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Abstract
We prove the finite convergence of the sequences generated by some extragradient-type
methods solving variational inequalities under the weakly sharp condition of the solution set.
In addition, we provide estimations for the number of iterations to guarantee the sequence
converges to a point in the solution set and prove that these estimations are optimal. Numerical
examples are presented to illustrate the theoretical results.
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1 Introduction

The variational inequality (VI) problem has been studied by many researchers because of its
wide applications in optimization problems, complementary problems, fixed point problems
and many more (Facchinei and Pang 2003). To solve a VI, numerous algorithms have been
suggested, especially projection-type algorithms like projection, extragradient-type algo-
rithms and its variants.
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Let us briefly recall some fundamental methods for solving (pseudo)-monotone varia-
tional inequality problems which will be (re)-considered in this paper. One of the most
well-known algorithms is the extragradient method (Korpelevich 1976) and its variant algo-
rithms proposed by Censor et al. (2011a, 2011b, 2012). The extragradient was proposed by
Korpelevich for solving monotone variational inequalities and saddle point problem in finite
dimensional spaces (Korpelevich 1976) and then extended to infinite dimensional Hilbert
spaces in Khanh (2016) for solving monotone VIs and in Vuong (2018) for solving pseudo-
monotone VIs. One of its important variants is the subgradient extragradient considered by
Censor et al. (2012), which reduced the number of projections onto the feasible set. The
Forward–Backward–Forward (FBF) method was proposed originally by Tseng (2000) for
solving monotone inclusions, a more general model than VIs. The applicability of FBF
method for solving pseudo-monotone VIs was studied recently in Boţ et al. (2020). Last, we
take the Popov’s method (see Popov (1980)) and its modified version proposed by Malitsky
and Semenov (2014) into account due to merits within every single iterations. One of them
is that we just need compute one value of operator instead of two as in extragradient-type
method.

To gain deeper insight for VIs, many researchers considered the weak sharp condition of
solution set of VIs. Weak sharp solutions and its geometry condition were firstly introduced
by Burke and Ferris for mathematical programming solving an optimization problem (Burke
and Ferris 1993). Later, Marcotte and Zhu (1998) modified this geometry condition and
introduced weak sharp solutions for VIs, simultaneously presented the finite convergence of
algorithms for solving VIs. They also proved the equivalence between the weak sharpness of
solution set with the dual gap function. Liu andWu (2016a, b) further studied the weak sharp
of solution set of VIs with respect to primal gap function. Recently, Al-Homidan et al. (2016)
used weak sharp solutions for the VIs without considering the primal or dual gap function to
studied the finite termination property of sequences generated by iterative methods, such as
the proximal point method, inexact proximal point method and gradient projection method.
These results were also extended to non-smooth VIs as well as VIs on Hadamard manifolds
and equilibrium problems (Al-Homidan et al. 2017; Kolobov et al. 2022, 2021; Nguyen et al.
2020, 2021).

In this paper, we discuss the finite convergence of projection-type methods for solving VIs
problem such as extragradient method, Forward-Backward-Forward method, Popov method
and their variants. For each method, we also provide an estimation for the number of iter-
ations to guarantee the sequence converges to a solution of the VI problem. Moreover, we
prove that this estimations is tight. The rest of this article is organized as follows. Section 2
introduces some preliminaries. Section 3 presents the finite convergence of the extragradient
method to a weakly sharp solution set. Section 4 contains the finite convergence results of
the Forward-Backward-Forward and the subgradient-extragradient methods. The finite con-
vergence results of Popov’s method and its variants are established in Sect. 5. Finally, we
provide numerical examples in the last Section.

2 Preliminaries

Let H be real Hilbert space with the inner product 〈·, ·〉 and a generated norm ‖ · ‖. Let C be
a nonempty closed convex subset of H and let F be a mapping from H to H . We consider
the variational inequality problem, denoted by VI (C, F), which is to find x∗ ∈ C such that

〈
F(x∗), x − x∗〉 ≥ 0 ∀x ∈ C . (1)
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We denote the solution set of VI (C, F) is C∗. In this article, we assume that the C∗ is
nonempty and we will recall some definitions about Lipschitz continuity and monotonicity
of F (Karamardian and Schaible 1990) as follows

• F is Lipschitz continuous on H if there exists L > 0 such that ‖F(x)−F(y)‖ ≤ L‖x−y‖
for all x, y ∈ H ;

• F is pseudo-monotone on C if there is any x, y ∈ C such that 〈F(y), x − y〉 ≥ 0 then
〈F(x), x − y〉 ≥ 0;

• F is monotone on C if for any x, y ∈ C we have 〈F(x) − F(y), x − y〉 ≥ 0. Obviously,
if F is monotone on C , then F is pseudo-monotone on C .

The metric projection of element x in real Hilbert space H on closed convex subset C ,
denoted by PC (x), is a unique element of C such that ‖x − PC (x)‖ ≤ ‖x − y‖ for all
y ∈ C . We also denote dist(x,C) = ‖x − PC (x)‖. The metric projection has three important
properties as follows (Goebel and Reich 1984).

