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Gregorio Bevilacqua b, Kate A. Ward b,e, Elaine M. Dennison b,f, Sasan Mahmoodi a,2, 
Mahesan Niranjan a,2, Cyrus Cooper b,e,g,*,2 

a Faculty of Engineering and Physical Sciences, Electronics and Computer Science, University of Southampton, UK 
b MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK 
c The Alan Turing Institute, London, UK 
d Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK 
e NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK 
f Victoria University of Wellington, Wellington, New Zealand 
g NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK   

A R T I C L E  I N F O   

Keywords: 
Osteoporosis (OP) 
Fracture risk 
High-resolution peripheral quantitative 
computed tomography (HR-pQCT) 
Machine learning 
Computer vision 
Bone microarchitecture 

A B S T R A C T   

Background: Traditional analysis of High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) 
images results in a multitude of cortical and trabecular parameters which would be potentially cumbersome to 
interpret for clinicians compared to user-friendly tools utilising clinical parameters. A computer vision approach 
(by which the entire scan is ‘read’ by a computer algorithm) to ascertain fracture risk, would be far simpler. We 
therefore investigated whether a computer vision and machine learning technique could improve upon selected 
clinical parameters in assessing fracture risk. 
Methods: Participants of the Hertfordshire Cohort Study (HCS) attended research visits at which height and 
weight were measured; fracture history was determined via self-report and vertebral fracture assessment. Bone 
microarchitecture was assessed via HR-pQCT scans of the non-dominant distal tibia (Scanco XtremeCT), and 
bone mineral density measurement and lateral vertebral assessment were performed using dual-energy X-ray 
absorptiometry (DXA) (Lunar Prodigy Advanced). Images were cropped, pre-processed and texture analysis was 
performed using a three-dimensional local binary pattern method. These image data, together with age, sex, 
height, weight, BMI, dietary calcium and femoral neck BMD, were used in a random-forest classification algo
rithm. Receiver operating characteristic (ROC) analysis was used to compare fracture risk identification methods. 
Results: Overall, 180 males and 165 females were included in this study with a mean age of approximately 76 
years and 97 (28 %) participants had sustained a previous fracture. Using clinical risk factors alone resulted in an 
area under the curve (AUC) of 0.70 (95 % CI: 0.56–0.84), which improved to 0.71 (0.57–0.85) with the addition 
of DXA-measured BMD. The addition of HR-pQCT image data to the machine learning classifier with clinical risk 
factors and DXA-measured BMD as inputs led to an improved AUC of 0.90 (0.83–0.96) with a sensitivity of 0.83 
and specificity of 0.74. 
Conclusion: These results suggest that using a three-dimensional computer vision method to HR-pQCT scanning may 
enhance the identification of those at risk of fracture beyond that afforded by clinical risk factors and DXA-measured 
BMD. This approach has the potential to make the information offered by HR-pQCT more accessible (and therefore) 
applicable to healthcare professionals in the clinic if the technology becomes more widely available.  
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1. Introduction 

Osteoporosis is characterised by a reduction in bone mineral density 
leading to a predisposition to fracture [1] and is associated with sub
stantial morbidity and mortality [2,3]. The global prevalence of in
dividuals at high risk of fragility fracture is >158 million and is set to 
double by the year 2040 [4]. This will see economic costs associated 
with osteoporotic fractures rising beyond a baseline level of €37 billion 
in the European Union in 2010 [5]. However, identifying those at high 
risk of fractures means that they can be treated with effective medica
tions to reduce their fracture risk [6] and improve outcomes. 

Traditionally fracture risk prediction to target preventative measures 
has rested upon clinical risk factors and bone mineral density [7–9]. 
More recently HR-pQCT has been proposed as an alternative method to 
assess fracture risk and we have demonstrated bone microarchitecture 
phenotypes associated with high risk of fracture [10,11] which suggests 
that this imaging modality might help predict fracture occurrence. 
However, HR-pQCT results in a large number of variables and there is no 
practicable way in which these can be adequately integrated into a 
convenient fracture risk assessment tool. Novel statistical methods and 
computer science techniques have the potential to assist. 

