.58) since each term sepearately

satisfies (3.45). However to achieve this we will need a prescription for resumming this

series, to do this we will work in conjugate momentum space. This will be a technique
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we use on several occasions.

With this quantisation condition understood we can now examine the form of this

novel super-relevant tower operator and some of its interesting features. Analogously

to the procedure in section 3.1 we identify the dimensionful bare operator δ
(n)
Λ0

(ϕ) as the

conjugate to the dimension 5 +n unscaled coupling gn in the bare action. Thus, either

directly from its dimension (3.51) or by re-expressing the coupling and re-scaling,

δ
(n)
Λ0

(ϕ) = δn(ϕ/Λ0)/Λ1+n
0 (3.61)

and hence, using a = Λ0/
√

2ΩΛ0 :

δ
(n)
Λ0

(ϕ) :=
∂n

∂ϕn
δ

(n)
Λ0

(ϕ), where δ
(n)
Λ0

(ϕ) =
1√

2πΩΛ0

exp

(
− ϕ2

2ΩΛ0

)
. (3.62)

We note now that if one restores ~ it appears as ΩΛ0 ∝ ~Λ2
0, as a result these

operators are said to be evanescent in the sense that for a fixed field ϕ the operators

vanish as we reach the continuum limit. Strikingly one can also note that they are non-

perturbative in ~ and appear to have a similar form to instanton [79, 80] or renormalon

[81] contributions. Another novel aspect of these operators is that as a consequence

of this they are inherently quantum, there is no classical limit that one can take;

this suggests that in this framework the classical and quantum aspects of gravity are

entirely independent of one another. One may be concerned that these operators are

non-perturbative in ~. One may assume that the problems of being non-perturbative in

κ are simply traded in for equally difficult and seemingly rigid problems with this new

non-perturbative in ~ behaviour however once the implementation of diffeomorphism

invariance is addressed we will see that such concerns are alleviated, albeit at the cost

of a new perspective of the definition of a continuum theory and the summation of

Feynman diagrams.

As a consequence of this construction V (ϕ) = δ
(n)
Λ (ϕ) is a solution of the unscaled

flow equations (3.38), we can generalise this solution to the linearised RG as the sum

of these with constant, relevant, coeffecients gn

V (ϕ,Λ) =

∞∑
n=0

gnδ
(n)
Λ (ϕ). (3.63)

This is simply (3.57) in dimensionful terms. We have, by (3.57), found that this will

converge for all Λ ≥ Λ0 and this will be true even for an infinite number of non-zero

couplings. This general potential will inherit the properties discussed above; it is non-

perturbative in ~ and is also evanescent. We note that this is distinct from the usual

’relevancy’ property that the potential tends to zero in the continuum limit.

When we define operators such as this novel tower operator we do so in the UV,

around the GFP. There will however be significant effects in the IR i.e. in the physical
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Figure 3.2: The renormalized eigenoperator is the sum of the bare eigenoperator plus
its quantum correction, at linearised level.

limit. The scaled eigenoperator is form invariant under the linearised RG and the

corresponding dimensionful operator in the IR cut-off Legendre effective action is simply

δ
(n)
k (ϕ) =

∂n

∂ϕn
δ

(0)
k (ϕ), where δ

(0)
k (ϕ) =

1√
2πΩk

exp

(
− ϕ2

2Ωk

)
. (3.64)

We recover the physical limit and the physical operators by taking the IR cut-off k to

0,

lim
k→0

δ
(n)
k (ϕ) = δ(n)(ϕ). (3.65)

We must however remind ourselves that this work is being undertaken in an R4 space-

time such that we can properly make use of the ERG framework, when extending the

treatment to M4 there will be issues to consider, in particular unitarity and a Fock

space with negative norm spaces [82]. When this structure is embedded into gravity

however these problems are no longer of concern.

We find that we recover the right hand side of (3.65) in the ~ → 0 limit, this

means that the tower operator is inherently and non-perturbatively quantum; it can

not be recovered in the classical limit. To reiterate this means that one can picture the

classical and gravity aspects as entirely independent of each other. We can however still

understand the renormalization procedure of this eigenoperator in terms of Feynman

diagrams. Solutions to (3.37) can be expressed as

∫
x
δ

(n)
k (ϕ) = exp

(
− 1

2
tr

[
∆Λ0
k ·

δ2

δϕδϕ

])∫
x
δ

(n)
Λ0

(ϕ) (3.66)

where the expansion of the exponential gives the expected 1PI Feynman diagrams, see

figure (3.2).

Here each tadpole propagator is defined as in (3.24) with the correct change in sign

as dictated by this more complete treatment. We can also express the bare eigenoper-

ator (3.62) as, using (3.52) and (3.53),
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δ
(n)
Λ0

(ϕ) = exp

(
1
2ΩΛ0

∂2

∂ϕ∂ϕ

)
δ(n)ϕ. (3.67)

Then using (3.61) to transform to unscaled variable and taking the Fourier transform

we also find

δ
(n)
Λ0

(ϕ) =

∫ ∞
−∞

dπ

2π
(π)ne−

1
2π

2ΩΛ0
+iπϕ (3.68)

and from this we find as one may expect, after pulling the ΩΛ0 piece outside the integral

∫
x
δ

(n)
Λ0

(ϕ) = exp

(
1

2
tr

[
∆Λ0 · δ2

δϕδϕ

])∫
x
δ

(n)
Λ0

(ϕ). (3.69)

Finally we can see that combining this last equation with (3.66) and using (3.24) that

the renormalized operator is given by (3.67) with Λ0 replaced by k, leading to the

expression (3.62).

Before concluding this section we comment on the behaviour of the potential when

an infinite number of couplings are non-zero as well as for higher order interactions

and derivative eigenoperators. In essence the entirety of this structure remains and

is flexible enough to permit these new cases with the resulting eigenoperators still

satisfying (3.46) and (3.54). We direct the reader to chapters 3 and 4 of [8] for more

details on these matters.

3.2.3 Summary of the tower operator

We now briefly summarise the previous section and note the most significant aspects of

the tower operator. The paramount feature of this novel operator is this negative scaling

dimension [δ
(n)
Λ (ϕ)] = −1− n which follows from the quantisation condition (3.54) and

would seem tailor made to resolve the problems of irrelevancy of interacting graviton

operators and couplings which are ultimately the source of what makes creating a theory

of QG with a well defined continuum limit so difficult. We see that the tower operator is

evanescent, inherently quantum in nature and uniquely satisfies (3.46). The couplings

associated to the tower operator are relevant, in contrast to Newton’s constant κ.

The discussion thus far however has had a glaring omission; this has not been

a theory of gravity. Strictly speaking so far we have been discussing a scalar field

theory with a negative kinetic term with some additional aspects. We must respect the

symmetry of gravity, diffeomorphism invariance, for this to be the case. We will now

discuss how this is achieved as well as associated topics such as how to consistently

consider field redefinitions (of which there is a great deal of freedom with gravitons),

the methods of BRST symmetry as well as its cohomology and how the addition of

exact terms will have implications for the representation of diffeomorphism invariance.
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3.3 BRST, QME and the anti-field formalism

We must now concern ourselves with how to implement diffeomorphism invariance into

this structure at the quantum level, bearing in mind that the operators are dictated by

the ERG. Furthermore the quadratic divergence stemming from ΩΛ is paramount to

the definition of the operators (3.62) and so dimensional regularization is not a suitable

method here, instead we must employ a cut-off which breaks gauge invariance which

we later restore.

3.3.1 BRST invariance

To implement diffeomorphism invariance whilst simultaneously respecting the RG we

will have to solve the Quantum Master Equation (QME) [83–86] as well as the RG

equations. To solve this QME we will first have to understand its classical counterpart

the Classical Master Equation (CME) and before that we must first understand Becchi-

Rouet-Stora-Tyutin (BRST) invariance.

A crucial ingredient of this BRST invariance is anilpotent operatorQ11. An operator

is said to be nilpotent if, upon acting on an object twice, the result is guaranteed to be

zero, i.e.

Q2O = 0 ∀ O. (3.70)

This is often simplified to Q2 = 0. As part of this we can then also define an exact

object K = QO i.e. it is produced via the action of the BRST operator on another

object, via the nilpotentcy condition (3.70) then

QK = Q(QO) = Q2O = 0 (3.71)

will always hold true. This is often abbreviated to Q2 = 0, that is to say this nilpotentcy

should be true in all cases. Objects C which satisfy

QC = 0 (3.72)

are said to be closed. A pertinent example for this thesis which illustrates this is the

action of Q0, the free level part of Q which will be elucidated later, on the graviton

Hµν and ghost fields cµ

Q0Hµν = ∂cµ + ∂cν (3.73)

Q0cµ = 0 (3.74)

11This operator Q will later be referred to as the BRST charge however it will continue to act as
an operator in this sense. We also note that in a great deal of the literature these operators are
accompanied by hats Q̂, we eschew this standard practice in this thesis and assume the role of operator
is clear in context except when it is pertinent to be particularly explicit.
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If the operators are themselves not exact, that is to say C 6= QO, they are said to exist

in the cohomology of Q.

These concepts are more generally associated with the field of differential geom-

etry but are also crucial here. In this context the BRST operator Q generates field

transformations. For some action functional of the field φ

S =

∫
d4xL(φ) (3.75)

we find that the action of Q on φ is a local gauge transformation which is proportional to

a new field we introduce, the ghost field cµ. For the symmetry associated to this gauge

transformation to be satisfied (which was traditionally non-Abelian gauge theories but

is also equally applicable to diffeomorphism invariance) we demand

QS = Q

∫
d4xL = 0. (3.76)

If (3.76) is true then we say that the symmetry associated to the BRST charge Q

is satisfied. There are many further aspects to consider, the first of these is that we

also introduce non-physical auxiliary fields Bµ to ensure the action is closed under Q

off-shell. We also introduce the anti-ghost c̄µ when fixing a gauge to ensure we can

calculate Feynman diagrams with a well defined ghost propagator. The ghost itself is

also a fermionic field.

3.3.2 QME and the anti-field formalism

We must now consider extensions to the BRST formalism when considering gravity

[87, 88], we need to do this as we have significant more freedom in terms of how we

parametrise our graviton fields when compared to the gauge fields discussed earlier. We

must also consider how to implement the diffeomorphism invariance in this way whilst

also respecting the form of the operators as dictated by the Wilsonian RG. To achieve

this we will use the QME and its extension the anti-field formalism [87–90] which will

combine this implementation of diffeomorphism invariance, considering the freedom of

field redefinitions and also respect the Wilsonian RG. We will also see how the anti-

field method will significantly restrict the operators we can construct and also how the

addition of BRST-exact terms will have important implications for the representation

for diffeomorphism invariance.

We begin by defining the QME and the role of the anti-fields. We can maintain

renormalizability in the presence of non-Abelian local symmetries provided the CME

(also known as the Zinn-Justin equation [91, 92]) for the Legendre effective action is

satisfied. We will define the CME shortly, this will form the basis for the QME which

is more relevant to the topics discussed here. These equations account for the fact

that gauge invariance is realised at the quantum level by demanding BRST invariance

[93–96].
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The master equations also take into account the deformations under regularisation

and renormalization whilst still satisfying this BRST invariance, that is to say our

overall structure will not be affected by these deformations provided they are performed

in a smooth, well defined way. We remind ourselves of the general, complete form of

the BRST transformations on the quantum fields we will be working with, in particular

δΦA = εQΦA (3.77)

where ε (not to be confused with the small quantity ε employed earlier) is a Grassmann

number, δΦA denotes the transformation of our quantum fields ΦA and Q is our BRST

operator which we have discussed in subsection (3.3.1). Note that equation (3.77) is

in general a non-linear transformation since in general Q itself depends on the fields,

the full details of this transformation are dictated by (3.88). We note that we will now

refer to this ‘BRST operator’ as the ‘BRST charge’ as this new anti-field formalism will

necessitate an extension to this original BRST charge, this more complete operator will

be referred to as the ‘BRST operator’. These quantum fields ΦA contain all of the fields

in our theory including the graviton, dilaton and in particular the ghosts and auxiliary

fields needed to implement diffeomorphism invariance and realise the BRST invariance

off-shell. As before the BRST charge Q acts upon the fields contained within ΦA,

transforming them and we define this charge to act from the left.

We now introduce the anti-fields Φ∗A. These non-physical fields act as source terms

for the BRST transformations of the original field, as part of this we supplement the

bare action S[ΦA] such that the total action is

S = S[ΦA]− (QΦA)Φ∗A. (3.78)

The partition function is then simply

Z[Φ∗A] =

∫
DΦ e−S . (3.79)

We note that the anti-fields Φ∗A have opposite statistics to the counterpart fields e.g.

hµν is bosonic whereas h∗µν is fermionic and that we are using the compact Dewitt

notation, where the index A runs over all internal indices [97], for the sake of clarity.

The contraction of the Dewitt indices indicates summation over internal indices and

integration over space-time. Thus for example the last term in (3.78), if we keep only

the hµν component of ΦA, reads:

− (QΦA)Φ∗A ≡ −
∫
d4x(Qhµν)(x)h∗µν(x). (3.80)

In this new approach, a gauge symmetry has been successfully incorporated if the

functional integral is invariant under (3.77) and this is true only if the QME is satisfied.

This is a special case of the Quantum Master Functional (QMF)
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A =
1

2
(S, S)−∆S (3.81)

where we return the QME if A = 0 i.e.

0 =
1

2
(S, S)−∆S. (3.82)

The anti-bracket ( , ) and measure operator ∆ are defined, where X and Y are arbitrary

functionals, as

(X,Y ) =
∂rX

∂ΦA

∂lY

∂Φ∗A
− ∂rX

∂Φ∗A

∂lY

∂ΦA
and ∆X = (−)A

∂l
∂ΦA

∂l
∂Φ∗A

X (3.83)

where the A in the exponent of (−)A returns (−)0 = 1 if A is 0 i.e. it refers to a

bosonic field and similarly (−)1 = −1 in the fermionic case. ∂l and ∂r refer to partial

differentiation from the left and right respectively, the former being the differentiation

process one is more familiar with. The standard Einstein summation for matching

subscripts and superscripts is also employed.

When acting upon a bosonic functional, such as the action, the measure can be

expressed as

∆S =
∂r
∂Φ∗A

∂l
∂ΦA

S. (3.84)

We note that the anti-bracket is the classical part and is in fact the CME. If ~ is

restored we see that the measure ∆ is the quantum part, with regards to the latter we

will find that the Wilsonian RG will naturally implement a regularisation such that it

is well defined. We can see that the QME follows from∫
DΦ Ae−S =

∫
DΦ ∆e−S = 0 (3.85)

where the result equals 0 as the second expression is an integral over a total Φ derivative.

We will now review the relationship between this QME structure and the BRST

cohomology, in particular how an understanding of one leads to an understanding of

the other. We will begin by looking at the free graviton solution of the QME and then

perturbing S + εO which we find is still a solution where ε is some small parameter

and O is a quasi-local operator integrated over space-time. In this context a quasi-local

quantity is one that possesses as space-time derivative expansion corresponding to a

Taylor expansion in dimensionless momenta pµ/Λ. This corresponds to the existence

of a sensible Kadanoff blocking [98] which is a fundamental ingredient of the Wilsonian

RG. Such solutions will deform the BRST algebra allowing us to explore the space of

interacting theories which are smoothly connected to the well defined free theory that

satisfies the QME.
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We begin by substituting the perturbed action into the QME and find that, as one

may expect, that the operator must be invariant under the BRST charge Q

QO = 0 (3.86)

and the full BRST transformation is defined as

sO = (S,O)−∆O. (3.87)

We will now define the components of this full BRST operator s. The first part is the

BRST charge described in section (3.3.1) which acts on the fields

QΦA = (S,ΦA) (3.88)

and the second is the part which acts on the anti-fields Φ∗A which we refer to as the

Kozsul-Tate differential [99–101]. We define this to act from the left for consistency,

Q−Φ∗A = (S,Φ∗A). (3.89)

As the measure ∆ has not appeared here we can see that these two parts of the full

BRST operator form the classical part and satisfy the CME, they are the starting point

for the classical BRST cohomology.

We remind ourselves of the nilpotentcy of the BRST operator and express it now

in terms of this QME, in general we have

s2O = (A,O) (3.90)

and note that the full BRST transformation is nilpotent provided the QME is satisfied.

Provided the QME is satisfied by an action S, then BRST-exact operators (3.71) can

be expressed as

O = sK = (S,K)−∆K (3.91)

and are automatically closed under S (3.76). We find that these exact operators are

simply re-definitions of our fields and anti-fields, the latter being sources terms for the

former

δΦA =
∂lK

∂Φ∗A
, δΦ∗A = − ∂lK

∂ΦA
(3.92)

with −∆K being the Jacobian of the change of variable of the partition function (3.79).

We can make this more explicit. If O1, ...,On are BRST invariant operators and O also

s-exact then they will have disjointed space-time support i.e.

〈OO1...On〉 = 〈sKO1...On〉 = − 1

Z

∫
DΦ(KO1...On)e−S = 0. (3.93)
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That is to say that if K generates a change in variables then the solution offers no new

physics, it merely re-parametrises the previously understood scenario. We are therefore

interested in those operators that are closed under s but not exact, that is to say they

exist in the quantum BRST cohomology.

We must now combine these concepts such that the QME is satisfied for the entire

flow, in particular we will show that the QME is satisfied at the GFP and for first order

perturbations away from the fixed point. We express the QME being satisfied for the

entirety of the RG flow as

∂tA[S] = 0 (3.94)

i.e. if the QME is satisfied at some scale Λ it will remain satisfied along the RG

flow, this in turn will determine how the QMF (3.81) is regularised. We begin first

by focusing on the well defined free graviton action at the GFP where only the free

BRST transformations are defined. The BRST charge and Kozsul-Tate differential can

be expressed order by order in the coupling

Q = Q0 + κQ1 +
1

2
κ2Q2 + ... (3.95)

Q− = Q−0 + κQ−1 +
1

2
κ2Q−2 + ... (3.96)

where we currently focus on the free level however this expansion will be useful for

defining the action at first and second order in the coupling. We note that this structure

is very general and the BRST charge and Kozsul-Tate differential can be expressed in

this way with any pertinent gauge coupling, we use κ here due to the relevance to

gravity and diffeomorphism invariance for the ease of understanding. The action can

be expressed in a similar way

S = S0 + κS1 +
1

2
κ2S2 + ... . (3.97)

At the free level the BRST charge is given by

Q0ΦA = RABΦB. (3.98)

The free level BRST symmetry is Abelian and diagonal in momentum space and so it

is relatively straight forward to regularise it by inserting a momentum cut-off function

between the bi-linear terms in the action and between the functional derivatives in

(3.83). We can express the action S at the free level as the usual free parts for the

fields and the free part of the BRST charge Q0 and Kozsul-Tate differential Q−0

S0 = S0 + S∗0 (3.99)

where we note the change in font for the components of the free action on the right
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hand side of the equation and formally define

S∗0 = −(Q0ΦA)BΛΦ∗A (3.100)

where BΛ is the cut-off function. From the Wilsonian perspective we demand that S0

is a solution of the flow equation (3.3), as such we convert to dimensionless variables

such that we then have the fixed point action with the anti-fields included. The flow

equation for the free action then becomes

Ṡ0 + Ṡ∗0 = −a0[S0.S0] + a0[S∗0 .S∗0 ] (3.101)

Up to a multiplicative factor a0[S∗0 .S∗0 ] computes, via BRST invariance,

〈Q0ΦAQ0ΦB〉 = 〈Q0(ΦAQ0ΦB)〉 = 0 (3.102)

where a0 and later a1 stems from an alternative expression for the RG flow equation.

We can express the flow equation as

Ṡ = 1
2

∂rS

∂ΦA
(4Λ)AB

∂lΣ

∂ΦB
− 1

2(4̇Λ
)AB

∂l
∂ΦB

∂l
∂ΦA

Σ = a0[S,Σ]− a1[Σ] (3.103)

where Σ = S− 2Ŝ and a0 is the classical piece and symmetric bilinear in its arguments

with the the quantum piece a1 being linear in its arguments. The seed action Ŝ is chosen

to coincide with the GFP action and will re-appear through-out this thesis where it is

used in the cohomology of the BRST operator s.

(3.102) would navely result in Ṡ∗0 at which point one would conclude BΛ = 1 how-

ever this is not the full story and would not produce a structure which simultaneously

respects the QME and the Wilsonian RG. Expressing the action as (3.97) and substi-

tuting into the flow equation we find that first order perturbations satisfy

Ṡ1 = 2a0[S1, S0 − Ŝ]− a1[S1]. (3.104)

From this we can see that there will always be a non-zero anti-field dependence

following from the first term on the right hand side where Ŝ is our seed action. In

particular even the the original S1 = O[Φ] eigenoperators from our top terms will

develop anti-field dependence which muddies this picture of the anti-fields as source

terms to the transformations of the BRST charge. As a result we demand that this

seed action agrees with the GFP action i.e.

Ŝ = S0 + S∗0 . (3.105)

Substituting in S0 back into the flow equation yields
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Ṡ0 + Ṡ∗0 = −a0[S0,S0]− 2a0[S0,S∗0 ] (3.106)

and from this we find that we should set BΛ(p) = 1/CΛ(p), that is to say the free

action (3.99) and seed action (3.105) are equal and regularised by inserting this factor

of 1/CΛ(p) inside all bilinear terms. To find how the QME is regularised we express

e−S = µ and using (3.94) we find

∂t(Aµ) = ∆̇µ+ ∆µ̇

= ∆̇µ+

1

2

∂r
∂ΦA

[
(4̇Λ

)AB
∂r∆S

∂ΦB
µ+ (4̇Λ

)BA
∂rΣ

∂ΦB
∆µ+ (4̇Λ

)BA

(
∂rΣ

∂ΦB
, µ

)]

= ∆̇µ− ∂r
∂ΦA

(4̇Λ
)BA

(
∂rŜ

∂ΦB
, µ

)

+
1

2

∂r
∂ΦA

[
(4̇Λ

)BA
∂rΣ

∂ΦB
Aµ− (4̇Λ

)AB
∂rA
∂ΦB

µ

]
.

(3.107)

For the QME to be satisfied along the entirety of the RG flow (3.94) we find that

the first two terms in the last line of (3.107) must be zero. To achieve this we substitute

(3.105) into the second of these terms and expand, the S∗0 part gives

− 1

2

[
RCB(4̇Λ

)BA +RAB(4̇Λ
)BC

]
∂2
l µ

∂ΦA∂ΦC
(3.108)

with the term in square brackets vanishing via linearised BRST invariance. Finally

the S0 part cancels the first term if ∆ is regularised by inserting CΛ(p) between its

functional derivatives. Finally we pull out the factor of µ and cancel terms using

(3.103) and find the more concise expression for (3.107)

Ȧ = 2a0[A, S − Ŝ]− a1[A]. (3.109)

This states that the QMF satisfies the flow equation and will continue to satisfy it at

all points along the RG flow.

We may now explicitly state the free action with this regularising factor of 1/CΛ(p)

between bi-linear terms

S0 = Ŝ = S0 + S∗0 =
1

2
ΦA(4Λ)−1

ABΦB − (Q0ΦA)(CΛ)−1Φ∗A (3.110)

and similarly for the QMF with CΛ(p) between the functional derivatives
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(X,Y ) =
∂rX

∂ΦA
CΛ ∂lY

∂Φ∗A
− ∂rX

∂Φ∗A
CΛ ∂lY

∂ΦA
and ∆X = (−)A

∂l
∂ΦA

CΛ ∂l
∂Φ∗A

X . (3.111)

As a consequence of the introduction of these factors of CΛ equations (3.88) and

(3.89) remain unchanged (the regularisation factors cancel) however the quantum mea-

sure term will have this factor in a way which is well defined when acting on local

functionals. This measure term ∆ will therefore map local functionals to local func-

tionals at the free level. We may substitute (3.97) into (3.87) to find the perturbative

expansion of the full BRST operator

s = s0 + κs1 +
1

2
κ2s2 + ... (3.112)

and from this we can study the non-trivial solutions of the free quantum BRST coho-

mology iteratively to find

s0S1 = 0 , s0S2 = −1

2
(S1, S1) , s0S3 = −(S1, S2) , ... . (3.113)

We note now that it is the free action with the non-zero anti-field dependence

(3.99) that is the GFP, the standard part with no anti-fields no longer satisfies the flow

equation (3.101) and we have our simplified flow equation

Ṡ1 = −a1[S1]. (3.114)

This means that S1 is a linear combination of eigenoperators with constant coefficients,

the couplings, which if we demand these operators span a space of interactions closed

under the Wilsonian RG then we weill find these operators will be elements of the

Hilbert space L− described in section 3.2.2

We briefly comment that this work can be conducted in either gauge invariant or

gauge fixed basis and the results are equivalent. The latter is necessary to define a

propagator, in particular for the anti-ghost, when calculating Feynman diagrams.)

3.3.3 Applying the anti-field formalism to quantum gravity

The structures discussed above are very general and have not yet been applied to

the case of QG and the implementation of diffeomorphism invariance in a way that

consistently respects the Wilsonian RG and containing relevant operators as elements of

our Hilbert space L− (which was defined above (3.54)) constructed around the negative

measure (3.54). We contrast this to the construction of the Hilbert space L+ around

the positive measure (as defined below (3.16)), we will later find we must combine these

Hilbert spaces when associating the tower operator to monomials of other fields. We

now begin applying this structure to QG and uncover more facets of these powerful

tools, in particular we will find the anti-field formalism uniquely defines the operators
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that are diffeomorphism invariant which returns the result one would expect from

expanding the Einstein-Hilbert action as well as further investigating the role exact

operators play in the representation of diffeomorphism invariance. Additional gradings

will be introduced to heavily constrain actions that are diffeomorphism invariant.

We begin by expressing the free Einstein-Hilbert action (2.1), now with the anti-field

source terms in a Euclidian signature around flat Rd with the dilaton ϕ = 1
2Hµµ

S0 = S0 + S∗0
∫
ddx L0 (3.115)

where

L0 =
1

2
(∂λHµν)2 − 2(∂λϕ)2 − (∂µHµν)2 + 2∂αϕ∂βHαβ − 2∂µcνH

∗
µν (3.116)

reminding ourselves that we express the metric as gµν = δµν +κHµν and (3.116) should

be compared to (2.5). To regularise this properly we insert the factor of (CΛ)−1 between

bi-linear terms and so re-express (3.115) with

L0 =
1

2
Hµν(4Λ)−1

µν,αβHαβ − 2∂µcν(CΛ)−1H∗µν (3.117)

where4−1
µν,αβ = 4HµνHαβ is the differential operator we find from (3.115) via integration

by parts, with (4Λ)−1
µν,αβ = 4−1

µν,αβ/C
Λ. This is the minimal gauge invariant basis

which encodes all the properties of the diffeomorphism invariant action and the gauge

transformations, we note the non-minimal gauge invariant basis now for completeness.

This adds the auxiliary field bµ and the anti-ghost anti-field (where we note that the two

‘anti’s do not cancel each other out as they do in typical language) c̄∗µ. Supplementing

(3.117) with these terms gives the Lagrangian

L0 = L0 +
1

2α
bµ(CΛ)−1bµ − ibµ(CΛ)−1c̄∗µ (3.118)

where α is the gauge fixing parameter. As mentioned ealier in section 3.3.2 we can

work in either gauge fixed or gauge invariant basis where we will find c̄µ dependence at

the free level in the former.

Using the anti-bracket we can construct all the non-vanishing actions of the BRST

charge, reminding ourselves of some previous results

Q0Hµν = ∂µcν + ∂νcµ (3.119)

Q0cµ = 0 (3.120)

Q0c̄µ = ibµ (3.121)
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and Kozsul-Tate differential, namely

Q−0 H
∗
µν = −2G(1)

µν , Q−0 c
∗
ν = −2∂µH

∗
µν (3.122)

where G
(1)
µν is the linearised Einstein-Tensor

G(1)
µν = −R(1)

µν + 1
2R

(1)δµν = 1
2�Hµν−δµν�ϕ+∂2

µνϕ+ 1
2δµν∂

2
αβHαβ−∂(µ∂

αHν)α (3.123)

with the linearised curvatures being

R
(1)
µανβ = −2∂[ν|∂[ν|Hβ]|α], R

(1)
µν

= −∂2
µνϕ+ ∂(µ∂

αHν)α − 1
2�Hµν , R

(1) = ∂2
αβHαβ − 2�ϕ.

(3.124)

Several gradings are introduced which are found to be a powerful tool in restricting

the representation of the action. In addition to the usual ghost number and statistics

restrictions we can also introduce the anti-ghost number [90]. We define that the action

S has ghost number zero, cµ has ghost number 1 and H∗µν has ghost number one, these

demands lead to table 3.1.

ε gh # ag # dimension

Hµν 0 0 0 (d− 2)/2

cµ 1 1 0 (d− 2)/2

c̄µ 1 -1 1 (d− 2)/2

bµ 0 0 1 d/2

H∗µν 1 -1 1 d/2

c∗µ 0 -2 2 d/2

c̄∗µ 0 0 0 d/2

Q 1 1 0 1

Q− 1 1 -1 0

Table 3.1: Gradings of the fields and operators, ε is the Grassmann grading with 0 (1)
being bosonic (fermionic), gh # is the ghost number, ag # is the anti-ghost/anti-field
number and we also include the classical scaling dimension. The first two rows of fields
are the minimal set of fields we employ in this thesis with the following set the minimal
anti-fields and we include c̄∗µ for the non-minimal set for completeness. We also include
the BRST charge Q and the Kozsul-Tate differential Q− to illustrate their now definite
gradings in this system.

We can see that (X,Y ) adds one to the sum of the dimensions of X and Y as well

as adding one to the sum of the ghost number of X and Y , hence Q, Q− and ∆− do

the same. What is very powerful about this technique is that we can then split our

actions up by anti-ghost number

44



S =
∑
n=0

Sn. (3.125)

This then explains some of our notation, the BRST charge Q = Q0 leaves this grading

unaffected, the Kozsul-Tate differential Q− lowers it by one, hence the minus sign, and

the two parts of the measure operator ∆ = ∆− + ∆= do the same by eliminating the

graviton and ghost anti-fields lowering the grading by one and two respectively, i.e.

∆− =
∂

∂Hµν
CΛ ∂l

∂H∗µν
− ∂l
∂c̄µ

CΛ ∂

∂c̄∗µ
, ∆= = − ∂l

∂cµ
CΛ ∂

∂c∗µ
. (3.126)

The full quantum BRST, also known as the BRST operator is now written as

ŝ = Q+Q− −∆− −∆= (3.127)

and from this we can then split up the cohomology equation ŝO = 0 by this anti-ghost

number, which for all n ≥ 0 (there is no physical meaning for n < 0) states that

QOn + (Q− −∆−)On+1 −∆=On+2 = 0. (3.128)

When we isolate this for each anti-field number we produce the descent equations which

leads to an anti-field cascade, where the heavily constrained maximal anti-field number

if easily found and leads to the lower anti-field number parts, up to the addition of

exact pieces

Q0On = 0, Q0On−1 = (∆−−Q−0 )On, Q0On−2 = (∆−−Q−0 )On−1+∆=On, ... (3.129)

We are interested in the solutions that exist in the cohomology of ŝ i.e. we do not want

solutions of the form O = ŝK, using (3.128) and grading K by anti-ghost number we

see that these trivial solutions take the form

On = QKn + (Q− −∆−)Kn+1 −∆=Kn+2 (3.130)

which means that Kn are fermionic and have ghost number −1, using (3.128) and

(3.130) these exact pieces can be found and eliminated.

We now briefly mention the form of the propagators that will be needed to calculate

Feynman diagrams in this thesis, again reminding ourselves that this structure holds

in either gauge fixed or gauge invariant basis, and noting that

∆AB = 〈ΦAΦB〉 (3.131)

with
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ΦA(x) =

∫
ddp

(2π)d
e−ip·x ΦA(p), (3.132)

the propagators are

〈Hµν(p)Hαβ(−p)〉 =
δµ(αδβ)ν

p2
+

(
4

α
− 2

)
p(αδν)(αpβ)

p4
− 1

d− 2

δαβδµν
p2

(3.133)

〈bµ(p)Hαβ(−p)〉 = −〈Hαβ(p)bµ(−p)〉 = 2δµ(αpβ)/p
2 (3.134)

〈bµ(p)bν(−p)〉 = 0 (3.135)

〈cµ(p)c̄ν(−p)〉 = −〈c̄µ(p)cν(−p)〉 =
dµν
p2

(3.136)

We can then project the graviton propagator into its irreducible representations

〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν

p2
+

(
4

α
− 2

)
p(αδν)(αpβ)

p4

+
1

d2

(
4

α
− d− 2

)
δαβδµν
p2

2

d

(
1− 2

α

)
δαβpµpν + pαpβδµν

p4

(3.137)

〈hµν(p)ϕ(−p)〉 = 〈ϕ(p)hµν(−p)〉 =

(
1− 2

α

)(
δµν
d
− pµpν

p2

)
1

p2
(3.138)

〈ϕ(p)ϕ(−p)〉 =

(
1

α
− d− 1

d− 2

)
1

p2
(3.139)

which when specifying to α = 2 and d = 4 become

〈Hµν(p)Hαβ(−p)〉 =
δµ(αδβ)ν

p2
− 1

2

δµνδαβ
p2

(3.140)

〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν − 1

4δµνδαβ

p2
(3.141)

〈hµν(p)ϕ(−p)〉 = 〈ϕ(p)hµν(−p)〉 = 0 (3.142)

〈ϕ(p)ϕ(−p)〉 = − 1

p2
. (3.143)
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3.3.4 Legendre effective action and modified Slavnov-Taylor identities

We have thus far described this structure in terms of the Wilsonian effective action for

the sake of clarity of explanation, we now re-iterate some of these properties in terms

of the renormalized IR cut-off Legendre effective action as this is more useful when

performing calculations. BRST invariance is no longer expressed as the as unbroken

through the QME but instead through the modified Slavnov-Taylor (mST) identities

[102, 103] where off-shell nilpotency at the interacting level is recovered in the Λ → 0

where Λ is now this IR cut-off. The free charges remain nilpotent and in using the

Legendre effective action there is now direct access to the physical amplitudes

Γphys = lim
Λ→0

Γ. (3.144)

The flow equation now becomes [59, 71, 72, 104–106]

Γ̇I = −1
2Str

(
4̇Λ 4−1

Λ

[
1 +4ΛΓ

(2)
I

]−1
)

(3.145)

where the over-dot is the usual partial differentiation with respect to the RG time

∂t = −Λ∂Λ and the mST is

Σ := 1
2(Γ,Γ)− Tr

(
CΛΓ

(2)
I∗

[
1 +4ΛΓ

(2)
I

]−1
)

= 0 (3.146)

where CΛ(p) is the UV cut-off function as described in 2.3 and is chosen to satisfy the

requirements outlined there. CΛ(p) = 1−CΛ(p) is its IR counterpart, noting the change

in super to sub script and appears in the IR regulated propagators as 4AB
Λ = CΛ4AB.

The two equations are compatible, if the mST is satisfied at an arbitrary energy scale

then it will continue to be satisfied along the RG flow. In the physical limit Λ→ 0 the

second term in (3.146) becomes zero (and is found to always remain finite at an arbitrary

energy scale) and so in this limit we return the Zinn-Justin equation 1
2(Γ,Γ) = 0 and we

return to the standard realisation of BRST invariance as outlined earlier. Expanding

upon the introduced notation we have StrM = (−)AMA
A and TrM =MA

A where (−)A

corresponds to the field A being bosonic/fermionic as outlined before. In addition to

this we note that ∂l denotes taking the derivative from the left (in the standard way)

and ∂r denotes taking the derivative from the right (in the not-so standard way), which

can be converted to ∂l by commuting the derivative through, taking into account the

swapping of fermionic fields and the minus sign(s) that will bring. We also set

Γ
(2)
I =

∂l
∂ΦA

∂r
∂B

ΓI ,

(
Γ

(2)
I∗

)A
B

=
∂l
∂Φ∗A

∂r
∂ΦB

ΓI (3.147)

where Γ is the effective average action [105] part of the IR cut-off Legendre effective

action. This is given by
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Γtot = Γ + 1
2ΦARABΦB, 4−1

Λ AB = 4−1
AB +RAB (3.148)

where RAB is the IR cut-off expressed in additive form. As seen with the Wilsonian

effective action we split up the Legendre effective action into a free part and an inter-

acting part

Γ = Γ0 + ΓI , Γ0 = 1
2ΦA 4−1

AB ΦB − (Q0ΦA)Φ∗A (3.149)

where the BRST charge and also the Kozsul-Tate differential are defined in the same

way as for the Wilsonian effective action, namely

Q0ΦA := (Γ0,Φ
A), Q−0 Φ∗A := (Γ0,Φ

∗
A) (3.150)

and similarly expand ΓI perturbatively in its interactions

ΓI =
∞∑
n=1

Γnε
n/n!. (3.151)

At first order the flow equation (3.145) and mST (3.146) become

Γ̇1 = 1
2Str4̇ΛΓ

(2)
1 (3.152)

0 = (Γ0,Γ1)− Tr

(
CΛΓ

(2)
1∗

)
= (Q0 +Q−0 −∆)Γ1 := ŝ0Γ1 (3.153)

where the first equation is the Legendre effective action version of the flow equations

and is satisfied by the eigenoperators, their RG time derivative is given by the action of

the tadpole operator. In the second equation we have the Batalin-Vilkovisky operator

as seen before (3.83).