Theorem 2.1 For any x, z ∈ H and y ∈ C we have

(a) ‖PC (x) − PC (z)‖ ≤ ‖x − z‖ (nonexpansivity of PC (.));
(b) 〈x − PC (x), y − PC (x)〉 ≤ 0;
(c) ‖PC (x) − y‖2 ≤ ‖x − y‖2 − ‖x − PC (x)‖2.
We recall the definition of weak sharp solution with respect to geometry condition and
equivalent conditions as in Marcotte and Zhu (1998). Firstly, we denote by B the unit ball in
H . For a given set X in H , we denote by intX the interior of X and by clX the closure of X .
The polar Xo is defined by

Xo := {y ∈ H , 〈y, x〉 ≤ 0 for all x ∈ X}.
Let C be a nonempty, closed, convex subset of H . The tangent cone to C at a point x ∈ C is
defined by

TC (x) := cl

⎛

⎝
⋃

γ>0

X − x

γ

⎞

⎠ .

The normal cone to x ∈ C is defined by

NC (x) := {u ∈ H : 〈u, y − x〉 ≤ 0 for all y ∈ C}.
The solution set C∗ of VI(C, F) is weakly sharp if we have, for any x∗ ∈ C∗,

− F(x∗) ∈ int

(
⋂

x∈C∗
[TC (x) ∩ NC∗(x)]o

)

. (2)

From (2) we have that if C∗ is weakly sharp, then there exists a constant α > 0 such that

αB ⊂ F(x∗) + [TC (x∗) ∩ NC∗(x∗)]o, for all x∗ ∈ C∗. (3)

It is equivalent to say that (see (Marcotte and Zhu 1998, Theorem 4.1)) for each x∗ ∈ C∗,

〈F(x∗), v〉 ≥ α‖v‖, for all v ∈ TC (x) ∩ NC∗(x). (4)

We will need the following important theorem (see (Al-Homidan et al. 2016, Theorem 2))
in the proof of finite convergence.
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Theorem 2.2 Let C be a nonempty, closed, convex subset of Hilbert space H and F : C → H
be a mapping. Assume that the solution C∗ of V I (C, F) is nonempty, closed and convex.

(a) If C∗ is weakly sharp and F is monotone, then there exists a positive constant α > 0
such that

〈F(x), x − PC∗(x)〉 ≥ αdist(x,C∗), for all x ∈ C . (5)

(b) If F is constant on C∗ and continuous on C and (5) holds for some α > 0, then C∗ is
weakly sharp.

In the rest of the paper, we will prove the finite convergence of sequences generated by three
fundamental algorithms: The (Subgradient) Extragradient, the Forward-Backward-Forward
and the Popov Algorithms under the monotonicity of F and weak sharp condition of the
solution set C∗ of VI(C, F).

3 Extragradient method

In this part, we consider the extragradient algorithm as follows (Korpelevich 1976)

λ > 0, x0 ∈ C,

yn = PC (xn − λF(xn)),

xn+1 = PC (xn − λF(yn)).

Firstly, we recall the important inequality relating the distances from the points generated by
the extragradient algorithm to the point x∗ of the solution set C∗. The proof presented here
is shorter than the one in Khanh (2016).

Lemma 3.1 Let F : C → H be pseudo-monotone and Lipschitz continuous with constant L
and x∗ beapoint in solution setC∗. Let {xn}and {yn}be sequences generated by extragradient
algorithm. Then the following inequality holds

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λL)(‖xn+1 − yn‖2 + ‖xn − yn‖2). (6)

Proof Since x∗ ∈ C∗ ⊂ C, xn+1 = PC (xn − λF(yn), we have from Theorem 2.1 (c) that

‖xn+1 − x∗‖2 ≤ ‖xn − λF(yn) − x∗‖2 − ‖xn − λF(yn) − xn+1‖2
= ‖xn − x∗‖2 − ‖xn − xn+1‖2 − 2λ〈F(yn), xn+1 − x∗〉
= ‖xn − x∗‖2 − ‖xn − yn + yn − xn+1‖2 − 2λ〈F(yn), yn − x∗〉

− 2λ〈F(yn), xn+1 − yn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖xn+1 − yn‖2 − 2〈xn − yn, yn − xn+1〉

− 2λ〈F(yn), yn − x∗〉
+ 2λ〈F(xn) − F(yn), xn+1 − yn〉 − 2λ〈F(xn), xn+1 − yn〉. (7)

We have from x∗ ∈ C∗, yn ∈ C and (1) that 〈F(x∗), yn − x∗〉 ≥ 0. Due to pseudo-
monotonicity of F , we can infer that

〈F(yn), yn − x∗〉 ≥ 0. (8)

Using Theorem 2.1 (b), since yn = PC (xn − λF(yn)), we obtain

〈xn − λF(xn) − yn, xn+1 − yn〉 ≤ 0.
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This is equivalent to

− 2λ〈F(xn), xn+1 − yn〉 ≤ 2〈xn − yn, yn − xn+1〉. (9)

Since F is Lipschitz continuous on H with constant L , we have

2λ〈F(xn) − F(yn), xn+1 − yn〉 ≤ 2λ‖F(xn) − F(yn)‖‖xn+1 − yn‖
≤ 2λL‖xn − yn‖‖xn+1 − yn‖. (10)

Combining (8), (9), (10) with (7), we get

‖xn+1−x∗‖2 ≤ ‖xn−x∗‖2−‖xn−yn‖2−‖xn+1−yn‖2+2λL‖xn−yn‖‖xn+1−yn‖. (11)

Byusing theCauchy-Schwarz inequality 2‖xn−yn‖‖xn+1−yn‖ ≤ ‖xn−yn‖2+‖xn+1−yn‖2
in right hand side of above inequality, we obtain

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λL)(‖xn+1 − yn‖2 + ‖xn − yn‖2).

