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Integrating Terahertz Time-Domain Spectroscopy with Microfluidic Platforms and

Machine Learning for Protein Hydration Studies

by Nicholas Thomas Klokkou

Terahertz Time-Domain Spectroscopy (THz-TDS) has been widely adopted as a tech-
nique of choice for sub-millimetre research over the last three decades, thanks to its
high signal-to-noise ratio (SNR), broad bandwidth and straightforward phase retrieval.
It allows the probing of picosecond dynamics of biomolecules, transient processes in
semiconductors, imaging for security and medical applications, among many others.
By measuring the amplitude of the electric field, the phase of the spectral information
is preserved, and so complex parameters are easily extracted. However, manual pre-
processing of the data is still required and iterative, numerical fitting of the material pa-
rameters is often needed, resulting in complexity, loss of accuracy and inconsistencies
between measurements. The difficulties associated with analysing samples exhibit-
ing strong terahertz absorption only compound with the aforementioned challenges.
Aqueous solutions of proteins and their the surrounding water, or protein hydration
shell, are uniquely probable with terahertz radiation, if this attenuation of the water
can be addressed. This thesis aims to tackle both of these challenges. The use of ma-
chine learning techniques for interpreting spectroscopic THz-TDS data is described,
achieved by training artificial neural networks (ANNs) with large data sets of simu-
lated light-matter interactions, resulting in a computationally efficient method for ma-
terial parameter extraction. The trained model improves on the accuracy of analytical
methods that need approximations while being easier to implement and faster to run
than iterative root-finding methods. Furthermore, a terahertz compatible, surface ten-
sion confined polytetrafluoroethylene (PTFE) based microfluidic flow cell is presented.
THz-TDS measurements of a range of concentrations of aqueous bovine serum albu-
min (BSA) are shown to demonstrate the device’s efficacy of probing protein hydration
dynamics in a transmission configuration. The combination of the machine learning
techniques and the microfluidic device comprised of such a chemically inert material
presented here offer new analytical and practical techniques for the probing of notori-

ously difficult samples.
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Chapter 1

Introduction

The terahertz band is generally defined as the frequency range of the electromagnetic
spectrum between 100 GHz and 10 THz, a region that is often referred to as the ter-
ahertz gap due to the historic difficulty in generating and detecting radiation in this
band. The challenges associated with targeting these frequencies are due to the limits
of more widely established technologies for probing electromagnetic radiation on ei-
ther side of the spectrum. The frequencies in the terahertz gap are too high for the elec-
tronics of radio-wave and microwave technologies, while the photon energies are too
low (especially when background, thermal radiation is factored in) for band transitions
in semiconductors to be useful. Terahertz Time-Domain Spectroscopy (THz-TDS) has
proved itself as an excellent technique for unmasking this void in the electromagnetic
spectrum for researchers over the last few decades and has become a staple for many
laboratories around the world. However, challenges associated with this technique are
still present, especially with regard to the analysis of data, and the nature of probing
physical phenomena in highly absorbing media, such as water. One such phenomenon
is the collective motions of proteins that exist on the picosecond timescale, and their in-
teraction with the surrounding solvent. Obtaining the required measurements for these
studies, however, requires multiple concentrations to be used, and micron scale path
lengths. Further, the variation in terahertz measurements seen between research labo-
ratories adds a further layer of variance to the measures and claims that are made. This
thesis addresses these in two key ways. The first, is the development of material pa-
rameter extraction techniques with the use of machine learning, promising to increase
reliability and ease of data analysis. The second is via the design and fabrication of a
novel microfluidic flow cell, that has the advantages associated with its exploitation of
surface tension forces, which is a unique solution to confining water to micron channels
for a terahertz compatible device. Here, the background and concepts are introduced
for the context required and appreciation for this work’s motivation.
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1.1 Terahertz Spectroscopy

In 1947, a paper entitled "A Pneumatic Infra-Red Detector" introduced what could be
regarded as one of the first, room-temperature THz-compatible detectors, colloquially
known today as a Golay Cell [6]. The device consists of a gas chamber with a membrane
constituting one of the cavity walls that deflects visible light from its surface. Incident
radiation heats the gas and causes it to expand, deforming the membrane. The defor-
mation is then subsequently measured by the change in angle of reflected light from the
membrane surface. With the early use case measuring terahertz emission from high
power sources such as fusion reactor plasma [7], these detectors are in fact still used
today, and achieve comparable resolution for imaging as with cryogenically cooled
bolometers [8]. For terahertz emitters, simple glow lamps outputting black-body ra-
diation were the among the most popular in early years, with even such a device be-
ing used with Fourier transform infrared (FTIR) spectroscopy to obtain a bandwidth
between 90 GHz to 2.3 THz [9], albeit in this case requiring a cryogenically cooled de-
tector. Many advancements have been made in coherent, terahertz emission, such as
from frequency down-conversion in CO, gas lasers [10] and molecular lasers[11], with
sources boasting the highest output powers of milliwatts and greater, later arriving in

the form of the quantum cascade laser [12] and the p-Germanium laser [13].

1.1.1 Terahertz Time-Domain Spectroscopy

TRANSMI TT ING
ANTENNA

PUMP BEAM

(FIXED) ,I’//% PHOTOCONDUC TOR
= BIiAS
=

/’l/’//jf;

PROBE BEAM
__——{VARIABLE DELAY)

TO CURRENT

PREAMPL | F 1 ER \
RECE [V ING

ANTENNA

FIGURE 1.1: Figure from [14], where the first use of photoconductive antennas in a

pump-probe configuration was reported. The optical beams excite the semiconduc-

tor between the antenna traces, with the a DC bias applied across the emitter and the

detector outputting the measured current to a pre-amplifier. The terahertz pulse prop-

agates through free space, with no lenses, so the antennas are separated by just two
two mm.

In 1988, the first use of photoconductive antennas (PCAs) pumped by a pulse laser to
both generate and detect terahertz radiation was reported [14]. This configuration was
the beginning of Terahertz Time-Domain Spectroscopy (THz-TDS), allowing higher
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signal-to-noise ratios (SNR) than that of FTIR spectroscopy [15], while having faster
data acquisition times and straightforward phase retrieval. Figure 1.1 (from ref. [14])
shows the arrangement used in this early experiment, which is almost identical to the
setup used today, with the main discrepancy being the lack of the modern terahertz
optics in-between the emitter and detector.

The technique exploits the high repetition rate, coherence and short pulses from ultra-
fast lasers to both generate and detect broadband terahertz pulses. The configuration
is analogous to a pump-probe setup, whereby the laser pulses pass through a beam-
splitter and one laser arm is retarded with a delay-line. A laser pulse from one arm
is used to generate a terahertz pulse, the emission events of which are coherent with
each laser pulse incident on the emitter. The other arm’s pulse train is incident on a
detector, providing an ultra-short detection window. The optical pulses, typically less
than 100 fs, are much shorter than the > 1 ps terahertz pulses that are to be detected.
The probing of the terahertz pulse, which is a convolution of the carrier envelope of the
laser pulse with the terahertz waveform, is able to resolve high frequency components

due to the optical pulse’s envelope approaching that of a delta-function.

1.1.2 Terahertz wave generation and detection from photoconductive anten-
nas

Both the detection and generation of terahertz radiation in the spectrometers used in
this thesis are achieved with PCAs. They typically consist of a semiconductor, with
metallic contacts deposited on the surface. The contacts create a conductive geome-
try, which can be of various designs, with the fundamental feature being a small gap,
where the incident laser light is focused. A DC bias is applied across the contacts pro-
ducing an electric field creating a dipole. Absorption of an ultra-fast pulse generates
free carriers in the semiconductor, which due to the applied electrical bias, are accel-
erated creating a transient photocurrent. The photocurrent is a function of the carrier
envelope of the optical pulse, which introduces new free carriers as the pulse propa-
gates into the semiconductor, with the recombination of the carriers acting to reduce
the photocurrent. The lifetime of the carriers is longer than that of the optical pulse,
but short enough that the photocurrent depletes in less than a few picoseconds. Ter-
ahertz radiation is produced with an electric field strength that is proportional to the
transient photocurrent. Therefore, for a short time domain pulse, and subsequently a
broad pulse in the frequency domain, materials with shorter carrier lifetimes are neces-
sary. Figure 1.2(a) (from ref. [16]) illustrates this time evolution. Figure 1.2(b-e) shows
how the photocurrent is produced as a result of the carriers availability of mobile carri-
ers, their generation proportional to the optical pulse intensity as it propagates into the

photoconductive material.
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FIGURE 1.2: Figure from ref.[16], illustrating the time evolution of terahertz emission

from a PCA. (a) A femtosecond optical pulse is incident on the semiconductor of the

PCA, exciting carriers, which are accelerated by a DC bias. The transient current be-

tween the dipole emits terahertz radiation. (b-e) The carrier generation (red) from the

interaction of the optical pulse with the semiconductor, the generated photocurrent in
the antenna gap for long (grey) and short (blue) carrier lifetimes.

In the case of detection using PCAs, the mechanism is similar. Again, the incident pulse
creates free carriers in the semiconductor, but no DC bias is applied across the contacts.
Instead, a terahertz pulse is focused onto this active, now photoconductive region, and
carriers are consequently moved by the incident electric field. This movement of carri-
ers is realised as a measurable current. The optical pulse and the carrier lifetimes in the
detector are short enough that this photocurrent is proportional to the amplitude of the
electric field at a given point in time, depending on the delay between the two arms of

the laser. Due to the coherence of the pump-probe system, this current measurement
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will correspond to the same point in time of the evolution of the terahertz pulse. Af-
ter the measurement is made, the delay line can be moved and in doing so, the entire
waveform the of the terahertz pulse can be sampled.

1.1.3 Alternative emitters for THz-TDS

Of course, PCA emitters are just one subset of terahertz emission devices that are com-
patible with TDS. The closest sibling to the PCA emitter is the photodember emitter,
where carrier generation and recombination are are generated by an ultrafast optical
pulse to that of the PCA, but instead of an applied DC bias accelerating the carriers,
the emitted terahertz radiation is generated by the diffusion of the generated carriers
themselves. In the conventional case, the net THz radiation occurs orthogonal to the ex-
citing optical pulse path as all other generated waves are destructively interfered. The
introduction of a gold mask allows the lateral diffusion to reflect and constructively in-
terfere to allow emission in the same direction as the optical pulse, known as the lateral
photo dember effect [17]. Whilst benefiting from an electronically passive operation,
these devices however have yet to become mainstream due to scaling challenges with
regards to efficiency in pump pulse conversion and integration with fibre systems.

Optical rectification as a means to produce broadband terahertz pulses in an electri-
cally passive way was shown as early as 1984 [18]. Unlike the photo dember effect,
the x?) non-linearity of a crystal can be both used to generate the terahertz radiation
from an incident ultrafast optical pulse, but also sample the produced terahertz wave-
form. Typically the materials used are inorganic, examples including lithium niobate
(LiNbO3) and zinc telluride (ZnTe) but even broader bandwidths have been generated
by transitioning to organic crystals, such as the reported 0.4 - 6.7 THz from 4-N,N-
dimethylamino-4-N-methyl-stilbazolium tosylat (DAST) crystals [19]. The introduc-
tion of organic materials reduces the requirement for high powered, amplified laser
systems necessary for conventional inorganic crystals.

Even broader bandwidths can be obtained through spintronic terahertz emitters where
an ultrafast flow of electron spin in a magnetized ferromagnetic layer, generated by
an incident optical pulse, is then coupled into a nonmagnetic layer whereby the spin-
orbit coupling creates a transient charge current resulting in an emitted terahertz pulse.
The more recent technique enables broad, gap-less bandwidths of up to 30 THz [20] and
promises the advantage in cost effective production thanks to advances in nanomaterial

design and fabrication.
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1.1.4 Applications of THz-TDS

As introduced earlier, the terahertz gap refers to the region of the electromagnetic spec-
trum between the microwave and mid-infrared wavelengths. Many of the applications
of terahertz spectroscopy are motivated in part by the resonances that occur at these
frequencies, such as those of molecular bonds and phonons in crystal structures, ex-
amples shown in figure 1.3 (from ref. [21]). It follows that one such application of
terahertz spectroscopy is in biomedical sensing, as large biological molecules such as
proteins and nucleic acids have vibrational modes on this picosecond timescale [22].

Microwave Terahertz Mid-infrared

Molecular rotations

v

- Overtones and
- combinations

Low frequency
bond vibrations

A
v

Crystalline phonon
vibrations

Hydrogen bond stretches
and distortions

A
v

High frequency
bond vibrations

0.01 0.1 1 10 100
Frequency/ THz

FIGURE 1.3: An illustration of the terahertz band in the electromagnetic spectrum
(from ref. [21]), with examples of resonances that occur in this frequency regime.

Water, however, is extremely attenuating of radiation at terahertz frequencies, inhibit-
ing penetration into biological material where it is abundant. Nevertheless, in vivo
studies at the surface of biological matter have been carried out, such as imaging scar
tissue with a THz-TDS reflection geometry [23]. Figure 1.4 shows the stark contrast
between the scar tissue and the surrounding skin. This is due to the different water
content of the skin versus the much less absorbing collagen in the scar tissue. This con-
trast was also visible through a plaster cast, indicating a promising application of the

use of terahertz imaging for the monitoring of healing processes.

Similarly, exploiting water’s strong attenuation has allowed imaging of the cornea of
the eye, as well as tear film thinning with age [24]. This was able to achieved in vivo due
to the non-ionising nature of terahertz radiation. Furthermore, the radiation has been
used to study eye sclera, where the micro-structures present have a detectable polarisa-
tion dependence that indicates the health of the tissue [25]. Terahertz imaging has also
been used to study the effects of Alzheimer’s disease in the brain. Early results indicate

a difference in absorption between healthy and afflicted parts of brain matter [26]. More
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light >(~ 'detector
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FIGURE 1.4: An example of imaging biological tissue with THz-TDS. Photograph of
scar (left) and terahertz image of the scar (right) taken from a THz-TDS reflection set-
up with translation stages for imaging (from Ref. [23]).

recently, by comparing frozen samples of both white and grey matter, it was found that
healthy and diseased parts of the brain displayed different terahertz reflection spec-
tra [27]. Further advancements in imaging techniques have allowed sub-wavelength
resolution by employing an optically patterned silicon mask on the samples, which al-
lowed comparably high resolution imaging of articular cartilage with sub-millimetre
radiation [28].

1.2 Terahertz spectroscopy of proteins

Ideally, one would prefer to study biological material in vivo, where the environmen-
tally sensitive matter of interest is sure to be in its native condition. However, the water
that is abundant in biological tissue strongly absorbs terahertz radiation, this makes the
study of biological tissue very challenging, and thus further trying to isolate particular

biological macromolecules and their vibrational modes becomes quite difficult.
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1.2.1 Protein structure

Proteins are biological macromolecules measuring a few nanometres across, each with
a specific function for the survival of their host organism. A protein’s function is de-
pendent on its complete structure, which can be broken down into three main substruc-

tures.

The fundamental building blocks of proteins are the 20 amino acids that exist in genetic
code. These are organic compounds that have a common central carbon atom and a
hydrogen atom, a carboxyl group (COOH), and an amino group (NH;). The amino
acids are distinguished by the addition of a side chain attached to the central carbon
atom. These can then be classed into three different groups, defined by the chemical
properties that chain provides: those with hydrophobic side chains, charged residues
or polar side chains. These are then joined together in a chain by a peptide bond, where
the nitrogen of an acid’s amino group bonding to the carbon of another carboxyl group,
producing a free molecule of water. This chain, of many differing amino acids is called

a peptide, and its sequence is known as the primary structure of a protein.

Following this, the peptide chain, or polypeptide, can fold into configurations that are
energetically favourable, usually determined by the presence of certain amino acid side
chains. Such secondary structures are mostly comprised of alpha helices or beta sheets,
which are then arranged into motifs. The motifs can then form compact globular struc-
tures giving rise to a protein’s tertiary structure [29].

For the study of biological macromolecules, specifically proteins, ex vivo measurements
are required. However, in order for proteins to retain their proper function, it follows
that they must maintain their complete structure. This is dependent on the conditions
to which they are exposed. Salinity, pH and temperature of the surrounding solution,
also known as bulffer, are the major contributing factors. This is a key issue with ex
vivo measurements, particularly when the probing radiation is highly attenuated by
liquid water. The conditions are intrinsically linked to what can be probed by terahertz,
as varying these conditions can activate/deactivate collective motions and can even
completely denature the protein.

1.2.2 Protein studies in dry, frozen and crystallised states

It is logical to remove the largest source of difficulty from protein study: the water.
The first use of THz-TDS to study a protein used lyophilised bovine serum albumin
(BSA) and collagen compressed into pellets (mixed with polyethylene powder to con-
trol path-length) [30]. The pellets were then minimally hydrated, by increasing the
relative humidity up to 77 %. However, other than the increase in absorption due to

the extra water content, there was no change in spectral features, even compared to the
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completely denatured sample. This was also the case for myoglobin [31] between 3.6
and 42 wt % of hydration. While this method allows for a good signal to noise ratio,
the conditions are possibly too far from native to see any resonances from higher order
structures. Rather than remove the water to reduce signal loss, it is possible to change
its spectroscopic properties by changing its temperature. Liquid water’s absorption has
a strong temperature dependence [32]. Unlike in its liquid state, frozen water is mostly
transparent below 1.5 THz. As such, studies have been conducted with the protein con-
fined in ice. At temperatures above 220 K, the water in close proximity to the protein
remains liquid and the higher order protein structures and their picosecond timescale
motions are retained, despite the bulk water being solid. The point in which the tem-
perature is high enough such that the water remains liquid in close enough proximity

to the protein to allow these motions is referred to as the dynamical transition.

The dynamical transition of myoglobin was observed experimentally in 1989 [33] with
inelastic neutron scattering, but was detected for the first time with terahertz radiation
by Markelz in 2006 [34] in horse heart cytochrome c using a THz-TDS setup. By com-
paring native and denatured hen egg white lysozyme, THz-TDS was used to determine
that this onset of collective motions was not actually dependent on the protein’s sec-
ondary or tertiary structure [35], but was governed by the peptide structure and side
chains themselves. This could mean that although ice is not representative of in vivo
conditions, it can allow for studying directly the primary structure while ‘freezing out’

the higher order structures.

