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Abstract
Support vector classification (SVC) is a classical and well-performed learning method
for classification problems. A regularization parameter, which significantly affects
the classification performance, has to be chosen and this is usually done by the
cross-validation procedure. In this paper, we reformulate the hyperparameter selection
problem for support vector classification as a bilevel optimization problem in which
the upper-level problem minimizes the average number of misclassified data points
over all the cross-validation folds, and the lower-level problems are the l1-loss SVC
problems, with each one for each fold in T-fold cross-validation. The resulting bilevel
optimizationmodel is then converted to amathematical programwith equilibrium con-
straints (MPEC). To solve this MPEC, we propose a global relaxation cross-validation
algorithm (GR–CV) based on the well-know Sholtes-type global relaxation method
(GRM). It is proven to converge to a C-stationary point. Moreover, we prove that
the MPEC-tailored version of the Mangasarian–Fromovitz constraint qualification
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(MFCQ), which is a key property to guarantee the convergence of the GRM, automat-
ically holds at each feasible point of this MPEC. Extensive numerical results verify
the efficiency of the proposed approach. In particular, compared with other methods,
our algorithm enjoys superior generalization performance over almost all the data sets
used in this paper.

Keywords Support vector classification · Hyperparameter selection · Bilevel
optimization · Mathematical program with equilibrium constraints · C-stationarity

Mathematics Subject Classification 90C33 · 90C90 · 49M20

1 Introduction

Support vector classification (SVC) is a classical and widely used learning method for
classification problems; see, e.g., (Chauhan et al. 2019; Cortes and Vapnik 1995; Vap-
nik 2013). In SVC, the selection of hyperparameters, also known as hyperparameter
selection, is a critical issue and has been addressed by many researchers both theoreti-
cally and practically (Chapelle et al. 2002; Dong et al. 2007; Duan et al. 2003; Keerthi
et al. 2006; Kunapuli 2008; Kunapuli et al. 2008a, b). While there have been many
interesting attempts to use bounds, gradient descent methods or other techniques to
identify these hyperparameters (Chapelle et al. 2002; Duan et al. 2003; Keerthi et al.
2006), one of the most widely used methods is cross-validation (CV). A classical
approach for cross-validation is the grid search method (Momma and Bennett 2002),
where one needs to define a grid over the hyperparameters of interest, and search for the
combination of hyperparameters that minimize the cross-validation error (CV error).
Bennett et al. (2006) emphasize that one of the drawbacks of the grid search approach
is that the continuity of the hyperparameter is ignored by the discretization. A formula-
tion of the bilevel optimizationmodel is proposed to choose hyperparameters (Bennett
et al. 2006; Kunapuli 2008). Below, wewill focus on the bilevel optimization approach
which is the most relevant to our work. We refer to Yu and Zhu (2020), Luo (2016)
for a survey of various hyperparameters optimization methods and applications.

In terms of selecting hyperparameters through bilevel optimization, different mod-
els and approaches have been considered in the literature. For example, Okuno
et al. (2018) propose a bilevel optimization model to select the best hyperparame-
ter for a nonsmooth, possibly nonconvex, l p-regularized problem. They then present
a smoothing-type algorithm with convergence analysis to solve this bilevel optimiza-
tion model. Kunisch and Pock (2013) formulate a parameter learning problem for
variational image denoising model into a bilevel optimization problem. They design
a semismooth Newton’s method for solving the resulting nonsmooth bilevel opti-
mization problems. Moore et al. [17] develop an implicit gradient-type algorithm for
selecting hyperparameters for linear SVM-type machine learning models which are
expressed as bilevel optimization problems. Moore et al. (2009) propose a nonsmooth
bilevel model to select hyperparameters for support vector regression (SVR) via T-fold
cross-validation. They design a proximity control approximation algorithm to solve
this bilevel optimization model. Couellan and Wang (2015) design a bilevel stochas-
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tic gradient algorithm for training large scale SVM with automatic selection of the
hyperparameter. We refer to Crockett and Fessler (2021), Colson et al. (2007), Dempe
(2002), Dempe and Zemkoho (2020) for recent general surveys on bilevel optimiza-
tion, aswell asMejía-de-Dios andMezura-Montes (2019), Zemkoho andZhou (2021),
Fischer et al. (2021), Lin et al. (2014), Ye and Zhu (2010), Ochs et al. (2016, 2015)
for some of the latest algorithms on the subject. Next, we provide a brief overview
of the MPEC reformulation of the bilevel optimization problem, which will play a
fundamental role in this paper.

For a bilevel program, replacing the lower-level problem by its Karush–Kuhn–
Tucker (KKT) conditions will result in a mathematical program with equilibrium
constraints (MPEC) Luo et al. (1996). Therefore, various algorithms for MPECs can
be potentially applied to solve bilevel optimization problems, although onemight want
to pay attention to the fact that both problems are not necessarily equivalent. Bennett
and her collaborators do a series of works (Bennett et al. 2006; Kunapuli et al. 2008b;
Bennett et al. 2008;Kunapuli et al. 2008a;Kunapuli 2008) on hyperparameter selection
by reformulating a bilevel program into an MPEC. For example, (Kunapuli et al.
2008b) considers a bilevel optimizationmodel for selectingmany hyperparameters for
l1-loss SVC problems, in which the upper-level problem has box constraints for the
regularization parameter and feature selection. They reformulate this bilevel program
into an MPEC and solve it by the inexact cross-validation method. Other methods
include Newton-type algorithms (Wu et al. 2015; Harder et al. 2021; Lee et al. 2015).

Considering these works, a natural question is whether one can build up a bilevel
hyperparameter selection for SVC? If yes, whether there are some special and hidden
properties if we transfer the corresponding bilevel optimization problem to its corre-
sponding MPEC and how we can solve it efficiently? This is the main motivation of
the work in this paper.

In this paper, we consider a bilevel optimization model for selecting the hyperpa-
rameter in SVC. This regularization hyperparameter C is selected to minimize the
T-fold cross-validated estimation of the out-of-sample misclassification error, which
is basically a 0–1 loss function. Therefore, the upper-level problem minimizes the
average misclassification error in T-fold cross-validation based on the optimal solu-
tion of the lower-level problem (we use the typical l1-loss SVC model) for all the
possible values of the hyperparameter C . There are several challenges to design effi-
cient algorithms for such potentially large-scale bilevel programs. Firstly, the objective
function in the upper-level problem is a 0–1 loss function, which is discontinuous and
nonconvex. Secondly, the constraints for the upper-level problem involve the optimal
solution set of the lower-level problem, i.e., the l1-loss SVCmodel, for which the opti-
mal solution is not explicitly given. To deal with the first challenge, we reformulate
the minimization of the 0–1 loss function into a linear optimization problem inspired
by the technique in Mangasarian (1994). We then replace the lower-level problem by
its optimality conditions to tackle the second challenge. This therefore leads to an
MPEC.

The contributions of the paper are as follows. Firstly, we propose a bilevel optimiza-
tionmodel for hyperparameter selection in a binary SVC and study its reformulation as
anMPEC. Secondly, we apply the GRM originating from Scholtes (2001) to solve this
MPEC, which is shown to converge to a C-stationary point. The resulting algorithm
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is called the GR–CV, which is a concrete implementation of the GRM for selecting
the hyperparameterC in SVC. Thirdly, we prove theMPEC–Mangasarian–Fromovitz
constraint qualification (MPEC–MFCQ, for short) property for each feasible point
of our MPEC. The MPEC–MFCQ is a key property to guarantee the convergence of
the GRM. We show that it automatically holds for our problem thanks to its special
structure. Finally, we conduct extensive numerical experiments, which show that our
method is very efficient; in particular, it enjoys superior generalization performance
over almost all the data sets used in this paper.

The paper is organized as follows. In Sect. 2, based on T-fold cross-validation for
SVC, we introduce a bilevel optimization model to select an optimal hyperparameter
for SVC. We also analyze the interesting properties of the lower-level problem. In
Sect. 3, we reformulate the bilevel optimization problem as an MPEC (also known as
the KKT reformulation), and apply the GRM for solving the MPEC. In Sect. 4, we
prove that every feasible point of this MPEC satisfies the regularity condition MPEC–
MFCQ, which is a key property to guarantee the convergence of the GRM. In Sect. 5,
we present some computational experiments comparing the resulting GR–CV based
on the GRM with two other ones, which have been used in the literature for a similar
purpose; i.e., the inexact cross-validation method (In–CV) and the grid search method
(G–S). We conclude the paper in Sect. 6.
Notations. For x ∈ R

n , ‖x‖0 denotes the number of nonzero elements in x , while
‖x‖1 and ‖x‖2 correspond to the l1-norm and l2-norm of x , respectively. Also, we
will use x+ = ((x1)+, · · · , (xn)+) ∈ R

n, where (xi )+ = max(xi , 0). |� | denotes
the number of elements in the set� ⊂ R

n . We use 1k to denote a vector with elements
all ones in Rk . Ik is the identity matrix in Rk×k , while ekγ is the γ -th row vector of an

identity matrix in R
k×k . The notation 0k×q represents a zero matrix in R

k×q and 0k
stands for a zero vector in R

k . On the other hand, 0(τ, κ) will be used for a submatrix
of the zero matrix, where τ is the index set of the rows and κ is the index set of
the columns. Similarly to the case of zero matrix, I(τ, τ ) corresponds to a submatrix
of an identity matrix indexed by both rows and columns in the set τ . Finally, �(τ, ·)
represents a submatrix of the matrix �, where τ is the index set of the rows, and xτ is
a subvector of the vector x corresponding to the index set τ .

2 Bilevel hyperparameter optimization for SVC

We start this section by first introducing the problem settings in relation to the T-fold
cross-validation for SVC. Subsequently, we present the lower-level problemwith some
interesting and relevant properties for further analysis in the later parts of the paper.
Finally, we introduce the upper-level problem, that is, the bilevel optimization model
for hyperparameter selection in SVC.