�

Under the weak sharp condition of solution set C∗, we will show the finite convergence
of the sequence {xn} generated by extragradient algorithm.

Theorem 3.1 Let F : C → H be monotone, Lipschitz continuous with constant L and
assume that the solution set C∗ be weakly sharp with modulus α > 0. Let {xn} be the
sequence generated by extragradient algorithm with 0 < λ < 1/L. Then, {xn} converges
strongly to a point in C∗ in atmost (k + 1) iterations with

k ≤ 6dist (x0,C∗)2

α2λ2(1 − λL)
. (12)

Moreover, the estimation in (12) is tight.

Proof Since

xn+1 = PC (xn − λF(yn)) = PC (xn − λF(xn+1) + λ(F(xn+1) − F(yn))),

for all u ∈ C , we have

〈xn − λF(xn+1) + λ(F(xn+1) − F(yn)) − xn+1, u − xn+1〉 ≤ 0.

Then, we get

〈F(xn+1), xn+1 − u〉 ≤ 1

λ
〈xn − xn+1, xn+1 − u〉 + 〈F(xn+1) − F(yn), xn+1 − u〉

≤ 1

λ
‖xn − xn+1‖‖xn+1 − u‖ + ‖F(xn+1) − F(yn)‖‖xn+1 − u‖.

(13)

On the other hand, from Theorem 3.1, let x∗ be a point of solution set C∗, we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λL)‖xn − yn‖2 − (1 − λL)‖xn+1 − yn‖2
≤ ‖xn − x∗‖2 for all n.

This implies that {‖xn − x∗‖} is non-increasing sequence , therefore limn→∞ ‖xn − x∗‖
exists. Moreover, we also have

‖xn − x∗‖2 − ‖xn+1 − x∗‖2 ≥ (1 − λL)(‖xn − yn‖2 + ‖xn+1 − yn‖2), for all n. (14)
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Noticing that 1 − λL > 0, we infer

‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≥ 1 − λL

3
‖xn+1 − yn‖2 + 2(1 − λL)

3
(‖xn − yn‖2 + ‖xn+1 − yn‖2)

≥ 1 − λL

3
‖xn+1 − yn‖2 + 1 − λL

3
(‖xn − yn‖ + ‖xn+1 − yn‖)2

≥ 1 − λL

3
(‖xn+1 − yn‖2 + ‖xn+1 − xn‖2). (15)

Letting n → ∞ and taking the limits in the both sides of (15), we deduce that
limn→∞ ‖xn+1 − yn‖ = 0 and limn→∞ ‖xn+1 − xn‖ = 0.
For 0 < N ∈ N, we have from (15) that

1 − λL

3

N∑

i=0

(‖xi+1 − yi‖2 + ‖xi+1 − xi‖2) ≤
N∑

i=0

(‖xi − x∗‖2 − ‖xi+1 − x∗‖2)

= ‖x0 − x∗‖2 − ‖xN+1 − x∗‖2
≤ ‖x0 − x∗‖2.

Since above inequality holds with any x∗ ∈ C∗, we obtain

1 − λL

3

N∑

i=0

(‖xi+1 − yi‖2 + ‖xi+1 − xi‖2) ≤ dist(x0,C
∗)2. (16)

Let k be the smallest integer such that

αλ > ‖xk+1 − xk‖ + ‖xk+1 − yk‖. (17)

Since 1
λ

> L > 0, we can infer

α >
1

λ
(‖xk+1 − xk‖ + ‖xk+1 − yk‖)

>
1

λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖. (18)

We assume that xk+1 /∈ C∗ and set tk+1 = PC∗(xk+1) ∈ C . Then, by the weak sharpness
of the solution set C∗ and Theorem 2.2 (a), the Lipschitz continuity and monotonicity of F
and inequality (13), we have

αdist(xk+1,C
∗) = α‖xk+1 − tk+1‖

≤ 〈F(xk+1), xk+1 − tk+1〉
≤ 1

λ
‖xk − xk+1‖‖xk+1 − tk+1‖ + ‖F(xk+1) − F(yk)‖‖xk+1 − tk+1‖

≤ 1

λ
‖xk − xk+1‖‖xk+1 − tk+1‖ + L‖xk+1 − yk‖‖xk+1 − tk+1‖

= ‖xk+1 − tk+1‖
(
1

λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖

)
.
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This implies that 1
λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖ ≥ α, which contradicts (18). Hence,

xk+1 ∈ C∗. It follows from (16) that

dist(x0,C
∗)2 ≥ 1 − λL

3

k−1∑

i=0

(‖xi+1 − xi‖2 + ‖xi+1 − yi‖2)