Much of the work in this Legendre frame works identically to that of the Wilsonian

frame, in particualar the free action

Γ0 = 1
2(∂λHµν)2 − 2(∂λ)2 − (∂µHµν)2 + 2∂αϕ∂βHαβ − 2∂µcνH

∗
µν , (3.154)

non-vanishing free BRST charges

Q0Hµν = ∂µcν + ∂νcµ, (3.155)

the non-vanishing free Kozsul-Tate differentials

Q−0 H
∗
µν = −2G(1)

µν , Q−0 c
∗
ν = −2∂µH

∗
µν , (3.156)

propagators (3.133 - 3.143) and method of switching between gauge fixed and gauge

invariant bases is the same. We continue to choose the convenient α = 2 Feynman
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gauge and work in d = 4 space-time dimensions for simplicity.

We now make clear a distinction between the interaction terms Γ1 and our choice

of non-trivial ŝ0-cohomology representative, Γ̌1, the former not simply being κΓ̌1 as in

the standard quantisation [107]. So as to respect unitarity and causality we restrict Γ̌1

to have a maximum of two space-time derivatives, as a consequence it must therefore

be a linear combination of a term involving space-time derivatives and a unique non-

derivative piece

Γ̌1 = Γ̌0
1 = ϕ. (3.157)

The latter is the O(κ) piece of
√
g. The derivative part was found to have a unique

expression under this two derivative condition, up to the usual addition of ŝ0-exact

pieces this is

Γ̌2
1 = −(cµ∂µc

ν)c∗ν = cµ∂νcµc
∗
ν +Q0(Hµνcµc

∗
ν) (3.158)

where the first bracket term is half the Lie bracket which will aid calculation at higher

orders and the addition of an exact piece on the RHS. Using the anti-field cascade as

outlined in 3.3.3 we are led to the anti-ghost level 1 and 0 pieces,

Γ̌1
1 = 2cαΓ(1)α

µνH
∗
µν + 2Hµνcµ∂αH

∗
αν = −(cα∂αHµν + 2∂µc

αHαν)H∗µν (3.159)

and

Γ̌0
1 = 2ϕ∂βHβα∂αϕ− 2ϕ(∂αϕ)2 − 2Hαβ∂γHγα∂βϕ

+ 2Hαβ∂αϕ∂βϕ− 2Hβγ∂γHαβ∂αϕ

+ 1
2ϕ(∂γHαβ)2 −Hβµ∂γHαβ∂γHαµ + 2Hµα∂γHαβ∂µHβγ

+Hβµ∂γHαβ∂αHγµ − ϕ∂γHαβ∂αHγβ −Hαβ∂γHαβ∂µHµγ

+ 2Hαβ∂γHαβ∂γϕ+ 7
2bΛ

4ϕ .

(3.160)

This is the classical three-graviton vertex one finds from expanding Einstein-Hilbert

(2.1) under the parametrisation of the metric gµν = δmuν + κHµν plus a quantum

correction 7
2bΛ

4ϕ where

b =

∫
d4p̃

(2π)4
C(p̃2). (3.161)

This quantum correction is generated by the action of the tadpole operator, the RHS of

the linearised flow equation (3.152), on this triple graviton vertex. As one would expect

all of these terms are of scaling dimension five. We also note the one-loop quantum

part which is anti-ghost level zero,
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Γ̌1q1 = Γ̌0
1q1 =

7

2
bΛ4ϕ. (3.162)

In general (3.152) has solutions, once the conformal factor instability is considered,

of the form

δ2l+ε
Λ (ϕ) σ(∂, ∂ϕ, h, c,Φ∗) + ... (3.163)

where l ≥ 0 is an integer and ε = 0(1) according to the even (odd) ϕ-amplitude parity.

We can also express a general solution of (3.152) with Γ1 = Γ(µ) where

Γ(µ) = exp

(
− 1

2 4
Λ AB ∂2

l

∂ΦB∂ΦA

)
Γ1phys =

∑
σ

(σfσΛ(ϕ, µ) + ...) (3.164)

which is a linear sum over the eigenoperators (3.163) with the underlying coefficients

gσ2l+ε(µ) which are subsumed into the coefficient functions discussed earlier which we

can also express as

fσΛ(ϕ, µ) =

∫ ∞
−∞

dπ

2π
fσ(π, µ)e−

π2

2
ΩΛ+iπϕ, fσ(π, µ) = iε

∞∑
l=0

(−)lgσ2l+ε(µ)π2n+ε. (3.165)

It can be shown that the Taylor series of fσ(π, µ) (noting the change in argument)

converges for all π and decays exponentially for π > 1/Λσ and so is valid for the entire

flow. These points are necessary to elucidate when begin to consider the higher order

behaviour of this theory. This infinite tower of underlying coupling for each monomial σ

has at first order only relevant couplings with the exception of one marginal coupling.

At higher order the quantum corrections introduce higher dimensional monomials σ

with infinitely many of their couplings being relevant however the first few are irrelevant

and are heavily constrained such that there is a well-defined renormalized trajectory

[8, 75]. At the second order, see chapter 5, there are no new marginal couplings, the

first order couplings do not run and the irrelevant couplings are determined in terms

of the first order couplings.

3.3.5 Implementation of diffeomorphism invariance in the physical

limit

We now review how one implements diffeomorphism invariance in this new approach

to QG, noting how one initially constructs the action in a way that does not respect

this invariance before returning to the invariant subspace in the physical limit.

We summarise this unique implementation of diffeomorphism invariance in figure

3.3, a simplified version of the theory space of our effective actions. The theory is

constructed in the UV where the cut-off scale Λ breaks the diffeomorphism invariance,

50



Figure 3.3: The continuum limit is defined in the UV and emanates from the GFP
along relevant directions, it then re-enters the diffeomorphism invariant subspace in
the physical limit Λ→ 0, passing below the amplitude suppression scale (also referred
to as the amplitude decay scale) aΛσ where a is a non-universal number.

it is only in the physical limit Λ → 0 where, going below a dynamically generated

amplitude suppression scale aΛσ, that the mST is then satisfied. In this subspace the

underlying couplings are subsumed into the coefficient functions, effective couplings

such as κ and the cosmological constant are recovered and all physical quantities are

then guaranteed to be diffeomorphism invariant, for example recovering the EH action

(2.1) at first and second order and matching the standard expressions. We can also

regard this as equivalent to the limit Λσ →∞.

This is a unique aspect of this structure which brings with it several considerations,

firstly it has always been assumed that the Wilsonian RG properties that define the con-

tinuum limit must also respect diffeomorphism invariance. This has led to arguments

against the existence of a UV fixed point in QG following from black hole entropy con-

siderations [23, 108] which are not valid in this approach. One can regard the following;

QFTs are constructed on space-time, classical GR is constructed of space-time and in

this approach many of the tensions of formulating a theory of QG are resolved as we

are constructing the theory off space-time.
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This is the general behaviour however we can elaborate on this and further aspects

will be elucidated in this thesis. To re-iterate we construct the theory with every

possible (marginally) relevant underlying bare coupling gσn induced by requiring finite

couplings at physical scales, due to the presence of the tower operator we have an

infinite number of these. These operators do not respect diffeomorphism invariance

and lie in the critical surface in figure 3.3. We then take the physical limit and as a

result the coefficient functions, having been chosen careful, then return the effective

couplings we are more familiar with. For example at first order we would find

lim
Λσ→0

fσΛ(ϕ)/κ→ 1 (3.166)

and in doing so we recover the standard non-trivial solutions to the BRST cohomology

equations (3.158), (3.159) and (3.160).
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Chapter 4

Perturbatively renormalizable

quantum gravity at first order in

the coupling

Having outlined the basic structure of this novel approach to QG that follows from

combining the Wilsonian RG with the action for free gravitons, whilst considering

seriously the wrong sign kinetic term, we must now begin to test if a suitable continuum

limit can be found. We begin at the first order in the coupling and re-iterate previously

discussed results for clarity before proceeding further. We choose the most general

of the coefficient functions that are consistent with the flow equations and verify the

universality of the continuum limit. We express the effect of the wrong sign kinetic

term on the RG in terms of the Legendre effective action which will aid calculation,

following this elaborate on the structure of his coefficient function fσΛ(ϕ) and how this

is parametrised by the truly fundamental underlying couplings gσn. We then further

develop the arguments outlined thus far in this thesis, showing how the RG properties

determine the form of the dressed interactions and these coefficient functions, this

reinforces that this structure follows naturally from the Wilsonian RG, negative kinetic

term and the free action for gravitons.

Following these developments we then discuss closed expressions for the tadpole

corrections found in the dressed interactions, proving that there exists a dynamically

generated amplitude suppression scale Λσ that determines the large ϕ behaviour for

the coefficient functions. This is found for all Λ ≥ 0 and also proves that fσΛ(ϕ) is

determined uniquely by this physical limit. As part of this we express the functions in

conjugate momentum by an entire function fσ(π) whose Taylor expansion coefficients

are these underlying couplings gσn.

We then turn our attention to the amplitude suppression scale, showing that it

characterises the asymptotic behaviour of these underlying couplings gσn at large n and

define what it means for the coefficient functions to trivialise in the large Λσ limit,
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which will play a crucial role in returning standard, consistent results. As discussed in

section 3.3.5 these underlying couplings are chosen so as to recover the standard results,

re-entering the diffeomorphism invariant subspace at the linearised level. We focus on

the simplest case where the coefficient function then tends to a constant however we

also discuss that in general it must tend to a Hermite polynomial of degree α whose

functional form is then fixed.

In section 4.2.1 we briefly review how to derive new solutions for the coefficient

functions from a given one and derive formulae for their underlying couplings. To sum-

marise this is achieved either by multiplying the physical coefficient by a power of ϕ or

differentiating with respect to ϕ, this will prove to be a useful tool later. Following this

aside we characterise the most general form for the coefficient function that trivialise in

the large Λσ limit, this is most efficiently expressed in terms of the Fourier transform

as we have seen previously. In particular we show that fσ(π) must tend to the αth

derivative of a Dirac δ function. From this we can make two powerful simplifying as-

sumptions. These will still leave us with an infinite dimensional function space flexible

enough to encompass the higher order computations, ensuring this structure remains

valid there. The first of these assumptions is that the coefficient functions must have

definite parity and in the second we insist that at the linearised level the coefficient

functions contain only one amplitude suppression scale, leaving a brief discussion of the

case where there is a spectrum of suppression scales to the appendix.

With these properties outlined we then have a complete characterisation of fσ(π)

in terms of both its large and small π behaviour, its normalisation and limiting be-

haviour of of key integrals in the large amplitude suppression scale limit. Given all this

structure we conclude this chapter with the construction of a very general continuum

limit to first order and verify that its RG trajectory fulfils the necessary properties of

respecting the flow equations and evolving into the diffeomorphism invariant subspace.

Finally we discuss the implications of this research and outline where there is room for

improvement and open questions, before addressing these concerns in chapter 5.

4.1 Renormalization group properties at the linearised

level

To briefly re-iterate, the wrong sign ϕ propagator

〈ϕ(p)ϕ(−p)〉 = − 1

p2
(4.1)

reflects the wrong sign kinetic term for ϕ in this gauge, which in turn is a reflection of

the instability caused by the unboundedness of the Euclidean Einstein-Hilbert action

(see [8, 107, 109] for further discussion). The Euclidean partition function is then more

than usually ill-defined, which the authors of ref. [9] proposed to solve by analytically

continuing the ϕ integral along the imaginary axis. However this wrong sign does not

54



invalidate the Wilsonian RG flow equations, for example as realised by the Legendre

effective action flow equation (3.145), which provide an alternative and anyway more

powerful route to defining a continuum limit (see [8, 74, 107, 109] and e.g. ref. [20] for

further discussion). As shown in refs. [8, 107], the wrong sign then profoundly alters

the RG properties that are central to defining such a continuum limit. (For earlier

observations see refs. [77, 110].) We review and refine some of those discoveries in this

section.

Consider some arbitrary infinitesimal perturbation around the Gaussian fixed point

(3.115), whose ϕ-amplitude dependence12 is given by fΛ(ϕ). Recalling the wrong sign

in the ϕ propagator (4.1), and using ĊΛ = −ĊΛ, the linearised flow equation (3.152)

implies that this coefficient function must satisfy

ḟΛ(ϕ) = 1
2 Ω̇Λ f

′′
Λ(ϕ) , (4.2)

and

ΩΛ = |〈ϕ(x)ϕ(x)〉| =
∫
q

C(q2/Λ2)

q2
=

Λ2

2a2
(4.3)

is the modulus of the ϕ tadpole integral regularised by the UV cut-off. Recalling that

the now positive sign on the right hand side of this parabolic equation reverses the

natural direction of the flow with solutions now only guaranteed in the IR direction.

Most importantly, the perturbation can be written as a convergent sum over eigenop-

erators and their couplings only if the coefficient function is square-integrable under

the corresponding Sturm-Liouville measure:∫ ∞
−∞
dϕ eϕ

2/2ΩΛf2
Λ(ϕ) <∞ , (4.4)

where the measure is now a growing exponential. If fΛ ∈ L−, then it can be written as

a (typically infinite) linear combination over the operators:

δ
(n)
Λ (ϕ) :=

∂n

∂ϕn
δ
(0)
Λ(ϕ) , where δ

(0)
Λ(ϕ) :=

1√
2πΩΛ

exp

(
− ϕ2

2ΩΛ

)
(4.5)

(integer n ≥ 0) with convergence of the sum being in the square-integrable sense under

the Sturm-Liouville measure (4.4), under which also the operators are orthonormal:∫ ∞
−∞
dϕ eϕ

2/2ΩΛ δ
(n)
Λ (ϕ) δ

(m)
Λ (ϕ) =

n!

Ω
n+1/2
Λ

√
2π

δnm . (4.6)

These δ
(n)
Λ (ϕ) are solutions of the linearised flow equation for the coefficient function

(4.2), and are nothing but the tower of non-derivative eigenoperators in the ϕ sector

that span L−, the general solution of the linearised flow equation in this space being a

linear combination of these eigenoperators with constant coefficients, a.k.a. couplings.

12i.e. its ϕ dependence other than any dependence through space-time derivatives as in ∂mϕ
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The δ
(n)
Λ (ϕ) are all relevant, their scaling dimensions being equal to their engineering

dimensions in mass units, namely −1−n. Since ΩΛ ∝ ~, the δ
(n)
Λ (ϕ) are non-perturbative

in ~. It is for this reason that we must develop the theory whilst remaining non-

perturbative in ~. We mention also that they are also evanescent, i.e. vanish as Λ→∞,

and have the property that the physical operators, gained by sending Λ→ 0, are δ
(n)

(ϕ),

the nth-derivatives of the Dirac delta function.

In the hµν sector and the ghost sector, convergent sums are over eigenoperators

that are polynomials in the fields, justifying the usual form of expansion. Altogether,

the general eigenoperator can be expressed as [107]

δ
(n)
Λ (ϕ)σ(∂, ∂ϕ, h, c,Φ∗) + · · · , (4.7)

(in gauge invariant minimal basis) where we have displayed the ‘top term’, σ being

a Λ-independent Lorentz invariant monomial involving some or all of the components

indicated, in particular the arguments ∂ϕ, h, c,Φ∗ can appear as they are, or differen-

tiated any number of times. If dσ = [σ] is its engineering dimension, then the scaling

dimension of the corresponding eigenoperator is just the sum of the engineering di-

mensions, namely dσ−1−n. Notice that undifferentiated ϕ does not appear in σ but

only in δ
(n)
Λ (ϕ). The tadpole operator in the linearised flow equation (3.152) gener-

ates a finite number of Λ-dependent UV regulated tadpole corrections involving less

fields in σ. These are the terms we indicate with the ellipses. They are formed by

attaching the propagators (3.140) – (3.143) (in gauge fixed basis) in all possible ways

according to the usual rules of Wick contraction, but excluding ϕ tadpoles connected

only to δ
(n)
Λ (ϕ), since these are already accounted for through the flow equation for the

coefficient function (4.2).

In fact we can give the general eigenoperator (4.7) in closed form. Note that the

linearised flow equation (3.152) implies

Γ̇1 = −1

2
4̇ΛAB ∂2

l

∂ΦB∂ΦA
Γ1 , (4.8)

where 4ΛAB = CΛ4AB is the UV regulated propagator. The solution we need is

therefore

exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
Γ1 phys , where Γ1 phys = σ δ(n)(ϕ) , (4.9)

since at Λ = 0, δ
(n)
Λ (ϕ) = δ(n)(ϕ) and all the tadpole corrections vanish. The exponen-

tial operator then just generates all the Wick contractions13 for the propagator which

appears here as −4Λ, as illustrated in fig. 3.2. For each functional derivative we can

13In particular ghost propagators count an overall 1
2
× (−2)=−1 through 〈cc̄〉 and 〈c̄c〉 and statistics.
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write by the Leibniz rule
∂l
∂ΦA

=
∂Ll
∂ΦA

+
∂Rl
∂ΦA

(4.10)

where ∂L acts only on the left-hand factor (i.e. it acts on objects on the left, with

derivatives being evaluated on those objects only), here σ, and ∂R acts only on the right-

hand factor (i.e. it acts on objects on the right, with derivatives being evaluated on

those objects only) [103], here δ(n)(ϕ). Thus (factoring out −CΛ for later convenience):

1

2
4AB ∂2

l

∂ΦB∂ΦA
=

1

2
4AB ∂Ll

2

∂ΦB∂ΦA
+4AB ∂Ll

∂ΦB

∂Rl
∂ΦA

+
1

2
4AB ∂Rl

2

∂ΦB∂ΦA
. (4.11)

The exponential in the eigenoperator solution (4.9) therefore factors into three expo-

nentials. Since δ(n)(ϕ) only depends on ϕ, the third exponential collapses to [8]:

exp

(
−1

2
4ΛAB ∂Rl

2

∂ΦB∂ΦA

)
δ(n)(ϕ) = e

1
2

ΩΛ∂
2
ϕ δ(n)(ϕ) = ∂nϕ

∫ ∞
−∞

dπ

2π
e−

1
2
π2ΩΛ+iπϕ = δ

(n)
Λ (ϕ) ,

(4.12)

where we used the ϕ propagator (3.143), giving the tadpole integral (4.3) and derivatives

∂ϕ with respect to the amplitude (i.e. no longer functional), and expressed the result

in conjugate momentum π space, after which the integral evaluates to the expression

(4.5) for the δ
(n)
Λ (ϕ) operators. Thus the entire eigenoperator can be written as

exp

(
−4Λϕϕ ∂

L

∂ϕ

∂R

∂ϕ

){
exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
σ

}
δ
(n)
Λ (ϕ) , (4.13)

where the term in braces expresses all the tadpole corrections acting purely on σ, and

the left-most term generates ϕ-propagator (3.143) corrections that attach to both σ

and δ
(n)
Λ (ϕ) (each such attachment will increase n 7→n+1).

A simple example eigenoperator [107] will prove useful later:

− ∂µcνH∗µνδ
(n)
Λ (ϕ) + 2bΛ4δ

(n)
Λ (ϕ) . (4.14)

The second term has the ghost tadpole correction to the top monomial σ=−∂µcνH∗µν .

(To see this immediately, substitute the SO(4) decomposition (2.6) into the ŝ0-exact

addition and integrate by parts)

The continuum limit is described by the renormalized trajectory, close to the fixed

point, the linearised approximation is justified. The interaction there is therefore ex-

panded only over the marginal and relevant eigenoperators (4.7) with constant couplings

gσn whose mass-dimensions

[gσn] = 4− (dσ−1−n) = 5 + n− dσ , (4.15)

must all be non-negative. Every monomial σ is therefore associated to an infinite tower
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of operators, which can be subsumed into

fσΛ(ϕ)σ(∂, ∂ϕ, h, c,Φ∗)+· · · = exp

(
−4Λϕϕ ∂

L

∂ϕ

∂R

∂ϕ

){
exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
σ

}
fσΛ(ϕ) ,

(4.16)

where the coefficient function of the top term is given by (at the linearised level)

fσΛ(ϕ) =

∞∑
n=nσ

gσnδ
(n)
Λ (ϕ) , (4.17)

and the tadpole corrections are the same as before (now with fσΛ differentiated according

to the number of times the left-most operator acts on it). In general all the (marginally)

relevant couplings [gσn] ≥ 0 will be needed [8] and thus at the linearised level

nσ = max(0, dσ − 5) . (4.18)

For dσ ≥ 5, we are thus including the marginal coupling [gσnσ ] = 0.

The eigenoperators (4.7,4.13) span the complete (Hilbert) space L of interactions

whose combined amplitude dependence is square integrable under the Sturm-Liouville

measure

exp
1

2ΩΛ

(
ϕ2 − h2

µν − 2 c̄µcµ
)
. (4.19)

At the bare level we require that ΓI is inside L, so that expansion over eigenoperators is

meaningful. This as the quantisation condition that is thus both natural and necessary

for the Wilsonian RG as outlined in section 3.2.2. However, since we will be solving

for ΓI directly in the continuum, our bare cut-off is already sent to infinity. Then this

condition is replaced by the requirement that ΓI ∈ L for sufficiently large Λ, where as

a consequence we also have fσΛ ∈ L−.

Recall that we define the amplitude suppression scale Λσ ≥ 0 to be the smallest

scale such that for all Λ> aΛσ, the coefficient function is inside L−. The coefficient

function exits L− as Λ falls below aΛσ, either because it develops singularities after

which the flow to the IR ceases to exist, or because it decays too slowly at large ϕ.

We need to choose the gσn so that the flow all the way to Λ→ 0 does exist, so that all

modes can be integrated over and so that the physical Legendre effective action (3.144)

can be defined. Note that we mean by Γphys the resulting Λ→ 0 limit, thus removing

the infrared cut-off (limΛ→0CΛ = 0). The results are not yet physical in terms of

properly incorporating diffeomorphism invariance. That requires another limit as we

will shortly see.

Since the coefficient function thus exits L− by decaying too slowly, we know from

the square-integrability condition (4.4) that asymptotically:

fσaΛσ(ϕ) ∝ Aσ e−ϕ
2/4ΩaΛσ+o(ϕ2) = Aσ e−ϕ

2/2Λ2
σ+o(ϕ2) , (4.20)
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for at least one of ϕ → ±∞, with the other side decaying at the same rate or faster,

where

[Aσ] = 4− dσ (4.21)

is a dimensionful constant, and o(· · ·) is a dimensionless term of either sign that grows

slower than its argument. (Because of the presence of such undetermined terms, the

asymptotic formula (4.20) only yields Aσ up to a dimensionless proportionality con-

stant.)

The asymptotic behaviour (4.20) gives us a boundary condition which then fixes the

solution of the linearised flow equation (4.2) at large ϕ. Thus we find (at the linearised

level) the asymptotic behaviour for any Λ:

fσΛ(ϕ) ∝ Aσ exp

(
− a2ϕ2

Λ2 + a2Λ2
σ

+ o(ϕ2)

)
(4.22)

(on at least one side with the other side being the same rate or faster). From the

requirement for square-integrability under the Sturm-Liouville measure, cf. (4.4), our

definition of Λσ is verified: fσΛ ∈ L− for all Λ>aΛσ, while fσΛ /∈ L− for Λ<aΛσ (in fact

for all such Λ).

Setting Λ = 0 shows that the physical coefficient function fσphys(ϕ), which following

[107] we write simply as fσ(ϕ), is characterised by the decay (on at least one side with

the other side being the same rate or faster):

fσ(ϕ) ∝ Aσ e−ϕ
2/Λ2

σ+o(ϕ2) . (4.23)

It appears as

fσ(ϕ)σ(∂, ∂ϕ, h, c,Φ∗) (4.24)

in the (physical) Legendre effective action, the regularised tadpole corrections in the

Λ > 0 solution (4.16) having all vanished, since they are all proportional to positive

powers of Λ. The asymptotic property for the physical coefficient function (4.23) is the

motivation for calling Λσ the amplitude suppression scale, or amplitude decay scale [8,

107].

From the linearised flow equation for the coefficient function (4.2), this solution can

be written in terms of the Fourier transform over π:

fσΛ(ϕ) =

∫ ∞
−∞

dπ

2π
fσ(π) e−

π2

2
ΩΛ+iπϕ , (4.25)

where fσ is Λ-independent and is thus the Fourier transform of the physical fσ(ϕ).

From the expansion of the coefficient function in terms of δ
(n)
Λ (ϕ) operators (4.17) and

the Fourier transform expression for these operators (4.12), the couplings are its Taylor
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expansion coefficients:

fσ(π) =

∞∑
n=nσ

gσn(iπ)n . (4.26)

Since the asymptotic behaviour of the physical coefficient function (4.23) ensures that

the inverse Fourier transform exists for all complex π, fσ is an entire holomorphic func-

tion (Paley-Wiener theorem)14. The asymptotic behaviour of the physical coefficient

function (4.23) is reproduced by setting fσ(π) proportional to

AσΛσ e−π
2Λ2

σ/4+o(π2) , (4.27)

which also reproduces the asymptotic behaviour (4.22) at Λ>0. However at this stage

it needs to be interpreted with care since it captures only the fastest decaying part,

corresponding to the slowest decaying behaviour in ϕ-space. (See app. A.1 for an

example. This corrects part of the characterisation given in ref. [107].) It does however

control the large-n behaviour of the couplings:

gσn ∝ Aσ
( e

2n

)n
2
Λn+1
σ e o(n) as n→∞ , (4.28)

where we Taylor expanded the asymptotic formula for the Fourier transform (4.27) and

used Stirling’s approximation. Indeed from the expansion of the coefficient function

in terms of the δ
(n)
Λ (ϕ) operators (4.17), square integrability under the Sturm-Liouville

measure, as in (4.4), and the orthonormality relations (4.6), we see that∫ ∞
−∞
dϕ eϕ

2/2ΩΛ (fσΛ)2 =
1√
2π

∞∑
n=nσ

n! (gσn)2/Ω
n+ 1

2
Λ <∞ for Λ > aΛσ . (4.29)

By its definition, Λ = aΛσ marks the radius of convergence, and thus we see that gσn

must at large n behave roughly like
√

Ωn
aΛσ

/n!. Using Stirling’s approximation we

regain the asymptotic formula for the couplings (4.28) (up to sign dependence). This

large-n behaviour also verifies that fσ is entire.

As mentioned already below (4.2), flows in the ϕ-sector are guaranteed to exist in

the reverse direction, i.e. from the IR towards the UV. In particular, the linearised

fσΛ(ϕ) exists for all Λ ≥ 0 and is unique, once the coefficient function at Λ = 0 is

specified, as is also clear from the Fourier integral representation (4.25). Given the

asymptotic behaviour for the physical coefficient function (4.23), this is also clear from

the Green’s function representation:

fσΛ(ϕ) =

∫ ∞
−∞
dϕ0 f

σ(ϕ0) δ
(0)
Λ(ϕ−ϕ0) . (4.30)

14Then since fσ is also square integrable, the exponential decay part in the Fourier integral solution
(4.25) ensures that the Fourier integral converges for all complex ϕ provided Λ > 0, and thus that
fσΛ>0(ϕ) is also an entire holomorphic function.
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It is clear that this is the Green’s function representation since it satisfies the linearised

flow equation for the coefficient function (4.2) by virtue of the fact that the shifted

eigenoperator δ
(0)
Λ(ϕ−ϕ0) does, and returns the boundary condition in the limit Λ→0,

since in this limit δ
(0)
Λ(ϕ−ϕ0) → δ(ϕ−ϕ0) [8]. Thus δ

(0)
Λ(ϕ−ϕ0) is in fact the Heat

kernel for the diffusion equation (4.2). By Taylor expanding δ
(0)
Λ(ϕ−ϕ0) about ϕ, we

recover the expansion of the coefficient function over δ
(n)
Λ (ϕ) operators (4.17) (and the

series converges for Λ>aΛσ), and read off a formula for the couplings in terms of the

moments of the physical coefficient function [8]:

gσn =
(−)n

n!

∫ ∞
−∞
dϕϕn fσ(ϕ) (4.31)

We see therefore that the general form of the solution is given by specifying the

physical coefficient function. At this stage it is subject only to the constraints that it

satisfy the asymptotic condition (4.23) and be such that its Taylor expanded Fourier

transform (4.26) has vanishing coefficients for πn<nσ , equivalently that its moments

(4.31) vanish for n<nσ. Indeed the asymptotic property (4.23) of this Λ=0 boundary

condition, implies the asymptotic solution (4.22) at Λ>0, which verifies that Λ=aΛσ

marks the point above which fσΛ ∈ L−. Substituting the Taylor expansion formula

(4.26) for the Fourier transform into the Fourier transform solution (4.25) gives back

the expansion of the coefficient function in terms of δ
(n)
Λ (ϕ) operators (4.17) which

converges for Λ > aΛσ and describes a valid renormalized trajectory in the linearised

regime.

4.2 Trivialisation in the limit of large amplitude suppres-

sion scale

All of the above properties for the linearised solutions are inevitable consequences of

respecting the wrong sign kinetic term for the conformal factor ϕ, while insisting that

the Wilsonian RG remains meaningful. However this general form must now be married

with the first order BRST constraint (3.153). In ref. [107], it was shown that this is

possible only if the coefficient function trivialises in the sense defined below,15 and we

showed that such trivialisations are possible if we now send Λσ to infinity. In other

words, we can arrange for violations of BRST to be as small as desired by taking

sufficiently large Λσ. In this way, at first order, we get both the continuum limit and

diffeomorphism invariance of the renormalized solution.

In the majority of cases the coefficient function has to become ϕ-independent, i.e.

15 In the final two paragraphs of section 7.2 of [107] we referred to “non-constant” coefficient functions,
where we should have written “non-trivial” as in the current sense.
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we need linearised renormalized trajectories that satisfy:

fσΛ(ϕ)→ Aσ as Λσ →∞ , (4.32)

(where we hold Λ, ϕ and Aσ fixed and finite) such that also its ϕ-derivatives have a

limit, which is thus that they vanish. However if BRST invariance demands a physical

vertex of the same dimension but containing an undifferentiated ϕα factor (α a positive

integer), then this would appear as

σ = ϕα σα(∂, ∂ϕ, h, c,Φ∗) (4.33)

in the physical vertex (4.24), where thus the new monomial σα has

dσα = dσ − α , (4.34)

and the ϕα amplitude dependence must be absorbed by the physical coefficient function.

This will correspond to linearised renormalized trajectories satisfying

fσαΛ (ϕ)→ Aσ (Λ/2ia)αHα(aiϕ/Λ) as Λσα →∞ , (4.35)

such that also their ϕ-derivatives have a limit, where Hα is the αth Hermite polynomial.

This follows because

(Λ/2ia)αHα(aiϕ/Λ) = ϕα + α(α− 1) ΩΛϕ
α−2/2 + · · · (4.36)

is the unique solution of the linearised flow equation for the coefficient function (4.2)

with the boundary condition that it just becomes ϕα at Λ = 0.16

Notice that the above conditions (4.35,4.36) actually apply also at α = 0, where

they just give back the original limit (4.32) as a special case. Since we require the

ϕ-derivatives to have a limit, by l’Hôpital’s rule this limit is given by the ϕ-derivative

of the right hand side.

We say that a coefficient function trivialises in the limit of large amplitude sup-

pression scale if it satisfies the limiting condition (4.35) for some α. Since at finite Λσα

(with σ=σα), the coefficient functions satisfy the asymptotic formula (4.22), they are

non-trivial, in particular they cannot be polynomial in ϕ.

From the asymptotic formula for the couplings (4.28) we see that the gσn must

diverge in the limit Λσ →∞. However the vertices are nevertheless well behaved since

the coefficient function goes smoothly over to Aσ as in the limiting condition (4.32),

or more generally to the finite polynomial in (4.35). What is happening is that the

Λ = aΛσ boundary, above which fσΛ(ϕ) enters L−, is being sent to ever higher scales.

In this sense we are taking a limit towards the boundary of this Hilbert space (and thus

16These polynomials are nothing but the eigenoperators in the standard quantisation of a scalar field
, analytically continued along the imaginary ϕ axis , which destroys their Hilbert space properties .
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also L) [107, 109].

Actually, from the asymptotic formula for the couplings (4.28), we can keep gσn

perturbative in this limit if we choose Aσ to vanish fast enough with Λσ. For example

if we set Aσ = aσ e−Λσ/µ for fixed aσ and µ, then for any finite n, the couplings

gσn → 0 as Λσ → ∞. Although this means that the coefficient function, and thus the

vertex itself, vanishes in the limit, this does not stop us from computing perturbative

corrections in the usual way [107], as reviewed in section 4.3. We can also choose

Aσ to vanish fast enough to ensure that couplings remain uniformly perturbative (as

opposed to pointwise in n as in the above example). From the asymptotic formula for

the couplings (4.28) one sees that for large Λσ, they first grow with n and then decay

once the n−n/2 factor dominates. Thus we can estimate the maximum size coupling by

differentiating with respect to n and finding the stationary point. We find

gσnmax
∝ AσΛσ eΛ2

σ/4 at n = nmax = Λ2
σ/2 , (4.37)

which implies that we can keep the couplings uniformly perturbative if we set Aσ to

vanish faster than Λ−1
σ e−Λ2

σ/4. The above result already suggests that it is the large-n

gσn couplings that should be important in the limit of large amplitude suppression scale.

We will see this more dramatically from a different point of view in ref. [2].

4.2.1 Relations

In this subsection, we pause the main development to explore two rather natural ways

for generating new solutions. The first increases α, while the second decreases it. We

will see however that the maps are not inverses of each other, but rather when combined

generate yet further solutions. This illustrates that there are infinitely many solutions

for coefficient functions, with the same trivialisation. The formulae we will derive are

then used in the next section to arrive at the general form, in section 4.2.3 and app.

A.1 to generate examples with illustrative properties, and in section 4.3 to explain the

properties of special limiting cases.

On the one hand, we can convert any solution to flat trivialisation limit (4.32), into

one satisfying the polynomial trivialisation limit (4.35), by multiplying the physical

coefficient function by ϕα and using the fact that the flow to all Λ > 0 then exists and

is unique. Recalling that we defined o(· · ·) to be dimensionless, we thus identify from

the asymptotic formula for the physical coefficient function (4.23):

Λσα = Λσ and Aσα = AσΛασ , (4.38)

where Λσα is the amplitude suppression scale, and Aσα the dimensionful constant, in

the asymptotic behaviour of the physical coefficient function associated to the new

monomial σα. Using the Fourier representation of the solution (4.25) at Λ = 0, and
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integration by parts, we see that the new physical coefficient function is given by setting:

fσα(π) = (i∂ π)αfσ(π). (4.39)

We confirm that fσα(π) thus satisfies the same general Taylor expansion formula

(4.26), with

nσα = max(0, dσα − 5) , (4.40)

i.e. defined as in the previous minimum index (4.18), since

nσα = nσ − α = dσ − α− 5 = dσα − 5 , (4.41)

unless dσα < 5 in which case nσα = 0. Reading off the couplings from the Taylor

expansion formula (4.26) and the Fourier transform of the new physical coefficient

function (4.39), we have

fσ
′
(π) =

∞∑
n′=nσ′

gσ
′
n′ (iπ)n

′
where

gσαn = (−)α(n+ 1)(n+ 2) · · · (n+ α) gσn+α = (−)α
(n+ α)!

n!
gσn+α .

(4.42)

Using this, the asymptotic formula for the couplings (4.28) and the conversion formulae

from σ to σα (4.38), we confirm that in terms of the appropriate σα-labelled quantities,

these couplings have the expected limiting behaviour at large n.

On the other hand, thanks to the recurrence relation H ′α(x) = αHα−1(x), one easily

verifies that taking the ϕ-derivative of the polynomial trivialisation (4.35) just maps

it to (α times) the (α−1)th case, as it must since the derivative is still a solution of

the flow equation for the coefficient function (4.2) and the result is determined by the

physical (Λ→ 0) limit, in this case αAσϕ
α−1. Of course this does not mean in general

that fσα ′Λ (ϕ) = αf
σα−1

Λ (ϕ), since there are infinitely many solutions with these limits.

Indeed while fσα satisfies the minimum index property (4.40) for each α in general, the

coefficient function defined by

f
σ′α−1

Λ (ϕ) :=
1

α
fσα ′Λ (ϕ) (4.43)

is more restricted. From the Fourier transform representation of the solution (4.25)

and its Taylor expansion (4.26) we see that it has couplings

g
σ′α−1
n =

1

α
gσαn−1 , (4.44)

with the lowest n in the sum thus being

nσ′α−1
= max(1, dσα − 4) = max(1, dσα−1 − 5) , (4.45)
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4.2.2 Simplifications and general form

In order to check the universal nature of the final result, we want to work with very

general solutions for linearised coefficient functions satisfying the required trivialisation

constraints (4.32,4.35). These not only determine the form of the interactions at the

linearised level, but then contribute at the non-linear level through higher order con-

tributions in the perturbative expansion (3.151). As will become clear [75], the most

powerful way to handle these higher order contributions is to express the solutions

in conjugate momentum space. Thus we use the fact that the linearised coefficient

functions are given by the Fourier transform solution (4.25) via a Λ-independent fσ(π)

which, from its Taylor expansion (4.26) and the discussion below it, we know can be

written as an entire function times a πnσ factor. The flat trivialisation constraint (4.32)

is equivalent to

fσ(π)→ 2πAσ δ(π) as Λσ →∞ , (4.46)

understood in the usual distributional sense (see also below) while more generally from

the polynomial trivialisation constraint (4.35):

fσα(π)→ 2πAσ i
αδ(α)(π) as Λσ →∞ , (4.47)

as we see immediately from the Fourier transform flat trivialisation constraint (4.46)

and the map to a Fourier transform for a coefficient function satisfying the polynomial

trivialisation constraint (4.39), and which includes the flat one (4.46) as the special

case α = 0. (From here on for notational simplicity, we use the conversion formulae

(4.38) to write Λσα = Λσ.)