2.1 T-fold cross-validation for SVC

As discussed in the introduction, the most commonly used method for selecting the
hyperparameterC is T -fold cross-validation. In T -fold cross-validation, the data set is
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Fig. 1 Three-fold cross-validation

split into a subset � with l1 points, which is used for cross-validation, and a hold-out
test set � with l2 points. Here, � = {(xi , yi )}l1i=1 ∈ R

n+1, where xi ∈ R
n denotes a

data point and yi ∈ {±1} the corresponding label. For T-fold cross-validation, � is
equally partitioned into T disjoint subsets1, as done in Couellan and Wang (2015),
Moore et al. (2009), one for each fold. The process is executed T iterations. For the
t-th iteration (t = 1, . . . , T ), the t-th fold is the validation set �t , and the remaining
T − 1 folds make up the training set �t = �\�t . Therefore, in the t-th iteration, the
separating hyperplane is trained using the training set �t , and the validation error is
computed on the validation set �t .

Then, the cross-validation error (CV error) is the average of the validation error
over all the T iterations. The value of C that gives the best CV error will be selected.
Finally, the final classifier is trained using all the data in� and the rescaled optimalC .
The test error is computed on the test set �. Note that the CV error and the test error
are the evaluation indices for the classification performance in T-fold cross-validation.
As shown in Fig. 1, for three-fold cross-validation, the yellow part is the subset �

which is used for three-fold cross-validation. In the first iteration, the blue part is the
validation set �1, and the remaining two folds are the training set �1. The second and
third iterations have similar meanings.

Let m1 be the size of the validation set �t and m2 the size of the training set
�t . The corresponding index sets for the validation and training sets are Nt and N t ,
respectively. In T-fold cross-validation, there are T validation sets. Therefore, there
are totally Tm1 validation points in T-fold cross-validation. We use the index set

Qu := {i | i = 1, 2, · · · , Tm1} (1)

1 Actually, � can be partitioned unequally, as done in Bennett et al. (2006), Lee et al. (2015), for example.
Our analysis here applies to unequal partitions of � as well. However, to demonstrate it easily, we use an
equal partition of �.
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to represent all the validation points in T-fold cross-validation. Similarly, there are
totally Tm2 training points in T-fold cross-validation. We use the index set

Ql := {i | i = 1, 2, · · · , Tm2} (2)

to represent all the training points in T-fold cross-validation. These two index sets will
be used later.

To analyze different cases of the data points in the training set and the validation
set, we need to introduce the soft-margin support vector classification (without bias
term) Cristianini and Shawe-Taylor (2000), Galli and Lin (2021). The traditional SVC
model which is referred to as hard-margin SVC requires that the data should be strictly
separated, i.e., the constraintsmust be satisfied strictly.However, the regularizedmodel
(soft-margin SVC) allows that the data could be wrongly labelled, i.e., the inequality
constraints can be violated, which is the case in the model

min
w∈Rn

1

2
‖w‖22 + C

τ∑

i=1

ξ(w; xi , yi ), (3)

whereC≥0 is a penalty parameter and ξ(·) is the loss function. If ξ(w; xi , yi )=(1−
yi (x�

i w))+, it is referred to as the l1-loss function; if ξ(w; xi , yi ) = (1−yi (x�
i w))2+,

it is referred to as the l2-loss function. We refer to Chauhan et al. (2019), Wang et al.
(2021), Huang et al. (2013) for various other types of loss functions. Next, we use Fig.
2 to show geometric relationships of different cases in soft-margin SVC.

For a sample (xi , yi ), the point xi is referred to as a positive point if yi = 1; the
point xi is referred to as a negative point if yi = −1. In Fig. 2, the plus signs ‘+’ are
the positive points (i.e., yi = 1) and the minus signs ‘−’ are the negative ones (i.e.,
yi = −1). The distance between the hyperplanes H1 : w�x = 1 and H2 : w�x = −1
is called margin. The separating hyperplane H lies between H1 and H2. Clearly, the
hyperplanes H1 and H2 are the boundaries of the margin. Therefore, if a positive point
lies on the hyperplane H1 or a negative point lies on the hyperplane H2, we call it
lying on the boundary of the margin (indicated by ‘①’ in Fig. 2). If a positive point lies
between the separating hyperplane H and the hyperplane H1, or a negative point lies
between the separating hyperplane H and the hyperplane H2, we call it lying between
the separating hyperplane H and the boundary of the margin (indicated by ‘②’ in Fig.
2). Similarly, if a positive point lies on the correctly classified side of the hyperplane
H1, or a negative point lies on the correctly classified side of the hyperplane H2, we
call it lying on the correctly classified side of the boundary of the margin (indicated
by ‘③’ in Fig. 2).

Based on Fig. 2, we have the following observations which address different cases
for the data points in the training set �t . Consider the soft-margin SVC problem
corresponding to the t-th fold, i.e., the t-th training set �t and validation set �t are
used. We also use wt to represent the optimal solution in (3) trained by �t .

Proposition 1 Let wt be an optimal solution of the t-th soft-margin SVC model. For
i ∈ N t , consider a positive point xi . Then it holds that:
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Fig. 2 Training points in soft-margin support vector machine

(a) xi satisfies (wt )�xi < 0 if and only if it lies on the misclassified side of the
separating hyperplane H, and is therefore misclassified.

(b) xi satisfies (wt )�xi = 0 if and only if it lies on the separating hyperplane H, and
is therefore correctly classified.

(c) xi satisfies 0 < (wt )�xi < 1 if and only if it lies between the separating hyperplane
H and the boundary of the margin; hence, it is correctly classified.

(d) xi satisfies (wt )�xi = 1 if and only if it lies on the boundary of the margin, and is
therefore correctly classified.

(e) xi satisfies (wt )�xi > 1 if and only if it lies on the correctly classified side of the
boundary of the margin, and is therefore correctly classified.

A result analogous to Proposition 1 can be stated for the negative points. In Fig. 3,
any point xi ∈ �t in blue is a training point in each case (notation is the same as in
Fig. 5).

As for data points in the validation set �t , we have the following scenarios.

Proposition 2 Let wt be an optimal solution of the t-th soft-margin SVC model. For
i ∈ Nt , consider a positive point xi . Then it holds that:

(a) xi satisfies (wt )�xi < 0 if and only if it lies on the misclassified side of the
separating hyperplane H, and is therefore misclassified.

(b) xi satisfies (wt )�xi = 0 if and only if it lies on the separating hyperplane H, and
is therefore correctly classified.

(c) xi satisfies (wt )�xi > 0 if and only if it lies on the correctly classified side of the
separating hyperplane H, and it is hence correctly classified.

A result analogous to Proposition 2 can be stated for the negative points. In Fig. 4, any
point xi ∈ �t in blue is a validation point in each case (notation is the same as in Fig.
6).
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(a) (b) (c)

(d) (e)

Fig. 3 Each case for different values of (wt )�xi with xi in the training set �t

(a) (b) (c)

Fig. 4 Each case for different values of (wt )�xi with xi in the validation set �t

Remark 1 Note that Propositions 1 and 2 are applicable to the soft-margin SVCmodel
with other loss functions. These two propositions will be used in the proof of Propo-
sitions 3 and 4.

2.2 The lower-level problem

In this part, we focus on the lower-level problem. That is, given hyperparameter C and
the training set �t , we train the dataset via l1-loss SVC model. We will also discuss
the properties of the lower-level problem.

2.2.1 The training model: l1-loss SVC

In T-fold cross-validation, there are T lower-level problems. In the t-th lower-level
problem, we train the t-th fold training set �t by the soft-margin SVC model in (3)
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with the l1-loss function2. That is, given C ≥ 0, we solve the following optimization
problem:

min
wt∈Rn

1

2
‖wt‖22 + C

∑

i∈N t

(1 − yi (x
�
i wt ))+.

A popular reformulation of the problem above is the convex quadratic optimization
problem obtained by introducing slack variables ξ t ∈ R

m2 :

min
wt∈Rn , ξ t∈Rm2

1
2

∥∥wt
∥∥2
2 + C

m2∑
i=1

ξ ti

s.t. Btwt ≥ 1 − ξ t ,

ξ t ≥ 0,

(4)

where, for t = 1, · · · , T and k = m1 + 1, · · · , l1, we have

Bt =

⎡

⎢⎢⎣

ytm1+1x
�
tm1+1

...

ytl1 x
�
tl1

⎤

⎥⎥⎦∈R
m2×n, (xtk , ytk ) ∈ �t ,

and we use ξ ti to denote the i-th element of ξ t ∈ R
m2 .

Let αt ∈ R
m2 and μt ∈ R

m2 be the multipliers of the constraints in (4). We can
write the KKT conditions for the lower-level problem (4) as

0 ≤ αt ⊥ Btwt − 1 + ξ t ≥ 0, (5a)

0 ≤ ξ t ⊥ μt ≥ 0, (5b)

wt − (Bt )�αt = 0, (5c)

C1 − αt − μt = 0, (5d)

where for two vectors a and b, writing 0 ≤ a ⊥ b ≥ 0 means that we have a�b =
0, a ≥ 0 and b ≥ 0. Also note that each complementary constraint in (5a) corresponds
to a training point xi with i ∈ Ql in (2). Each training point corresponds to a slack
variable ξ ti . So each complementary constraint in (5b) corresponds to a training point
xi with i ∈ Ql in (2). Therefore, there is a one-to-one correspondence between the
index set of the training points Ql and the complementary constraints in (5a) and (5b),
respectively. This will be used in the definition of some index sets below.