≥ 1 − λL

6

k−1∑

i=0

(‖xi+1 − xi‖ + ‖xi+1 − yi‖)2

≥ 1 − λL

6
kλ2α2,

where the last inequality is deduced by (17). So, we obtain

k ≤ 6dist(x0,C∗)2

α2λ2(1 − λL)
. (19)

To show that the above estimation is tight, let us consider a simple counter example. Let
H = R, C = [0,+∞) and F(x) = 1 for all x ∈ C . Then it is clear that F is monotone and
Lipschitz continuous on C with any modulus L > 0. The problem VI(F,C) has a unique
solution x∗ = 0, i.e. C∗ = {0}. Then (5) holds with α = 1 and it follows from Theorem 2.2
thatC∗ is weakly sharp, hence (19) holdswheneverλ < 1/L . Since F is Lipschitz continuous
with all L > 0, we deduce that (19) holds for all λ > 0. Let λL = 1

2 , from (19) we have

that k ≤ 12dist(x0,C∗)2
λ2

. Taking λ large enough, we conclude from (19) that k = 0, i.e. the
algorithm converges to the solution in one step. Indeed, taking x0 = a ∈ C and λ = a, we
obtain

y0 = PC (x0 − λF(x0)) = PC (a − a) = 0

x1 = PC (x0 − λF(y0)) = PC (a − a) = 0 = x∗.


�

4 Forward–Backward–Forwardmethod

We consider the Forward–Backward–Forward algorithm proposed by Tseng (2000) as fol-
lows

λ > 0, x0 ∈ C,

yn = PC (xn − λF(xn)),

xn+1 = yn − λ(F(yn) − F(xn)).

Like previous part, we recall and prove the main inequality relating the distances from the
points generated by Forward-Backward-Forward algorithm to the point x∗ in the solution set
C∗. The proof for monotone VIs was proposed in Tseng (2000).

Lemma 4.1 Let F : H → H be pseudo-monotone and Lipschitz continuous with constant
L. Let C be a nonempty closed convex subset of H and x∗ be a point in solution set C∗
of VI(C, F). Let {xn} and {yn} be sequences generated by Forward–Backward–Forward
algorithm. Then the following inequality holds

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λ2L2)‖xn − yn‖2. (20)
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Proof From the equation

‖xn+1 − x∗‖2 + ‖xn+1 − xn‖2 − ‖xn − x∗‖2 = 2〈xn+1 − x∗, xn+1 − xn〉,
and noticing that xn − xn+1 = xn − λF(xn) − yn + λF(yn), we have

‖xn+1 − x∗‖2 = ‖xn − x∗‖2 − ‖xn+1 − xn‖2 + 2〈xn − xn+1, x
∗ − xn+1〉

= |xn − x∗‖2 − ‖xn+1 − xn‖2 + 2〈xn − xn+1, x
∗ − yn〉

+ 2〈xn − xn+1, yn − xn+1〉
= |xn − x∗‖2 − ‖xn+1 − xn‖2 + 2〈xn − λF(xn) − yn, x

∗ − yn〉
+ 2λ〈F(yn), x

∗ − yn〉 + 2〈xn − xn+1, yn − xn+1〉. (21)

Since yn = PC (xn − λF(xn)) and x∗ ∈ C∗ ⊂ C , we have from Theorem 2.1 (b) that

〈xn − λF(xn) − yn, x
∗ − yn〉 ≤ 0. (22)

On the other hand, since x∗ is a point of solution set C∗, yn ∈ C and (1)

〈F(x∗), yn − x∗〉 ≥ 0.

In addition, F is pseudo-monotone, hence

〈F(yn), yn − x∗〉 ≥ 0,

or equivalently
〈F(yn), x

∗ − yn〉 ≤ 0. (23)

Next, we estimation the term 2〈xn − xn+1, yn − xn+1〉 by the Lipschitz continuity of F as
follows

2〈xn − xn+1, yn − xn+1〉 = 2‖xn − xn+1‖2 + 2〈xn − xn+1, yn − xn〉
= ‖xn − xn+1‖2 + ‖xn − yn + λ(F(yn) − F(xn))‖2

+ 2〈xn − yn + λ(F(yn) − F(xn)), yn − xn〉
= ‖xn − xn+1‖2 + ‖xn − yn‖2 + λ2‖F(yn) − F(xn)‖2

+ 2λ〈F(yn) − F(xn), xn − yn〉
− 2‖xn − yn‖2 + 2λ〈F(yn) − F(xn), yn − xn〉

= ‖xn+1 − xn‖2 − ‖xn − yn‖2 + λ2‖F(xn) − F(yn)‖2
≤ ‖xn+1 − xn‖2 − ‖xn − yn‖2 + λ2L2‖xn − yn‖2. (24)

Combining (22), (23), (24) with (21), we get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λ2L2)‖xn − yn‖2.

�

Under the weak sharp condition of solution set C∗, we also show the finite convergence
of the feasible sequence {yn} to solution set C∗ of this algorithm.