These constraints evidently still leave us with a huge (infinite dimensional) function

space of renormalized trajectories. We now make two further restrictions that do not

result in any significant loss of generality but greatly strengthen and streamline the

analysis.

Firstly, we insist that the coefficient functions are of definite parity, i.e. even or

odd functions of ϕ. Thus those satisfying the flat trivialisation constraint (4.32) will

be even parity, and those satisfying the polynomial trivialisation constraint (4.35) will

be even or odd, depending on whether α is even or odd respectively. This also implies

the same of fσα(π) in the Fourier transform trivialisation constraints (4.46,4.47), and

enforces that the asymptotic estimates for the coefficient function and its physical limit

(4.22, 4.23) apply for both limits ϕ → ±∞. We see from either the expansion of the

coefficient function in terms of δ
(n)
Λ (ϕ) operators (4.17) or the Taylor expansion of its

Fourier transform (4.26), that the couplings gσαn will be indexed by an integer of the

same parity, and in particular the minimum index (4.40) required in order that the

coefficient function represents a linearised renormalized trajectory, actually has this
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parity, so now nσα is the smallest index of the same parity as α such that

nσα ≥ max(0, dσα − 5) . (4.48)

Secondly we insist that such linearised solutions contain only one amplitude sup-

pression scale, so that the asymptotic estimate for their Fourier transform (4.27) now

genuinely captures their large π behaviour17. Then for cases satisfying flat trivialisation

(4.46) we have that

fσ(π) = 2πAσ Λσ π̄
nσ f̄σ(π̄2) , (4.49)

where nσ is even i.e. satisfies the minimum index nσα formula (4.48) for α=0, π̄ = Λσπ

is dimensionless, and f̄σ is a dimensionless entire function which from the asymptotic

formula for the Fourier transform (4.27) takes the form

f̄σ(π̄2) = e−π̄
2/4+o(π̄2) , (4.50)

at large π̄. Likewise for general α,

fσα(π) = 2π iαAσ Λα+1
σ ∂απ̄

[
π̄n̄σα f̄σα(π̄2)

]
, (4.51)

where π̄ has the same definition, and f̄σα is also a dimensionless entire function sat-

isfying the reduced asymptotic formula (4.50). Note that the Λα+1
σ factor is fixed by

dimensions, e.g. using the polynomial trivialisation formula (4.47). Together with Aσ,

these factors appear in the same form as cases satisfying flat trivialisation (4.49) if we

use the identifications in the conversion formula (4.38).

Note that the parity is carried by ∂απ̄ , and thus n̄σα is even. If α is even and nσα =0

we do not require a separate π̄ power, likewise if α is odd and nσα = 1 since the ∂π̄

differentials will generate a Taylor expansion with only odd powers of π̄. However if

the minimum index nσα defined in (4.48), is larger than these absolute minima, then

the Taylor expansion of the term in square brackets must be such that all powers

π̄n>α are missing up to the point where we are left with an overall factor of π̄nσα after

differentiation by ∂απ̄ . Without loss of generality we capture this by factoring out this

power, leaving behind a function that is still entire. Thus we see that

n̄σα = 0 if nσα = ε , otherwise n̄σα = nσα+ α , (4.52)

where we define ε = 0 or 1 according to whether the coefficient function is even or odd.

The flat trivialisation constraint in Fourier transform space (4.47) is then satisfied

(on finite smooth functions) provided that (for n≥0)∫ ∞
−∞

dπ

2π

(iπ)n

n!
fσα(π)→ Aσ δnα as Λσ →∞ (4.53)

17Examples where a spectrum of amplitude suppression scales appear were considered in ref. [107],
and are further developed in app. A.1.

66



(or we get these constraints directly from the physical limit Aσ ϕ
α, by Taylor expanding

the Fourier representation (4.25) in ϕ), and from the general formula for cases satis-

fying the polynomial trivialisation constraint (4.51) these are in turn satisfied if f̄σα is

normalised as ∫ ∞
−∞
dπ̄ π̄n̄σα f̄σα(π̄2) = 1 , (4.54)

and provided that for any integer p > 0, we have

1

Λ2p
σ

∫ ∞
−∞
dπ̄ π̄n̄σα+2p f̄σα(π̄2) → 0 , as Λσ →∞ . (4.55)

(These integrals converge for large π̄ by virtue of the asymptotic formula (4.50).)

At first order in the perturbation theory (3.151), f̄σα can be chosen to be a finite

function and independent of Λσ, and thus the vanishing limits (4.55) follow trivially.

At second order in perturbation theory, we will find that we need linearised coefficient

functions for which f̄σα depends on Λσ. In the majority of cases we can choose it to

tend to a finite function as Λσ→∞, but exceptionally it will prove useful to allow it to

contain terms with coefficients that diverge logarithmically with Λσ. Clearly this mild

divergence is well within the bounds implied by the vanishing limits (4.55).

Substituting the general formula for cases satisfying flat trivialisation (4.49) into

the Fourier transform representation of the solution (4.25) gives

fσΛ(ϕ) = Aσ

∫ ∞
−∞
dπ̄ π̄n̄σ f̄σ(π̄2) exp

(
− π̄2

4

Λ2

a2Λ2
σ

+ iπ̄
ϕ

Λσ

)
. (4.56)

Using the normalisation limit (4.54) and the vanishing limits (4.55) we thus confirm that

flat trivialisation (4.32) is satisfied, and see that at large but finite Λσ the remaining

dependence is on Λ2 and ϕ2 as dictated (at leading order) by dimensions and parity viz.

as a Taylor series in Λ2/Λ2
σ and ϕ2/Λ2

σ, except for those cases at second order where

such a Taylor series of corrections will also include a single factor of ln(Λσ).

Now define the polynomial function Hα(π,ΩΛ, ϕ) by

(−i∂π)α
(

e−
π2

2
ΩΛ+iπϕ

)
= Hα(π,ΩΛ, ϕ) e−

π2

2
ΩΛ+iπϕ . (4.57)

Substituting the Fourier transform polynomial trivialisation constraint (4.47) into the

Fourier transform representation of the solution (4.25), integrating by parts, and using

the polynomial trivialisation definition in ϕ-space (4.35), we see that

Hα(0,ΩΛ, ϕ) = (Λ/2ia)αHα(aiϕ/Λ) , (4.58)

where the RHS expands as given in the formula for the Hermite polynomial (4.36).

Thus substituting the general formula for cases satisfying the polynomial trivialisation
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(4.51) into the Fourier transform representation for the solution (4.25), we have that

fσαΛ (ϕ) = Aσ

∫ ∞
−∞
dπ̄ π̄n̄σα Hα

(
π̄

Λσ
,ΩΛ, ϕ

)
exp

(
− π̄2

4

Λ2

a2Λ2
σ

+ iπ̄
ϕ

Λσ

)
. (4.59)

Using the normalisation limit (4.54) and the vanishing limits (4.55) we thus confirm

that polynomial trivialisation (4.35) is satisfied, and see again that the corrections are

dictated by dimensions ([Hα]=α) and parity to be a Taylor series in Λ2/Λ2
σ and ϕ2/Λ2

σ,

except for those cases at second order where these corrections also include a single factor

of ln(Λσ).

We see that the difference between the left and right hand sides in polynomial

trivialisation (4.35) is bounded by a term of order 1/Λ2
σ. Furthermore this is true for

every relation obtained by differentiating with respect to ϕ on both sides until the RHS

vanishes. At this point successive differentials will bring down further powers of 1/Λ2
σ

from the general finite Λσ formula (4.59) via ϕ2/Λ2
σ. Thus we have for large Λσ:

∂pϕ
[
fσαΛ (ϕ)−Aσ (Λ/2ia)αHα(aiϕ/Λ)

]
= O(1/Λ2

σ) for p ≤ α ,

∂pϕf
σα
Λ (ϕ) = O(1/Λ

2dp−α2 e
σ ) for p > α , (4.60)

which since this applies for p = 0, refines the earlier trivialisation characterisations

(4.32,4.35), and where again one should understand that the RHS is corrected by a

factor of ln(Λσ) in some cases at second order.

4.2.3 Examples

For example if there is no o(π̄2) correction in the reduced asymptotic formula (4.50),

then the normalisation limit (4.54) fixes the normalisation of the dimensionless entire

function so that18

f̄σα(π̄2) =
e−π̄

2/4

(n̄σα− 1)!! 2
n̄σα

2
+1√π

. (4.61)

In the general formula for cases satisfying flat trivialisation (4.49), solutions to flat

trivialisation (4.32) that keep all possible couplings, so nσ=0, take the form

fσ(π) = 2πAσ Λσ f̄
σ(π̄2) . (4.62)

Using the simplest reduced Fourier transform (4.61) with α=0 to generate an explicit

example, we have:

f̄σ(π̄2) =
e−π̄

2/4

2
√
π
, (4.63)

18In the case n̄σα = 0 one has (−1)!! = 1.
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which just gives us our previously well-worked specimen :

fσΛ(ϕ) =
aAσΛσ√
Λ2 + a2Λ2

σ

e
− a2ϕ2

Λ2+a2Λ2
σ , fσ(ϕ) = Aσ e−ϕ

2/Λ2
σ , gσ2n =

√
π

n!4n
Aσ Λ2n+1

σ

(4.64)

(n = 0, 1, · · · ), where the first expression follows from performing the integral in the

Fourier transform representation (4.25), the second is its Λ→ 0 limit, and the cou-

plings follow from the Taylor expansion relation (4.26). Similarly linearised coefficient

functions satisfying fσ1
Λ (ϕ)→Aσ ϕ, with nσ1 = 1, have

fσ1(π) = 2πiAσ Λ2
σ ∂π̄ f̄

σ1(π̄2) (4.65)

from the formula for the general case (4.51) and the reduced minimum index (4.52)

with α = 1. The explicit example for the simplest reduced Fourier transform (4.61)

again gives the special case (4.63), and thus

fσ1
Λ (ϕ) =

a3Λ3
σAσ

(Λ2 + a2Λ2
σ)3/2

ϕ

e
− a2ϕ2

Λ2+a2Λ2
σ , fσ1(ϕ) = Aσ ϕ e−ϕ

2/Λ2
σ , gσ1

2n+1 = −
√
π

2

1

n!4n
Aσ Λ2n+3

σ ,

(4.66)

(n = 0, 1, · · · ), in agreement with coupling constant mapping formula (4.42) and our

previously well-worked specimen (4.64). For α=2 and nσ2 = 0 one gets

fσ2
Λ (ϕ) = Aσ

{
a5Λ5

σ

(Λ2 + a2Λ2
σ)5/2

ϕ2 +
aΛ3

σΛ2

2 (Λ2 + a2Λ2
σ)3/2

}
e
− a2ϕ2

Λ2+a2Λ2
σ (4.67)

from the simplest reduced Fourier transform (4.61), which gives the physical coefficient

function and couplings:

fσ2(ϕ) = Aσ ϕ
2 e−ϕ

2/Λ2
σ , gσ2

2n =

√
π

2

2n+1

n!4n
AσΛ2n+3

σ (n = 0, 1, · · · ) . (4.68)

Its large Λσ limit, fσ2
Λ (ϕ)→ Aσ(ϕ2+ΩΛ), is in agreement with polynomial trivialisation

(4.35).

Differentiating the α=1 example (4.66) with respect to ϕ:

f̌σΛ(ϕ) = fσ1′
Λ (ϕ) (4.69)

gives an alternative example solution for flat trivialisation (4.32):

f̌σΛ(ϕ) =
a3Λ3

σAσ

(Λ2 + a2Λ2
σ)3/2

(
1− 2a2ϕ2

Λ2 + a2Λ2
σ

)
e
− a2ϕ2

Λ2+a2Λ2
σ ,

f̌σ(ϕ) = Aσ

(
1− 2ϕ2

Λ2
σ

)
e−ϕ

2/Λ2
σ

(4.70)
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as is clear from the large amplitude suppression scale limit. However this solution has

ǧσ0 = 0 as is immediately clear from integrating the f̌ relation (4.69) and using the

moment relation (4.31). In section 4.2.1 we showed that nσ = 1 – or rather nσ = 2

since it is even, cf. the general nσα definition (4.48). Indeed differentiating the Fourier

transform representation (4.25), and using the general α= 1 Fourier transform (4.65)

and the simplest normalised reduced form (4.63), we see that the corresponding f̌σ(π)

takes the general form for cases satisfying flat trivialisation (4.49):

f̌σ(π) = 2πAσ Λσ π̄
2 ˇ̄fσ(π̄2) , ǧσ2n = − 2

√
π

(n−1)! 4n
Aσ Λ2n+1

σ , (4.71)

if ˇ̄fσ = f̄σ/2, cf. the α = 1 example (4.63), in agreement with the simplest reduced

Fourier transform (4.61). Expanding in π and using the Taylor expansion formula

(4.26) then yields the displayed couplings, in agreement with the coupling constant

mapping formula (4.42) (and actually the above formula holds also for n = 0 if we

interpret (−1)! as the Euler Γ(0) =∞). Finally, notice that in all these examples, the

approach to the trivialisation limits (4.32,4.35) is as described at the end of section

4.2.2.

4.3 Continuum limit at first order in perturbation theory

We will treat the first order cosmological constant term, associated to its BRST coho-

mology representative

Γ̌1 = Γ̌0
1 = ϕ (4.72)

at the end of this section. The remaining parts of Γ̌1 were computed to be (3.158),

(3.159) and (3.159) as outlined in that section and will provide us with the top mono-

mials σ that we need to construct the derivative part. In order to be supported on the

renormalized trajectory, such that Γ1 is constructed, these σ need to be ‘dressed’ with

coefficient functions fσΛ(ϕ) as in the general closed formula for the eigenoperator (4.16).

In the most general case we should give each top term its own coefficient function. This

would provide the most complete test of universality of the continuum limit, however

at the expense of carrying around a lot more terms and labels. At sufficiently high

order of perturbation theory in the perturbative expansion (3.151), we expect to have

to do this because these Γ1 couplings will then run independently [107]. In fact we will

show in ref. [75] that as a consequence of specialising to coefficient functions of definite

parity, the Γ1 couplings do not run at second order but they can be expected to run at

third order.

Here it is not necessary to treat the general case, since we will see that the passage

to universality is very generic such that it is clear that this will continue to work when

we give each top monomial in Γ1 its own coefficient function. We thus find that for

our purposes just two coefficient functions are sufficient for constructing Γ1, the first
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of which we label as f1
Λ(ϕ), setting the superscript to σ = 1 i.e. the perturbation level

index, and in the second case choose the label σ = 11 as in α= 1 trivialisation (4.35)

to indicate that f11
Λ (ϕ) absorbs a factor of ϕ. Thus f1

Λ(ϕ) is even, while f11
Λ (ϕ) is odd.

Although in principle every vertex can have its own amplitude suppression scale Λσ, we

will find that we can choose them all to be equal. To make clear that it is independent

of σ, we set this common amplitude suppression scale to Λσ = Λ∂ (borrowing the

notation already used in [8]).

Now since Γ̌1 is a dimension d1 = 5 operator, we have by dimensions (4.21) that the

dimensionful coefficient [A1] = −1. As the remaining factor in front Γ̌1, after taking

the limit Λ∂ →∞, we recognise that it is actually A1 = κ, where the latter was defined

in (2.30), i.e. we have

f1
Λ(ϕ)→ κ , f11

Λ (ϕ)→ κϕ , as Λ∂ →∞ , (4.73)

where whenever we now write the limit of large amplitude suppression scale, we mean

also the more refined regularity properties (4.60), in particular in these cases the limits

are reached at least as fast as 1/Λ2
∂ . We see that Newton’s constant therefore arises

only as a kind of collective effect of all the renormalizable couplings {g1
2n, g

11
2n+1}, these

latter being responsible for forming the continuum limit. Indeed A1 = κ is not an

underlying coupling in its own right but rather appears as the overall proportionality

constant when the couplings are expressed in terms of Λ∂ , through their asymptotic

formula (4.28).

Examples of such coefficient functions were given in [107] and appear in equations

(4.64) and (4.66). We stress however that we are working here with very general

solutions for these coefficient functions. From the definition of the minimum index nσα

(4.48) and the expansion of the coefficient function over the operators δ
(n)
Λ (ϕ) (4.17),

we have that in general all eigenoperators will be involved:

f1
Λ(ϕ) =

∞∑
n=0

g1
2n δ

(2n)
Λ (ϕ) , f11

Λ (ϕ) =

∞∑
n=0

g11
2n+1 δ

(2n+1)
Λ (ϕ) , (4.74)

where these sums converge (in the square integrable sense) for Λ > aΛ∂ . From the

general dimension formulae (4.15), and (4.34):

[g1
2n] = 2n , [g11

2n+1] = 2n+ 2 . (4.75)

Thus all these couplings are relevant, with the exception of g1
0 which is marginal. Up

to second order it does not run [75] and thus behaves as though it is exactly marginal,

parametrising a line of fixed points.

From the antighost level two free BRST cohomology representative (3.158), we thus

set at anti-ghost level two:

Γ2
1 = −cν ∂νcµ c∗µ f1

Λ(ϕ) . (4.76)
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Since f1
Λ is taken to satisfy the linearised flow equation for coefficient functions (4.2)

and there is no other opportunity to attach tadpoles to (4.76), Γ2
1 already satisfies the

linearised flow equation (3.152), and thus appears correctly as a sum over eigenoper-

ators. Evidently at this anti-ghost level, the linearised mST (3.153) is satisfied in the

limit (by the more refined limits (4.60) at least as fast as 1/Λ2
∂) since:

Q0 Γ2
1 = −cν ∂νcµ c∗µ ∂ ·c f1′

Λ (ϕ)→ 0 as Λ∂ →∞ , (4.77)

and Γ2
1 → κ Γ̌2

1 then coincides with a legitimate choice in the usual perturbative quan-

tisation.

As discussed above section 4.2.1, if we keep κ fixed in the large amplitude suppres-

sion scale limit, all the couplings {g1
2n, g

11
2n+1} diverge. As we noted however, we can stay

perturbative by requiring instead that κ vanish fast enough. Although this makes the

vertex vanish, we can still extract the same results by phrasing the limit more carefully

as Γ2
1/κ→ Γ̌2

1. From here on we will take this phrasing as tacitly understood.19

In the anti-ghost level one free BRST cohomology representative (3.159) we need

to substitute the SO(4) decomposition (2.6) into the last term to isolate the factor of

ϕ, and thus the dressed anti-ghost level one piece appears as

Γ1
1 = − (cα∂αHµν + 2 ∂µcαhαν)H∗µν f

1
Λ(ϕ)− ∂µcνH∗µν f

11
Λ (ϕ) . (4.78)

Added conclusion section to chapter 4, from here until the end of chapter 4 is the new

content. This time the result does not yet satisfy the linearised flow equation (3.152) ,

unlike with the previous choice in ref. [107], because it requires the tadpole correction

in the ŝ0-exact eigenoperator

ŝ0(Hµνcµc
∗
ν) = (∂µcν + ∂ν)cµc

∗
ν + 2Hµνcµ∂αH

∗
αν + 2bΛ4 (4.79)

or rather as formulated for the new quantisation in (4.14).20 In other words the sum

over eigenoperators is actually Γ1
1 + 2bΛ4f11

Λ (ϕ). Since ∆− Γ2
1 trivially vanishes, the

descendant equation (3.129) that relates Γ2
1 to Γ1

1 reads:

Q−0 Γ2
1 +Q0 Γ1

1 = −∂µcν ∂ ·cH∗µν
(
f1

Λ − f
11′
Λ

)
− 2(cα∂αcµ)H∗µν∂νϕf

1′
Λ − (cα∂αHµν + 2 ∂µcαhαν)H∗µν ∂ ·c f1′

Λ , (4.80)

where we used the Koszul-Tate charge (3.122) and note from the free BRST transfor-

mation (3.119) that

Q0 hµν = ∂µcν + ∂νcµ − 1
2 δµν ∂ ·c . (4.81)

19This is in conformity with the reasonable assumption that the expansion in κ is only asymptotic
[107]. Then strictly speaking the expansion only anyway makes sense in the κ→ 0 limit, i.e. as Taylor
expansion coefficients in κ .

20Tadpole contributions from the first term in the dressed anti-ghost level one piece (4.78) all vanish,
either because the tadpole integral is odd in momentum or because hαα = 0.
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It is clear from the first-order coefficient function trivialisation formulae (4.73) that

as required Q−0 Γ2
1 + Q0 Γ1

1 → 0 (at least as fast as 1/Λ2
∂). At the expense of some

generality, we could eliminate the first term on the RHS of the descendant equation

(3.129) by setting

f1
Λ = f11′

Λ . (4.82)

By the minimum index map (4.45) this would also eliminate δ
(0)
Λ(ϕ), i.e. set g1

0 = 0. We

would still be left with the Λ∂<∞ violations on the second line however.

Finally, extracting the undifferentiated ϕ pieces from the anti-ghost level zero free

BRST cohomology representative (3.160) by using the SO(4) decomposition (2.6), we

have as in [107] that the first order graviton interaction is made up of twelve top terms

and one tadpole contribution:

Γ0
1 =

(1

4
hαβ∂αϕ∂βϕ− hαβ∂γhγα∂βϕ−

1

2
hγδ∂γhαβ∂δhαβ − hβµ∂γhαβ∂γhαµ

+ 2hµα∂γhαβ∂µhβγ + hβµ∂γhαβ∂αhγµ − hαβ∂γhαβ∂µhµγ +
1

2
hαβ∂γhαβ∂γϕ

)
f1

Λ

+

(
3

8
(∂αϕ)2 − 1

2
∂βhβα∂αϕ−

1

4
(∂γhαβ)2 +

1

2
∂γhαβ∂αhγβ

)
f11

Λ +
7

2
bΛ4f11

Λ , (4.83)

except that the tadpole contribution now appears with coefficient 7
2 = 2+ 3

2 . The final

descendant equation (3.129) is satisfied in the limit:

Q0 Γ0
1 +

(
Q−0 −∆−

)
Γ1

1 −∆= Γ2
1 → 0 , (4.84)

at least as fast as 1/Λ2
∂ , since the individual limits are also reached at least as fast as

1/Λ2
∂ :

Γn1 → κ Γ̌n1 , as Λ∂ →∞ . (4.85)

It is straightforward to verify the above descendant equation (4.84) directly. To evaluate

e.g. ∆− Γ1
1, one inverts the SO(4) decomposition (2.6) to give hµν = Hµν − 1

4δµνHαα

and ϕ = 1
2Hµµ, or recognises that [107]

∂

∂Hαβ
=

∂hµν
∂Hαβ

∂

∂hµν
+

∂ϕ

∂Hαβ

∂

∂ϕ
=

∂

∂hαβ
+

1

2
δαβ

∂

∂ϕ
. (4.86)

Note that although these measure terms give contributions proportional to some posi-

tive power of Λ, thanks to UV regularisation by C, for example

−∆= Γ2
1 = −bΛ4∂ ·cf1

Λ , (4.87)

it does not alter the speed at which they vanish in the limit of large Λ∂ (as can be

verified here by integration by parts).

In the opposing limits there is no sense in which a non-trivial diffeomorphism in-

variance holds because the dependence on the conformal factor forbids it [107]. For
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example if ϕ� Λ∂ ,Λ, the coefficient functions are no longer given approximately by κ

and κϕ, but rather take the exponentially decaying form demanded by the asymptotic

formula (4.22).

These statements hold also if we express everything in dimensionless variables using

Λ, as needed to clearly see the Wilsonian RG behaviour [8, 20]. Recalling that we write

dimensionless variables with a tilde, so e.g. q̃µ = qµ/Λ, ϕ̃ = ϕ/Λ, whilst we write

δn(ϕ̃) = Λ1+n δ
(n)
Λ (ϕ) for the scaled operator [8]. The dimensionless couplings run with

Λ according to their mass dimensions (4.75):

g̃1
2n(Λ) = g1

2n/Λ
2n , g̃11

2n+1(Λ) = g11
2n+1/Λ

2n+2 . (4.88)

We thus confirm that Γ approaches the Gaussian fixed point (g1
0 = 0) or more generally

the line of fixed points g1
0 = g̃1

0 6= 0, as Λ → ∞. In particular all the relevant parts of

Γ1 vanish as negative powers of Λ, with non-trivial ϕ̃ dependent coefficients being the

corresponding scaled operator δ2n+ε(ϕ̃). In the limit only the marginal contribution

f̃1
Λ(ϕ̃) → g1

0 δ0(ϕ̃) in this sole coefficient function survives (and still carries non-trivial

ϕ̃ dependence).

In dimensionful variables, if Λ is much larger than the other scales Λ∂ , ϕ, the situa-

tion is a little obscured but it is still the case that there is no sense in which a non-trivial

diffeomorphism invariance is recovered. The coefficient functions are again dominated

by the lowest terms in the expansion (4.74). Using the explicit formulae for the δ
(n)
Λ (ϕ)

operators (4.5) we have in the current case

f1
Λ =

a

Λ
√
π
g1

0 −
a3

Λ3
√
π

(
g1

0ϕ
2 + 2g1

2

)
+

a5

2Λ5
√
π

(
g1

0ϕ
4 + 12g1

2ϕ
2 + 24g1

4

)
+O

(
1

Λ7

)
f11

Λ = − 2a3

Λ3
√
π
g11

1 ϕ+
2a5

Λ5
√
π

(
g11

1 ϕ
3 + 6g11

3

)
+O

(
1

Λ7

)
. (4.89)

The leading terms, and only the leading terms, have the correct ϕ dependence to allow

BRST invariance to be recovered, however with g1
0 6= 0 they have the wrong ratio.

(They should have equal coefficients, but this is impossible at diverging Λ since g1
0 and

g11
1 must be fixed and finite.) By setting g1

2 = g11
1 , and g1

0 = 0, (only) the leading

terms have both the correct ϕ dependence and the correct ratio, as in fact would

result from the identification (4.82) of the two coefficient functions, cf. the coupling

constant mapping formula (4.44), although with an effective κ that then vanishes as

κeff ∼ 1/Λ3. Meanwhile the measure terms in the above descendant formula (4.84)

provide divergent obstructions to satisfying ŝ0 Γ1 = 0, if g1
0 6= 0. Thus evaluating the

measure term formula (4.87) tells us that

−∆= Γ2
1 = Λ

ba3

√
π
g1

0 ∂ ·c ϕ2 +O

(
1

Λ

)
, (4.90)

(dropping total derivative terms), and ∆−Γ1
1 provides also such a term but with co-
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efficient −9
2 and also a g1

0Λ(cα∂αϕ + ∂αcβhαβ)ϕ piece arising from the contribution

containing ∆−(H∗µνf
1
Λ). Setting g1

0 = 0 removes these divergences but leaves us with

subleading terms that violate BRST invariance, as is also true of the subleading terms

in the large Λ expansion of the coefficient functions (4.89) in this case.

This completes the demonstration at first order. The result fits the picture we

sketched in the Introduction, cf. fig. 3.3. In particular for Λ∂ � Λ, ϕ, diffeomorphism

invariance holds in the sense that

ŝ0Γ1 = ŝ0 (Γ2
1 + Γ1

1 + Γ0
1) = O(1/Λ2

∂) . (4.91)

This means in particular in the limit Λ∂ →∞ and the physical limit (Λ→ 0), we recover

diffeomorphism invariance precisely in terms of satisfying the standard Slavnov-Taylor

(Zinn-Justin) identities, namely at first order (Q0 + Q−0 )Γ1 = (Γ0,Γ1) = 0, where we

used the general definition of the charges (3.150), the linearised mST (3.153) and noted

that from the definition of the measure operator (3.126) that ∆→ 0 as Λ→ 0.

Finally, we remark that including a cosmological constant is straightforward at

first order. We need to dress its BRST cohomology representative (4.72) with its own

coefficient function. Since we must absorb the factor of ϕ, the monomial σ=1 is simply

the unit operator, whilst we must choose an odd coefficient function f ccΛ (ϕ) with the

trivialisation

f ccΛ (ϕ)→ λ , as Λ∂ →∞ , (4.92)

where κ2λ/4 is the standard cosmological constant. At this order we do not need a

whole separate odd coefficient function and can by the trivialisation property (4.73) for

f11 , just set f ccΛ = λf11
Λ /κ. The linearised mST (3.153) is satisfied in the limit because

Q0f
cc
Λ (ϕ) = ∂ ·c f cc ′Λ (ϕ)→ 0 at least as fast as 1/Λ2

∂ , as follows by integration by parts

and using the refined limits (4.60), or directly by the observation that the first order

vertex tends to κ times its free BRST cohomology representatives, viz. (4.85). Indeed

these properties were already used in proving the invariance (in the limit) of the last

term in the anti-ghost level zero part of the first order vertex (4.83).

4.4 Discussion

In this section we discuss further the meaning and implications of this construction

and draw out its relation to other approaches. As recalled at the beginning of section

4.1, the Euclidean signature Einstein-Hilbert action is unbounded below. From sign of

the action (2.1), the instability is towards manifolds of arbitrarily positive curvature.

Whilst this conformal factor instability [9] means that the partition function is not well

defined, the Wilsonian exact RG flow equation remains well defined [8, 33], and anyway

provides a more powerful route towards constructing the continuum limit. However the

wrong sign propagator (3.143) for the conformal factor (ϕ), has a profound effect on

RG properties. Close to the UV Gaussian fixed point, cf. fig. 3.3, the requirement that
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expansion over eigenoperators converges, picks out the Hilbert space L− defined by

the Sturm-Liouville measure (4.4), which is spanned by the novel set of eigenoperators

(4.5), the δ
(n)
Λ (ϕ).

We must emphasise that the requirement that one works within L− (more generally

L defined by (4.19), when the other fields are included) is crucial for the Wilsonian RG

to make sense in an otherwise unrestricted space of functions (of ϕ). Without this

restriction the eigenoperator spectrum degenerates, becoming continuous, and it is no

longer possible to unambiguously divide a perturbation into its relevant and irrelevant

parts [77]. This problem lay unnoticed until ref. [77] and as yet has only been further

addressed in refs. [8, 74, 107, 109, 111]. The reason that it lay undiscovered is primarily

because to see this problem of convergence one must work with solutions involving an

infinite number of operators (the exact solution being also of this type). However, with

few prior exceptions [110, 112, 113], quantum gravity investigations using exact RG

flow equations worked within truncations (model ansätze) where only a finite number

of operators are retained.

Restricting flows to the diffeomorphism invariant subspace, cf. fig. 3.3, might be

expected to solve the problem since diffeomorphism invariance at the classical level

restricts the functional dependence on the conformal factor to just a few operators at

any given order in the derivative expansion. However when carefully analysed, the

so-called f(R) approximations [114–124], which are diffeomorphism invariant model

ansätze that keep an infinite number of operators, also show the problem that the

eigenoperator spectrum degenerates [111, 113], and furthermore it is now clear that

the underlying cause is the conformal factor instability [77, 113]. Indeed it was these

problems that motivated the studies [77, 125].

Within standard perturbation theory the problem can be ignored, the wrong sign ϕ

propagator (3.143) being apparently harmless. As recalled in section 4.1, the conformal

factor instability was identified in ref. [9], where they proposed to solve it by analytically

continuing the ϕ integral along the imaginary axis. This does not alter final perturbative

results, but non-perturbatively it is less clear that this treatment makes sense [126].

Some other approaches keep, and seek to cope with, the conformal factor instability (but

do not treat the convergence problems whose solution leads uniquely to our proposal).

In ref. [127] a model truncation to a finite set of operators, “−R+R2 ” gravity, was

considered within the non-perturbative asymptotic safety scenario [33]. The right-sign

R2 term stabilises the conformal sector, resulting in an unsuppressed non-perturbative

Planckian scale modulated phase which breaks Lorentz symmetry. If physical, this

would be phenomenologically challenging [128–130]. A somewhat similar effect is seen

in the Causal Dynamical Triangulations approach to quantum gravity [131]. Although

a restriction here to a global time foliation leads to an encouraging phase structure, the

conformal instability towards a crumpled phase remains, and this programme has yet

to succeed in furnishing an acceptable continuum limit [132].

Returning to this chapter, the fact that [δ
(n)
Λ (ϕ)] = −1−n form a tower of increasingly

76



relevant operators, implies that all interactions are dressed with coefficient functions

fσΛ(ϕ) which contain an infinite number of relevant underlying couplings, gσn. Close

to the Gaussian fixed point, the linearised flow equation (4.2) is justified. Then, as

we showed in section 4.1, and also in [8], if fσΛ(ϕ) ∈ L−, it is guaranteed to remain

there at all higher scales. Thus the requirement that for sufficiently high Λ we have

fσΛ(ϕ) ∈ L−, can be seen as a quantisation condition that is both natural and necessary

for the Wilsonian RG.

Note that in this step we are relying on the fact that the Cauchy initial value problem

itself is well defined in the UV direction [8, 77, 110], i.e. the property that the RG flow

is guaranteed to exist to all higher scales. This is the reverse direction from normal:

another consequence of the wrong sign ϕ-propagator. However the fact that the well

defined flow direction is now opposite to the one defined by integrating out microscopic

degrees of freedom, is an example where, even for the Wilsonian RG equation, the

wrong sign ϕ-propagator forces us to reassess some of the usual physical intuition. We

emphasise that this property does not alter the fact that the bare action determines,

eventually after integration over all momentum modes, and up to universality, the

physical effective action. Rather it throws obstacles in the path towards constructing

this, that have not been previously encountered or recognised as such. Thus for example

for a generic choice of bare coefficient function fσΛ0
(ϕ) at an initial UV scale Λ = Λ0,

the flow to the IR will almost certainly fail at some finite critical scale 0<Λ=Λcr<Λ0

after which it ceases to exist [8]. Since one is then unable to complete the integration

over all modes, the quantum field theory as a physical entity itself ceases to exist in

this case [8].

As we saw the coefficient functions that do survive all the way to the IR have

a physical limit (4.23) which decays for large ϕ with some characteristic amplitude

suppression scale, Λσ. Even for such coefficient functions, if Λσ is finite, the complete

flow and thus also the physical theory, can cease to exist on sufficiently small and

asymmetrical manifolds [8, 74]. Tantalising as this seems [8, 74], in order to recover

diffeomorphism invariance we need the coefficient functions to trivialise, cf. section 4.2,

and in practice this requires taking the limit Λσ→∞ in the continuum theory [107]

(holding everything else fixed). Then the above restrictions on the allowed manifold

[8, 74] appear to be ruled out except possibly to rule out manifolds with singularities

[107]. The amplitude suppression scale per se should therefore be seen as part of the

procedure for forming the continuum limit and not as having direct influence on the

physical theory. Nevertheless it is the cross-over scale that matches the RG flow in the

diffeomorphism invariant subspace to the upper part of the renormalized trajectory,

cf. fig. 3.3, and as such plays a role in determining which of these RG flows actually

correspond to a valid perturbative continuum limit. It may also leave behind certain

finite logarithmic corrections at higher order in perturbation theory [107].

Importantly, notice that the reduction of parameters that takes place on trivialisa-

tion (4.73) from the infinitely many underlying couplings (4.74) to the effective coupling
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κ (2.30) (Newton’s constant) and a cosmological constant at first order is not the result

of imposing infinitely many relations between these underlying couplings, but rather a

dramatic demonstration of universality resulting from the large amplitude suppression

scale limit. This reduction of parameters occurs provided only that the underlying cou-

plings are chosen from some loosely specified infinite dimensional domain. Thus f1
Λ(ϕ)

is given in general by specifying its Fourier transform as (4.49) (with nσ=0, Aσ=κ and

Λσ = Λ∂ , as explained in section 4.3). Similar remarks follow for f11
Λ following (4.51).

These Fourier transforms are proportional to the reduced Fourier transform f̄σ(π̄2). As

we noted, at first order this latter function can be chosen to be independent of Λσ,

then the only constraints on it,21 are that it is a dimensionless entire function, that it

has asymptotic behaviour (4.50) as π̄→∞, and that its integral (4.54) is normalised.

This still leaves an infinite dimensional function space. In particular any number of

underlying couplings (4.26) can still take any value. A key result of this chapter is the

demonstration that the same results are then nevertheless recovered [107], thus con-

firming universality. Indeed it is only the underlying couplings’ asymptotic behaviour

for large n that is constrained through (4.28), and it is only these values that ultimately

influence the physical results, as discussed in deriving their uniform bound (4.37).

This observation was also emphasised at the end of app. A.1 when discussing

coefficient functions with a spectrum of amplitude suppression scales. However in the

body of the chapter we recognised that we can make three simplifications to the most

general case. As explained in section 4.2.2, firstly we can work only with coefficient

functions of definite parity, i.e. even or odd under ϕ 7→−ϕ, and secondly with coefficient

functions containing only one amplitude suppression scale. Finally in section 4.3, we

also recognised that we can set all amplitude suppression scales to a common value

Λσ =Λ∂ . This still leaves us to choose, for each coefficient function, a reduced Fourier

transform function f̄σ(π̄2) with its own domain of infinitely many underlying couplings,

and thus is more than sufficient again to demonstrate universality of the continuum

and large amplitude suppression scale limits.