Furthermore, we would like to emphasize the support vectors implied in (5). From
(5c), the weight vector wt = (Bt )�αt = ∑

i∈N t

αt
i yi xi . It implies that only the data

2 We choose the l1-loss SVCmodel as the typical lower-level problem due to the following reasons. Firstly,
from the practical perspective, the l1-loss SVCmodel is a widely used statistical model in machine learning
(Yan and Li 2020; Zhang 2004; Shalev-Shwartz et al. 2011). Secondly, the l1-loss SVC model is more
challenging to tackle than the l2-loss SVC model due to the nonsmoothness of the l1-loss function
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points xi ∈ �t which correspond to αt
i 	= 0 are involved. By αt

i ≥ 0 in (5a), it means
that only xi ∈ �t with αt

i > 0 are involved. It is for this reason that they are called
support vectors. By eliminating μt and wt from the system in (5), we get the reduced
KKT conditions for problem (4) as follows:

{
0 ≤ αt ⊥ Bt (Bt )�αt − 1 + ξ t ≥ 0,

0 ≤ ξ t ⊥ C1 − αt ≥ 0.
(6)

2.2.2 Some properties of the lower-level problem

Let α ∈ R
Tm2 , ξ ∈ R

Tm2 , w ∈ R
Tn , and B ∈ R

Tm2×Tn be defined by

α :=

⎡

⎢⎢⎢⎣

α1

α2

...

αT

⎤

⎥⎥⎥⎦ , ξ :=

⎡

⎢⎢⎢⎣

ξ1

ξ2

...

ξ T

⎤

⎥⎥⎥⎦ , w :=

⎡

⎢⎢⎢⎣

w1

w2

...

wT

⎤

⎥⎥⎥⎦ , and B :=

⎡

⎢⎢⎢⎣

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...

0 0 · · · BT

⎤

⎥⎥⎥⎦ , (7)

respectively. The KKT conditions in (6) can be decomposed as

	1 := {i ∈ Ql | αi = 0, (BB�α − 1 + ξ)i = 0, ξi = 0}, (8)

	2 := {i ∈ Ql | αi = 0, (BB�α − 1 + ξ)i > 0, ξi = 0}, (9)

	3 := {i ∈ Ql | 0 < αi ≤ C, (BB�α − 1 + ξ)i = 0, ξi = 0}, (10)

	4 := {i ∈ Ql | αi = C, (BB�α − 1 + ξ)i = 0, 0 < ξi < 1}, (11)

	5 := {i ∈ Ql | αi = C, (BB�α − 1 + ξ)i = 0, ξi = 1}, (12)

	6 := {i ∈ Ql | αi = C, (BB�α − 1 + ξ)i = 0, ξi > 1}. (13)

Obviously, the intersection of any pair of these index sets	i for i = 1, . . . , 6 is empty.
An illustrative representation of data points corresponding to these index sets is given
in Fig. 5.

Proposition 3 Considering the training points corresponding to Ql in (2), let (α, ξ)

satisfy the conditions in (6). Then, the following statements hold true:

(a) The points {xi }i∈	1 lie on the boundary of the margin; they are correctly classified
points, but are not support vectors.

(b) The points {xi }i∈	2 lie on the correctly classified side of the boundary of the
margin; they are correctly classified points, but are not support vectors.

(c) The points {xi }i∈	3 lie on the boundary of the margin; they are correctly classified
points and are support vectors.

(d) The points {xi }i∈	4 lie between the separating hyperplane H and the boundary of
the margin; they are correctly classified therefore support vectors.

(e) The points {xi }i∈	5 lie on the separating hyperplane H; they are correctly classi-
fied points and are support vectors.

(f) The points {xi }i∈	6 lie on the misclassified side of the separating hyperplane H;
they are misclassified points and are support vectors.

123



Bilevel hyperparameter optimization for SVC 325

(a) (b) (c)

(d) (e) (f)

Fig. 5 Representation of points with index sets 	 j , j = 1, . . . , 6

Proof We take positive points for example. The same analysis can be applied to neg-
ative ones. Since w = B�α in (5c), we get (BB�α − 1 + ξ)i = (Bw − 1 + ξ)i .

(a) For the points {xi }i∈	1 , since ξi = 0 in (8), we have (Bw−1+ξ)i = (Bw−1)i =
0, that is, yi (w�xi )−1 = 0. For a positive point, yi = 1, it implies thatw�xi = 1.
It corresponds to (d) in Proposition 1. Therefore, it means that the point xi lies on
the boundary of the margin. It is correctly classified, and it is not a support vector,
since αi = 0.

(b) For the points {xi }i∈	2 , since ξi = 0 in (9), we have (Bw−1+ξ)i = (Bw−1)i >

0, that is, yi (w�xi )−1 > 0. For a positive point, yi = 1, it implies thatw�xi > 1.
It corresponds to (e) in Proposition 1. Therefore, it means that the point xi lies on
the correctly classified side of the boundary of the margin. It is correctly classified,
but not a support vector, as αi = 0.

(c) For the points {xi }i∈	3 , since ξi = 0 in (10), we have (Bw−1+ξ)i = (Bw−1)i =
0, that is, yi (w�xi )−1 = 0. For a positive point, yi = 1, it implies thatw�xi = 1.
It corresponds to (d) in Proposition 1. Therefore, it means that the point xi lies
on the boundary of the margin. It is correctly classified, and it is a support vector,
since αi > 0.

(d) For the points {xi }i∈	4 , since 0 < ξi < 1 in (11), we have 0 < (Bw)i < 1, that
is, 0 < yi (w�xi ) < 1. For a positive point, yi = 1, it implies that 0 < w�xi < 1.
It corresponds to (c) in Proposition 1. Therefore, xi lies between the separating
hyperplane H and the boundary of the margin. It is correctly classified, and it is a
support vector, since αi > 0.

(e) For the points {xi }i∈	5 , since ξi = 1 in (12), we have (Bw−1+ξ)i = (Bw)i = 0,
that is, yi (w�xi ) = 0. For a positive point, yi = 1, it implies that w�xi = 0. It
corresponds to (b) in Proposition 1. Therefore, it means that the point xi lies on
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the separating hyperplane H . It is correctly classified, and it is a support vector,
since αi > 0.

(f) For the points {xi }i∈	6 , since ξi > 1 in (13), we have (Bw)i < 0, that is,
yi (w�xi ) < 0. For a positive point, yi = 1, it implies that w�xi < 0. It cor-
responds to (a) in Proposition 1. Therefore, it means that the point xi lies on the
misclassified side of the separating hyperplane H . It is misclassified, and it is a
support vector, since αi > 0.

Remark 2 Note that all the data points xi for i ∈ 	1 corresponding to Fig. 5a and
i ∈ 	3 corresponding to Fig. 5c lie on the boundary of the margin. In other words,
Fig. 5a and Fig. 5c are identical. However, the values of αi for i ∈ 	1 and i ∈ 	3 are
different, so we demonstrate them in two subfigures.

2.3 The upper-level problem

In this part, we introduce the upper-level problem, that is, the bilevel optimization
model for hyperparameter selection in SVC under the settings of T-fold cross-
validation. Note that the aim of the upper-level problem is to minimize the T-fold
CV error measured on the validation sets based on the optimal solutions of the lower-
level problems. Specifically, the basic bilevel optimization model for selecting the
hyperparameter C in SVC is formulated as

min
C∈R, wt∈Rn , t=1,··· ,T

1

T

T∑

t=1

1

m1

∑

i∈Nt

‖
(
−yi

(
x�
i wt

))

+ ‖0

s.t. C ≥ 0,

and for t = 1, · · · , T :

wt ∈ argmin
w∈Rn

⎧
⎨

⎩
1

2
‖w‖22 + C

∑

i∈N t

(
1 − yi

(
x�
i w

))

+

⎫
⎬

⎭ .

(14)

Here, the expression
∑
i∈Nt

‖ (−yi
(
x�
i wt

))
+ ‖0 basically counts the number of data

points that are misclassified in the validation set �t , while the outer summation (i.e.,
the objective function in (14)) averages the misclassification error over all the folds.

Problem (14) can be equivalently written in the matrix form as follows

min
C∈R, wt∈Rn , t=1,··· ,T

1

T

T∑

t=1

1

m1
‖ (−Atwt)

+ ‖0

s.t. C ≥ 0,

and for t = 1, · · · , T :
wt ∈ argmin

w∈Rn

{
1

2
‖w‖22 + C‖ (1 − Btw

)
+ ‖1

}
,

(15)
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where, for t = 1, · · · , T and k = 1, · · · , m1, we have

At =
⎡

⎢⎣
yt1x

�
t1

...

ytm1
x�
tm1

⎤

⎥⎦ ∈ R
m1×n and (xtk , ytk ) ∈ �t .

Remark 3 Compared with the model in Kunapuli et al. (2008b), we consider a simpler
bilevel optimization model, only with an extra constraint C ≥ 0 in the upper-level
problem.

3 Single-level reformulation andmethod

In this section, we first reformulate the bilevel optimization problem as a single-level
optimization problem, precisely, we write the problem as an MPEC. Then we present
the properties of this single-level problem. Finally, we discuss the GRM to solve the
MPEC problem.

3.1 TheMPEC reformulation

Recall the upper-level objective function in (15) is a measure of misclassification error
based on the T out-of-sample validation sets, which we minimize. The measure used
here is the classical CV error for classification, the average number of the data points
misclassified. It is clear that ‖(·)+‖0 is discontinuous and nonconvex. However, the
function ‖(·)+‖0 can be characterized as theminimum of the sum of all elements of the
solution to the following linear optimization problem as demonstrated inMangasarian
(1994), i.e.,

‖r+‖0 =
{
min

m1∑

i=1

ζi : ζ = argmin
u

{
−u�r : 0 ≤ u ≤ 1

}}
.

Therefore, for each fold, ‖ (−Atwt
)
+ ‖0 is the minimum of the sum of all elements

of the solution to the following linear optimization problem:

min
ζ t∈Rm1

−(ζ t )�(−Atwt )

s.t. ζ t ≥ 0,
1 − ζ t ≥ 0.

