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Abstract We examine amplification options for repeatered submarine systems using multicore 
transmission fibre in the context of relative cable capacity and system cost/bit. Multicore EDFAs using 
either core-pumping or cladding-pumping could offer lower cost/bit than parallel single-core EDFAs but 
cladding-pumping may reduce cable capacities. ©2022 The Author(s) 

Introduction 
Traffic growth in trans-oceanic undersea systems 
has grown rapidly in recent years and this growth 
appears to continue unabated [1].  This has 
created the demand for submarine cables with 
greater capacities.  At the same time, it is always 
necessary and imperative to minimize system 
cost/bit for viable system techno-economics.  
These requirements for higher capacity and lower 
cost/bit have led naturally to the cable concept of 
space division multiplexing (SDM) in which 
limited electrical power is distributed over more 
spatial paths in the cable [2-7].  Both theoretical 
and experimental studies have demonstrated 
that power efficiency (and thus capacity for fixed 
power supply) can be significantly enhanced in 
this manner [8-11], at least up to limits imposed 
by signal droop effects [12,13].  To date, this 
industry design approach has followed an 
evolutionary path by deploying larger numbers of 
single-core fibres (SCFs), from traditional 
designs with 2-6 fibre pairs (FPs) to 8, 16, and 
now up to 24 FPs.  However, to allow capacity 
growth much beyond that enabled by 24 FPs 
(e.g. to achieve ≥1 Pb/s cables) will require 
further system innovation. This will likely come 
from either reduced diameter SCFs [14,15] or 
multicore fibres (MCFs) [16,17].   

Reduced diameter (200 µm) fibres are already 
available commercially and enable 24 FPs in 
small cable designs, and potentially allow fibre 
counts up to 32-36 FPs in standard size cables.  
Further reduction in diameter could enable higher 
fibre counts.  MCF is another fibre technology 
that has generated great interest in the 
submarine cable community to achieve even 
higher density of spatial paths than might be 
possible with SCFs.  It has largely been assumed 
that at least initial deployments of MCF in 
submarine systems would achieve amplification 
in repeaters using conventional single-core 
erbium-doped fibre amplifiers (SC-EDFAs) with 

fan-in/fan-out (FIFO) devices at the input and 
output ends of the repeaters [18,19].  However, 
research continues in multicore EDFAs (MC-
EDFAs), and recent work demonstrated MCF 
cable transmission tests using MC-EDFAs [20].   

In this paper, we focus on potential submarine 
cable systems using MCF transmission fibre and 
we evaluate overall cable capacity and relative 
system cost/bit through the modelling of different 
amplification options.  The baseline amplification 
configuration used as a reference is that with SC-
EDFAs and FIFO devices.  In principle, MC-
EDFAs may offer valuable repeater space 
savings and potentially other benefits.  Here, we 
compare MC-EDFAs using core-pumping and 
cladding-pumping against the baseline, with 
assumptions about feasible critical parameters 
such as noise figure (NF), electrical-to-optical (E-
O) conversion efficiency, and relative costs.  The 
analysis evaluates the sensitivity to these 
assumptions and suggests the ranges of cable 
capacity and relative cost/bit enabled by the 
different options.   

System and Model Assumptions 
The system modelled for this analysis was a 
7,000 km link supplied with 18 kV cable voltage.  
A nominal cable resistance value of 0.7 Ω/km 
was assumed.  The transmission fibre was an 
MCF with 4 cores.  The MCF attenuation was 
0.160 dB/km with total crosstalk of -60 dB/km.  
Each core effective area was 82 µm2.  For the 
baseline repeater amplification case using FIFO 
devices and conventional SC-EDFAs, the FIFO 
devices were assumed to have 0.3 dB loss 
and -50 dB crosstalk per device.  The EDFAs had 
5 dB noise figure (NF).  We note that lower FIFO 
loss values of < 0.15 dB have been recently 
demonstrated [21], but we use a slightly higher 
value here to account for practical distributions.   

The cost/bit model followed for this analysis 
has been previously described [18,19].  In this 
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model, we use costs for the wet plant only, 
including contributions for fibre, repeaters, cable, 
and marine operations.  The repeater costs are 
modelled on the basis of amplifier costs.  We 
ignored the FIFO costs in this study.  For the 
cases with MC-EDFAs, we applied the same 
amplifier cost model multiplied by a factor 
representing expected cost reduction or increase 
relative to SC-EDFAs.  Total cable capacities are 
calculated using the Gaussian Noise (GN) model 
[22,23] for coherent transmission and a pump 
sharing model like that described in [24].  The 
pump sharing model allows estimation of overall 
E-O conversion efficiencies as a function of 
repeater power, EDFA output power, and span 
loss.  For the MC-EDFAs studied, we modified 
the E-O conversion efficiencies from the baseline 
by another factor representing expected 
decreases in this parameter.   

As mentioned, we treated systems with MC-
EDFAs in this modelling by changing the relative 
amplifier costs and E-O conversion efficiencies.  
We also included any expected differences in 
noise figure between the baseline, core-pumped 
MC-EDFAs, and cladding-pumped MC-EDFAs.  
The nominal values for these parameters and 
explanations for their choices are described next. 