1.2.3 Aqueous solutions of proteins: hydration dynamics

When proteins are significantly hydrated, i.e. when they are in an aqueous solution,
their interaction with the surrounding water extends beyond the most immediate layer
of water molecules in proximity with the protein. A non-linear dependence of absorp-
tion as function of concentration of protein in solution was first observed in 2007 [36].
This led to the theory of the water extending out from the protein having different spec-
troscopic properties than the bulk water, now known as a hydration shell. A model to
calculate the extent of this shell was presented in 2008, with the measurement of the
hydration shell of ubiquitin [37].

The non-monotonic behaviour observed can be described by two contributing factors.
Proteins are less absorbent than water in the terahertz band, and so initially there is
a reduction in absorption of the solution as the protein is introduced, called the tera-
hertz defect. In some cases, the protein can be modelled as hollow spheres due their
minimal attenuation of the signal. However, the protein’s hydration shell are more
strongly absorbing than the bulk water, and so the absorption can actually increase
when introducing more protein due to the addition of shell water, known as terahertz

excess. There comes a point where all the bulk water has been displaced by protein and
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shell water, which causes an inflection point in the concentration dependent absorption
curve. At this point, equation 1.1 can be used to calculate the extent of this hydration
shell, where a is the absorption coefficient and V' is the volume.

Virotei Vihell V' — Virotein — Vshen
a = “protein% + “shell% + Xbuffer Ak ;zn e (1.1)

Stimulated unfolding of a protein by lowering the pH of the buffer can be detected by
this disappearance of this hydration shell [38], evidenced by the lack of a non-linear
behaviour in the concentration dependence. Furthermore, by modifying one of the
protein’s side-chains (from a polar to a less polar chain), a clear change in hydration
shell was observed.

Correlation between a hydration shell’s extent and protein function was observed [39],
by looking at the number of water molecules in shells around peptides. The point in
which the peptides are able to access enough water molecules shows a measurable on-
set of collective motions, which corresponds directly to the hydration required for the
molecule to function biologically. An example of this relationship to protein function
is the study of insect antifreeze proteins [40]. Here, the protein that’s responsible for
lowering the melting point of water in insects had a measured hydration shell that was
more pronounced the closer the temperature of the solution was to the freezing point of
water, strongly indicating that these long range dynamics are indeed key to its function.

The hydration shell for BSA was calculated to be 16 Ain diameter in 2014 using syn-
chrotron radiation of 0.3 - 3.3 THz [41]. However, in 2015, a measurement of these shells
indicated a value greater than this with 0.220 - 0.325 THz radiation [42]. Their findings
revealed hydration shells with diameters of 16 A, 19 A, 25 Afor lysozyme, myoglobin
and BSA respectively. These diameters are also much larger than those previously cal-
culated and measured with NMR, X-ray scattering and neutron scattering methods.
The difference here suggests that the hydration shell may consist of motions that are on
a range of timescales and distances from the protein.

A promising application of these measurements are in sensing a reaction or modifica-
tion of a protein. A difference in hydration shell size of two specific labels/conjugations
of immunoglobulin G antibody was detected [43]. However a more dramatic observa-
tion was made during the hydration shell measurement for the glycoprotein hemagglu-
tinin from the H9 sub-type influenza A virus, where no shell could be detected when
reacted with the antibody F10 [44].

While not a protein, its worth mentioning that carbohydrate macromolecules also have
a long range hydration shell in solution. Measurements of shells around trehalose,
lactose and glucose extend to 5.7 A, 6.5 A and 4.7 A respectively [45]. The authors of
this study suggest that the shell size is related to the number of oxygen atoms present
in the molecule. It has also been proposed that the hydration shell is related to the
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mechanism in which plants deploy sugars to protect themselves from extreme weather
conditions [46].

The research in this field is ongoing, and the uniquely probable hydration shell is wor-
thy of more exploration, as it relates to the complex domain of protein function and
structure in a way that appears uniquely probably with terahertz radiation.

1.3 Machine learning for THz-TDS

Spectroscopic analysis was revolutionised by the increase in computational resources,
particularly with the automation of the Fourier transform. The Fast-Fourier Transform
(FFT) is an algorithm with a huge prevalence in of data processing, from image com-
pression to astronomy. Today;, it is argued that for general purpose computing there
is another revolution: the access to artificial intelligence (A.I). Like with the FFT, the
training of A.I to replace rudimentary algorithms with more sophisticated ones has be-
come commonplace, with modern smartphones now containing optimised computer
architecture to accelerate Al predictions for many of their functions and applications,
from enhancing photos to predictive text. It is unknown whether this explosion in the
prevalence of A.L. will continue on its exponential growth, or if like the hardware that
runs it, will plateau in coming years in lieu of another software revolution. With the
tools readily available and the benefits seen in so many fields of research and commer-

cialisation it is of interest to see how this could be applied to terahertz science.

Artificial neural networks (ANNSs), the subset of machine learning that has been the
basis for modern applications and research, has been explored for the use in processing
spectral data for medical imaging since 1989 [47], in part due to the increase in avail-
able computation resources but also due to the introduction of the efficient and effective
back propagation training algorithm [48]. Since then, neural networks have been used
to predict a myriad of parameters, from hydraulic head in ground water [49] to aircraft
stability [50]. In the field of terahertz spectroscopy, ANNs have been used to classify
organic compounds [51] and biological samples [52, 53], as well as detection of molec-
ular concentrations in solutions [54, 55]. The aim of this work is to use ANNSs to extract
spectroscopic parameters from THz-TDS data as directly as possible, the ultimate goal

being a completely hands-off approach.

1.3.1 Principles of artificial neural networks

An ANN is the general term given to the subset of machine learning whereby input
data is processed in a way that is analogous to neurons in the brain. Figure 1.5 shows

this analogy and how the an artificial neuron accepts input signals from other artificial
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FIGURE 1.5: An example of an artificial neuron as an analogy to a living neuron, from

ref. [56]. In a living brain, neurons activate depending on the electro-chemical signal

strength received by neighbouring neurons. In the artificial case, this is simulated by

using mathematical operations. The sum of the inputs is calculated and then inputted
into a non-linear activation function to generate the output, y.

neurons. The output, or activation, of the artificial neuron is a function of the sum of
each input multiplied by the weight of the connections. In this case, the termed "acti-
vation function’, is a step function. This provides normalisation to the output of each
neuron but more importantly, non-linearity when multiple neurons are connected. For
ANNSs today, it is typical for each connected neuron to have an additional bias. Fur-
ther, the step function is often replaced by a sigmoidal function or a similar hyperbolic
tangent. Therefore the activation of a neuron becomes

y=o(b+) wi-x), (1.2)

where y is the activation (or output) of a neuron, b is a bias for that neuron and all the
connections to it, w; is the weight of each connection, and x; is the input from each con-
nected neuron. A network, or model, is typically constructed of layers of neurons, that
are fully connected to those of the preceding and subsequent layers. The first layer, the
input layer, is an array of values known as features with the final layer corresponding
to an array of data known as labels. The addition of one or more layers in between,
termed hidden layers, creates enough flexibility that with enough neurons, any func-
tion can be approximated by the network [57]. Figure 1.6 shows an ANN with one
hidden layer. Each neuron activates” outputting a value that is a function of the values

of the connecting neurons preceding it.
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FIGURE 1.6: Fully connected artificial neural network (ANN), with one hidden layer.

The combination of connections with individual weights, the non-linearity introduced

by the activation function and the addition of a layer between the input and output
provides the flexibility for this to approximate any function.

1.3.2 Training neural networks

With the highly flexible framework defined, the ANN requires specific values for its
weights and biases for it to perform the desired function. This is achieved by training
the network through means of back-propagation and a supply of training data. The
training data is a collection of already known inputs and outputs that the network is
encouraged to emulate. Back-propagation is the technique where the performance of
the network is evaluated when predicting an output for a given input, and the weights
and biases are adjusted based on this performance. The performance is characterised by
the loss function, representing how close the prediction was to the known output. The
two most prevalent algorithms for doing so are known as Levenberg-Marquardt back-
propagation [58] and the stochastic gradient descent algorithms. They both function by
analysing the loss of network, and adjusting the weights and biases in accordance with
the the gradient of the loss function with respect to these weights and biases. The next
iteration can trial new parameters than should be closer to a local minimum of the loss
function. The former uses the entire network architecture to create the adjustments,
which tends to be yield more accurate results and faster convergence at the cost of high
memory usage and the inability to parallelise the workflow. SGD however, analyses
random samples of the network to inform the next guess, reducing the memory over-
head and even allowing optimisation for parallel processing on graphics processing
units (GPUs) [59].
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1.4 Microfluidics for terahertz spectroscopy

Typically, when water based samples are measured in a TDS system, separate refillable
cells are used, usually consisting of two parallel windows and a spacer [60, 61, 62, 63].
This scheme allows less than 100 ym thick path-lengths for highly attenuating water
to be achieved in a straightforward manner. However, this can become cumbersome
when many different concentrations of a solution are required. Additionally, the con-
stant adding and removing of samples from the spectrometer requires frequent ref-
erencing to account for any drift or miss-alignments that can happen throughout the
lengthy experiment.

An alternative is to employ a microfluidic device. If constructed from terahertz com-
patible materials (low absorption and refractive index), they can provide the short
path-lengths required while having additional benefits such as performing real-time
spectroscopy, additional sample manipulation and expanded functionality, such as in-
tegrating electronics [64], photonics [65], heating elements [66] or mixing chambers
[67]. Microfluidic platforms promise to house a wide array of functional components,
able to target samples in unique ways and with extreme precision. For example, the
ability to manipulate single biological cells [68, 69]

As well as spectroscopic considerations for integration with a THz-TDS system, me-
chanical rigidity is often a desirable characteristic, to avoid flexing of a device possibly
changing the optical path-lengths or causing device failure due to leaking. Examples
are silicon or quartz [70, 71], but they suffer from requiring specialised manufacturing
processes. Polymers are often used for the rapid prototyping of microfluidic devices,
such as polydimethylsiloxane (PDMS). This material is much faster to produce, but has

wide variability in absorption in the terahertz band [72].

Polytetrafluoroethylene (PTFE) is a material that has excellent chemical resistance and
bio-compatibility, along with a low, non-dispersive refractive index between 300 GHz
and 3THz, and negligible absorption over a broad terahertz spectrum. It is easily
machinable making prototyping quick, but suffers from incompatibility with bonding
agents and can be prone to flexing. However, its hydrophobicity can aid water confine-
ment in compression sealed devices, where capillary action acts against the escaping
of water [73]. PTFE is the material of choice for this work, where its hydrophobicity
plays an essential role in the function in a device. Furthermore, it is possible to mod-
ify this hydrophobicity through plasma exposure reducing this effect [74, 75, 76]. This
makes depositing materials such as gold more achievable due to the change in surface
chemistry, but also presents an opportunity to create more sophisticated devices where

water is controlled through surface tension effects [77, 78, 79, 80].
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1.4.1 Flow in a microfluidic channel

It is important to understand the behaviour of fluid confined to a microfluidic channel.
If the fluid exhibits laminar flow, the control of different concentrations of solutions is
possible to predict and new solutions are able to replace existing ones by an advancing,
uniform boundary. The Reynolds number [81], R,, is a value that determines the state
of flow. It is calculated as follows

_ QDx

R ,
¢ vA

(1.3)
where Q is the flow rate, A is the cross-sectional area of the channel, v is the fluid
viscosity, and Dy is the the hydraulic diameter, a length value that depends on the
shape of the cross section of the channel. It is important to avoid turbulent flow for
the proper function of microfluidic devices in most cases (mixing chambers can benefit
from turbulent flow to enhance diffusion), and the Reynolds number provides design
restrictions when fabricating a channel of particular size and geometry with expected

flow rates.

1.4.2 The effect of surface topology on wetting

a)

FIGURE 1.7: Contact angles for different surfaces and different regimes. The native,

Young’s contact angle a) is due to the interaction of a water droplet on a flat surface.

This is then enhanced by a surface of significant roughness where the contact angle is

a combination of the Young’s contact angle and that of air (180 deg ), known as the

Cassie-Baxter state. If the liquid is able to overcome surface tension forces and wets

the entire rough surface, the contact angle is significantly reduced entering the Wenzel
regime.

PTFE is a hydrophobic material, meaning that it is ‘'water repelling’, or 'non-wetting’,
due to its non-polar nature. To characterise this effect, a contact angle measurement is
made. When a water droplet is placed on a material, it will bead or spread depend-
ing on how hydrophobic or hydrophilic the surface is. This is due to the balancing

of the free surface energy of the surface, liquid and gas, at their respective interfaces.
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The angle is measured between the liquid surface where it meets the solid surface. An
angle below 90 degrees is said to be hydrophilic, greater than 90 degrees is hydropho-
bic and above 150 degrees is referred to as superhydrophobic. Figure 1.7(a) illustrates
a droplet on a hydrophobic surface, with a corresponding Young’s contact angle, 0y,
corresponding to the interaction of the droplet due to the surface chemistry alone.

In addition to the substrate material’s chemical composition, its surface topology also
plays a significant role in its wetting characteristics. The material’s roughness, r, or the
presence of micro-structures with much smaller dimensions than the average droplet
size can act to enhance the effective repulsion or attraction of water on a surface. If the
liquid bridges the microstructures such that air pockets remain in the surface’s "valleys’
illustrated by figure 1.7(b), the contact angle is always increased, and the system is said
to be in the Cassie-Baxter state [82]:

cosfcp = fi1cosby — fo (1.4)

where fi; and f, are the fractions of the surface area in contact with the liquid of the
solid material and air respectively, and 6¢p is the effective, Cassie-Baxter contact an-
gle. Alternatively, if the liquid is entirely in contact with the surface, occupying gaps
between microstructures for example, it is said to be in the Wenzel state [83], and the

measured contact angle, 0y is given by equation 1.5

cos By = rcos by (1.5)

where r is the surface roughness. Figure 1.7(c) illustrates how a droplet behaves in
such a regime, with the contact angle being reduced. There is also a transition that
occurs between these two extremes, where the minimisation of the surface energy leads
to partial penetration of the surface valleys, but in the case of very tall and narrow
peaks (relative to micro-scale) of a material with a naturally high contact angle, and
assuming that the wettability is increased only moderately, the two regimes will remain
distinguished [84].

1.5 Thesis outline

Terahertz radiation can be used to probe various physical phenomena from charge car-
riers in semiconductors to vibrational modes in biological macromolecules. One such
category of molecule is the protein. Consisting of a long chain of amino acids, folded
into secondary and tertiary structures, proteins have molecular bonds which give the

higher order structure collective vibrational motions which move on the picosecond



1.5. Thesis outline 17

scale, therefore resonating with terahertz radiation. However, strong water absorption
makes targeting these modes almost impossible, but presents the opportunity to inves-
tigate the hydration shell in proximity to the protein if the attenuation of the terahertz
signal can be tamed. Furthermore, parameter extraction techniques for THz-TDS data,
while having its advantages due to its straightforward phase retrieval, adds another
layer of variability and complexity. Machine learning with artificial neural networks
can possibility greatly assist, thanks to the huge development of software and hard-

ware over recent years.

This thesis documents the development of new methods for analysing TDS data as
well as a new experimental platform for measuring aqueous samples. Chapter 2 de-
scribes experimental methods and introduces some established parameter extraction
techniques, while introducing a new method that promises to alleviate the issues of re-
peatability. Chapter 3 advances to a machine learning approach for complex refractive
index extraction, where an entirely new approach is demonstrated. Then, the practi-
cal limitations of measuring aqueous proteins is discussed, with the development of a
novel surface tension confined microfluidic device documented in chapter 4, with mea-
surements of aqueous bovine serum albumin (BSA) to validate the platform. Finally,

the results of this work are concluded and the next steps outlined in chapter 5.
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Chapter 2

Terahertz time-domain
Spectroscopy: Methods and

Parameter Extraction

The foundation of this thesis is in the advancement of Terahertz time-domain spec-
troscopy (THz-TDS) experimental platforms and analysis techniques. This chapter
aims to introduce the reader to the experimental and data processing techniques to
provide the necessary context for the work in later chapters, where some of the nu-
ances and limitations are discussed, as well as introducing a new parameter extraction
method outlined in the final part of this chapter, of which was published [3]. The data
for the publication was acquired by J. Gorecki, and with the thesis author contributing
with the data analysis.

2.1 Introduction

The key characteristic of THz-TDS is the ability to measure the amplitude of the electric
field in the time-domain instead of merely its intensity. An ultrafast laser (< 100 fs) is
used to both generate and probe a broadband terahertz pulse, with each emission and
detection event being coherent with the repetition rate of the pulsed laser. Measuring
the amplitude as opposed to intensity enables a high signal-to-noise ratio (SNR) due to
the background thermal radiation consisting of random phases and amplitudes which
are not coherent with the emission and detection events. The frequency of the sampling
of the terahertz waveform can occur at frequencies on the order of tens of megahertz,

enabling a fast acquisition time as the background radiation is rapidly "averaged out’.

The focus of this chapter is on the other major advantage that arises from this direct
probing of the electric field: the preservation of phase information when extracting the
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frequency components. By drastically simplifying the phase retrieval process, it is pos-
sible to extract the complex refractive index from a sample measurement without the
need for Kramers-Kronig relations due to the possibility to numerically fit a relatively
simple theoretical model containing just two unknown variables: the complex refrac-
tive index. Further, it is even possible to analytically extract the parameters when some
approximations are made, at the cost of some accuracy. Figure 2.1 shows one setup
used for the data collected in this work. It is a typical photoconductive antenna (PCA)
emission and detection scheme consisting of a sub-100 femtosecond Ti:sapphire laser
driving the apparatus, a delay-line comprised of a linear translation stage and a retrore-
flector, a PCA emitter for generation of the THz radiation, with lenses for columnating
and focusing the beam to the PCA detector. These are just the optical components,

and later in the chapter, the addition of electrical and mechanical components will be

discussed.
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FIGURE 2.1: A schematic of the time-domain spectrometer. Ultrashort pulses (<100
fs) at 800 nm are produced by a mode-locked, ti:sapphire laser, which are then split.