(16)

Let ζ̂ t be the solution of problem (16) such that
m1∑
i=1

ζ̂ t
i is the minimum of the sum of

all elements of the solution to problem (5). This implies that ‖ (−Atwt
)
+ ‖0 =

m1∑
i=1

ζ t
i

in each fold. According to Proposition 2, there are two cases for the validation points:
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1. If the validation point (xi , yi ) ∈ �t is misclassified, then yi
(
x�
i wt

)
< 0. That is,

(−Atwt )i > 0, which corresponds to (
(−Atwt

)
+)i > 0.

2. If the validation point (xi , yi ) ∈ �t is correctly classified, we have yi
(
x�
i wt

) ≥ 0.
There are two cases. Firstly, xi lies on the separating hyperplane H , that is,
yi
(
x�
i wt

) = 0. For yi = 1, there is (−Atwt )i = 0, which corresponds to
(
(−Atwt

)
+)i = 0. Secondly, xi lies on the correctly classified side of the sepa-

rating hyperplane H , that is, yi
(
x�
i wt

)
> 0. For yi = 1, there is (−Atwt )i < 0,

which corresponds to (
(−Atwt

)
+)i = 0.

Combining with ‖ (−Atwt
)
+ ‖0 =

m1∑
i=1

ζ̂ t
i , it means that

ζ̂ t
i =

{
1, if (xi , yi ) ∈ �t is misclassified,
0, if (xi , yi ) ∈ �t is correctly classified,

(17)

where ζ̂ t
i is the i-th element of ζ̂ t in the t-th fold.

The linear programs (LPs) (16), for t = 1, · · · , T , are inserted into the bilevel opti-
mization problem in order to recast the discontinuous upper-level objective function
into a continuous one. Each LP in the form of (16) can also be replaced with its KKT
conditions as follows

⎧
⎨

⎩

0 ≤ ζ t ⊥ λt ≥ 0,
0 ≤ zt ⊥ 1 − ζ t ≥ 0,
Atwt − λt + zt = 0.

By eliminating λt and wt with wt = (Bt )�αt in (5c), we get the reduced KKT
conditions for problem (16) with

0 ≤ ζ t ⊥ At (Bt )�αt + zt ≥ 0, (18a)

0 ≤ zt ⊥ 1 − ζ t ≥ 0. (18b)

Note that each complementary constraint in (18a) corresponds to a validation point
xi with i ∈ Qu in (1). Each validation point corresponds to a variable ζ t

i . So we
have each complementary constraint in (18b) corresponds to a validation point xi with
i ∈ Qu in (1). Therefore, there is a one-to-one correspondence between the index set
of the validation points Qu and the complementary constraints in (18a) and (18b),
respectively.
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Combining the systems in (6) and (18), we can transform the bilevel optimization
problem (15) into the single-level optimization problem

min
C∈R

ζ t∈Rm1 , zt∈Rm1

αt∈Rm2 , ξ t∈Rm2

t=1, ··· , T

1

Tm1

m1∑

i=1

T∑

t=1

ζ t
i

s.t. C ≥ 0,

and for t = 1, · · · , T :
⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ ζ t ⊥ At (Bt )�αt + zt ≥ 0,
0 ≤ zt ⊥ 1 − ζ t ≥ 0,
0 ≤ αt ⊥ Bt (Bt )�αt − 1 + ξ t ≥ 0,
0 ≤ ξ t ⊥ C1 − αt ≥ 0.

(19)

Note that the constraintsC1−αt ≥ 0 and αt ≥ 0 implyC ≥ 0. Therefore, we remove
the redundant constraint C ≥ 0, and get an equivalent form of the problem above as
follows

min
C∈R

ζ t∈Rm1 , zt∈Rm1

αt∈Rm2 , ξ t∈Rm2

t=1, ··· , T

1

Tm1

m1∑

i=1

T∑

t=1

ζ t
i

s.t. for t = 1, · · · , T :
⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ ζ t ⊥ At (Bt )�αt + zt ≥ 0,
0 ≤ zt ⊥ 1 − ζ t ≥ 0,
0 ≤ αt ⊥ Bt (Bt )�αt − 1 + ξ t ≥ 0,
0 ≤ ξ t ⊥ C1 − αt ≥ 0.

(20)

The presence of the equilibrium constraints makes problem (20) an instance of an
MPEC, which is sometimes labelled as an extension of a bilevel optimization prob-
lem Luo et al. (1996). The optimal hyperparameter is now well defined as a global
optimal solution to the MPEC Lee et al. (2015). Now, we have transformed a bilevel
classification model into an MPEC.

We can also write (20) in a compact form. To proceed, let

ζ :=

⎡

⎢⎢⎢⎣

ζ 1

ζ 2

...

ζ T

⎤

⎥⎥⎥⎦∈R
Tm1 , z :=

⎡

⎢⎢⎢⎣

z1

z2

...

zT

⎤

⎥⎥⎥⎦∈R
Tm1 , A :=

⎡

⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · AT

⎤

⎥⎥⎥⎦ ∈ R
Tm1×Tn,

and α, ξ, B be defined in (7).
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(a) (b) (c)

Fig. 6 Representation of points with index sets � j , j = 1, 2, 3

Then problem (20) can be written as

min
C∈R

ζ∈RTm1 , z∈RTm1

α∈RTm2 , ξ∈RTm2

1

Tm1
1�ζ

s.t. 0 ≤ ζ ⊥ AB�α + z ≥ 0,
0 ≤ z ⊥ 1 − ζ ≥ 0,
0 ≤ α ⊥ BB�α − 1 + ξ ≥ 0,
0 ≤ ξ ⊥ C1 − α ≥ 0.

(21)

From now on, all our analysis is going to be based on this model.

3.2 Some properties of theMPEC reformulation

Observe that the last two constraints of problem (21) correspond to the complemen-
tarity systems that are part of the KKT conditions of the lower-level problem in (6).
As the latter conditions are carefully studied in Proposition 3, it remains to analyze the
first two complementarity systems describing the feasible set of problem (21). Hence,
we partition them as follows

�1 :=
{
i ∈ Qu | 0 ≤ ζi < 1, (AB�α + z)i = 0, zi = 0

}
, (22)

�2 :=
{
i ∈ Qu | ζi = 0, (AB�α + z)i > 0, zi = 0

}
, (23)

�3 :=
{
i ∈ Qu | ζi = 1, (AB�α + z)i = 0, zi > 0

}
. (24)

Similarly to (8)–(13), the intersection of any pair of the index sets � j for j = 1, 2, 3
is empty. In the same vein, an illustrative representation of data points corresponding
to the index sets � j for j = 1, 2, 3 is given in Fig. 6.

Proposition 4 Considering the validation points corresponding to Qu in (1), let
(ζ, z, α) satisfy the first two complementarity systems describing the feasible set
of problem (21). Then, the following statements hold true:
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(a) The points {xi }i∈�1 lie on the separating hyperplane H and are therefore correctly
classified.

(b) The points {xi }i∈�2 lie on the correctly classified side of the separating hyperplane
H and are therefore correctly classified.

(c) The points {xi }i∈�3 lie on the misclassified side of the separating hyperplane H
and are therefore misclassified.

Proof We take positive points for example. The same analysis can be applied to neg-
ative ones. Since w = B�α in (5c), we get (AB�α + z)i = (Aw + z)i .

(a) For the points {xi }i∈�1 , since zi = 0 in (22), we have (Aw + z)i = (Aw)i = 0,
that is, yi (w�xi ) = 0. For a positive point, yi = 1, it implies that w�xi = 0. It
corresponds to (b) in Proposition 2. Therefore, it means that the point xi lies on
the separating hyperplane H . It is correctly classified.

(b) For the points {xi }i∈�2 , since zi = 0 in (23), we have (Aw + z)i = (Aw)i > 0,
that is, yi (w�xi ) > 0. For a positive point, yi = 1, it implies that w�xi > 0. It
corresponds to (c) in Proposition 2. Therefore, it means that the point xi lies on the
correctly classified side of the separating hyperplane H . It is correctly classified.

(c) For the points {xi }i∈�3 , since zi > 0 in (24), we have (Aw)i < 0, that is,
yi (w�xi ) < 0. For a positive point, yi = 1, it implies that w�xi < 0. It cor-
responds to (a) in Proposition 2. Therefore, it means that the point xi lies on the
misclassified side of the separating hyperplane H .


�
In Sect. 4, Proposition 4 will be combined with Proposition 3 to prove Proposition 5.
It might also be important to note that if a validation point xi lies on the separating
hyperplane H , then we will have 0 ≤ ζi < 1.

3.3 The global relaxationmethod (GRM)

Here, we present a numerical algorithm to solve the MPEC (21). There are various
methods for solving MPECs, we refer to Dempe (2003), Luo et al. (1996) for some
surveys on the problem and to Ye (2005), Flegel (2005), Wu et al. (2015), Harder
et al. (2021), Guo et al. (2015), Jara-Moroni et al. (2018), Júdice (2012), Li et al.
(2015), Yu et al. (2019), Dempe (2003), Anitescu (2000), Facchinei and Pang (2007),
Fletcher et al. (2006), Fukushima and Tseng (2002) for some of the latest methods
to solve the problem. Among methods to solve MPECs, one of the most popular
ones is the relaxation method due to Scholtes (2001). Recently, Hoheisel et al. (2013)
provided comparisons of five relaxation methods for solvingMPECs, where it appears
that the GRM has the best theoretical (in terms of requiring weaker assumptions for
convergence) and numerical performance. Therefore, we will apply the GRM to solve
our MPEC (21).