Machine learning has become increasingly popular because it can 
automatically learn the features from current instances and automati
cally provide prediction for new cases [12]. Machine learning methods 
have demonstrated success in many medical tasks [13,14]; some re
searchers have proposed the use of computer-assisted diagnostic algo
rithms to diagnose osteoporosis or predict fracture risk [15–18]. 
However, in the field of imaging, these studies have been limited to 
specific imaging features (for example Finite Element Analysis) [19] or 
conventional computed tomography images [20,21] and have not uti
lised the detailed, textural information on bone microarchitecture which 
can be gleaned from HR-pQCT via computer vision. 

This study proposes a method that automatically extracts texture 
features from HR-pQCT images and combines this information with data 
on clinical variables and femoral neck BMD to identify previous frac
tures. Therefore, the aim of this study was to deploy a computer vision 
approach to HR-pQCT images in order to predict those at risk of fracture 
and to compare the diagnostic performance of this approach against the 
traditional methods of clinical risk factors and femoral neck DXA. 

2. Methods 

2.1. The Hertfordshire Cohort Study 

The Hertfordshire Cohort Study (HCS) comprises 2997 men and 
women born in Hertfordshire from 1931 to 39 and who still lived there 
in 1998–2004. In 2004, 642 of the 966 participants from East Hert
fordshire were recruited to a musculoskeletal follow-up study. In 2011- 
12, 376/642 participated in a further bone follow-up study. The HCS has 
been described in detail previously [22,23]. 

2.2. Ascertainment of participant characteristics 

Dietary calcium intake was ascertained in 1998–2004 using a food- 
frequency questionnaire [24]; all characteristics stated below were 
ascertained in 2011–2012. Height was measured (wall mounted SECA 
stadiometer) along with weight (calibrated SECA 770 digital floor 
scales, SECA Ltd., Hamburg) and used to derive BMI. Fractures since 
aged 45 years were ascertained through self-report. Morphometric 
vertebral fractures were diagnosed from a lateral spine view imaged 
using a Lunar Prodigy Advance DXA scanner (GE Medical Systems) and 
graded based on the Genant semi-quantitative method [25]. Participants 
with a vertebral or self-reported fracture were regarded as having had a 
previous fracture. HR-pQCT scans (XtremeCTi Scanco Medical AG, 
Switzerland) of the non-dominant distal radius and tibia were per
formed; dominant limbs were scanned if the non-dominant limb had 

fractured. 110 parallel CT slices were obtained, representing a volume of 
bone 9 mm in axial length with a nominal resolution (voxel size) of 82 
μm. The scan protocol was in accordance with manufacturer's guidelines 
and as described by Boutroy et al. [26]. Using the method of Pauchard 
and colleagues [27], scans with excessive motion artefact (grade 5) were 
excluded. Manufacturer standard evaluation and cortical porosity 
scripts were used for image analysis [28]. Extended cortical analysis was 
performed for all scans [29]. 

2.3. Additional image processing 

The KHKs MicroCT tool [30] was used to crop the radius and tibia in 
the image and remove the fibula and surrounding soft tissues. There 
were 396 HR-pQCT images (205 radius scans and 191 tibia scans). Im
ages were archived in HDF5 format for further analysis. A 3D local bi
nary patterns method was then implemented to extract 3D texture 
features from images using textural descriptors [31]; further details are 
included in Supplementary Material. The texture features of each image 
were represented as a vector containing 352 entries [32]. 

2.4. Classification algorithm to predict fracture 

A random forest classifier was implemented to group participants 
according to whether or not they had experienced a previous fracture; 
further details of this algorithm are included in Supplementary Material. 
A sample of 22 consecutive slices was selected for each HR-pQCT image. 
There were fewer participants with previous fractures compared to those 
without. Therefore, an oversampling strategy was used for individuals 
with previous fractures [33]. Samples for training the random forest 
classifier and for validation (testing) were selected randomly with a ratio 
of 4:1, and five-fold cross-validation was implemented to evaluate per
formance. All analyses to assess the diagnostic performance of the 
random forest classifier were based on the validation dataset. 