As we have seen, in the end at first order we are left with just the two effective cou-

plings, Newton’s constant and the cosmological constant. A key question [8, 107] is how

many (effective) couplings are left once higher order quantum corrections are included.

After all, it is at this point operationally, that one meets in standard perturbative

quantisation an apparent obstruction to defining quantum gravity since new couplings

get introduced to absorb divergences, order by order in perturbation theory. Given

the importance of this question, we finish by commenting on this, although we cannot

do better than make some remarks, since substantiation requires developments that go

well beyond what we report in this part of the thesis. Although in refs. [2, 75] we will

establish that this continuum limit can be extended to second order for pure quantum

gravity, this does not yet seem enough to settle the above question since, although we

21At higher orders the only other constraints are the mild convergence conditions (4.55).
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find that the new divergences can be absorbed by wave-function-like renormalization,

this is also famously true of pure quantum gravity in its standard quantisation at this

order [21]. A priori in this quantisation a continuum limit with an infinite number of

couplings seems logically consistent [2]. However as we will show, there are indications

that the quantisation is more restrictive at higher orders, where the underlying cou-

plings introduced here becoming running couplings [2, 75]. In particular, note again

that so far we have been relying on the fact that the renormalized trajectory can be

constructed in the ϕ-sector by flowing upwards from the IR to the UV. At the linearised

level this was set out precisely, together with its proof, at the end of section 4.1. At

higher orders this kind of ‘reverse’ flow construction is also key [75]. However the flow

in the hµν (graviton) sector is guaranteed only in the usual direction from the UV to

the IR. Put together we are actually dealing with a flow equation that does not have a

well-defined Cauchy initial value problem in either direction. In other words, a generic

‘initial’ effective action will lead to singular flows in both directions. This does not mean

that there are no solutions (after all we just established one to first order here) but we

find [2] that it does appear at higher orders to require solutions to depend ultimately

on only the two parameters, Newton’s constant and the cosmological constant, which

we will now investigate in further detail.
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Chapter 5

Perturbatively renormalizable

quantum gravity at second order

in the coupling

5.1 Introduction

Following the progress made in chapter 4 we now turn out attention to the higher or-

der behaviour and investigate if the structure remains consistent and what the physical

ramifications are. We will find that for pure quantum gravity with vanishing cosmo-

logical constant to second order in perturbation theory the standard quantisation is

recovered. This case is renormalizable at second order due to kinematic reasons how-

ever the structure will work in more general cases. A possible conclusion is that gravity

does have a genuine consistent continuum limit even though it has an infinite number

of underlying couplings. This is phenomenologically difficult and could be regarded as

a simple re-phrasing of the standard arguments for the non-renormalizability of QG

however we outline a possible non-perturbative mechanism that could offer salvation.

This argument is based on the non-parabolic properties of the flow equations and is a

consequence of the different natural direction for the flows of the sectors of the graviton

which began this approach to QG and would fix all higher order couplings in terms of

Newton’s constant and the cosmological constant. We also discuss this structure in a

general gauge which offers other avenues of exploration.

To elaborate in this chapter we conclude this construction to second order, using

what we have discussed thus far as well as insights from [75] where it was shown that

the conformal sector maintains this behaviour at second order in the coupling. To

summarise those findings it was shown that a well defined renormalized trajectory

can be constructed and domains for the underlying couplings can be chosen that the

interactions satisfy the trivialisation conditions we have outlined in the large Λσ limit

which return the conformal sector operators to the diffeomorphism invariant subspace.
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We verify that the underlying couplings can be chosen such that the mST is satisfied and

by computing the remainder of the renormalized trajectory. We then derive the physical

Legendre effective action to O(κ2) in the Λ → 0 limit and this recovers the standard

quantisation result at one loop and second order in κ under the gµν = δµν + κHµν

parametrisation of the metric we have ben using.

The second order renormalized trajectory is non-perturbative in ~ and involves a

sum over tadpoles and melonic Feynman diagrams to all loops [75] however in this

crucial large Λσ limit where this trivialises occurs it becomes this more familiar one

loop, second order in κ calculation. We find that any undetermined parameters which

are associated to BRST invariant terms that run logarithmically with Λ are left behind,

these being the only place where such ambiguities appear. They are in fact shown the

be BRST exact pieces which can therefore be absorbed in a wavefunction like canonical

transformation which is the BRST cohomological equivalent of the kinematical accident

that pure gravity without cosmological constant is one loop finite in the standard

perturbative treatment [21].

In section 5.5 we discuss the implications of these findings. We begin with the

observation that once one adds matter or a cosmological constant that the logarithmic

running inside the diffeomorphism invariant subspace will no longer be attributable to

parametrisation. In the worse case it may be that we are left with an infinite num-

ber of these effective couplings which correspond to the infinite number of couplings

in the standard perturbative treatment that are added order by order in the number

of loops. This would still be a novel result. We would have a theory of QG with a

genuine continuum limit that is consistent. It would bare many of the hallmarks of

a true continuum theory: it would be controlled by a (potentially infinite) number of

(marginally) relevant, renormalizable underlying couplings. This result then demands

that we question how one truly defines the continuum limit of QG, despite how dis-

tasteful it seems there may indeed be an infinite number of couplings which will not be

confronted until there are QG experiments.

This is not the most desirable outcome and in section 5.6 we begin a preliminary

investigation into this possible non-perturbative mechanism that would fix the effective

couplings in terms of only Newton’s constant and the cosmological constant. The

parabolic property of the flows equations is crucial here, in particular how the different

sectors of the graviton flow in opposite natural directions. The ϕ sector with its negative

kinetic term has flows that are guaranteed to be well-defined only in the UV direction

i.e. they are backwards parabolic which was crucial in the earlier developments to

the construction of this theory and in this thesis. This backwards parabolic property

contrasts with that of the hµν sector which as flows that are guaranteed well-defined

in the IR direction (forwards parabolic) as is more typical of the Wilsonian RG. This

parametrisation of the metric is our arbitrary choice and so they can not be treated

separately. As a result we are working with partial differential equations whose solutions

typically fail regardless of which direction they evolve in.
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To remedy this we propose a non-perturbative solution using a simple linearised

model where κ is freely variable, as a result the cosmological constant is then the

only other coupling which can also be freely variable since perturbations in the higher

derivtive couplings would lead to singular trajectories. We follow this with comments

on the validity of this proposed solution, listing its pros and cons. We conclude with

generalising many of the results in this thesis to a general gauge α, where until we have

used the Feynman - De Donder gauge and review further avenues of possible research

with this freedom.

5.2 Solving the CME at second order

At intermediate steps we will need

Γ̌ =
∞∑
n=0

Γ̌n κ
n/n! , (Γ̌0 = Γ0) (5.1)

where Γ̌ is a local solution of the CME, taking the standard form:

Γ̌ = Γ̌0 − (QΦA)Φ∗A . (5.2)

In particular Γ̌0 and Q then also have such expansions in κ. The CME [83, 84, 91]

0 =
1

2
(Γ̌, Γ̌) = (QΦA)

∂lΓ̌

∂ΦA
, (5.3)

just implies the BRST invariance of this action under this classical BRST charge Q.

The choice of free total quantum BRST cohomology representative (3.158, 3.159, 3.160)

was made [1] because Q is then given exactly, i.e. has no higher order in κ corrections,

provided that the metric is given by the simple linear split gµν = δµν + κHµν , as we

have in this thesis. Indeed using the classical form (5.2), we read from Γ̌2
1 (3.158) that

Qcν = (Q0 + κQ1) cν = κ cµ∂µc
ν = 1

2 κLc c
ν , (5.4)

expresses exactly the algebra of diffeomorphisms through the Lie derivative Lc gener-

ated by the vector field κcµ [107], while from Γ̌1
1 (3.159) and the H∗µν part in Γ0 (3.115)

we get exactly the action of diffeomorphisms on the metric, through its Lie derivative:

Qgµν = κ(Q0 + κQ1)Hµν = 2κ ∂(µc
αgν)α + κ cα∂αgµν = κLc gµν . (5.5)

In our case, the level zero action, Γ̌0
1 + Γ̌0

1θ, has a classical and one-loop part. Together

they must still solve these equations, indeed the CME and Zinn-Justin identities [91]

are equivalent algebraically. Thus the one-loop part has an expansion in κ which we
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write similarly to that for Γ̌ itself (5.1):

Γ̌0
1q =

∞∑
n=1

Γ̌0
1qn κ

n/n! , (5.6)

where the O(κ) part is Γ̌0
1q1 as already given in (3.162) (and the above now explains

the notation). Since this quantum piece is purely level-zero it does not disturb the

classical parametrisation (5.2) and thus by the Zinn-Justin identities (5.3) we now get

the one-loop identity

0 = (Γ̌, Γ̌0
1q) = (QΦA)

∂lΓ̌
0
1q

∂ΦA
. (5.7)

Using the (now-extended) classical form (5.2) the identities (5.3) follow from nilpotency,

Q2 = 0, and the diffeomorphism invariance of Γ̌0, while (5.7) expresses the diffeomor-

phism invariance of Γ̌0
1q. Expanding out the anti-bracket in (5.3) to O(κ2) using the κ

expansion of the action (5.1), the absence of classical corrections to Q (5.4,5.5) implies

the first two of the following relations (which are readily verified), while the last two

relations express the diffeomorphism invariance of Γ̌0 and Γ̌0
1q at second order:

(Γ̌2
1, Γ̌

2
1) = 0 , 2 (Γ̌2

1, Γ̌
1
1)+(Γ̌1

1, Γ̌
1
1) = 0 , Q0 Γ̌0

2 = −(Γ̌1
1, Γ̌

0
1) , Q0 Γ̌0

1q2 = −(Γ̌1
1, Γ̌

0
1q1) .

(5.8)

Given that Γ̌0
1q1 (3.162) is a Λ-dependent cosmological constant term expanded to first

order in κ, while the action for free gravitons (3.115) covariantizes to the Einstein-

Hilbert action for which Γ̌0
1 (3.160) is its first order vertex [107], we know geometrically

that all-orders solutions are

Γ̌0 = −2
√
gR/κ2 , Γ̌0

1q = 7
2bΛ

4√g , (5.9)

where R is the scalar curvature. Expanding (5.9) to O(κ2) we thus find solutions to

the last equations in (5.8), namely

Γ̌0
2 = ϕ2

(
1
4∂αhαβ∂βϕ−

3
16(∂αϕ)2 + 1

8(∂σhαβ)2 − 1
4∂αhβσ∂βhασ

)
+ ϕ

(
hαβ∂σhσα∂βϕ

− 1
4∂µh

2
αβ∂µϕ− 1

4hαβ∂αϕ∂βϕ+ ∂αhαβhµν∂βhµν + 1
2∂αhµν∂βhµνhαβ − 2∂µhνα∂βhµνhαβ

+∂µhνα∂µhνβhαβ−∂µhνα∂νhµβhαβ
)

+1
2∂σhσαhαβ∂βh

2
µν+∂σhσα∂αhβµhβνhµν+1

4∂σhσα∂αϕh
2
µν

− 1
8(∂σhαβ)2h2

µν + 1
2∂µhαβ∂νhαβhµσhνσ + ∂αhβµ∂αhβνhµσhνσ + ∂αhσµ∂βhσνhαβhµν

−∂αhσµ∂νhσβhαβhµν−2∂αhβµ∂νhαβhµσhνσ−3
2∂µhνσ∂σhαβhαµhβν+1

2∂σhαβ∂σhµνhαµhβν

+ 1
4∂σhαβ∂αhσβh

2
µν + 1

2hαβ∂αhβσ∂σh
2
µν − ∂αϕ∂µhναhµσhνσ − ∂αhβµ∂βhανhµσhνσ

− 1
2∂αhµσ∂σhβνhαβhµν + ∂αhαµ∂νϕhµσhνσ − 1

8(∂µh
2
αβ)2 − 3

16h
2
µν(∂αϕ)2 , (5.10)

which would be awkward to derive working directly with (5.8), and

Γ̌0
1q2 = 7

8bΛ
4(ϕ2 − h2

αβ) . (5.11)
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Note that other all-orders solutions are possible but will differ from (5.9) by addition

of further invariants at higher order in κ. At O(κ2) this is precisely the freedom we see

in (5.8) to add Q0-closed terms δΓ̌0
2, which are thus also ŝ0-closed, i.e. solutions to the

linearised mST (3.153). These latter are explored further in section 5.3.

5.3 BRST exact operators

We will see that at second order in perturbation theory (3.151), local ŝ0-closed bilinear

terms,

ŝ0 δΓ̌2 = 0 , (5.12)

play an important role (cf. section 5.4.1). They appear with up to a maximum of four

space-time derivatives and as we show now, turn out also to be ŝ0-exact. Such ŝ0-exact

terms just reparametrise the free action and therefore carry no new physics [86, 107].

Indeed if we add an operator ŝ0K2 to Γ0 then, from the definitions of the free charges

and linearised mST (3.150,3.151) and the form of the anti-bracket (3.83), we see that

this corresponds to infinitesimal field and source redefinitions:

δΦA =
∂lK2

∂Φ∗A
, δΦ∗A = −∂lK2

∂ΦA
, (5.13)

with the −∆K2 part corresponding to the Jacobian of the change of variables in the

partition function [83, 84], regularised by CΛ [103, 107]22.

Since these local ŝ0-closed bilinear terms turn out also to be ŝ0-exact, any µ-

dependence that they carry, can be eliminated by reparametrisation. This result is the

BRST cohomological equivalent of the kinematical accident that pure gravity (with-

out cosmological constant) is one-loop finite in standard quantisation [21], as we will

highlight later.

Consider first the following two ŝ0-exact solutions:

1
2 ŝ0(H∗µνHµν) = ∂µcνH

∗
µν −HµνG

(1)
µν ,

1
2 ŝ0(c∗µcµ) = −∂µcνH∗µν , (5.14)

where we used again the formula for ŝ0 (3.153), and the explicit actions for the charges

(3.119,3.122) and always discard field independent terms. The last term in the first

equation is evidently again the action for free gravitons, while the remaining terms are

up to a factor the source term in Γ0 (3.115). These solutions generate the second order

part of wavefunction renormalization ZE = 1 + zE (E = H, c), in close correspondence

to the case of Yang-Mills [103]:

K2 = 1
2zHH

∗
µνHµν + 1

2zc c
∗
µcµ , (5.15)

22In general it is exact expressions using the interacting total BRST charge that correspond to
infinitessimal reparametrisations, however since we are interested only in changes at second-order and
we are working at this order, only Γ0 contributes, and not Γ1.
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the full wavefunction renormalization being given by the finite (classical) canonical

transformation

K =
∑
E

Z
1
2
EΦ∗EΦE

(r) , ΦE =
∂l
∂Φ∗E

K[Φ(r),Φ
∗] , Φ∗(r)E =

∂r

∂ΦE
(r)

K[Φ(r),Φ
∗] ,

(5.16)

the subscript (r) labelling the renormalized (anti-)fields. This implies that the fields

and anti-fields renormalize in opposite directions:

Hµν = Z
1
2
HH(r)µν , H

∗
µν = Z

−1
2

H H∗(r)µν , cµ = Z
1
2
c c(r)µ , c

∗
µ = Z

−1
2

c c∗(r)µ . (5.17)

However here this is not the whole story, in particular because the reparametrisations

that are generated by quantum corrections are more general than this.

Returning to the annihilation condition (5.12), we note that since δΓ̌2 is bilinear

and must have ghost number zero overall, it cannot have anti-ghost number larger than

one. At lowest order in derivatives, there are only two linearly independent possibilities

for the δΓ̌1
2 part, namely H∗µµ∂αcα and H∗µν∂µcν . The latter option solves (5.12) since it

is ŝ0-exact; it was treated already (5.14). By inspection (3.119), the former is Q0-exact,

and thus we know that it completes to an ŝ0-exact solution

ŝ0(ϕ∗ϕ) = ϕ∗∂ ·c−R(1)ϕ , (5.18)

where we have also split the graviton anti-ghost into its SO(4) irreducible parts:

H∗µν = h∗µν + 1
2ϕ
∗δµν , ϕ∗ = 1

2H
∗
µµ , (5.19)

and recalled the standard relation for Gµν (3.123). Comparing to the structure in

the previous paragraph, it is evident that (5.18) expresses the fact that the SO(4)

irreducible parts can have separate wavefunction renormalizations. The remaining pos-

sibility at second order in derivatives, is to have a separate δΓ̌0
2 part, but for it to be

annihilated by ŝ0 (5.12) it must be invariant under linearised diffeomorphisms (3.119)

and the graviton action in (3.115) is the unique such solution at this order in deriva-

tives. Any change in the graviton action normalization is already taken care of by a

canonical transformation, being a linear combination of the two ŝ0-exact operators in

(5.14).

At next order in derivatives there are three linearly independent possibilities for

δΓ̌1
2, namely ϕ∗�∂ · c, H∗µν�∂µcν , and H∗µν∂

3
µναcα. Evidently the first yields a sim-

ple generalisation of ϕ wavefunction renormalization (5.18), while the second two are

already ŝ0-exact:

ŝ0(ϕ∗�ϕ) = ϕ∗�∂·c−R(1)�ϕ , 1
2 ŝ0(c∗µ�cµ) = H∗µν�∂µcν , −ŝ0(H∗µν∂

2
µνϕ) = H∗µν∂

3
µναcα .

(5.20)

86



The remaining possibility is to have a separate δΓ̌0
2 part, now fourth-order in deriva-

tives. Since it must be invariant under linearised diffeomorphisms, it has to be a linear

combination of the squares of the linearised curvatures (3.124) (see e.g. [133]). By the

Gauss-Bonnet identity, only two of these are linearly independent:

4(R(1)
µν )2 = (R

(1)
µναβ)2 + (R(1))2 . (5.21)

However it is straightforward to see that they are also ŝ0-exact:

ŝ0(ϕ∗R(1)) = Q−0 (ϕ∗R(1)) = −(R(1))2 ,

ŝ0(H∗µνR
(1)
µν ) = −2G(1)

µνR
(1)
µν = 1

2(R
(1)
µναβ)2 − 1

2(R(1))2 . (5.22)

This completes the demonstration that the ŝ0-cohomology of bilinear δΓ̌2 is trivial up

to the fourth order in derivatives.

We note in passing that there are other expressions for the ŝ0-exact operators, for

example the obvious generalisation of the first equation in wavefunction reparametri-

sations (5.14):

1
2 ŝ0(H∗µν�Hµν) = ∂µcν�H

∗
µν−Hµν�G

(1)
µν = ∂µcν�H

∗
µν+ 1

2(R(1))2− 1
2(R

(1)
µναβ)2 . (5.23)

However these are not linearly independent, e.g. the above is a linear combination of

the second exact expression in (5.22) and the middle one in (5.20). Stated another way,

we have shown that the following action functional is annihilated by ŝ0:

K2 = 1
2H
∗
µν�Hµν + 1

2c
∗
µ�cµ +H∗µνR

(1)
µν = 1

2 ŝ0(c∗µFµ) . (5.24)

This is so because in fact it itself is exact. The appearance of the De Donder gauge

fixing functional, Fµ = ∂νHνµ − ∂µϕ, is here accidental. The most general double-

derivative bilinear ŝ0-exact K2 is a linear combination involving the two separate parts

of Fµ:

K2 = ŝ0(αc∗µ∂µϕ+βc∗µ∂νHµν) = α(2H∗µν∂
2
µνϕ+c∗µ∂

2
µνcν)+β(H∗µν∂

2
µλHλν+c∗µ∂

2
µνcν+c∗µ�cµ) ,

(5.25)

where α and β are free parameters. The chosen K2 s in (5.20) are only ŝ0-cohomology

representatives determined up to addition of the above expression. Since the above

expression is annihilated by ŝ0, the canonical transformation (5.13) it generates is

actually a (higher-derivative) symmetry of Γ0:

δHµν = 2∂(µξν) , where ξµ = α∂µϕ+ β∂λHλν ,

δcµ = (α+ β)∂2
µνcν + β�cµ , δH∗µν = −αδµν∂2

αβH
∗
αβ − 2β∂α∂(µH

∗
ν)α . (5.26)

For the graviton it is just part of linearised diffeomorphism invariance. The significance
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of the other two transformations is unclear to us. They may not survive into the

interacting theory.

5.4 Inside the diffeomorphism invariant subspace

At second order in perturbation theory (3.151), the flow equation (3.152), and mST

(3.146), become

Γ̇2 − 1
2 Str 4̇ΛΓ

(2)
2 = −1

2 Str 4̇ΛΓ
(2)
1 4ΛΓ

(2)
1 , (5.27)

ŝ0 Γ2 = −1
2 (Γ1,Γ1)− TrCΛ Γ

(2)
1∗4ΛΓ

(2)
1 .

(
CΛ Γ

(2)
1∗4ΛΓ

(2)
1

)
. (5.28)

In ref. [75] we constructed the general continuum limit solution to (5.27), i.e. the

general solution that realises the full renormalized trajectory Λ≥0. It takes the form

Γ2 = 1
2

[
1 + PΛ − (1 + Pµ) eP

µ
Λ

]
Γ1 Γ1 + Γ2(µ) , (5.29)

where the first term on the RHS is the particular integral and the last term is the

complementary solution. The complementary solution takes exactly the form of the

general solution (3.164) to the linearised flow equation, where however µ now has a

meaning. It is an arbitrary initial point on the renormalized trajectory, lying in the

range 0 < µ< aΛ∂ . The particular integral expands out into a sum over melonic

Feynman diagrams, the propagators defined through (similarly Pµ and PΛ)

PµΛ = 4µAB
Λ

∂Ll
∂ΦB

∂Rl
∂ΦA

. (5.30)

They connect the two copies of the first-order solution Γ1. Importantly the renormalized

trajectory solution (5.29) is already finite, all the UV divergences having been absorbed

into the relevant underlying second-order couplings, gσ2l+ε, as described in ref. [75].

We now describe the properties of these equations and their solution once the renor-

malized trajectory has entered the diffeomorphism invariant subspace, cf. fig. 3.3. This

is equivalent in particular to taking the large Λ∂ limit. In section 5.4.1 we then provide

the detailed solution.

In the large Λ∂ limit, the limit at first order

Γ1 → κ(Γ̌1 + Γ̌1q1), asΛσ →∞ (5.31)

can be substituted directly into the second-order mST (5.28) and into the particular

integral, since these expressions are well defined being both regularised in the IR and

the UV and and remain so in this limit [75]. Since Γ̌1 contains a maximum of three

fields, the latter then collapses to a one-loop integral in the sense that the renormalized
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trajectory (5.29) now reads [75]

Γ2 = Γ2(µ) + κ2 (I2Λ − I2µ) , where I2k = −1
4 Str

[
4kΓ̌

(2)
1 4kΓ̌

(2)
1

]
, (k = µ,Λ) .

(5.32)

In fact I2k is now identical to a one-loop computation in standard quantisation. Al-

though it is built from first-order vertices, which themselves contain a one-loop tadpole

contribution Γ̌1q1 (3.162), this latter drops out because it is linear in ϕ. In a similar

way the RHS of the second-order mST (5.28) can be seen to contain all the standard

quantisation one-loop contributions and no more.

At this stage the infinite number of underlying couplings have disappeared, leav-

ing behind only κ. Had we chosen to keep a first-order cosmological constant, then it

would also appear as an effective coupling. As we will see, similarly to the standard

perturbative approach, further effective couplings generically appear order by order in

perturbation theory, multiplying covariant higher derivative terms (such as curvature

squared terms etc. ). Here however these effective couplings are collective effects of

the infinite number of underlying couplings, and parametrise the remaining freedom in

the renormalized trajectory given that it has entered the diffeomorphism invariant sub-

space, cf. fig. 3.3. In our case from here on we can identify the perturbative expansion

as being an expansion in κ. Therefore we redefine the second order contribution to be

κ2 Γ2 with complementary solution κ2 Γ2(µ), so that from here on κ drops out of the

equations.

The particular integral is now polynomial in the fields. In this limit we also arrange

for Γ2(µ) to trivialise, i.e. become polynomial, as explained in section 3.3.4. We see

therefore that from a practical point of view the computation can now proceed in a way

which is very close to standard quantisation. We comment further in the Conclusions.

We emphasise that the understanding of the result is however very different: in standard

quantisation, κ is a fundamental irrelevant coupling and thus there is no interacting

continuum limit in the Wilsonian sense [8, 109]. Here the continuum limit is expressed

in terms of the infinite number of underlying couplings, which are all (marginally)

relevant. It is these latter that get renormalized in this picture, as noted above.

From the perspective of standard quantisation, the large-Λ∂ limit (5.32) still looks

a little peculiar since the particular integral is the difference of two parts: I2Λ−I2µ.

These parts are IR regulated but separately UV divergent. We can treat them sep-

arately by applying some appropriate supplementary regularisation, e.g. dimensional

regularisation, d = 4 − 2ε, as was done in ref. [103]. Furthermore we can subtract

their divergences separately using a gauge invariant scheme that is independent of the

finite cut-off scale µ or Λ, since such divergences anyway cancel out between the two

parts. We will use the MS (modified minimal subtraction) scheme, and thus subtract

the terms proportional to 1/ε−γE+ln(4π), where γE is the Euler-Mascheroni constant.

Since Γ̌1 is made of three-point vertices, the particular integral contains only two-

point vertices. When derivative-expanded, I2µ trivially results in polynomial (in the
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fields) solutions to the linearised flow equation (3.145), because these carry no Λ de-

pendence and the tadpole corrections, where they exist, are field independent and

thus –although calculable– discarded since they contain no physics. We can therefore

dispense with I2µ by absorbing it into a redefinition of the complementary solution:

Γ2(µ) 7→ Γ2(µ) + I2µ. As further discussed below, this is essentially what we will do

except that we will take due account of the fact that I2Λ is ambiguous on its own,

whereas in fact the difference that appears in the large-Λ∂ limit (5.32) is finite and well

defined.

Emphasising the similarity to the standard perturbative approach we now write:

Γ2cl = Γ2cl(µ) (5.33)

s0Γ2cl = −1
2 (Γ̌1, Γ̌1) , (5.34)

Γ2q = Γ2q(µ) + I2Λ − I2µ , (5.35)

s0Γ2q −∆Γ2cl = −(Γ̌1, Γ̌1q)− TrCΛ Γ̌
(2)
1∗4ΛΓ̌

(2)
1 . (5.36)

Here we have split the solution Γ2 = Γ2cl +Γ2q (5.32) to the second-order flow equation,

into its classical (5.33) and one-loop (5.35) parts, and similarly split the complementary

solution: Γ2(µ) = Γ2cl(µ) + Γ2q(µ). We have also split the second-order mST (5.28)

into its classical (5.34) and one-loop (5.36) parts, noting by definition of the total free

quantum BRST charge (3.153), that ŝ0 = s0 −∆, where s0 = Q0 +Q−0 is the classical

part, while the measure operator ∆ is O(~) [83, 84, 103].

The trivialised complementary solution is just a polynomial (in fields) solution to the

linearised flow equation (3.145), so Γ2cl(µ) is a Λ-independent part, while Γ2q(µ) con-

tains the induced Λ-dependent one-loop tadpole correction plus its own Λ-independent

part. In principle (and in general at higher order) there could be higher-loop tadpoles,

however we will shortly see that in our case Γ2(µ) only has a one-loop tadpole, while

the one-loop Λ-independent part has no tadpoles. Therefore (5.33)–(5.36) form the

complete set of O(κ2) equations in our case.

The classical flow equation (5.33) simply says that Γ2cl must be Λ-independent. If

we absorb I2µ entirely into Γ2q(µ) as discussed above, the remaining three equations

(5.34)–(5.36) are then identical to those we would derive in standard quantisation at

one loop in this framework [103]. Given that we have defined I2Λ using dimensional reg-

ularisation and a gauge invariant subtraction scheme such as MS, we then find a unique

finite solution to these equations, up to the usual arbitrary lnµR terms appearing after

subtracting logarithmic divergences, where the mass scale µR arises from dimensionally

continued couplings (here κµεR). The insertion of the cut-off Λ leads to the modified

Slavnov-Taylor identity (5.36), but for vertices defined using a gauge invariant scheme

such as MS, this is still just an identity that is automatically satisfied.

This is however a rather confusing way to arrive at a solution, because in our

case ambiguities such as the µR-dependence cancel out in the difference I2Λ− I2µ,
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reflecting the fact that the quantum part of our solution (5.35) is actually a well-

defined expression. We have instead a mass parameter µ which plays essentially the

same role, being the arbitrary initial point on the renormalized trajectory. Indeed like

µR in the standard approach, physical quantities must ultimately be independent of µ.

We therefore choose to absorb all of I2µ except essentially for exchanging µR with µ.

As we will see MS then amounts to imposing a renormalization condition at µ=µR, in

the form expected in this framework [103].

The failure point of standard perturbative quantisation is usually seen as stemming

from the need to introduce bare couplings to absorb the UV divergences. Since in

standard quantisation these multiply new non-trivial BRST cohomology representatives

order by order in perturbation theory, new bare couplings are needed at each order.

However we do not need direct access to the UV divergences to see the problem. The

freedom to change the scheme away from MS to some other gauge invariant scheme,

is contained in the freedom to add suitable local terms associated to the ambiguities

in the finite parts of these divergences. The undetermined parameters that are thus

required to parameterise the scheme dependence, are nothing but the new couplings

that we know appear at each order in standard quantisation. It is just that phrased

this way the required new couplings are finite. Even if we stay within the MS scheme,

µR independence would force the introduction of new finite couplings.

Here the UV divergences have already been absorbed into underlying (non-geometric)

second order couplings gσ2l+ε, and the ambiguities in defining the integrals are absent

since they cancel out in the difference, I2Λ − I2µ. Nevertheless there remains order by

order in κ the equivalent freedom. Indeed the requirement that our general second-

order solution for the renormalized trajectory (5.29) is independent of the initial point

µ, will force the existence of the new effective couplings in the same way.23 More gen-

erally we have the freedom to add a local term to the solution Γ2 of the second-order

flow and mST equations (5.27,5.28), provided that this addition satisfies just their left

hand sides, i.e. the linear equations (3.145,3.153). In other words it is a change in the

complementary solution Γ2(µ) corresponding to a change in our choice of (quantum)

BRST cohomology representative. In particular once we have secured one solution for

Γ2 (e.g. using the technique sketched above), we then have all possible solutions since

they differ only by such a change in the quantum BRST cohomology representative.

Since we already know that I2Λ on its own, defined with a suitable gauge invariant

scheme, will satisfy the equations, we know that its scheme ambiguities are contained

in such changes to the complementary solution.

We therefore have to confront the possibility that, although perturbatively in κ we

have a genuine continuum limit (at least to second order as confirmed here), it is of an

23Thus also its large-Λ∂ limit (5.32,5.35). This is so in general even if inconveniently for us, for pure
quantum gravity at O(κ2) such additions turn out to be ŝ0-exact, as we saw in section 5.3, and therefore
can be removed by reparametrising the (anti-)fields. As we noted in section 5.3, this is equivalent to
the observations made in ref. [21].
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unusual form in that the renormalized trajectory is parametrised by an infinite number

of effective couplings. A priori there seems to be nothing inconsistent with such a

conclusion for quantum gravity, no matter how phenomenologically inconvenient,24 as

we discuss further in section 5.5. However in section 5.6 we uncover hints that the non-

polynomial dependence on hµν required by diffeomorphism invariance should force the

BRST cohomology at the non-perturbative level back to be at most two-dimensional,

depending only on κ and the cosmological constant.

5.4.1 Vertices at second order

We now fill in the details. We have already noted that (5.33) just says that Γ2cl is

Λ-independent. From the first three equations (5.8) derived from the CME, it is clear

that the choice we require so as to satisfy the classical BRST invariance (5.34), is

Γ2cl = Γ2cl(µ) = Γ̌0
2 . (5.37)

It is therefore actually independent of µ. As anticipated, it only has a one-loop tadpole,

Γ2q(µ) 3 Γ̌0
2q2 = ΩΛ

(
3
2(∂αϕ)2−2∂αhαβ∂βϕ− (∂σhαβ)2 +2(∂αhαβ)2

)
− 3

4bΛ
4(ϕ2 +h2

αβ) ,

(5.38)

computed using the classicalO(κ2) expression (5.10) and the tadpole corrections defined

in the general form of the complementary solution (3.164), and labelled using the system

introduced in (5.6). (Notice that this involves the trivialisation of α = 2 coefficient

functions (4.35), as is clear from the top line of the classical O(κ2) expression (5.10),

but their tadpole corrections are also joined by hµν-tadpole corrections from the bottom

lines in (5.10).)25 If we had already absorbed I2µ into Γ2q(µ), (5.38) would actually be

the complete solution for Γ2q(µ), being the unique O(κ2) tadpole integral formed from

the classical action.

By inspection the particular integral (5.32) and the RHS of the one-loop second-

order mST (5.36) can contribute only up to a maximum anti-ghost level two. In fact

there is no contribution even at this level, as we now show. In the particular integral

this would require attaching two propagators between Γ̌2
1 (3.158) and Γ̌1

1 (3.159), or

between two copies of Γ̌1
1 while preserving both anti-fields, but it is not possible to

attach the propagators in this way. Since Γ̌1q only has level zero, the anti-bracket

cannot contribute above level zero, whilst there is no correction term at level two in

the one-loop second-order mST since this would require Γ̌
2 (2)
1 , but there is no way

to join this by a propagator to Γ̌
(2)
1∗ . Thus all these anti-ghost levels are solved by

Γn≥2
2q = Γn≥2

2q (µ) = 0.

24In the general case, these include couplings for curvature-squared terms, whose sign must be chosen
to maintain unitarity, in contrast to the case where quantum gravity would then be renormalizable in
standard quantisation [134].

25E.g. (∂αϕ)2 arises from the second and the last monomial in (5.10) yielding, by (4.36) and (3.141),
− 3

16
(1− 9) = 3

2
.
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For similar reasons the one-loop second-order mST (5.36) also collapses at anti-ghost

level one:

Q0 Γ1
2q = 0 , (5.39)

indeed the correction term now requires Γ̌
1(2)
1 with its anti-field intact, but no such

contributions are possible. However at this level the particular integral does make a

contribution. The integral

I1
2Λ = i

∫
p
H∗µν(p)BIµνα(p,Λ) cα(−p) (5.40)

is a two-point vertex formed from two copies of Γ̌1
1 (3.159) and fluctuation and ghost

propagators (3.140)–(3.143) in the self-energy contribution (5.32). In d=4 dimensions

BIµνα(p,Λ) = −
∫
q

CΛ(q)CΛ(p+q)

q2

{ 1

(p+q)2
[ 3

2 pαp(µqν) + 3
2 pµpνqα + 3 p(µqν)qα + p2p(µδν)α

+ 2 δα(µpν) + 2 δα(µqν) + δµνqα

}
.

(5.41)

Choosing the complementary solution to have the same form as (5.40), with kernel

Bcµνα(p, µ), Γ1
2q also has this form and is trivially satisfies (5.39). Writing its kernel as

Bµνα(p,Λ), we have

Bµνα(p,Λ) = Bcµνα(p, µ) + BIµνα(p,Λ)− BIµνα(p, µ) . (5.42)

The momentum integral (5.41) is a formal expression since it has quadratic and log-

arithmic divergences. By using dimensional regularisation to define it (using the d-

dimensional Γ̌1 described in section 3.3.4), we automatically subtract the quadratic

divergence, and by using the MS scheme we subtract the log divergence leaving just

the usual lnµR ambiguity.26 Taylor expanding the momentum integral up to cubic

order gives:

(4π)2 I1
2Λ =Λ2

∫ ∞
0
duC(C − 2)

[
1
2ϕ
∗∂ ·c− 9

8 ŝ0(c∗µcµ)
]

− 1
2ϕ
∗�∂ ·c+ ŝ0(1

4H
∗
µν∂

2
µνϕ+ 5

16c
∗
µ�cµ) +

1

2

∫ ∞
0
duu (C ′)2 ŝ0(H∗µν∂

2
µνϕ− 5

4c
∗
µ�cµ)

+
1

2

(
ln
µ2
R

Λ2
+

∫ 1

0

du

u
(1− C)2 +

∫ ∞
1

du

u
C(C − 2)

)
ŝ0(H∗µν∂

2
µνϕ+ 3

4c
∗
µ�cµ) +O(∂5) ,

(5.43)

Here C = C(u) is the cut-off function, and we recognise amongst these expressions,

instances of ΩΛ (4.3) and b (3.161). The O(∂5) and higher terms arise from UV finite

integrals (so do not depend on µR). The derivation is sketched in app. A.2. As

explained earlier, if we had absorbed I2µ into Γ2q(µ), the remaining level-one part from

26If desired, the subtraction can be reinstated since at one loop it always appears with the same
coefficient as lnµ2

R.
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(5.35), Γ1
2q=I1

2Λ, would already be a solution. The Λ-independent ŝ0-exact parts could

be discarded by changing the choice of Γ2q(µ), but we keep them to match the MS

scheme. We only need to recognise that the end result (5.42) must be independent of

µR. Thus we set the one-loop complementary solution part to

Γ1
2q(µ) = i

∫
p
H∗µν(p)Bcµνα(p,Λ) cα(−p) = I1

2µ + Z1
2 (µ) ŝ0(H∗µν∂

2
µνϕ+ 3

4c
∗
µ�cµ) , (5.44)

which is independent of µR/µ, since this dependence cancels between I1
2µ and

Z1
2 (µ) =

1

(4π)2
ln
µ

µR
+ z1

2 . (5.45)

We see that κ2Z1
2 (µ) induces a change of BRST cohomology representative at second

order, as expected.27 In this case the change is ŝ0-exact and thus amounts to a canon-

ical reparametrisation cf. section 5.3, hence Z1
2 is a wavefunction-like parameter. Its

presence ensures that Γ1
2 is also independent of the initial point µ on the renormalized

trajectory, since a change of µ 7→ αµ in the total solution Bµνα(p,Λ) (5.42) can be

absorbed by a change δZ1
2 = δz1

2 = − lnα/(4π)2. Altogether the one-loop level-one

solution (5.35) to the renormalized trajectory is:

(4π)2 Γ1
2q = Λ2

∫ ∞
0
duC(C − 2)

[
1
2ϕ
∗∂ ·c− 9

8 ŝ0(c∗µcµ)
]

− 1
2ϕ
∗�∂ ·c+ ŝ0(1

4H
∗
µν∂

2
µνϕ+ 5

16c
∗
µ�cµ)

+
1

2

∫ ∞
0
duu (C ′)2 ŝ0(H∗µν∂

2
µνϕ− 5

4c
∗
µ�cµ)

+
1

2

(
(4π)2Z1

2 (Λ) +

∫ 1

0

du

u
(1− C)2 +

∫ ∞
1

du

u
C(C − 2)

)
ŝ0(H∗µν∂

2
µνϕ+ 3

4c
∗
µ�cµ)

+O(∂5) .