To simplify the presentation of themethod,we nowwrite problem (21) into a further

compact format. Let v = [
C, ζ�, z�, α�, ξ�]� ∈ R

m+1 with m = 2T (m1 + m2)

and define the functions

F(v)=M�v, G(v)= Pv + a, and H(v)=Qv, (25)
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where

M= 1

Tm1

⎡

⎢⎢⎢⎢⎣

0
1Tm1

0Tm1

0Tm2

0Tm2

⎤

⎥⎥⎥⎥⎦
∈R

m+1, a=

⎡

⎢⎢⎣

0Tm1

1Tm1

−1Tm2

0Tm2

⎤

⎥⎥⎦∈R
m, Q=[

0m Im
]∈R

m×(m+1),

P=

⎡

⎢⎢⎣

0Tm1 0Tm1×Tm1 ITm1 AB� 0Tm1×Tm2

0Tm1 −ITm1 0Tm1×Tm1 0Tm1×Tm2 0Tm1×Tm2

0Tm2 0Tm2×Tm1 0Tm2×Tm1 BB� ITm2

1Tm2 0Tm2×Tm1 0Tm2×Tm1 −ITm2 0Tm2×Tm2

⎤

⎥⎥⎦∈R
m×(m+1).

Problem (21) can then be written in the form

min
v∈Rm+1

F(v)

s.t. 0 ≤ H(v) ⊥ G(v) ≥ 0.
(26)

The basic idea of the GRM is as follows. Let {tk} ↓ 0. At each iteration, we replace
the MPEC (26) by the nonlinear program (NLP) of the following form, parameterized
in tk :

min
v

F(v)

s.t. Gi (v) ≥ 0 ∀ i = 1, · · · , m,

Hi (v) ≥ 0 ∀ i = 1, · · · , m,

Gi (v)Hi (v) ≤ tk ∀ i = 1, · · · , m.

(NLP-tk)

The details of the GRM are shown in Algorithm 1.

Algorithm 1 The Global Relaxation Method (GRM) (v0, t0, σ, tmin)

1: Require a starting vector v0, an initial relaxation parameter t0, and parameters σ ∈ (0, 1), tmin > 0.
2: Set k := 0.
3: while tk > tmin do
4: Find an approximate solution vk+1 of the relaxed problem (NLP-tk ) using vk as a starting point.
5: Let tk+1 ← σ · tk and k ← k + 1.
6: end while
7: Return the final iterate vopt := vk , the corresponding function value F(vopt ), and the maximum

constraint violation Vio(vopt ).

Here, the maximum violation of all constraints Vio defined by

Vio
(
vopt

) = ‖min{G(vopt ), H(vopt )}‖∞ (27)
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is used to measure the feasibility of the final iterate vopt , where ‖ · ‖∞ denotes the l∞
norm. Note that in step 4, the approximate solution refers to the approximate stationary
point, in the sense that it satisfies the KKT conditions of (NLP-tk) approximately.
Numerically, we use the SNOPT solver Gill et al. (2002) to compute the KKT points
of (NLP-tk) approximately, such that the norm of the KKT conditions is less than a
threshold value ε=10−6. The point vk+1 returned by the SNOPT solver is referred to
as an approximate solution of (NLP-tk). We use the GRM in Algorithm 1 to solve the
MPEC (26), and get the optimal hyperparameter C and the corresponding function
value F(vopt )which is the cross-validation error (CVerror)measured on the validation
sets in T-fold cross-validation. To analyze the convergence of the GRM, we need the
concept of C-stationarity, which we define next.

To proceed, let v be a feasible point for the MPEC (26) and recall that F(v), G(v)

and H(v) are defined in (25). Based on v, let

IG := {i | Gi (v) = 0, Hi (v) > 0},
IGH := {i | Gi (v) = 0, Hi (v) = 0},
IH := {i | Gi (v) > 0, Hi (v) = 0}.

Definition 1 (C-stationarity) Let v be a feasible point for the MPEC (26). Then v is
said to be a C-stationary point, if there are multipliers γ, ν ∈ R

m , such that

∇F (v) −
m∑

i=1

γi∇Gi (v) −
m∑

i=1

νi∇Hi (v) = 0,

and γi = 0 for i ∈ IH , νi = 0 for i ∈ IG , and γiνi ≥ 0 for i ∈ IGH .

Note that for problem (26), C-stationarity holds at any local optimal solution that
satisfies the MPEC–MFCQ, which can be defined as follows Hoheisel et al. (2013).

Definition 2 A feasible point v for problem (26) satisfies the MPEC-MFCQ if and
only if the set of gradient vectors

{∇Gi (v) | i ∈ IG ∪ IGH } ∪ {∇Hi (v) | i ∈ IH ∪ IGH } (28)

is positive-linearly independent.

Recall that the set of gradient vectors in (28) is said to be positive-linearly depen-
dent if there exist scalars {δi }i∈IG∪IGH and {βi }i∈IH∪IGH with δi ≥ 0 for i ∈
IG ∪ IGH , βi ≥ 0 for i ∈ IH ∪ IGH , not all of them being zero, such that
�i∈IG∪IGH δi∇Gi (v) + �i∈IH∪IGH βi∇Hi (v) = 0. Otherwise, we say that this set
of gradient vectors is positive-linearly independent.

Also note that various other stationarity concepts can be defined for problem (26);
for more details on this, interested readers are referred to Dempe and Zemkoho (2012),
Flegel (2005).
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Fig. 7 The roadmap of the proof of the MPEC–MFCQ

The following result establishes that Algorithm 1 is well-defined, as it provides
a framework ensuring that a solution (or a stationary point, to be precise) exists for
problem (NLP-tk) as required.

Theorem 1 Hoheisel et al. (2013) Let v be a feasible point for the MPEC (26) such
that MPEC-MFCQ is satisfied at v. Then there exists a neighborhood N of v and t > 0
such that standard MFCQ for (NLP-tk) at tk = t is satisfied at all feasible points of
(NLP-tk) at tk = t in this neighborhood N for all t ∈ (0, t).

Subsequently,we have the following convergence result, which ensures that a sequence
of stationary points of problem (NLP-tk), computed by Algorithm 1, converges to a
C-stationary point of problem (26).

Theorem 2 Hoheisel et al. (2013) Let {tk} ↓ 0 and let vk be a stationary point of
(NLP-tk) with vk → v such that MPEC-MFCQ holds at the feasible point v. Then v

is a C-stationary point of the MPEC (26).

Clearly, the MPEC-MFCQ is crucial for the analysis of problem (26), as it not only
ensures that the C-stationarity condition can hold at a locally optimal point, but also
helps in establishing the two fundamental results in Theorems 1 and 2. Considering
this importance of the condition, we carefully analyze it in the next section, and show,
in particular, that it automatically holds at any feasible point of problem (26).

4 Fulfilment of theMPEC–MFCQ

In this section, we prove that every point in the feasible set of the MPEC (26) satisfies
the MPEC–MFCQ. The rough idea of our proof is as follows. Firstly, by analyzing
the relationship of different index sets (Proposition 5), we reach a reduced form of
theMPEC–MFCQ (Proposition 6). Then based on the positive-linear independence of
three submatrices (Lemmas 1–3), we eventually show the MPEC–MFCQ in Theorem
3. The roadmap of the proof is summarized in Fig. 7.
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4.1 Relationships between the index sets

In this part, we first explore more properties about the index sets IH , IG , IGH , as
they are the key to the analysis of the positive-linear independence of the vectors in

(28). Let IH := 4∪
k=1

IHk , IG := 4∪
k=1

IGk , and IGH := 4∪
k=1

IGHk , where

IH1 := {i ∈ Qu | ζi = 0, (AB�α + z)i > 0}, (29a)

IH2 := {i ∈ Qu | zi = 0, 1 − ζi > 0}, (29b)

IH3 := {i ∈ Ql | αi = 0, (BB�α − 1 + ξ)i > 0}, (29c)

IH4 := {i ∈ Ql | ξi = 0, C − αi > 0}, (29d)

IG1 := {i ∈ Qu | ζi > 0, (AB�α + z)i = 0}, (29e)

IG2 := {i ∈ Qu | zi > 0, 1 − ζi = 0}, (29f)

IG3 := {i ∈ Ql | αi > 0, (BB�α − 1 + ξ)i = 0}, (29g)

IG4 := {i ∈ Ql | ξi > 0, C − αi = 0}, (29h)

IGH1 := {i ∈ Qu | ζi = 0, (AB�α + z)i = 0}, (29i)

IGH2 := {i ∈ Qu | zi = 0, 1 − ζi = 0}, (29j)

IGH3 := {i ∈ Ql | αi = 0, (BB�α − 1 + ξ)i = 0}, (29k)

IGH4 := {i ∈ Ql | ξi = 0, C − αi = 0}. (29l)

Here, Qu, Ql are defined in (1) and (2), respectively. Furthermore, let

I k := IHk ∪ IGk ∪ IGHk , k = 1, 2, 3, 4.

It can be observed that each index set I k, k = 1, 2, 3, 4 corresponds to the union
of the three components in the partition involved in the corresponding part of the
complementarity systems in (21); that is,

Part 1: I 1 for the partition of the system 0 ≤ ζ ⊥ ABTα + z ≥ 0;
Part 2: I 2 for the partition of the system 0 ≤ z ⊥ 1 − ζ ≥ 0;
Part 3: I 3 for the partition of the system 0 ≤ α ⊥ BBTα − 1 + ξ ≥ 0;
Part 4: I 4 for the partition of the system 0 ≤ ξ ⊥ C1 − α ≥ 0.

In the previous section, we have clarified a one-to-one correspondence between the
index set of the validation points Qu in (1) and the complementary constraints in
Part 1 and Part 2, respectively. It is clearly that I 1 = I 2 = Qu . Similarly, we have
I 3 = I 4 = Ql .