Discrete values of variables used in the random forest classifier were 
first normalised to the [0,1] range. Information on the six clinical factors 
considered in the random forest classifier (age, sex, height, weight, BMI, 
and dietary calcium) was stored as a vector containing 6 entries; femoral 
neck BMD was represented as a vector containing one entry. Vectors of 
samples capturing image, clinical and BMD data were combined and 
then processed using the random forest classifier to generate fracture 
probabilities for samples from each participant, as shown in Fig. 1. The 
highest sample probability from each participant was selected as the 
participant's predicted fracture probability. Participants in the valida
tion dataset were estimated to have had a previous fracture if their 
predicted fracture probability was >0.5. 

2.5. Statistical methods 

Participant characteristics were described using summary statistics. 
The receiver operator characteristic (ROC) curve, sensitivity, specificity 
and the area under the curve (AUC) were used to assess the diagnostic 
capability of the random forest classifier regarding previous fracture 
[34]. The diagnostic capacity of the classifier with different combina
tions of input information (tibial HR-pQCT image data, clinical risk 
factors and BMD) was compared. The clinical risk factors considered 
included age, sex, height, weight, BMI, and dietary calcium. Of partic
ular interest was whether the AUC for the classifier that contained HR- 
pQCT image data, clinical factors and BMD was substantially greater 
than the AUC for the classifier that was only based on clinical factors and 
BMD. Therefore, the statistical significance of the difference in these two 
AUCs was examined. Sensitivity analyses included stratifying analysis 
by sex, analysing distal radius scans instead of distal tibial scans, and 
including additional clinical factors (smoking history, alcohol con
sumption, physical activity, bisphosphonate usage, number of comor
bidities, and occupational social class). The ascertainment of these 
additional clinical factors in HCS has been described previously [35]. 

S. Lu et al.                                                                                                                                                                                                                                        



Bone 168 (2023) 116653

3

Bone microarchitecture variables have been previously demonstrated to 
relate to fracture risk independently of DXA-measured areal BMD [36]. 

Odds ratios for previous fracture according to the clinical risk factors 
and BMD were estimated in the validation dataset using logistic 
regression. For comparison with the random forest classifier, the AUC 
for the mutually-adjusted logistic regression model with previous frac
ture as the outcome and these covariates included simultaneously as 
exposures was calculated. A significance level of 0.05 was used; p < 0.05 
was considered statistically significant. The analysis sample comprised 
the 345 participants with data on previous fractures. Python 3.7 was 
used to extract multimodal features from participants and train the 
random forest classifier. All statistical analysis for predicted results was 
implemented in R, version 4.0. All analyses were performed on Intel (R) 
Core (TM) i5-6600 CPU 3.30GHz with HD Graphics 530. 

3. Results 

3.1. Participant characteristics 

Participant characteristics in 2011–2012 are illustrated in Table 1. 
Overall, 180 males and 165 females were included in this study; all 
participants were over 72 years old. Participants with previous fractures 
(46 males, 51 females) had lower dietary calcium intakes and BMD 
values than those without fractures (134 males, 114 females). In addi
tion, fractures occurred more frequently in women and among older 
participants, consistent with previous studies [37]. 

3.2. Accuracy of the random forest classifier regarding previous fracture 

The sensitivity, specificity and AUC (95 % CI) values from the 
random forest classifier are presented in Table 2, according to the 
participant input information used; the corresponding ROC curves are 
shown in Fig. 2. When only femoral neck BMD was used as the input, the 
AUC (95 % CI) was 0.66 (0.59–0.73); this increased to 0.71 (0.57–0.85) 
with the addition of clinical data and to 0.90 (0.83–0.96) with the 
addition of clinical data and tibial HR-pQCT image data. Furthermore, 
there was a statistically significant difference between the AUCs ob
tained when tibial HR-pQCT image data was added as an input to the 
classifier based only on BMD and clinical data (p < 0.02). Compared 
with the use of BMD only (AUC: 0.66) and clinical data only (AUC: 0.70), 

tibial HR-pQCT image data in isolation demonstated a higher classifi
cation accuracy (AUC: 0.86). Although classifiers based on clinical data 
only and on a combination of clinical data and BMD had the highest 
specificity of 0.94, the sensitivity of these classifiers was low (<0.25). 

