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In the rst part of this thesis we study string corrections to one-loop amplitudes of single-
particle half-BPS operators O, in AdSs S° . The tree-level correlators (dual to AdS
scattering amplitudes via the AdS/CFT correspondence) in supergravity enjoy an accidental
10d conformal symmetry. Consequently, one observes a partial degeneracy in the spectrum
of anomalous dimensions of double-trace operators and at the same time equality of many
di erent correlators for di erent external charges pj=1.2:3.4. The one-loop contribution is
expected to lift such bonus properties, and its precise form can be predicted from tree-level
data and consistency with the operator product expansion.

Here we present a closed-form Mellin space formula fdnO,, Op, Op, Op,i at order 372 in
the expansion around large valid for arbitrary external charges p;. Our formula makes
explicit the lifting of the bonus degeneracy among di erent correlators through a feature we
refer to as “sphere splitting. While tree-level Mellin amplitudes come with a single crossing
symmetric kernel, which de nes the pole structure of theAdSs S° amplitude, our one-loop
amplitude naturally splits the S°® part into two separate contributions. The amplitude also
exhibits a remarkable consistency with the corresponding at space 11B amplitude through
the large p limit.

In the second part of this thesis we study the relation between the branch cut structure of
scattering amplitudes in planar N =4 SYM and Grassmannian cluster algebras using the
novel language of Grobner theory. We detail how to extract the familiar A-coordinates and
their respective adjacency conditions from the Grobner fan of the Plicker ideal. Having
established this connection we apply similar techniques to the case of non dual conformal
invariant ve-point kinematics where we extract the full non-planar symbol alphabet relevant
for the construction of ve-point integrals/amplitudes.

Finally, we continue to study the connection between cluster algebras and scattering ampli-
tudes by considering the family of partial ag cluster algebrasF (2;4;n) in order to extract
information on the symbol alphabet for amplitudes with ve-point and six-point non dual
conformal invariant kinematics.
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Chapter 1

Introduction

Scatttering experiments such as those performed at the Large Hadron Collider (LHC) have
been an invaluable tool for testing our most fundamental theories of nature. The object
measured in scattering experiments is thescattering cross-sectionwhich broadly speaking
measures the probability for a particular interaction to take place amongst a collection of
particles. To obtain the cross-section requires knowledge of the more fundamental object,
the scattering amplitude', which can be calculated within the framework of Quantum
Field Theory (QFT). Scattering amplitudes then constitute some of the most fundamental
measurements we can make on the theories which govern our universe. But the limit of their
interest goes beyond just the experimental results they provide. They can also reveal deep
insights into the structure of QFTs which are often obscured by the familiar Lagrangian
description.

As an example consider processes relevant for physics at the LHC. The protons collided at
the LHC are made up of quarks and gluons whose interactions are governed by Quantum
Chromodynamics (QCD). One possible process which can take place is that a collection of
gluons come together to interact. Therefore we might ask what is the associated amplitude
for the scattering of n gluons. The usual starting point for any QFT calculation is the
Lagrangian from which the Feynman rules de ning the interaction vertices can be read o .

1We may think of the scattering amplitude in QFT being analogous to the wavefunction in Quantum
Mechanics.



2 Chapter 1. Introduction

Figure 1.1: The three-point and four-point gluon vertices of QCD.

If the theory is weakly coupled we can organise the calculation into a perturbative expansion
in Feynman diagrams ordered by the number of loops. The Feynman rules can then be used
to convert each Feynman diagram into a mathematical expression. Thus, to calculate the
scattering amplitude of n gluons at leading order (the tree-level contribution) we sum over
all possible Feynman diagrams withn external legs, and no internal loops, which can be
built from the three-point and four-point point gluon vertices of Figure 1.1. However, these
calculations become intractable very quickly due to the combinatorial explosion which takes
place for the number of diagrams.

29! 2g 4 diagrams
2g! 3g 25 diagrams
29! 4g 220 diagrams
2g! 5g 2485 diagrams

By the time we consider2g ! 8g there are over ten million diagrams, eventually there
reaches a point where even these most powerful computers cannot handle the computations.
But, as shown by Parke-Taylor [4] this complexity is arti cial, a remnant from the fact we

are trying to build an on-shell gauge independent object from gauge dependent diagrams
containing virtual o -shell particles. In fact, when written in the correct variables, these ten
million diagrams collapse to a single term. The same remains true for an arbitrary number
of gluons, where the result is summarised ds

AI\/IHV — hJ i4 . (1 1)

: h2i:::mili’ '
Such a drastic simpli cation is a calling card to move away from the Feynman description
in search for a new understanding which makes this simplicity manifest!

The search for this simplicity has sparked an array of new e cient techniques for the
calculation of scattering amplitudes including: the on-shell tree level BCFW recursion

Where the brackets are spinor-helicty variables and the i"" and j™ gluon are taken to have negative
helicity.



relations [5, 6], which e ectively reduce the problem of computing any n-point gluon
amplitude to consistently stitching together three-point amplitudes, in some cases, such as
the scattering of n gluons [7], this allows a closed form solution to the recursion relations;
whereas beyond tree level methods such as generalised unitarit§][have been developed to
tackle the more complex analytic structure.

The perfect toy model for exploring these ideas further is provided byN =4 Super Yang-
Mills (SYM) theory in 4d, which has many symmetries to make the theory tractable, whilst
still retaining rich mathematical structure, so as not to be trivial. The intensive study of
N =4 has led to the discovery of beautiful mathematical structures hidden within scattering
amplitudes. At weak coupling, and in the planar limit, an all-loop integrand [9] has been
written down, extending the BCFW recursion relation to all loop orders. This construction
is closely related to the Grassmanniah G(k;n) [10 17], which makes manifest both the
superconformal invariance, and its long illusive counterpart dual superconformal conformal
invariance [13].

However, of most relevance to this thesis, are the results for the amplitudes themselves. In
particular we will be interested in the branch cut structure of perturbative amplitudes in
planar N =4 and their relation to certain structures in algebraic geometry. Considering the
branch cut structure of amplitudes has allowed the analytic bootstrap program to obtain
impressive results up to high loop orders 14 24]. The foundation of the bootstrap relies on
the link between the GrassmannianG(4; n) cluster algebrag and the location of potential
branch cut singularities of the amplitude. This relation, rst discovered in [ 28] and further
developed in R9], linked the A-coordinates of the cluster algebra to thesymbol alphabe(the
positions of potential logarithmic singularities) of the amplitude. Furthermore, the link was
endowed with a geometric signi cance by the discovery oftluster adjacency[30] encoding
which consecutive branch cuts have non-zero residues. The bootstrap program has mainly
focused on six and seven points as their associated cluster algebrég4; 6) and G(4;7) are
of nite type.

Exploring the connection between the symbol alphabets of amplitudes in planaN =4
SYM and the Grassmannian will be the focus of the second part of this thesis. Inspired by
the recent success of the application of Tropical geometry to scattering amplitudes3[L 34],
and results from the mathematics literature [35, 36], we rst set out to reformulate existing
results in the new language of the Grébner fan. Having established this connection we ask
the exciting question of whether similar techniques may be applied to cases beyond =4
SYM where dual conformal symmetry is no longer present. Note, these question have begun
to be asked at the level of individual Feynman diagrams for instance in37 39] where cluster
algebraic structures have also been seen to emerge. Our main example will be the non dual

1The Grassmannian G(k; n) is the set of k-planes in n dimensions.
2First discovered in [25 27).
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conformal invariant ve-point kinematics whose planar and non-planar symbol alphabet
have been proposed in37, 40]. In the nal chapter of this section we will also return to the
guestion of how much a generalisation of the Grassmannian cluster algebras, the partial ag
cluster algebras, have to say about the symbol alphabet of non dual conformal invariant ve
and six -point amplitudes.

But, the reasons to study N =4 are not at an end yet. At strong coupling this theory also
provides a vital tool in the study of quantum gravity through the AdS/CFT correspondence!

The AdS/CFT correspondence E1] relates theories of quantum gravity in AdS to non-
gravitational Conformal Field Theories (CFT's) living at the boundary in one less dimension,
the prime example being the duality betweenN =4 SYM and type IIB string theory on
AdSs S°. We will be particularly interested in the limit where we take the number of
coloursN large and further take the 't Hooft coupling = g?(,v, N to in nity. In this limit
the bulk theory reduces to weakly coupled IIB supergravity in AdS whose single particle
states are the supergravity elds.

Figure 1.2: Examples of exchange (left) and contact (right) Witten diagrams entering the
scattering amplitude at tree-level.

Let's consider scattering amplitudes in this weakly coupled supergravity theory. Through
the ADS/CFT correspondence scattering amplitudes on the supergravity side are mapped
to correlation functions of gauge invariant operators on the CFT side. Our main point of
interest will be four-point correlation functions of half-BPS operators

hGp, (X1) Op, (X2) Op; (X3) Op, (X4)i; (1.2)

where the dual description of O, corresponds to a state belonging to the graviton super-
multiplet and Ops > its Kaluza-Klein (KK) partners. The standard algorithm for computing
such holographic correlators follows closely the example above for at space amplitudes. As
before we can compute the supergravity amplitudes in a diagrammatic expansion in powers
of the small Newton constant, where the Feynman diagrams of at space are replaced with
their AdS equivalent the Witten Diagrams. Consider the tree-level contribution, which we
obtain by summing over all tree-level exchange and contact Witten diagrams. This approach



requires detailed knowledge of the cubic and quartic vertices appearing in the AdS e ective
action, obtained by Kaluza-Klein reduction of 11B supergravity on S°. The e ective action

is extremely complicated {2 44], with the scalar quartic vertices [43] alone lling 15 pages.
Furthermore, the number of exchange Witten diagrams grows rapidly with the KK level.
All in all making it practically impossible to go beyond the simplest cases of the lowest KK
modes fi5 50], even where a solution does exist, it is given in the unenlightening form as a
sum of D functions with complicated analytic structure.

These problems were solved ing1, 52] by rephrasing the question in Mellin space $3, 54]
where the analytic structure of the amplitude simpli es dramatically. In Mellin space the
holographic correlator becomes a rational expression in mandelstam-like invariants; t; u,
whose poles and residues are dictated by Operator Product Expansion (OPE) factorization
analogous to their at-space counterparts. This allowed b1, 52] to write down a beautifully
simple formula for the tree-level correlator for arbitrary KK modes! The result can be
summarised in a single term given by

(1;0) = 1 .
M 9 = (s+1)(t +1)(u+1)" (1-3)

Since this landmark result there have been many exciting developments. The tree-level
result above allowed for a detailed study of the double-trace spectrumd6] at leading large
N, culminating in a general expression for the tree-level anomalous dimension5€] which
itself hinted towards a hidden 10d conformal symmetry at tree-level [57]. Another direction
which has received attention is the study of stringy corrections arising from higher derivative
corrections to the AdS e ective action [58 61]. If it were possible to resum the string
corrections at tree-level the resulting expression would be the analog to the Virasoro-Shapiro
amplitude in AdS!

Beyond tree-level a handful of correlators have been computed at one-loop both for super-
gravity [55, 62 66] and its stringy corrections [1, 62, 67]. Beyond this no general correlator
has been computed. Note, also at two loops results are further constrained to only the
simplest correlator of four supergraviton multiplets [68, 69]. The focus of the rst part of
this thesis will be to remedy this for the rst one-loop string correction where we shall write
down a general formula for arbitrary KK modes!

The above examples at strong and weak coupling exemplify not only the richness ™ =4,
but, also the power of the bootstrap philosophy which can be summarised as follows: Instead
of performing lengthy QFT calculations why don't we simply write down the only answer
with the correct analytic structure consistent with symmetries?

The remainder of this thesis is split into two topics which can be read independently. The

!Note, the result was rst written in this form by [ 55].
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rst discussing holographic correctors inN = 4 SYM around the supergravity limit, the
second discussing the mathematical structure of scattering amplitudes in planaN =4 SYM
and beyond, a content outline for each can be found below.

1.1 Outline: Part |

In the rst part of this thesis we study the correlation function of 1=2-BPS operators in
N =4 SYM theory i.e.

hopl (Xl)opz(XZ)ops (X3)Op4(X4)iI (1-4)

We will study these objects at tree level and one loop in Newton's constant (or equivalently,
1=N2 and 1=N* corrections in the CFT) and at the leading orders in string corrections to
Einstein gravity, i.e. leading orders in the © z expansion, where is the 't Hooft
coupling.

At tree level much is known about the structure of these correlators and general explicit
results exist both at the level of supergravity b1, 52], as well as its stringy corrections
[60, 61] up-to high orders in 72, However, at one-loop no such general formulae exist.
The one-loop supergravity correlator was studied for the simplest correlatothO,0,0,0,i

in [64, 70] and more generally in p6] where a position space algorithm was presented for
boostrapping arbitrary one-loop correlators from tree level data. The one-loop supergravity
result was also studied in Mellin space in ¢3] where an explicit formula was presented for the
simpli ed family of correlators hG,0,0,0,i. Furthermore, knowledge of one-loop stringy
correlators is known [, 58, 59, 62, 67, 71] but only restricted to low charges and simpli ed
cases.