One arm is delayed by a retro-reflector on a linear stage (not shown) before continuing
to the THz generation and detection apparatus.

To find a sample’s refractive index in a transmission setup such as this, first a reference
scan has to be taken. In the case of a single piece of solid material, this reference is air.
However, in the case of a liquid sample, the reference is the windows of the cell that
houses the fluid, in direct contact with each other. A scan of the THz pulse in either
configuration is then taken. The sample is then placed in the focus of the terahertz beam
visible in figure 2.1, and another scan of the pulse is taken. It is possible to calculate
the average refractive index and absorption by simply looking at the delay of the peak
(equation 2.1) and the difference in amplitude with respect to the reference signal,

c- At 1 k
navemge =1+ 7724 sepet (2.1)

where At pyisepear is the time delay between the pulses propagating through the refer-
ence and sample, L is the sample thickness and c is the speed of light. However, there
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is a broad spectrum of frequencies that constitute each pulse, and performing a Fourier
transform gives enough information to extract more than just the average refractive
index, but the frequency-dependent complex refractive index.

There are other schemes of TDS where an independent reference measurement is not
necessary which have been demonstrated. Instead of a direct transmission configu-
ration, an oblique reflection mode can be used where a sample is mounted against a
quartz slide and the first terahertz pulse reflects off the face of the quartz, while the
second pulse enters the quartz and reflects off the sample. By comparison of the two
pulses, the complex refractive index of the sample can be determined [85, 86]. Alterna-
tively, a sample can be placed on a polished mirror, in which internally reflected THz
pluses are delayed in time as compared to the pulse reflected on the top surface [87].
By comparing the two reflected pulses, the refractive index can be obtained without
an independent air reference. Complications arise due to the quality of the secondary
pulses being highly dependent on the sample-mirror interface, requiring alignment of
two flat surfaces without an air gap. Further, the use of terahertz reflection setups can
impose additional alignment issues as compared to transmission modes, as one of the

pulses will be displaced due to the refractive index of the sample.

A self-referencing method in a transmission mode, used to measure the strength of ab-
sorption peaks has been demonstrated in which a Fourier transform is applied to the
time-domain signal with an ever-increasing window size [88]. In this manner, the fre-
quency resolution of the data increases with the window size, allowing the strength of
sharp absorption lines to be resolved. The method requires no independent reference
scan, but is effective at measuring absorption peaks with a sharp spectral width, and is
not applicable to obtaining the real refractive index. Internally reflected pulses trans-
mitted through the sample can be utilised to increase the sensitivity of spectroscopy de-
vices. Various groups have demonstrated techniques where the first transmitted pulse
and the internally reflected “echo” pulses are both compared to the air reference, where
the echo pulses contain extra information due to increased interaction with the sample
[89, 90, 91]. A similar technique has been presented in transmission mode to determine
refractive index, where the first pulse transmitted through the sample is compared to
the echo pulse, which is internally reflected in the sample before being transmitted.
However, this technique was only shown to produce the refractive index averaged
over the terahertz pulse bandwidth instead of the frequency-dependent values [92], in
a manner analogous to equation 2.1. Use of the echos produced by a substrate preced-
ing the unknown sample has been demonstrated with a less conventional but effective
algorithm where a decision tree is used to build an appropriate transfer function with
materials of many layers [93, 94]. In this way, one does not need to explicitly write a
cumbersome and long transfer function that contains all contributions from reflections
and transmissions at each layers boundary and instead the complexity can be built up
in discrete iterations. In this chapter, the clear pulse separation observed in sufficiently
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high-refractive index samples will be exploited to allow the fitting of a transfer function
with fewer terms that benefits from simpler numerical fitting at the expense of a more

restricted sample parameters.

When gathering and analysing THz-TDS data it is crucial to understand the nuances
of the experimental procedure of measuring the pulse. This chapter introduces the
methods involved in taking a spectroscopic measurement with THz-TDS, with much
of the focus on the parameter extraction techniques used in this work. A new method
is introduced in the last section of this chapter, where in the case of thin samples of high
refractive index, the need for an air sample measurement can be negated. The method
relies on internal reflections within the sample to produce what will be referred to as
‘echo pulses’, which can be referenced to each other, requiring only one measurement
scan to obtain all the necessary data. This method has a number of advantages over
the traditional air referencing method, as both measurements can be taken in a single
time-domain trace, which reduces the chances of drift in the spectrometer between
measurements. In addition, this method allows for the sample to be held securely in
the optical setup at all times, which reduces chances of misalignment between repeated
sample mountings and can allow for samples to be held in difficult-to-access places
such as sealed chambers and thermal stages. The method shows an improvement on
the reputability as compared to conventional methods in some cases, while also being

compatible with established root-finding algorithms and inspection techniques.

2.2 Considerations for the acquisition of THz-TDS data

In this section, the key components for the acquisition of data for THz-TDS measure-
ments are described, along with certain features to give context for the parameter ex-
traction techniques discussed. The introduction of each electrical and mechanical com-
ponent necessary and how they are integrated with the terahertz optics is outlined,
along with common considerations that should be taken into account when building
and using a THz-TDS.

221 THz emission and detection characteristics from two types of PCA

In the terahertz setups featured in this work, multiple configurations of PCA emitters
are used. The variety for measurements requiring the best signal-to-noise ratio (SNR)
are known as large area emitters (Tera-SED 3x3 mm emitter from Laser Quantum).
They consist of an array of periodic contacts, that cover the surface area of the device,
with each, alternate pair of contacts forming a dipole, behaving much in the same way
as described in chapter 1. Figure 2.2(a) shows a simplified schematic of what is con-
tained in these types of emitters. They offer greater output powers than single dipole
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emitters, while requiring lower DC biases, as well as the easier alignment of the inci-
dent laser pulses, requiring no focusing. Most of the generated THz pulse transmits out
of the emitter at the semiconductor/air interface. However, some radiation is internally
reflected producing satellite pulses as a consequence of the refractive index contrast of
the PCA material and the surrounding air. In the case of the large area emitters, the
photoconductor and its substrate are thin enough that the satellite pulses are visible in
a 50 ps window, demonstrated in the accompanying time-domain trace in figure 2.2(a).
These reflections are visible as oscillations in the frequency-domain which can make
fitting problematic. In single dipole emitters requiring the lens, the silicon shares a
similar refractive index to that of the gallium arsenide (GaAs) of the PCA. Therefore,
there is minimal reflection at the boundary between the lens and the PCA, and the next
measurable internal reflection occurs between the silicon lens and air, a much larger
optical path. This results in a delay larger than that of the time delay window often
limited by the delay-line (> 50 ps). The train of pulses is of note when analysing the
data in all but the thinnest samples, where there is a small delay so windowing is al-
ways required. Both emitters are used in this work, with the “echo method” at the end
of this chapter requiring the silicon lens and single dipole configuration 2.2b), and the
microfluidics integration requiring as high SNR as possible in chapter 4.
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FIGURE 2.2: Terahertz emission from a large area PCA emitter (a) and a single dipole

PCA (b) with significantly delayed satellite pulses. Satellite pulses are only captured in

the time-domain of the large area emitter due to the silicon lens sufficiently increasing
the path length of internal reflections.

The detectors used in the setup are of a similar configuration to the PCA emitter shown
in figure 2.2, where the detection process is almost the reverse of that of the emission
principle. The incident femtosecond pulse creates free carriers in the semiconductor
of the detector between the contacts deposited on the surface. The incident terahertz

pulse is focused using a silicon lens from the other side of the detector, to overlap with
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this excited region, and the terahertz electric field moves the carriers generating a mea-
surable current proportional to the terahertz electric field. The lifetime of the carriers
are sufficiently short (sub picosecond), along with their generation by the femtosecond
optical pulse, as compared to the period of the frequency components within the tera-
hertz waveform. Therefore the current, proportional to the convolution of the two, ef-
fectively probes the amplitude of incident terahertz field at a given time delay between
both pulses incident on the detector. The repetition rate of the laser is approximately
80 MHz, which nets a high SNR in a short period of time as this is the rate in which
the emission and detection events occur. A delay-line is then used to offset the time in
which the terahertz pulse is incident with the excited semiconductor from the detector,

producing a time resolved electric field trace.

The PCA emitters used are driven by a function generator, which varies the applied DC
bias continuously between + 6V at a frequency of 29 kHz. This is then referenced by
a lock-in amplifier measuring the current from the detector to help reduced electrical
noise in the system. The key variables here are the maximum voltage applied across the
emitter along with the duty cycle. Each emitter has their own upper limits, which is a
function of these along with the average power of the excitation pulses. It is possible to
alter the characteristics (usable bandwidth and peak SNR) by choosing a shorter duty
cycle but with a higher voltage, for example. The frequency of the function generator
can be tuned to find a value that improves SNR by selectively suppressing background
electrical noise, as long as it is sufficiently lower than that of the repetition rate of the
laser. The lock-in amplifier will average the current in accordance with this signal, but

the limits occur as a function of the movement of the delay-line.

2.2.2 Scanning a terahertz pulse with fast and slow operation

The time-delay offset between the arrival of the optical pulse and the terahertz pulse on
the detector is controlled by introducing a delay between the emission and detection
arms of the split Ti:sapphire laser beam. The path length of the ‘emission line” is in-
creased using a retro-reflector mounted on a translation stage. When a single data point
is acquired, the current from the detector is measured by a lock-in amplifier, which is
outputted to a computer, along with the position of the delay-line at that time. There
are two modes of operation possible with the configuration used in the work, which
here will be referred to as “slow scan” and ’fast scan’. The slow scan mode of operation
starts with the retro-reflector set at one position of on the motorised, linear stage, and
sequentially moves in discreet amounts while the lock-in amplifier is averaging over
relatively long periods of time (= one second) at each delay-line position. Once this
has repeated for the desired length of time (typically 50-100 ps), limited by the length
of the linear translation stage, a scan is complete. For 1024 data points, it can take on the
order of tens of minutes, which can make the scan susceptible to interruptions or laser
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drift in the setup. There is the advantage, however, of having more granular control of
the the averaging at each point, as the linear stage will not move until the averaging has
been completed. Alternatively, if the linear stage can accelerate quickly enough, it can
be set to continuously oscillate between two, predetermined endpoints, while the lock-
in amplifier streams detected current to the computer, along with the corresponding
positions of the delay-line. In the case for the setup in this work, the linear stage is too
slow for this operation. Instead, an oscillating stage able to operate up to 20 Hz with a
maximum delay of 50 ps ("TAPE scanDelay’) is mounted on top of the linear translation
stage. In this case, the lock-in amplifier is set to a much smaller time constant (< 1 ms),
where each data point receives less averaging as it is acquired, but the entire scan can
be averaged after the fact in software. This has the advantage of less susceptibility to
fluctuations during acquisition, while also being able to display a waveform instantly,
either on the computer or with an oscilloscope. However, care must be taken to select
a short enough time-constant as not to suppress high frequency components present
in the time-domain trace. Further, the 50 ps window can be too short to account for
both the sample scan and the reference scan, if the delay of the pulse is too large. If so,
it is possible to move the linear delay stage that the fast oscillator is mounted on, but
this will cause the error in time delay (and subsequently phase and extracted refractive
index) to be a function of both the error in the linear stage and the error in the oscillator
itself. Such a scenario is therefore best avoided where possible.

2.2.3 Referencing and laser drift

When referencing a terahertz scan in order to obtain reliable material characterisation,
one issue to highlight from the air referencing method is that a terahertz spectrometer
may experience fluctuations in the laser power between taking a reference measure-
ment and a sample measurement. This effect is especially compounded when it is re-
quired to take repeat measurements of samples over a long time period, such as several
hours, to investigate a temporally changing system. Furthermore, when taking a refer-
ence measurement, the sample must be removed/added to the optical system, which
may not be physically possible in some situations; for example, with a sample held in
a sealed chamber or other enclosed space. When taking a measurement with an air
reference, it is generally assumed the complex refractive index of the air is 1+0ik, i.e.,
the air has identical refractive index to that of a vacuum; however, in practical cases,
there is often atmospheric moisture, which can cause absorption of the terahertz pulse.
After the air reference is taken and the sample is placed in the spectrometer, the beam
then passes through less water vapour, which can skew the values of imaginary refrac-
tive index and register in the system as an artificial gain in intensity. It is possible to
counter the laser drift in a measurement by tracking the power output from the laser,
and scaling the measured power accordingly. However, the assumption has to be made

that this is indeed a linear correspondence with the measured spectra and function of
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the PCAs. By taking repeated scans over a long period of time of a reference, along
with measuring the power of the laser from an additional laser arm, it is suggested
that this correlation holds (not shown). However, such modifications are not ideal, due
to the assumptions about the linearity of both the detector and emitter that must be
made. A more appropriate approach is to split the terahertz pulse itself and have a
reference scan along side, however, this reduces signal and adds more complexity and
noise to the system. Later in this chapter, a self referencing technique is introduced

which avoids these issues entirely.

2.3 Measurement data preprocessing

As the name implies, THz-TDS is a spectroscopic tool. Resolving frequency compo-
nents in a measurement requires Fourier analysis, typically achieved by the efficient
and widely used algorithm: the Fast Fourier Transform (FFT). Before spectroscopic pa-
rameters can be extracted, however, some data processing must take place in both the
time and frequency domains. Often, these steps come at some compromise, and care

must be taken in each step.

2.3.1 Time-domain preprocessing: windowing function and zero padding

a) b)
1 T T :
— E-field
0.5 — E-field (windowed) |1 —
— Windowing function 3
3. 0 L)‘,,._,_A J\ ©
© v —
o | s
U 1r
3 =
£ o5 g.
o
E ol <
A
-0.5 L L L 10—8 L L L L L
20 40 60 80 100 0 0.5 1 1.5 2 2.5 3
Time [ps] Frequency [THz]

FIGURE 2.3: Time-domain trace of a pulse of a sample with satellite pulses due to
internal reflections a) with the windowing function applied to remove trailing pulses.
The frequency spectra is shown b) of both the raw pulse and the windowed pulse.

If the sample being measured has a sufficiently large enough refractive index and thick-
ness, any additional reflections observed in the time-domain can be removed by using
a windowing function, W(t). As will be evident later, this simplifies the theoretical

model and potentially reduces artefacts from the cutoff in time due to the finite travel of
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the delay-line. This function when multiplied by the time-domain data retains the lead-
ing pulse and suppresses any subsequent reflections. An asymmetric, double-sigmoid
function is used to smoothly zero the trailing electric field fluctuations while generating
minimal additional frequency components when the Fourier transform is performed,
given by the following

1

W(t) = (1 +€—Dq(t—tg+‘31)) . (1 _|_€—Déz(f0—t_/52))/

2.2)

where B1 and B; adjust the displacement of the sigmoid with respect to the centre at
to. a1 and ap give the maximum gradient of the rise and fall of the window respec-
tively. Figure 2.3(a) shows the window function and its application to the pulse. This
function has been chosen to minimise the spectral leakage caused by the sharp features
of a discrete top-hat windowing function, while also providing more tunability than
a Tukey window. The reflections cause severe oscillations to appear in the frequency
domain, but applying the window function eliminates these as can be seen in figure
2.3(b). Depending on the thickness and refractive index of the sample, this window
function must be altered as to maintain remove the pulses whilst still maintaining a
high resolution in the frequency domain. Shortening the time window in this way re-

duces resolution due to the inverse relationship of the time and frequency domains,

=t 2.3)

Twindow

where f; is the sampling frequency of the FFT of a time series of length Tynd0,- Typi-
cally, windowing parameters will be chosen to accommodate as much of the pulse as
possible while removing trailing reflections. A slow decent helps minimise the effects
of cutting off any trailing signal information that may overlap with the subsequent
reflected pulse.

2.3.2 Frequency-domain: phase unwrapping

If the frequency components of a measured pulse, have corresponding phases greater
than 27t radians, the extracted phase information from a Fourier transform is wrapped,
due the periodic nature of sinusoidal functions. It follows that so will the correspond-
ing transfer function that maps one measurement onto the other, and the extracted real
refractive index in particular will give erroneous results as the induced delay in a par-
ticular frequency component from the sample will be underestimated by an integer
multiple of 27 radians. A phase unwrapping step is therefore required in order to ob-
tain the correct refractive index. Figure 2.4 shows the phase of the Fourier transform of
a measured pulse. The wrapping can be seen as saw-tooth function of frequency. The

‘'unwrap’ function in Matlab searches for sudden changes of 27t radians and removes
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FIGURE 2.4: The phase of the Fourier transform of a terahertz pulse (windowed) both
wrapped (grey) and unwrapped (black). The phase is then offset by fitting a weighted
line (red) where the weights are defined by the square of the power spectrum (inset)

them to reconstruct a continuous trace. However, this can lead to a phase with an in-
correct offset in the y-axis due to noise, and therefore uncertainty at the starting values.
To provide a better prediction for this, a function is fitted to the phase, with weights
determined by the magnitude of the power spectrum (see inset in figure 2.4). The in-
tercept of the y-axis is determined from this fitted function and the offset is applied
to the phase. An obvious problem presents itself with this approach, as the approxi-
mate shape of the real refractive index of the sample being measured must be known
to determine what function needs to be fitted to correct the y-offset. Incorrect offset-
ting results in erroneous values of the real refractive index, predominantly in the low

frequency range.

2.4 Extracting the frequency dependent, complex refractive in-

dex from an experimental transfer function

With the data ready to be analysed in the frequency-domain, the experimentally mea-
sured transfer function, Hexp (w), is obtained by straightforward division of the sample
by the reference scans. The transfer function describes how the light-matter interaction

with the sample is mapped from that of the known reference.