The AUC (95 % CI) for the mutually-adjusted logistic regression 
model with previous fracture as the outcome and age, sex, height, 
weight, BMI, dietary calcium and femoral neck BMD as exposures was 
similar to the AUC of the random forest classifier which was based on 
this same input data (0.75 (0.63, 0.86) vs 0.71 (0.57–0.85)) (Supple
mentary Table A). When included separately as individual exposures, 
only weight and BMI were significantly associated with previous frac
ture (Supplementary Table A). 

3.3. Sensitivity analyses 

Similar results were observed in the following scenarios: stratifica
tion of analyses by sex (Table 3); analysis of HR-pQCT scans of both the 
distal radius and tibia (data not shown); and analysis of HR-pQCT scans 
of the distal radius alone (data not shown). In all these scenarios, the 
addition of HR-pQCT image data resulted in a statistically significant (p 
< 0.05) improvement in fracture classification as measured using AUCs 

Fig. 1. A combination of HR-pQCT image data, clinical data and DXA BMD data was used in the machine learning algorithm.  

Table 1 
Participant characteristics in 2011–2012 according to fracture status.  

Characteristics Mean (standard deviation), n(%)  

No previous fracture 
(n = 248) 

Previous fracture 
(n = 97) 

P-value 

Age (years) 76.2 (2.6) 76.9 (2.6)  0.10 
Height (cm) 167.0 (9.0) 167.1 (10.2)  0.31 
Weight (kg) 77.0 (13.4) 76.9 (14.7)  0.12 
BMI (kg/m2) 27.6 (4.2) 27.5 (4.4)  0.26 
Weekly dietary calcium 

intake (mg)a 
8326.0 (2312.1) 8030.2 (2840.7)  0.04 

Sex (females) 114 (46 %) 51 (53 %)  <0.001 
Femoral neck BMD (g/ 

cm2) 
0.90 (0.14) 0.84 (0.15)  <0.001 

Participants with a vertebral fracture or a self-reported fracture since age 45 
years were regarded as having had a previous fracture. 
P-values for differences between participants with and without previous frac
tures were calculated using t-tests and chi-squared tests as appropriate. 

a Ascertained in 1998–2004. 
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compared to classifiers that only used clinical data and BMD as inputs. 
No improvement in diagnostic performance was observed when addi
tional clinical risk factors (smoking history, alcohol consumption, 
physical activity, bisphosphonate usage, number of comorbidities, and 
occupational social class) were included in the main sex-pooled analysis 
that utilised tibial scans. 

4. Discussion 

In this study, we proposed an automatic diagnostic algorithm which 
used various inputs (HR-pQCT tibia scan image data, clinical data and 
DXA femoral neck BMD) to discriminate between people with and 

without previous fractures. Although based on a small sample, the 
disgnostic performance of this algorithm was high; the highest AUC 
(0.90, 95 % CI: 0.83–0.96) was achieved using a combination of image 
data, clinical data and BMD; inclusion of image data significantly 
improved fracture discrimination compared to the use of clinical data 
and BMD only (p < 0.02). This may be because these clinical and BMD 
measures were similar between participants with and without a previous 
fracture in the analysis sample of this study. Furthermore, the use of 
tibial image data, clinical data and BMD significantly (p < 0.05) 
improved fracture discrimination compared to the use of any individual 
tibial HR-pQCT parameter, along with clinical data and BMD, as expo
sures in a logistic regression model (data not shown). This suggests that 
valuable information regarding fracture risk is utilised by image pro
cessing methods which is not captured by any individual HR-pQCT 
parameter. 