(5.46)

If we work in scaled variables, where we absorb Λ according to dimensions, the result

depends on Λ only indirectly through Z1
2 (Λ). The scaled result is thus of self-similar

form as expected for a renormalization group trajectory [20]. Renormalization schemes

follow from the choice of renormalization condition for Z1
2 . For example, the MS scheme

is recovered here with the renormalization condition

Z(µ) = 0 at µ = µR , (5.47)

which sets z1
2 = 0 in (5.45). Evaluating the physical limit, Bµνα(p) = limΛ→0 Bµνα(p,Λ),

27In general this would not be clear until we computed the µR dependence at all anti-ghost levels,
but see (5.53) and the discussion below it.
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a standard Feynman integral, we get for the physical vertex in the scheme (5.47)

(4π)2 Bµνα(p) =
(

3
4p

2pµδνα − 1
2pµpνpα

)
ln(p2/µ2) + 2

3pµpνpα −
5
6p

2pµδνα + 1
6δµνp

2pα ,

(5.48)

where the net effect of the choice of complementary solution (5.44) and renormalization

condition (5.47) is just to convert µR to µ.

At anti-ghost level zero, the one-loop solution (5.35) is now written as

Γ0
2q = Γ̌0

2q2 + δΓ0
2q(µ) + I0

2Λ − I0
2µ , (5.49)

the first two terms on the RHS being the complementary solution having split off the

one-loop tadpole (5.38). Adopting a parallel notation to above we write

I0
2Λ = 1

2

∫
p
Hµν(p)AIµναβ(p,Λ)Hαβ(−p) . (5.50)

Here AIµναβ(p,Λ) has two contributions: one from using two Γ̌1
1 vertices joined by

ghost propagators and one from two copies of Γ̌0
1 joined by H propagators. As a formal

integral in d = 4 dimensions, and understood to be symmetrised i.e. to be recast as

AI((µν)(αβ)), we can write it as:

AIµναβ(p,Λ) =∫
q
CΛ(q)CΛ(p+q)

{
−1

q2(p+q)2

[
pαpβpµpν + 2pαpβpµqν + 2pαpβqµqν + pαpµqβqν

+ 2pαqβqµqν + qαqβqµqν − p2δαµpβpν − 1
2p

2δµν(pαpβ + 3pαqβ + 3qαqβ) + 1
16p

4δµνδαβ + 1
2p

4δαµδβν

]
+

1

q2

[
1
8p

2δαβδµν + 5
4p · qδαβδµν − p·(p+q)δαµδβν + 2δαµ(p+q)β(p+q)ν − δµν(pαpβ + 3pαqβ + qαqβ)

]
+ 1

4δαβδµν

}
(5.51)

Again we define it however using MS. Up to O(∂2), (5.50) takes the form

(4π)2 I0
2Λ = Λ4

∫ ∞
0
duuC(C − 2)

[
5
24h

2
µν + 1

8ϕ
2
]

+ Λ2

∫ ∞
0
duC(C − 2)

[
5
24ϕ∂

2
αβhαβ + 5

8(∂αhαβ)2 − 19
48(∂γhαβ)2 − 5

32(∂αϕ)2
]

− Λ2

∫ ∞
0
duu2(C ′)2

[
1
12ϕ∂

2
αβhαβ + 1

8(∂αhαβ)2 + 7
96(∂γhαβ)2 + 1

16(∂αϕ)2
]

+O(∂4) .

(5.52)

It is a unique result but acquires dependence on lnµR, which appears amongst the

O(∂4) terms. (We do not display all these terms because there are rather too many.)

Setting δΓ0
2q(µ) = I0

2µ, Γ0
2q (5.49) would already be a solution. As before, we choose

the complementary solution to be this up to converting the lnµR dependence to lnµ
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dependence. We find

δΓ0
2q(µ) = I0

2µ + Z0
2a(R

(1)
µναβ)2 + Z0

2b(R
(1))2 , (5.53)

where to one loop,

Z0
2a(µ) = − 61

120(4π)2
ln
µ

µR
+ z0

2a , Z0
2b(µ) = − 23

120(4π)2
ln
µ

µR
+ z0

2b . (5.54)

Again the role of these κ2Zs is (also) to ensure that the full solution is actually in-

dependent of µ at O(κ2), and ensuring that the scaled result is a self-similar solution

[20]. Since the only other lnµ part, sitting in Γ1
2q(µ) (5.44), is already ŝ0-closed, this

addition must be ŝ0-closed, which it is by virtue of being invariant under linearised

diffeomorphisms. As we saw, (5.22), it is actually ŝ0-cohomologically trivial, and thus

as a consequence of the Koszul-Tate differential (3.122), vanishes on the free equations

of motion (i.e. on shell), making the Zs here also wavefunction-like. This is also clear

directly, on using the Gauss-Bonnet identity (5.21) [21]. (Note that the coefficients do

not agree with those in ref. [21] which are computed in the background field method.

The terms only have to agree on-shell, which they do trivially since they both vanish.)

Again the MS scheme is recovered by choosing the renormalization condition (5.47). In

the physical limit, the tadpole correction (5.38) vanishes, so once more the net effect

of our renormalization condition on the choice of complementary solution (5.53) is to

swap µR for µ. We find for the physical Γ0
2 two-point vertex (where again we mean this

to be recast as A((µν)(αβ))):

(4π)2Aµναβ(p) =
(

7
10pαpβpµpν −

23
60p

2δαβpµpν − 61
60p

2δαµpβpν + 23
120p

4δαβδµν + 61
120p

4δαµδβν

)
ln

(
p2

µ2

)
+ 19

75pαpβpµpν −
1229
1800p

2δαβpµpν − 283
1800p

2δαµpβpν + 1829
3600p

4δαβδµν + 283
3600p

4δαµδβν ,

(5.55)

the quartic on the first line being the same as appears in (5.53,5.54).

Finally, substituting Γ0
2q (5.49) into the one-loop second-order mST (5.36) and using

the final equation in the CME relations (5.8) we see that28

Q0

(
Γ0

2q − Γ̌0
1q2

)
+Q−0 Γ1

2q = −TrCΛ Γ̌
(2)
1∗4ΛΓ̌

(2)
1

∣∣∣0 , (5.56)

(∆Γ2 trivially vanishes) where on the RHS we retain only the anti-ghost level zero

piece. This last term has three contributions, one with Γ̌2
1 and Γ̌1

1 differentiated with

respect to c∗ and (anti-)ghosts, the other two using Γ̌1
1 and its H∗, and either a second

copy Γ̌1
1 differentiated with respect to H and c̄, or Γ̌0

1 where the differentials are of

28Note that the covariantisation Γ̌0
1q2 thus plays a different role from Γ̌0

2q2.

96



course both with respect to H. The result is:

− TrCΛ Γ̌
(2)
1∗4ΛΓ̌

(2)
1

∣∣∣0 = i

∫
p
Hµν(p)Fµνα(p,Λ) cα(−p) , (5.57)

where

Fµνα(p,Λ) =

∫
q
CΛ(q)CΛ(p+q)

{
δµνpα + 3δµνqα +

1

q2
[2qµqν(p+q)α + 4pµpνqα

− 2p·q (p+q)(µδν)α + p·q δµν(p+q)α − 4δµνqαp
2]
}
.

(5.58)

The above A, B and F vertices are analogous to vertices in Yang-Mills theory, which

we labelled similarly in ref. [103]. Note that MS has no effect on Fµνα or the tad-

pole integrals, (5.11) and (5.38), since these are already fully regulated by the cut-off

functions and thus have no 1/ε divergences. Writing G
(1)
µν (3.123) in momentum space

as

G(1)
µν (p) = −G(1)

αβµν(p)Hαβ(p) , (5.59)

we see that (5.56) is a modified Slavnov-Taylor identity for two-point vertices:

Aµναβ pβ +G
(1)
µνσλBσλα = 7

8bΛ
4(δµνpα − 2p(µδν)α) + 1

2Fµνα , (5.60)

where the first terms on the RHS come from putting Q0 Γ̌0
1q2, on the RHS and using

the formula for Γ̌0
1q2 (5.11). Note that in the physical limit Λ→ 0, the above RHS

vanishes and this equation becomes the unmodified Slavnov-Taylor identity: it just

says that the amplitude A is gauge invariant on shell, i.e. up to terms proportional to

the free equation of motion G
(1)
µν = 0. We have confirmed that the physical vertices,

(5.48) and (5.55), do indeed satisfy the physical limit of this equation. This means that

if we write the IR cut-off functions in terms of the UV one, CΛ = 1 − CΛ, the LHS

of the above identity (5.60) can be rewritten as a sum over contributions all of which

are UV regulated by CΛ and thus well defined without further regularisation. Further

manipulation similar to those in ref. [103] would then establish that (5.60) holds exactly

as an identity between the integrals (5.51,5.41,5.58). In fact by the Bianchi identity,

pµG
(1)
µν (p) = 0, it is apparent that only the last term in the physical B vertex (5.48)

makes a contribution. Therefore the above identity (5.60) states that the part of the

physical A vertex dependent on renormalization conditions, namely the ln p2/µ2 part of

(5.55), is transverse, a property we have already established in (5.53). The derivative
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expansion of F (5.57) gives:29

−(4π)2 TrCΛ Γ̌
(2)
1∗4ΛΓ̌

(2)
1

∣∣∣0 = Λ4

∫ ∞
0
duuC(C − 2)

[
5
6hµν∂µcν + 1

4ϕ∂ ·c
]

− bΛ4
[

7
6hµν∂µcν + 15

4 ϕ∂ ·c
]

+ Λ2

∫ ∞
0
duC(C − 2)

[
1
3hµν�∂µcν + 11

8 ϕ�∂ ·c−
11
12hµν∂

3
µναcα

]
+ Λ2

∫ ∞
0
duu2(C ′)2

[
1
24hµν∂

3
µναcα + 13

24hµν�∂µcν
]

+O(∂5) .

(5.61)

We have verified that the one-loop second-order mST identity (5.56) is satisfied up to

O(∂3) by the derivative expansions (5.43), (5.52) and (5.61) together with the tadpole

corrections (5.11,5.38). In particular this confirms explicitly that these tadpole contri-

butions automatically supply required O(∂0) and O(∂2) terms necessary for satisfying

this identity.

5.5 Discussion

We have seen that at second order in perturbation theory the end result is the standard

one for the one-particle irreducible effective action atO(κ2), and which is thus a one loop

contribution. Since we are dealing with pure quantum gravity at vanishing cosmological

constant, the logarithmic running is due to wavefunction-like reparametrisations. This

is true in standard quantisation [21] but it is also reflected in the new quantisation.

However outside the diffeomorphism invariant subspace these reparametrisations are

not purely wavefunction-like but are accompanied by coefficient functions, for example

at anti-ghost level zero they will take the form:

δHµν = R(1)
µν f

a
Λ(ϕ, µ)+δµν R

(1) f bΛ(ϕ, µ) , where f iΛ(ϕ, µ)→ ci κ
2 lnµ as Λ∂ →∞ ,

(5.62)

ci being numerical constants (i = a, b). There are also infinitely many perturbative

reparametrisations possible of the form

δϕ = fΛ(hµν , ϕ) , (5.63)

the RHS evidently being made up of Lorentz invariant combinations of hµν . Some

combination of these reparametrisations will correspond to redundant operators [135,

136]. It is these kind of reparametrisations that would lead to a demonstration of the

quantum equivalence of unimodular gravity and ordinary gravity [107, 137] within this

new quantisation.

Notice that the logarithmic running encapsulated in Z1
2 (µ) (5.45) and Z0

2a,b(µ)

(5.54), is by no means the only logarithmic running in the theory. Infinitely many

29Again note that ΩΛ (4.3) and b (3.161) give alternative expressions for the terms linear in C.
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more cases are generated in the derivative expansion of the general solution for the

second-order renormalized trajectory (5.29) [75]. However all the other cases vanish as

a power of Λ∂ in the large amplitude suppression scale limit.

It seems clear that once we add matter and/or a cosmological constant, it will no

longer be the case that the logarithmic running inside the diffeomorphism invariant

subspace is attributable to a reparametrisation. It will have to be attributed to new

diffeomorphism-invariant effective couplings. These effective couplings are precisely the

same couplings that need to be introduced in standard quantisation [21]. Indeed we

still expect to need a complementary solution in the form we gave for δΓ0
2q(µ) (5.53),

but the curvature-squared terms no longer vanish on the equations of motion since

the Einstein tensor is now sourced by the matter stress-energy tensor and/or a term

proportional to gµν in the case of a cosmological constant.

Actually, once inside the diffeomorphism invariant subspace, we are obeying both

the flow equation and the mST, and therefore the solution must correspond to an

RG flow in the standard quantisation. The problem in standard quantisation is that

these flows have an infinite number of parameters, new ones appearing at each loop

order. In standard quantisation they are identified with renormalized couplings, and

the corresponding bare couplings are required to absorb the UV divergences. It is

clear that in this standard framework none of these flows can correspond to a genuine

perturbative continuum limit in the usual Wilsonian sense, i.e. a renormalized trajectory

emanating from the Gaussian fixed point, since κ is irrelevant. (The same is true of all

higher order couplings apart from the curvature squared ones.)

In this new quantisation we have found a solution to this latter problem: we have

constructed a genuine perturbative renormalized trajectory. We have demonstrated

that it works in perturbation theory, at both first order [1, 107] and now, second order

[75]. It emanates from the Gaussian fixed point along relevant directions provided

by the underlying (marginally) relevant couplings, gσ2l+ε. It is these couplings that

absorb the UV divergences [75]. Once inside the diffeomorphism invariant subspace,

this renormalized trajectory must coincide with a subset of the RG flows derived in

standard quantisation. The question is which subset. Since we need to send Λ∂→∞
in fig. 3.3 to fully recover diffeomorphism invariance, we know at least that these flows

must exist all the way to Λ→∞ within the diffeomorphism invariant subspace, even

though they will not qualify as part of a perturbative renormalized trajectory inside

this subspace.

Once inside the diffeomorphism invariant subspace, the underlying couplings disap-

pear and the trajectory is parametrised by diffeomorphism-invariant effective couplings.

One possibility is that there is no restriction: the subset is the whole set, the effective

couplings are in one-to-one correspondence with the couplings required in standard

quantisation. Devastating as this might be for the general predictivity of the theory,

this construction suggests that there is nothing inherently inconsistent with such a

scenario.
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If this is the outcome, nevertheless the new quantisation provides a different perspec-

tive. For example, it is not true that the introduction of these higher order couplings

require a loss of unitarity, provided that their signs are chosen to avoid wrong-sign

poles in the full propagators. In standard quantisation, the assumption is that once

couplings are introduced for the curvature-squared terms for example, these couplings

must be part of some ‘fundamental’ bare action, and thus from the beginning turn

the theory into one with higher derivatives even at the free (bilinear) level. Here, the

bare action lies outside the diffeomorphism invariant subspace. The higher derivative

interactions there must always be accompanied by a δ
(n)
Λ (ϕ) operator, and thus cannot

alter the kinetic terms. In other words, the bilinear action maintains its two-derivative

form [107].

It remains the case that ultimately the perturbative development of the theory

is organised in powers of κ and therefore by dimensions, accompanied by increasing

numbers of space-time derivatives at higher order. But since we are dealing with a

theory with a genuine continuum limit, the fact that perturbation theory breaks down

in the regime30 κ∂ > 1, just indicates that the theory becomes non-perturbative in this

regime and not, as usually interpreted, a signal of breakdown of an effective quantum

field theory description.

We see very clearly that it is the logarithmically running terms and their finite

part ambiguities, necessarily BRST invariant, that demand the introduction of new

couplings order by order in perturbative quantum gravity. In contrast, the power-

law Λ dependence is computed unambiguously. Nothing within perturbation theory

demands that new couplings be associated to such Λ2n terms (integer n>0). Nor is the

field dependence associated to Λ2n, closed under BRST, but rather is intimately related

to the modifications of the Slavnov-Taylor identities. Thus the problem in quantum

gravity is to find the mechanism, if there is one, that determines (some or all of) the

finite parts associated to the ln(Λ/µ) terms that appear at the perturbative level. If

for example, all these parameters are fixed by such a mechanism, we would be left with

only one new parameter at the quantum level, the mass scale that arises by dimensional

transmutation from the very existence of the RG (the equivalent to ΛQCD in QCD).

In fact we know that at third order, the first-order couplings will run with Λ [75].

It is conceivable that this running and the required subsequent matching into the dif-

feomorphism invariant subspace, plays a role in providing this missing mechanism. Be-

low, we discuss another possibility, some hints that this mechanism arises solely from

insisting that the RG flow within the diffeomorphism invariant subspace, remains non-

singular all the way to Λ→∞. One such well-studied possibility is a non-perturbative

(asymptotically safe) UV fixed point [33, 138, 139]. However note that our current

construction was born from attempts to solve issues with the degeneration of the fixed

points and eigenoperator spectrum that are seen in that scenario if one goes (sufficiently

30Here ∂ stands for the typical magnitude of space-time derivatives.
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carefully) beyond truncations involving just a finite number of operators (see the final

discussions in refs. [1, 77]). As we now explore, a mechanism for fixing the parame-

ters could follow from the same mathematical properties of the partial differential flow

equations that lead to these problems in the first place.

5.6 A possible non-perturbative mechanism

In the conformal sector the infinite number of couplings gσ2l+ε lead to a new effect,

namely the fact that almost always, even at the linearised level, RG flows towards the

IR become singular and then cease to exist [8]. This is very much interwoven into the

subsequent development [1, 75, 107]. Indeed it is for this reason that the construction

requires the initial point µ for the renormalized trajectory (5.29) to lie below Λ∂ , most

of the trajectory then being safely developed from the IR to the UV. This is due to the

fact that we are dealing with solutions of a parabolic partial differential equation that

are non-polynomial in the amplitude: such solutions are only guaranteed when flowing

from the IR to the UV [8].

These comments apply equally well to the hµν sector however with the crucial differ-

ence that there the equation is reverse parabolic, with solutions only guaranteed when

flowing from the UV to the IR [8]. The problem is not seen for polynomial linearised

solutions, because such solutions are a finite sum of eigenoperators (the Hermite poly-

nomials) [8, 107] with constant coefficients. But diffeomorphism invariance, which is

imposed in the IR (inside the diffeomorphism invariant subspace), requires us to use

solutions that are non-polynomial in the hµν amplitude (because the curvature terms

require both the metric gµν and the inverse metric gµν). Thus diffeomorphism invari-

ance forces us to consider solutions non-polynomial in hµν , evolving from the IR to the

UV. Such solutions almost always fail at some critical scale Λcr, before we reach Λ→∞.

In reality, the solution must exist simultaneously in both the hµν and ϕ sectors.

Consider a solution δΓ to the linearised flow equation (3.145). Isolating the hµν and ϕ

amplitude dependence, we can expand δΓ over monomials ςµ1···µn :

δΓ =
∑
ς

ςµ1···µn(∂, ∂ϕ, ∂h, c,Φ∗) f ςΛµ1···µn(hαβ, ϕ) + · · · , (5.64)

where we suppress Lorentz indices on the arguments in ς and we mean that its (anti-

)field arguments can appear as indicated or differentiated any number of times. These

new coefficient functions f ςΛ are necessarily non-polynomial in hαβ and ϕ for the reasons

we have explained. The linearised flow equation (3.145) can be solved exactly using the

same integrating factor as in the general solution (3.164). The ellipses in (5.64) refer

to the tadpole corrections so formed by attaching propagators to ς either exclusively,

or also to hαβ and ϕ. Now from the linearised flow equation (3.145), the coefficient
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functions themselves satisfy the flow equation:

ḟ ςΛµ1···µn(hαβ, ϕ) = ΩΛ

(
∂2

∂h2
µν

− ∂2

∂ϕ2

)
f ςΛµ1···µn . (5.65)

Here we clearly see the property that the equation in each sector separately is parabolic,

but in opposite directions, and thus in fact the Cauchy initial value problem31 for such

a partial differential equation is not well defined in either direction. This mathematical

property is not cured, but only obscured, by using the full non-linear flow equations. We

see that we are dealing with novel partial differential equations whose solution typically

becomes singular when it is evolved in either direction, even at the linearised level. As

we have emphasised already for flows towards the IR in the ϕ sector [8], this does not

mean solutions do not exist but rather that the initial conditions must be very special,

i.e. lie within a heavily restricted subspace. Below we uncover hints that this allows

only the cosmological constant and κ ultimately to exist as independent couplings.

Notice that this issue applies only to the fields that are differentiated in the flow

equation, i.e. to the quantum fields – whose second order differentials together with

the RG time derivative make the equations (reverse) parabolic. It does not apply to

the anti-fields, nor to background fields if the background field approach is followed.

In fact it does not apply to the ghost fields either because these are Grassmann and

thus dependence on their amplitude is necessarily polynomial. Therefore the issue only

arises for the quantum fluctuation fields hµν and ϕ.

To take these arguments a little further, we recall that the finite part ambiguity

δΓ(`) that appears at `-loop order, is a local Λ-independent operator, and note that its

dimension is

[δΓ(`)] = 2(`+1) (5.66)

(e.g. as required by dimensions from the factors of κ). We also note that if the mST

(3.146) is to be obeyed inside the diffeomorphism invariant subspace, we must have

(Γ0, δΓ(`)) = 0 (since all the other parts are at higher loop order, in particular the cor-

rection term in the mST carries an extra loop) [103]. In other words, at `-loop order

the ambiguous parts δΓ(`) must be invariant under the full classical BRST transforma-

tions [103], cf. section 5.2, reflecting standard treatments [91, 147, 148]. In particular

the level zero part, δΓ0, must be diffeomorphism invariant, and thus at one loop are

curvature-squared terms, as confirmed in δΓ0
2q (5.53), at two-loop order are κ2 times

curvature cubed, or κ2R∇2R type terms, and so forth. They are therefore indeed

non-polynomial in hµν (and also ϕ as also imposed by the new quantisation).

At loop-order higher than `, where δΓ(`) first appears, δΓ(`) gets altered by the flow

equation (3.152) and mST (3.146) in ways that are not straightforward to analyse. If

we model the situation by just taking the linearised flow equation (3.145) and imposing

31This is a property of the flow under effective cut-off Λ. It has nothing to do with the existence
(or otherwise in some approaches [140–146]) of a Cauchy initial value surface in the dynamics of the
theory.
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δΓ = δΓ(`) at Λ = 0, the perturbation will no longer satisfy BRST invariance or the

mST once Λ>0. However we will be able to see the restrictions that arise from the fact

that the flows are typically singular. In close similarity to the solution for the pure-ϕ

coefficient functions (3.165), the partial differential equation (5.65) is solved formally

by the Fourier transform:

f ςΛµ1···µn(hαβ, ϕ) =

∫
d9παβ dπ

(2π)10
fςµ1···µn(παβ,π) e

1
2

ΩΛ(π2
µν−π2)+iπµνhµν+iπϕ , (5.67)

where πµν is traceless, being the momentum conjugate to hµν . That (5.67) is the Fourier

form of the solution, can be seen straightforwardly by substitution, and matches the

general linearised functional solution (3.164) as one can see by substituting the Λ = 0

Fourier transform for the physical coefficient function. However for the above to be

more than a formal solution to (5.65), we need the Fourier integral to converge. We

see that as Λ increases from zero, convergence in the ϕ sector only improves, since it

is weighted by e−
π2

2
ΩΛ , reflecting the fact that the Cauchy initial value problem is well

defined in this sector for IR→UV [8]. However in the hµν sector the integral has the

exponentially growing weight, e
π2
µν
2

ΩΛ . Unless fς decays faster than an exponential of

π2
µν (at fixed π), the solution (5.67) will be singular at some critical scale Λ = Λcr≥0,

above which the flow ceases to exist.

We see therefore that the flows will exist only for carefully chosen parametrisations

of the metric in terms of hµν and ϕ. Now we show that solutions of the form (5.67)

cannot exist simultaneously for all the δΓ that match diffeomorphism invariant δΓ(`) at

Λ = 0. If we take the Einstein-Hilbert action (5.9) as an example and expand it over

monomials as in (5.64), the required strong suppression of high conjugate momenta πµν

in fς , means that for the above to be a solution, there must be no rapid variation of the

Einstein-Hilbert action under changes in the hµν amplitude. Obviously, at a minimum

we then need a parametrisation that exists for all amplitudes. That is not true of the

simple linear split form of gµν (2.2) which is not positive definite for all hµν and ϕ, and

for which gµν is singular at κϕ = −2, and whenever κhµν has −1 as an eigenvalue. We

can cure this by for example parametrising the metric gµν in terms of an exponential

of κhµ
ν (considered as a matrix), see e.g. [121, 149–152]. Such a parametrisation can

also ensure that the square root, in the measure
√
g, does not lead to branch cuts (as

also would expressing the metric in terms of a vierbein, since the measure is then its

determinant).

This is still not enough to allow a solution in the form (5.67) however. From the al-

ready required faster than exponential decay, we see that the mod-squared amplitudes

|fςµ1···µn |
2 are integrable. Thus by Parseval’s theorem, the squared coefficient functions

(f ςΛµ1···µn)2 must also be integrable over d9hαβdϕ. This in turn implies that the coeffi-

cient functions f ςΛµ1···µn must vanish as hαβ→∞.32 Since
√
gR 7→α

√
gR under scaling

32They must decay faster than 1/|hαβ |9/2. Given an appropriate choice of fς , one can get a much
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gµν 7→αgµν (where α is some constant), we see that this last condition will hold true

for the Einstein-Hilbert action if and only if gµν itself vanishes in this limit.

A Fourier solution (5.67) for the cosmological constant term, is then not ruled

out by this condition, since
√
g 7→ α2√g, and thus it will also vanish in the limit

hαβ→∞. However all the higher derivative terms are then ruled out from having such

solutions, since curvature-squared terms go like α0, while the higher order terms behave

as negative powers of α and thus actually diverge in the limit hαβ→∞.

Notice that despite the fact that we are modelling using only linearised solutions,

the arguments we are making are non-perturbative in κ, because the breakdown in the

solutions happens at finite or diverging κhµν . In general the level-zero part satisfies

δΓ(`) 7→α1−`δΓ(`), and thus if these perturbations had to extend to solutions δΓ of Fourier

type (5.67), we would have shown that, despite the apparent freedom to change indi-

vidually the new effective couplings that appear at each loop order, non-perturbatively

in κ the requirement that the renormalized trajectory is non-singular actually rules out

all such infinitesimal changes δΓ(`). We would therefore conclude that the only freely

variable couplings are in fact κ itself and the cosmological constant.

We cannot quite draw such dramatic conclusions however. The arguments we have

presented can only be regarded as hints. Firstly, solutions exist to the linearised flow

equations (5.65) that do not fit the assumed Fourier form (5.67). For example solutions

polynomial in the graviton can be cast in Fourier space, but fς is then distributional,

viz. a sum over differentials of δ(παβ). Another example is provided by the ϕ part of

exponential parametrisation [121, 149–152] which extends to the solution

f(ϕ) = e
κ
2
ϕ =⇒ fΛ(ϕ) = e

κ
2
ϕ+ 1

8
κ2ΩΛ , (5.68)

as can be confirmed by direct substitution in (5.65) or by using the Green’s function

δ
(0)
Λ(ϕ−ϕ0), cf. (4.5) [1, 8]. However these are not sufficient to parametrise the Einstein-

Hilbert action. In fact finding a parametrisation that can be extended to a solution

of the linearised flow equation (5.65), either of Fourier type (5.67) or otherwise, looks

challenging.33 It is even more challenging to find one that also works for the cosmolog-

ical constant term, and it is not credible that a parametrisation could be found that

would also allow solutions for the higher derivative terms δΓ(`). On the contrary, it

may be that there is no sensible solution even for the Einstein-Hilbert action alone.

Secondly, infinitesimal changes δΓ(`) do not in fact have to satisfy the simple linearised

equations (5.65) but operator flow equations that depend on the rest of the effective

action:

δΓ̇(`) = 1
2 Str

(
4̇Λ4−1

Λ

[
1 +4ΛΓ

(2)
I

]−1
4ΛδΓ

(2)
(`)

[
1 +4ΛΓ

(2)
I

]−1
)
, (5.69)

improved estimate by using the method of steepest descents in (5.67).
33We did not find a parametrisation of gµν that leads to fς with decay faster than exponential of π2

µν .
Approaching from the other direction, nor did we find such fς that then lead to a non-singular gµν .

104



as follows immediately from perturbing the exact RG flow equation (3.152). However,

although these flow equations are much more involved than the simple linearised flow

equations (5.65), and are such that they allow solutions that remain compatible with

BRST invariance through the (perturbed) mST (3.146), they share with (5.65) the

property that their Cauchy initial value problem is not well defined in either direction.

5.7 General gauges

All the results in this chapter, and thus far in this thesis, were derived in Feynman –

De Donder gauge. In this section we will show that the structure changes only in an

inessential way for a class of gauge conditions. First we recall that a great advantage

of using off-shell BRST invariance is that BRST invariant correlators are independent

of the choice of gauge [83, 84, 107]. Indeed in terms of the quantum fields, φA, and the

Wilsonian effective action, S, the mST (3.146) is just the QME

1
2(S, S)−∆S = 0 , (5.70)

whose powerful algebraic properties continue to hold exactly despite regularisation by

the cut-off function [107]. In more detail, an operator Oi is (off-shell) BRST invariant

if it satisfies

sOi = (S,Oi)−∆Oi = 0 , (5.71)

while a change of gauge is implemented by adding a BRST exact term s δK to the

action [83, 84]. Then it follows that a BRST invariant correlator is invariant under

change of gauge [83, 84, 107]:

δ〈O1 · · · On〉 = −〈sδKO1 · · · On〉 = −〈s (δKO1 · · · On)〉 =
1

Z

∫
Dφ∆

(
δKO1 · · · On e−S

)
= 0 .

(5.72)

(Z is the normalisation of the partition function. In this last step we use algebraic

properties of the QME, the disjoint support of the Oi, and the fact that ∆ now contains

a total functional derivative with respect to φ [107].)

The formulation we are using here is entirely equivalent since the two formulations

are mapped into each other by the Legendre transform relation [59, 71, 103, 106, 153]:

ΓI [Φ,Φ
∗] = SI [φ,Φ

∗]− 1
2 (Φ− φ)A4−1

ΛAB (Φ− φ)B , (5.73)

where SI is the corresponding interaction part of the Wilsonian effective action. Even

so, since the ΦA are not BRST invariant operators, Γ will now depend on the choice

of gauge in some unilluminating way.34 However in the physical limit Λ→ 0, the mST

(3.146) becomes the Zinn-Justin equation and is obeyed exactly. Now we can also go

34If instead we used this to compute the Schwinger functional of only gauge invariant operators we
would still find results that are gauge parameter independent.
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on shell and at this point the ΦA do provide BRST invariant states. Thus the on-shell

vertices of the physical Γ are independent of the choice of gauge. These vertices obey

the unmodified Slavnov Taylor identities, as we have already seen from (5.60). Indeed

we saw that this just tells us that the physical amplitudes are gauge invariant on shell.

While gratifying, these results are hardly unexpected. After all we saw in section 5.4

that the second order equations (5.33) – (5.34) are identical to those we would derive in

standard quantisation at one loop in this framework. All this follows provided the flow

finishes up inside the diffeomorphism invariant subspace, i.e. provided the QME (5.70),

equivalently mST (3.146), holds exactly in the infrared. However a central feature of our

construction is that the renormalized trajectory lies outside this subspace for Λ > aΛ∂ .

Thus the important question is what happens to this part of the trajectory in other

gauges, in particular whether it continues to be supported by a novel tower of relevant

operators in the ultraviolet, and whether the trajectory still enters the diffeomorphism

invariant subspace in the infrared.

To investigate this we rederive the flow of the upper part of the trajectory in a

more general De Donder gauge. This gauge is implemented by using the gauge fixing

functional

Fµ = ∂νHνµ − ∂µϕ . (5.74)

Although we use the Batalin-Vilkovisky framework [83, 84] to implement off-shell BRST

invariance, for the graviton sector the general De Donder gauge amounts to adding to

the free graviton action Γ0, cf. (3.115), the term 1
2αF

2
µ , where α is the gauge parameter.

Up until now we have used Feynman – De Donder gauge, α = 2, since such a choice

leads to significant simplifications:

Γ0|Feynman De Donder ≡ 1
2 (∂λhµν)2 − 1

2 (∂λϕ)2 , (5.75)

in particular decoupling the conformal mode ϕ from the traceless part hµν . Our con-

struction is built on a succession of results reported in previous papers [1, 8, 74, 75,

107, 109], where also the Feynman – De Donder gauge was used. Therefore we need to

go back to the beginning to show how things now change in a more general gauge.

The central observation that led to the new quantisation is that in Euclidean sig-

nature, the Einstein-Hilbert action is unbounded from below. This is a gauge invariant

statement: the unboundedness is caused by the fact that the action is proportional to

the scalar curvature, R, which can take either sign of any magnitude.35 At the free level

Γ0 still has these problems. In the Feynman De Donder gauge (5.75) this is particu-

larly clear. Before gauge fixing the situation is obscured by linearised gauge invariance

δHµν = ∂µξν+∂νξµ, equivalently linearised BRST (3.119). However the gauge invariant

35It is actually positive scalar curvature that is the problem [8, 9].
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statement is that the action (3.115) is unbounded below in the following direction

2ϕ−
∂2
αβ

�
Hαβ = 2

(
1− 1

d

)
ϕ− ∂2

αta
�
hαβ =

1

−�
R(1) , (5.76)

where we used (3.124). Using different gauge choices we can shift the instability to

different modes, but we cannot remove it. Indeed in the Landau gauge limit of the

De Donder gauge (5.74), where we insist that Fµ = 0 identically, the conformal mode

coincides with this (linearised) gauge invariant quantity:

ϕ =
1

−�
R(1) . (5.77)

By adapting the off-shell BRST Batalin-Vilkovisky framework, what we actually do is

first go to the non-minimal gauge invariant basis by adding to the action

1

2α
b2µ − ibµc̄∗µ , (5.78)

where c̄∗µ is the anti-ghost anti-field and bµ is the auxiliary field [1, 103, 107]. Adding

a BRST exact term involving the gauge fixing fermion [83, 84] Ψ = c̄µFµ, then induces

a canonical transformation to the gauge fixed basis. This map takes us from the gauge

invariant and gauge fixes bases

H∗µν |gi = H∗µν |gf + ∂(µc̄ν) − 1
2δµν∂ · c̄, (5.79)

together with [107]

c̄∗µ |gi = c̄∗µ |gf − Fµ . (5.80)

Since Ψ does not involve α, these are not affected by the more general gauge. However

the shifts allow the kinetic terms to be inverted to give the propagators, now in general
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gauge α:

〈bµ(p)Hαβ(−p)〉 = −〈Hαβ(p) bµ(−p)〉 = 2 δµ(αpβ)/p
2 , (5.81)

〈bµ(p) bν(−p)〉 = 0 , (5.82)

4µνϕ(p) := 〈hµν(p)ϕ(−p)〉 = 〈ϕ(p)hµν(−p)〉 =

(
1− 2

α

)(
δµν
d
− pµpν

p2

)
1

p2
,

(5.83)

4ϕϕ(p) := 〈ϕ(p)ϕ(−p)〉 =

(
1

α
− d− 1

d− 2

)
1

p2
, (5.84)

4µν αβ(p) := 〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν

p2
+

(
4

α
− 2

)
p(µδν)(αpβ)

p4
(5.85)

+
1

d2

(
4

α
− d− 2

)
δµνδαβ
p2

+
2

d

(
1− 2

α

)
δαβpµpν + pαpβδµν

p4
. (5.86)

These generalise the Feynman gauge results (3.137)–(3.139). Comparing the new hµν

propagator (5.86) to the old one (3.141), underlines why it is preferable to work in

Feynman gauge. Note that bµ does not actually propagate into itself. The 1
2αF

2
µ term

mentioned earlier would be generated by integrating out bµ after the transformation

(5.80). The ghost propagator is not displayed since it is unchanged from (3.136).