Our main focus will be to remedy this sorry state of a airs by presenting a formula for the
rst one-loop string correction at order ( ) 372 for arbitrary external charges. Along the
way we will discuss the general picture for higher in order to (somewhat) systematise
the one-loop bootstrap, or at least provide a more educated ansatz than has otherwise
existed. The results presented in the rst part of this thesis originate from [1, 2] where the
one-loop string correction was calculated for the simpler setting oh0,0,0,0,i in [1] and
later generalised to arbitrary KK modes in [2].

The remainder of Part | is organised as follows: In section®-5 we introduce the relevant
material to appreciate the construction of the one-loop amplitude including: a discussion of
correlation functions in Conformal Field Theories (CFT's), the conformal block expansion
in N =4 SYM, the AdS/CFT correspondence and the Mellin space formalism.

Next, at the beginning of Chapter 6, we describe in detail how the OPE (Operator Product
Expansion) can be used to build the one-loop amplitude from tree level data. It is also in
this chapter that we present our main result: a completely general formula for the one-loop
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correlator at ( ) 3¥2. Finally, in section 6.3 we show consistency of the one-loop amplitude
with the large p limit and the at space limit in type |IB string theory.

1.2 Outline: Part Il

In the second part of this thesis we begin with a study of perturbative scattering amplitudes
in planar N = SYM and the underlying mathematical structures which govern them. As we
will see the branch cut structure of these dual conformal invariantn-point amplitudes are
intimately connected with the Grassmannian cluster algebrasG(4; n).

To motivate why an unfamiliar space such as the Grassmannian should appear in this
discussion it is enough to consider the question:what is the best way to describe the
kinematic space of massless amplitud@sNaively, amplitudes are functions of the external

momenta p; . However, the momenta are constrained by the massless on-shell condition and

momentum conservation via 0

pF=0; P =0 (1.5)

and hence it is natural to search for a set of variables which automatically satisfy these
constraints. The majority of the next two chapters will be focused on introducing this new
set of variables. This will lead us from spinor-helicity variables to momentum-twistors and
eventually, for the dual conformal invariant case of N = 4 SYM, to the Grassmannian
G(4;n) itself. In the more general setting where dual conformal symmetry is not present
the kinematic space is instead naturally associated to the partial agF (2; 4;n).

With the correct variables to hand we continue to review the well established language of the
amplitude bootstrap programme and the important role the Grassmannian cluster algebras
have to play. Most importantly we introduce the notion of the symbol, an object encoding
the consecutive discontinuities of the amplitude, which is built upon the A-coordinates of the
cluster algebrasG(4; n). We will review how the geometric structure of the G(4;n) cluster
algebra constrains the form of the symbol throughcluster adjacency

Having reviewed this necessary material we move on in Chaptet1 to the rst result of this
section, to extract the A-coordinates and cluster adjacency rules, relevant for constructing
amplitudes in N =4 SYM, from the G(4;n) cluster algebras via the novel language of the
Grobner fan. A bene t of this approach is that it makes no reference to the cluster algebra
directly and hence has the potential to be more widely applicable for instance to the case of
amplitudes where dual conformal symmetry is no longer present. With this larger goal in
mind we conclude Chapter11 with an application of the Grobner fan technology to the non
dual conformal invariant ve-point kinematics to see what we can learn about its symbol
alphabet. These results were originally presented inJ].

Finally, in Chapter 12 we return to the study of a generalisation of the Grassmannian cluster
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algebras, the partial ag cluster algebrasF (2;4;n), to see what role they have to play in
determining the symbol alphabet for non dual conformal invariant massles$ and 6 point
amplitudes.



Part |

Holographic correlators







Chapter 2

Conformal Field Theory

This section provides a basic introduction to Conformal Field Theory emphasising on:
primary operators, their correlations functions, the Operator Product Expansion, and
conformal blocks. The main references followed are/p, 73].

The conformal transformations are given by the subset of di eomorphismsx 7! xq{x) which

keep the metrict xed up to a local rescaling. In d > 2 they are generated by the usual
isometries of at space: translations P and Lorentz transformations M ; along with

dilatations D and special conformal transformationsK , which close to form the conformal
group SQ(d;2). A subset of the conformal algebra is given by

[D;P 1=P; [D;)K ]= K : (2.2)

As such we may think of P and K as raising and lowering operators for the dilatations.
Using the raising and lowering operators leads us to the classi cation of local operatorsQ;,
with scaling dimensions ; de ned by

[D; 0;(0)] = i O (0); (2.2)

into two types: primaries and descendants The primary operators are de ned as being
annihilated by special conformal transformations at the origin

[K; O0)]=0: (2.3)

Whereas the descendants can be obtained by acting on the primary operators with a linear
combination of derivatives, or in other words by repeatedly applying the generator of
translations P . A primary operator together with its tower of descendants together form a
conformal multiplet.

LFor our purposes we take this to be the metric of d-dimensional Minkowski space.

11
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The generatorsP and K act as raising and lowering operators of the scaling dimension
which move us around a conformal multiplet, with condition (2.3) de ning the lowest
weight operator. Since we will be interested in CFT correlations functions, and descendants
are obtained trivially from their primaries by acting with derivatives, it follows that the
correlation functions of descendent operators can be obtained directly from that of their
primaries. Hence, from now we will discuss only primary operators.

2.1 Correlation functions of primary operators

We now demonstrate the power of conformal symmetry in xing the form of conformal
correlation functions of primary operators. At two points, after having xed a normalisation,
the correlation function of two scalar primary operators (X;) is completely xed to be

ha(x1) 2(x2)i = —=; (2.4)
X12

where we have de nedxjj = X  X;.

Again, at three points the correlation function is xed, this time up to an overall constant
given by

123
jxj121+ 2 ajxj232+ 3 1jxj313+ 1 2

h 1(x1) 2(x2) s(x3)i = (2.5)

The overall constant 123 is known as the three-point coupling or OPE coe cient* (for
reasons which will become clear).
However, at four points it is possible to form the conformal invariant cross ratios

X12X X14X
_ XaXaa o, = X1eX2s, 2.6)

X13X24 X13X24

on which the four point function can depend non trivially. As an example consider the
four-point function of identical operators  with dimension , this takes the most general
form

h (x1) (x2) (X3) (X4)i = )]:(U;V) .

: (2.7
12%5,
wheref (u; V) is some function of the conformal cross ratios.
Note, the left hand side of this equation is invariant under permutations of the positions
of the operators, therefore the functionf (u;v) must also satisfy thesecrossing constraints.
The permutations are generated by the crossindt $ 2 implying

f(u;v) = f (u=v;1=v); (2.8)

! These two terms will be used interchangeably.
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and 1$ 3implying
f(U:v) = % f(viu): (2.9)

In the next section we will see how the OPE completely xes the function f (u;Vv) in terms of
the spectrum of primary operators , and the coe cients jx appearing in the three-point
functions.

2.2 The OPE and conformal block expansion

A concept from CFT that will be used extensively in the next section is the OPE (Operator
Product Expansion). As the name suggests the OPE allows us to expand a product of
operators at two nearby space-time points over a linear combination of primaries and
descendants, this is summarised as

— X
i(x) j(0) = ij oLo(X; @)O(Y)iy=0; (2.10)
o}
where the sum runs over all primary operators of the theory, jjx are the coe cients appearing
in the three-point functions, and Lo (x; @) is a di erential operator which reproduces the
contribution coming from all descendants whose form is completely xed by conformal
symmetry.

Under insertion of the OPE an n-point correlation function can be reduced to a sum over
(n  1)-point functions. Therefore, under repeated insertion, we can reduce the task of
calculating any n-point correlation functions to consistently stitching together three-point
functions with the correct OPE coe cients. In this way all correlation functions are xed

by the knowledge of the spectrum of primary operators and the couplings of the three-point
functions f j; jjx g which collectively is known as the CFT Data.

Let us see this explicitly for the case of the four-point function. We can insert the OPE
twice into the correlation function as

r 1 r 1 X h — |
h (x1) (x2) (x3) (Xa)i = 120 310 Lo(X12; @)L o(xsa; @hOY)O(2)ij =12
o}

(2.11)
where we have de nedx ) = (X + X;)=2. Note, the function in the square bracket, known
as the Conformal Partial Wave (CPW), is completely xed by conformal symmetry! The
above can be written as

[ — [ — X
h (x1) (x2) (X3) (Xa)i = 55— 120 3400 +(UV): (2.12)

X120 X34 ©

YIn fact to x the correlation function from the OPE we need to also consider the two-point and three-point
functions with one spinning operator.
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Where g ~(u;Vv) are known asconformal blocks and ( ;") label the dimension and spin of
the operator O. These functions represent the contribution to the four point function from
the conformal multiplet with primary operator O.

Since the CFT data de nes all correlation functions, and hence the entire theory, we may
ask whether any random setf i; jjx g corresponds to a consistent CFT? The answer is no!
This can be seen by again considering CPW expansion of the four-point function. Above we

chose to perform the OPE ash (x1) (x2) (Xx3) (X4)i which we represent diagrammatically
in Figure 2.1.

h 1(X1) 2(X2) 3(X3) a(Xa)i= 4 120 340

2 3

Figure 2.1. The CPW expansion of the four-point function in the s-channel.

Alternatively we could have chose to perform the OPE ash[ (X1) E (X3) | (X4)i, and since
the choice was arbitrary, both expansions must agree. This condition imposes constraints on
the CFT data which must be satis ed in order to de ne a consistent CFT. These consistency
conditions are referred to ascrossing symmetryand are demonstrated pictorially in Figure
2.2. The crossing equations provide powerful constraints on the CFT data and form the
foundation of the conformal bootstrap [75, 76].

1 4
1 4
P P
o 120 340 5 = o 140 230 o}
2 3
2 3

Figure 2.2: The CPW expansion of the four-point function in the s and t channels.

In the next section we will review these ideas in the explicit example oN =4 SYM where
we will identify the (super) primary operators we will focus on in the rst part of this thesis
and provide explicit formulae for the conformal blocks.

1The form of the conformal blocks was originally developed in [ 74].
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N =4 SYM

The eld content of N =4 SYM! includes: one gauge eldA ; four chiral fermions #
with A = 1;:;4; six real scalars ' with | = 1;::;6 transforming in the fundamental
representation of the R-symmetry group SO(6) = SU(4); with all elds transforming in the
adjoint representation of the gauge groupSU(N). The N =4 SYM Lagrangian in four
dimensions is given uniquely by 78]

1 . 1
Ly=Tr  SF F (D "B)D ag)+2i 4 D A+ EQ\Z(M[ A8 Pl ae; col
29 ( Al s BT Al "85 8D ;

where the trace is taken over the gauge grousU(N); the six complex scalars A8, trans-
forming in the antisymmetric rank-two representation of SU(4), are subject to the reality
condition, and are related to the six real scalars mentioned above by linear transformations.

At the classical level the theory is invariant under the conformal group SO(2;4) SU(2;2)
and by construction N = 4 supersymmetry. Together these combine into the larger
group of superconformal symmetriesP SU(2;2j4) under which the theory is invariant.
Remarkably, calculations of correlation functions have revealed no ultra-violet divergences
under perturbative quantization, and as a consequence, the renormalization group-function
vanishes identically. As a result the superconformal groupP SU(2; 2j4) remains an exact
symmetry of N =4 SYM at the quantum level.

As mentioned the superconformal groupP SU(2; 2j4) contains the conformal groupSU(2; 2),
reviewed in the last section, whose generators are given by: translation® , Lorentz
transformations M, dilatations D and special conformal transformationsK . The N =4
supersymmetry is then generated by adding four fermionic Poincaré superchargeé3® and

1The material covered in this section follows closely the review [77].

15
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A =1;:::;15. As the Poincaré supercharges and special conformal transformations do not
commute it is necessary to add the conformal superchargeS? and S, which together close
to form the N =4 superconformal algebra. We will now see how the operators of the theory
organise into representations of the superconformal group.

3.1 Superconformal symmetry and local operators

As discussed in the last section, primary operators satisfy the condition of being annihilated
by the generators of the special conformal transformations and de ne thehighest weight
state of a conformal multiplet from which we can generate all descendants by acting with
derivatives (the generators of translations) which act as raising operators of the scaling
dimensions.

We follow an analogous story here to organise operators into representations of the su-
perconformal group. In addition to the generators of translations and special conformal
transformations we have another set of raising and lowering operators given by the super-
chargesQ and S which raise and lower the scaling dimensions by units ofl=2. This allows
us to de ne a superconformal primary operator as satisfying the condition*

[S;:0(0)] = 0: (3.1)

Note, this in fact implies the weaker notion of a conformal primary. Having identi ed the
highest weight states as the superconformal primaries we continue as before, acting with
the raising operators Q and P to build the entire superconformal multiplet. Note, the
supercharges themselves anticommute to give the generator of translations

fQ*Q,g=2 P §; (3.2)

and in fact the entire multiplet can already be generated just by the supercharges. In
particular, there are only nitely many ways to combine the supercharges before arriving
at a derivative, and therefore a superconformal multiplet contains nitely many conformal
primaries.