An example is shown in figure 2.5. A reference scan of air, followed by a sample scan of
a 500 pm thick sample of semi-insulating GaAs (SI-GaAs) was taken in a THz-TDS, in
"fast scan” operation. The data was preprocessed in the methods previously described
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FIGURE 2.5: The magnitude a) and phase b) of an experimental transfer function ob-

tained by dividing the preprocessed frequency spectra from a TDS measurement of

500 micron thick semi-insulating gallium arsenide (SI-GaAs) sample by a reference
measurement of air.

before the division of amplitudes and phase subtracted shown in figure 2.5(a) and (b)

respectively. The result is the experimental transfer function,

3@2

Honp(w) = Esm (O iguanto) st 2.4)
| ref (w)|

where |Egam ()|, Psam(w), |Eref(w)\ and ¢,.r(w) are the magnitudes and phases of the
measured and Fourier transformed electric fields corresponding to the reference and

sample scans respectively.

2.4.1 Modelling the theoretical transfer function with Fresnel coefficients

To understand how the transfer function relates to spectroscopic properties of that of
the sample material, the interaction of the propagating pulse can be modelled using
the Fresnel coefficients. They describe the transmission and reflection at a boundary
between two materials (2 and b), and the propagation through a single material, given
by 7. (w), ta(w) and p, respectively. They are complex, frequency dependent and are
related to the complex refractive index i, (w) = n(w) + ik(w) as follows,

_ fla(w) — ip(w)
rap(w) = R ﬁz ) (2.5)
bap (@) = ——2Pa() (2.6)
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Pi(w, L) = e~ Malw)wl/c (2.7)

where w is the angular frequency, L is the propagation distance and c is the speed of
light.
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FIGURE 2.6: Theoretical model of the propagation of terahertz radiation through a
sample a) and a corresponding reference b). The pulse is travels from the emitter,
columnating lenses and the sample. The path of the radiation is indicated by arrows
with the reflections, transmission and propagation labelled by the corresponding Fres-
nel coefficients. 7p(w) and 71 (w) are place holder variables to describe the path of the
radiation between the emitter and sample, and sample and detector respectively.

Figure 2.6 shows how for a medium of refractive index 7, surrounding a sample of
thickness L and refractive index 7, the light propagates and interacts with the sam-
ple. In this description, two additional terms are present, 77o(w) and #1(w). These are
placeholder terms describing the arbitrary power of the electric field from the emitter,
the detection sensitivity, and any transformations that occur outside of the sample path
due to lenses etc that are assumed identical between the two measurements. There-
fore, it can be seen from figure 2.6(a) that the electric field corresponding to the sample

measurement can be described as

Esum<w) = 770(("]) : tab(w) : Pb<w) : tba(w) ‘M (w) : Fp(w), (28)

where the internal reflections form a Fabry-Perot etalon
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" ,
Fo(w) = ) [h(w)  B(w)] (2.9)
i=0

where m is the total number of internal reflections that are detected. The division of
the sample by the reference pulse results in many of the above terms cancelling out,
giving the following general theoretical transfer function, It is important to note the
lack of focusing lenses in figure 2.6. They are omitted for clarity, but also because the
assumption will be made that even at a focus, the sample is thin enough, that a plane
wave approximation can be made. Further, the focus is loose enough to negate effects

of the Gouy shift.

Higeo(w) = Nsam(w) _ tap(w) - Py(w) - tpa(w) Fp(w). (2.10)

Eygf(w) Pu(w)

For scans of samples where the combination of refractive index and thickness that satel-
lite pulses can be effectively removed through applying a windowing function, the
Fabry-Perot etalon term, Fp(w), becomes unity and so the experimental transfer func-

tion simplifies to a zero reflection transfer function,

- o~ iliy(w)—fia(w)]wL/c (2.11)

Alternatively, in the case where the sample’s reflections are all measurable in the time-
domain window (i.e. all the reflections that have peaks above the noise level are mea-
surable in the limited time-domain window), the Fabry-Perot etalon term becomes a
sum to infinity, which can be represented by the geometric series,

~ o j 1
Fp(w) = ) |rp(w) - Pr(w)| = , (2.12)
];) [ ba b } 1—-72 (w) - P?(w)
and therefore one obtains the infinite reflection transfer function,
4itq (w )ity (w) e—z[nb(w)—ﬁa(w)}wL/c‘
Hipp () = Ll imle]” (2.13)

The infinite reflection transfer function has the advantage of retaining the spectral infor-
mation not removed by windowing, but suffers from being much a more complicated
expression. However, both the resulting theoretical transfer functions contain only two
unknown variables: the real and imaginary components to the complex refractive in-

dex, but they are not analytically solvable, as they are complex and the exponential
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terms are non-bijective. Therefore, numerical fitting is required to fit values of n and k

to the transfer functions, or in some cases, approximations can be made.

2.4.2 Analytical inspection through small k approximation

In the case of a sample (and its reference) where the extinction coefficients are smaller
than the real refractive index, (k, « n, and k, « n,), it is possible to extract approxi-
mations for the parameters analytically. The contribution to the phase of the transfer
function from the transmission Fresnel terms are insignificant as compared to that of
the propagation coefficient. The real refractive index in the exponent is therefore taken
as the only contributor to the phase of the transfer function, and so it follows that

wL
pr(w) = —(p(w) = na(w)) == (2.14)
The equation can then be rearranged for the sample’s real refractive index, n,,
c
np(w) = —pu(w) - 3 + n,(w). (2.15)

The magnitude of the transfer function and the relation in equation 2.11 is taken, with
values of the real refractive index calculated in 2.15 substituted to calculate the imagi-

nary part of the refractive index, k(w),

1 Ang(w)np(w) o
[H(w)| (np(w) +1a(w))? | wL’

k(w) =1In (2.16)

The method is particularly appropriate for slab samples of high refractive index and
low absorption, measured in a reference of air. The limits of the technique are discussed

in chapter 3.

2.4.3 Numerical fitting using the Newton-Raphson method

Once the theoretical and experimental transfer function has been obtained, the com-
plex refractive index can be fitted to the model. As there are two unknown variables,
the real and imaginary components of the complex refractive index, it is necessary to
use an iterative numerical method to retrieve the desired parameters. A commonly
used algorithm is the Newton-Raphson method. It is an efficient procedure whereby
a root to a function is found by first making a guess value, and improving that guess
by using the derivative of the function evaluated at that point. The next guess value
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is taken to be where a straight line gradient intersects the x-axis and the process is re-
peated eventually converging on the root. The procedure terminates after the function
is evaluated to be less than with a predetermined accuracy. A subsequent guess, x;,1,
is found by the expression

fxn) 2.17)

T )
n

where f(x) = 0 is the equation to be solved, f'(x,) is the evaluation of the derivative
with respect to x at the previous guess, x;,.

To implement this method for fitting experimental data to the transfer functions de-
scribed previously, it is advantageous to use the natural logarithm of equations 2.11
and 2.11. This separates the phase and amplitude of a complex number, which, as
shown previously with regard to the small k approximation method, they tend to be
predominantly influenced by the real and the imaginary parts of the refractive index

respectively. Therefore, the equation the method aims to solve is the following,

In [ﬁmeo (i(w) )} ~In [ﬁexp (w)} = 0. (2.18)
The equation 2.18 is independently solved at each frequency value, so for frequency wj,

the evaluations of the natural logarithm of the zero and infinite transfer functions are

as follows,

Al
- (2.19)

Ging (11) = In [Hmf(ﬁ)] = Guero(17)) — In [1 - m . e—z-zabwjuc] (2.20)

and their respective derivatives

(2.21)

2(ﬁb7ﬁa)2 ,e’Ziﬁb“}jL/C oL
al ~\ _ 0 ~ ~ (7, +7ia) 1 1 1wj
Fr Ginf(nb) = Gzero(”b) =+ <1_(:bﬁﬂ)2 .eiZﬁbij/c> ’ ((ﬁbﬁa)Z T Gptia)? c])
(ﬁa+ﬁb)2
(2.22)
By taking the natural logarithm of the transfer function before performing any root-

finding or minimisation method, the equation 2.18 will have fewer oscillations due
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to the removal of the complex exponential term as discussed in the first reporting of
these extraction algorithms [95]. It can be seen however, that this benefit is only the
case in the zero reflection model, where equations 2.19 and 2.21 are significantly less
complicated as compared to equations 2.20 and 2.22, where complex exponential terms
are still present, producing oscillations in G.

2.44 Note on the limits of Newton-Raphson fitting
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FIGURE 2.7: The Newton Raphson of an example function y = x> — x + 6 showing

the difference in number of iterations needed for convergence between initial guesses

(@) Xo = 0.95 and (b) Xg = 0. The number of iterations depending on the complex

starting guess shows fractal features (c) with the algorithm converging on a solution
that is not always near the starting guess (d).

Figure 2.7(a) shows an example of how the Newton Raphson method algorithm pro-

3

ceeds for solving the function y = x° — x + 6 with a starting guess, xo = 0.95. After

just seven iterations, it converges onto the solution, x = -2, with a defined accuracy
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of 0.1 %. However, even such a relatively simple function can cause problems if the
guess is not chosen with care. For example, in figure 2.7(b), the initial guess is chosen
as xp = 0, a not unlikely guess given the zeroth order term of the function. Starting
from this guess takes 33 iterations to converge on the correct solution, due to the neg-
ative gradient and subsequent inflection point. Furthermore, in the complex domain,
where the method is required for the complex parameter extraction of THz-TDS data,
more complexity arises from this function having multiple roots and areas in the plane
where initial guesses converge to unexpected roots. Figure 2.7(c) shows where the three
complex roots of the example function are, and the colour corresponds to how many
iterations it takes for an initial guess. Initial guess that are in close proximity to where
the roots are located on the complex plane, lead to few iterations in order to converge,
and this gradually increases. However, in the boundaries between other roots, frac-
tal patterns emerge where there are sudden increases in iteration count. Figure 2.7(d)
shows where the algorithm converges to if starting at a particular point. The concern
here is that even for a relatively simple function, without the aid of such a diagram, it
is not obvious which root the algorithm will converge to after it is initialised.
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FIGURE 2.8: The extracted real refractive index (a) and imaginary refractive index (b)

for a GaAs sample of 500 ym thickness using the Newton-Raphson Method, compar-

ing the zero and infinite reflection transfer functions. The infinite reflection model

shows poor convergence in both cases, where as the zero reflection model has a stable
solution.

This volatility is displayed when the root finding method is applied to the case of the
infinite reflection model. A scan of GaAs was taken where all reflections were visible
in the time-domain window, as subsequent reflections were below the noise floor. Both
the infinite reflection model 2.13 and the much simpler zero reflection model 2.11 (with
the reflections removed in the time-domain) were fitted to the data. Figure 2.8 shows
the comparison of the two fitting attempts. The zero reflection method results in a
stable fitting with the expected refractive index of 3.5856 [96], but the infinite reflection
model fails to converge in most cases. For this measurement at least, if one wants to
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exploit the extra information offered by the echo pulses, an alternative fitting method
or a different technique should be used.

2.5 The echo method

It is possible to exploit the extra information the multiple reflections from a sufficiently
thin and high refractive index sample offers, while adding benefits to the reduced ac-
quisition time, variability in measurements and more stable fitting. Here, the so called
echo method is presented, whereby the first pulses transmitted through the sample is
used as reference measurement to the following, ‘echo pulse’ resulting from the inter-
nal reflection. The major advantage of this technique is it removes the need for an air
reference, and the same fitting methods can be used as described earlier in this chapter
from one scan of the sample, reducing errors associated with long term fluctuations
in the setup between reference and sample scans (such as laser beam drift) as well as
removing the effect of water vapour absorption lines erroneously showing as gain in
the extracted absorption spectra. The work was published in [3], and here the same
technique is additionally applied to the 500 ym thick GaAs sample used as an example
throughout the chapter.

2.5.1 The echo method transfer function for Newton-Raphson fitting

The transfer function for the echo method is the division of the pulse after one internal
reflection (the echo pulse), E;;,;(w) divided by the first pulse transmitting through the
sample, E15(w). The resulting transfer function includes only the reflection coefficients
and propagation coefficients inside the material, as the transmission coefficients in and

out of the sample material are now divided out. The transfer function follows as
~ Eppa(w ~ ~
Heeno(w) = Eyua(w) _ Ta(wW)? - Po(w)?, (2.23)

where 7y, (w) and P,(w) are the reflection and propagation coefficients respectively.

The natural logarithm creates a function that has no exponential terms as follows,

—i2ﬁba)]-L
c

) (2.24)

where 71, and 7i;, are the complex refractive indices of the surrounding medium and
the sample respectively at the frequency wj, L is the thickness of the sample and c the
speed of light. This function is easily differentiated with respect to 7, as,
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J ~ - 4:17la 12w]L
Ry Gecho(nb) = _ﬁg — 171% - P (2-25)

which is a function that is much more likely to converge with the Newton-Raphson
method than previous transfer functions with reflections.

2.5.2 Results with Newton-Raphson fitting: Gallium Arsenide

A sample of semi-insulating gallium arsenide (SI-GaAs) with a thickness of 500 ym was
cleaved from a 2 inch diameter wafer, and placed in the THz-TDS beam path as de-
scribed earlier in the chapter. Multiple 30 second long scans of this sample were taken
(36), at a scanning rate of 1 Hz. Additionally, a 2 minute long air reference scan was
taken with the sample removed. A windowing function was applied to both the time-
domain traces of the air scan, and at two positions of each sample scan to isolate the
first transmission pulse and the first echo pulse. Figure 2.9(a) shows the time-domain
traces of the air measurements and the GaAs sample, with the windowing applied.
The inset shows the amplitude of the spectrum of the air and sample measurement
raw, with that of the windowed pulses on top. It can be seen that the second pulse has
a reduced bandwidth as the amplitude is reduced across the entire spectrum resulting

in more frequency components being buried beneath the noise floor.

The Newton-Raphson algorithm was then used to extract the complex refractive index
using the echo method (equations 2.24 and 2.25) and the conventional, zero reflection
method (equations 2.19 and 2.21). The mean of the real and imaginary refractive index
are shown in figures 2.9(b) and (c) respectively, with the standard deviation shown as
a shaded region. Sub-figures (d) and (e) compare the variation in both showing the the
standard deviation of the echo method divided by that of the zero reflection method.
It can be seen that the consistency between measurements is higher for the self refer-
encing method when extracting the real refractive index by an order of magnitude, but
is much closer to unity when comparing the imaginary term. The real refractive in-
dex is consistent with the literature value of around n = 3.6 [97], although it is slightly
larger here. This could be due to an error in thickness combined with the limits of
time-delay accuracy with thin samples. The standard deviation in general for this pa-
rameter is very small for both extraction techniques. It must be noted here that there
is a significant difference between the extracted imaginary values. This offset could be
contributed to the error in phase at low frequencies, which can also be seen in the real
refractive index as the values diverge with reduced frequency. It is possible that better
phase correction is required, or that the length parameter needs to be adjusted.
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FIGURE 2.9: Echo method with a sample of a 500 ym thick, semi-insulating GaAs.
Multiple scans of the sample are taken and both the first transmitted pulse and the
first echo pulse due to internal reflections are windowed in the time-domain(a), along
with a reference air scan for comparing extraction methods. The inset shows the am-
plitude of the FFTs performed on these measurements. The real (b) and imaginary (c)
refractive indices are extracted and averaged using the air-reference approach (blue)
and echo method (red), with the error shown as a shaded region. The relative standard
deviation of the two methods is shown for the real (d) and imaginary (e) components.

2.5.3 Small k approximation with the echo method

As previously discussed in the chapter, it is possible to analytically solve an approxi-

mation to the zero reflection transfer function if the real refractive index is greater than
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the imaginary part. Therefore, only the real refractive index in the propagation coeffi-
cients is taken to be responsible of the phase of the transfer function and so it follows
that

np(w) = —¢pu(w) - ﬁ, (2.26)

where ¢y is the phase of the echo transfer function. By approximating that the reflec-
tion coefficients are real, the imaginary part of the refractive index effects the amplitude
of the transfer function, |H,,(w)|, from the attenuation from the propagation, it is pos-
sible to evaluate it as

[

k() = 57 (!Hecho(wﬂ ~2In [WD 227)

2.5.4 Results of the echo method with the small k approximation: lithium
niobate

Lithium niobate (LiNbO3) has a high refractive index (n > 6 and a low imaginary com-
ponent (k < 0.1) which makes it an ideal candidate for the use of the approximation
echo method.

The measurements were performed almost identically to that of the SI-GaAs sample but
with longer scans in this case, as each of the 25 scans was given 2 minutes of averaging
improving the SNR. Both the reference and sample were placed in a 10 mm aperture,
with no focusing lenses making alignment easier and avoiding any potential issues
with the sample not being at focus, and ensuring the radiation can be approximated to
a plane-wave.

Figure 2.10 shows the results for the small approximation fitting for the echo method,
with literature values included for comparison. Terahertz spectra of lithium niobate
varies a significant amount in the literature, as it is sensitive to growing conditions, as
well as phase unwrapping issues due to the resonance present at low terahertz frequen-
cies, as the THz-TDS signal starts to diminish. It can be seen, as compared to the air
referencing method, that the variation between measurements is significantly less with
the echo method, up until a frequency of 1 THz. The Fourier transform of the pulses
and reference reveal that the available bandwidth of the echo pulse is less than the first
pulse, which in turn is significantly less than that of the reference. These measurements
are an improvement on the previous, GaAs measurements, benefiting from higher sig-
nal to noise thanks to the longer acquisition times. Still, it follows that this method,
as a function of both these shorter bandwidth signals would therefore have a more

limited applicability with regards to frequency. The extinction coefficient shows little
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FIGURE 2.10: Echo method with a sample of a 500 ym thick lithium niobate. The

time-domain signals and the applied window functions (a) with the corresponding

frequency spectrum shown in the inset, including that of the isolated echo pulse. The

real (b) and imaginary (c) refractive indices are extracted and averaged using the air-

reference approach (blue) and echo method (red), with the error shown as a shaded

region. The relative standard deviation of the two methods is shown for the real (d)
and imaginary (e) components.

improvement with the echo method at any frequency, but remains consistent with the
air reference measurement until 1 THz. Figure 2.10(d) and (e) more clearly show that

the relative error of the echo method is superior for the real refractive index but not for
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the extinction coefficient. It is likely that the improved stability in the extracted extinc-
tion coefficient as compared to the previous GaAs is due to the slightly high absorption
of the LiNbO3 sample and the longer acquisition time.