HR-pQCT is an imaging modality which can substantially contribute 
to the assessment of a patient's bone health. Our previous work has used 
cluster analysis of HR-pQCT variables to identify two different bone 
microarchitecture phenotypes associated with fracture [10]. One 
phenotype demonstrated greater cortical deficiency with lower cortical 
thickness and cortical bone mineral density, and the other phenotype 
demonstrated greater trabecular deficiency with lower trabecular den
sity and number than the sex-specific sample mean [10]. 

The cluster analysis findings were further developed to demonstrate 
that bone microarchitecture parameters (acquired via HR-pQCT) 
enhanced fracture prediction compared to areal BMD (of the proximal 
femur) alone [11]. When finite element analysis was incorporated, 
although this was found to add little to the fracture risk discrimination of 
the model, it did assist to identify clusters of features which predisposed 
to higher fracture risk including one cluster with lower Young modulus, 
cortical thickness, cortical volumetric bone mineral density and Von 
Mises stresses (compared to the wider sample) and another cluster in 
females with greater trabecular separation, lower trabecular volumetric 
bone mineral density and lower trabecular load (compared to the wider 

Table 2 
Diagnostic performance of the random forest classifier for previous fracture 
according to input data.  

Input data AUC (95 % CI) Sensitivity Specificity 

Only BMD 0.66 
(0.59–0.73)  

0.30  0.86 

Only clinical data 0.70 
(0.56–0.84)  

0.19  0.94 

Only HR-pQCT image data 0.86 
(0.78–0.94)  

0.87  0.70 

Clinical data and BMD 0.71 
(0.57–0.85)  

0.24  0.94 

HR-pQCT image and clinical data 0.88 
(0.81–0.96)  

0.80  0.76 

HR-pQCT image data, clinical data 
and BMD 

0.90 
(0.83–0.96)  

0.83  0.74 

The highest values in each column are highlighted in bold. 
BMD: Femoral neck BMD. 
HR-pQCT: high-resolution peripheral quantitative computed tomography. 
Clinical data included age, sex, height, weight, BMI and dietary calcium intake. 
HR-pQCT image data from tibia scans were used. 
A probability threshold of 0.5 was used to estimate the sensitivity and 
specificity. 

Fig. 2. Receiver operating characteristic curves for previous fracture depending on the input data used in the random forest classifier. HR-pQCT image data from 
tibia scans were used. 
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sample) [11]. 
There is growing support for the use of HR-pQCT in clinical fracture 

prediction with a random effects meta-analysis of individuals aged 
10.9–84.7 years showing alterations in bone microarchitecture among 
individuals who had fractured compared to those who had not [38]. The 
key parameters identified included radial cortical and trabecular volu
metric bone mineral density [38]. This study also lent support to the use 
of HR-pQCT for individuals in clinical practice as the differences 
observed in HR-pQCT parameters in relation to fracture status were 
greater than the differences expected due to the precision error of the 
instrument [38]. 

Imaging plays an important role in osteoporosis, with DXA BMD 
incorporated in the definition of the condition [39] and with the advent 
of computer vision techniques, a body of image-related machine 
learning research has started to develop. This has largely centred on 
using deep learning to assess for osteoporosis on routine CT scans via 
automated vertebral body segmentation and then training an algorithm 
to predict areal bone mineral density or a measure of volumetric bone 
mineral density [20,40,41]. A similar approach has also been used with 
hip radiographs to assess bone mineral density [42]. The only previous 
work using HR-pQCT utilised radial trabecular texture in 18 post- 
menopausal women with fragility fractures and 18 post-menopausal 
women without fragility fractures (a small number of participants 
compared to our study cohort) [43]. Our study also leveraged recent 
computer vision developments in texture analysis. 