Next, we give the relationships between the index sets in (29); recall that we already
have some index sets described in Propositions 3 and 4. For the convenience of the
analysis, we divide the index set 	3 in (10) into two subsets 	+

3 and 	c
3, as well as

�1 in (22) into �0
1 and �+

1 :

	+
3 := {i ∈ Ql | 0 < αi < C, (BB�α − 1 + ξ)i = 0, ξi = 0}, (30)
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(a) (b)

(c) (d)

Fig. 8 The index sets corresponding to the complementarity constraints in Parts 1–4

	c
3 := {i ∈ Ql | αi = C, (BB�α − 1 + ξ)i = 0, ξi = 0}, (31)

�0
1 := {i ∈ Qu | ζi = 0, (AB�α + z)i = 0, zi = 0}, (32)

�+
1 := {i ∈ Qu | 0 < ζi < 1, (AB�α + z)i = 0, zi = 0}. (33)

Proposition 5 The index sets in (29) and the index sets inProposition3andProposition
4 have the following relationship:

(a) In Part 1, IH1 = �2, IG1 = �+
1 ∪ �3, IGH1 = �0

1 .

(b) In Part 2, IH2 = �1 ∪ �2, IG2 = �3, IGH2 = ∅.

(c) In Part 3, IH3 = 	2, IG3 = 	3 ∪ 	u, IGH3 = 	1.

(d) In Part 4, IH4 = 	1 ∪ 	2 ∪ 	+
3 , IG4 = 	u, IGH4 = 	c

3.

Here, 	u is defined as follows

	u :=
{
i ∈ Ql | αi = C, (BB�α − 1 + ξ)i = 0, ξi > 0

}
= 	4 ∪ 	5 ∪ 	6.

(34)
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Proof According to the definition of the index sets in (29) and the index sets in Propo-
sition 3 and Proposition 4, we have the following analysis.

(a) In Part 1, for i ∈ IH1 , compared with the index set �2 in (23), it follows that
we have zi = 0 and IH1 = �2. For i ∈ IG1 , compared with the index sets �+

1
in (33) and �3 in (24), we get 0 < ζi < 1, zi = 0 or ζi = 1, zi > 0, and
IG1 = �+

1 ∪ �3. For i ∈ IGH1 , compared with the index set �0
1 in (32), we get

zi = 0 and IGH1 = �0
1 .

(b) In Part 2, for i ∈ IH2 , compared with the index sets �1 in (22) and �2 in (23),
we get IH2 = �1 ∪ �2. For i ∈ IG2 , compared with the index set �3 in (24),
we get (AB�α + z)i = 0 and IG2 = �3. For i ∈ IGH2 , there is no index set in
Proposition 4 corresponds to the index set IGH2 . Therefore, IGH2 = ∅.

(c) In Part 3, for i ∈ IH3 , compared with the index set 	2 in (9), we get ξi = 0 and
IH3 = 	2. For i ∈ IG3 , compared with the index sets 	3 in (10) and 	u in (34),
we get IG3 = 	3 ∪ 	u . For i ∈ IGH3 , compared with the index set 	1 in (8), we
get ξi = 0 and IGH3 = 	1.

(d) In Part 4, for i ∈ IH4 , compared with the index sets 	1 in (8), 	2 in (9) and 	+
3 in

(30), we get IH4 = 	1∪	2∪	+
3 . For i ∈ IG4 , compared with the index set	u in

(34), we get (Bw − 1+ ξ)i = 0 and IG4 = 	u . For i ∈ IGH4 , compared with the
index set 	c

3 in (31), it results that we have (Bw − 1 + ξ)i = 0 and IGH4 = 	c
3.

The results in Proposition 5 are demonstrated in Fig. 8. For example, for (a) in Propo-
sition 5, the index sets of complementarity constraints in Part 1 are shown in Fig. 8a,
which is about the relationship of IH1 , IG1 , IGH1 in (29) and the index sets (22)–(24).
In Fig. 8a, the red shaded part represents the index set IG1 , which contains the index
sets �+

1 and �3. (b)–(d) in Proposition 5 are demonstrated in Fig. 8 b–d. Specially, in
Fig. 8b, the red shaded part represents the index set IH2 , which contains the index sets
�1 (or �0

1 ∪ �+
1 ) and �2. In Fig. 8c, the red shaded part represents the index set IG3 ,

which contains the index sets 	3 (or 	+
3 ∪	c

3) and 	u . In Fig. 8d, the red shaded part
represents the index set IH4 , which contains the index sets 	1, 	2, and 	+

3 .

4.2 The reduced form of theMPEC-MFCQ

Proposition 6 The set of gradient vectors in (28) at a feasible point v for the MPEC
(26) can be written in the matrix form
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� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(IG1 , L1) 0(IG1 , L2) �3
a (AB�)(IG1 , · ) 0(IG1 , L5)

0(IGH1 , L1) 0(IGH1 , L2) �3
b (AB�)(IGH1 , · ) 0(IGH1 , L5)

0(IGH1 , L1) �2
c 0(IGH1 , L3) 0(IGH1 , L4) 0(IGH1 , L5)

0(IH1 , L1) �2
d 0(IH1 , L3) 0(IH1 , L4) 0(IH1 , L5)

0(IG2 , L1) �2
e 0(IG2 , L3) 0(IG2 , L4) 0(IG2 , L5)

0(IH2 , L1) 0(IH2 , L2) �3
f 0(IH2 , L4) 0(IH2 , L5)

0(IG3 , L1) 0(IG3 , L2) 0(IG3 , L3) (BB�)(IG3 , · ) �5
g

0(IGH3 , L1) 0(IGH3 , L2) 0(IGH3 , L3) (BB�)(IGH3 , · ) �5
h

0(IGH3 , L1) 0(IGH3 , L2) 0(IGH3 , L3) �4
i 0(IGH3 , L5)

0(IH3 , L1) 0(IH3 , L2) 0(IH3 , L3) �4
j 0(IH3 , L5)

1(IG4 , L1) 0(IG4 , L2) 0(IG4 , L3) �4
k 0(IG4 , L5)

1(IGH4 , L1) 0(IGH4 , L2) 0(IGH4 , L3) �4
l 0(IGH4 , L5)

0(IGH4 , L1) 0(IGH4 , L2) 0(IGH4 , L3) 0(IGH4 , L4) �5
m

0(IH4 , L1) 0(IH4 , L2) 0(IH4 , L3) 0(IH4 , L4) �5
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

where Lq , q = 1, · · · , 5 are the index sets of columns corresponding to the variables
C, ζ , z, α, and ξ , respectively, and

�3
a :=

[
0(IG1 , �0

1∪�2)
I(IG1 , �+

1 ∪�3)

]

�3
b :=

[
I(IGH1 , �0

1 ) 0(IGH1 , �+
1 ∪�2∪�3)

]

�2
c :=

[
I(IGH1 , �0

1 ) 0(IGH1 , �+
1 ∪�2∪�3)

]

�2
d := [

0(IH1 , �1∪�3) I(IH1 , �2)

]

�2
e := [

0(IG2 , �1∪�2) −I(IG2 , �3)

]

�3
f := [

I(IH2 , �1∪�2) 0(IH2 , �3)

]

�5
g := [

0(IG3 , 	1∪	2) I(IG3 , 	3∪	u)

]

�5
h := [

I(IGH3 , 	1) 0(IGH3 , 	2∪	3∪	u)

]

�4
i := [

I(IGH3 , 	1) 0(IGH3 , 	2∪	3∪	u)

]

�4
j := [

0(IH3 , 	1∪	3∪	u) I(IH3 , 	2)

]

�4
k := [

0(IG4 , 	1∪	2∪	3) −I(IG4 , 	u)

]

�4
l :=

[
0(IGH4 , 	1∪	2∪	+

3 ∪	u)
−I(IGH4 , 	c

3)

]

�5
m :=

[
0(IGH4 , 	1∪	2∪	+

3 ∪	u)
I(IGH4 , 	c

3)

]

�5
n :=

[
I(IH4 , 	1∪	2∪	+

3 ) 0(IH4 , 	c
3∪	u)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (36)

Proof Based on Definition 2, we can write the set of gradient vectors in (28) at a
feasible point v in the rows of the matrix � as follows
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� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇G(v)IG1∇G(v)IGH1∇H(v)IGH1∇H(v)IH1∇G(v)IG2∇H(v)IH2∇G(v)IG3∇G(v)IGH3∇H(v)IGH3∇H(v)IH3∇G(v)IG4∇G(v)IGH4∇H(v)IGH4∇H(v)IH4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Now, we can easily show that the matrix � in (37) is equivalent to the more specific
form in (35). To proceed, first note that from Proposition 5 (a) and (b), we have

IH1 =�2, IG1 =�+
1 ∪ �3, IGH1 =�0

1 , IH2 =�1 ∪ �2,

IG2 =�3, Qu =�1 ∪ �2 ∪ �3.

So, we get �3
a, �3

b, �2
c , �2

d , �2
e , and �3

f in (36). On the other hand, it follows from
Proposition 5 (c) and (d), we have

IH3 =	2, IG3 =	3 ∪ 	u, IGH3 =	1, IH4 =	1 ∪ 	2 ∪ 	+
3 ,

IG4 =	u, IGH4 =	c
3, Ql =	1 ∪ 	2 ∪ 	3 ∪ 	u .

Subsequently, it follows that�5
g, �5

h, �4
i , �4

j , �4
k , �4

l , �5
m , and�5

n in (36). Therefore,
we obtain the form of the matrix � in (35). 
�

4.3 Three important lemmas

Due to the complicated form of � in (35), in this part, we first present three lemmas,
addressing the positive-linear independence of three submatrices in� marked by blue,
green and yellow, respectively. To proceed from here on, we define the size of each
index set in (29) and Propositions 3–4 as follows. We denote the size of the index set
IG1 by S1, that is, | IG1 |= S1. Similarly,

| IG2 |= S2, | IG3 |= S3, | IG4 |= S4,
| IH1 |= U1, | IH2 |= U2, | IH3 |= U3, | IH4 |= U4,

| IGH1 |= W1, | IGH3 |= W2, | IGH4 |= W3,

|	1 |= D1, |	2 |= D2, |	+
3 |= D3, |	c

3 |= D4, |	u |= D5,

|�0
1 |= N1, |�+

1 |= N2, |�2 |= N3, |�3 |= N4.
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Further, we denote the index corresponding to each row in the matrices �3
a, · · · �5

n ,
in (36) by as, · · · ns , respectively.
Lemma 1 The row vectors in the following matrix

⎡

⎣
�2
c

�2
d

�2
e

⎤

⎦ =
⎡

⎢⎣
I(IGH1 , �0

1 ) 0(IGH1 , �+
1 ) 0(IGH1 , �2) 0(IGH1 , �3)

0(IH1 , �0
1 ) 0(IH1 , �+

1 ) I(IH1 , �2) 0(IH1 , �3)

0(IG2 , �0
1 ) 0(IG2 , �+

1 ) 0(IG2 , �2) −I(IG2 , �3)

⎤

⎥⎦ (38)

are positive-linearly independent.