Let us see how to construct such superconformal primaries explicitly. As we have just argued
any operator arising from the action of the supercharge€Q on the fundamental elds cannot
be a primary operator. It is useful then to understand how the supercharges act on the
fundamental elds, this is given schematically by

Q1 ; [Q;F] D; fQ;, g F+[; ], fQ; g D; (3-3)

!Note, for a superconformal primary we must also have [S; 0(0)] = 0.
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where D is the covariant derivative, F is the eld strength tensor, and we have dropped the
dependence on indices. With these expressions we conclude that a superconformal primary
cannot contain any expression appearing on the r.h.s 0f3.3). Therefore, the only way to
construct a superconformal primary is through a combination of scalars ! in a symmetrised
way. The simplest such example is given by the single trace operators

str( "t: TP (x) (3.4)

where the |, are SO(6) fundamental indices; str denotes the symmeterised trace over the
gauge groupSU(N) and as a consequence dff 'g=0 we havep 2. Generally, these
operators transform under reducible representations, i.e. the symmeterised product af
fundamental representions, and irreducible representations can be obtained by removing the
traces, the simplest such example being the irreducible operators

tr(' ') $ Konishi multiplet ;
|

tr ( fly '20) ¢ Supergravity multiplet ; (3.9)

where the curly braces indicate the traceless symmetrisation of th&sO(6) indices. Through

the AJDS/CFT correspondence the Konishi operator corresponds to an excited string state
and vanishes from the spectrum upon taking the supergravity limit (more on the supergravity
limit in the next chapter). Therefore, we will be most interested in the second class of
operator, which are more generally given by

Oprle(x) = tr( Mtz e9)(x): (3.6)

The R-symmetry indices can be conveniently dealt with by introducing auxiliary SO(6)
vectorsy' satisfying the null condition y y =0, resulting in

Op(X;y) = yip toryiptr( "o o) (x): (3.7)

These operators transform in the symmetric traceless representatiof0; p; 0] of the SO(6)
R-symmetry. They make up the 1=2-BPS operators, meaning they are annihilated by half
of the supercharges and, as a consequence, have protected scaling dimensions p. As

we will see in the next section, in the limit of large N, the AAS/CFT correspondence maps
these operators to the supergravity multiplet and its KK partners. Therefore, by studying

the correlation functions of these1=2-BPS operators, which we will next introduce, we are
dually probing scattering amplitudes of type 11B supergravity in AdS.

A variety of multi-trace operators may be constructed from products of the single-trace
operators introduced above. The simplest such example being the double-trace operators
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which take the schematic form

As we shall see in the next chapter these will be the operators appearing in the long sector
of the OPE of two 1=2-BPS operators.

3.2 Four point functions of  1=2-BPS operators

We will be interested in correlation functions of these1=2-BPS operators. As mentioned in
Chapter 2 the two and three-point functions are xed, up to an overall constant, by conformal
symmetry. Moreover, the operatorsO, we consider here are protected by supersymmetry,
meaning their two and three-point functions are controlled completely by their free eld
expressions. Therefore, the rst non-trivial case is the four point correlator. Its most general
form is constrained by superconformal symmetry 79, 80], which splits the function into a
free theory contribution (g= =0) plus an interacting term,

hoplopzopsop4i = hoplopzopsop4iffee+ hoplopzopsomiint : (3'8)

The free theory contribution can be computed via Wick contractions of the elementary elds
and contains disconnected and connected contributions,

hop1 Opz Op30p4ifree = hop1 Opz Op3 Op4ifree;disc + hop1 Opz Opg Op4ifree,conn : (3-9)

The interacting term is further constrained [79] to take the form
hOp, Op, Op; Op,iint = PLP2PapaN 2P pH (U V;0;V); (3.10)

where we have introduced the short hand notationp = (p1; p2; p3; pa) to indicate the
dependence on charges and= PL*P23PstPi a5 well as the conformal and R-symmetry cross
ratios:

2 .2 2 2
U= xx= X%ZXS“; V=1 x)1 x)= X§4X§3;
X13X24 X13X24
2.\2 2 \2
0= yy= 12, v=a e y= 22 (3.11)
Y13Y24 Y13Y24

using the notation xj =(x; X;), and similarly y$, = y1 Y2. The prefactor

Q P(ij
< G g = Vi |

P (13024) S x¢
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carries the correct conformal and R-symmetry weights, withg; denoting the propagator,
and the superconformal Ward identities x I" to take the form

F=(x y)(x yx yx vy (3.12)

The only piece of the correlator depending on the gauge couplingygy (or ) is the function H,
which we will naturally refer to as the interacting part. It contains all non-trivial dynamical
information of the theory, and therefore only receives contributions from unprotected
operators. Itis a polynomial in the R-symmetry cross-ratios(U; V), with a more complicated
analytic structure in the conformal cross-ratios (U; V).

3.3 The superconformal block decomposition

We now wish to use the OPE to relate the expressions for the correlators to the CFT data.
The N =4 SYM OPE for two 1=2-BPS operators can be summarised as

X
Opl (Xl)opz(XZ) CplszLO(X12; @2)O~(X2); (3.13)
0.
where we have introduced thetwist of the operator = *, and the short hand notation

for the quantum numbers ~ = ( ;7;a;b). The sum above runs over all primary operators

O- of twist , spin * and su(4) representation [a;b; d appearing in the tensor product

[0;p1;0] [O; p2; 0], and as before the operatorLo generates the contribution from all

descendants. Upon inserting the double OPE expansion into the four-point correlator as
1 1

hQp, (X1)Op, (X2)Op; (X3)Op,(X4)i we obtain the SCPW expansion.

The operators entering the SCPW expansion are either: short multiplets whose dimensions
and OPE coe cients are protected and are independent of the couplinggy v ; or long multi-
plets whose dimensions and OPE coe cients depend on the coupling and acquire quantum
corrections. The protected multiplets come entirely from the free theory contributions, while
unprotected (or long) multiplets come from both free theory and interacting contributions

. . : . . .
hQy, Op, Op; Op,i = hQp, Op, Op; Opsifre + Oby Op, Op; Opsifree + Ny Op, Op; Opiint
(3.14)
Our focus will be on the superconformal block decomposition of the long sector

hOp, Op, Op; Op, '™ = hOy, Op, Op, Op,iee *+ hOp, Op, Op, Opyini: (3.15)

We denote the quantum numbers of the exchanged multiplet by~ = ( ;I;a;b) for a super-
conformal primary of twist = [, spin | and su(4) representation with Dynkin labels
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[abd. The expansion of the long part of the correlator into super blocks is then given by

X
hQy, Op,Op, Op, i = P LP; (3.16)

where L is the superblock for long multiplets (see e.g. §1]),
o \V/ P(23) o o
LE=TPp & BLOEX) fag(yiy): (3.17)

The conformal and su(4) factors of L are given by

Fi b OF L0000 FY D, 0OF G, (0

B (x;x) =
106%) X X ’
(5 ) (5 ) () (5 )
P OB TR L (W) B RS 2 Y) 3.18
[aba](y’y)_ y y ) (3.18)
where
FOIx)=x HFi( + 5 +;2;%): (3.19)
For compactness of notation we have introduced = P2:PL and = B2P4 A more general

treatment, including the short multiplets, is considerably more subtle and has been detailed
in [81 84]. The block coe cients c” are given in terms of product of OPE coe cients

X
= Cp1p20Cpsps0-
o}
where again the sum runs over all superconformal primary operator® of twist , spin
and su(4) representations[a; b;d 2 ([0; p1;0] [0; p2;0])\ ([0; p3; 0] [O; pa; O]).

Generally, there exist many operators with the same quantum numbers- leading to a mixing
problem for the block coe cients c?, which are not in one-to-one correspondence with the
OPE coe cients. To understand the OPE predictions we must rst get a handle on the
spectrum of exchanged operators in the OPE, for this we now turn to understanding the
dual gravity description provided by the AdS/CFT correspondence. Having identi ed the
spectrum of operators we can then return to address the mixing problem.
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Holographic correlators and
AdS/CFT

Having introduced the four-point function of 1=2-BPS operators inN =4 SYM we now
wish to show how through the AdS/CFT this is mapped to calculating string scattering
amplitudes in AdSs S°. In this section we rst review the original motivation for the
AdS/CFT correspondence. We will see how the coupling constants of both sides of the
correspondence are related, as well as how CFT operators and their correlators map to
supergravity states and their scattering amplitudes. The four-point correlator will be studied

in the supergravity limit and the traditional calculation using Witten diagrams will be
reviewed. The material covered in this section follows {7, 85, 86].

4.1 AdS/CFT from D3-branes

We are interested in the prototype example of the AAS/CFT correspondence, the equivalence
betweenN =4 SYM theory in 4d with SU(N) gauge group, and IIB string theory on AdS;

S°. To motivate this equivalence we follow the original argument of Maldacena and consider
a stack of N coincident D 3-branes in the low energy, °! 0, limit [ 41].

The stack of D3-branes can be studied from two perspectives. The rst is to consider them
within 1IB string theory in at-space. In this setup we have two types of excitations: the
open strings with end points on the D-branes, and the closed strings describing excitations
of empty space. Upon taking the low energy limit only massless string states survive. The
massless closed string excitations describd = 4 SYM theory with SU(N) gauge group
living on the 4d world-volume of the branes. The massless closed string excitations then
describe free 1IB supergravity in the bulk. Therefore, in the low energy limit, we have two
decoupled systems, thedd CFT living on the branes, and free gravity propagating in the

21
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bulk, schematially
N =4 SYM  |IB supergravity on R: (4.1)

The dual (gravity) description is to consider the D-branes, which themselves carry charge/mass
and therefore deform the metric, as a solution to type IIB supergravity itself. The D3-brane
solution takes the form

ds? = H 2( di?+ dx2 + dx3 + dx3) + H¥2(dr? + r2d 2); (4.2)
R4
H=1+ 5 R*=4gs ®N:
We would like to see the same phenomenon as before, that upon taking the low-energy limit,
we are left with two decoupled theories. First, note that the energyE as measured by an
observer at in nity and the energy E; measured by an observer at positiorr are related by
a redshift factor given by

E=H ¥E.: (4.3)

This implies that the same process brought closer and closer to = 0 would appear, to an
observer at in nity, to have lower and lower energy. Therefore, upon taking the low enegy
limit we will have two types of excitations: the massless excitations propogating in the bulk
region, and any kind of excitation that is su ciently close to r = 0. Let us inspect the
metric (4.2) in these two regions. Whenr R the metric reduces to10d Minkowski space.
However, in the near-horizon limit r R the metric reduces to

r2

R2
ds? = =il dt? + dx2 + dx3 + dx3) + r—zdr2+ R2d 2; (4.4)
i.e. the geometry of AdS S° with common radius R. We see again that, in the low energy
limit, we have two decoupled systems: supergravity in at space, and the full 1IB string

theory living on AdSs  S° i.e.
IIB superstring on AdS;  S°  1IB supergravity on R (4.5)

Note, in both viewpoints one of the decoupled systems is given by supergravity in at space.
This led Maldacena f1] to the conjecture that N =4 SYM in 4d with gauge group SU(N)

is dual to 11B superstring theory on AdSs S°! The relation between the parameters of
both theories, wheregs and gy are the string and gauge theory couplings respectively, are
given by

b?w
<

Os = : RY=4 gs °®N: (4.6)
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4.2 The supergravity limit

The conjecture as formulated above is valid for all values oN and string couplinggs gy wm-
However, since string theory quantization on curved manifolds is currently out of reach, it is
interesting to study the correspondence in a more tractable limit in which the bulk theory
corresponds to 1IB supergravity.

To arrive at the supergravity approximation we rst take the 't Hooft limit. In this limit we
x the 't Hooft coupling de ned by = g2, N and subsequently takeN ! 1 . On the eld
theory side this corresponds to a topological expansion of Feynman diagrams with the leading
order given by planar diagrams. On the gravity side we notice thatgs / =N , and since
is being held xed, taking N !'1  will correspond to weak coupling string perturbation
theory. Having taken this limit the only remaining parameter is the 't Hooft coupling
= R%= @ jtself. To arrive at the supergravity limit strings must be well approximated by
point particles, this approximation is good when we take !1 . As we see an expansion
around strong coupling on the CFT side corresponds to an expansion around weakly coupled
supergravity on the gravity side. It is this strong/weak duality which makes the AdS/CFT
correspondence so powerful.

Throughout the remainder of this section we will work in an expansion around the super-
gravity limit at large N and large . In this way corrections to supergravity are organised in
a double expansion: with1=N corrections corresponding to a loop expansion in the bulk,
and the 1= expansion corresponding to adding a tower of string corrections.