We employed a 3D local binary patterns (LBP) method to extract the 
texture density information from HR-pQCT images, making full use of 
the three-dimensionality of the HR-pQCT images and the bone tissue 
they depict. Two-dimensional textural analysis is used in clinical prac
tice in the form of Trabecular Bone Scores (TBS) on lumbar spine DXA 
images [44]. However, these lose some of the information provided by 
the surrounding pixels [45,46]. To address this issue, we developed a 
method that constructs a 3D spatial cube for each voxel in the 3D images 
to calculate the feature descriptor, containing all the information in 
surrounding voxels to reflect the texture density information. 

This study has some limitations. First, a healthy participant effect is, 
unsurprisingly, evident in HCS [22] and sample attrition across the 
various follow-up waves could have resulted in further selection effects. 
However, the cohort has been shown to be broadly comparable with 
participants in the nationally representative Health Survey for England 
[22]. Second, sample size calculations were not performed prior to an
alyses; analyses were based on all available data. Riley et al. suggest that 
suitable sample sizes for binary prediction models should be calculated a 
priori based on the number of participants and outcome events and also 
on the number of predictor variables considered [47]. However, a 
retrospective power calculation showed 90 % power to detect a statis
tically significant (at the 5 % significance level) improvement in AUC 
from 0.71 to 0.90; this change in AUC was observed in the validation 
dataset when HR-pQCT image data were added to the random forest 

classifier with clinical data and BMD as inputs. Third, although random 
forest classifiers have advantages for analysing small datasets [48] and 
similar sample sizes have been used in previous musculoskeletal 
research publications which have implemented this technique [49–52], 
a major limitation of this study is that the sample size was small (n =
345). Fourth, the data-driven nature of the classification method may 
result in limited generalisability and reproducibility of these findings. 
Fifth, previous (rather than incident) fracture history was used as the 
outcome. Sixth, further information on self-reported fractures, such as 
their location and type, was not available; at the 2011–2012 follow-up, 
participants were only asked whether they had broken any bones since 
age 45 years. Finally, the data were unbalanced which may have 
affected the performance of the classifier algorithm. For example, 
resampling techniques for the group of participants with previous frac
tures was required, otherwise the random forest classifier would be 
biased. 

In conclusion, computer vision and machine learning may provide an 
exciting opportunity to operationalize a large number of diverse HR- 
pQCT parameters into a single score which can be readily used in clin
ical practice to identify individuals at high risk of fracture. This will 
potentially allow timely treatment and improved clinical outcomes; 
however, prior to deployment, this work requires replication in other 
cohorts. 
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Corrigendum 

Corrigendum to “Machine learning applied to HR-pQCT images improves 
fracture discrimination provided by DXA and clinical risk factors” [Bone. 
2023 Mar:168:116653] 

Shengyu Lu a, Nicholas R. Fuggle b,c, Leo D. Westbury b, Mícheál Ó. Breasail d, 
Gregorio Bevilacqua b, Kate A. Ward b,e, Elaine M. Dennison b,f, Sasan Mahmoodi a, 
Mahesan Niranjan a, Cyrus Cooper b,e,g,* 

a Faculty of Engineering and Physical Sciences, Electronics and Computer Science, University of Southampton, UK 
b MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK 
c The Alan Turing Institute, London, UK 
d Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK 
e NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK 
f Victoria University of Wellington, Wellington, New Zealand 
g NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK 

The authors regret the omission of the following italicised text within 
the methods section of the above paper: 

A sample of 22 consecutive slices was selected for each HR-pQCT 
image. There were fewer participants with previous fractures 
compared to those without. Therefore, an oversampling strategy was 

used for individuals with previous fractures [33], such that multiple 
samples were taken from the scans of those with previous fractures. This was 
performed assuming intra-scan homogeneity and to provide balance to the 
machine learning dataset. 

The authors would like to apologise for any inconvenience caused. 

DOI of original article: https://doi.org/10.1016/j.bone.2022.116653. 
* Corresponding author at: MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK. 

E-mail address: cc@mrc.soton.ac.uk (C. Cooper).  
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