Proof Assume that there exist ρc ∈ R
W1 and ρc ≥ 0, ρd ∈ R

U1 and ρd ≥ 0, ρe ∈
R

S2 and ρe ≥ 0, such that

W1∑

s=1

ρc
s

⎡

⎢⎢⎣

eW1
cs
0N2

0N3

0N4

⎤

⎥⎥⎦ +
U1∑

s=1

ρd
s

⎡

⎢⎢⎣

0N1

0N2

eU1
ds
0N4

⎤

⎥⎥⎦ +
S2∑

s=1

ρe
s

⎡

⎢⎢⎣

0N1

0N2

0N3

−eS2es

⎤

⎥⎥⎦ = 0.

The above equation is equivalent to the following system

⎡

⎢⎢⎣

ρc

0N2

ρd

−ρe

⎤

⎥⎥⎦ = 0. (39)

Since ρc ≥ 0, ρd ≥ 0, ρe ≥ 0, we get ρc = 0, ρd = 0, ρe = 0 from Eq. (39).
Therefore, the row vectors in the matrix (38) are positive-linearly independent. 
�
Lemma 2 The row vectors in the following matrix

⎡

⎣
�3
a

�3
b

�3
f

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(�+
1 , �0

1 ) I(�+
1 , �+

1 ) 0(�+
1 , �2)

0(�+
1 , �3)

0(�3, �0
1 ) 0(�3, �+

1 ) 0(�3, �2) I(�3, �3)

I(IGH1 , �0
1 ) 0(IGH1 , �+

1 ) 0(IGH1 , �2) 0(IGH1 , �3)

I(�0
1 , �0

1 ) 0(�0
1 , �+

1 ) 0(�0
1 , �2)

0(�0
1 , �3)

0(�+
1 , �0

1 ) I(�+
1 , �+

1 ) 0(�+
1 , �2)

0(�+
1 , �3)

0(�2, �0
1 ) 0(�2, �+

1 ) I(�2, �2) 0(�2, �3)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

are positive-linearly independent.

Proof Assume that there exist ρa ∈ R
S1 and ρa ≥ 0, ρb ∈ R

W1 and ρb ≥ 0, ρ f ∈
R
U2 and ρ f ≥ 0, such that

S1∑

s=1

ρa
s

[
0N1+N3

eS1as

]
+

W1∑

s=1

ρb
s

[
eW1
bs

0N2+N3+N4

]
+

U2∑

s=1

ρ
f
s

[
eU2
fs

0N4

]
= 0.
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The above equation is equivalent to the following system

⎡

⎢⎢⎢⎢⎣

ρb + ρ
f
�0
1

ρa
�+
1

+ ρ
f
�+
1

ρ
f
�2

ρa
�3

⎤

⎥⎥⎥⎥⎦
= 0. (41)

Since ρa ≥ 0, ρb ≥ 0, ρ f ≥ 0, we get ρa = 0, ρb = 0, ρ f = 0 from Eq. (41).
Therefore, the row vectors in the matrix (40) are positive-linearly independent. 
�
Lemma 3 The row vectors in the matrix �sub defined by

�sub =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(BB�)(IG3 , · ) �5
g

(BB�)(IGH3 , · ) �5
h

�4
i 0(IGH3 , L5)

�4
j 0(IH3 , L5)

0(IGH4 , L4) �5
m

0(IH4 , L4) �5
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(42)

are positive-linearly independent.

Proof For the convenience of analysis, note that

⎡

⎢⎢⎣

�5
g

�5
h

�5
m

�5
n

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(	+
3 , 	1)

0(	+
3 , 	2)

I(	+
3 , 	+

3 ) 0(	+
3 , 	c

3)
0(	+

3 , 	u)

0(	c
3, 	1) 0(	c

3, 	2) 0(	c
3, 	+

3 ) I(	c
3, 	c

3)
0(	c

3, 	u)

0(	u , 	1) 0(	u , 	2) 0(	u , 	+
3 ) 0(	u , 	c

3)
I(	u , 	u)

I(IGH3 , 	1) 0(IGH3 , 	2) 0(IGH3 , 	+
3 ) 0(IGH3 , 	c

3)
0(IGH3 , 	u)

0(IGH4 , 	1) 0(IGH4 , 	2) 0(IGH4 , 	+
3 ) I(IGH4 , 	c

3)
0(IGH4 , 	u)

I(	1, 	1) 0(	1, 	2) 0(	1, 	+
3 ) 0(	1, 	c

3)
0(	1, 	u)

0(	2, 	1) I(	2, 	2) 0(	2, 	+
3 ) 0(	2, 	c

3)
0(	2, 	u)

0(	+
3 , 	1)

0(	+
3 , 	2)

I(	+
3 , 	+

3 ) 0(	+
3 , 	c

3)
0(	+

3 , 	u)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and assume that we can find some vectors ρg ∈ R
S3 and ρg ≥ 0, ρh ∈ R

W2 and
ρh ≥ 0, ρi ∈ R

W2 and ρi ≥ 0, ρ j ∈ R
U3 and ρ j ≥ 0, ρm ∈ R

W3 and ρm ≥ 0, and
ρn ∈ R

U4 and ρn ≥ 0, such that

S3∑
s=1

ρ
g
s

⎡

⎢⎢⎣

(
BB�)�

(gs , · )[
0D1+D2

eS3gs

]

⎤

⎥⎥⎦+
W2∑
s=1

ρhs

⎡

⎢⎢⎣

(
BB�)�

(hs , · )[
eW2
hs

0Tm2−D1

]

⎤

⎥⎥⎦+
W2∑
s=1

ρis

⎡

⎢⎣

[
eW2
is

0Tm2−D1

]

0Tm2

⎤

⎥⎦+

U3∑
s=1

ρ
j
s

⎡

⎢⎢⎣

⎡

⎣
0D1

eU3
js

0D3+D4+D5

⎤

⎦

0Tm2

⎤

⎥⎥⎦+
W3∑
s=1

ρms

⎡

⎢⎢⎣

0Tm2⎡

⎣
0(D1+D2+D3)

eW3
ms
0D5

⎤

⎦

⎤

⎥⎥⎦+
U4∑
s=1

ρns

⎡

⎣
0Tm2[
eU4
ns

0D4+D5

]
⎤

⎦=0.
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The above equation is equivalent to the compact system

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S3∑
s=1

ρ
g
s

((
BB�)

(gs , ·)
)� +

W2∑
s=1

ρh
s

((
BB�)

(hs , ·)
)� +

⎡

⎣
ρi

ρ j

0D3+D4+D5

⎤

⎦

ρh + ρn
	1

ρn
	2

ρ
g
	+

3
+ ρn

	+
3

ρ
g
	c

3
+ ρm

ρ
g
	u

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

which leads to ρg = 0, ρh = 0, ρi = 0, ρ j = 0, ρm = 0, ρn = 0, given that
ρg ≥ 0, ρh ≥ 0, ρi ≥ 0, ρ j ≥ 0, ρm ≥ 0, ρn ≥ 0. Therefore, the row vectors in
the matrix �sub are positively-linearly independent. 
�

4.4 Themain result

Based on the above lemmas, we are ready to present the main theorem on the MPEC–
MFCQ.

Theorem 3 Let v = (C, ζ, z, α, ξ) be any feasible point for the MPEC (26), then v

satisfies the MPEC–MFCQ.

Proof Assume there exist ρa ∈ R
S1 and ρa ≥ 0, ρb ∈ R

W1 and ρb ≥ 0, ρc ∈
R
W1 and ρc ≥ 0, ρd ∈ R

U1 and ρd ≥ 0, ρe ∈ R
S2 and ρe ≥ 0, ρ f ∈ R

U2 and ρ f ≥
0, ρg ∈ R

S3 and ρg ≥ 0, ρh ∈ R
W2 and ρh ≥ 0, ρi ∈ R

W2 and ρi ≥ 0, ρ j ∈
R
U3 and ρ j ≥ 0, ρk ∈ R

S4 and ρk ≥ 0, ρl ∈ R
W3 and ρl ≥ 0, ρm ∈ R

W3 and ρm ≥
0, ρn ∈ R

U4 and ρn ≥ 0, such that the following holds

S1∑

s=1

ρa
s

⎡

⎢⎢⎢⎢⎢⎣

0
0Tm1(

�3
a

)�
(as , · )(

AB�)�
(as , · )

0Tm2

⎤

⎥⎥⎥⎥⎥⎦
+

W1∑

s=1

ρb
s

⎡

⎢⎢⎢⎢⎢⎣

0
0Tm1(

�3
b

)�
(bs , · )(

AB�)�
(bs , · )

0Tm2

⎤

⎥⎥⎥⎥⎥⎦
+

W1∑

s=1

ρc
s

⎡

⎢⎢⎢⎢⎣

0(
�2
c

)�
(cs , · )

0Tm1

0Tm2

0Tm2

⎤

⎥⎥⎥⎥⎦

+
U1∑

s=1

ρd
s

⎡

⎢⎢⎢⎢⎣

0(
�2
d

)�
(ds , · )

0Tm1

0Tm2

0Tm2

⎤

⎥⎥⎥⎥⎦
+

S2∑

s=1

ρe
s

⎡

⎢⎢⎢⎢⎣

0(
�2
e

)�
(es , · )

0Tm1

0Tm2

0Tm2

⎤

⎥⎥⎥⎥⎦
+

U2∑

s=1

ρ
f
s

⎡

⎢⎢⎢⎢⎢⎣

0
0Tm1(

�3
f

)�
( fs , · )

0Tm2

0Tm2

⎤

⎥⎥⎥⎥⎥⎦
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+
S3∑
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= 0. (43)

From the first row in Eq. (43), we get
S4∑
s=1

ρk
s +

W3∑
s=1

ρl
s = 0. Together with the fact that

ρk ≥ 0, ρl ≥ 0, we get ρk = 0 and ρl = 0. From Lemma 1, we get ρc = 0, ρd =
0, ρe = 0 in Equation (43). From Lemma 2, we get ρa = 0, ρb = 0, ρ f = 0 in Eq.
(43). From Lemma 3, we get ρg = 0, ρh = 0, ρi = 0, ρ j = 0, ρm = 0, ρn = 0 in
Eq. (43).