4.3 State operator map

We now wish to map the four-point function of 1=2-BPS operators on the CFT side to its
gravity dual, this problem was originally addressed in B7, 88]. First, we must identify which
are the CFT operators dual to single particle states on the gravity side. In the strict large N
limit the single-trace 1=2-BPS operators are in fact dual to the supergravity spectrum: with
O> dual to the graviton supermultiplet; and all higher operators Op 3 dual to Kaluza-Klein
modes arising from the compactifcation ofS°. However, as we includel=N corrections this
is no longer true, and thesingle particle operators dual to single particle supergravity states,
acquire contributions from multi-trace operators® which come supressed irl=N:

Op(x;y) = y'tiiay'etrf 10 g(x)+ (multi-trace) : (4.7)

As rst proposed in [56] the multi-trace terms in the de nition of the single-particle super-
gravity operators are xed by the condition that single particle operators are orthogonal
to all multi-trace operators i.e. hQ,[Og, :::Og,Ji = 0. With this de nition the multi-trace

1This was already noted in [89, 90] and more recently discussed in b2, 56, 63, 66, 91, 92].
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terms can be computed entirely by considering only the free theory. Building on the previous
work of [93], the multi-trace contributions for a general single-particle state was given in p2].
As an example considerOy; the rst case for which the multi-trace terms are non-vanishing
[5€], which is given by

4 2N? 3

O4=Tr Sk
4 N(N2+1)

0,05: (48)

It is more correctly these operators that we consider and it is their correlation functions
which correspond to supergravity scattering amplitudes on Adg S°.

4.4 Holographic correlators in the supergravity expansion

We will be interested in the expansion of the correlator around the supergravity limit at
large N and large . In particular we will be interested in the block decomposition of the
part of the correlator containing long multiplets which receives contributions from both the
free and interacting terms

hOpl Op20p3 Op4| |Ong = hOpl Op20p3 Op4ifree |Ong + hOpl Op2 Op30p4||n[ (49)

In the supergravity limit the free theory contribution is given by the expansion

hoplopzopsop4iffee long = N h0p10p20p30p4i]£?e)e long + %hoplopzopaomigrle)e long +o

(4.10)
Note, the free theory only contributes to leading order in 1= as it does not depend on the
gauge coupling. The leading largeN contribution is of order® N with = PLtPeZpethe
and comes from the disconnected free theory term, it is given by the products of two-point
functions,

Where the operatorsOp are orthogonal and normalised as follows

. i
hOp, Op,i = P1p2(912)p1Rp1 ; Rp, = paN PL+ O(NP 2); gj = X% (4.12)
ij
The interacting term contributes solely to the long sector taking the form
hQh, Op, Ops Op,iint = P1p2PspaN 2P oH(U; V;0; V5 ): (4.13)

P
L
!Note that . bi is always even and so is integer.

1

?The full normalisation is Rp = p*(P 1) vy — = ptNPL + O(NP: 2) [92].

1
(N+1) p 1
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As the only piece of the correlator dependent on the gauge couplingil ; admits a double
expansion. First, we expand around largeN as

YOI N ) B
Hp= Hp' + SH + oo (4.14)
corresponding to a loop expansion in the bulk. While the tree level and one-loop coe cients
above are themselves expanded for large as follows

@ - y4@©o 3@ 54 @5) 3y@6) ...

H18 —Hp + 2H18 + 2H18 + H1s +

@ - iy@ D (2;0) 1 @ 1,4(2:2) 2423, ...,

Ho' = zHg tHT+ 2H Y+ Ho o+ 2H™ + oo (4.15)
corresponding to adding stringy corrections to the leading order supergravity contribution.
These string corrections arise directly from higher derivative terms in the IIB supergravity
e ective action.

At order N 2, we have the contribution from connected free theory and the contribution
from the interacting part. The connected free theory along with the term Hg;o) correspond
together to the tree level supergravity contribution. The tree level supergravity term
was shown by b1, 52] to have a particularly compact expression in Mellin space (to be
introduced in the next chapter). The tree level supergravity contribution is then followed
by an in nite tower of stringy corrections HS;”), which arise from contact terms in the 11B
string theory e ective action. Their structure is related to the Virasoro-Shapiro amplitude
in 10d at-space via the at space limit. The resummation of these terms has received much
attention [58 61, 71, 94] and are currently known (up to a handful of ambiguities not xed
by the conformal bootstrap) to order 9. Again, their expressions are most conveniently
expressed in Mellin space.

The terms of orderN 4 in the double expansion ¢.15) correspond to one-loop contributions
in AdSs. The leading term H,(Dz; b corresponds to the presence of a quadratic divergence at
one loop in ten-dimensional supergravity, and is regulated by eR* counterterm at one loop
in string theory. The term Héz;o) is the one-loop supergravity term, addressed ing3 66, 95].
The term H,(Jz;l) corresponds to the genus-one contribution to the modular completion of
the Hf)l;s) term. The corresponding modular function is an Eisenstein series which receives
perturbative contributions only at genus zero and genus two §6] and we therefore expect
Héz;l) to vanish, consistent with the localisation analysis of P7, 98]. The term HEJZ;Z) gives
rise, in the at space limit, to the analytic part of the one-loop string amplitude studied

in [99]. It is non-vanishing and corresponds to the genus-one contribution to the modular
completion of the H,(Jl;ﬁ) term. Finally, the term H,()2;3) is the genuine one-loop string
correction induced by the presence of theH |(ol;3) term at tree level. This is the term which
we will construct in the rst part of this thesis. The position space structure of one-loop

1B supergravity amplitudes has been addressed ind4, 65, 70], culminating in a general
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algorithm for constructing correlators with arbitrary external charges [66]. Considering
further string corrections at one-loop has revealed a new type of singularity in their analytic
structure compared to the supergravity case §7].

More recently the two-loop supergravity contribution HS;O), not shown in the expansion

above, has be considered for four graviton multiplets in §8, 69].

4.5 Witten diagram computation: tree level supergravity

As mentioned we will be working in an expansion around largeN and large . In this limit
the bulk theory becomes weakly coupled type IIB supergravity with a small ve-dimensional
Newton constant. Therefore, the task of computing correlation functions in the CFT is
mapped to computing scattering amplitudes in weakly coupled 1IB supergravtiy on AdSs.
The standard method for computing the AdS amplitudes is through a perturbative Witten
diagram expansion in the small Newton constant. Therefore, to compute the supergravity
contribution to the four-point function of 1/2-BPS operators we sum over tree level exchange
and contact Witten depicted below. The rules for evaluating Witten diagram are analogous

Figure 4.1: Examples of exchange (left) and contact (right) Witten diagrams entering the
scattering amplitude at tree level.

to their at-space Feynman counterparts: to each line connecting to bulk points z and w we
assign a bulk-to-bulk propogator Ggg (z; w), and similarly to each line connecting the bulk
point x to the boundary point x we assign a bulk-to-boundary propogatorGgg(z; %), and
we integrate over all bulk interaction vertices. The propogatorsGgg (z; w) and Ggg(z; %)
are AdS Green's functions with the appropriate boundary conditions.

The simplest such example of a contact Witten diagram is the four-point contact diagram of
external scalars with no derivatives in the quartic vertex given by the so called D-functions
Z1 gy 2

Y4
D, , 5 J(X1iX2;X3;X4) = R d’x Gea(z; %i); (4.16)
0 i=1
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where the scalar bulk-to-boundary propogotar is given by

Z0 i

Pt Frz oy

; (4.17)
and  is the scaling dimension of thei!™ boundary CFT operator. The more complicated
exchange diagrams take the form

Z

AY = s dzdwGga(z; %1)Gea(Z; %2)Ges (Z; W) Gea(W; %3) GraW; %4): (4.18)

Following this approach requires detailed knowledge of the cubic and quartic vertices
appearing in the AdS e ective action, obtained by Kaluza-Klein reduction of [IB supergravity
on S°. The e ective action is extremely complicated [42 44], with the scalar quartic vertices
[43] lling 15 pages. Furthermore, the number of exchange Witten diagrams grows rapidly
with the KK level, making it practically impossible to go beyond the simplest cases of the
lowest KK modes P45 50]. The extension to arbitrary charges, made in b1, 52], was achieved
by translating the problem into Mellin space which we shall now introduce.
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Chapter 5

Mellin space formalism

As rst shown by Mack [ 53], and improved later by Pendones p4] in the context of holographic

theories in AdS, the CFT correlators are most conveniently represented in Mellin space. In
Mellin space the amplitude shares many similarities with a scattering amplitude, and in fact
can be understood as a curved completion of a at space scattering amplitude, with the
latter recovered in the limit of large Mellin variables. The Mellin amplitude also has the

bene t of a simpler analytic structure than its position space counterpart whose poles and
residues are controlled by the OPE.

For holographic correlators in AdSs ~ S°, it is possible to improve further the Mellin space
representation, by considering a double Mellin transform which treats equally the conformal

AdS and internal S spacé. This double Mellin transform reads,
z 28 . 2sj
| XY Ty 4]
hGy, Op, Op; Op,iint = P1P2pspaN 2f ds; : IJ.. ”
[ sj +1]

Sij i<j

M o(8i;sij); (5.1)

where §; are AdS Mellin variables and s; are sphere Mellin variables subject to the
constraints,
P 0 P -
i% =B 2 iSj =p 2 (5.2)
The factor [, which removes two units of weight w.r.t. to the chargesp;, is a consequence of
superconformal symmetry [79], and takes the form

(= (x3x3y2y2)°T;  F=(x y)(x X X y); (5.3)

wherex; X;y; y parametrise the invariant cross-ratios as given in(3.11), this factor is invariant
under permutations of the external operators.

1This idea was rst advocated in [ 55] and further re ned in [ 60] and [61].
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The constraints on the Mellin variables can be solved as follows,

+p2 +Pa — e +py +Ps - .

912_,_ p12p2 _@344_ D32D4 —’S, S12 Pitp2 — Sz D32p4 =s;

+ps — +p3 — +ps — +pP3 — 4.

914‘*' p12p4 _/323_,_ p22p3 - ﬁ S14 p12p4 = sy3 pzzps =t

+p3 — +Pa — A +p3 — +pa — .
913+ p12p3 - /3244_ D22p4 = A S13 p12p3 = sy D22p4 =u; (5.4)

with

8+ f+4= 2; S+t+u= 2 : = Putpetpetps (5.5)

We shall say that the variables §; s de ne the s-channel and similarly for the other channels.
The variables §;s and £, t will be taken to be independent. The integral and the sum in(5.1)
only run over the independent variables$;s and £} t, and the sum will actually be nite, as
we will see. We can further accompany each channel in position and internal space with the
following combinations of charges,

_ + _ +
Cs = P1 p22P3 P4 G = P1 p4zpz P3

: Cy = p2+ IO42P1 ps3 (5.6)
The parametrisation of pin terms of f ;cs; ¢; cug is invertible, with being an invariant
under permutation, and the various triplets f$§;s;csg, ff t; c;g, f 0; u; cug transforming into
one another under crossing.

It is convenient to rewrite the correlator (5.1) by making manifest the dependence on the
cross-ratios, namely

Q Pi + Pj
hQy, Op, Op; Op,iint = P1P2p3psN 2F%H@(U;V;U;v); (5.7)
(013024)
where z X
Hp(U;V;0;v) = dedf Usviosv! M, (5.8)
s;t
By de nition, = 5t ywith

8= [ pl+2p2 9][p3;p4 9]: [ 5 Cs 9]
s s=[1+ 91;P2+S][1+ P32p4+s]:[1+ _ $+5];
Similarly for { and . The abbreviation stands for taking the product of both  with +

and signs. Note, the sum overs and t is automatically truncated by the  functions in
the denominator of |, thus it is nite. See also section5.1.1

Under crossing transformation, the factor is invariant while for the Mellin amplitude we
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nd the following table.

M plpzp3p4(g?ﬁ s;t) M p;:p1:psipa (85 05 S5 U) M o+ e+ (8505 ST U)

M o «(8:0;s;U)

U

= M opipipaips(8:0;8;U)

M DlP2D3p4(9;e s;t) = M DA;Dz;p3;p1(ﬁ;f\, u:t)
= M pupeipapa (0: € U T)

M ¢+t cs (Ut UG T) (5.10)

M oo (O u;t)

M ¢+ e (B 818 S)

M pipopsps (86 Si1) = M pipupsip (8585 '9)
= M ps;pz;pl;pA(e §;t; )

M ¢ ca®sts)

The dependence on is left implicit since  does not transform under crossing. It is clear
that crossing has simple properties w.r.t. the tripletsf§;s; csg, f t; cig, f0; u; cu0.

We will focus on the quantum regime ofN =4 SYM where the theory is dual to classical
supergravity (i.e. the regime where we rst take N large and then take large 't Hooft coupling
), and we will study the tree level and the one-loop contribution to the Mellin amplitude,

1
M =M(1)+WM(2)+:::; (5.11)
with both contributions themselves expanded for large as follows,

MO =M@Yy M@y ST 4 -
M@= M@ DypM@ 4y I@DL @4 - (5.12)

Where the large expansion corresponds to curvature/derivative corrections.