Theorem 4.1 Let F : H → H be monotone, Lipschitz continuous with constant L and
assume that the solution set C∗ of VI(C, F) be weakly sharp with modulus α > 0. Let
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{xn}, {yn} be the sequences generated by Forward-Backward-Forward algorithm with 0 <

λ < 1/L. Then, {yn} converges strongly to a point in C∗ in at most k iterations with

k ≤ (λL + 1)dist(x0,C∗)2

(1 − λL)α2λ2
. (25)

Moreover, the estimation (25) is tight.

Proof Since

yn = PC (xn − λF(xn)),

for all w ∈ C , we get

〈xn − λF(xn) − yn, w − yn〉 ≤ 0.

Therefore,

〈F(yn), yn − w〉 ≤ 1

λ
〈xn − yn, yn − w〉 + 〈F(yn) − F(xn), yn − w〉

≤ 1

λ
‖xn − yn‖‖yn − w‖ + ‖F(yn) − F(xn)‖‖yn − w‖. (26)

On the other hand, since F is pseudo-monotone, let x∗ be a point of solution set C∗, from
Theorem 4.1 we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λ2L2)‖xn − yn‖2 for all n. (27)

Since 0 < λ < 1
L , (27) implies that {‖xn − x∗‖2} is non-increasing sequence, therefore

limn→∞ ‖xn − x∗‖ exists. Moreover, we also have

‖xn − x∗‖2 − ‖xn+1 − x∗‖2 ≥ (1 − λ2L2)‖xn − yn‖2, for all n. (28)

Letting n → ∞ and taking the limits in the both sides of (28), we deduce that limn→∞ ‖xn −
yn‖ = 0.
For 0 < N ∈ N, we have from (28) that

(1 − λ2L2)

N∑

i=0

‖xi − yi‖2 ≤
N∑

i=0

(‖xi − x∗‖2 − ‖xi+1 − x∗‖2)

= ‖x0 − x∗‖2 − ‖xN+1 − x∗‖2 ≤ ‖x0 − x∗‖2.
Since above inequality holds with any x∗ ∈ C∗, we get

(1 − λ2L2)

N∑

i=0

‖xi − yi‖2 ≤ dist(x0,C
∗)2. (29)

Since limn→∞ ‖xn − yn‖ = 0, we choose k be the smallest integer such that

αλ

λL + 1
> ‖xk − yk‖. (30)

We assume that yk /∈ C∗ and set tk = PC∗(yk) ∈ C . Then, by the weak sharpness of the
solution set C∗, the Lipschitz continuity and monotone property of F and inequality (26),
we have
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αdist(yk,C
∗) = α‖yk − tk‖

≤ 〈F(yk), yk − tk〉
≤ 1

λ
‖yk − tk‖‖xk − yk‖ + ‖F(xk) − F(yk)‖‖yk − tk‖

≤ 1

λ
‖yk − tk‖‖xk − yk‖ + L‖xk − yk‖‖yk − tk‖

= ‖yk − tk‖
(
1

λ
+ L

)
‖xk − yk‖.

This implies that ‖xk − yk‖ ≥ αλ
λL+1 , which contradicts (30). Hence, yk ∈ C∗. It follows

from (29) that

dist(x0,C
∗)2 ≥ (1 − λ2L2)

k−1∑

i=0

‖xi − yi‖2 ≥ (1 − λ2L2)
α2λ2

(λL + 1)2
k = (1 − λL)α2λ2

1 + λL
k,

where the last inequality is deduced by (30). Therefore, we get

k ≤ (λL + 1)dist(x0,C∗)2

(1 − λL)α2λ2
.


�
To show that the above estimation is tight, let us consider again the simple counter example

as in Theorem 3.1. Let λL = 1
2 < 1 we deduce

k ≤ 3dist(x0,C∗)2

λ2
.

Hence, choosing λ large enough, we get k = 0, i.e. y0 ∈ C∗. Indeed, taking x0 = a ∈ C and
λ = a, we obtain

y0 = PC (x0 − λF(x0)) = PC (a − a) = 0 = x∗.


�
Remark 4.1 In subgradient extragradientmethod (Censor et al. 2012), {xn}, {yn} are generated
by the following algorithm

x0 ∈ C, λ > 0

yn = PC (xn − λF(xn))

Tn = {x ∈ H , 〈xn − λF(xn) − yn, x − yn〉 ≤ 0}
xn+1 = PTn (xn − λF(yn)).

The advantage of the subgradient extragradient method is that the projection onto the half-
space Tn has an explicit formula. We have from the proof of Lemma 3.2 in Censor et al.
(2012) that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − λ2L2)‖xn − yn‖2, for all n.

Hence, as in Theorem 4.1, with 0 < λ < 1
L , if F : H → H is monotone and Lipschitz

continuous andC∗ is weakly sharp, then {yn} converges to a point inC∗ in at most k iterations
with

k ≤ (1 + λL)dist (x0,C∗)2

α2λ2(1 − λL)
.
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Moreover, the above estimation is tight. We omit the detailed proof.