Now we recall that to all orders in perturbation theory, no interactions are generated

involving the extended basis, bµ and c̄∗µ, while the anti-ghost c̄µ only appears when one

switches to a gauge fixed basis [1, 103]. These statements follow from the fact that

the first order interaction Γ1 can be constructed from the minimal set (see the final

paragraphs of section 2 in ref. [1]). We will confirm that this still holds shortly. This

means that we can continue to work in minimal gauge invariant basis, switch to the

gauge fixed basis only while computing the ghost propagator corrections.

The first step is to solve the linearised flow equation (3.145) to find the eigenop-

erators, now in general De Donder gauge. Since hµν and ϕ now propagate into each

other, we need an expansion over monomials with coefficient functions involving both

hµν and ϕ. In other words we have an expansion which is actually identical to that

considered in (5.64):

Γ1 =
∑
ς

ςµ1···µn(∂, ∂ϕ, ∂h, c,Φ∗) f ςΛµ1···µn(hαβ, ϕ) + · · · . (5.87)

Again the ellipses refer to tadpole corrections formed by attaching propagators to ς

either exclusively, or also to hαβ and ϕ. Once again, the linearised flow equation is

solved exactly using the same integrating factor as in the general solution (3.164):

Γ1 = exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
Γphys , (5.88)
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where Γphys is the Λ → 0 limit (3.144). From (3.145), the coefficient functions satisfy

the flow equation

ḟ ςΛµ1···µn(hαβ, ϕ) =

∫
p

(
4Λ
µν αβ(p)

∂2

∂hµν∂hαβ
+ 24Λ

µνϕ(p)
∂2

∂hµν∂ϕ
+4Λ

ϕϕ(p)
∂2

∂ϕ2

)
f ςΛµ1···µn ,

(5.89)

where we set d = 4 and used the fact that the tadpole integrals have quadratic depen-

dence on Λ. Performing the tadpole integrals we see that the ϕ hµν cross-term vanishes.

(It has to because there is no invariant traceless rank two tensor.) Computing the other

two we find

ḟ ςΛµ1···µn(hαβ, ϕ) = ΩΛ

[(
1

α
+

1

2

)
∂2

∂h2
µν

+

(
1

α
− 3

2

)
∂2

∂ϕ2

]
f ςΛµ1···µn , (5.90)

where ΩΛ was defined in (4.3). Thus the flow of the coefficient function is again

parabolic of a simple form in each sector separately. If we choose

α >
2

3
or α < −2 , (5.91)

the sign on the right hand side is negative for ϕ and positive for hµν just as before.

Therefore we find [107] that the eigenoperators we have to expand in take the same

form (4.7) as before. In particular the sum over eigenoperators converges (in the square

integrable sense) for otherwise arbitrary coefficient functions, only if the interactions

are expanded over polynomials in hµν times the operators δ
(n)
Λ (ϕ). The only difference

is that these latter operators now involve a rescaled ΩΛ:

δ
(n)
Λ (ϕ) :=

∂n

∂ϕn
δ
(0)
Λ(ϕ) , where δ

(0)
Λ(ϕ) :=

1√
2πΩα

Λ

exp

(
− ϕ2

2Ωα
Λ

)
, (5.92)

where

Ωα
Λ =

(
3

2
− 1

α

)
ΩΛ , (5.93)

and the tadpole corrections represented by the ellipses in (4.7) and (5.88) must now be

computed with the propagators (5.83) – (5.86). All of the properties of the coefficient

functions then go through unchanged. In particular the coefficient functions have an

amplitude suppression scale Λ∂ which can be chosen common to all of them, indepen-

dent of the monomial, and such that they trivialise in the large amplitude suppression

scale limit (4.32,4.35). The BRST representatives (3.158), (3.159) and (3.160) are the

same as before since these are computed without gauge fixing (in particular this means

they can still be taken to depend only on the minimal set). The same applies to the

analysis in secs. 5.2 and 5.3. The only change is to the one-loop tadpole correction

(3.162). The second order analysis of the conformal sector [75] also goes through un-

changed since this effectively relies on dimensional analysis and general properties of

the coefficient functions. This means that once again the renormalized trajectory can
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smoothly enter the diffeomorphism subspace as discussed in section 5.4. Once inside

we have returned to the standard framework where the gauge parameter dependence

is absent on shell and well understood off shell, as we already discussed above.

We have thus shown that the structure we have developed changes only in inessen-

tial ways for any value of the gauge fixing parameter α in the range (5.91). It is

interesting to examine what happens in the gap excluded by the inequalities (5.91). If

α = −2 (or α = 2
3), the flow equation (5.92) no longer has a dependence on hµν (or

ϕ). The eigenoperator equation in this case is no longer of Sturm-Liouville type and

some different notion of convergence over eigenoperators would have to be formulated

[8, 107]. If −2 < α < 0 the sign on the right hand side of (5.92) is negative for both ϕ

and hµν . In this case there is no longer convergence when expanding over polynomials

in hµν [8, 77]. A sensible Wilsonian flow would require generalising the δ
(n)
Λ (ϕ) to hµν

fields. This opens up new possibilities for quantisation schemes which go beyond the

present investigation. The choice α = 0 is Landau gauge and is singular; to define it

requires taking a limit from α 6= 0. Finally if 0 < α < 2/3, both signs are positive on

the right hand side of (5.92). This does not mean we have removed the instability. One

can verify that the tadpole integral
∫
p〈R

(1)(p)R(1)(−p)〉 is negative and independent

of α. The instability remains, but in higher derivative terms. Like unimodular grav-

ity, cf. section 5.5 and [107], the consequences of instability for Wilsonian RG are less

straightforward to analyse and go beyond the present investigation.

5.8 Summary and Conclusions

In Euclidean signature the Einstein-Hilbert action is unbounded from below. This so-

called conformal factor instability [9] means that the partition function for quantum

gravity makes no sense without further modification. The authors of ref. [9] proposed

to solve this by analytically continuing the conformal factor along the imaginary axis.

However the Wilsonian exact RG flow equation still makes sense in the presence of this

instability [8, 33] and anyway provides a more powerful route to define the continuum

limit. Nevertheless the instability has a profound effect on RG properties. We find

that flows close to the Gaussian fixed point, involving otherwise arbitrary functions of

the conformal factor amplitude, ϕ, remain well defined only if expanded over a novel

tower of increasingly relevant operators δ
(n)
Λ (ϕ) (n = 0, 1, · · · ) [8]. Everything in the

new quantisation just follows from this observation.

The result is the renormalized trajectory sketched in fig. 3.3. Although at first sight

this looks like the standard picture for a perturbative continuum limit, an important dif-

ference is that the upper part lies outside the diffeomorphism invariant subspace where

the corresponding BRST invariance (or rather modified Slavnov-Taylor identities) can

be respected. The quantisation is thus defined “off space-time” [1] in the upper part of

the renormalized trajectory. In this part, the interactions involve traceless fluctuations

hµν and the conformal factor ϕ, acting as separate fields. The dynamical metric gµν ,
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which combines these as stipulated by diffeomorphism invariance, only comes together

inside the diffeomorphism invariant subspace and does not make sense as a concept

outside this subspace.

In ref. [75] we solved for the renormalized trajectory for pure quantum gravity

at second order in perturbation theory and showed that, for the underlying coupling

constants in appropriate domains, the trivialisation conditions can be satisfied. In this

chapter we have shown that it is then indeed possible for the renormalized trajectory

to enter the diffeomorphism invariant subspace. We then solved for its subsequent

evolution, in particular for the limit Λ→ 0 where we recover the physical amplitudes.

As we saw, the result is equivalent to solving for pure quantum gravity at one loop

and O(κ2) in standard perturbation theory. It is not so surprising therefore that we

also find that effective parameters are left behind associated to logarithmically running

terms at this order, and that for pure quantum gravity these are not physical because

they can be absorbed by reparametrisations.

Beyond O(κ2) in pure quantum gravity and/or after including matter or a cosmo-

logical constant, it is no longer true in the usual treatment that logarithmic divergences

can be absorbed by reparametrisation. Instead they force the introduction of new cou-

plings order by order in the loop expansion. The main question then is whether in

this new quantisation one similarly finds that ultimately an infinite number of dif-

feomorphism invariant effective couplings are required, introduced order by order in

perturbation theory. If this is the case, it appears one is left with a genuine entirely

consistent continuum theory of perturbative quantum gravity which, unfortunately for

its phenomenology, is controlled by an infinite number of couplings.

Actually the precise correspondence, of pure quantum gravity at second order in the

new quantisation, to standard quantisation of effective quantum gravity at one-loop and

O(κ2), is somewhat of an accident, see below (5.32). The interactions in the upper part

of the renormalized trajectory are second order in couplings, but non-perturbatively

quantum, and thus involve a sum to all loops over tadpoles and melonic Feynman dia-

grams. On entering the diffeomorphism invariant subspace, this collapses to something

that can be reinterpreted as finite order in ~. Furthermore at second order, the order in

~ amounts to one loop in the loop expansion. At higher orders it looks like the large-Λ∂

limit may differ from the standard solution in that not all contributions perturbative in

~ are reproduced up to the maximum number of loops that appear. It seems therefore

that higher order will imply a finite reordering of the loop-wise expansion, but it is not

clear that this has a physical consequence. From third order onwards, the first-order

underlying couplings (that parametrise the first order vertices) will run [75]. This may

lead to restrictions on matching into the diffeomorphism invariant subspace. On the

other hand, since there is no corresponding running of κ in standard quantisation, we

expect the running to effectively freeze out on entering the diffeomorphism invariant

subspace, as a consequence of the trivialisation conditions.

Finally in section 5.6 we noted that the particular parabolic properties of these flow
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equations mean that solutions are typically singular when evolved in either the IR or

UV directions, once one works with a space of solutions that is non-polynomial in both

the quantum fields hµν and ϕ. Non-perturbatively in κ the solutions must indeed be

non-polynomial in these quantum variables, as forced by diffeomorphism invariance via

the mST. We uncovered hints that this property provides a non-perturbative mecha-

nism which fixes the free parameters down to just κ and the cosmological constant. It

would appear to be sufficient to have this mechanism at work entirely within the dif-

feomorphism invariant subspace. Then the theory can be defined after all by working

solely within this space. But then the understanding of how the continuum limit is

achieved would be very different from the Wilsonian one, since it would not be in terms

of a renormalized trajectory emanating from an ultraviolet fixed point.
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Chapter 6

Provable properties of asymptotic

safety in f (R) approximation

As we have discussed in this thesis there is a great deal to be investigated regarding the

different directions of the flows of the different sectors of the graviton. In this chapter

we investigate a related problem in AS and show how this relates to the previous results

outlined in this thesis with the hope that in addition to shedding light on outstanding

problems in AS it will also help illuminate this contradictory flow problem.

The structure of this chapter is as follows. In the first section we review in more

detail the structure of AS and note the key results. In the following section, following

[154], we set out the form of the flow equation, fixed point equation and eigenoperator

equation. We discuss some of the choices to be made in particular for the endomorphism

parameters αs, the choice of sign for the cut-off in the conformal factor sector, and the

choice of background manifold. In section 6.2.1 we develop the equations in the case

that the latter is a four-sphere, and explain further our choice of exponential cut-off for

the common profile r(z). As R → 0, the equations go over to a flat space limit. This

is derived and discussed in section 6.2.2, and in particular its implications for Sturm-

Liouville theory where the R = 0 boundary presents an obstruction. We see that the

only sensible option is to continue into the four-dimensional hyperboloid through a kind

of smooth topology change, as discussed further also in the Conclusions, section 6.6.

To apply Sturm-Liouville theory we need that the eigenoperators are square inte-

grable under the Sturm-Liouville weight. The question is whether this makes sense in

quantum gravity. This leads us naturally into section 6.3 where we derive the asymp-

totic behaviour of solutions at large R. Separately this allows us to characterise the

nature of the fixed points and eigenoperators. First, in section 6.2.3, we explain the

setup for the equations on the hyperboloid. In particular we furnish the full constraints

on α0. In section 6.3.1 we derive the large R asymptotic behaviour of a fixed point

solution f(R), first on the sphere and then on the hyperboloid. We see that the sphere

solution differs from that assumed in [154] and is in fact dominated by cut-off effects

as R → ∞. Computed exactly, it ought to be universal, as it is in fact for the hyper-
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boloid. We show that the culprit is the course-graining of certain zero modes (modes

with vanishing modified Laplacian) on the sphere.

On both sphere and hyperboloid we see that the asymptotic solution contains only

one parameter. Perturbations about this would provide the other parameter but such

perturbations are invalid because they grow too fast. Here we find a beautiful connec-

tion to Sturm-Liouville theory: asymptotically they coincide with the inverse of the

Sturm-Liouville weight, which we derive in this regime on both manifolds. The fact

that the asymptotic solutions for f(R) contain only one parameter, allows us to draw

an important conclusion: there are at most a discrete set of fixed point solutions.

Section 6.3.2 presents analogous findings for the eigenoperators. The valid solu-

tions are those that grow asymptotically as a power of R, the invalid solutions grow

asymptotically like the inverse of the Sturm-Liouville weight. Validity is decided by re-

quiring their RG evolution to be multiplicative in the large R limit. Left only with the

power-law solutions, the equations are overconstrained leading to quantised values, λn,

for their scaling dimensions. It is now immediate to see (in section 6.3.3) that the valid

eigenoperators coincide with those that are square-integrable under the Sturm-Liouville

weight, justifying the use of Sturm-Liouville analysis.

Thus we have its standard result, stated in section 6.4, which in this context is

that the scaling dimensions are real, that there are only a finite number of (marginally)

relevant eigenoperators (such that λn ≤ 4) and infinitely many irrelevant operators

whose scaling dimensions λn →∞. By mapping to so-called Liouville normal form, the

asymptotic analysis provides us with the large distance behaviour of the corresponding

potential. From there by a standard application of WKB analysis, we get the analytical

form for the scaling dimension λn as a function of n, in the limit n → ∞. This result

should be universal. In fact it is independent of all but one of the parameters. We see

that the remaining dependence is an artefact of the single-metric approximation.

In section 6.5 we show that the situation changes dramatically if we choose the

sign of the cut-off to be negative for the conformal factor sector. The Sturm-Liouville

weight now grows asymptotically, fixed points form a continuum, and the eigenoperator

spectrum also becomes continuous. We relate this to earlier findings in f(R) approx-

imations with adaptive cut-off and in conformally reduced gravity. We show that we

can impose square-integrability under the Sturm-Liouville weight, in which case the

valid operators are the ones that decay asymptotically like the inverse Sturm-Liouville

weight. We compute their asymptotic scaling dimensions, and we see that these oper-

ators are f(R)-analogues of the δ
(n)
k (ϕ) eigenoperators pursued in [1, 2, 8, 74, 107, 109]

as an alternative quantisation of quantum gravity.

Finally, in section 6.6 we bring these strands together, describe a search for numer-

ical solutions, compare to f(R) approximations with adaptive cut-off, and draw our

conclusions.
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6.1 Review of asymptotic safety

We briefly outlined the core ideas of Asymptotic Safety (AS) in section 2.5 however we

do so in greater detail here, focusing almost entirely on the application of those ideas

to QG [34]. Reminding ourselves of the theory space which is constructed by all of

the couplings permitted by the symmetries and fields of a theory, with the irrelevant

couplings defining the critical surface and the finite number of relevant couplings ema-

nating from the fixed point which follow along the renormalized trajectory. To repeat

ourselves for the sake of clarity we are working with actions expressed as

SΛ(φ, gi) =
∑
i

gi(Λ)Oi(φ) (6.1)

where Λ is our usual cut-off, gi the couplings and Oi the operators. We take Λ→∞ in

the usual continuum limit and in doing so if we have not prepared the theory properly we

would anticipate that some of the couplings gi = Λdi g̃i (where di is the mass dimension

of gi as we have seen previously) would diverge. This is particularly troublesome if

the dimensionless coupling g̃i diverges as this signals a breakdown of the theory, for

example in QED and φ4 theory where this happens for a finite Λ. In the ideal scenario

we will find a point where our β-functions all become zero and the couplings no longer

run, this is what we find at the GFP where we are left with the free theory. Another

possibility is that there also exists a fixed point in the theory space which is not a trivial

empty theory but instead one that has dynamics such that the β-functions become zero

[155]. As a result these couplings would not diverge and you would have a UV complete

theory, this is the primary idea that underpins AS.

There are some further aspects that are worth mentioning, first of all this non-trivial

fixed point would lie within the critical surface of the GFP. Ideally this surface would

not be infinite dimensional as we would lose predictivity in a slightly different, albeit

equally frustrating, way. The fewer dimensions this surface has the better as these

would be the undetermined parameters of the theory, found only via experiment.

We now turn our attention to applying this AS idea to gravity, where the necessity

of finding UV complete theories is more paramount. When one wants to consider

high energy calculations in gravity36 there are two aspects to consider. The first of

these is that the irrelevant coupling G̃ = GE2 where E is the energy scaled considered

which will diverge as we take the continuum limit and take derivatives of the energy

scale. Secondly is this problem as discussed in section 2.2 where we must introduce

counter terms order by order in perturbation theory which must be fixed by experiment,

reducing the predictivity of our theory.

A non-trivial fixed point would resolve this first problem and evidence has been

found to suggest that this is the case, which we review now. If one evaluates the

36There have been many treatments of GR as an effective QFT [156] at low energy where quantum
corrections to the Newtonian potential [157].
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β-function of G at one loop using perturbation theory one finds

Λ
d

dΛ
M2

pl = cΛ2 (6.2)

where M2
pl is the Planck mass and c is an arbitrary constant. This constant c will

be non-universal however crucially the sign of it will be dependent on the number of

space-time dimensions [158], with it being positive in 4 dimensions. The β-function for

G will then schematically be

Λ
dG

dΛ
= −16πcG2Λ2 (6.3)

and for G̃

Λ
dG̃

dΛ
= 2G̃− 16πcG̃2. (6.4)

The latter has an IR attractive fixed point at G̃ = 0 and importantly a UV attractive

non-trivial fixed point at G̃∗ = 1
8πc provided c is positive which can be calculated [29]

and was found to be the case to one loop in the low energy effective theory and is not

dependent on a choice in cut-off in any meaningful way. One could ask the question if

this treatment is valid beyond the low energy regime and is independent of the choice

in regularisation and it was found that this was the case [159–164].

A popular method in AS is to find the β-function for truncations of the action

[165–167]

ΓΛ =
n∑
i=0

gi

∫
d4x
√
gRi (6.5)

where it was found that for increasing n [155, 168], the fixed point continues to exist

and appears to be stable and the critical surface seems to have a finite number of

dimensions which abates any fears of the infinite dimensional, non-predictive case.

Before proceeding we note that many studies of AS have used the f(R) approximation

above, the results of these are too numerous to list and so we point the reader towards

a selection [114–124, 154, 169–171] as well as seminal works and reviews for this field

[113, 115, 116, 167, 172].

There is a plethora of other aspects of AS to consider, for example the coupling of

gravity to matter and how this impacts the β-function of the standard model couplings

[35, 173–176] and the application to cosmology and space-time [177–179]. To review

these subjects further here would cloud the purpose of this thesis. With this basic

structure outlined we can move forward and discuss in more detail the f(R) equations

we will be studying.
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6.2 The f(R) equations

As explained in ref. [154], a crucial choice is to take the cut-off profile to be f(R)

independent. Although it does not allow the simplifications gained by combining the

optimised cut-off function [180] with adaptive cut-off profiles (and thus used almost

exclusively in all other studies), it has two advantages. Firstly, the flow equation is

then second order in R-derivatives, rather than third order, which is crucial for the

proofs. Secondly, also crucial for the proofs (and one would assume also allowing more

accurate modelling of the physics - see the further discussion in the conclusions, section

6.6) it ensures that the resulting ODEs for the fixed point solution and eigenoperators

are free of fixed singularities. We use the same flow equation formulated in ref. [154],

and the same notation except that here we will work exclusively with quantities already

scaled by the appropriate power of k to make them dimensionless, thus avoiding the

need to signify them with tildes.

The flow equation takes the form of a non-linear partial differential equation for

fk(R) [154]:

∂tfk(R) + 2E(R) =
1

V

(
T2 + T h̄0 + T Jac1 + T Jac0

)
, (6.6)

where E(R) happens to be the equation of motion that would be deduced from the

action:

E = 2fk(R)−Rf ′k(R) . (6.7)

Here, V is the volume of space-time (scaled by k4). The space-time traces are given

by:

T2 = Tr

[
d
dtR

T
k (∆2 + α2R)

−f ′k(R)∆2 − E(R)/2 + 2RTk (∆2 + α2R)

]
, (6.8)

T h̄0 = Tr

[
8 d
dtR

h̄
k(∆0 + α0R)

9f ′′k (R)∆2
0 + 3f ′k(R)∆0 + E(R) + 16Rh̄k(∆0 + α0R)

]
, (6.9)

T Jac1 = −1

2
Tr

[
d
dtR

V
k (∆1 + α1R)

∆1 +RVk (∆1 + α1R)

]
(6.10)

T Jac0 =
1

2
Tr

[
d
dtR

S1
k (∆0 + α0R)

∆0 +R/3 +RS1
k (∆0 + α0R)

]
−Tr

[
2 d
dtR

S2
k (∆0 + α0R)

(3∆0 +R)∆0 + 4RS2
k (∆0 + α0R)

]
.

(6.11)

As explained in secs. 6.2.1 – 6.2.3, they can be written as sums or integrals over

the eigenvalues of the Laplacian operators. The latter are modified to combinations

appearing naturally in the space-time traces on a four-sphere [116]:

∆s = −∇2 − βSs R , where βS0 = 1
3 , βS1 = 1

4 , βS2 = −1
6 . (6.12)

where a term proportional to R has been added, for scalar, vector, and tensor modes
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respectively. The cut-off function r(z) must be non-negative monotonic decreasing, and

vanishing in the limit z → +∞. For simplicity the same function is chosen for all field

components so that, when scaled by the appropriate power of k, the cut-off profile takes

the form

Rφk = cφ r(∆s + αsR) , (6.13)

where cφ is a free parameter. Note that an additional correction is incorporated, this

time with coefficient αs. These αs are chosen to ensure that all modes are integrated

out as k → 0, i.e. such that all modes have positive ∆s +αsR. Their value must be de-

termined from knowledge of the spectrum on the appropriate background manifold(s),

so we return to this issue later. When written in terms of dimensionless quantities, as

is done here, the total differential of the cut-off with respect to t, takes the form

d

dt
Rφk(z) = cφmφ r(z)− 2cφ zr

′(z) , (6.14)

where mφ is the mass-dimension of Rφk (the same dimension as the Hessian it is regu-

larising).

In these equations, φ labels the field component. These are metric fluctuation

modes, namely the transverse traceless mode (φ = T ) and the gauge-invariant trace

mode a.k.a. the conformal factor field [9] (φ = h̄), and transverse vector and scalar

modes from Jacobians of the field decomposition (φ = V, S1, S2). The ghost and longi-

tudinal modes do not appear since they cancel each other in Benedetti’s scheme [116].

Actually, choosing r(z) to be the same for all these modes is more than just a

question of simplicity. The modes are all either part of the metric itself or directly

related to it via the change of variables or via BRST transformations. Although BRST

invariance of the quantum field is badly broken in the single metric approximation, it

is reasonable to assume that the approximation would be poorer if we chose to regulate

the parts in substantially different ways.

The cφ determine the sign of the cut-off terms in the functional integral. If we require

convergence of the integral we need cφ > 0. We insist on this for φ = T, V, S1, S2. The

situation is less clear however for the conformal factor. At the classical level f(R) ∼ −R
is just the Einstein-Hilbert action, and in this case the conformal factor has a wrong-

sign kinetic term (Hessian). One can see this from the denominator of the T h̄0 trace,

(6.9), where the Hessian would reduce to ∼ −∆0 in this case. Therefore the trace is

non-singular and the Functional RG is well-defined, only for ch̄ < 0 [8, 33, 77, 125].

At the quantum level and depending on the value of R, the Hessian can be of either

sign [181]. Classically the Hessian can also be of either sign if for example one includes

a positive R2 term. (This is the so-called Starobinsky term, a physically acceptable

modification of Einstein’s gravity. It corresponds to incorporating a “scalaron” [182]

at the classical level.)

In the adaptive cut-off scheme the sign adapts so as to always be consistent with
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the Hessian. In the non-adaptive scheme that we need to use here, we have to make

a choice, which will mean that the Functional RG is only applicable in the regime

where this choice is consistent. As we will see this choice profoundly influences RG

properties. Where we need to decide we will choose ch̄ > 0, as in ref. [154, 181], which

means however that this version of the flow equation does not describe the regime

corresponding to perturbative quantisation of the Einstein-Hilbert action. Then at the

end of this chapter, in section 6.5, we show what happens if we take ch̄ < 0 instead.

One small advantage of using a non-adaptive cut-off profile is that, since it does

not itself depend on fk(R), the only occurrence of the RG time derivative acting on

f(R) is the one on the LHS of the flow equation (6.6). The fixed point equation for

fk(R) = f(R) is then just given by dropping this term from the LHS, yielding a non-

linear second order ordinary differential equation for f(R):

2E(R) =
1

V

(
T2 + T h̄0 + T Jac1 + T Jac0

)
. (6.15)

Linearising around such a fixed point solution, and separating variables,

fk(R) = f(R) + ε v(R) e−θt , (6.16)

(where ε is a small parameter) gives a linear second order ordinary differential eigenvalue

equation:

− a2(R) v′′(R) + a1(R) v′(R) + a0(R) v(R) = λ v(R) , (6.17)

where the eigenvalue λ = 4− θ is the scaling dimension of the eigenoperator v(R) and

a2(R) =
144ch̄
V

Tr

[
∆2

0(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){
9f ′′(R)∆2

0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)
}2

]
(6.18)

a1(R) = 2R− 16ch̄
V

Tr

[
(3∆0 −R)(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){
9f ′′(R)∆2

0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)
}2

]

+
2cT
V

Tr

[
(R/2−∆2)(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

{−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R)}2

]
(6.19)

a0(R) =
32ch̄
V

Tr

[
(2r(∆0 + α0R)− (∆0 + α0R)r′(∆0 + α0R)){

9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R)

}2

]

+
2cT
V

Tr

[
(2r(∆2 + α2R)− (∆2 + α2R)r′(∆2 + α2R))

{−f ′(R)∆2 − E(R)/2 + 2cT r(∆2 + α2R)}2

]
. (6.20)

Notice that the trace in a2(R) is positive thanks to the properties of r(z). This is the

reason for the sign in (6.17), since a2 then has the same sign as ch̄ and in particular

is positive for our choice ch̄ > 0. The RG eigenvalue θ is the scaling dimension of the

corresponding coupling. It has positive/zero/negative real part if the eigenoperator
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v(R) is relevant/marginal/irrelevant.

One of our main goals is to explore the applicability of Sturm-Liouville theory to

the eigenoperator equation (6.17) and when applicable, use it to prove properties of

the eigenoperator spectrum [154, 183]. The derivation of the traces assumes that the

background metric corresponds to a Euclidean-signature space of maximal symmetry.

Globally, discrete choices are still possible, for example the real projective space RP 4

(R > 0), torii (R = 0), and analogous manifolds when R < 0. However, we will see

that if Sturm-Liouville theory is to be applicable, then the only sensible choice is to

incorporate a kind of smooth topology change between R > 0, R = 0 and R < 0

spaces. This is not possible unless we take maximal symmetry to apply also globally,

as is standard practice in asymptotic safety approximations. Then R > 0 corresponds

to the four-sphere, R = 0 to R4, and R < 0 to the four-dimensional hyperboloid.

Spin s Eigenvalue λn,s Multiplicity Dn,s

0 n(n+3)−4
12 R (n+2)(n+1)(2n+3)

6

1 n(n+3)−4
12 R n(n+3)(2n+3)

2

2 n(n+3)
12 R 5(n+4)(n−1)(2n+3)

6

Table 6.1: Multiplicities and eigenvalues for the four-sphere space-time traces for the
shifted Laplacians in (6.12). They follow from those for the unshifted Laplacians [184–
186] .The sums for T2 and T Jac1 begin at nφ = 2, for T Jac0 at nφ = 1, and for T h̄0 at
nφ = 0 [116].

6.2.1 Sphere

We start on the four-sphere, which was the space-time explicitly treated in [154]. It

has space-time volume V = 384π2/R2, and there the space-time traces are sums over

the discrete set of eigenvalues of the corresponding Laplacian:

TrW (∆s) =
∞∑

n=nφ

Dn,sW (λn,s) . (6.21)

The multiplicities Dn,s, eigenvalues λn,s, and lowest index nφ, are given in table 6.1

(and its caption).

Following [116, 187], we use the transverse-traceless decomposition of the metric

fluctuations, given by

hµν = hTµν +∇µξν +∇νξµ +∇µ∇νσ +
1

d
gµν h̄ (6.22)

with the component fields satisfying

gµνhTµν = 0, ∇µhTµν = 0, ∇µξµ = 0, h̄ = h+ ∆σ, h = gµνh
µν (6.23)
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and ∆ = −∇2. And then we have to be careful not to include the fictitious modes in the

sum. From our decomposition for the metric fluctuations [120], we see that we should

exclude two sets of modes that give no contribution to hµν . First, we should exclude

the Killing vectors, satisfying ∇µξν +∇νξµ = 0. Second, we shoud leave out also the

constant scalar modes σ = constant. A similar set of modes should be excluded also

from the ghosts and auxiliary fields, as these are all fields introduced hand-in-hand with

ξ and σ. The only fields for which we retain all the modes are hTµν and h̄. Note that,

differently from [115, 167], we do not exclude the scalar modes corresponding to the

conformal Killing vectors Cµ = ∇µσ, i.e. those scalar modes satisfying∇µ∇νσ = 1
dgµνσ.

It is indeed clear that in our decomposition [120] such modes do not contribute to hµν .

This can be seen also from the point of view of the ghosts: the ghost modes should

be in one-to-one correspondence with the modes of the gauge parameter (εTµ , ε), and

from Lεgµν = ∇µεTν +∇νεTµ + 2∇µ∇νε it is obvious that there is no reason to exclude

the scalar mode ε corresponding to the conformal Killing vectors. As a consequence

the tensor and vector sums will start at n = 2, while all the scalar sums will begin at

n = 1, except for the h̄ mode starting at n = 0, as in table 6.1 above.

As is clear from the cut-off profile formula, (6.13), the αs parameters allow us to

shift the action of the cut-off up or down relative to the tower of eigenvalues, so as to

ensure all the modes are passed as k is lowered to k → 0+. Clearly this requires that the

lowest mode λnφ,s + αsR is positive. As noted in ref. [154], it is safe to choose α2 = 0

and α1 = 0, but to implement this condition in the physical scalar (a.k.a. conformal

factor) sector we need to choose37 α0 > 1/3.

At this point we recognise the need to specialise to smooth (infinitely differentiable)

cut-off functions r(z). Given that the eigenvalues are discrete set, proportional to R,

cut-off functions that are not smooth, for example the optimised one r(z) = (1−z) θ(1−
z) [180], will lead to points of limited differentiability which moreover accumulate as

R → 0. It may still be possible to find a suitable weak solutions to the fixed point

and eigenoperator equations in this circumstance but, given that with a non-adaptive

cut-off profile there is no advantage to using the optimised cut-off, there is no point

in pursuing this possibility further. In fact one should bear in mind that cut-offs

involving the Heaviside θ function have a number of related unpleasant effects38 that

strictly speaking should rule them out as sensible choices, even if these problems are

not obvious at current levels of approximation. On the other hand, any smooth profile

r(z) will do if it decays sufficiently fast at large z. In our case we only need to guarantee

the convergence of the space-time traces above. Later we will specialise to the popular

37In this sense the modes are not treated equally. There appears to be no solution that does treat them
‘equally’ at this level of detail, given constraints that we will also have to satisfy on the hyperboloid,
cf. eqn. (6.35).

38In real space the Kadanoff blocking functions are not truly quasi-local (they have power-law tails)
and IR regulated vertices have no Taylor expansion in momentum (derivative expansion) beyond some
low order.
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choice [105]

r(z) =
z

exp(azb)− 1
, a > 0 , b ≥ 1 . (6.24)

For any non-vanishing R > 0 the sums are then rapidly convergent. However even if we

restrict ourselves to four-spheres, we still need to understand the limiting case R→ 0+,

which takes us to the boundary of this set. There, the sums go over to an integral and

the equations go over to ones in flat space.

6.2.2 Flat space

This limit can be achieved by setting p = n
√
R/12, and then taking R → 0 whilst

keeping p fixed. From table 6.1, it is clear that all the Laplacians ∆n,s → p2, i.e. go

over to their flat space limit where we recognise that p is the flat space momentum. The

multiplicities become p3(12/R)3/2 up to a numerical factor, while the cut-off profiles

Rφk → cφ r(p
2). Putting all this together gives for the flow equation (6.6),

∂tfk(0) + 4fk(0) =
1

8π2

∫ ∞
0
dp p3

{
16ch̄

2r(p2)− p2r′(p2)

9f ′′k (0) p4 + 3f ′k(0) p2 + 2fk(0) + 16ch̄r(p
2)

+ 10cT
r(p2)− p2r′(p2)

−f ′k(0) p2 − fk(0) + 2cT r(p2)
− 3cV

r(p2)− p2r′(p2)

p2 + cV r(p2)

+ cS1

r(p2)− p2r′(p2)

p2 + cS1r(p
2)
− 4cS2

2r(p2)− p2r′(p2)

3p4 + 4cS2r(p
2)

}
.

(6.25)

For this to be well defined, fk(0), f ′k(0), and f ′′k (0), need to be such that neither

denominator vanishes (at some p2) in its first two terms. This already provides strong

constraints if the solution is to exist for all k, which however are soluble locally. The

strongest constraints arise if the cut-off function r(z) diverges as z → 0, for example in

the cases b > 1 in (6.24). In the tensor mode trace, cT r(p
2)→ +∞ as p→ 0 and thus

the denominator is positive. On the other hand if f ′k(0) is non-vanishing, as p→∞ the

sign of the denominator is given by −f ′k(0). Thus we see that to avoid a singularity we

must always have f ′k(0) ≤ 0 (strictly less than zero is the physically motivated choice

since this corresponds to positive Newton’s constant at zero momentum). Similarly we

see that fk(0) is bounded above. From the h̄ trace we see that since we chose ch̄ > 0, we

must have f ′′k (0) > 0, while f ′k(0) must also be bounded below by some negative value.

If r(0) is finite, for example the case b = 1 in (6.24), then other possibilities arise since

f ′k(0) can be positive if fk(0) > 2cT r(0), while the h̄ trace would then only require

that f ′′k (0) > 0. These considerations inform numerical searches, which we describe in

section 6.6.

For the fixed point solution fk(R) = f(R), eqn. (6.25) determines f ′′(0) given

boundary conditions f(0) and f ′(0) such that all three lie within the bounds above.

It then provides us with a Taylor expansion approximant to a putative fixed point
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solution:

f(R) = f(0) + f ′(0)R+
1

2
f ′′(0)R2 + o(R2) . (6.26)

(In fact taking the expansion further is not straightforward since it then depends on

the error in approximating the sums by integrals but these are not captured correctly

by Euler-Maclaurin corrections.) With these choices, the eigenoperator equation coef-

ficients have finite limits:

a2(0) =
18ch̄
π2

∫ ∞
0
dp p7 2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

, (6.27)

a1(0) =

∫ ∞
0
dp p5

{
5cT
4π2

r(p2)− p2r′(p2)

{−f ′(0) p2 − f(0) + 2cT r(p2)}2

− 6ch̄
π2

2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

}
, (6.28)

a0(0) =

∫ ∞
0
dp p3

{
5cT
4π2

r(p2)− p2r′(p2)

{−f ′(0) p2 − f(0) + 2cT r(p2)}2

− 4ch̄
π2

2r(p2)− p2r′(p2)

{9f ′′(0) p4 + 3f ′(0) p2 + 2f(0) + 16ch̄r(p
2)}2

}
, (6.29)

the eigenoperator equation itself then just being given by setting R = 0 in (6.17).

Furthermore a2(0) is non-vanishing since the integrand is positive definite.

The above implies that the Sturm-Liouville weight function is finite and non-

vanishing at R = 0:

w(R) =
1

|a2(R)|
exp−

∫ R

0
dR′

a1(R′)

a2(R′)
, (6.30)

(setting the lower limit in the integral to zero without loss of generality, and taking

the modulus in the prefactor so that ω is positive whatever sign of ch̄ we choose.)

Multiplying the eigenoperator equation (6.17) by the weight function (a.k.a. the Sturm-

Liouville measure) we can cast it in Sturm-Liouville form:

−
(
a2(R)w(R)v′(R)

)′
+ w(R)a0(R)v(R) = λw(R)v(R) . (6.31)

However Sturm-Liouville properties only follow if the differential operator on the LHS

is self-adjoint. Taking v = vj(R), multiplying by vi(R), and integrating over R, this

means in particular that boundary terms must vanish when integrating by parts. We

see that we thus require the eigenfunctions to be square integrable under the weight

function, and if we work only with fixed topology (here four-spheres), then for any two

eigenfunctions vi(R) and vj(R), we get from the R = 0 boundary:

w(0)
(
vi(0)v′j(0)− vj(0)v′i(0)

)
= 0 , (6.32)

the so-called bilinear concomitant. Therefore we would have to either choose all eigen-
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operators to satisfy Dirichlet boundary conditions (vi(0) = 0 ∀i), or all eigenoperators

to satisfy Neumann boundary conditions (v′i(0) = 0 ∀i). These conditions lack any

physical or other mathematical motivation, in particular in the full theory they cannot

be respected beyond linearised order. Our remaining option is to eliminate the R = 0

boundary, requiring the solution to extend to all real values of R.