5.1 tree level supergravity

The combination of analytic bootstrap techniques and the knowledge about the spectrum of
supergravity, which consists of protected half-BPS single-particle states and multi-particle
states (but no excited string states), allows one to solve the problem of computing the tree
level contribution to the four-point correlators. The expression for M 19 was given in

The term zM @ D corresponds to the R* counterterm. A term M @9 would correspond to
the genus one contribution to the modular completion of ~ 2M ®® and it vanishes. The term M @2
corresponds to the genus one contribution to the modular completion of M &9
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[51, 52], building on previous work [100. In our notation

0) _ 1 _
m G0 = +)(t+D(u+l)’ (5-13)

where the bold variables are given by
s=8+s t=f+t . s+t+u= 4: (5.14)

Let us study this expression in detail, in particular emphasising the link between poles in
Mellin space and exchanged operators in the OPE. This will help us to fully understand the
superconformal block decomposition and the operators which appear.

5.1.1 Tree Level OPE: poles vs quantum numbers

The interacting part of the correlator (5.7) is written as an expansion in monomialsgsv!
over a triangle in the (s;t) plane given by

S min( B3Pz, BtPay ot min( B3P, B22Psy oy min(BL5Ee; P22 Py - (5.15)

whereu = 2 s t. Finiteness of this sum is due to the sphere functions in the
denominator of factor, i.e. outside of (5.15 the factor 1= s ; , vanishes. The amplitude
is thus polynomial in U and V. The triangle (5.15) is also in correspondence with thesu(4)
representations[abg owing between the OPEs Op, (x1) O p,(x2) and Op,(x3) O p,(X4).
In particular, we will think of s as the conjugate variable to “twist' for the sphere, i.e.b,
and t as the conjugate variable for “spin' on sphere, i.ea.

The number of long su(4) channels a correlator contributes to depends only on the charges,
and can be accounted by introducing the degree of extremality . A nice and fully symmetric
expression for can be given as follows,

= min( B25P2; B3 Pey 4 min( BL3Pe; P22Ps) 4 min( P3P P2Tbe) 2 (5.16)

The number of long su(4) channels is then%. The reps[abg owing in the OPE
instead depend on the orientation of the charges and they are

a=0;1:::; ; _ . _ (5.17)
bmin = max(jpy  P2j;jpa  P3j)

Let us now translate the triangle in su(4) labels into the one ins and t. We shall focus ons
rst, since this is relevant for the ( 93 amplitude.
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It is almost immediate to see that

8
S= Smin ; Smin +1;11%; Smax < Smin = min(PP2; Pk
X ) . o _ (5.18)
b= bmax;Bmax  2:::; biin o Smax = max(PPpP Ry 2
where s is max whent and u are minimum and Smax  Smin = . INn sum
b
5= S 2: (5.19)

The change fromsu(4) harmonics Yo, and monomials U® is a triangular matrix of the form

3

3
Usmax

2Y 2
[0;bmin ;0]
g o

Y[0:bmax 0] g smin

(5.20)

In particular, the monomial USmn s the one and only one contributing to [Obnax 0], but as
we lowerb bnhax sequentially a new monomial each time starts contributing. The inclusion
of t and a for each s and b is straightforward at this point. The total range of t simply
coverst = tmin itmin +1;11  tmax = tmin +  With tmin = min(25P4; P22P2) n the same
way the total range of a coversa=0;1;:::;

Now that we have understood how the 4pt Mellin amplitude contributes to the various su(4)
channels, we would like to explain how the poles of

1

(1;0) — .
M (s+1)(t+1)(u+1)’

(5.21)

are in correspondence with contributions in twist for eachsu(4) channel. This will then lead
us to our classi cation of the three regions Below Window, Window, and Above Window.

The simple pole ats+ 1 =0 is equivalently described bys= 1 s. It follows from (5.20
that if we look at [0bO] channels we nd

lowest pole froms+1=0

[Obnmax0] | 8= 1 Smin = 1+min( Wsz; WTpA) = hﬂ% +1
: (5.22)
[Obmin O] 8= 1 Spax =+1+max( Jplzpzj ; jPAZPsi) — bmzin +1

= unitarity bound

Since there is a triangular transformation between monomials andsu(4) harmonics the value
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of § written in the above table is actually the minimum value. Thus for labels [abg simple
poles are given by
§=[a+ 9+1;:::; min(RiyPe; Psrbey 1] (5.23)

Each simple pole contributes with aU®. Now, because a long block of twist has a leading
power in U given by U =2, we nd that poles in (5.22) imply the presence of a contribution
in twist starting at the unitarity bound =2a+ b+2. Then, other simple poles coming
from (s+1) =0 add anew contribution in twistupto = min(p1+ p2;ps+ ps) 2. We
refer to this region as "Below Window.

Another sequence of simple poles contributing to the correlator comes from the factor.
We de ne the Window Region by the sequence of simple poles at

8= PminiiiiiPmax 1 X Window Region; (5.24)

— H + . + _ + ) +
where pmin = min( 25P2; B3Py and ppay = max( B5P2; Bt by

Finally, also from , we have an in nite sequence of double poles:
$  Prax ; Above Window: (5.25)

These double poles give rise tdogU terms at tree level, upon performing the Mellin integral
over 8. We should notice that for p; + p» = p3 + ps the Window is empty. In this case,
Above Window simply means above the threshold for exchange of long double traces, as
de ned in (5.25.

The operators exchanged in the regions described i(6.23)-(5.24)-(5.25, whose OPE data
we are interested in, are two-particle operators which we will now introduce.

5.1.2 Two-particle spectrum

In the supergravity limit (N !' 1 and 1) the only operators surviving are: the
single-particle operatorsO,, where the energy-momentum tensorQ,, corresponds to the
graviton multiplet; and O, 3 corresponding to higher Kaluza-Klein modes coming from the
compacti cation of S°; and multi particle-states built from products of these. All other
operators correspond to massive string excitations which acquire in nite mass and decouple
from the spectrum.

The simplest of the multi-particle operators are the double-trace operatorsQq.-, with
classical dimension @ =+~ and spin". They have the property that their leading order
three-point functions with external operators are non-vanishing. This is not true for higher
multi-particle operators built from a higher number of single-particle operators, which have
three-point couplings further suppressed by powers ol=N. Therefore, at leading largeN
in the supergravity limit the contributions to the OPE are controlled by the double-trace
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operators Opg .- *.

For a given twist , spin and su(4) channel[a; b; g a basis of long superconformal primary
operators is given schematically by 6]

Opg-= 0p@ 20 P 90,  (p Q) (5.26)

Where (pg) run over the d= (t 1) pairs, with t = Tb a,

D.=f(pgjp=i+a+l+r;g=i+a+l r+hg; (5.27)
parameterised by
8
< P2 a+]even,
=1 L) r=0;:::;( 1); = bt (5.28)

- a+ | odd.

This may be visualised as sweeping out a rectangle in thép; g plane pictured below. Note,
long operators have a minimum twist 2a+ b+ 4 one step above the unitarity bound.

q,
D

C

A=(a+2,a+b+2);
A B=(a+1+p,a+b+3— p);
C=(a+p+tia+b+2+t—p);
D=(a+1+t,a+b+1+1);

2

p

Figure 5.1: The setD.- pictured in the (p; g) plane. With vertical lines indicating operators
with the same anomalous dimension seep] for full details.

Generally, for a given set of classical quantum numbers there exist many degenerate operators
causing operator mixing. We must then de ne the true scaling eigenstatesK,s, with well
de ned scaling dimensions. This implies that the block coe cients of

X
hQy, Op,Op, Op, i = PLP; (5.29)

are not in one-to-one correspondence with the three-point functionpqk,, hO pOgKisi,

For xed p;q; and su(4) labels there exists a unique double trace operator of spin". This is not true
for higher multi-particle states which have a growing number of operators with increasing spin.
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and instead we must sum over all degenerate operators in the sé@.

X
C? = CplpZ;Krs CplpZ;Krs : (530)

(rs)2D -

The parametersN and 2 enter through the quantities Cpqk,, and the dimensions
where Cpqk,, admit the double expansion

p+q

Cpqke = N'Z° Cr(fc);é&)rs + 3:20523?6 + 5:2(:%()(()1?2)rs I
+ % cliR, + ¥R + 2l +i 40N 4 (531)
Similarly, the scaling dimensions admit the expansion,
Ke = + + Ni |(<1r;30) + %2 |(<1r;53) + 3 |(<lr;5) + o
+% 1 }(<2 1, }(<zr;50) . 3 }((2{;51)+ 1 +(<2,;2)+ 3=2 }(<2,;3)+ .+ O(N O:

(5.32)

The Equation (5.30), after expanding around largeN and , de nes the mixing equations
Using these equations, along with results of Rastelli-Zhou for the general tree level super-
gravity correlator [51, 52], the mixing problem at various levels of generality was solved in
[64, 65, 101], culminating in explicit formulae for the leading order three-point functions,
and a fully factorised formula for the supergravity anomalous dimensions

4 4
w0 _ 2Mt( v @

Koo = MTSI: (5.33)

where
M&  (t 1)(t+a)(t+ a+ b+1)(t+2a+ b+2); (5.34)
‘10=1+2(p 2) a+ 1(2)a+|: (5.35)

It is important to notice that 1o only depends onp, which indicates the presence of a
residual degeneracy for operators on the vertical lines of, Figure51). We will show later
that this makes certain OPE data needed for the one-loop computation impossible to un-mix
directly.

The tree level mixing problem has also been studied for the rst string correction (6], where

1,3) _ 3 4 4 .
*(<22+) b % ;0 a;OMt( )Mt(+%_ (t Ds(t+ b+1)s; (5.36)
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exhibits a simple pattern, namely only the lightest state acquires a non-vanishing anomalous
dimension, corresponding to the left most operator in the rectangle and to 10 = 0. Further-
more, the rst string correction to the three-point functions was shown to vanish Cé%éi)rs =0.
The structure of the anomalous dimensions at higher string corrections has since elucidated

in [59, 60]. We will revisit the unmixing equations in full detail in Chapter 6.

5.2 tree level string-corrections

Much progress has been made in understanding > corrections to the supergravity result.
Such stringy corrections arise from higher-derivative interaction terms to the AdS S°
e ective action, taking the general form @"R, where R is the ten-dimensional Riemann
curvature.

MO =M@+ @Dy S AD 4. (5.37)

The rst two terms given by M (3 and M (1'% descend from theR* and @R * supervertices
respectively, which upon dimensional reduction generate quartic vertices in AdSfor all KK
modes. The analytic structure of the general correction term@"R* in Mellin space is simply
polynomial in the Mellin variables whose degree is dictated byn. Note, the polynomiality of
the tree level string corrections in Mellin space corresponds to the fact that they arise from
corrections to unprotected double-trace operators, whose poles are already included by the

factor in the de nition of the Mellin amplitude. Such polynomial solutions correspond to
spin truncated solutions to the crossing equations {1, 94, 102, 103.

Through the at space limit [ 54, 104 the Mellin space expressions are related to the type
IIB closed string four-point scattering amplitude of four super-gravitons i.e. the Virasoro-
Shapiro amplitude. Comparison to the low energy ( %) expansion of the Virasoro-Shapiro
amplitude completely xes the leading terms in the polynomial Mellin amplitudes order by
orderin  z. This relation was used rstin [103 to x the correlator of four super-gravitons
and later extended in [71, 94] to the h0,0,0,0,i family of correlators to the rst few order
inthe 2 expansion.

Our focus will be on the rst tree level ( 92 string correction given simply by [5§]
MO =2 5 1)s: (5.38)

Note, this correction being constant is quite special, and corresponds to the truncation of
the spectrum to spin zero. Higher order °corrections come with non trivial polynomials
in the Mellin variables and have been studied systematically via the bootstrap programme
[58, 71, 103. To various orders, fully explicit results have been computed in $9 61].

Both M 10 and M 43) come with interesting properties which are simple to see in our
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formalism: We would expectedM (1:9) to be function of all variables f&: £ s:t: P1; P2; P3; Pag
but it happens to depend only on the specic combinationss = §+ s andt = f+ t,
u= s t 4. Moreover, it does not depend explicitly on the chargeg; at all. In a similar
way, M (:3) s just a constant, but for the factor of ( 1)3 (which is singlet under crossing).
The crucial observation is that both M (9 and M @3 can be understood as 10d objects. In
the case of supergravity, it was shown in§7] that M :% enjoys a 10d conformal symmetry.
In the case of tree level ©corrections, the authors of p1] showed that M (13 (and in fact
M @i 3)) js the dimensional reduction of a 10d contact diagram inAdSs ~ S°. Since the
operators Op(x;y) are Kaluza-Klein modes, the 10d structure of the tree level correlators
implicitly constrains the way the Mellin amplitude depends on the charges.

At tree level the ultimate goal would be to resum all the ©corrections to M 9. The

resummedM @) | as function of © would then give the Virasoro-Shapiro amplitude in

AdSs S°, i.e. the generalisation of the well known type IIB at space amplitude. It is a

non-trivial problem because the bootstrap program leaves un xed a number of ambiguities at
each order in ° Additional input, from supersymmetric localisation [ 94, 97, 98], is already
crucial to x the ambiguities that appear at ( 9° [59].