5 Popov’s method

We continue employing above method for showing the finite convergence of the following
Popov’s algorithm (Popov 1980):

λ > 0, x0, y0 ∈ C,

xn+1 = PC (xn − λF(yn)),

yn+1 = PC (xn+1 − λF(yn)),

under the weak sharp condition of solution set C∗. Like above parts, our proof is based on
the following inequality, which slightly improves the main estimation in Popov (1980). This

estimation allows us to choose larger stepsize, i.e., λ ∈
(
0, 1

(1+√
2)L

)
instead of λ ∈ (

0, 1
3L

)

as in Popov (1980).

Lemma 5.1 Let F : C → H be pseudo-monotone and Lipschitz continuous with constant
L and C be a nonempty closed convex subset of H. Let x∗ be a point in solution set C∗ of
VI(C, F). Let {xn} and {yn} be sequences generated by Popov’s algorithm. Then the following
inequality holds

‖xn+1 − x∗‖2 + λL‖xn+1 − yn‖2 ≤ ‖xn − x∗‖2 + λL‖xn − yn−1‖2
− (1 − (1 + √

2)λL)(‖xn − yn‖2 + ‖xn+1 − yn‖2) for all n. (31)

Proof Since x∗ is a point in solution set C∗, yn ∈ C and F is pseudo-monotone on C

〈F(yn), yn − x∗〉 ≥ 0.

Therefore,
− 〈F(yn), xn+1 − x∗〉 ≤ 〈F(yn), yn − xn+1〉. (32)

Since xn+1 = PC (xn − λF(yn)), by Theorem 2.1 (c) we have

‖xn+1 − xn‖2 ≤ ‖xn − λF(yn) − x∗‖2 − ‖xn − λF(yn) − xn+1‖2
= ‖xn − x∗‖2 − ‖xn − xn+1‖2 − 2λ〈F(yn), xn+1 − x∗〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − xn+1‖2 − 2〈xn − yn, yn − xn+1〉

− 2〈F(yn), xn+1 − x∗〉.
Combining the above inequality with (32) we get

‖xn+1 − xn‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − xn+1‖2 − 2〈xn − λF(yn) − yn, yn − xn+1〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − xn+1‖2 − 2〈xn − λF(yn−1) − yn, yn − xn+1〉

+ 2λ〈F(yn) − F(yn−1), yn − xn+1〉. (33)

Using Theorem 2.1 (b), since yn = PC (xn − λF(yn−1)) and xn+1 ∈ C we have

〈xn − λF(yn−1) − yn, xn+1 − yn〉 ≤ 0. (34)

We estimation the term 2λ〈F(yn) − F(yn−1), yn − xn+1〉 as follows:
2λ〈F(yn) − F(yn−1), yn − xn+1〉
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≤ 2λL‖yn − yn−1‖‖yn − xn+1‖
≤ 2λL(‖yn − xn‖ + ‖xn − yn−1‖)‖xn+1 − yn‖
≤ 2λL(‖xn − yn‖‖xn+1 − yn‖ + ‖xn − yn−1‖‖xn+1 − yn‖)
≤ λL[(1 + √

2)‖xn − yn‖2 + 1

1 + √
2
‖xn+1 − yn‖2

+ ‖xn − yn−1‖2 + ‖xn+1 − yn‖2]
= (1 + √

2)λL‖xn − yn‖2 + √
2λL‖xn+1 − yn‖2 + λL‖xn − yn−1‖2. (35)

Apply estimations (34) and (35) into the right side of inequality (33), we obtain

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + λL‖xn − yn−1‖2 − (1 − (1 + √
2)λL)‖xn − yn‖2

− (1 − √
2λL)‖xn+1 − yn‖2,

which is equivalent to

‖xn+1 − x∗‖2 + λL‖xn+1 − yn‖2 ≤ ‖xn − x∗‖2 + λL‖xn − yn−1‖2
− (1 − (1 + √

2)λL)(‖xn − yn‖2 + ‖xn+1 − yn‖2).

�

The following theorem will show the finite convergence of Popov’s method if the solution
set C∗ is weakly sharp.

Theorem 5.1 Let F : C → H be monotone, Lipschitz continuous with constant L and C be
a nonempty closed convex subset of H. Assume that the solution set C∗ of VI(C, F) is weakly
sharp with modulus α > 0. Let {xn}, {yn} be the sequences generated by Popov’s algorithm
with 0 < λ < 1/(1+√

2)L. Then, {xn} converges strongly to a point in C∗ in at most (k+1)
iterations with

k ≤ 6(dist(x1,C∗)2 + λL‖x1 − y0‖2)
α2λ2(1 − (1 + √

2)λL)
+ 1. (36)

Moreover, the estimation in (36) is tight.

Proof Since

xn+1 = PC (xn − λF(yn)) = PC (xn − λF(xn+1) + λ(F(xn+1) − F(yn)),

for all u ∈ C , we also have the similar result in (13)

〈F(xn+1), xn+1 − u〉 ≤ 1

λ
‖xn − xn+1‖‖xn+1 − u‖ + ‖F(xn+1) − F(yn)‖‖xn+1 − u‖.

