The University of Southampton
University of Southampton Institutional Repository

Bipartite Incidence Graph (BIG) Sampling

Bipartite Incidence Graph (BIG) Sampling
Bipartite Incidence Graph (BIG) Sampling
Graph sampling is a statistical approach to study real graphs, which represent the structure of many technological, social or biological phenomena of interest. We develop bipartite incident graph sampling (BIGS) as a feasible representation of graph sampling from arbitrary finite graphs. It provides also a unified treatment of the existing unconventional sampling methods which were studied separately in the past, including indirect, network and adaptive cluster sampling. The sufficient and necessary conditions of feasible BIGS representation are established, given which one can apply a family of Hansen-Hurwitz type design-unbiased estimators in addition to the standard Horvitz-Thompson estimator. The approach increases therefore the potentials of efficiency gains in graph sampling. A general result regarding the relative efficiency of the two types of estimators is obtained. Numerical examples are given to illustrate the versatility of the proposed approach.
Zhang, Li-Chun
a5d48518-7f71-4ed9-bdcb-6585c2da3649
Oguz Alper, Melike
02d5ed8a-e9e3-438a-95c0-709acd83a5f8
Zhang, Li-Chun
a5d48518-7f71-4ed9-bdcb-6585c2da3649
Oguz Alper, Melike
02d5ed8a-e9e3-438a-95c0-709acd83a5f8

Zhang, Li-Chun and Oguz Alper, Melike (2020) Bipartite Incidence Graph (BIG) Sampling 38pp. (Submitted)

Record type: Monograph (Working Paper)

Abstract

Graph sampling is a statistical approach to study real graphs, which represent the structure of many technological, social or biological phenomena of interest. We develop bipartite incident graph sampling (BIGS) as a feasible representation of graph sampling from arbitrary finite graphs. It provides also a unified treatment of the existing unconventional sampling methods which were studied separately in the past, including indirect, network and adaptive cluster sampling. The sufficient and necessary conditions of feasible BIGS representation are established, given which one can apply a family of Hansen-Hurwitz type design-unbiased estimators in addition to the standard Horvitz-Thompson estimator. The approach increases therefore the potentials of efficiency gains in graph sampling. A general result regarding the relative efficiency of the two types of estimators is obtained. Numerical examples are given to illustrate the versatility of the proposed approach.

This record has no associated files available for download.

More information

Submitted date: 20 March 2020

Identifiers

Local EPrints ID: 473405
URI: http://eprints.soton.ac.uk/id/eprint/473405
PURE UUID: 522f8cf0-ad0d-4200-a9d6-07403e3c6890
ORCID for Li-Chun Zhang: ORCID iD orcid.org/0000-0002-3944-9484
ORCID for Melike Oguz Alper: ORCID iD orcid.org/0000-0001-8008-9751

Catalogue record

Date deposited: 17 Jan 2023 17:48
Last modified: 09 Feb 2023 03:12

Export record

Contributors

Author: Li-Chun Zhang ORCID iD
Author: Melike Oguz Alper ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×