5.3 Loop corrections

Higher order corrections in 1=N2 have been considered both at the level of supergravity and
its stringy corrections. At one-loop, O(1=N*), the supergravity term M %9 was considered
in Mellin space by [55, 62, 63, 71] with the most general formula given for the hO,0,0,0i
family of correlators. A complimentary position space approach was developed ir6f, 65, 95]
resulting in a general algorithm for constructing the one-loop correlator p6]. The one-loop
string corrections have also been considered both in Mellin and position spacé,[62, 67]
with the most general correlator considered beinghG,0,0,0,i at 3=2 Recently the
two-loop, O(1=N®), supergravity contribution M S;o) was constructed in position space for
the h0,0,0,0,i correlator [68, 69.

However, up to nowno general expressions for the correlator beyond tree level are knolvAt
one-loop the supergravity expression has been studied irbf] but proven too complicated to
write down a general closed form expression. The perfect candidate to uncover the structure
of one-loop amplitudes is given by the rst string correction M 23 at one-loop inAdSs  S°,
due to the simplifcation of the double trace spectrum which truncates to10d spin zero.
In the next chapter we will construct explicit formulae for M 23 for arbitrary external
charges, generalising previous work done inl[ 58, 59, 62, 67, 71], and we will outline what
is the general picture to go higher order in . This will involve implementing a one-loop
bootstrap programme similar to that in [ 66] to extract pieces of the one-loop correlator from
tree level results which we will also review.



Chapter 6

One-loop string corrections in
AdSg S°

This chapter is dedicated to the study of one-loop string contributions beyond the one-loop
supergravity correlators M 29 studied in [66], the work here was originally presented in {, 2].
We will focus on M @3) at ( 93, generalising previous work done in], 58, 59, 62, 67, 71].
Along the way we will discuss the general picture for higher orders in % We will explain
how the bootstrap program works in the next section. Here we would like to summarise our
main results and novelties, compared to the existing literature.

The OPE determines the gravity amplitude from CFT data of exchanged two-particle
operators at tree levell In the case ofM (3 the CFT data comes from M :® and
M @3 which we reviewed above in(5.13 and (5.38). Within certain ranges of twist which
we refer to as Above Window, Window, and Below Window, the tree level OPE carries
information about the maximal log? U discontinuity, the logU discontinuity and the analytic
contribution, respectively. The Above Window region contains the log? U discontinuity and
is fully determined by the OPE. The Window and the Below Window are nite ranges in
the twist and give additional information on the structure of the amplitude. Indeed, as
for M 29 in supergravity [66], the log® U discontinuity is not enough to bootstrap the full
one-loop amplitude, and the information coming from Window and Below Window is crucial
to obtain the nal result.

In order to appreciate the various novelties of one-loop physics, let us begin by noting that
the factor used to de ne the Mellin transform in (5.7) has itself abonus property It is
invariant under variations of the chargesp; which swap pairs of valuesp; + p; for i;j in the

1Up to a handful of ambiguities which cannot be xed by the current bootstrap program.
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s, or t, or u channel. For instance, if we highlight the s channel in,

[ plzpz 81 D3EP4 g t
[1+ pl';pZ + s][1+ p3;p4 + g

(6.1)

this is invariant under variations of the charges such that the values ofp; + p2 and ps + ps
swap, but the other combinations p; + p; remain unchanged. Let us emphasise that this
property is not crossing symmetry, hence the use of the ternvariations. In terms of the
Cs; Ct; €y parametrisation of the charges, see e.d5.9), the variations we are discussing just
amount to exchange the values cs. In (6.1) we looked at the s channel, but of course the
same reasoning applies to the other channels.

To have a concrete and simple example of the bonus property in mind, consider the case of
correlators p= (4424) and p= (3335). These correlators have indeed the same, but more
importantly, since the Mellin amplitudes M &9 and M 3 are themselves invariant under
the aforementioned variations, the interacting correlators are equal at the corresponding
orders in the expansion,

H4424(U; V;0;V) = Haszs5(U; V;0,V): (6.2)
Recall that H is introduced in (5.7) and, up to numerical factors normalisations dictated

by (5.7) and free propagators removed, is just the interacting part ofhQ,, Op, Op, Op,i.

More generally, we shall say that two correlators are degenerate when they have the same
values of and jcgj;jcij;jcuj. We will show that whenever two correlators are degenerate in
the tree level Cexpansion, this degeneracy is lifted at one-loop at the corresponding order
in O This lift was rst discussed in supergravity [66] but its expression at the level of the
Mellin amplitude was not yet investigated. In this paper we provide very concrete formulae
which exhibit the degeneracty lifting in the case ofM 23, and we believe that analogous
formulae will hold at higher orders in  ©

The Mellin amplitude will be written in the following way,
. h i
M 532‘3) = WéAW)(S;s)+ R;W)(S;s)+ Bi(sBW>(S;s) + crossing ; (6.3)

where the superscripts indicate which region of OPE data was used to x the function,
i.e. Above Window (AW), Window (W) and Below Window (BW).

The rstterm in (6.3) is given by
W) = wy(s;s) O 5); (6.4)

wherewy(8;s) is a polynomial and @ ( s)  ©@©( s)+ ¢ is the digamma function shifted
by the Euler constant. This term is entirely determined by the OPE prediction for the
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log? U discontinuity, corresponding to exchange of two-particle operators Above Window
(AW).

The second termin (6.3) represents the novelty of the one-loop function. It takes the form,

(W) (a- ¥ o1 p1+ P2 + (a P3+ Pa cQ) -
Ry '(8:5) = s 2 (s+ &5 Z)z41 Ty, (818) +(s+ 25 Z)z41 15,(8;s) 1 (6.5)
z=

where crossing implies thatr are related to each other, and given in terms of a single
function with certain residual symmetry in the charges

8
+ —
2 e =Tt o cicug _ B _ B _
> ; Mesoicug = Moo o cug o+ Tosieicug = Mosicwiagt (6-6)
o le T Tfecs+aseug

The function rg,($;s) is a polynomial, for eachz, determined by OPE predictions for the
log! U discontinuity in the Window. The poles in z come with the bold font variables, and
the structure of poles in §;s; follows. We will explain this in the next sections.

Let us comment on the reason whyR (W) represents a novelty: When we look atR (W)
together with the  functions, say we focus on g in the s-channel, the total amplitude
undergoes the following split,

RMW)

P
[1+ pl+292 + s][1+ p3+2FJ4 + 9]

A (6.7)
. #

1 I I
— Bz + Bz
s z [ z+ 91;P2+S][1+ ps+2D4+S] [1+ p1§p2+8][ Z+ p3+2p4+S]

In particular the sphere functions (in ) split into two z-dependent gamma functions,
with residuesr respectively. Since we will nd that r have generic charge dependence,
i.e. they depend onc; and ¢, non trivially, it follows that r do not map to each other under
variations of charges that leave invariant, and therefore the bonus property, exempli ed
for instance in (6.2), is lifted. All together we refer to this phenomenon assphere splitting

The third term in (6.3) is found to take the form

X (s+ 7p11;p2 Z)z+1(S+ 793?)4 Z)z41

S Z

By " (8:5) = by (8:5) (6.8)

z=0

where againby($;s; z) are polynomials. This contribution is determined by OPE predictions
from the log® U term in the Below Window region.

P
Remarkably, we nd that , in (6.5) and (6.8) are nite and moreover the number of poles
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indexed by z is independent of the charges! This feature was already observed id][by
studying h0G0,0,0,i in the Window. It is not manifest from the form of the OPE, which
instead depends on charges by construction. In fact, in order for this truncation to happen,
there is a delicate interplay betweenW W) and RMW) and BBW),

The function W (W) contributes to log? U discontinuity by construction, but also contributes

to the log* U discontinuity in the Window and the analytic term log® U in the Below Window

regions. Similarly, R™W) contributes to log! U in the Window region by construction but

also to the analytic term log® U in the Below Window region. This cascading behaviour
results from our choice to use the bold font variabless;t; u; in the parametrisation of the

poles ofM , say "9 ( s)ands zinthe s channel. This choice of parametrisation then
reveals an additional simplicity: the truncation of the number of poles in z. In particular,

we nd that RMW) only contains seven polez = 0;:::6 at order ( 93.

We can argue that the use of the bold font variabless;t; u in the parametrisation of the poles
of M is natural from the perspective of largep limit [ 55], i.e. from the expected behaviour of
the amplitude when the chargesp are taken to be large. The largep limit is well established
in various AdS S backgrounds. In the case we are interested in, the crucial observation
is that, in the large p limit, the AdSs S® Mellin amplitude asymptotes the at space
amplitude of 1IB supergravity, where s is identi ed with the corresponding ten-dimensional
Mandelstam invariant of the at space amplitude. Now, the at space amplitude of the
one-loop 1B amplitude has variouslog contributions, e.g. log( s). It is natural that such
logs should arise from the digamma in the limit of larges as <@ ( s)! log( s). It follows
that s is the natural variable entering @ ( s) in the AdSs S° Mellin amplitude. More
evidence supporting the use oF;t;u; in parametrising the poles ofM also comes from our
preliminary investigations on the ( 9"*3 terms for n > 0, which show that the number of
poles grows withn, but remains nite, and is independent of tree level ambiguities.

Following similar logic, the poles of the function B(8W)  are parametrised bys;t;u. This
function was previously studied for the single correlatorhO;030303i in [1]. We nd that

only three poles atz = 0;1,; 2 are needed to match the OPE data. Again, this truncation
depends on the delicate interplay with both W*W) and RW) . Finally, combining all

contributions we are able to explicitly verify consistency with the ten-dimensional at

space limit. Since this property was not used in the detailed construction of the individual
contributions, this provides a strong consistency check on the form of our nal results.

6.1 The AdS 5 S° OPE

Having reviewed the necessary material we now revisit the OPE to see which information is
accessible to us at one-loop, focusing particularly on string-corrected one-loop amplitudes,
given explicitly at 372 in the next section. It draws mainly from [66] where it was explained
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how the CFT data collected from tree-level correlators must be organised at one-loop, in
order to initiate the bootstrap program for arbitrary external operators .

6.1.1 Large N expansion

With the spectrum of operators exchanged in the OPE at hand we can now begin to make
predictions for the block coe cients. Recall, the conformal block decomposition for the long
part of the correlator is given by

hQy, Op, Op, Op,i ' = X cPLP: (6.9)
As mentioned in Section5.1.2 the double-trace operators entering the OPE are degenerate in
free theory: for xed free quantum numbers, ~, there are as many operatorSOpq as integer
pairs (pg) in the rectangle D~ described in F6]. Therefore, the block coe cients c” are not in
one-to-one correspondence with the CFT data and instead we must sum over all degenerate
operators

X
Cp = CplpZKrS Cp3p4Krs ; (610)

(rs)2D -
where K¢ are the true scaling eignestates. Upon expanding the scaling dimensions and the
three-point couplings* Cpip ks Of the double-trace operators with the external single-particle
operators Op, and Op, ,
[

+p N
o cO + 1 cw + .0 (6.11)

pi pj Krs m Pi pj Krs

Krs = +|+£(l)+

N2 Krs Sl Cpiijrs:N

we can go ahead and write down the OPE predictions for the block coe cients in the large
N expansion. The long multiplet contribution to the full correlator (free+ interacting) up to
one-loop is given by

X
. 0
hQb, Op, Ops Opsitong = LOLP (6.12)
~2AW 2 3
1 X 1 X 1
+ WA' - Né;N) + - Véj log(u)S LP+ :::
2 ) 3
1, X 2 . X 2 X 2
e 4 Ké;z * Hé:z log(u) + Méh) log(u)S LP + :::
~2BW ~2w ~2 AW

To understand the above formula we note thatc;()%j k=0 for <p;+ p. This follows

from the form of the long contribution to disconnected free theory, which is only non-zero in

!Note, the dependance of the anomalous dimensions and three-point coupling on the quantum numbers ~
has been suppressed.

2We have omitted terms with derivatives acting on the blocks as they do not a ect the leading logs for
each region.



44 Chapter 6. One-loop string corrections in AdS S°

the above-window region. Therefore, when taking the product of two three-point functions
Cpip2(0-)Cpyp,(O-) as in (6.10 we de ne three regions in the largeN counting. Using the
notation max = max(p1 + p2;Ps + psa) and min = Min(py + p2; P3 + pa), the three regions
are shown in Figure 6.1 and their OPE predictions are given by:

Above Window ( max ): Both three point functions Cr()?)pz;KrS and C[()g)pA;KrS have
leading order contributions in the 1=N expansion. The termsL© M ® and N©@ only
receive contributions within the above window region where we have

X

0) _ (0) (0) .
Lp - Cplpz;Krs Cp3p4;Krs ! (613)
(rs)2D -
X
@ _ (0) 1) ~) .
Vo' = Coipzikrs Krs Cpapaikys » (6.14)
(rs)2D -
X 1
@ _ (0) @ @O ~0 .
Mp - écplpZ;KrS Krs Kirs Cp3p4;Krs' (615)
(rs)2D -
window ( min < max). One three point function is leading order, the other is1=N

suppressed. Within this region we may calculate the termsN® and H©@ given by

X
1) — (0) (1) 1) (0) .
Np - CplpziKrs Cp3p4§Krs + CplpziKrs Cp3p4§Krs ! (616)
(rs)2D -
X
@ — @ (0) ) ) @ .