(37)

Since F is pseudo-monotone, let x∗ be a point of solution set C∗, from Theorem 5.1 we get

‖xn+1 − x∗‖2 + λL‖xn+1 − yn‖2 ≤ ‖xn − x∗‖2 + λL‖xn − yn−1‖2
− (1 − (1 + √

2)λL)(‖xn − yn‖2 + ‖xn+1 − yn‖2) for all n. (38)

This implies that {an} = {‖xn − x∗‖2 + λL‖xn − yn−1‖2} is non-increasing sequence ,
therefore limn→∞ an exists. Moreover, we also have

an − an+1 ≥ (1 − (1 + √
2)λL)(‖xn − yn‖2 + ‖xn+1 − yn‖2), for all n. (39)
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Noticing that 0 < λ < 1
(1+√

2)L
, we infer

an − an+1 ≥ 1 − (1 + √
2)λL

3
‖xn+1 − yn‖2 + 2(1 − (1 + √

2)λL)

3
(‖xn − yn‖2

+ ‖xn+1 − yn‖2)

≥ 1 − (1 + √
2)λL

3
‖xn+1 − yn‖2 + 1 − (1 + √

2)λL

3
(‖xn − yn‖

+ ‖xn+1 − yn‖)2

≥ 1 − (1 + √
2)λL

3
(‖xn+1 − yn‖2 + ‖xn+1 − xn‖2). (40)

Letting n → ∞ and taking the limits in the both sides of (40), we deduce that
limn→∞ ‖xn+1 − yn‖ = 0 and limn→∞ ‖xn+1 − xn‖ = 0.
For 0 < N ∈ N, we have from (40) that

1 − (1 + √
2)λL

3

N∑

i=1

(‖xi+1 − yi‖2 + ‖xi+1 − xi‖2) ≤
N∑

i=1

(ai − ai+1)

= a1 − aN+1

≤ a1 = ‖x1 − x∗‖2 + λL‖x1 − y0‖2.
Since above inequality holds with any x∗ ∈ C∗, we obtain

1 − (1 + √
2)λL

3

N∑

i=1

(‖xi+1− yi‖2+‖xi+1− xi‖2) ≤ dist(x1,C
∗)2+λL‖x1− y0‖2. (41)

Let k be the smallest integer such that

αλ > ‖xk+1 − xk‖ + ‖xk+1 − yk‖. (42)

Since 1
λ

> (1 + √
2)L > L , we can infer

α >
1

λ
(‖xk+1 − xk‖ + ‖xk+1 − yk‖)

≥ 1

λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖. (43)

We assume that xk+1 /∈ C∗ and set tk+1 = PC∗(xk+1) ∈ C . Then, by the weak sharpness
of the solution set C∗, the Lipschitz continuity and monotonicity of F and inequality (37),
we have

αdist(xk+1,C
∗) = α‖xk+1 − tk+1‖

≤ 〈F(xk+1), xk+1 − tk+1〉
≤ 1

λ
‖xk − xk+1‖‖xk+1 − tk+1‖ + ‖F(xk+1) − F(yk)‖‖xk+1 − tk+1‖

≤ 1

λ
‖xk − xk+1‖‖xk+1 − tk+1‖ + L‖xk+1 − yk‖‖xk+1 − tk+1‖

≤ ‖xk+1 − tk+1‖
(
1

λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖

)
.
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This implies that 1
λ
‖xk+1 − xk‖ + L‖xk+1 − yk‖ ≥ α, which contradicts (43). Hence,

xk+1 ∈ C∗. It follows from (41) that

dist(x1,C
∗)2 + λL‖x1 − y0‖2 ≥ 1 − (1 + √

2)λL

3

k−1∑

i=1

(‖xi+1 − xi‖2 + ‖xi+1 − yi‖2)

≥ 1 − (1 + √
2)λL

6

k−1∑

i=1

(‖xi+1 − xi‖ + ‖xi+1 − yi‖)2

≥ 1 − (1 + √
2)λL

6
(k − 1)λ2α2,

where the last inequality is deduced by (42). Therefore, we obtain

k ≤ 6(dist(x1,C∗)2 + λL‖x1 − y0‖2)
α2λ2(1 − (1 + √

2)λL)
+ 1.

To show that the above estimation is tight, let us consider again the simple counter example
as in Theorem 3.1. Let λL = 1/3 and λ large enough, we can deduce that k = 1. Taking
x0 = a ∈ C , λ = a/2 = y0, we obtain

x1 = PC (x0 − λF(y0)) = PC (a − a/2) = a/2

y1 = PC (x1 − λF(y0)) = PC (a/2 − a/2) = 0

x2 = PC (x1 − λF(y1) = PC (a/2 − a/2) = 0 = x∗,

which means that the algorithm converges to the solution in at-most two steps. 
�
Remark 5.1 Malitsky and Semenov (2014) modified Popov’s algorithm by using the tech-
nique of the subgradient extragradient method:

λ > 0, x0, y0 ∈ C,

x1 = PC (x0 − λF(y0)), y1 = PC (x1 − λF(y0)).

Hn = {z ∈ H : 〈xn − λF(yn−1) − yn, z − yn〉 ≥ 0}.
xn+1 = PHn (xn − λF(yn)),

yn+1 = PC (xn+1 − λF(yn)).