In both the cases of the LiNbO3 and SI-GaAs measurements, the small k approximation
echo method, and fitting by Newton-Raphson was performed and showed negligible
difference in the mean and standard deviation of values. They are not shown here
but are discussed in the next chapter, with a comparison to machine learning methods.
Regardless of which type of echo fitting method is used, the results are the same, and
the limits appear to be due to the loss of signal.

2.6 Conclusions

THz-TDS benefits from easy phase retrieval and therefore straightforward fitting for
the extraction of refractive index. However, there are a wide range of extraction tech-
niques with different benefits, and there is still much interest in finding more reliable
techniques in particular. In this chapter the methods in measuring a sample with a
THz-TDS are introduced, with the fundamental aspects of parameter extraction with
Fresnel modelling presented. One aspect, the poor fitting that comes with complicated
transfer functions is highlighted, and a new method is presented, with one if its advan-
tages being the stable fitting whilst benefiting from the multiple reflections observed
in samples of sufficient thickness and refractive index. This new method, the "echo
method" is presented that determines the complex refractive index from THz-TDS data
in the absence of an air reference measurement. The resulting transfer functions are
shown with measurements of semi-insulating gallium arsinide and lithium niobate
used to demonstrate that for frequencies where the SNR is sufficient, the echo method
extracted parameters achieve lower standard deviation in real refractive index values
as compared to the air reference method, but at the cost of a lower usable frequency
bandwidth than that of the air reference method. However, other advantages of the
echo method include reduced effects of laser power drift, less need for purging of the
spectrometer chamber with inert gas, and all the data required for the measurement
can be obtained while keeping the sample in place. Future work will include combin-
ing the echo method with the air reference method to produce a transfer function that
requires no thickness measurement, and even output the thickness without knowing
the refractive index, with a frequency dependent uncertainty. In the case for aqueous
protein samples, where absorption is too high to have measurable internal reflections,
the concepts of this method can be applied with the use of a highly reflective substrate
preceding the protein solution.
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Chapter 3

Machine learning for THz-TDS

parameter extraction

By virtue of measuring the terahertz pulse in the time-domain, phase information is
retained that would otherwise be lost in typical absorption spectroscopy. This makes
frequency resolved parameter extraction a far simpler process, mathematically speak-
ing. However, there are still practical challenges involved, and steps taken to address
these are not consistent between research groups [98]. In this chapter, machine learning
is presented as an excellent candidate to automate the process of parameter extraction,
where the implementation can be easier to implement, runs faster, more accurate and
has the potential to extend beyond conventional data-analysis. The work discussed in
this chapter has been been published in [2].

3.1 Introduction

The key principle in using THz-TDS to obtain material parameters is to measure the
transmitted or reflected electric field of a reference and a sample, whereby obtaining
the sample’s complex refractive indices is achieved without the need to use Kramers-
Kronig (K-K) relations. The amplitude of electric field (not merely the intensity) is
mapped, in time, and therefore the phases information of the signal is easily extracted
when performing a Fourier transform. Despite this advantage however, it has yet to
completely break through into the industrial setting. A key issue is that obtaining ma-
terials parameters can still be a challenging process, as multiple analysis steps are re-
quired, each of which can be prone to introducing errors into the calculations, such
as phase unwrapping and transfer function convergence. This aspect contributes to
the wide variability in results between researchers around the world which is an is-
sue important enough to warrant its own research [98, 99]. Additionally, there is a
time penalty for both the implementation and computational run-time for the iterative,
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root-finding algorithms that provide the accuracy required for sensitive spectroscopic
measurements. To this end, it is advantageous to look towards automated methods of
parameter extraction. The previous chapter contains a full discussion of the intricacies
of these methods.

Machine learning is a candidate for such an alternative approach. By using an appro-
priate training algorithm with training data, an artificial neural network (ANN) is able
to map the relationship between the input training data and its associated output. This
is achieved by adjusting parameters inside the network (the neuron connections con-
taining weights and biases) to improve the prediction autonomously, through a training
algorithm. A neural network of just one hidden layer of neurons has enough flexibility
to be able to approximate any function [100] (with an arbitrary activation function [57]).
Therefore, it is expected that such a network could analyse THz-TDS data and output
the associated material’s refractive index, with the accuracy being determined by the
size of the data set and number of neurons in the hidden layer.

The application of ANNSs to THz-TDS has primarily been concerned with classification
problems [101, 102, 103, 104], such as organic compounds [51], food [105, 106], and bi-
ological samples [52, 53]. The classification algorithms can be used to analyse terahertz
images [107] for medical [108, 109, 110], and security applications [111]. Beyond classi-
fication problems, machine learning can be utilised for regression fitting, such as to find
concentrations of specific molecules [54, 55, 112, 113, 114] or for finding the thickness
of thin samples of known refractive index [115, 116].

These neural fitting methods demonstrate the powerful opportunities that machine
learning has to offer in THz-TDS analysis, however they rely on the prior knowledge of
the sample’s refractive index, which can be a problematic assumption as the refractive
index of a known sample is often altered by the manufacturing history or growth of
the material. In the following chapter, machine learning is demonstrated as a method
which has the potential to overcome the issues raised where it is shown that an ANN
can estimate the complex, frequency dependent refractive index. With a training set
comprised of simulated data, the fitting of the experimental data to a theoretical model
can be replaced with a trained ANN, whereby minimal coding is required, benefit-
ing in speed of implementation (and run-time) over an iterative method. Further, the
potential for the neural network to replace data processing steps in the extraction pro-
cedure by employing deep neural network (DNN) and convolutional neural network
(CNN) architectures could be possible and therefore improve accuracy. In this case
the extracted phase and amplitude of the experimental transfer function from the mea-
surement can be directly fed, showing the potential for a more generalised model. The
training data is simulated to encompass any THz-TDS transmission setup, as neural
networks are trained over a wide range of material parameter values and frequencies

to ensure wide applicability of the neural networks in real world applications.
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3.2 The target for machine learning: THz-TDS Extraction

As discussed in detail in the previous chapter, for analysis of THz-TDS data to obtain
the complex refractive index three common methods are generally used.

1. In the simplest case the time domain of a spectrum can be analysed to measure
the time difference in the peak amplitude of the pulse travelling through air as
compared to travelling through the sample, At, and calculate an average refrac-
tive index using the equation n = 1 + cAt/L. This method is extremely simple,
and provides no spectroscopic information, however it does give an estimate of

the material parameters, especially in the case of a non-dispersive medium.

2. The second widely used method, which shall be continued to be referred to here
as the “analytical method’, involves performing a Fourier transform on the time
domain data to obtain the intensity and phase of the pulse normalised to the air
reference: the experimentally derived transfer function, H,y,. From this stage
the complex refractive index can be extracted at each frequency by equating the
experimental transfer function to a theoretical transfer function that is a func-
tion of n and k. The theoretical transfer function is obtained by modelling the
light-matter interaction of the sample and the terahertz pulse with the Fresnel
equations for transmission through a boundary and a complex exponential atten-
uation coefficient, however they rely on the assumption that n » k to render the
Fresnel coefficients completely real. This assumption allows one to separate the
real and imaginary components of the theoretical transfer function. This permits
to analytically obtain a value for n and k for every frequency,

n(w) = — [4’H£“’) : % +1] (3.1)
B 4n(w) c
Kw) =In {|H<w>| (@) T 1)2} WL 32)

where ¢(w) is the phase, L is the sample thickness, c is the speed of light and
w is the angular frequency. The amplitude of the transfer function, |H(w)|, is
calculated by division of the sample pulse with the reference pulse (air). The
result decreases in accuracy as the loss of the material increases, as well as with

reducing frequency, limiting the usefulness of this method.

3. To avoid the approximation issues with the analytical method one can find so-
lutions to the transfer function equations numerically. The experimental transfer
function is equated to the theoretical transfer function but without the assump-
tion employed in the previous case. In order for a solution for n and k to be
found an iterative root-finding method, such as the "Newton-Raphson” method,
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is commonly used for THz-TDS analysis, where one fits the experimentally de-
rived transfer function to a theoretical model. This method can obtain values of
complex refractive index with excellent accuracy, however, like all root finding
and minimisation algorithms, it is possible for the method to converge on a local,
not global, solution. Furthermore, many iterations are required which can take a

long time to process.

Here, machine learning techniques are introduced for analysing THz-TDS data to ex-
tract spectroscopic parameters. The ultimate goal is to replace the entire extraction
process, but to begin with this approach, the scope is limited to solving the theoretical

transfer function,
7 4ii(w —i(fi(w)—1)wL/c
Flpeo () = @) peita(e)- 1)t/ (3.3)

for values of 7i(w), the complex refractive index, which is a function of angular fre-
quency w; L, which is the known material thickness and ¢, which is the speed of light.
The real part of the complex refractive index is the real refractive index, n(w) and the
imaginary part is given by the extinction coefficient, k(w). The function Hyj,, (1) is the
mapping of a pulse passing through a material of thickness L, with no additional re-
flection terms. It is non-bijective (there are multiple values of phase that produce the
same output) by virtue of the complex exponential term, meaning that it can only be
analytically solved in one direction: inputting n and k to obtain amplitude and phase.
By creating a large data set of amplitude and phase values for various values of n and
k, an ANN can be trained to predict from the phase and amplitude the target values of
nand k.

As the application is terahertz spectroscopy n, k and w are restricted to well defined
bounds. THz-TDS also has a well defined bandwidth of usable signal and measuring
materials of limited refractive indices and thicknesses is targeted therefore it is only
necessary to train a model to solve the equation for a limited parameter space. Figure
3.1(a) shows how for many materials, their parameters at 500 GHz typically lay at 1 <
n<10and 0 <k <1 [3,117, 118, 119, 120, 121]. Training a model with values within
these limits reduces the scope of the problem significantly without making any math-
ematical approximations. Of course, the neural network approach is in itself a form of

approximation, and its accuracy will be explored in this work.

3.3 Replacing traditional fitting with a neural network

Figure 3.1(b) shows an outline of the processing steps, with the ultimate goal of replac-

ing as many of these as possible to reduce human error and loss of data for example
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FIGURE 3.1: (a) Examples of materials characterised with terahertz spectroscopy,

showing the real and imaginary refractive index at 500 GHz. (b) Parameter extrac-

tion flow chart outlining the steps to extract the complex refractive index from time-

domain signals, including the time-domain processing steps (orange), frequency-

domain processing (pink) and fitting the theoretical model to obtain the complex re-

fractive index (green). Each processing step can be a point of error if care is not taken
with analysis.

removing reflections by windowing. Initially, ANNs were explored as candidates to
replace the final stage in the parameter extraction process for THz-TDS data, the fitting
function.

3.3.1 Creation of Training Sets

To generate simulated training sets for the machine learning algorithm firstly an input
pulse is required. The input pulses are created by defining a function within Matlab,
which creates a shape similar to that of an experimentally measured pulse, character-
istic of the PCA emitter used in our lab. It is an approximation of the physics of a
photo-conductive antennae (PCA) emitters. The generated photo-current an incident
optical, femtosecond pulse is given by [122]

=2 ~ =2 ~
Tlns _ A-t Tas A-t _ Tlus _ A-t Uas  __ At
J(t) o {exp (@; —Tcm) erfc <_2um _fzus> exp <% _fgm> erfc <_2fem _fzus) }, (3.4)

where 7,5 = Tj5s/(2VIn2) and Top. Ty is the laser pulse duration, 7, is the recombi-
nation time, and t is time. The additional term A that multiplies the time axis is used to
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simply stretch or compress the resulting pulse to adjust bandwidth while maintaining
the approximate shape in time and frequency. The amplitude of the resulting elec-
tric field in the time-domain is proportional to the derivative of the generated photo-

current,

Eqp () o d]d(tt) (3.5)
The function produces the characteristic curve of an experimentally measured pulse in
the frequency domain, and can be seen in figure 3.2. Important features to note here
is the sharp rise in signal at low frequencies and a much slower decline in signal after
500 GHz. These features will become important when developing a more sophisticated
model, where noise is also simulated, but for this implementation any arbitrary pulse
shape can be used. It is preferential to use a simulated pulse opposed to a real, mea-
sured pulse as in the case of linear materials, the resultant transfer function will be

independent of the pulse shape.
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FIGURE 3.2: Simulated pulse in the time domain propagated through air and a sample

of n =35 k=01, L=05mm. The top inset shows the frequency spectra of the

reference and sample, and the bottom shows the (unwrapped) phase and magnitude
of the transfer function when the two signals are divided.

Once the pulse has been generated it is propagated through the material for given ma-
terial parameters of refractive index n, k, and thickness L, where only the transmission
coefficients in and out the sample and the propagation coefficient are modelled (no
reflections). Additionally the pulses are propagated through a column of air of equal
thickness to the sample. The data set values of n are varied from 2 to 8, values of k
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are varied from 0 to 0.3, and thickness varied from 0.1 to 1 mm, and frequency varied
from 0 to 2 THz. Tightening the limits of n and k to these values decreases the training
time while also still encompassing a large variety of real material parameters. To create
a simulated data set in this way in Matlab is a quick process. 10,000 pulses with 1024
point resolution in frequency required around 80 seconds on a modest laptop computer,
demonstrating the ability to generate large training sets relatively quickly. Figure 3.2
shows the time domain signal, along with the frequency spectra of the pulses propa-
gated through the reference (air) and sample in the upper inset, with the magnitude
and phase of the transfer function calculated by division shown in the lower inset. The
phase of the transfer function requires unwrapping of the phases of the Fourier Trans-

forms of the spectra before the difference is calculated.

Neural networks accept an input array of floating point numbers and produce an out-
put array. The training method employed will be supervised, meaning that the network
accepts an input array and is expected to predict a known output array.

As the ANN is to analyse data with the relationship of equation 3.3, each data entry
only needs a single value frequency, the corresponding value of amplitude and phase
of the transfer function, and the thickness. Each of these values is termed a 'feature’.
The target for an entry consists of the values of n and k for the sample material and
the corresponding frequency, known as ‘labels’. Therefore, each entry corresponds to a
random material at a single, random frequency. The data is then normalised, assisting
the training of the model. Each label is scaled such that the maximum possible value is
1, and the minimum possible value is 0. For example, a refractive index, n = 2 is given
the value 0, and n = 5 becomes 0.5 as our data set only contains values of n between
2 and 8. When the training algorithm calculates its accuracy, it is a function of error
in estimated n and k. The k values are much smaller and therefore, if not normalised,

errors in its prediction will be weighted less than those in n.

The machine learning is performed in the Matlab Neural Net Fitting Toolbox, em-
ploying a standard Levenberg-Marquard (LM) back-propagation function and a mean-
squared error loss function. This method takes the weights and biases of a network,
and calculates the gradient of the parameter space with respect to the loss function.
The weights and biases of the network are then adjusted in such a way to converge to
the minimum. For every training session, the simulated data were randomly divided
into training (70 %), testing (15 %) and validation (15 %) sets to avoid over-fitting. No
noise was inserted into the data model and so the over-fitting was avoided by halting
the training once the trained network’s performance decreased on the validation data
set after six consecutive training iterations. Various configurations of the neural net
were trialled, but a network architecture of one hidden layer of 200 fully connected
neurons provided sufficient accuracy and training times. This neuron count gave the
model a good compromise between flexibility to enable accurate predictions without
over fitting - too many degrees of freedom in a model can result in a model that maps
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the inputs and outputs of the training data specifically, rather than developing any gen-
erality in the relationship between the input and output. For the mapping of four input
values to two output values, and with data sets of 10° entries and six values each (four
features, two labels), the LM method was used as it resulted in excellent fitting, and
computational times and memory usage manageable on a desktop PC.

3.3.2 Results and discussion
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FIGURE 3.3: Examples showing the performance of different extraction methods for

the complex refractive index of a sample of n=5, and k=0.15. Below each plot is the

average fractional difference across the entire parameter space of training data plotted
against frequency.

The networks performance was evaluated in two ways: accuracy in prediction of sim-
ulated data generated by the same scheme, and accuracy in predicting real-world, ex-
perimental data. For a quantitative evaluation of the training performance, the trained
network is used to predict simulated data the model has not seen before, by simply
creating another randomised data set. The root-mean-squared-error (RMSE) was then
calculated from the differences between the model’s prediction and the target ground
truth. Additionally, the Newton-Raphson method was used to fit the theoretical trans-
fer function (equation 3.3) to the simulated data for comparison with a typically used
iterative method, along with the analytical extraction with k«n approximation. Figure
3.3 compares the results of the three methods. It can be seen that the approximation
method is not as accurate as our trained model in predicting the the ground truth val-
ues, with the accuracy being surpassed by the iterative method. For this noiseless,
simulated data, this is not surprising as the Newton-Raphson method to the transfer
function corresponding to the propagation through a material with no reflections has
generally stable convergence, the accuracy of which can be set by the user. In doing
so this comes at a cost of computation time. The iterative method must loop until a
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and their true values for a range of values of n and k (at 500 GHz). The fractional error

of the neural network prediction is subtracted from the analytical approximation and

the are shown in b), where generally, the neural network improves over the analytical
method, as can be seen by values greater than zero.

chosen accuracy is satisfied, or is timed out, which will always vary depending on the
quality of the data, the fitting model chosen etc. A fully trained network results in a
titting that will generally be faster, and with a much less variable run-time. In the case
of fitting to real data, the average run-time over 1000 iterations for a standard Newton-
Raphson was 118 &+ 9 ms, whereas the trained ANN took 60.4 & 7.6 ms to complete.
Unsurprisingly, the approximated analytical method took much less time to run: 0.296
ms 3 0.046 ms.