H’p - Cplp2?Krs Cp3p4§Krs + CplpZ?Krs Cp3p4§Krs Krs - (617)

(rs)2D -

Below window (2a+ b+2 < min ): Both three-point functions are 1=N suppressed
leading to a genuinel=N* e ect. Within this region we may calculate the term K @ given

by

(1) 1) .
P~ Cplpz;Krs Cp3p4;Krs : (6.18)

Note, all of these expressions contain at most tree-level data, meaning we are able to predict
parts of the one-loop correlator with known tree-level results, this includes: the entire double
log discontinuity Méz); the log discontinuity Héz) in the Window; and the analytic piece

K ;2) below window!
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1~ A
O(N©) Above
Threshold O(NO)
=p1tp2e--------- 4 = max
Cplpz(o )= ¢ Window — Cp3p4(o )
= Mn - -——----- 4 =p3tpa
O(1=N?) ¢ Below ¢
¢ Window ¢ 0O(1=N?)
=2at+bt4d ¢ 1S
=2a+bt2 e--------- .

Figure 6.1: The large N structure of Cy, ,~ Cp,p,:~ for two particle operators O in an
su(4) representation [abg, and varying twist.

6.1.2 Tree-level OPE

Due to the operator mixing the OPE data is better organised into matrices. Let us package
the anomalous dimensions f(lr)s into a diagonal jD-j jD -j matrix El). We then arrange

the leading order three-point functions into an jD-j jD -j matrix C(f))

©) _ ~0 . . _
C =cO :(rs) 2D _: 6.19
- (roypo . Cpakis it (PAI(TS) (6.19)

Similarly, we construct the full rank jD-.j jD -] matrices LEO) and V(}) for xed ~

LO . = LS’Z: (P1p2); (Pspa) 2 D -; (6.20)
(P1p2);(P3pa) '
v =V (pp2); (pspa) 2D (6.21)

(p1p2)i(paps) P

The matrix LEO) gives the (diagonal) CPW coe cients from disconnected free theory, while
v® comes from thelogU terms arising from the double poles in the tree-level interacting

part. With these de nitions we may re-write ( 6.13) and (6.14) as
T T
LO=cO c@; v®=cO © cO (6.22)

A similar organisation principle holds for the subleading three-point couplingsC® which
arise from the window region. This time it is more naturally arranged into a vector ngiqz);d
labelled by ~ and a xed pair qutp, such that op + p > 2a+ b+4, with the vector index
running over the operators

1) - @ . .
C(Qlclz)?~ (rs) CQ1QzKrs i~ (rs)2D-: (6.23)
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[q D R
. A=(a+2;a+ b+2),

p (@
B=(a+1l+ ;a +b+3 );
. C=(a+ +t La+b+1+t );
A D=(a+ta+ b+1t),
B .

N
4

Figure 6.2: The setR. pictured in the (p; g plane. With vertical lines indicating operators
with the same anomalous dimension seef] for full details.

The non-log tree-level data for the correlatorhQy, Og, Op, Op,i in the window region is also
best encoded by the vector,

X

@ — @ ©) .
N (@i~ (papa) Caraekis Cpapas + (P3Pa) 2D (6.24)

(rs)2D -
In this case it is crucial to consider both the tree-level contribution to hQy, Og, Op, Op,iint
and connected free theory in the long sector. With these de nitions we can thus re-write
(6.16) as

@ -c® oT.
N(Q1Q2):~ - C(qlqz);~ c (6.25)
where the rst term has vanished sinceC®) =0.

Q1 Krs
The above discussion holds for any value of the 't Hooft coupling , but let us recall that we
are interested in the regime of large and expand the anomalous dimensions and three-point
functions accordingly,

n - @O 3 (1;3) 5 (19, ...,
Krs - Krs + z Kirs + z Krs T
) — (00 3 ~(0;3) 5 ~(0:5)
pip Krs  — pip Krs + z pi pj Krs + z pi pj Krs
) - @0 303 5o
pi pj Krs pipj Krs pi pj Krs pi pj Krs

The matrix LSO) is independent of , being derived from the disconnected part of the free
theory correlator, hence we can also writeLEO) = LEO;O). The matrix V(f) has an expansion
for large

v = vE0 L Sy EI e Sy ER (6.26)

When we expand the mixing equations 6.22) order by order in > we nd the following
equations at leading order,

. . T
L 00 = 0007,
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. . . 0T
v &0 = c00 &0 00", (6.27)

These equations give the eigenvalue problem solved i, 101], yielding the double-trace
spectrum of anomalous dimensions in supergravity which exhibit the partial residual degen-
eracy associated with the hidden conformal symmetry$7]. The supergravity contributions
to the anomalous dimensions of the operators are given by a very simple formul&§],

4 4
@0 _ 2Mt( Im @

t+1+1
= (oD (629
where
M®  (t 1)(t+a)t+ a+ b+1)(t+2a+ b+2); (6.29)
1 ( )a+l

‘10=1+2(p 2) a+ (6.30)

2

The notation for "1 re ects the fact that this quantity can be interpreted as a ten-dimensional
spin [57]. For > 1andt> 2there is a residual degeneracy becausg, depends only on
p and not on g. This degeneracy is illustrated in Figure 6.2 which gives a sketch of the
rectangle D with operators of common anomalous dimension connected by vertical lines.
The residual degeneracy is a re ection of the ten-dimensional conformal symmetry described

in [57.

At the next orders in the expansion we nd at order %,

. T : T
cOICOOT | 00T _ (.

. . o T . . 0T . . T .
CE_O’O) £1,3)C£0,0) + C(~0,3) El,O)CEO,O) + CSO,O) Sl,O)CSOB) — V£1,3): (6.31)

At this order the anomalous dimensions are even simplerdg]. Only operators with "1 =0,

ie. witha=1=0,i=1,r =0 (and hence(p;q = (2;2 + b)) receive an anomalous
dimension. In relation to the diagram Fig. 6.2, these operators sit at the left-most corner of
the rectangle D-.. Their anomalous dimensions read,

1;3) _ 3 4 4 )
Ko = 840 "0 aoM{OMEL (Dt + b+ 1) (6.32)

At order 3 the mixing equations read,
. 0\ T . ey T
cOPcOO 4 cO9cON =g

. . .0\ T . . 0T . . ey T .
C(~0,0) (~1,5)C£0,O) + C(~0,5) (~1'O)C(~0'0) + C(~O,O) (~1'0)C(~0’5) — V(~1'5)Z (6.33)

Their solution was rst given in [ 59]. Since then the general strucutre of the tree-level
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anomalous has been elucidateds)].

Here we are mostly concerned with the order 3 equations, which in fact yield C(©3) =0
as part of their solution [58]. Note that this simpli cation does not hold at the next order,
i.e. C(©9 80 [59. By expanding the subleading couplingsC® in 2 we have,

(1;0) ©:00T _ (10
C(qlqz):~ C: - N(qlqz):~’
1:3) ©0:0)7 (1;0) ©:3)T _ (13
C(qlqz):~ o + C(qlqz):~ C: - N(qlqz):~’
(1:5) ©0;0)T (1;0) 057 _ @5 .
C(Q1CI2):~ c- + C(Q1Q2):~ c- - N(CI1€I2):~' (6'34)

Again the order : equation simpli es since CEOB) =0.

6.1.3 One loop OPE

Having reviewed tree level data, we are ready to use it to study one-loop string theory in
AdSs S®. This amounts to bootstrap the one-loop correlators by knowing

2 3

. 1, X 5 X 2 X 2
hOp, Op, Op; Op,liiong = 111+ N4 4 Ké;z + Hé;z log(u) + M 15(,2 |ng(u)5 LP+:::
~2BW ~2W ~2AW

i.e. by knowing the values ofM g{’ H;ZZ and Kézl
log?(U): The OPE data gathered from the disconnected and tree-level contributions allows
us to predict the log? U terms at one loop. Such terms arise purely in the above window

region and, for xed quantum numbers ~, can be arranged into a matrix M (~2) given by
T
M@=1cO @2 cOT_1y0 |0 1y, (6.35)

Thus the log? U terms are entirely predicted from the disconnected and tree-level CPW
coecients L and V. The above relation can be expanded in 2 resulting in

. . . .mT . .
M @0 = %C(~0,O) €0 2 OO _ %V(},O) LO 1,00, (6.36)
. . . . T . . . T
M@= OO @O @3 OoT % c03 @O @) cEOT ..
_ % vED O 1 @0 w0 O 13 (6.37)

. oT . T .
In the second line above we have used:fo’g)CEO‘O) + CSO’O)CEO‘s) = 0, and that (~1,0)
and El;?’) are diagonal and hence commute. The rst condition at( 92 is obvious, since
c®¥ = 0. A formula like (6.37) holds at ( 95 upon replacingV ®™®,

log*(U): In fact, for general charges, more information can be predicted about the structure
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of the one-loop amplitude. In the window region it is possible to predict the form of the
single logU behaviour. We arrange the one-loop partial wave coe cients into a vector

H E?lqz).~ labelled by a xed pair of charges(q.p) as above,
@) - ~® O ~O07 _ O © 1 .
Har- = Camwi- -~ C- = Nigy- Lo~ VI (6.38)

Recall that C%)lqz)_~ exists only for operatorsK. such that < g+ . Recall also that for

a correlator hG,040,Ogi there is no Window.

In the cases with no residual degeneracy of the tree-level supergravity anomalous dimension
[56] the leading order three-point functions may themselves be un-mixed as in6g, 65, 101].
They can then be used to calculate theCfi)qZ;~ using (6.25, and nally the one-loop log(u)
contribution from the rst equality above. This was the procedure used in [1] to construct the
hG,0,0,0,i family of correlators and led to much new OPE data as described in Appendix
A. However, for the general case where the residual degeneracy makes this impossible we

must instead use the matrix equations given by the second equality.

. 1
If we now expand in 2 we nd

(200 - @O (000 1 ,,(10).
H (I N(CIlCIz):~ L- VI (6.39)

23 _ @3 (000 1 ,(1;0) (1;0) ©:0) 1 ,(13).

(@)~ ~ N@ei- b~ VIV 4N oy Lo v 9 (6.40)

log®(U): Finally, we can also obtain information about the (logU)° terms in the below-window

region,
9 T

@ _ ~O @ _N@ © 1 O
Kagon = Clami- Clpar- = Naai- - N (g~ (6.41)
Once again we can expand in 2 to obtain,
@0 _ @O ©0:0) 1 @o T.
Kaeow = N@ey- L= N (pagi- (6.42)
@3 - @3 ©0) 1 \@o T (1:0) ©0) 1 @3 T,
Kégns = N@aey- - Nway- ¥ N@ay- L~ Nipaqy- = (6:43)

which give the OPE predictions in terms of tree level data. Note, the Below Window
predictions are non trivial for the rst time only at one-loop!

The double logarithmic behaviour at one-loop in supergravity has been studied extensively
[1, 63, 64, 66, 70]. It has been used to make predictions for the form of the one-loop
correlator both in position [1, 64, 66] and Mellin space b5, 63]. The relations (6.39 and
(6.42) only become relevant for correlators with multiple su(4) channels. These have been
studied in [66] with several explicit examples constructed in position space. The complication
in supergravity comes from the fact that both Window and Below Window predictions
are non-trivial at all spins, and it remains di cult to nd the one-loop Mellin amplitude



50 Chapter 6. One-loop string corrections in AdS S°

explicitly for generic external charges.

Our focus will be on the ( 92 one-loop correlator and thus equations 6.37), (6.40) and
(6.43. The advantage of studying the M ?:3) amplitude, compared to supergravity, stems
from the truncation in spin of the spectrum of two-particle operators exchanged. This
simpli es the structure of the OPE predictions in the Window and Below Window regions,
and will indeed allow us to nd an expression for the Mellin amplitude M 1(52;3) for general p.
Given our understanding here, we believe that the same pattern applies at all orders in©,
even though computationally it will become a bit more involved.

6.1.4 Window splitting

We already mentioned the existence of degenerate correlators, i.e. correlators that have the
same values of and jcgj;jcj;jcuj, and therefore such that is unchanged. For example, two
correlators whose values of; + pz and pz + ps swap, and the otherp; + p; are unchanged.
At order M (19 and M @3 these correlators are necessarily proportional to each other since
both these Mellin amplitudes do not distinguish them. The situation at one loop is quite
di erent. The crucial point is that the OPE predictions now involve a sum over operators
which mixes degenerate and non-degenerate data at tree level.

The example 0fhO;03030si and h0,040,04i discussed in(6.2) is quite useful to see what
is going on. The one-loop predictions in the Window will involve

hN (1;0)I hN (1:0)I .
35 (15)=(24) :(33) ’ 44 (1s)= (24):(33) ’
h ' h 1:3) '
(1,3 . ; .
N 35 ) N 44 (rs)= (24):(33) ’ (644)

(rs)=(24) ;(33)

with indices (rs) running over the rectangle at = 6 in [020] i.e. f(24);(33)g. So even
though the purple colored coe cients come from correlators degenerate at tree level, and
which are therefore proportional to each other, the remaining data is genuinely distinct.
Thus, after matrix multiplication (see (6.38) and (6.41)), the one-loop result will distinguish
these correlators. The general statement will be that one-loop OPE predictions in the
window lift the tree-level degeneracy of correlators. This was rst noticed in supergravity in
[6€], and the same mechanism is at work here.