In fact we will get extra motivation for such choices when we analyse the number of

fixed point solutions (or rather the dimension of the space of such solutions) in section

6.3. For this latter reason, the f(R) equations of ref. [116] were extended in ref. [113]

to all real R, by analytic continuation. Here we do not have the option of analytic

continuation if we insist on using the same cut-off function r(z) for all modes. The

reason is that ∆n,s, being proportional to R, would change sign. Apart from the cut-

off, this makes the denominator in T Jac1 , and in the S1 term in T Jac0 , change sign, cf.

(6.10) and (6.11) respectively. By choosing sufficiently large n in the modes in table

6.1, we see that the denominators will then vanish already at small negative R making

these traces ill-defined, unless we take r(z) itself to be odd in z (using e.g. (6.24) with

b = 2). However if we do take r(z) odd, then instead the S2 term in T Jac0 will diverge

already at small negative R by similar arguments. (The other two traces also have their

problems but since they involve f(R), the demonstration is more involved.)

6.2.3 Hyperboloid

This leaves us with the remaining alternative, which is to match into the equations

on a manifold with R < 0. As explained earlier, we take for this the four-dimensional

hyperboloid. Here −∇2 is positive definite. The volume V is infinite, but the flow

equation (6.6) still makes sense since the space-time traces on the RHS trivially contain

the same factor [188]:

1

V
TrW (∆s) =

2s+ 1

8π2

(
−R

12

)2 ∫ ∞
0
dλ
(
λ2 +

[
s+ 1

2

]2)
λ tanh(πλ)W (∆λ,s) ; (6.33)

the spectrum is now continuous, indexed by λ:

∆λ,s =

(
λ2 + s+

9

4

)(
−R

12

)
− βSs R = −R

12
λ2 − βHs R , (6.34)

where thus

βH0 =
25

48
, βH1 =

25

48
, βH2 =

9

48
. (6.35)

Recalling the reason for the extra endomorphism in the cut-off profiles (6.13), we see

that we can continue to set α2 = 0 and α1 = 0 as we wanted for the four-sphere, but

the lower bound α0 > 1/3 is now joined by an upper bound α0 < 25/48 [154] so that

all modes ∆λ,0 + α0R > 0.

The equations at the R → 0− boundary of this set of hyperboloids, are found by

setting p = λ
√
−R/12 and holding p fixed, so that once again the Laplacian goes over
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to its flat space expression ∆λ,s → p2. It is straightforward to verify that the flow

equation (6.6) and eigenoperator equation coefficients (6.18)–(6.20) then go over to the

flat space expressions (6.25) and (6.27)–(6.29) respectively. Thus we see that the flow,

fixed point, and eigenoperator, equations can be smoothly defined over the combined

set of all four-spheres, all four-hyperboloids, and R4. The R > 0 and R < 0 parts

of the solutions can be made to match as Taylor expansions around R = 0 up to the

second derivative, but not beyond that. In fact the hyperboloid has a straightforward

smooth limit39 whereas f ′′′(0) on the sphere side depends also on corrections involved

in converting the sums over eigenvalues into integrals. In this way we have incorporated

a smooth topology change mechanism through these three spaces.

To apply Sturm-Liouville theory, we are left only to establish acceptable behaviour

at large R. In particular, as we have already seen, we need the eigenoperators v(R) to

be square integrable under the Sturm-Liouville weight w(R). Whilst this condition is

natural for Sturm-Liouville theory, and was assumed in ref. [154] for that reason, the

question is whether this makes sense in quantum gravity.

6.3 Asymptotic behaviour of solutions at large R

We therefore turn now to the asymptotic behaviour of solutions at large R. This large

field analysis also allows us to characterise a number of aspects of the solution space

for both fixed points and their eigenoperator spectrum [62, 77, 111, 113, 189–192] and

in particular allows us to answer the question above. We will see from section 6.5 that

the answer depends very much on the choice of sign for ch̄.

6.3.1 Large R dependence of fixed points and how to count them

We start with the asymptotic behaviour of the fixed point solution f(R). We need

to know this in order to establish the large R behaviour of the coefficients ai(R) in

the eigenoperator equation (6.17) which in turn will allow us to analyse the asymp-

totic behaviour of the eigenoperators. However as we will see, it is important also for

determining features of the fixed point solution space.

Beginning with the sphere, and given a rapidly decaying cut-off profile r(z), at first

sight one can neglect the traces on the RHS of the fixed point equation (2.22) at large

R. One would then conclude that f(R) = AR2 plus rapidly decaying corrections [154],

for some undetermined coefficient A, this being the solution of just the LHS, E(R) = 0.

However this is not correct because terms in the traces whose denominator would vanish

without a cut-off, yield a contribution on the RHS proportional to

1

Rφk(z)

d

dt
Rφk(z) = mφ − 2z

d ln r(z)

dz
, (6.36)

39Solutions can be straightforwardly developed to all-orders in the Taylor expansion around R = 0,
with coefficients given by finite integral expressions over p similar to those in (6.25), (6.27)–(6.29).
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where we used (6.14). There are three such terms, the n = 0 , n = 1 components from

T h̄0 c.f. (6.9), and the n = 1 S2 (second) component of T Jac0 c.f. (6.11).

To see this for the n = 0 case, note that from table 6.1, ∆0 = −R/3. Thus the

denominator of this term in the sum (6.9) is given by

9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16Rh̄k(∆0 + α0R) =

R2f ′′(R)−Rf ′(R) + E(R) + 16Rh̄k([α0 −
1

3
]R).

(6.37)

Now, using the assumed leading asymptotic behaviour f(R) = AR2, we see that the

first two terms cancel each other, and likewise E(R) vanishes (as already mentioned),

so we are left only with the cut-off term in the denominator. Therefore this term takes

the form of (6.36) with z set equal to z = [α0 − 1
3 ]R.

Now, turning to the n = 1 components, note that from table 6.1, both ∆0 and

∆1 vanish for n = 1. In (6.9), apart from the cut-off term the whole denominator

therefore vanishes (because E(R) vanishes). In (6.11) it is the second component that

has a vanishing denominator apart from the cut-off term. (The S1 (first) component

does not suffer from the same problem because there is also the +R/3 part in the

denominator). Now notice from (6.13), that the cut-off dependence is the same for

these n = 1 contributions namely r(α0R). Furthermore the cφ in (6.12) cancels between

numerator and denominator and the numerical factors in front of the cut-off in (6.9)

and (6.11) are such that these two n = 1 contributions then exactly cancel each other.

Altogether then, effectively the only term on the right hand side of (6.6) that does

not vanish asymptotically is the (6.36) type term with z = [α0 − 1
3 ]R coming from the

n = 0 component of the T h̄0 trace. This is a problem however, since mh̄ = 4 and the

second part of (6.36) is necessarily positive because r(z) is a monotonically decreasing.

Recalling the factor 1/V = R2/384π2 on the right hand side of the fixed point equation

(6.15), we see that the n = 0 component of T h̄0 contributes a term that grows at least

faster than R2. For example in the best-case scenario the right hand side goes as ∼ R2

but that implies f(R) ∼ R2lnR so that the left hand side is left with an E(R) ∼ R2 to

balance the contribution from the n = 0 contribution of T h̄0 .

Therefore we now assume that f(R) actually grows faster than R2 at large R. But

this means we need to check again which terms in the traces have denominators that

vanish without a cut-off. By inspection none of the traces that depend on f(R) can

now have this issue. In particular the n = 1 component of the T h̄0 trace no longer has

a denominator that could vanish, because E(R) no longer vanishes at large R, while

for the n = 0 component the f ′′(R) part in the denominator now dominates at large

R. So the only contribution that survives on the right hand side at large R, is now the

n = 1S2 component of T Jac0 .

Keeping just this term it turns out one can solve the fixed point equation in closed

form, thus obtaining the correct asymptotic behaviour for general cut-off function r(z).
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To see this we just use (6.36), read off from table 6.1 that the multiplicity of the

n = 1 S2 component is D1,0 = 5, note that CS2 = 4 and that 1/V = R2/384π2 and

thus, keeping only this leading term on the right hand side of the fixed point equation

(6.15), we have

2f(R)−Rf ′(R) =
R2

768π2

[
− 10 + 5α0R

r′(α0R)

r(α0R)

]
. (6.38)

This is exactly soluble. Indeed dividing through by R3 it can be rewritten as

− d

dR

(
f(R)

R2

)
=

1

768π2

[
− 10

R
+ 5

d

dR
lnr(α0R)

]
, (6.39)

which can be immediately integrated to give

f(R) =
5R2

768π2
ln

R2

r(α0R)
+AR2 + o(R2) as R→ +∞, (6.40)

where we included the integration constant A and finally we noted that terms that

grow slower than R2 will be generated by iterating this asymptotic solution to higher

orders, hence the o(R2) part.

As this point we have succeeded in finding consistent asymptotics. f(R) does grow

faster than R2 as per our assumption, and using such a form in the right hand side of

the fixed point equation we find the n = 1S2 component of T Jac0 dominates at large R,

which leads us back to the above equation.

Now notice that in (6.40) the ln r term actually dominates, i.e. the large R behaviour

is dominated by cut-off-dependent effects. For example using the cut-off (6.24), viz.

r(z) = z/(exp(azb)− 1) such that a > 0, b ≥ 1, we find:

f(R) =
5aαb0
768π2

R2+b+
5

768π2
R2 lnR+AR2+

16ch̄
5ab(1 + b)αb0

(
α0 −

1

3

)
e−a(α0− 1

3)
b
Rb+· · · ,

(6.41)

where the ellipses stand for faster decaying terms. Here we adjusted A to absorb a

contribution to R2, and then substituted the solution back into the fixed point equation

to isolate the next leading correction. (This exponentially decaying correction comes

from the n = 0 term in the T h̄0 trace. All other corrections decay faster provided that

α0 <
5
6 + α1. This is satisfied thanks to the restrictions imposed below (6.35).)

Recalling that R is the dimensionless version, i.e. the physical curvature divided

by k2, we see that the large R limit may be viewed as holding the physical curvature

fixed and integrating out all modes by sending k → 0. Therefore it ought to provide

us with (an approximation to) the physical Legendre effective action, i.e. the universal

physical equation of state as a function of R [111]. The cut-off dependence however

obstructs any attempt to extract physics from this limit. This problem is not seen in

the Local Potential Approximation in scalar field theory, where an approximation to
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the equation of state can be successfully computed in this way [183], and as we will

see it is not a problem on the hyperboloid. Since the issue arises from the fact that

the n = 1 S2 modes in the scalar Jacobian have vanishing eigenvalue, it suggests that

further research should be done to understand if/how these modes can be better treated

on a sphere.

Although the fixed point equation (2.22) is a second order ODE free of fixed singu-

larities, the asymptotic solution we have found contains only the one free parameter:

A. It is important to ask where the other parameter has gone. To find out, we lin-

earise the fixed point equation around the asymptotic solution. This just gives the

eigenoperator equation (6.17) for a marginal deformation, δf(R) = ε v(R) i.e. such that

θ = 0 or equivalently λ = 4. As a linear second order ODE, it must have two linearly

independent solutions. These can be found in the large R limit. Inspecting (6.18) –

(6.20), we note that a1(R) = 2R to leading order, while both a2(R) and a0(R) vanish

asymptotically. We can therefore neglect a0 and write

4 δf(R)− a1(R) δf ′(R) = −a2(R) δf ′′(R) . (6.42)

We know one solution to this already: δf(R) = δAR2 + · · · , where the RHS is only

involved in supplying one of the subleading corrections. The other solution must thus be

such that at leading order, δf ′′(R) cannot be neglected. This tells us higher derivatives

dominate over lower derivatives so we know that for the other solution δf(R) can instead

be neglected (to leading order). The equation is then exactly soluble since it can be

rewritten as

d

dR
ln δf ′(R) =

a1(R)

a2(R)
=⇒ δf(R) = B

∫ R

dR′ exp

∫ R′

dR′′
a1(R′′)

a2(R′′)
, (6.43)

where B is the putative missing parameter. For the explicit form we need a2. It gets

its leading contribution from the same source as the leading correction (6.41) to the

terms displayed in (6.40). For the same cut-off choice (6.41), we find asymptotically

a2(R) =
24576π2ch̄

25ab(1 + b)2α2b
0

(
α0 −

1

3

)1+b

R1−b e−a(α0− 1
3)
b
Rb + · · · . (6.44)

Recalling that a1 = 2R to leading order, we can evaluate the integrals by successive

integration by parts, as an asymptotic series and where each term is given in closed

form. Since we will use this strategy many times let us sketch it on the indefinite

integral: ∫
dRG(R) eF (R) =

G(R)

F ′(R)
eF (R) −

∫
dR

(
G(R)

F ′(R)

)′
eF (R) . (6.45)

If F (R) grows at least as fast as R for large R, where F is either sign, and G(R) grows

or decays slower than an exponential of R, then the integral on the right is subleading

compared to the integral on the left. Iterating this identity then evaluates the integral
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in the large R limit as eF (R) times an asymptotic series, the first term on the RHS

being the leading term.

Using (6.44) this allows us to evaluate the inner integral in (6.43). Its exponential is

then the integrand for the outer integral, such that the asymptotic series now provides

subleading multiplicative corrections. Up to such corrections, the integrand is actually

1/ω(R′), as can be seen from eqn. (6.30). Applying the same integration by parts

strategy to the outer integral does not change the leading exponential behaviour, and

thus we see that up to subleading multiplicative corrections δf(R) ∼ B/ω(R) where we

find the Sturm-Liouville weight in the same approximation to be:

ω(R) ∼ exp

{
−25(1 + b)2α2b

0

12288π2ch̄

(
α0 −

1

3

)−1−2b

R ea(α0− 1
3)
b
Rb

}
. (6.46)

Notice that the sign of ch̄ is crucial. Assuming ch̄ > 0, the linearised perturbation

δf(R) ∼ B/ω(R) is a rapidly growing exponential of an exponential. Taking the R →
+∞ limit, it is not a small perturbation to our previous result (6.41), no matter how

small we choose B, thus invalidating the procedure used to derive it.40 Evidently it

cannot itself satisfy the fixed point equation asymptotically (it would have to solve just

the LHS to do that). Therefore there is asymptotically only a one-parameter set of

solutions namely (6.41).

The dimension of the fixed point solution space is determined by the asymptotic

behaviour [111], thus unless further conditions are imposed we have (some discrete

number of) lines of fixed points. Since it is not sustainable to try and impose a condition

at R = 0, cf. the discussion on eigenoperators below (6.32), we need to continue through

smooth topology change (as defined at the end of section 6.2) into the hyperboloid side,

if we are to reduce the dimension of the fixed point solution space from the current

phenomenologically disappointing answer.

Turning to the hyperboloid, the situation is much more straightforward. The as-

sumption that for rapidly decaying cut-off profile r(z) one can neglect the traces (6.8)

– (6.11) at large (negative) R, is now correct for the ansatz f(R) = AR2, thanks to the

Laplacian eigenvalues (6.34) being bounded below sufficiently by the positive endomor-

phisms to avoid vanishing denominators, cf. (6.35). Since the ansatz solves the LHS of

the fixed point equation, it forms the start of the large R asymptotic series solution.

The traces provide corrections that decay thanks to the cut-off profiles’ dependence on

∆λ,s + αsR > (βHs − αs)|R|. From the α and β parameter values, cf. (6.35) and below

it, we see that

0 < βH0 − α0 < 9/48 = βH2 − α2 < βH1 − α1 (6.47)

and thus the leading corrections come from the scalar traces T h̄0 and T Jac0 . From the

power of ∆0 in (6.11) it is the S1 part that is leading. After some tedious manipulation

40It can be understood as the linearised precursor to the solution ending in a (movable) singularity
[62, 77, 111, 113, 189–192].
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we find:41

f(R) = AR2+
cS1

96
√

3πa3b3

(
25

48
− α0

) 5−3b
2

(−R)2− 3b
2

{
1 +O

(
|R|−

1
2

)}
e−a[(α0− 25

48)R]
b

+· · · ,

(6.48)

as R → −∞, all scalar traces (thus also A) contributing to the O
(
|R|−

1
2

)
term, and

the ellipses standing for terms with faster decaying exponentials. Again we ask where

the other parameter has gone. The analysis proceeds in a similar fashion to that on

the sphere. We have again the asymptotic perturbed fixed point equation (6.42) except

now:

a2(R) =
4ch̄

81A2
√

3πab

(
25

48
− α0

) 5−b
2

(−R)1− b
2 e−a[(α0− 25

48)R]
b

+ · · · (6.49)

(the ellipses being faster decaying terms). A small perturbation to (6.48) gives (6.43),

and thus we have δf(R) ∼ B/ω(R) again, except now the Sturm-Liouville weight is

ω(R) ∼ exp

{
−81A2

2ch̄

√
3π

ab

(
25

48
− α0

)− b+5
2

(−R)1− b
2 ea[(α0− 25

48)R]
b

}
(6.50)

(where again we neglect also subleading multiplicative terms). As R → −∞, such a

δf(R) is a rapidly growing exponential of an exponential, and thus asymptotically we

have only the one-parameter set of solutions (6.48).

These results allow us to draw an important conclusion. Each of the hyperboloid

and sphere asymptotic solutions impose one constraint.42 Since we thus have two

boundary conditions imposed on a second order ordinary differential equation we have

at most a discrete set of solutions. A priori this could be no fixed point, or a unique

fixed point (the phenomenologically preferred answer), a larger number of fixed points,

or a countable infinity of fixed points. As we will see in section 6.5, the conclusion is

very different if we choose the conformal factor cut-off to be negative, i.e. ch̄ < 0.

6.3.2 Large R dependence of eigenoperators

Since the eigenoperator equation (6.17) is linear and second order, there are guaranteed

to be two independent solutions for any RG eigenvalue λ. Whether they are acceptable

or not, crucially depends on their large field behaviour [20, 66, 77, 183, 192]: in par-

ticular whether for small but fixed ε the exponential dependence in RG time in (6.16)

remains valid at large R. In scalar field theories this criterion explains why the correct

eigenoperator solutions are the ones with power-law large field behaviour and thus why

the RG eigenvalues are quantised [20, 62, 66, 183, 189–192]. It was also applied in

41Recall that α0 < 25/48.
42E.g. Rf ′(R) − 2f(R) = Rf ′asy(R) − 2fasy(R), for some suitably large R, where fasy is (6.41) for

R > 0, or (6.48) for R < 0, and the RHS has no free parameters since the AR2 term is cancelled out
in this linear combination.
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ref. [77] to determine the eigenoperator spectrum around non-trivial fixed points in a

conformal truncation to quantum gravity, and in ref. [113] to an f(R) approximation

with adaptive cut-off [116].

We have just derived the asymptotic behaviour of f(R) for a fixed point solution

to the flow equation (6.6) with non-adaptive cut-off. Substituting this into the corre-

sponding eigenoperator equation (6.17) allows us to determine the large R behaviour

of solutions v(R). We will use the above insight to determine which of these solutions

are valid.

In fact, since with non-adaptive cut-off, RG time derivatives of fk(R) appear only

the once, as ∂tfk(R) on the LHS of the flow equation (6.6), one can immediately

read off from the asymptotic form of the perturbed fixed point equation (6.42), the

corresponding asymptotic form of the eigenoperator equation (6.17):

λ v(R)− 2Rv′(R) = −a2(R) v′′(R) , (6.51)

where asymptotically a2 is given by (6.44) or (6.49) as appropriate. One solution solves

just the LHS:

v(R) ∝ |R|
λ
2 + · · · , (6.52)

where the ellipses stand for subleading corrections including those supplied by the RHS,

and we note that the solution is determined only up to a constant of proportionality.

The other solution must be such that at leading order, v′′(R) cannot be neglected. For

the same reasons as before, asymptotically the ODE then collapses to (6.43) (with δf

replaced by v) and thus these solutions satisfy v(R) ∼ 1/ω(R), with ω(R) being given

by (6.46) and (6.50) on the sphere and hyperboloid respectively.

Now we ask whether these solutions are actually valid. The linearised solution

(6.16) is meant to describe the RG flow ‘close’ to the fixed point. For any fixed ε, if

|v(R)/f(R)| → ∞ as R → ±∞ that is not necessarily true since linearisation is no

longer valid. In this case we set

fk(R) = f(R) + ε vk(R) , (6.53)

and ask for the correct evolution for vk(R) at large R. We see that for large negative

R we can neglect the RHS of the flow equation (6.6). For large positive R we can

neglect the RHS of the flow equation except for the n = 1 S2 component of T Jac0 ,

which however just cancels the contributions from the LHS that grow faster than R2

resulting from f(R), cf. (6.41). Since in fact the O(R2) part of f(R) also vanishes from

the LHS (on both sphere and hyperboloid), we see that in the large R regime we have

∂tvk(R)− 2Rv′k(R) + 4 vk(R) = o(R2) . (6.54)

Any part of vk(R) growing at least as fast as R2 is then easily solved for, and gives
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mean-field evolution involving some arbitrary function v:

vk(R) = e−4t v(R e 2t) + o(R2) . (6.55)

It will be the same function v that we introduced in the linearised solution (6.16)

if we require as boundary condition, vk(R) = v(R) at k = µ. The question that

remains is whether the RG evolution (6.55) is consistent with what we were assuming

by linearising.

For the power-law solution (6.52), linearisation is valid at large |R| if and only if

λ 4. This follows from the hyperboloid fixed point asymptotics (6.48), the sphere side

(6.41) requiring only the weaker constraint, λ 4 + 2b . On the other hand if λ > 4,

we use the general perturbation (6.53), finding the solution (6.55). Substituting the

explicit form (6.52) of the boundary condition we get

vk(R) = v(R) e−θt + o(R2) , (6.56)

where θ = 4 − λ, i.e. we reproduce the linearised solution (6.16). We conclude that

asymptotically, power-law eigenoperators (6.52) are valid solutions for any λ. Their t

evolution is multiplicative and given by the flow of a conjugate coupling g(t) = ε e−θt,

cf. (6.16).

On the other hand, the solutions that behave asymptotically as v(R) ∼ 1/ω(R), are

growing exponentials of exponentials. Linearisation is not valid at large |R|, where the

t dependence is given instead by (6.55). Now we cannot separate out the t dependence.

Therefore such perturbations cannot be regarded as eigenoperators evolving multiplica-

tively. Excluding them leads to quantisation of the spectrum. The large R dependence

(6.52) provides a boundary condition on both the sphere and the hyperboloid side, and

linearity provides a further boundary condition since we can choose a normalisation

e.g. v(0) = 1. These three conditions over-constrain the eigenoperator equation (6.17)

leading to quantisation of λ, i.e. to a discrete eigenoperator spectrum.

Again we will see in section 6.5, that the conclusion is very different if we choose

the conformal factor cut-off to be negative, i.e. ch̄ < 0.

6.3.3 Square integrability under the Sturm-Liouville weight

Now we can return to the question posed at the end of section 6.2: whether it makes

sense for eigenoperators v(R) to be square-integrable under the Sturm-Liouville weight

w(R), cf. (6.30), which is the remaining condition that must be satisfied in order for

Sturm-Liouville theory to be applicable. We have seen that on both manifolds, ω(R) is

rapidly decaying for large curvature. We saw that the eigenoperator solutions that are

actually allowed are the ones that grow as a power, (6.52). Now we see that they are

square integrable under this measure. On the other hand the solutions v(R) ∼ 1/ω(R)

that we already excluded on physical grounds, satisfy ω(R) v2(R) ∼ 1/ω(R) which thus
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diverges at large R. These perturbations are therefore not square integrable under the

measure. We conclude that the condition of square-integrability picks out the correct

solutions from the eigenoperator equation and that Sturm-Liouville theory is therefore

applicable.

Although these formulae have been derived for the specific choice of exponential

cut-off (6.24), it is immediate to see that these qualitative properties hold true for

a wide range of cut-offs, independent of their details. Indeed the fact that a2(R) is

decaying for large |R| with sign given by ch̄, and that a1(R) = 2R plus decaying terms,

is enough to ensure that ω(R) for ch̄ > 0 is a rapidly decaying exponential, as follows

from its formula (6.30). This behaviour also ensures that δf(R), the non-power-law

solutions v(R), and 1/ω(R), are all equal up to subleading multiplicative corrections.

In section 6.5, we will see that if we choose ch̄ < 0, these solutions still hold but lead

to profoundly different scenarios.

6.4 Liouville normal form

We have seen that Sturm-Liouville theory is (only) applicable to the quantised spectrum

of eigenoperators that have power-law asymptotic behaviour in R, given by (6.52), and

which we determined already from RG properties were the physical eigenoperators. The

consequences of Sturm-Liouville theory for this spectrum can be seen by a standard

transformation that takes the linear second order ODE (6.17) to so-called Liouville

normal form. For this case we set the coordinate to be (taking x = 0 at R = 0 without

loss of generality):

x =

∫ R

0

1√
a2(R′)

dR′ . (6.57)

It is well defined since we have seen that a2(R) is strictly positive at all finite R.

Furthermore since a2(R) vanishes at large |R| we see that x→ ±∞ as R→ ±∞. Then

defining the ‘wave-function’

ψ(x) = a
1
4
2 (R)w

1
2 (R) v(R) , (6.58)

(6.17) becomes

− d2ψ(x)

dx2
+ U(x)ψ(x) = λψ(x) , (6.59)

which is nothing but the time-independent Schrödinger equation at energy λ (and mass
1
2). This is Liouville normal form. After some manipulation, one finds that the potential

is given by [154]:

U(x) = a0 +
a2

1

4a2
− a′1

2
+ a′2

( a1

2a2
+

3a′2
16a2

)
− a′′2

4
(6.60)

(the terms on the RHS being functions of R).
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In ref. [154], it was noted that this potential has no singularities at finite x whilst

from the asymptotic behaviour of the ai(R), the second term dominates for x → ±∞
such that U(x)→ +∞, leading to the conclusion that there is only a quantised bound-

state energy spectrum λ = λn (n = 0, 1, 2, · · · ) bounded from below with the only

accumulation point at infinity (following standard analysis of its Green’s function, see

e.g. [193]). In other words there are only a finite number of (marginally) relevant

couplings such that θn = 4 − λn ≥ 0, and infinitely many irrelevant couplings. These

latter have scaling dimensions θn → −∞ as n→∞.

There is a hidden assumption here, namely that ψ(x) has appropriate behaviour

as x→ ±∞ for the Schrödinger equation interpretation to make sense. For this, ψ(x)

should be either square-integrable, corresponding to a bound state, or correspond to

an unbound state such that ψ(x) = ψk(x) ∼ eikx as x→ ±∞ for some wave-number k.

These latter are δ-function normalisable, i.e. can be chosen to satisfy
∫
x ψk(x)ψk′(x) =

δ(k− k′). For this potential these latter solutions do not exist. As we have seen, there

are other solutions however, but the missing solutions (which we have rejected on RG

grounds) behave asymptotically as v(R) ∼ 1/ω(R). From (6.58), they grow rapidly

as x → ±∞ (in fact exponentially) so are neither square-integrable nor δ-function

normalisable.

On both sphere (6.44) and hyperboloid (6.49), we can write

a2(R) =
1

G2(R)
e−2F (R) , (6.61)

where F and G have the behaviour required for the identity (6.45). Thus we get

asymptotically

x =
G(R)

F ′(R)
eF (R) + · · · . (6.62)

From (6.60) to leading order, we therefore have

U(x) =
a2

1

4a2
=

R2

a2(R)
=
[
RF ′(R)

]2
x2 . (6.63)

But from (6.44) and (6.49) we see that RF ′(R) = b F (R). Taking logs of (6.62), we

thus find

U(x) = (b x ln |x|)2

{
1 +O

(
ln ln |x|
ln |x|

)}
as x→ ±∞ . (6.64)

It is interesting that the leading large x behaviour of the potential is symmetric about

the origin x = 0, even though U(x) is surely not. In particular the fact that at

large R, f(R) is universal on the hyperboloid but dominated by cut-off effects on the

sphere, does not result in different behaviour in the corresponding large x regime of

the potential U(x). It is also interesting that this leading behaviour is close to being

universal, in that the only cut-off dependence is through the parameter b, the power
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entering the exponential fall-off form in the cut-off (6.24). Unfortunately this still

amounts to strong dependence. Actually this remaining dependence is an artefact of

the single-metric approximation [33, 194], one consequence of which is to conflate the

background curvature dependence in the cut-off, in particular in F , with that of the

quantum field.43

From (6.64) we can find for the quantised spectrum the asymptotic behaviour of

their scaling dimensions at large n:

θn = −b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (6.65)

This follows by noting that large values of λn closely obey the WKB formula for the

Schrödinger equation (6.59):∫ xn

−xn
dx
√
λn − U(x) = (n+ 1

2)π . (6.66)

The boundaries of the integral should be the classical turning points, i.e. the solutions

to λn = U(x). However up to multiplicative corrections of order ln lnxn/ lnxn these

can be taken to be ±xn where at the same level of approximation,

λn = U(±xn) = (b xn lnxn)2 . (6.67)

Substituting this and x = xny into (6.66) gives

I b x2
n lnx2

n = π(2n+ 1) , (6.68)

where the integral

I =

∫ 1

−1
dy

√
1− U(yxn)

(bxn lnxn)2 =

∫ 1

−1
dy
√

1− y2 =
π

2
, (6.69)

again up to corrections of order ln lnxn/ lnxn. Thus in the large n limit, we can

solve (6.68) in terms of the Lambert W function, as lnx2
n = W (4n/b) (using the fact

that W satisfies W (z) expW (z) = z). Substituting this solution into (6.67), using the

asymptotic expansion of W (4n/b), and again neglecting multiplicative corrections of

order ln lnxn/ lnxn or smaller, gives (6.65).

Using polynomial truncations taken to very high order, the θn were accurately

estimated up to n = 70 in ref. [195], and found to closely fit θn ≈ 2.91−2.042n. However

these were computed in an adaptive cut-off version of the f(R) approximation and using

43In reality Γk is a functional of both the background metric gBµν and the quantum metric gQµν . It
is gQµν differentials that appear in the fixed point and eigenoperator equations, and thus it is also the
behaviour at large gQµν that we are interested in. In a non-adaptive scheme as employed here, cut-off
profiles such as (6.13) should in reality not depend on gQµν but only on its field differentials, since the
cut-offs are meant to regularise Laplacians for these modes.
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optimised cut-off [180]. Given the above strong dependence on cut-off profile we cannot

make a sensible comparison, although we note that given the weak dependence of lnn,

and ignorance of the neglected corrections, b ≈ 1 would provide a reasonable match.

6.5 Wrong sign cut-off in the conformal sector

In this section we show what changes if we choose a negative cut-off for the conformal

mode, i.e. ch̄ < 0.

In section 6.2.2 we analysed the constraints on fk(0), f ′k(0), and f ′′k (0). For com-

pleteness we show how these change with ch̄ < 0. Recall that the strongest constraints

arise if the cut-off function r(z) diverges as z → 0. Then we showed that from the

tensor mode trace we must have f ′k(0) ≤ 0. Now that ch̄ < 0, from the h̄ trace we need

f ′′k (0) ≤ 0 to avoid a singularity. The equations are then consistent provided fk(0) is

less than some positive bound. If r(0) is finite then other possibilities again arise for

example f ′′k (0) > 0 is possible provided fk(0) is sufficiently positive.

Much more interesting is the effect of negative cut-off on the space of fixed points

and eigenoperators. Recall that the asymptotic behaviour of the fixed point solutions

f(R) is given in the first instance by asymptotic series whose leading term is a power

of R: (6.41) in the case of the sphere and (6.48) for the hyperboloid. These contain one

parameter A (a different value in general on the sphere or hyperboloid). However to

determine the true number of parameters in the asymptotic solution, we study the linear

perturbation δf(R) to these asymptotic series, and find δf(R) ∼ B/ω(R), where ω is

the Sturm-Liouville weight and is given by (6.46) or (6.50) on the sphere or hyperboloid

respectively. The derivation is still correct if ch̄ < 0, but the Sturm-Liouville weight

is now a rapidly growing exponential of an exponential (on both sides). Thus the

perturbation δf(R) ∼ B/ω(R) is a rapidly decaying exponential of an exponential.

Whatever value of B we choose, asymptotically our assumption that δf(R) is much

smaller than the series solutions, becomes ever more justified. Therefore asymptotically

there is now a full two-parameter set of solutions, being to leading order precisely

(6.41) or (6.48) as appropriate, plus B/ω(R). Now these solutions impose no boundary

conditions since at some appropriate large R, f(R) and f ′(R) merely fix the values of

the two parameters A and B in the appropriate asymptotic solution. Therefore if we

have solutions they will be continuous ‘planes’ of fixed points: two-dimensional sets

parametrised by two real free parameters [111].

It had already been noticed in f(R) truncations with adaptive cut-off, that fluctua-

tions from the conformal factor govern the structure of the solutions [113, 118]. We now

see that the reason is that it is intimately tied to the way this sector is regularised. For

non-adaptive cut-off the choice ch̄ < 0 is the only one available for the Einstein-Hilbert

truncation [33] and for perturbative solution of the flow equation starting from the

classical Einstein-Hilbert action (with or without a cosmological constant), but such a

wrong-sign kinetic term plus wrong sign cut-off, leads to a continuum of fixed point so-
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lutions [77]. The cause is the same as was found in these earlier papers, namely the fact

that the fixed point large field asymptotic behaviour has the full set of parameters and

thus imposes no boundary conditions. This effect is also seen [113] in one formulation

of f(R) with an adaptive cut-off [116] and in some of the asymptotic solutions [111]

found in another formulation involving more fixed singularities [118]. It was already

suggested in ref. [113] that such a continuum of solutions is a reflection of the conformal

mode instability.

Similar conclusions are drawn for the eigenoperator spectrum around any such fixed

point. The exponential of exponential solutions v(R) ∼ 1/ω(R), to the eigenoperator

equation (6.17), are now exponentially small at large |R| and thus linearisation remains

valid. Therefore we now have a continuous spectrum, with degeneracy two, for every

value of λ. Again, this effect has been seen before, in the same situations where

a continuum of fixed points are found: in a conformal truncation [77], and in f(R)

approximation with adaptive cut-off [113].

Note that such a continuous spectrum of eigenoperators is consistent with there

being a two-dimensional continuum of fixed points. Indeed the two eigenoperators

with λ = 4 are the exactly marginal operators v(R) = δf(R) ∼ R2 and v(R) = δf(R) ∼
1/ω(R) (for given sign of R) that move the system infinitesimally from one fixed point

to another in this two-dimensional continuum.

The general eigenoperator with scaling dimension λ grows as |R|
λ
2 at large |R|, cf.

(6.52). They are thus not square-integrable under the Sturm-Liouville weight. Al-

though they have conjugate couplings that evolve multiplicatively at the linearised

level, and are in this sense physical, we can choose to impose square-integrability as an

extra condition. If we do so we exclude the power-law solutions. This amounts to an

extra quantisation condition that is natural within the Wilsonian RG framework [8].

Indeed without it the Wilsonian RG breaks down because there would be no sense in

which an arbitrary linearised perturbation can be broken down uniquely into a con-

vergent series expansion over operators of definite scaling dimension [8, 77, 196]. The

remaining solutions v(R) ∼ 1/ω(R) are exponentially decaying for both R→ +∞ and

R→ −∞. Since for these, ω(R) v2(R) ∼ 1/ω(R), they are square-integrable under the

Sturm-Liouville weight, and thus form a quantised spectrum.

Their relation to the continuum of fixed points is novel in that it is no longer possible

to move to any nearby fixed point by ‘switching on’ marginal directions. Indeed we

have at most one marginal operator now. Generically we will have none.

The a2(R) coefficient (6.18) changes sign under ch̄ 7→ −ch̄, but it still decays ex-

ponentially at large |R|, as we see from (6.44) and (6.49) for sphere and hyperboloid

respectively. We can still transform to Liouville normal form, if we first multiply the

eigenoperator equation (6.17) by a minus sign. Then we see that

x =

∫ R

0

1√
|a2(R′)|

dR′ , (6.70)
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is the same transformation as before. The wave-function is now

ψ(x) = |a2|
1
4(R)w

1
2 (R) v(R) , (6.71)

whilst the Schrödinger equation now appears as

− d2ψ(x)

dx2
+ U(x)ψ(x) = −λψ(x) , (6.72)

i.e. with λ now being minus the energy. The potential U is given by the same formula

up to an overall sign, i.e.

U(x) = −a0 +
a2

1

4|a2|
+
a′1
2
− a′2

( a1

2a2
+

3a′2
16a2

)
+
a′′2
4
. (6.73)

The power-law eigenoperators v ∼ |R|
λ
2 are now associated with exponentially

growing wave-functions, dominated by the ω dependence in (6.71). From Schrödinger’s

point of view, they are not acceptable solutions. On the other hand, the solutions

v ∼ 1/ω(R) correspond to exponentially decaying ψ(x) and thus bound-state solutions

to (6.72).