Figure 3.4 expands on figure 3.3 by visualising the accuracy of the neural network and
the analytical method for a fixed frequency (f = 500 GHz) and fixed thickness (d = 500
um) for the complete range of values of n and k used for training. Figure 3.4(a) shows
the errors of both methods independently. As expected, the analytical method’s ac-
curacy in evaluating the real part of the refractive index drops with decreasing n and
increasing k. The error in the evaluation of k is less pronounced, approaching 0.2 % at
lower values of n. The neural network’s prediction shows a significant improvement
when evaluating the real part of the refractive index, and is improved across the entire
parameter space. The prediction of k is improved over the analytical method, but not
everywhere. Features are present in this surface plot, but they are random due to the
nature of the training algorithm, and the impossibility of the LM minimisation finding
a global minimum in the loss function. To better compare the two methods, the error
of the neural network prediction was subtracted from the evaluation by the analytical
method and shown in figure 3.4b). Green in these surface plots show equivalence of
the two methods, with increasing to red indicating the neural networks improvement,
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and blue its deficit, when compared to that of the analytical method. The landscape
of the difference in error of the real refractive index shows that the expected breaking-
down of the analytical method towards high k and low n values superseding any error
from the neural net prediction. For the error in k plot, there are “islands’” where the neu-
ral network is marginally worse than that of the analytical method, but they are small
and in theory could be improved with more adjustment to training, as their location is

random, and a symptom of the stochastic nature of the machine learning technique.

To further evaluate the model, the refractive indices are extracted from experimental
data. Figure 3.5 shows the extracted complex refractive index of lithium niobate mea-
sured with a time-domain spectrometer, described by our previous work using the an-
alytical, Newton-Raphson method and the neural network [3]. For this case, it can be
seen that in the real and imaginary parts predicted by the neural network are extremely
close to the alternative methods.

3.4 Developing an artificial neural network for direct analyses

of spectral data

To advance the complexity of our networks to account for more of the stages in the pa-
rameter extraction process, input and output data sets must accommodate full frequency-
domain information of a measurement rather than a single point in frequency. The
neural net trained in the previous section creates a prediction for value of n and k that
solves a mathematical function for a given frequency, where there is no context on
what the values of n and k should be when looking at the spectrum as a whole. Any
errors introduced before the phase and transfer function are calculated will be carried
through to the output, namely, the pre-processing of the phase of the transfer func-
tion. It is expected that as frequency tends to zero, the phase value also approaches
zero when observing the FFT of a broadband signal. However, as the SNR diminishes
at low frequencies, the extracted value is consequentially erroneous. This means that
when subtracting the phases of the two signals, the phase difference at every frequency
will be shifted by the difference of the two incorrect zero-frequency values for each
spectrum. Therefore, particularly at low frequencies, the extracted refractive index will
be incorrect. For samples with a flat, non-dispersive refractive index, this effect is coun-
tered by fitting a straight line, weighted by the SNR, to the phase of each spectrum, and
then applying an offset where this line intersects the y-axis. However, as can be seen in
figure 3.5(c), lithium niobate is dispersive and has potential features at low frequencies
( <200GHz ) [3], where the SNR of the spectrometer is low and therefore a linear fit
on the phase would give a wrong zero intercept. One has to know the approximate
shape of the phase as a function of frequency to correctly counter the phase offset is-

sue. As such, the data sets containing many values for the whole frequency range are
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FIGURE 3.5: Performance of the fitting methods on real data, of 500 micron thick
lithium niobate. The time domain traces, (a), of the reference and lithium niobate
sample, with the window function in place and the resulting spectra shown in the
inset. The windowing simplifies the phase (b) and amplitude (c) of the resulting trans-
fer functions to simplify fitting, at the cost of resolution. In the case of this samples,
the extracted real (d) and imaginary (e) refractive index are almost identical between

methods.
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much larger requiring more computer processing power and memory usage. Using the
LM method is no longer tractable, scaled conjugate gradient backpropagation (SCG) is
instead employed. While one single network layer has the flexibility to approximate
any function, more complex network architectures are required for efficiently training
models to recognise patterns in data sets with more dimensions, such as pixel data in
an images. Spectroscopic data is analogous to image data, but only has two, one di-
mensional arrays (phase and magnitude). Use of a multiple hidden layer network is
attempted, often categorised as a deep neural net (DNN) to analyse data sets with a

complete frequency axis.

3.4.1 Creating dispersive training sets with noise

In order to motivate the network to ultimately replace manual steps from the data anal-
ysis, more sophisticated training data is required. Pulses propagating through samples
with dispersion, modelled simply by generating values of n and k with sums of sinu-
soids with random frequencies and amplitudes are simulated. It is worth noting, that
the simulated samples were not with any particular features corresponding to reso-
nances, but with arbitrary shapes that provide enough variation that the neural net-
work can correlated the changes in phase and amplitude with respect to frequency.
Furthermore, noise is added to the propagated pulses, with a simulated 70 dB SNR be-
tween the signal at its peak and the noise floor. This introduces a small, but significant
offset error to the unwrapped phase, as previously described. For this early experiment,
the number of points on the frequency axis to were minimised to 32 points between 0
and 1 THz, creating each entry of the training data sets to be arrays of 64 in length (for
both magnitude and phase of the transfer function). Similarly, the target data sets have
32 points each for the real and imaginary parts of the refractive index. Additionally, a
thickness value is negated and only 500 pm thick samples are simulated, to further de-
crease computation requirements. Using the Matlab Deep Learning Toolbox, a model
with two hidden layers of 128 neurons and 512 neurons was created. The network was
trained with the same parameters as previous, but with training algorithm switched to
scaled conjugate gradient backpropagation, (SCG). The algorithm is analogous to the LM
algorithm in that it uses the gradient of the weights and biases versus the loss function
but works on small subsets of the parameters (called batches) rather than the entire
network. A convolutional neural network, (CNN) [123], was additionally trialed, as this
architecture is much more efficient for image processing, where the training data are
higher dimensional arrays. The training function here was Matlab’s implementation
of adaptive moment estimation, (Adam) [124] and training a network of one convolution

layer and one hidden layer of 200 neurons.
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3.4.2 Results and discussion

By training neural nets with data containing simulated noise, and increasing the num-
ber of neurons on the input layer to accept a linearly spaced range of points in fre-
quency, a network that still extracts the refractive index is produced. Figure 3.6 shows
the current state of the model. It accepts data without looping through each frequency.
It has the advantage of being more stable at low SNR as can be seen in the low fre-
quency data points. The Newton-Raphson implementation has unrealistic values here,
where real refractive index sharply drops off and the imaginary refractive index os-
cillates wildly. A trained CNN (one convolutional layer, and one hidden layer of 200
neurons) is also included, to show that with dramatically shorter training timescales,

something close is produced, and indicates the potential future of our ANNSs.
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FIGURE 3.6: DNN model predictions (blue), Newton-Raphson fitting (black) and CNN

model predictions of the refractive index of lithium niobate. The real (a) and imagi-

nary (b) components. 100,000 training sets split 70/15/15 for training, testing and

validation respectively. Hidden layer [128,512]. Convolution neural network has one

2D convolutional layer and one 200 fully connected hidden layer. The shaded regions

of both plots show what is typically excluded from measurements due to low SNR or
unphysical results.

The reported performance of the networks during training is much higher than what
can be seen from the example fitting in figure 3.6 with real-world data not included
in the training data sets, indicating a bias towards features that are in the training set
itself. Continuing to train on fully connected networks for such problems is possible,
but inefficient. Using CNNs allows for increasing the size of the input layers without
dramatically increasing the computational overhead, thanks to the convolution layer.
Both results show promise to provide more stable results at lower SNR than direct fit-
ting methods. The CNN produces more stable and physically possible results at lower
frequencies, at the cost of some deviation from the Newton-Raphson result. Further
development of these networks will require careful selection of training data sets to
produce trustworthy results.
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In this chapter, machine learning has been shown to replace the fitting function, and
further replacing steps in the extraction process as shown in figure 3.1(b) by accepting
spectral information. With a flexible enough network architecture and carefully simu-
lated training sets, neural networks can be used to replace the entire extraction process
and accept time-domain data. This would provide a universal approach that avoids
pre-processing that can introduce artefacts and reduces consistency and reliability - es-
sential for real-world applications. Furthermore, it could be possible, by retaining the
full time-domain data to have a neural network make refractive index predictions with-
out requiring thickness information, windowing or Fourier transforms, and therefore

could work well for thin samples where multiple internal reflections are problematic.

In order to expand the scope of the neural networks to accept such a level of unpro-
cessed data, two approaches could be employed. One is to train networks for each step
independently and either combine the separately trained models into one master func-
tion where each is applied sequentially to the data, or to use this collection of models
to train a single network, a process known as knowledge distillation[125]. An approach
such as this has the advantage of maintaining a limited parameter space for the train-
ing sets whilst also being able to monitor the accuracy of the networks at each step.
An alternative method is to simulate an even larger array of data, and attempting to
train one unified network. Theoretically, this should be possible, but the run-time and
number of data sets required may be too large, and relegates all the steps of parameter
extraction to effectively one black box, where more advanced inspection tools will be

required to understand the how the network is developing.

3.5 Conclusion

Terahertz time-domain data retains phase information in a way that simplifies param-
eter extraction as compared to other techniques. However, care is still required when a
parameter extraction algorithm is implemented. Artificial neural networks have been
shown to be used in place of traditional fitting functions with excellent accuracy, fast
run-time and straightforward implementation. Furthermore, deeper, more generalised
networks can replace more steps of the extraction process, automating data analysis
and increasing consistency. Generalised networks can surpass traditional methods in
the low frequency range, especially in the presence of materials exhibiting low fre-
quency resonances. Advancing the sophistication of the networks will lead to more
generalised models that can potentially improve on current methods so they can ex-
tract thickness, refractive index and optimise the windowing process, all while retain-
ing rapid run-times. Further, it is easy to envisage in the future that neural networks
can be developed to operate directly on time-domain data and thereby create a new
paradigm in THz-TDS parameter extraction. Future work will include training CNNs
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to not only extract frequency dependent parameters, but also length parameter approx-
imations by avoiding windowing in the time-domain. Additionally, due to the flexibil-
ity of training networks to achieve any desired function, it is possible to use a different
model to simulate data to develop models that extract the DC conductivity of graphene
from imaging data, mitigating the issues of “jitter’ [90] typically caused by deviations

in substrate thickness across large area samples.
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Chapter 4

A surface tension confined PTFE
microfluidic flow cell

In this chapter, the development of a novel polytetrafluoroethylene (PTFE) microfluidic
flow cell is documented. PTFE surfaces are modified to both increase and decrease its
wettability confining aqueous samples by surface tension forces. The device is terahertz
compatible, robust, non-fouling, expandable, quick to manufacture and cost effective.
The work was published in [1], and is expanded on in this chapter. The work was
performed by the thesis author, with contact angle measurements made by B. Bowden.

4.1 Introduction

To study the terahertz response of proteins in their native, fully hydrated environment,
short beam path-lengths are required in order to mitigate attenuation of the transmitted
pulse. Microfluidic devices manufactured from materials that are terahertz compatible
(low absorption and refractive index) provide an excellent solution to maximise signal
integrity when performing real-time spectroscopy. Furthermore, such platforms pro-
vide additional sample manipulation and expanded functionality to progress towards
an all-in-one platform, often termed: Lab-on-chip [126, 127].

Terahertz compatible devices are often comprised of silicon or quartz [70, 71], which
have good spectroscopic properties at terahertz frequencies whilst benefiting from me-
chanical rigidity. However, specialised manufacturing processes are required to fabri-
cate such devices, and prototyping can be slow. A faster and cheaper pathway is to use
polymer based devices. Polydimethylsiloxane (PDMS) is a commonly used material in
microfluidic devices, however its terahertz absorption characteristics are significantly

dependent on its preparation methods [72].
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Quartz disc PFA gasket PTFE disc

THz pulse
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FIGURE 4.1: The geometry and core components of the microfluidic flow-cell. A mi-
crofluidic channel with a 6 mm wide zone for the transmission of the terahertz beam
is machined into a 5 mm thick, 50 mm diameter PTFE disc by a PCB milling machine.
Assembly pressure provided by a 3D printed manifold (not shown) lightly contacting
a 5 mm thick, 50 mm diameter quartz disc and 50 pm thick PFA gasket on top of the
device. The 1.6 mm inlet holes were introduced using the same PCB milling machine.

The chosen scheme in this work was to develop a device based on machined polyte-
trafluoroethylene (PTFE), a schematic of which can be seen in figure 4.1). The material
has desirable properties for both use in a terahertz spectrometer and as a basis for a mi-
crofluidic device. Primarily, these are its low, non-dispersive refractive index between
300 GHz and 3 THz, negligible absorption over a broad terahertz spectrum, and its
well known chemical resistance and bio-compatibility. Whilst these attributes are ap-
pealing, two key problems emerge when trying to use PTFE for microfluidics: its lack
of rigidity and the incompatibility with adhesives, complicating encapsulation meth-
ods. PTFE has the advantage of being hydrophobic, which can aid sealing in devices
that rely on compression forces, where any possible open pathways reject water due to
capillary action [73]. The limits of such a device are discussed later in the chapter.

It is possible to exploit contrasts in surface wetting characteristics to make microfluidic
devices that rely on capillary forces alone and no physical boundary or walls to control
flow paths [77, 78, 79, 80]. Such a scheme negates the need for problematic encapsula-
tion by relaxing the requirement for alignment and bonding. Additionally, having an
easily accessible liquid-gas interface allows the application of gases that may react with
the liquid and/or analytes on-chip, whilst serving to help to then remove introduced

air bubbles from the system.
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This boundary could serve to assist in the investigation of biological processes. For ex-
ample, while terahertz spectra of single concentrations of oxy- and deoxy-hemoglobin
do not show any fine spectral features in absorption in the terahertz band [128], changes
in structure of globular proteins are detectable with terahertz spectroscopy by study-
ing the effect of the macromolecule on the surrounding hydrogen bond network [44].
Differences in hydration dynamics between the two states of hemoglobin have been ob-
served with microwave radiation [129], however, by using terahertz radiation instead,
and by flowing oxygen and nitrogen gases adjacent to the protein solution (oxygenat-
ing and de-oxygenating the protein respectively [130, 131]), the investigation of longer
range influences can be made with protein modification occurring in situ. Hemoglobin’s
function to flexibly bind and relinquish oxygen is coupled with the surrounding wa-
ter network, and further investigation into its mechanism may provide greater insight
into a wide range of hemoglobin disorders [132]. Furthermore, with the addition of a
gas-liquid interface, such microfluidic devices can be used for the detection of airborne
analytes such as drugs [133] or hazardous contaminants (ammonia) [134] by diffusion

into the controlled liquid medium.

In this chapter, the development of a PTFE based microfluidic device for terahertz spec-
troscopy is shown, whereby a simple, closed cell design is enhanced using a novel com-
bination of RIE, machining and plasma ashing to produce a surface tension confined
device. The robust solution to water confinement in PTFE microfluidics presented al-
lows the material to be used in a sandwich scheme but manufacturing tolerances can
be relaxed. Key theoretical concepts of microfluidic flows and surface tension effects
are introduced, followed by the challenges associated with PTFE based microfluidics,
highlighting the difficulty in preventing leaks from compression sealing a chemically
inert, flexible material. Then, the results of the surface modification of PTFE are shown,
where the hydrophobicity of the material is both increased and decreased to enable
dramatic contrast in wetting characteristics. The working device is then used to take
spectroscopic measurements of water and bovine serum albumin (BSA) for different
concentrations in the fabricated microfluidic prototype flow-cell with a Terahertz Time-
Domain Spectrometer (THz-TDS).

4.2 Microfluidics theory

4.2.1 Fluid flow in a microfluidic channel

When coupled with the right materials, geometries and appropriate flow rates, water
channels manufactured on the micron scale exhibit properties that are advantageous
for the study of multiple aqueous samples with terahertz radiation. The two main
properties to be exploited for this work are shallow geometries to reduce the signal
attenuation of water, and the potential for automation for measuring multiple samples
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consecutively with minimal interruption. The automation aspect of a channel design
comes from the flow needing to be laminar, where there are no turbulences such that
when introducing another fluid, its mixing will be limited by diffusion. This occurs
when the fluid that’s flowed at a given rate is confined to a sufficiently narrow channel.
The consequence of such a flow is that a second introduced liquid can reliably replace
the first.

To determine whether the flow of a fluid in a channel is going to be laminar or turbu-
lent, the system’s Reynolds number, R,, can be calculated [81]. It has been found that
if R,<2300, the flow is laminar, where as if R,>2900, then the flow is turbulent. In be-
tween these values, the flow will be intermittent, where the type of flow will oscillate
between laminar and turbulent. Equation 4.1 shows the how the Reynolds number is
calculated, by taking into account the fluid characteristics, flow rate and the size of the
channel. The contribution from the channel’s dimensions are given by the hydraulic
diameter, a length value that depends on the shape of the cross section of the channel.

In the case of a wide but shallow channel (a duct), this value is given by equation 4.2.

R _ QDy

e =" (4.1)

where the Reynolds number, Re, is given in terms of volumetric flow rate, Q, kinematic

velocity, v, hydraulic diameter, Dy, and cross-sectional area, A.

(4.2)

where the hydraulic diameter for a wide duct, Dy, is given in terms of the height, H,
and the width, W. In the case of pure water, flowed through a channel at 50ul/min,
where this channel is a wide duct of 100 um by 1.6 mm, it gives a Reynolds number of

10~7. It is clear that in this case, laminar flow will occur.
For a wide channel (w >> h) the maximum pressure difference required for fluid flow,

APfiow, for a flow-rate Q, is given by [135]:

127LQ
(h+d)3w[l — 0.63"4]

APfiow =

where the channel length L and fluid of viscosity # contribute proportionally.
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4.2.2 Contact angles and capillary effects

The choice of PTFE as a material removes the need for expensive fabrication techniques
but at the sacrifice of having a soft material that cannot be reliably sealed by compres-
sion, especially flow-cell dimensions needed for terahertz compatible devices, motivat-
ing an alternative approach to confinement. It has been shown that selectively modify-
ing the material surface in order to control the wetting properties of parallel coupled,
etched capillaries allows for microfluidic function with a stable liquid-gas interface that
relies on the Laplace pressure for confining the liquid in the channel [136]. It is feasible
for this concept to be applied to the entirety of the channel, such that the principal form
of confinement is from the liquid’s surface tension forces. In doing so, the tolerances on
device manufacturing can be relaxed, and the primary method of sealing will no longer
be attributed to the elasticity of a gasket layer or by the requirement of bonding. To se-
lectively modify the PTFE, a three stage approach is employed, shown in figure 4.8. In
the first instance, the PTFE is plasma treated with RIE, creating a superhydrophobic
surface across the entire substrate. Next, the channel is milled exposing native PTFE
by completely machining the desired geometry, penetrating through the microstruc-
tured layer. Finally, the PTFE is treated by another plasma treatment, making the now
exposed PTFE hydrophilic. Crucially, the last stage does not alter the initially created
microstructures, thereby maintaining superhydrophobicity. This provides a contrast in
wetting characteristics for the confinement of the sample within the channel beneath
an upper hydrophobic substrate contacting (but not compressed against) the modified
PTFE substrate.