First, to ensure a fair performance comparison 
across the various optical amplifier configurations 
we modelled their performance using a 
commercial optical amplifier simulator and 
compared the predictions to experimental data in 
the literature to provide added confidence in the 
results [25,26]. According to this modelling, 
cladding-pumped MC-EDFAs are expected to 
have slightly reduced bandwidth (30 nm for the 
C-band (due to the use of the erbium/ytterbium 
co-doping needed to ensure efficient operation in 
the C-Band) and 35 nm for L-band operation 
(based only on erbium doping)), an increased 
noise figure of ~6 dB (due to the lower population 
inversions achievable given the relatively low 
brightness pumping), and ~15% E-O efficiency 
penalty compared to conventional C-band SC-
EDFAs (this estimate includes consideration of 
both the optical efficiency of the amplifier and the 
E-O conversion efficiency of multimode pump 
diode technology). We expect core-pumped MC-
EDFAs to nominally have no efficiency penalty.  
Based on our considered estimates of likely 
relative component costs for the 3 different 
amplifier configurations we anticipate ~15% 
CAPEX cost saving benefit from device 
integration in core-pumped MC-EDFAs and 
~50% in cladding-pumped MC-EDFAs (with 
some scope to further improve this to ~70%).  
Table 1 summarizes the nominal parameters 
used for the different amplifier configurations. 

Table 1:  Nominal amplifier parameters 

 

Results 
For the results that follow, we assumed 44 
channels at 100 Gbaud for a 35 nm optical 
bandwidth, and 38 channels for a 30 nm 
bandwidth.  The systems were designed to 
maximize cable capacity with 16 fibre pairs of 4-
core MCF and the span length was 70 km.  To 
begin, we just explored the dependence on MC-
EDFA relative cost reduction and relative E-O 
efficiency penalty if NF and bandwidth remain the 
same as SC-EDFAs at 5 dB and 35 nm, 
respectively. The results are shown in Fig. 1. The 
discrete blue circle represents the nominal case 
for a core-pumped MC-EDFA and the red circle 
represents an “ideal” cladding-pumped MC-
EDFA.  Both offer cost/bit reductions compared 
to the baseline, but realistic cladding-pumped 
amplifiers will have higher NF and smaller 
bandwidth for C-band operation. This will limit the 
attainable cost/bit reduction of cladding-pumped 
MC-EDFAs relative to the baseline case.   

 
Fig. 1:  System cost/bit of systems for MC-EDFAs relative to 
baseline (parallel SC-EDFAs) for same NF and bandwidth. 

 
Figs. 2 and 3 summarize the modelled cable 
capacity and relative cost/bit data for the nominal 
MC-EDFA cases for core-pumping and cladding-
pumping. Core-pumped MC-EDFAs can 
theoretically offer slightly higher cable capacity 
than parallel SC-EDFAs because they eliminate 
FIFO losses and FIFO-induced crosstalk, while 
cladding-pumped MC-EDFAs in both C- and L-
bands have reduced capacity because of higher 

SC-EDFA Cladding-pumped  
MC-EDFA

Core-
pumped 
MC-EDFA

Band C-band C-band L-band C-band
BW (nm) 35 30 35 35
NF (dB) 5 6 6 5
E-O eff. 
penalty (%) - 15 15 0

EDFA cost 
reduction (%) - 50 50 15
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NF and smaller bandwidth for the C-band system 
configuration.  However, all three MC-EDFAs 
appear to enable lower system cost/bit compared 
to the baseline, owing to the lower projected 
amplifier costs for both types of pumping, as well 
as the higher core-pumped cable capacity.  The 
cost/bit savings with core-pumped MC-EDFAs 
could be on the order of 15%.   

 
Fig. 2:  Cable capacities for different amplifier cases. 

 
Fig. 3:  Relative system cost/bit for different amplifier cases. 

While the results in Figs. 2 and 3 correspond to 
the nominal parameter values for E-O efficiency 
penalty and MC-EDFA cost reduction, we also 
investigated the sensitivity of the results to those 
parameters.  The data produced by that study 
with respect to MC-EDFA E-O efficiency penalty 
are shown in Figs. 4 and 5 for cable capacity and 
relative cost/bit, respectively.  One result 
observed is that core-pumped MC-EDFAs could 
incur an E-O efficiency penalty of up to about 
15% and still meet the cable capacity of the 
baseline case (offsetting the FIFO losses and 
crosstalk), and also still offer a small advantage 
in system cost/bit if the nominal cost reduction 
holds.  The cladding-pumped MC-EDFAs could 
suffer a penalty up to about 20-25% and achieve 
comparable cost/bit to the baseline although the 
cable capacities are always smaller due to the 
higher NF and further decrease with higher E-O 
efficiency penalty.  Fig. 6 illustrates the sensitivity 
of relative system cost/bit to the actual achieved 
MC-EDFA cost reduction.  Both cladding-
pumped amplifier versions need at least 40% 
cost reduction to enable lower system cost/bit 

relative to the baseline case.  On the other hand, 
the core-pumped amplifier might still offer lower 
cost/bit even with a relative cost increase of 10-
15%, although our nominal assumption is a 
decrease of about 15%.   

 
Fig. 4:  Cable capacity vs. MC-EDFA E-O eff. penalty. 

  
Fig. 5:  Relative cost/bit vs. MC-EDFA E-O eff. penalty. 

 
Fig. 6:  Relative cost/bit vs. MC-EDFA cost reduction. 

Conclusions 
We have examined amplification options for MCF 
submarine systems in the context of attainable 
cable capacity and relative system cost/bit 
through modelling.  Both core-pumped and 
cladding-pumped MC-EDFAs may enable lower 
cost/bit than parallel SC-EDFAs although the 
reduction is likely small for cladding-pumping 
because capacity also decreases.  Core-pumped 
MC-EDFAs may provide the best overall long-
term solution in both capacity and cost/bit, if MCF 
components and integration can be practically 
achieved with minimal E-O efficiency sacrifice.  
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