In summary, the row vectors in the matrix � (35) are positive-linearly independent
at every feasible point v for the MPEC (26). That is to say, every feasible point v for
the MPEC (26) satisfies the MPEC-MFCQ. 
�

5 Numerical results

In this section, we present theGR–CV,which is a concrete implementation of theGRM
in Algorithm 1 for selecting the hyperparameter C in SVC, as shown in Algorithm
2. We show numerical results of the proposed GR–CV, and compare it with other
approaches.

Algorithm 2 The Global Relaxation Cross-Validation Algorithm (GR-CV)
1: Given T , split the data set into a subset � with l1 points and a hold-out test set � with l2 points. The set

� is equally partitioned into T pairwise disjoint subsets, one for each fold.
2: Select an optimal hyperparameter Ĉ by the GRM in Algorithm 1.
3: Post-processing procedure. The regularization hyperparameter Ĉ is rescaled by a factor T

T−1 . Then,

an l1-loss SVC problem is solved on the subset � using T
T−1 Ĉ by ALM-SNCG algorithm in Yan and

Li (2020). This gives the final classifier ŵ.
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Table 1 Descriptions of data sets

Data set l1 l2 n Data set l1 l2 n

Heart 189 81 13 splice 300 700 60

Breast-cancer 240 172 10 fourclass 300 562 2

Colon-cancer 36 26 2000 w1a 240 260 300

Ionosphere 246 105 34 w2a 300 500 300

Australian 270 420 14 a1a 300 200 119

Diabetes 270 498 8 german.number 207 793 24

All the numerical tests are conducted inMatlabR2018a on aWindows 7Dell Laptop
with an Intel(R) Core(TM) i5-6500U CPU at 3.20GHz and 8 GB of RAM. All the
data sets are collected from the LIBSVM library: https://www.csie.ntu.edu.tw/cjlin/
libsvmtools/datasets/. Each data set is split into a subset � with l1 points (it is used
for cross-validation) and a hold-out test set � with l2 points. The data descriptions are
shown in Table 1.

We compare our GR–CV with two other approaches: the inexact cross-validation
method (In-CV) and the grid search method (G–S). In-CV Kunapuli et al. (2008b) is
a relaxation method based on the relaxation of the complementarity constraints by a
prescribed tolerance parameter tol > 0. That is, solving (NLP-tk) with tk = tol as a
fixed tolerance rather than decreasing tk gradually.

The parameters of three methods are set as follows. For GR–CV, we set the initial
values as v0 = [

1, 01×m
]�, t0 = 1, tmin = 10−8, σ = 0.01. The relaxed subprob-

lems (NLP-tk) are solved by the snsolve function, which is part of the SNOPT
solver (Gill et al. 2002). For In-CV, we use the same v0 as in GR–CV and tol = 10−4.
For G–S, we use C ∈ {10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}, which is
a commonly used grid range (Bennett et al. 2006; Kunapuli et al. 2008b; Kunapuli
2008; Moore et al. 2009). In each training process, the ALM–SNCG algorithm from
Yan and Li (2020), which is outstanding and competitive with the most popular meth-
ods in LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) in both speed and
accuracy, is used to solve the l1-loss SVC problem.

We compare the aforementioned methods in the following three aspects:

1. Test error (Et ) as defined by

Et = 1

l2

∑

(x,y)∈�

1

2
| sign

(
ŵ�x

)
− y |,

which is a measure of the ability of generalization.
2. CV error (EC ) as defined in the objective function of problem (14).
3. The number of iterations k for an algorithm, and the total number of iterations i t

for solving the subproblems (short for (k, i t)).

We also report the maximum violation of all constraints defined as in (27), to measure
the feasibility of the final solution given by GR–CV and In-CV.
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Fig. 9 The comparison among the three methods on test error

The results are reported in Table 2, where we mark the winners of test error Et , CV
error EC and the maximum violation of all constraints Vio in bold. We also show the
comparisons of the three methods for different data sets on test error Et and CV error
EC in Figs. 9 and 10, respectively. The data sets on the horizontal axis are arranged
in the order shown in Table 2.

From Figs. 9, 10 and Table 2, we have the following observations. Firstly, GR–
CV performs the best in terms of test error in Fig. 9, implying that our approach is
more capable of generalization. Secondly, in terms of CV error in Fig. 10, GR–CV is
competitive with G–S. GR–CV is the winner in five data sets of all the twelve datasets
whereas G-S wins in eight datasets among the twelve datasets. Finally, comparing
GR–CVwith In-CV, the feasibility of the solution returned by GR–CV is significantly
better than that by In-CV since Vio given by GR–CV is much smaller than that by
In-CV. In terms of cpu time, it is obvious that In-CV takes less time than GR-CV since
it only solves the relaxation problem (NLP-tk) once. Since G-S is basically solving a
completely different type of problem to find the hyperparameter C , it doesn’t make
sense to compare the cpu time between GR–CV and G–S.

To further study the effect of increasing the number of folds on test error Et and
CV error EC in the three methods, we report the results on the Australian data set
in Fig. 11. The results show that as T changes, the test error for GR–CV is always
the lowest, and the CV error for GR–CV is competitive with the other two methods.
Meanwhile it is clear that larger number of folds can be successfully solved for GR–
CV, the computing time grows with the number of folds because of the increasing
number of variables and constraints for the MPEC to be solved. The ranges of the test
error and CV error for different numbers of folds are not large, so T = 3 represents a
reasonable choice.
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Table 2 Computational results for T = 3

Data set Method Et (%) EC (%) Vio (k, i t)

1 Heart GR-CV 9.88 17.46 1.51e−6 (5, 24165)

In-CV 9.88 17.95 0.010 (1,12418)

G-S 13.58 17.46 − (27,425)

2 Breast-cancer GR-CV 4.07 5.42 4.98e−4 (5,17092)

In-CV 4.07 5.42 0.006 (1,14971)

G-S 4.07 6.25 − (27,298)

3 Colon-cancer GR-CV 19.23 2.78 9.69e−5 (5,2166)

In-CV 23.08 2.78 0.005 (1,1102)

G-S 26.92 2.78 − (27,167)

4 Ionosphere GR-CV 0.95 27.61 0.03 (5,96200)

In-CV 1.90 29.76 0.03 (1,29530)

G-S 4.76 18.70 − (27,522)

5 Australian GR-CV 14.29 14.44 3.03e−6 (5,32583)

In-CV 14.52 14.81 0.008 (1,26703)

G-S 14.52 14.44 − (27,430)

6 Diabetes GR-CV 20.48 24.44 1.75e−5 (5,33294)

In-CV 20.48 25.18 0.005 (1,26558)

G-S 20.48 25.19 − (27,416)

7 Splice GR-CV 23.29 29.01 0.009 (5,83306)

In-CV 26.29 24.63 0.005 (1,24333)

G-S 23.29 23.33 − (27,526)

8 Fourclass GR-CV 22.06 28.67 5.83e−5 (5,17275)

In-CV 22.24 28.65 0.008 (1,8989)

G-S 22.24 23.33 − (27,349)

9 W1a GR-CV 0.00 23.33 4.26e−4 (5,75793)

In-CV 0.00 22.88 0.009 (1,28810)

G-S 0.00 30.00 − (27,366)

10 W2a GR-CV 0.00 25.93 1.50e−4 (5,88758)

In-CV 0.00 22.11 0.009 (1,31708)

G-S 0.00 35.67 − (27,522)

11 A1a GR-CV 19.50 15.33 7.64e−5 (5,64349)

In-CV 19.50 15.65 0.013 (1,36010)

G-S 20.00 14.67 − (27,533)

12 german. GR-CV 25.73 26.09 5.29e−5 (5,33317)

Number In-CV 26.86 26.08 0.068 (1,24850)

G-S 26.86 25.60 − (27,482)
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Fig. 10 The comparison among the three methods on CV error
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Fig. 11 Effect of increasing the number of folds on test error and CV error

6 Conclusion

In this paper, we have proposed a bilevel optimization model for the hyperparameter
selection for support vector classification in which the upper-level problemminimizes
a T-fold cross-validation error and the lower-level problems are T l1-loss SVC prob-
lems on the training sets. We reformulated the bilevel optimization problem into an
MPEC, and proposed the GR–CV to solve it based on the GRM from Scholtes (2001).
We also proved that the MPEC–MFCQ automatically holds at each feasible point.
Extensive numerical results on the data sets from the LIBSVM library demonstrated
the superior generalization performance of the proposed method over almost all the
data sets used in this paper. The proposed approach has the potential to deal with
other hyperparameter selection problems in SVM, which may involve multiple hyper-
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parameters or other types of loss functions. However, whether the resulting MPEC
enjoys the property of MPEC–MFCQ needs to be further investigated. How to choose
the most suitable numerical algorithms to solve the perturbed problem resulting from
the Scholtes relaxation is also worth further study. These topics will be investigated
further in the near future.
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