4.3 Compression-only sealing a PTFE microfluidic device

The initial design of the PTFE based device relies on the malleability of a gasket layer
to occupy defects, with the hydrophobicity of the substrate and the gasket materials
resisting leaking through negative capillary action. The material of the gasket layer was
chosen to be PFA, due to its similar spectroscopic and chemical properties as PTFE, but
with a smaller Young’s modulus. The initial design is shown in figure 4.2. One PTFE
disc has a milled channel and inlet holes, with a second blank PTFE (or quartz for
optical inspection) disc surrounding a PFA gasket layer. Each disc has a diameter of 50
mm and a thickness of 5 mm, with the channel milled using a PCB milling machine to
the desired depth. A 3D printed manifold, and twelve bolts are used to provide even

compression across the assembly.

The goal is to achieve a water tight seal around the channel from direct contact between
the PTFE substrate and the PFA gasket layer. In addition, if any subtle deformations or
defects exist in the substrate, the hydrophobicity of both layers were thought to prevent

leaks from spreading across the substrate due to negative-capillary action.
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FIGURE 4.2: Initial prototype of the PTFE microfluidic flow-cell, with a 3D printed

manifold to apply compression force across the 'sandwich’ of PTFE discs with a PFA

gasket layer in-between. Sealing was suspected to be achieved thanks to the PFA’s
hydrophobicity and malleability to occupy machining defects in the PTFE.

In the case of pure, de-ionised (DI) water, and low concentrations of salt solutions, this
scheme is sufficient for proper confinement. However, care is required when tightening
the device, as leaks would occur if either the screws were over-tightened, or tightened
in such a away to produce uneven pressure on the cell. Evidence of cell warping from
over-tightening can be seen in figure 4.3(a). As the cell is tightened, flex is visible due to
an introduction of oscillation into the transfer function of the empty, loosely assembled
cell, to the flexed cell where the cavity inside is affected. The oscillation is caused by

the beating of two different etalon frequencies as the cell expands due to warping.

Further, if a flow rate of 100 nL/min of water was passed through the cell, the pressure
inside would be too great and cause further leaking. The main concern with a flow-
cell that leaks, beyond the practicalities of contamination and mess, is the disruption
to ideal flow characteristics. In particular, if a new solution of a different viscosity is
introduced, such as a high concentration of protein, proper removal of the previous

sample will not occur.

Attempts were made to enhance the sealing by using a machined, metal manifold as
opposed to the 3D printed one shown in figure 4.3(b). The aim was to apply more
pressure to the configuration as well as reducing the possibility of the cell warping due
to flexing of the manifold. Leaking still occurred, whether it was a loose even fit, or a
tightened fit. To provide a better seal, PDMS was trialed as a gasket layer. Although
not so hydrophobic, the higher malleability was thought to help provide a physical
seal. However, leaks still occurred and were observed to be more severe than that with
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FIGURE 4.3: Magnitude of the transfer function of the empty flow cell of various com-
pression forces with reference to itself at the loosest possible fitting (a). As the cell is
tightened, oscillations appear in the transfer function due to the beating of two etalons
as the cell warps from the reference cavity length. Nominal compression (black line)
was the typical sealing pressure achieved with finger tightening, with over compression
(blue) being the result of using a screwdriver to compress the cell. (b) Greater rein-
forcement with a metal manifold attempted still resulted in leaking, most likely due to
cell warping.

the PFA gasket, indicating that the hydrophobicity of the gasket layer played a more
crucial role then initially hypothesised.

4.4 Surface tension microfluidics for THz spectroscopy

4.4.1 Criteria for surface tension confinement in a retangular channel

The following explains how such a device is able to confine water from surface tensions
forces alone. The requirement to have a balance of pressures on the sample, such that
forces acting to confine the fluid are not exceeded by those acting to expel it.

In general for a surface of a fluid/liquid with surface tension, v, where the curvature
is defined by two radii Ry and R;, the difference in pressure between either side of the

boundary can be expressed as [135]

1 1
Apsurf = ’)’(Ril + R72) (4.4)

The concept described above is demonstrated in figure 4.5(b), in which the geometry
formed from water due to its surface tension and contact angles with three types of

surface are visualised.In this case the radius of curvature in the direction of the channel
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R, — oo is infinite and with the geometric description shown, the radius of curvature
can be given in terms of the gap between the two surfaces, d, which results from etching
the top surface, and the contact angle at the boundary where the water meets surface
a and surface b as 8, and 6, respectively. When the system is in equilibrium, this con-
tact angle is the same as that which can be simply measured on a flat surface with a

sufficiently small droplet. It then follows that equation 4.4 can then be expressed as

APyyrf, = — % (cos 8, + cos ) 4.5)
As indicated in Fig4.5(b), contact angles a and b are greater than 90 °, leading to a net
pressure acting on the liquid resisting the filling of the space between the two mate-
rials, d. Similarly, this applies for the filling of the channel itself, where the pressure
difference due to the upper hydrophobic substrate and the channel base, APy, , can
be calculated by

APgyf. = — (cos B, + cosb,) (4.6)

i
h+d
where the total space between the two surfaces now include the channel depth, h.
Therefore, it can be seen that to reduce back-pressure inside the channel, reducing the
contact angle of the channel surface will be beneficial. Indeed, if the contact angle of
just the channel surface is sufficiently reduced, capillary action will cause the channel
to be self-wetting. It is evident that being able to localise surface modification to in-
crease or decrease contact angles would be beneficial to aid confinement on filling or

reintroduction of new liquids.

For confinement to occur, the pressures responsible for retaining the liquid in the chan-
nel must be greater than those responsible for expelling it. Therefore, the condition for

confinement can be expressed as

Apsurfﬂb - Apsurf,,c - APflow - APhydm >0 (47)

The additional term, APy, that is included in this expression is the hydrostatic pres-
sure caused by height difference in the medium and the density of the fluid. In mi-
crofluidics this is often ignored, especially in horizontal configurations or when the
device is completely, physically sealed. However, such a term in the case of a surface
tension confined, vertically orientated device, of which is a desirable configuration for
aligning horizontal beam paths of the spectrometer. Here, it is noted that APy, o %
and also APy, o Q, as the requirement is to minimise & for optimum terahertz wave
transmission, meaning that in doing so, the confinement pressures required increase.

While the flow rate can be simply reduced to mitigate leaking, it was found that there
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are practical lower limits for Q as too little flow increases the likelihood of air bubble
trapping and poor displacement of previous liquid samples, compromising one of the

benefits of microfluidic devices: reliable automation.

4.4.2 Design of a surface tension confined microfluidic device

For a terahertz compatible device, the height of the channel greatly affects the result-
ing available bandwidth and sensitivity of detected radiation in transmission. Figure
4.4(a) shows a typical spectrum of the terahertz spectrometer through an empty PTFE
flow-cell, with 100 pm and 400 um thicknesses of water measured in earlier prototype
devices.

It is clear that the bandwidth and peak signal-to-noise ratio of a single terahertz pulse
frequency spectrum is significantly reduced with increasing path length. Of course, an
increase in path length will increase sensitivity to a change in the absorbing medium.
By using the measured absorption coefficients for a BSA solution of 33 mg/ml [41] and
that of water [61], a calculation of transmission with varying thicknesses can be made.
Sensitivity was chosen to be defined by subtracting the two theoretical transmissions
for different thickness to estimate at which path length the maximum difference, indi-
cated in figure 4.4(b), where a peak delta in transmission occurs just below 100 pm of
water, indicating that for both retention of signal strength and for sensitivity, a channel
depth of 100 um should be targeted.

The implications of reducing the channel height of a 1.6 mm wide channel are explored
in figure 4.4(c). Equation 4.6 was used to calculate the Laplace pressures that arise
when filling both a treated (6, = 90 °) and untreated (6. = 120 °) PTFE channel, with
increasing channel height. Additionally, equation 4.3 was used to calculate the pressure
difference required for a constant flow rate of 50 pL/min, again with varying channel
height. The sum of the Laplace and fixed flow rate pressure drops shown in this figure
act against the confinement of the device. The contribution from the fixed flow rate
becomes the dominant term below channel heights of 100 pm, and sharply increases as
it is reduced. By implementing a simple Newton-Raphson method, equation 4.7 can be
solved for the maximum allowed gap for confinement, d,,, for varying channel con-
tact angle and repelling surface contact angle, the results of which are shown in figure
4.4(d). Aqueous protein solution typically has a reduced surface tension and increased
viscosity. To indicate such effects on confinement criteria, parameters were chosen that
roughly coincide with 100 mg/mL BSA solution, a very high concentration, but not
unheard of in terahertz spectroscopy analysis. A solution of this concentration has a
viscosity, 7psa ~ 2 mPa - s [137] (as opposed to water, 1yuter = 1 mPa - s), and taking
an approximate surface tension, ygsa ~ 50 mN/m (opposed to water, Yyater = 72.8
mN/m) [138]. It can be seen that while the tolerance for leaking due to gap sizes for
high concentrations of protein decrease, the effect can be entirely accounted for with
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FIGURE 4.4: Theoretical calculations for optical and confinement parameters in a sur-
face tension confined flow-cell. a) THz transmission frequency spectra of an empty
PTFE flow-cell, 100 um and 400 pm of water. b) Transmission of 500 GHz radiation
through water of increasing depth up to 400 um (blue) and delta transmission between
water and 33 mg/ml of BSA solution (red). c) Back pressures caused by filling the
channel against channel height, for a channel contact angle of 90 ° (yellow), 120 ° (or-
ange) both with a cap of contact angle 120 °. Calculated pressure difference required
for steady flow in a 1.6 mm wide channel (blue). d) Theoretical maximum gap for sur-
face tension confinement of water (blue) and a 100 mg/ml BSA solution (red), where
the gap required is plotted against the contact angle of the surface in a 100 um deep,
1.6 mm wide channel, for a range of contact angles of the surrounding substrate, with
example values plotted: 120°, 150 ° and 180 °. For BSA solution, approximations for
viscosity 17 was taken to be twice that of water and surface tension, v, to be two thirds
of that of water. Values obtained by numerically solving equation 4.7 for gap, d.

surface modifications. Confinement is maintained with an achievable 90 ° channel con-
tact angle and a 150 ° repelling surface contact angle, with much greater enhancement
as the channel and repelling surfaces are made hydrophilic and superhydrophobic re-
spectively. Such an increase in tolerance to defect induced leaking allows PTFE to be
used in a for terahertz compatible device (100 pm thickness) as the contact angle con-

trast will confine liquids of higher viscosity than water at the same flow rate.
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FIGURE 4.5: The fundamentals of surface tension based confinement in a microchan-
nel. (a) displays a section of straight, rectangular channel, typical of what milling the
PTFE substrate will produce, with the inset illustrating the location of the cross sec-
tion. The surfaces are labelled with their wettability. (b) a cross section of one of the
boundaries responsible for sealing the device showing the liquids meniscus with re-
spect to the contact angles produced at the two surfaces interfaces, the geometry of
which can be used to calculate the capillary pressure produced by the surface tension.

4.5 Fabrication of the surface tension confined device

4.5.1 PTFE surface modification

The hydrophobicity of native PTFE (6, ~ 120 °) can be both increased and decreased
through plasma treatments of various powers and ionic species. High power, direc-
tional argon and oxygen plasmas can modify PTFE’s surface to be superhydrophobic

(contact angle, 6. > 150 °) whereas a low power, ambient plasma exposure can increase
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the hydrophilicity of the surface [74, 75], with reported contact angles as low as 40 de-
grees [76]. X-ray photoelectron scattering measurements have revealed that in the case
of a low power exposure, it is the surface chemistry that is modified [139]. In contrast,
exposure to higher energy plasmas, more specifically the accelerated particles found
in reactive ion etching (RIE), changes the topology of the PTFE surface by creating
significant roughness at the micro and nano-scales such that its roughness supersedes
chemical effects to define a superhydrophobic surface [140].
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FIGURE 4.6: Contact angle measurements of 20 uL water droplets on PTFE substrates,
with and without treatment (six total per disc), for a range of plasma asher powers. A
second set of measurements were made after a finer machining process for finishing
the PTFE substrates was established, closer to the perceived optimum for increase in
wetting. The target is to have a the measured contact angle below 90 °.

To modify the surface chemically, such that it becomes hydrophilic, PTFE discs parted
from an extruded rod were treated with oxygen plasma in a plasma asher for three
minutes at a range of power settings with maximum flow rate. Figure 4.6 shows the
difference in hydrophobicity between native and treated PTFE with the contact angle
measurements of 20 pL water droplets. The objective is to reach a treated surface with
a measured contact angle of less than 90 °, to remove the back-pressure from filling a
channel. The figure also illustrates the importance of machining consistency, as the sec-
ond set of data was also performed on PTFE discs that were machined more carefully,
resulting in more consistency in measured contact angle. Both sets of data indicate that
an approximate optimum power setting exists near 50 W, and this value met the criteria
for a hydrophobic surface.
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FIGURE 4.7: Examples of images used for contact angle measurements proceeded by
SEM images of plasma modified PTFE. All droplets have a volume of 20 pL, as this
was the minimum volume size required for the water to leave the needle. a) SEM
image of untreated PTFE, showing typical native surface, (b) image of water on an
untreated PTFE substrate, (c) a substrate after O, plasma ashing, clearly showing hy-
drophilic behaviour, (d) SEM image of PTFE after the RIE treatment, (e) attempt at
contact angle measurement of PTFE after 30 mins of RIE treatment. Droplet migrated
to a stable point where captured contact angle is actually lower than that typical of a
smooth surface. (f) Is an attempt to measure the contact angle of PTFE after RIE and
then the ashing process, but the etched surface roughness causes the surface to retain
superhydrophobicity. Similarly to (e), the drop still moved to a defect on the disc and
measured angles from this image will be an underestimate. (f) A sharp increase in
surface roughness indicates the cause for the superhydrophobic behaviour.

The 50 W treatment reduced the contact angle of the surface from a measured 100.1 =
2.1° to 68.7 & 7.5 ° illustrated by figure 4.7(b) and (c) respectively, with (a) showing a
scanning electron microscope (SEM) image (taken in partial vacuum) of an untreated,
PTFE surface. Physio-chemical surface modification is expected to change over time
[141] however ageing with the PTFE exposed to water is far slower than in air, and
the hydrophilicity can possibly be rejuvenated. It is predicted that with regular use
in a microfluidic device the reduced contact angle of these surfaces will remain stable,
however, with the subsequently described treatment, the device will still be able to
confine most aqueous samples if the channel’s wettability fails over said long period.

A superhydrophobic surface was created by etching micro-structures with RIE with
oxygen species. If the surface tension is high enough such that the liquid bridges over
the microscopic valleys of the structures, the contact angle is enhanced to become an
effective contact angle. This is a function of the Young’s contact angle, 6, of the unmod-
ified material and that of air present in the valleys of the structures. When this occurs,

the system is said to be in the Cassie-Baxter state [82]
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cosfcp = ficost — fo (4.8)

where f; and f, are fractions of solid/liquid and air/liquid of the effective surface
respectively. It can be seen from this equation that whilst the measured Cassie-Baxter
contact angle 6c-p does indeed depend on the material’s surface Young’s contact angle,
Ocp will still show an enhancement even in the case of a hydrophilic substrate. To
achieve a sufficiently rough topology, the PTFE was treated for 30 minutes with RIE
(300 W, 5 sccm of O, 50 mTorr, 600 V DC bias produced). Contact angle measurements
show that the surface was superhydrophobic. However, it was not possible to obtain
a reliable measurement, as the water droplet resisted leaving the deposition needle,
requiring a larger droplet size to be effectively deposited. The water then accelerated
away from the target and came to rest at a defect, with the image of the droplet in figure
4.7(d). The measurements made at this point will be an underestimate, so only the
contact angle enhancement of 6¢cg > 126.44 0.78 ° can reported. Observation under an
SEM shows the topological result of the treatment in figure 4.7(f) where a high degree
of roughness is visible. Additionally, the roughness can be seen with the naked eye as
a matting of the otherwise slightly glossy PTFE surface.

Equation 4.8 suggests that if the fraction of air to the material surface is high enough,
then the contact angle will increase even in the case of lower Young’s contact angles.
By exposing an already etched substrate of PTFE to the O, plasma from the plasma
asher, the surface roughness contribution to the effective contact angle supersedes the
effect of the chemical change and the surface remains superhydrophobic, as evident in
tigure 4.7(e). Indeed this was the case as it was similarly difficult to quantify what the
contact angle was as with just the RIE exposure alone: 6cg >136.97£0.78°. With these
methods, a high contrast in wettability can be created without the need for a mask,
by first treating a PTFE substrate with RIE, milling the desired geometry (exposing
unaltered, native PTFE), and then treating the whole substrate in a plasma asher. After
doing so the milled channel will be relatively hydrophilic where as the upper, micro-
structured surfaces will continue to be superhydrophobic.