Since the large R dependence of a1 and |a2| is the same as before, we see that

the analysis (6.61) – (6.63) goes through unchanged and U(x) has the same large x

dependence (6.64) as before. The WKB analysis therefore also goes through unchanged,

except that the energies are now −λn. Therefore we see that we have at most a finite

number of (marginally) irrelevant operators and an infinite tower of relevant operators,

the scaling dimension of the conjugate couplings being

θn = b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (6.74)

We recognise that these are f(R)-approximation analogues of the δ
(n)
k (ϕ) operators

introduced in [8] and studied extensively in refs. [1, 2, 74, 107, 109] as elements of a

new quantisation of quantum gravity. Indeed the δ
(n)
k (ϕ) operators are eigenoperators

appearing in the functional RG when using a wrong-sign cut-off (ch̄ < 0), where it

is needed because the conformal factor field, ϕ, has wrong-sign kinetic term. The

δ
(n)
k (ϕ) span the space of perturbations that are square integrable under an exponentially

growing Sturm-Liouville measure, and thus are themselves exponentially decaying at

large field. Finally they also form an infinite tower of relevant operators, the scaling

dimensions being θn = 5 + n.

Note however that the δ
(n)
k (ϕ) are eigenoperators about the Gaussian fixed point,

where they are derived exactly, whereas the formula (6.74) applies to the spectrum

of square-integrable eigenoperators about any point in the continuum of fixed points

in this f(R)-approximation. Unlike the ϕ-versions, the eigenoperator equation has

coefficients ai(R) with non-trivial field dependence. This is responsible for the lnn
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dependence in (6.74) while, as we noted in section 6.4, the b dependence appearing in

(6.74) is a symptom of the single-metric approximation.

6.6 Summary and Conclusions

We use the f(R) model introduced in ref. [154] where already Sturm-Liouville theory

was applied to give a proof that, around any fixed point in such a model, there are a

finite number of relevant couplings and an infinite number of irrelevant couplings gn,

these latter having scaling dimensions θn → −∞ as n → ∞. Note that the scaling

dimensions are also proved to be real, in contrast to what is found typically in finite

dimensional truncations. In this chapter we scrutinise both the explicit and implicit

assumptions that go into this proof, and we combine Sturm-Liouville techniques with

asymptotic analysis at large R [111, 113] to find out significantly more about the nature

of these fixed points and their eigenoperator spectrum.

Both of these methods can be developed while keeping the cut-off general, which

must however be taken to be smooth. In (6.13) we keep general the cφ (the overall size

of the cut-off for each field component). As in ref. [154], we set the endomorphism

parameters α2 = α1 = 0, but we keep α0 general apart from the constraint 1/3 < α0 <

25/48 required to ensure that all modes are integrated out in the limit k → 0. We

take the same cut-off profile for all field components, since these are all closely tied to

the metric either through changes of variables or via BRST invariance. For most of

this chapter to be concrete we specialise to the exponential-style cut-off profile [105]

(6.24), but we keep its parameters a > 0 and b ≥ 1 general. In particular we are

able to determine the asymptotic form of the Sturm-Liouville weight ω(R) for these

cases. It is a rapidly decaying exponential of an exponential cf. (6.50) and (6.46) for

the hyperboloid and sphere respectively. We show that it is intimately involved in

other asymptotic properties, chief amongst them being the detailed form (6.65) of the

asymptotic behaviour of the θn:

θn = −b (n lnn)

{
1 +O

(
ln lnn

lnn

)}
as n→∞ . (6.75)

If computed exactly, these scaling dimensions should be universal. Thus it is gratifying

to find that in this model approximation, they are independent of all parameters except

one within our general family of cut-offs. It is also encouraging to find that the θn have

an almost linear dependence on n, since in this respect it is similar to the numerical

evidence for near-Gaussian (but complex) dimensions found in ref. [195] for n 70 in

an adaptive optimised cut-off version of the f(R) approximation. However the overall

dependence on b still amounts to strong residual cut-off dependence, precluding any

more meaningful comparison. We saw in section 6.4 that the blame for this lies squarely

with the single metric approximation. In fact single field approximations are a known

source of artefacts [194].
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Sturm-Liouville theory requires the RG eigenvalue equation (6.17) to be second

order in R derivatives. This is achieved if and only if we use a non-adaptive cut-off

profile. While that leads to the disadvantage of significantly more complicated flow

equations compared to those using an adaptive optimised cut-off [180], it does allow us

also to ensure that the fixed point ODE has no fixed singularities.

This is an advance on f(R) approximations with adaptive cut-off, where such fixed

singularities are endemic. While the fixed singularity at R = 0 appears there for a clear

physical reason [113, 116], the same is not true for those at R 6= 0. These latter fixed

singularities can be introduced or shifted to different places, depending on the model

[118, 120], but it seems to be impossible to eliminate them entirely [114–124, 154, 169–

171]. However, solutions depend sensitively on them, in particular determining whether

fixed points exist as global solutions and if so whether they form a continuous set [111,

113].

On the other hand an adaptive cut-off profile has the advantage in that it adapts

to the sign of the Hessian. In our case we have to fix the sign of the cut-off via cφ. The

Hessian is positive for nearly all field components, requiring cφ > 0, as would anyway

be expected for convergence of the functional integral. However the physical scalar

component h̄, a.k.a. the conformal factor, is an exception. If we are to describe the

regime corresponding to perturbative quantisation of the Einstein-Hilbert term we need

to choose ch̄ < 0 [8, 33, 77, 125]. Otherwise we need to rely on fk(R) containing higher

order terms [181] so that f ′′k (R) is positive, cf. (6.9) and the discussion in section 6.2

and at the beginning of section 6.2.2. We choose ch̄ > 0 for the body of this chapter,

following ref. [154].

It turns out that on the sphere, we can find the leading asymptotic behaviour of

the fixed point solution f(R) in the large R limit for completely general cut-off profile

r(z). The result, (6.40), is different from the assumed form in ref. [154]. In fact it

is dominated by cut-off effects. For the exponential cut-off it takes the form (6.41).

As discussed in section 6.3.1, this limit also ought to be universal, giving the physical

equation of state. Here we saw that the blame lies squarely with the course-graining of

constant scalar modes in the Jacobian of the change of variables to York decomposition.

We saw that this had no effect on the θn formula (6.75) however.

The asymptotic solution contains one parameter, A, whereas for a second-order

ODE we would expect a general solution to have two. By perturbing around this result

we saw that to leading order the other parameter multiplies δf(R) ∼ 1/ω(R). Since

this perturbation grows more rapidly than f(R), it is not valid asymptotically and thus

we see that asymptotically there is only a one-parameter set of fixed point solutions.

As discussed in section 6.3.1 if we consider the flow equations as applying only to the

sphere, we would then have line(s) of fixed points. This is one motivation for widening

the domain of applicability of the flow equations. As discussed in section 6.2.2 nor

would we be able to apply Sturm-Liouville theory, the obstruction coming from the

existence of an R = 0 boundary (where the equations go over to those of flat space).
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This provides another motivation. As a final motivation we appeal to the encouraging

evidence found in polynomial approximations to f(R) equations [108, 166, 195, 197,

198]. These polynomials probe both signs of R. We saw at the end of section 6.2.2 that

if we wish to keep the same cut-off profile for all modes we cannot analytically continue

our equations into R < 0 however. Instead we match the solution into the equations

on the hyperboloid, which also has the property that the equations go over to the flat

space ones at its R = 0 boundary.

On the hyperboloid the leading asymptotic behaviour is cut-off independent as it

should be, being f(R) ∼ AR2 (for a typically different A compared to the sphere

side). We also provided the leading corrections coming from cut-off terms (6.48), as

we did also on the sphere (6.41). Again a perturbation to this solution takes the form

δf(R) ∼ 1/ω(R) and is thus ruled out. Therefore the asymptotic behaviour as R→ ±∞
provides two constraints on a global solution for f(R) leading to at most a discrete set

of fixed points. This is of course what one would hope to see for asymptotic safety.44

In section 6.3.2 we saw that the situation is just as encouraging for the eigenop-

erators v(R). Since in the eigenoperator equation (6.17), a2(R) vanishes asymptoti-

cally on both the sphere and the hyperboloid (for the explicit formulae see (6.44) and

(6.49) respectively), the leading asymptotic behaviour for an eigenoperator is given by

v(R) ∝ |R|
λ
2 , which is again universal, as it should be (if computed exactly). For any

RG eigenvalue λ the other solution grows rapidly with |R|, satisfying asymptotically

v(R) ∼ 1/ω(R) (in agreement with δf(R) which corresponds to a putative marginal op-

erator). It is ruled out because it does not evolve multiplicatively under the RG. Since

the ODE is linear second order, requiring v(R) ∝ |R|
λ
2 overconstrains the equations

and leads to quantisation of λ, again as one would hope to see.

Furthermore these ‘power-law’ eigenoperators are square-integrable under the Sturm-

Liouville weight, thus providing the missing justification for using Sturm-Liouville anal-

ysis. From general Sturm-Liouville theory, this is already enough to confirm that the

eigenoperators vn(R) form a discrete spectrum and to show that the RG scaling dimen-

sions λn, possibly finitely degenerate, have a finite minimum (thus there are a finite

number of relevant directions) and form an infinite tower such that (ordering the eigen-

operators so λn are non-decreasing in n) the λn → ∞ as n → ∞. The vn(R) can be

chosen to be orthonormal under the Sturm-Liouville weight ω(R). In fact, the rest of

the Sturm-Liouville analysis in ref. [183] can then be straightforwardly taken over to

show that arbitrary bare perturbations δfk0(R) (at some UV scale k = k0) will evolve

into the space of interactions that can be expanded over the vn(R) such that the series

converges in the square-integrable sense. The map to Liouville normal form, done in

section 6.4 and ref. [154], allows us to take this further by computing the large distance

behaviour (6.64) of its potential, and from there, by a standard application of WKB

analysis, to derive the asymptotic form (6.75) of the θn = 4− λn as quoted above.

44Note that had we introduced fixed singularities into the f(R) equations we would then have found
f(R) to be overconstrained and have no global solutions.
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All this is predicated on there actually being a global solution to the fixed point

equation (2.22) however. We have searched numerically for such a solution, see figure

6.1 in the case a = b = 1, α0 = 1/2 (recall from section 6.2.3 that it has to lie between

1/3 and 25/48) and all the cφ = 1. We found global solutions on the sphere that

asymptote to (6.41) for a small region around A = −0.01, starting at R = 10 and

integrating down to the flat space fixed point equation from (6.25), see figure 6.1 for an

example, but we have not been able to find global solutions on the hyperboloid. These

are challenging integro-differential (on the sphere-side sum-differential) equations so it

is likely that more numerical work is required. This includes exploring other choices of

parameters. In fact our solutions on the sphere matched the asymptotic solution (6.41)

at R = 10, only by choosing to match f ′(R) and f ′′(R) and then computing f(R)

from the fixed point equation (rather than the more obvious route of setting f(R) and

f ′(R) from the asymptotic formula). This indicates that the asymptotic series has not

been taken quite far enough for these R values. On the hyperboloid, the asymptotic

corrections in (6.48) fall only slowly, so would surely have to go much further to provide

a similarly accurate starting point. In fact it would be beneficial to explore simpler

equations, if these can be found. An attractive starting point would be to use non-

adaptive cut-off together with the exponential parametrisation explored in ref. [119].

Note that if lines of fixed points can be found on both sphere and hyperboloid, there

would still have to be a matching point where these f(R) agree to second order in their

Taylor expansion (6.26) about R = 0, in order to have found a globally defined fixed

point.

Finally in section 6.5 we saw that the situation is dramatically different if we choose

instead the wrong sign cut-off for the conformal mode: ch̄ < 0. Perturbing around the

asymptotic fixed point solution we still find δf(R) ∼ 1/ω(R), but the dependence of the

Sturm-Liouville measure on ch̄ is such that ω(R) is now a rapidly growing exponential of

an exponential. This means that the perturbation δf(R) remains valid asymptotically,

and thus the asymptotic solutions have two parameters. They no longer restrict the

dimension of the solution space, so fixed points form two-dimensional continuous sets.

The alternative asymptotic behaviour for the eigenoperators is also still v(R) ∼ 1/ω(R)

but these do now evolve multiplicatively under the RG and thus are also valid solutions.

Therefore we have a non-quantised continuous spectrum of RG eigenvalues λ. It is

clear that this is mirroring effects previously found [111, 113] in adaptive cut-off f(R)

approximations [116, 118], and found [77] in a background-independent version of the

so-called conformally reduced gravity [125] where only the conformal factor field is kept.

Clearly therefore the culprit for this degeneration is the wrong sign cut-off (which is

necessary however if we work with wrong sign kinetic term). In this case, by choosing

to keep only interactions square integrable under the Sturm-Liouville measure, the

eigenoperator spectrum is again quantised, with v(R) ∼ 1/ω(R) for large R. These

form a tower of operators, only finitely many of which are irrelevant, and infinitely

many are relevant with dimensions given by minus the θn in (6.75). These are the
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Figure 6.1: The value of the sphere free parameter A in (6.40), deduced by matching the
numerical solutions f(R), f ′(R) and f ′′(R) to the corresponding asymptotic formula
and solving for A at the different points R. For the asymptotic formula we use (6.41)
so as to include the most important subleading corrections (and then differentiate
appropriately to get f ′ and f ′′). If the numerical solution matches into the asymptotic
formula we should find the same value for A for all large enough R and also the same
value by matching f(R), f ′(R) or f ′′(R) at these values. We see from the plot that
numerically these different determinations do appear to converge, indicating that we
have indeed found a numerical solution that matches our asymptotic formula.
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f(R)-approximation analogues of the δ
(n)
k (ϕ) operators pursued in [1, 2, 8, 74, 107, 109]

as an alternative quantisation of quantum gravity.
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Chapter 7

Extensions to arbitrary

space-time dimensions

In this chapter we outline some preliminary work on an investigation into extending

the tower operator (3.62) into arbitrary space-time dimensions. This was motivated

primarily by a possible resolution as to why we observe our universe to exist in four

space-time dimensions. If this structure seemed to work exclusively in this number of

dimensions it would be phenomenologically beneficial to this new approach to QG. As

remarked earlier there is also a great history of extending concepts to include extra

space-time dimensions, such as Kazula-Klein, string and M theory. This investigation

was also motivated by the extra freedom in the existence of f(R) type actions that the

tower operator may permit, for example in four dimensional space-times terms such as

R2
αβµν are excluded by topological arguments (in particular here by the Gauss-Bonnet

theorem [199]) however such terms survive in five and six dimensional space-times. We

may be able to create effective R2 and R2
αβ operators using the new construction out-

lined in this thesis via quantum corrections which would have far reaching implications,

particularly for cosmology.

7.1 The tower operator in arbitrary space-time dimen-

sions

We begin by laying out a glossary of fields, couplings and propagators in arbitrary

space-time dimension to facilitate understanding where d is the arbitrary dimension of

space-time and the constant α our gauge fixing parameter

[(∂αHβγ)2] = d (7.1)

[Hαβ] =
d− 2

2
(7.2)
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[κ] = −
(
d− 2

2

)
(7.3)

[hαβ] =
d− 2

2
(7.4)

[ϕ] =
d− 2

2
(7.5)

[cµ] = [c̄µ] =
d− 2

2
(7.6)

[c∗µ] = [H∗µν ] =
d

2
(7.7)

and the propagators are, expanding on the general definitions given in section 5, given

as

〈Hµν(p)Hαβ(−p)〉 =
δµ(αδβ)ν

p2
+
p(µδν)(αpβ)

p4
− 1

d− 2

δµνδαβ
p2

(7.8)

〈cµ(p)c̄ν(p)〉 = −〈c̄µ(p)cν(p)〉 =
δµν
p2

(7.9)

〈bµ(p)Hαβ(−p)〉 = −〈Hαβ(p)bµ(−p)〉 = 2δµ(αpβ)/p
2 (7.10)

〈bµ(p)bν(−p)〉 = 0 (7.11)

〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν

p2
+

(
4

α
− 2

)
p(µδµ)(αpβ)

p4
+

1

d2

(
4

α
− d− 2

)
δµνδαβ
p2

+

2

d

(
1− 2

α

)
δαβpµpν + pαpβδµν

p4

(7.12)

〈hµν(p)ϕ(−p)〉 = 〈ϕ(p)hµν(−p)〉 =

(
1− 2

α

)(
δµν
d
− pµpν

p2

)
1

p2
(7.13)

〈ϕ(p)ϕ(−p)〉 =

(
1

α
− d− 1

d− 2

)
1

p2
. (7.14)

Previously the gauge α = 2 has been chosen to simplify these expressions, in par-

ticular eliminating the 1
p4 part of the propagators. In a similar vein we will continue to

work in the minimal basis however we note the auxiliary field bµ above for completeness.

The quantisation conditions, in particular the ϕ part, which led to the tower operator
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δ
(n)
Λ (ϕ) involved the weights, when extended to general space-time dimension d

exp

(
− 1

2

h2
µν

~Λd−2

)
exp

(
− 1

2

ϕ2

~Λd−2

)
. (7.15)

This follows from

ΩΛ = |〈ϕ(x)ϕ(x)〉| = d

2(d− 2)

∫
d̄dp

CΛ(p)

p2
≈ ~Λd−2, (7.16)

as a result there are no new effects in the quantisation procedure outlined in section

3.2.2 and the same general structure emerges from our previous arguments. We note

that when extending this treatment to d = 2, divergences appear, for example in (7.16),

the implications of this require further investigation. We continue in the generalisation

of this structure, in particular the tower operator and the associated couplings are now

[δ
(n)
Λ ] = −(1 + n)

(
d− 2

2

)
(7.17)

[Dσ] = dσ + [δnΛ]

= dσ − (1 + n)

(
d− 2

2

)
(7.18)

[gσn] = d−Dσ

= d−

[
dσ − (1 + n)

(
d− 2

2

)]
.

(7.19)

We can then use this generalisation of the structure to see if the operators re-

main unchanged, in particular we can investigate whether or not the previously found

parametrisation of diffeomorphism invariance is still valid, beginning with the anti-field

two piece of the first order interaction (we disregard Lorentz indices now for clarity)

[∂ccc∗] =
3

2
d− 1 (7.20)

[∂cHH∗] =
3

2
d− 1 (7.21)

[H∂H∂H] =
3

2
d− 1. (7.22)

These first order operators are irrelevant and are associated to the zeroth level tower

operator, i.e. nσ = 0
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[δ
(0)
Λ (ϕ) σ1(c, c∗, H,H∗, ϕ...)] = −d− 2

2
+

3

2
d− 1 = d (7.23)

which as we can see means that the tower operator continues to resolve the primary

issue of the irrelevancy of the gravitational operators. Extending this to second order

in the convenient parametrisation of diffeomorphism invariance where L2
2 = L1

2 = 0,

that is to say the anti-field number two and one piece are found to be zero and only the

zero level remains. This is the set of operators one would naively find when expanding

out the Einstein-Hilbert action.

[HH∂H∂H] = 2d− 2. (7.24)

As these are the second order operators they are now associated to the nσ = 1 tower

operators which yields

[δ
(1)
Λ σ2(H, ∂H, ...)] = −d− 2

2
(1 + 1) + 2d− 2 = d (7.25)

and again the irrelevancy problem is resolved. When finding the explicit actions we also

find they remain the exact same in arbitrary dimensions as there is no dependence on

d in the coefficients themselves, additionally when finding this via an anti-field cascade

there is no dependence on d here either. Important we can also see from the above

that nσ, the minimum number of derivatives of the tower operator needed to ensure

the operators remain (marginally) relevant, remains the same which is crucial for this

structure being maintained for higher space-time dimensions.

We can now apply this extension to the flow equations and verify that they remain

the same, up to some minor generalisations in the power of the scalings. In [107] it was

a crucial result that flows would fail and cease to exist for scales below Λ < aΛp, does

this result still hold for arbitrary d? Following that reference we can, for large ϕ and

for some aΛσ find the expression

fσaΛσ ∼ exp

(
− a2ϕ2

2a2Λ
2( d−2

2
)

σ

)

∼ exp

(
− ϕ2

2Λ
(d−2)
σ

) (7.26)

and from this we can then solve flow equations in terms of the conjugate momentum

π,

fσΛ(ϕ) =

∫ ∞
−∞

d̄πfσ(π) e−
π2

2
ΩΛ+iπϕ. (7.27)

An effective ansatz for fσ(π) is
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fσ(π) ∼ e−π2Λ(d−2)/4
(7.28)

fσ(ϕ) = e−ϕ
2/Λd−2

σ (7.29)

and these recover the standard Lagrangian in much the same way as in the d = 4 case,

in particular for σ = 1 we can define

fσ(ϕ) = κe−ϕ
2/Λd−2

σ . (7.30)

We also note that the reality condition on the sum over the conjugate momenta

expression continues naturally to arbitrary dimensions, namely

fσ(π)

∞∑
n=nσ

gσn(iπ)n (7.31)

demands that all odd couplings are 0. Following [107] we can generalise the expression

for these 2m couplings

gσ2m =

√
π

m!4m
κΛ(d−2)m+1

σ . (7.32)

To summarise, the effect of the generalisation to dimension d on the expression

fσΛ is a rescaling of any Λ and Λσ elements and the general structure, in particular

the recovery of κ dependency at first order and the reality condition in (7.31), are

maintained. We can therefore find the following general expression which combines

these findings,

fσΛ(ϕ) =
κ(aΛσ)(d−2)/2√
Λd−2 + (aΛσ)d−2

exp

(
− a2ϕ2

Λd−2 + (aΛσ)d−2

)
. (7.33)

It is also important to note that at first order in the coupling we must also be able

to generalise the recovery of terms in the Lagrangian which go as κϕ∂H∂H, that is to

say there is an undifferentiated ϕ (note the prime in σ′ denotes this type of term) that

we must recover via the tower operator. We find that this too is naturally found. We

repeat a similar process as above to find

fσ
′
(ϕ) = κϕe−ϕ/Λ

d−2
σ , (7.34)

beginning with ϕδ
(n)
Λ (ϕ) = −nδ(n−1)

Λ −ΩΛδ
(n+1)
Λ (ϕ) with this final term becoming 0 in

the Λ→ 0 limit. From this we find

gσ
′

2m+1 = −(2m+ 2)gσ2m+2|σ=σ′

= −1
2

√
π

m! 4m
κΛ(d−2)m+3

σ

(7.35)
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which yields

fσ
′

Λ (ϕ) =
κ(aΛσ)(d−2)/2√
Λd−2 + (aΛσ)d−2

exp

(
− (aϕ)d−2

Λd−2 + (aΛσ)d−2

)
− κΛ(d−2)/2

σ

√
πδ0

Λ(ϕ) (7.36)

which leads to the anticipated generalisation of the coefficients in the physical limit.

We do not extend this treatment to higher order in the couplings at this time as the

findings of chapter 5 would then have to be included which is beyond the scope of this

thesis however this could be an avenue for research in the future.

7.2 Conclusions

To conclude we can see that this extension to arbitrary space-time dimensions happens

very easily in this novel framework with much of this framework remaining intact.

Although this has been a preliminary investigation it offers insight into the general

structure of the theory and what role it may play in describing Nature.
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Chapter 8

Conclusions

In this thesis we have reviewed the essential ingredients one must consider when at-

tempting to create a theory of quantum gravity with a well defined continuum limit.

Following reviews of general relativity, the renormalization procedure, the Wilsonian

ideas of the renormalization group and a brief note on popular attempts to combine

gravity with quantum field theory we then discussed the dilaton portal. Combining the

above with a more complete quantisation procedure led to the novel tower operator.

This has led to the analyses described in this thesis which we now give closing remarks

on and finally we speculate on how this line of research may progress and be applied

in the future.

In chapter 4 we began by finding the continuum limit at first order in perturbation

theory, characterising the most general form of the coefficient functions used to couple to

the standard Lagrangians and also verified universality. Crucially this led to recovery of

the standard Lagrangian once we have re-entered the diffeomorphism invariant subspace

with dependence only on two parameters: Newton’s constant and the cosmological

constant. This suggested that this structure was very general and robust however

there were still open questions; how does this behaviour change at higher orders, is

this simply a repackaging of the fortunate kinematic accidents found in the standard

quantisation and is there an infinite number of fundamental couplings at higher order?

Following this, in chapter 5 we naturally extended the treatment to second order in

perturbation theory to answer these remaining questions. Restricting ourselves to the

case where the cosmological constant is set to zero we found that the structure persists

to second order and is renormalizable for kinematic reasons, in addition said structure

works in general. A consequence of this would be that following the Wilsonian renor-

malization group this would be a genuine, consistent continuum limit for gravity albeit

in a very different way to what one may expect and with a phenomenologically inconve-

nient infinite number of fundamental couplings. We then suggested a non-perturbative

solution which would use the parabolic properties of the flow equations, namely the

dilaton and graviton sectors would naturally flow in opposite directions due to the

same initial difference in sign of the kinetic terms which sparked this line of inquiry.
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A resolution of this poorly posed Cauchy initial value problem could constrain this

difficult infinite number of couplings to only Newton’s constant and the cosmological

constant.

In chapter 6 we investigated related questions in asymptotic safety, namely if com-

plete flows exist for problems similar to that encountered earlier in this thesis. Answers

to these questions would be paramount in seeing if the Cauchy initial value problem not

being well posed could offer a resolution to this problem of an infinite number of funda-

mental couplings as we go to higher orders in perturbation theory. In addition to this

the role of adaptive cut-offs amongst other general methods in AS were investigated.

In chapter 7 we gave a brief review of some exploratory research into extending this

novel tower operator and the the treatment in [107] into arbitrary space-time dimensions

with the hope that this could offer fresh insight into several outstanding problems. As

we saw this novel tower operator and the associated structure extended very naturally to

arbitrary space-time dimension and although a more through investigation was beyond

the scope of this work it is our hope that this work expresses the wide range of subjects

that may be researched from a new perspective as a consequence of this new and

exciting approach to quantum gravity.

To conclude, a theory of quantum gravity with a well defined continuum limit would

be one of the crowning achievements in theoretical physics. The expected complexity of

such a theory is reflected in the variety of approaches attempted to construct this theory.

In this thesis we have discussed the ramifications of combining relatively simple ideas

which are generally held to be some of the best tools to hand for the modern theoretical

physics community; namely General Relativity, the Wilsonian renormalization group

and a complete quantisation procedure. This combination has naturally produced

the unique tower operator, which itself has led to a re-examination of how exactly one

defines a continuum limit and a UV complete theory. This work has then been explored

in the related subject of asymptotic safety and has offered some fresh perspective in

that field; how does one suitably find a complete flow for a theory? We hope that this

thesis offers an insight into the modern approaches to quantum gravity, the range of

techniques employed and how despite the maturity of the subject there are still exciting

new discoveries to be made.
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Appendix A

Appendix

A.1 Further examples of coefficient functions

A.1.1 Examples with multiple amplitude suppression scales

Here we develop some of the properties of linearised coefficient functions that are con-

structed from a spectrum of amplitude suppression scales γkΛσ. For example for sym-

metric coefficient functions satisfying flat trivialisation (4.32), we can take [107]

fσ(π) = Aσ

N∑
k=0

ak f(π, γkΛσ) , (A.1)

where N ≥ dnσ2 e will allow us to ensure that couplings gσ2n<nσ vanish, and we define

the function

f(π, Λ̄) =
√
π Λ̄ e−π

2Λ̄2/4 , (A.2)

which is just the simplest choice of reduced Fourier transform (4.63), where for conve-

nience we have absorbed the factor of 2πΛσ from the example (4.62). The dimensionless

parameters γk > 0 are chosen unequal, and without loss of generality we order them

and set the greatest to unity:

0 < γN < γN−1 < · · · < γ0 = 1 , (A.3)

and the dimensionless coefficients ak are chosen to satisfy

N∑
k=0

ak = 1 , and (A.4)

(A.5)
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Performing the integral in the Fourier transform representation (4.25) we get

fσΛ(ϕ) =
N∑
k=0

ak fΛ(ϕ, γkΛσ) , (A.6)

where fΛ(ϕ, γkΛσ) is just the α=1 example (4.64) with Λσ rescaled by γk.

From the definition of the amplitude suppression scale, see above (4.20), we see

that fσΛ has overall amplitude suppression scale Λσ, corresponding to the maximum

one γ0Λσ = Λσ. We verify that it also characterises the exponential decay of the

physical coefficient function: setting Λ = 0,

fσ(ϕ) = Aσ

N∑
k=0

ak e−ϕ
2/γ2

kΛ2
σ ∼ a0Aσ e−ϕ

2/Λ2
σ , (A.7)

where the last equation holds at large ϕ. Thus we satisfy the asymptotic formula for the

physical coefficient function (4.23), but we have here an example where the asymptotic

behaviour is fixed by Aσ only up to an undetermined dimensionless proportionality

constant, as already commented below (4.21). Importantly note that the large π be-

haviour in the sum over a spectrum of amplitude suppression scales (A.1) is however

set by the smallest amplitude suppression scale:

fσ(π) ∼
√
π aN γN Aσ Λσ e−π

2γ2
NΛ2

σ/4 , (A.8)

and thus the asymptotic formula for the Fourier transform (4.27) does not hold, hence

the comments below it. The couplings in the Taylor expansion of the Fourier transform

(4.26) are given by

gσ2n =

√
π

n!4n
AσΛ2n+1

σ

N∑
k=0

ak γ
2n+1
k ∼ a0Aσ

√
π

n!4n
Λ2n+1
σ , (A.9)

and satisfy the constraint that they vanish for 2n < nσ, thanks to the vanishing sum-

mation constraint (A.5). The last equation holds at large n, which thus verifies that

the asymptotic formula for couplings (4.28) nevertheless holds, although again we see

the presence of an undetermined proportionality. Finally, since fΛ(ϕ, γkΛσ) → 1 as

Λσ → ∞, we have from the sum normalisation constraint (A.4) that flat trivialisation

(4.32) is satisfied, while since
√

Λ2 + a2γ2
kΛ2

σ sets the scale for ϕ-variation in the com-

ponents, we see that the flat limit (4.32) is reached at least as fast as O(1/γNΛσ) and

more generally the refined limit (4.60) is satisfied. Notice however that it is the smallest

amplitude suppression scale that controls the corrections here.

Since the summation constraints (A.4,A.5) provide dnσ2 e + 1 linearly independent

conditions on N + 1 ≥ dnσ2 e + 1 coefficients ak, they can always be satisfied. By

choosing N > dnσ2 e large enough, we can go on to fix the numerical coefficient of
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finitely many of any of the surviving gσ2n (with n finite) to any value we wish, including

forcing them also to vanish. We also have the freedom to alter couplings through

changing the 0 < γk>0 < 1 provided they remain unequal. We see that the flat

trivialisation limit (4.32) is independent of the value of any finite set of finite-n couplings

or indeed of any finite number of relations between these couplings [75]. Therefore,

apart from confirming that we can ensure that gσ2n<nσ = 0, the universal information

on the couplings is that captured in the large n asymptotic estimate (4.28), which

indeed holds for any linearised solution.

For examples satisfying polynomial trivialisation (4.35), we can still use the sum

over a spectrum of amplitude suppression scales (A.1), where by the map to a Fourier

transform for a coefficient function satisfying the polynomial trivialisation constraint

(4.39), we replace f(π, Λ̄) with (i∂π)α f(π, Λ̄) along the lines already discussed in section

4.2.3.

A.1.2 Other examples with only one amplitude suppression scale

As explained in section 4.2.2 we insist in this thesis on using only one amplitude sup-

pression scale, and our examples are all expressible in conjugate momentum space as

an exponential decay factor times a polynomial as in secs. 4.2.3. Other examples with

only one amplitude suppression scale could be generated, e.g.

fσ(π) = Aσ

N∑
k=0

ak f(π, γk,Λσ) , (A.10)

for appropriate choices of ak, where we choose the function to be

f(π, γ, Λ̄) =
√
π Λ̄ e−(π2Λ̄2+γ2)/4 cosh(γΛ̄π/2) , (A.11)

corresponding to the physical coefficient function

f(ϕ, γ, Λ̄) = e−ϕ
2/Λ̄2

cos(γϕ/Λ̄) , (A.12)

which thus gives the Λ > 0 solution

fΛ(ϕ, γ, Λ̄) =
aΛ̄√

Λ2 + a2Λ̄2
exp

(
−a

2ϕ2 + γ2Λ2/4

Λ2 + a2Λ̄2

)
cos

(
a2γΛ̄ϕ

Λ2 + a2Λ̄2

)
, (A.13)

which clearly again has the right limiting properties to satisfy flat trivialisation (4.32)

and the refined limits (4.60). These functions have the same amplitude suppression scale

Λ̄ irrespective of the choice of γ. Further examples can be generated by exchanging

cosh with cos in the above, or for odd functions, replacing these with sinh and sine.
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A.2 Computing Taylor expanded IR regulated momen-

tum integrals

To compute derivative expansions such as those that appear for level-one (5.43), level-

zero (5.52) and in the mST correction term (5.61), we Taylor expand their integrands

in the external momentum pµ. We use the d-dimensional equivalent of the integrands

(5.41, 5.51, 5.58) displayed in the thesis, constructed from using the d-dimensional

propagators, see chapter 7 attached to the d-dimensional Γ̌1 described in section 3.3.4.

To be concrete we describe how to treat Bµνα(p,Λ) andAµναβ(p,Λ) in the following. We

comment on the slight differences for Fµνα(p,Λ) later. The Taylor expansion coefficients

involve the integrals ∫
q

qµ1qµ2 · · · qµ2n

q2r
C̄(q2/Λ2) C̄(m)(q2/Λ2) , (A.14)

for some non-negative integers m,n, r, with normalisation of the measure as in (3.132).

Here C̄(u) = 1−C(u) is the IR cut-off function, and C̄(m)(u) is its mth differential,

where u = q2/Λ2. Now d-dimensional rotational invariance ensures that the integral

vanishes unless the numerator has even powers of q and moreover it allows us to reduce

the latter to a scalar integral using

qµ1qµ2 · · · qµ2n ≡ q2n
n∏
k=1

1

d+ 2(k − 1)

∑
pairs

δµσ1µσ2
δµσ3µσ4

· · · δµσ2n−1µσ2n
, (A.15)

where this formula is valid under the integral, and may be proved by iteration. The

sum is over all ways of dividing the 2n indices into Kronecker-delta pairs. For these

one-loop integrals in d=4−2ε dimensions, the worst we can get is a 1/ε pole, therefore

up to terms vanishing as ε→0,∫
q

=
(
1 +

[
1− γE + ln(4π/Λ2)

]
ε
) ∫ ∞

0
duu1−ε . (A.16)

The integrals are now reduced iteratively using integration by parts on those containing

the highest differential C̄(m). Following the philosophy of dimensional regularisation we

choose ε>0 large enough such that we can always discard the UV limit (a.k.a. surface

term). The IR limit can also be discarded using the same philosophy, choosing ε < 0

negative enough.45 After this we analytically continue ε to the neighbourhood of ε=0

45At high orders in the derivative expansion this allows us to discard the lower boundary,
limε→0 u

−k−ε C̄(m)C̄(n) for any positive integers k,m, n. This could also be assured by choosing C
such that it has vanishing Taylor expansion to all orders at u= 0 (known as a “bump” function). In
practice in the cases dealt with in section 5.4.1 the lower limit can be discarded anyway thanks to the
presence of C̄(u) and/or positive integer powers of u.
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in the usual way. As a simple but instructive example we thus have the identity∫ ∞
0
duu−ε C̄

d

du
C̄ =

ε

2

∫ ∞
0
duu−1−ε C̄2 . (A.17)

At the end of the process, provided at least one of the C̄ is differentiated, the integral is

in fact both UV and IR regulated by the cut-off function, and thus ε→0 can be safely

taken. The integrals that require more care are those that are only IR regulated which

thus take the form∫ ∞
0
duun−ε C̄2(u) =

∫ 1

0
duun−ε C̄2 +

∫ ∞
1
duun−ε

(
C̄2 − 1

)
+

∫ ∞
1
duun−ε ,

=

∫ 1

0
duun C̄2 +

∫ ∞
1
duunC(C − 2) − 1

n+ 1− ε
+O(ε) , (A.18)

for some integer n. Splitting the integral into three parts as in the first line, we see

that the first two parts are both IR and UV regulated for any n and thus ε→0 can be

safely taken. The final integral gives the last term on discarding the upper limit.

As a simple example consider the case n=−1. This appears on the RHS of (A.17).

Substituting (A.18) and taking the limit ε→ 0 one finds the answer 1
2 . In this case it

is straightforward to derive this directly from (A.17) at ε= 0, since the LHS is then a

total derivative and the answer 1
2 is recovered from the UV boundary. However applying

dimensional regularisation to all cases including the more involved (A.14,A.15) cases,

ensures that results are not subject to momentum routing (equivalently surface term)

ambiguities.

In (A.18), apart from the case n=−1 which, if it has non-vanishing coefficient, is

subtracted using MS cf. comments above (5.33), the ε→ 0 limit of the last term can

also now be safely taken. It then just cancels the cut-off-independent contribution in

the first integral on the RHS, thus∫ ∞
0
duun−ε C̄2(u) =

∫ ∞
0
duunC(C − 2) +O(ε) , (n 6= −1) , (A.19)

which we could have derived directly from substituting C̄ = 1−C, and discarding the

cut-off independent piece as would be done as standard in dimensional regularisation

(despite the fact that the integral is strictly speaking ill-defined for any ε).
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