Using the similar technique as in Theorem 5.1, we can prove that the sequence {yn} generated
by the above modified Popov’s algorithm converges to a point in the solution set if n is
sufficient large.

6 Numerical illustration

In this section, we illustrate a general example in Rn space and two particular cases to show
the finite convergence of sequences generated by above algorithms.

Example 6.1 Let H = R
n endowed with inner product 〈·, ·〉 and corresponding norm ‖ · ‖ =

‖ · ‖2. Let C = {(x1, x2, . . . , xn) : 0 < a ≤ xi ≤ b, i = 1, n} is closed, convex subset of Rn

and F : C → R
n , defined by

F(x) = (x1, x2, . . . , xn−1, 0) for x = (x1, x2, . . . , xn−1, xn) ∈ C .

We consider the variational inequality problem VI(C, F).
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Obviously, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n we have

‖F(x) − F(y)‖ =
(
n−1∑

i=1

(xi − yi )
2

) 1
2

≤
(

n∑

i=1

(xi − yi )
2

) 1
2

= ‖x − y‖,

then F is Lipschitz continuous with L = 1.
On the other hand, we have that the problem which is to minimize the function f : Rn → R
defined by

f (x1, x2, . . . , xn) =
n−1∑

i=1

1

2
x2i ,

over C has same solution set with VI(C, F) because f is convex, differentiable function and
F = ∇ f . Hence, we can see the solution set of VI(C, F) is

C∗ = {(a, a, . . . , a, a, [a, b])}.
To check the weakly sharp property ofC∗, we use Theorem 2.2 (b). It is obvious that F(x) =
(a, a, . . . , a, 0) ∀ x ∈ C∗, therefore F is constant on C∗. Let x = (x1, x2, . . . , xn) ∈ C , thus
a ≤ x1, x2, . . . , xn ≤ b, we have

n−1∑

i=1

xi (xi − a) ≥
n−1∑

i=1

a(xi − a)

= a

√√√√√

(
n−1∑

i=1

(xi − a)

)2

≥ a

√√√√
n−1∑

i=1

(xi − a)2. (44)

Using inequality 44, noticing that PC∗(x) = (a, a, . . . , a, xn) and x − PC∗(x) = (x1 −
a, x2 − a, . . . , xn−1 − a, 0), we get

〈F(x), x − PC∗(x)〉 = 〈(x1, x2, . . . , xn−1, 0), (x1 − a, x2 − a, . . . , xn−1 − a, 0)〉

=
n−1∑

i=1

xi (xi − a)

≥ a

√√√√
n−1∑

i=1

(xi − a)2 = adist(x,C∗), (45)

which means the inequality in Theorem 2.2 (b) is satisfied with α = a > 0. Thus, C∗ is
weakly sharp.
To show our results visually, we consider two following examples in R

3 and R
100.

Let H = R
3 and a = 1, b = 10, then C = [1, 10] × [1, 10] × [1, 10] is a cube in R

3,
F : C → R

3 is defined by the formula F(x) = (x1, x2, 0) where x = (x1, x2, x3) ∈ C
, which means F is the projection from a point to Oxy-plane. We consider the variational
inequality problem VI(C, F).

We choose starting point x0 = (10, 10, 5) for ExtraGradient algorithm and Forward-
Backward-Forward algorithm with step size λ = 0.5 < 1/L . For Popov’s algorithm, we
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Fig. 1 Performance of ExtraGradient algorithm in R3, where the solution set C∗ is in red

Fig. 2 Performance of Forward–Backward–Forward algorithm in R
3, where the solution set C∗ is in red

take x0 = (10, 10, 5), y0 = (10, 10, 1) and λ = 0.3 < (
√
2 − 1)/L . It is clear from

Fig. 1 that for ExtraGradient algorithm, the sequence {xn} converges to point (1, 1, 5) ∈ C∗
after 8 iterations. Similar results are obtained with the iterative sequences generated by
Forward-Backward-Forward algorithm and Popov’s algorithm, as displayed in Figs. 2 and
3, respectively.

In the second experiment, we take H = R
100 and a = 1, b = 100. We choose the

same random starting point x0 for ExtraGradient, Forward-Backward-Forward algorithm
and Popov’s algorithm with λ = 0.5 < 1/L , and one more random starting point y0 for
Popov’s algorithm with λ = 0.4 < (

√
2 − 1)/L . After applying three above algorithms, the

result is demonstrated in Fig. 4. The x-axis stands for the number of steps while y-axis stands
for the distance from points generated by above algorithms to solution set C∗.
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Fig. 3 Performance of Popov’s algorithm in R
3, where the solution set C∗ is in red

Fig. 4 Performance of EG, FBF and Popov algorithms in R
100

We can see from from Fig. 4 that, both ExtraGradient and Forward-Backward-Forward
algorithms terminate after 11 steps, meanwhile the Popov’s algorithm shows a faster conver-
gence rate and terminates after 7 steps. It is also noticed that in this particular example, the
ExtraGradient and Forward-Backward-Forward algorithms are identical. The reason is that
since the vector xn − λF(xn) ∈ C for all n, the projection operator PC does not contribute
to the iteration process.
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