4.5.2 Frabricating a device with localaised wetting

A 50 mm diameter, 5 mm thick PTFE disc was treated with the RIE process previously
described. During the RIE process two glass slides were used to mask the edges of the
material, producing a step down to the superhydrophobic micro-structured area and
protects this area from being damaged by contact when the device is assembled. The
channel geometry and inlet holes were milled and drilled respectively on a PCB milling
machine (LPKF ProtoMat s64) with a 380 pm diameter mill tool and a 1.6 mm diameter

drill tool. The inlet channel width was chosen to match the 1.6 mm inlet holes both
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to minimise required pressures for steady flow while also allowing for opportunity for
smooth transitions between milled and drilled areas on the substrate. The substrate
was sonicated in isopropyl alcohol and de-ionised water each for ten minutes to re-
move any machining fragments and residue from handling. The whole substrate was
exposed to the O, plasma treatment outlined previously, reducing the contact angle of
the newly exposed PTFE in the channel. For enclosing the device, a z-cut quartz disc
of 50 mm diameter and 5 mm thickness was chosen for its terahertz and optical trans-
parency to visually inspect the flow in the device. A 50 pm thick tetrafluoroethylene-
perfluoro(alkoxy vinyl ether) (PFA) gasket layer with a hydrophobic surface (and sim-
ilar terahertz spectroscopic characteristics to PTFE) was used to enclose the channel.
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FIGURE 4.8: Illustration of the microfluidic channel fabrication process, showing the
stages of plasma treatment of a PTFE disc. The whole disc is first treated with reactive
ion etching (RIE), creating a superhydrophobic surface. The desired channel geometry
is then milled with a PCB milling machine, exposing native PTFE. The whole device is
then exposed to the non-directional, O, plasma in a plasma asher where a hydrophilic
channel is produced surrounded by a superhydrophobic upper surface. The leftmost
inset is an image of the etched surface captured with a scanning electron microscope
(SEM), with the sample tilted by 60 ° from the normal.

It is possible for another PTFE disc to be used instead of quartz and PFA if visual inspec-
tion is not needed. Substituting PTFE would reduce reflection losses and simplify the
device further. The assembly does not require a large compression force to provide seal
but instead relies on surface tension forces only. As such, a simple 3D printed man-
ifold was used enabling faster prototyping than the large, metallic manifold that has
previously been required for a similar scheme (without the surface modification) for

microwave resonance spectroscopy [73]. Avoiding metallic elements has the addition



74 Chapter 4. A surface tension confined PTFE microfluidic flow cell

benefit of making the device lighter and easier to align in the time-domain spectrome-
ter.

FIGURE 4.9: Fabricated flow-cell channel, with the cropped window contrast adjusted
to make the different surfaces more visible. The matted section is due to microstruc-
tures being present.

A stylus profiler was used to measure the surface roughness of the channel and the rel-
ative step sizes. The RIE treatment produced an etch of 21.63 & 0.99 um deep, and the
milling created a channel of a further 89.90 £ 1.64 um below the etch height. The sur-
face roughness of the milling, calculated as the line length ratio, r, to be almost imper-
ceptible larger than one, which is comparable to the native roughness of the substrate,
r =1.01 £ 0.0043. Evidence of swarf at channel walls extending up to 80 pm above the
channel, meaning, depending on assembly pressure, the total effective channel height
when assembled will be < 170 pm. The length parameter can be calibrated by fitting
to previously measured water spectra, but in the future, there will have a more refined
machining process. Figure 4.9 is a photo of the machined and treated PTFE surface.
The microstructured section is visible as a matted surface on the otherwise more glossy

material.

The assembled device accepts water and more viscous protein solutions at the same
flow rate, with the added benefit of removing any air bubbles introduced by syringe
exchange. As well as tolerating air introduction, this also demonstrates the sealing of

the device being due to surface tension forces, as a gas-liquid interface must be present.
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4.6 Performance of the device in a time domain spectrometer

The THz-TDS system used to measure protein solutions has been outlined in chapter
2, with figure 4.10 showing the additional microfluidic components. The emitted ter-
ahertz broadband pulse is collimated and focused through the centre of the flow-cell,
then re-collimated and subsequently focused onto the detector. The flow-cell is placed
in the metallic box with the terahertz components and is purged with nitrogen gas to
remove water vapour absorption lines. The syringe pump is placed above the box and
the protein waste jar can be placed on top (as this device is stable even with the addi-
tional hydrostatic pressure of the outlet tube rising approximate 40 cm above the cell)
or under the cell inside the box.
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FIGURE 4.10: Flow cell in the nitrogen box with microfluidic apparatus. The syringe
pump and protein waste jar sit outside of the box allowing sample exchange without
disturbing any of the spectrometer’s core components and surrounding atmosphere.

Lyophilised BSA powder (Sigma A7906) 98% purity was weighed and mixed with de-
ionised water, then sonicated for 10 minutes. Each concentration was introduced to
the cell via a syringe pump and a PTFE inlet tube at a flow of 50 pL/min. Initially, a
time-domain transmission spectrum of the empty cell was measured and then starting
with water, each new solution was passed through and two minute long scans were
recorded to get a terahertz spectrum. The spectrum of each solution was divided by
the reference spectrum (the empty cell) to obtain an experimental transfer function;
the complex refractive index was extracted by fitting a theoretical transfer function to
the data using the Newton-Raphson method. Due to water’s severe attenuation, no
echo reflections were detectable and therefore the straightforward zero reflection transfer
function (equation 2.11) can be used, with the refractive index of the reference taken as
that of PTFE, n = 1.4. A further transfer function was trialed, whereby the internal
reflections in the empty cavity were modelled, but due to the low refractive index of
PTFE, the difference in extracted parameters was negligible.
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FIGURE 4.11: THz-TDS scans and extracted parameters for water and aqueous BSA
concentrations up to 100 mg/mL. The time domain pulses (a) and the associated fre-
quency spectra (b). Focusing on a range of 200 GHz to 1 THz, the extracted refractive
index (c) and absorption coefficient (d) are shown, with small variations due to pro-
tein concentration. By calculating the relative absorption by division of the measured
water absorption for each frequency, the average relative absorption for each concen-
tration (black circles) is plotted with the standard deviation (dotted red) to show the
spread across frequencies.

Figure 4.11 shows the terahertz scans of the water and BSA solutions. By looking purely

at the time-domain and frequency-domain spectra (figure 4.11(a) and (b) respectively).
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The small path length of the microfluidic channel allows for a wide bandwidth of tera-
hertz spectra to remain above the noise floor. The small differences in frequency depen-
dent complex refractive indices between the samples are not obvious, as attenuation of
signal can be from both reflections dominated by the real refractive index as well as ab-
sorption directly from the extinction coefficient. Extracting the real refractive index and
the absorption coefficient (figure 4.11(c) and (d) respectively) confirms that the most
significant contribution on signal change due to presents of BSA protein is the absorp-
tion coefficient, where only comparably small changes in the real refractive index are
visible. The relative absorption was calculated by dividing each frequency dependent
absorption coefficient for BSA concentrations by the measured water absorption. The
average of this was made over the 200 GHz and 1 terahertz frequency range which is
shown, along with the standard deviation, is shown in figure 4.11. As mentioned in the
introduction, a key area of interest is the terahertz response of protein hydration and
dynamic water bond networks. A non-linear trend in the concentration dependent ab-
sorption coefficient indicates the presence of a third component (in addition to protein
and bulk water volume): hydration shell water. The trend is not what would be ex-
pected in accordance with the simple exchange of water with protein volume. In these
measurements, it is possible that such a non-linear trend exists, with a small inflection

point in the region of 5-10 mg/mL.

It is clear, however, that the apparent deviation from a linear trend is very subtle, and
there is not enough data to confidently claim the detection of a hydration shell. To
improve on this experiment, more data points are required, specifically at the lower
concentrations. Additionally, longer scan times can be taken and more repeats of the

experiment to provide a tighter confidence interval.

4.7 Integrating artificial neural networks with protein hydra-

tion terahertz measurements

The previous chapter introduced a new method of parameter extraction through the
use of artifical neural networks (ANNs). The same, frequency point wise trained net-
work was trialed on the protein solution measurement data. Figure 4.12(a) shows the
extracted real refractive index of water and 100 mg/mL of BSA obtained by the Newton
Raphson fitting and the ANN prediction. At lower frequencies, there is a discrepency
between the methods, and this is most likely due to this ANN being trained on a data
set that contains samples of up to k = 0.3, which is significantly below that of water
at k = 0.5 at 1THz. It follows then that the extracted absorption coefficient (figure
4.12(b)) has greater variation between the techniques, where the network’s prediction

undershoots the numerically fitted values.
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FIGURE 4.12: Extracting the refractive index of water and BSA with an artificial neural
network and the standard, Newton-Raphson fitting to a theoretical model. The real
refractive index (a) and absoprtion coefficient (b) of water and 100 mg/mL of BSA are
predicted and compared with the numerical fitting. The concentration dependence (c)
of average absorption between 200 GHz and 1 THz is produced with both methods.

A more promising demonstration is in figure 4.12(c), where the concentrentration de-
pendence shares similar a similar trend to that shown in the Newton-Raphson extrac-
tion. If a training set that encompased a wider range of values were to be used, it is

likely that the ANN prediction would produce very similar results.

4.8 Conclusion

A PTFE flow-cell for terahertz spectroscopy of biological aqueous samples has been
demonstrated in this chapter. PTFE offers low absorption at terahertz frequencies
and the low surface free energy characteristic of PTFE produces a non-fouling and
bio-compatible surface, desirable for many microfluidic applications. However, this
characteristic hampers efforts for bonding and encapsulating the microfluidic channels.
New encapsulation approaches are therefore required for the effective implementation
of PTFE in microfluidics, and here a cost effective and robust solution is demonstrated.
A novel combination of plasma treatments of PTFE to provide a strongly localised con-
trast in wetting characteristics on a single substrate has been demonstrated. This leads
to realisation of a flow-cell with optimised path-length of aqueous media that exploits
surface tension forces to achieve easy confinement of the liquid medium, enabling tera-
hertz spectroscopic measurements of aqueous solutions of biological macromolecules.
The cell is demonstrated for terahertz spectroscopy of aqueous solutions of the com-
mon model protein bovine serum albumin determining the complex refractive index
and hence absorption coefficient as a function of both frequency and BSA concentra-
tion. The straightforward fabrication process will allow for rapid prototyping and
customisation for further development of device functionality, and the gas-liquid in-

terface inherent to the confinement method provides an excellent platform for future
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study of the effects of gas interactions on protein hydration, such as hemoglobin oxy-
genation, potentially allowing for the detection of small changes in conformation of
gas-sensitive proteins with the reaction being performed ‘on-chip’. Furthermore, the
integration with an artifical nerual network for the complex refractive index extraction
was trialed. The water and BSA solutions measured exhibit extinction coefficents that
were outside of the ANN'’s training parameters but still showed similar absoprtion with
respect to concentration as the numerical fitting method. The next step is to widen the
simulation paramters for the neural network’s training set, and integrate more com-
plex neural network architectures to further the automated and integrated nature of

the developed platform.
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Chapter 5

Conclusions and Future Work

5.1 THz-TDS parameter extraction methods

By virtue of the way in which THz-TDS retains the phase information of the spectro-
scopic data through probing the amplitude of the electric field, instead of merely the
intensity, it is possible to extract the complex refractive index of a sample without the
need for overly-complicated fitting procedures. However, care still has to be taken
when trying to fit a theoretical model to the data, especially with regards to fitting ter-
ahertz scans containing multiple reflections. Typically, algorithms such as the Newton-
Raphson method is used to converge onto the correct parameters for TDS information.
However, in this thesis it is shown that complications can arise due to instability in the
algorithm. To counter this it is common to apply a windowing function in the time
domain to remove the reflections, simplifying the transfer function and therefore the
titting procedure, at the cost of reducing information and spectral resolution. In this
chapter a new method was presented where the reflections are still used for fitting, and
removing the need for an air reference measurement. The so called "echo method’ is self
referencing, and has shown to produce a more consistent refractive index extraction be-
tween separate scans, while being straightforward to fit and avoiding the convergence
issues presented with conventional multiple reflection fitting. It has also been proposed
in this chapter that further transfer functions can be constructed evolving from these
principles where the thickness can be ignored and possibly even calculated simulta-
neously, without the prior knowledge of the sample’s refractive index. This will be
the topic of future work, along with further characterisation of the conventional fitting

methods outlined in the chapter to further understand its limits.
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5.2 Machine learning for terahertz parameter extraction

Machine learning methods, or more specifically, artificial neural networks (ANN), have
seen a huge wave of adoption in mainstream computing in the last ten years. In this
chapter, ANNs were used to replace the Newton-Raphson and analytical approxima-
tion fitting steps in the extraction of refractive indices of THz-TDS data with excellent
accuracy and fast run-time with its simple implementation. Unlike more conventional
training of neural networks where huge, real world data sets are required, the data
used for training was simulated using the Fresnel coefficients outlined in the previous
chapter. This means that the simulations required to create large data sets for training
are straightforward and can be rapidly produced.

More advanced network architectures were introduced. Multi-layered networks, or
deep neural networks (DNNs) and convolutional neural networks (CNNs) showed
that fitting was still possible when feeding in spectral data rather than independent,
frequency point wise data, with simulated noise added. The future of this work is
to progress the trained models to remove as many of the parameter extraction steps
as possible, eliminating the problems associated with the variation due to data pre-
processing and the poor convergence of numerical methods on fitting to un-optimised
data.

Future work includes the use of large data sets obtained experimentally from the imag-
ing of large area graphene layers with a THz-TDS. The data sets will be incorporated
into the training to produce a CNN to extract DC conductivity from the samples, and
aims to be a more reliable approach to the minimisation methods currently employed.
This will also be the first demonstration of direct time-domain analysis, potentially pro-
viding a solution that requires no pre-processing at all, thanks to the simpler model of
the equations that govern conductivity in sub-wavelength samples.

5.3 PTFE microfluidics for terahertz spectroscopy

One of the greatest appeals of terahertz spectroscopy is that many physical phenomena
have a response in the terahertz frequency domain. One such example is the collective
motions of proteins and the interaction with their surround hydrogen bond network
when in aqueous solution. A technical challenge presents itself with probing these pro-
cesses while overcoming the strong absorption of the surrounding solvent. Hydration
shell dynamics is a growing field of study as it illuminates another degree of struc-
ture in protein dynamics. With respect to terahertz spectroscopy, it also in fact com-
pliments what was seen as a strong disadvantage in the field. An ideal way to probe
these dynamics is through the use of microfluidics to measure the response of multi-

ple concentrations of protein solution. This chapter showed a novel device comprised
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of surface modified PTFE, whereby the confinement of the water is achieved through
surface tension effects. This has many benefits, not limited to water confinement but
also provides a boundary where solutions can be interacted with gases. The device was
demonstrated to work with these boundaries present, and so the future study with this
device is to measure the oxygenation effects on hydration dynamics on heme-group
proteins with the gas exchange occurring on the device. Furthermore, it is possible to
rapidly prototype other channel geometries and with the surface chemistry altered, de-
posit metallic layers onto the PTFE enhancing terahertz signals or providing an even
more dramatic contrast in wetting allowing unrepresented sample control for such a
terahertz compatible device. The techniques established here provide a flexible plat-
form with the options of rapid prototyping to host a huge range of experiments with

proteins and terahertz spectroscopy, all in a single microfluidic device.

5.4 Integrating artificial neural networks with the microflduic

platform

Initial results of using ANNs with the data obtained with the flow cell show promise in
the further automisation of using THz-TDS to probe biological material and processes.
To fully marry the two areas of this work, expanding the training set for the neural
networks are required to encompass a wider range of parameters. Further, implemen-
tation of CNNs could provide a hands-off method to reliably extract the refractive index
of water by mitigating the effects of phase retrieval error and varience in the extraction

of parameters of such a dispersive sample.

The combination of which will provide a reliable, robust and flexible solution, that has
the potential to increase consistancy and ease of use, whilst providing a foundation
for studying more complex processes with terahertz time-domain spectroscopy. This
work presents the basis for a improving on the accessability of biological processess
with terahertz radiation, overcoming the attenuation of accompanying water matrix of
biological material and the potential to minimise the variability seen across the wider
THz comunity with the implimentation of machine learning. The next steps are to
increase accuracy and generality of the neural networks, to more appropriately extract
spectral information from aqueous solutions presented to the spectrometer, while also
increasing the functionality of the platform itself, unlocking more probable biological

mechanisims with terahertz radiation.
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Appendix A: Publications produced
during the work undertaken for this
thesis

A.1 Journal publications

N. T. Klokkou, D. J. Rowe, B. M. Bowden, N. P. Sessions, J. J. West, J. S. Wilkinson,
and V. Apostolopoulos, “Structured surface wetting of a PTFE flow-cell for terahertz

spectroscopy of proteins,” Sensors and Actuators B: Chemical, vol. 352,p. 131003, (2022).

N. Klokkou, J. Gorecki, J. S. Wilkinson, and V. Apostolopoulos, "Artificial neural net-
works for material parameter extraction in terahertz time-domain spectroscopy," Opt.
Express, 30, 15583-15595, (2022)

J. Gorecki, N. Klokkou, L. Piper, S. Mailis, N. Papasimakis, and V. Apostolopoulos,
“High-precision thz-tds via self-referenced transmission echo method,” Appl. Opt., vol.
59, pp. 6744-6750, (2020).

N. Phanchat, W. Talataisong, N. Klokkou, R. Chitaree, V. Apostolopoulos, M. Beresna,
and G. Brambilla, "Extruded TOPAS hollow-core anti-resonant fiber optimized for THz
guidance at 0.9THz," Opt. Express 30, 13059-13069, (2022)
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A.2 Conference proceedings

N. T. Klokkou, D. J. Rowe, B. M. Bowden, N. P. Sessions, J. J. West, J. S. Wilkinson,
V. Apolostolopoulos, "THz Spectroscopy of BSA in a Surface-Tension Confined Flow-
Cell," 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-
THz), 2021, pp. 1-2.

N. Klokkou, J. Gorecki and V. Apostolopoulos, "THz-TDS Parameter Extraction via
Machine Learning," 2021 46th International Conference on Infrared, Millimeter and Terahertz
Waves (IRMMW-THz), 2021, pp. 1-2.
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