6.2 The one loop Mellin amplitude M (23)

In this section we translate the structure of the one-loop OPE data into the Mellin space
amplitude. We claim that

_ h i
M 1(32'3) = WéAW)(s;s)+ R;W)(S;s)+ stBW>(S;s) + crossing : (6.45)



6.2. The one loop Mellin amplitudeM (:3) 51

(2:3)

i.e. M P

naturally splits into three pieces, described below.

Our starting point will be to use the data from the OPE, at tree level Above Window, to
completely x W®AW) - We will nd that

WéAW)(é;s)z ~O¢ s) w(s;s;cs; ) (6.46)
where w is a determined polynomial, and ¥ = © + ¢ is a digamma function. The

latter accounts for the fact that WAW has to contribute to triple poles in order to generate
a log? U discontinuity, and the  factor only gives at most double poles Above Windowt
The restricted dependence ofv on the Mellin variables comes from the fact that the OPE
has support only ona = | = 0, and thereforew is function of s-type variables only, thus
w(8;s;Gs; ) -

Note: The argument of < being s implies that contributions from W®#W) are not
restricted to Above Window, but actually start at s=0. As we explained in the previous
section, this is one unit above the unitarity bound s+ 1 = 0, therefore W (W) contributes
also to the log! U and log® U discontinuities, respectively, in the Window and Below Window.
This fact will play an important role as observed in [1], and explained below.

Next, we will use window OPE data, and also contributions coming fromW®AW) to x the
remainder function in the Window

X (s PP 2)z0 1p (89) +(S+ PP 2)p0 1, (89)
- . (6:47)

RUV(&;9) =

z=0

with r are polynomials. We shall callR a remainder function since it gives the part of the

OPE Window predictions not captured by W (W)  Remarkably, the interplay with W (W)

will truncate the sum over z to a maximum of seven poles! It will be clear that this function
should also be extended to contribute to the Below Window region.

The determination of the function RMW) is a central result of our investigation, since it
characterises the way thewindow splitting is implemented in Mellin space. We called this
phenomenon "sphere splitting", and it will be discussed in more detail in sectior.2.2

Finally, using Below Window data, as well as contributions now coming from bothw (AW)(4; s)
and RMW)(&:s), we x the last piece of our ansatZ

© (s PSP 2 (st PR 2)

BW) /4. oy — Q) -
BSY)(8:9) = - by, (8;9): (6.48)
z=0
h [
"Note the formula [ &+ BLjP2][ &+ B3iPe] () WAVIUST I @ty wWAYIUS.

2The division between R™) and B(®" ) is our choice. We do so because the explicit solution forR )
will have nice analytic properties Below Window, see section 6.2.2.
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This is also a remainder function, capturing the predictions of the OPE in the Below Window
region after contributions from both W(AW)(4&:s) and R(W)(8;s) are taken into account. We
nd that B(BW)(8;s) also truncates, this time to just three poles inz. Again bp;z(s; S) is
polynomial.

In practice to arrive at the above expressions we rst make an ansatz in Mellin space and
perform the contour integration to arrive at an expression in position space which we can
then expand in conformal blocks and match against the known OPE data.

6.2.1 Above window

The log? U terms at order 3 have a very simple form [L]. The reason behind this is that
only operators with “19 = 0 receive an order 3 contribution to their anomalous dimensions.

Therefore, in the following expression forM @3

. X . . . .
M(~2’3) c©0) (10 }((1,3)(:(0,0) ) (6.49)

(P1p2)i(P3pa) ~ pip2K K papaK -
K2 R

only a single operatorK contributes to the sum for a given and bl In Figure 6.2 this is the
operator labelled by the leftmost corner of the rectangle. If we now insert this expression into
the sum over long superconformal blocks to obtain the expansion of théog? U discontinuity,
we nd an expression that is almost identical to the expansion of thelogU discontinuity at
tree level! but for the insertion of a factor of (1:9) restricted to “10 = 0. By construction
this factor is a number (which includes the value of the denominator of 1:9) multiplying
the eigenvalue of a certain eight-order Casimir operator @ introduced in [57] in position
space, see in particular I].

In Mellin space, the log? U contribution comes from O ( s), which is the source of all
triple poles. The knowledge of thelog? U coe cient will therefore fully x

W) (g;5) = ~“O( s) w(s;sics; ) : (6.50)

From the discussion about the special form of(6.49 we infer that, apart for an overall
prefactor, the polynomial w is given by applying ® (rewritten in Mellin space) to 1, where
the latter is (up to a numerical factor) the tree level amplitude in the Virasoro Shapiro
amplitude at order ( 93.

We have written the full expression of w($;s;¢s; ) in the Appendix. Expanded in all
variables it has the form

1
wW(8;s;Cs; ) = + (180)3 36c2+9ct+36c2s + 111+ 8s8% 4+248% 4. (6.51)
Lie. P c©:0 (1:3) ¢ (0:0)

K2 R_ ~(p1p2)K K p3paK*
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A more compact representation can be given by the following double integral,
L Zg q z

WSS = o i de 200y () (6.52)

where C is the Hankel contour. The integral is the function integral, and the integral
the reciprocal function integral. Note that the integral in  is nothing but the integral
used by Penedones to study at space limit p4], and the -integral generalises that to the
compact space.

Then, wy(; ) is de ned in terms of the following variables,
S= § S; S= §+ s (6.53)
by the expression

w(;;Cs )= (6.54)

1
55(S 3)(S 2)(S ) S+ = 28% 6545 * E+

1 1

~S5 252 +11 2 +-— s? + 2 +752:

305 25° 98 3c2 g0 S~ 365 +36( ) +7S

It is immediate to see that only c2N appear. In fact, sincew is a function of s variables only,
the crossing relations,

M pipopsps (86810 = M pipsipaip (8i6 si1)
! . (6.55)
M e (86 i) M oo o8B sit)

implies that w is function of c§ i.e. since there is noc, dependence the invariance under
cs$ s follows. In particular, as for  factor, the polynomial w($;s;¢c; ) has the same
bonus property.

Let us emphasise that the OPE does not immediately predict<® ( s). The Above Window
region only requires [ B3Pz & [ B3P 4 ~O)( &+ pyyy), sinces  pmax is where the
triple poles are. However, the presence of®( s) is strongly motivated by the limit in
which the chargesp; are large, and therefores is large p5]. As explained already in the
Introduction, the key observation is that in this limit s becomes a 10d Mandelstam invariant
and the Mellin amplitude asymptotes the 10d at space scattering amplitude. In the present
case we must recover thdog( s) of the type IIB at space amplitude, and the latter comes
from ~O( s) in the limit of large s. We will later show in section 6.3 that in the large p
limit we recover exactly the type-lIB at space amplitude!

It follows from the presence of 9 ( s) that the range of twists where WAW) contributes
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is not restricted to the Above Window region, 8  pmax, where W W) naturally lives, but
embraces the bigger region bounded from below by the locus= 0. We now understand that

W AW) contributes to the one-loop correlator starting from the rst two-particle operator in

the Below Window region at =2a+ b+4. Consequently W ®AW) gives contributions that
will add to those of R™W) function and B®BW) in- and below- Window, respectively. The
choice to write the Above Window contribution as described above has the consequence of

than a range growing with the charges.

Flat space relation of the  AdSs S°® amplitude

The fact that the polynomial w(8;s;cs; ) can be written in terms of a pre-polynomial (6.54),
as in the case of the Virasoro-Shapiro amplitude studied in§0], suggests the following little
game: In at space the part of the ( 93 amplitude at one loop which accompaniedog( s)
is s*, and the tree-level ( 97 amplitude is proportional to s* + t* + u*. Therefore, if we
assemble

M7 w(§s;cs; )+ w(ftc: )+ w(O;u;cy;) (6.56)

we expect by construction that this quantity has the correct 10d at space limit. Is there
something more? Upon inspection, it turns out that M 7 so constructed is actually the
tree-level ( 97 amplitude constructed in [60, 61], up to an overall coe cient and a certain
choice of ambiguities! This observation stands at the moment as a curiosity, though quite
intriguing. It would be interesting to understand its origin further, and whether or not it
generalises beyond this case. We will leave this for a future investigation.

6.2.2 The Window

The log* U projection of the ( 92 correlator in the Window has the following one-loop OPE
expansion, for xed quantum numbers ~,

X X

(0;0) (1;3) ~(1;0) (1;0) ~(1;3) (0;0)
) Cplp2§K K Cp3p4;K t oK CP3P4;K + ) Cp3p4;K K p1p2;K
K2R _ K2R

(1;3)C(1;0) + }((1;0)(:‘()1;[)32);K

(6.57)

Formula (6.57) contains two terms symmetric under (p1;p2) $ (ps;ps). However, the two
terms never contribute together. This is because the (free theory value of the) twist of
the two-particle operator K is greater equal thanmax(p1 + p2; p3 + p4), and therefore in
the Window either Cé?;)oz);K =0 or ngi);K = 0. It follows that when we compute the
OPE predictions we only have access to one of the two terms at once. Nevertheless, we
do expect a nal formula for the coe cients which is at the same time symmetric under

(p1;P2) $ (ps3;psa) and also analytic in the charges. We can imagine several scenarios of
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which the simplest one is perhaps the one where a single contribution, say for concreteness
the one forpy+ p2 < p3+ p4, is such that upon a natural analytic continuation in the charges,

it automatically vanishes when p; + p2 > p3 + ps, and vice-versa. The nal symmetric result
will then be the sum of the two contributions. This simple scenario is indeed the one realised
by the amplitude.

In the analysis that follows it will prove useful to move between a Mellin space formula of
the type, 7 X
Hp(U;V,0,V) = dsaf usviosyt M p(Si1); (6.58)
S;t
and a formula where we perform the sum overs and t and decompose into the basis of
spherical harmonicsY(,,y. We can start in the monomial basis, with an expression of the

form ~

X osvt
dadfUSVE o 4 g

Fo(89); (6.59)

st S tu

valid for F = fw (AW): R(W).B(BW)g je. each one of the three functions that builds up our
amplitude. The sum overs andt is nite, as we explained already. Then, upon decomposing
into spherical harmonics we can alternatively write,

Z

X
dsaf USVE s ¢ o Yo Fp(&iD): (6.60)
[0b0]

The notation F ($;s) and F ($; b will then refer to F as being written in the monomial basis
and spherical harmonic basis, respectively.

As an example, we reproduce an interesting formula for the Above Window function

1 1 X 4 .
s =t LTy sz i) (5+2)
[0b0] fi=0 !
b+2 b+2 p1+ p2 ps+ psa
8 8+ g TP 4 6.61
2 3 2 3 2 i 2 i (6.61)

where the analogous factor of (44 function was found in [59.t

With either representation, i.e. F (§;s) and F ($;b), we can perform the$ and f' integration,
to arrive at an expression in position space which we can then decompose into conformal
blocks and match against OPE predictions.

1

. ( 2)b(b+1)l(2+ a+ b _
bal = :
[aba] [ p12pz + b+T2][ p1;pz + b+?2][ Pl;pZ b+22a+2][ p32p4 + b+T2][ P3+294 + b+T2][ pa’;PA b+22a+2]
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Spherical harmonic basis

We wish to compute rst R‘IQ’(S; b in the spherical harmonic basis. This is derived from
matching the log* U projection of the amplitude, i.e.

7 . !
X h i
dadfUsVE 4 4 g Yioboy WYY (89 + REV(8;) + crossing (6.62)
b log U

with the prediction from the OPE in the Window. Schematically, we expect

# -
8 n ’

X
RUV (&b =

n

n  min(P5Pz; Pebay: (6.63)

The task will be to nd the residues # for the various values of the twist in the Window
Region, here labelled by values of =2n. In (6.62 we have already restricted the summation
to a=0, as a consequence of the truncation to spin zero valid at ordef 93.

In practice, say we focus on thes channel, we will pick double poles in$ in the Window
(this will select the log! U contribution), perform the f integral, and obtain a function in
position space. This function contains up tolog* vV and log° V contributions (since there is
no ~( t) in the s channel). Note that for given power of U, both log'V and log°V come
with a non trivial rational function of V. These contributions are analytic in the small x; x
expansion, which is the expansion of the blocks we want to match.

As in the case ofh0,0,0,0,i considered in [l], we nd that only ve poles are necessary to
t the OPE predictions 2. In the sector p1+ p2 ps+ ps, we nd

o(N; b) R, (n;b)

[5 n+ P1+2p2][ p3;p4 n] (g n) )

R, (&) = (6.64)

P1t P2
n 2

where the minus superscript stands forp; + p,  ps+ pa, then n = BL3P2  PLZP2 4952 puns
over half-twists, and

pitpz  b+2 pitp2 4 b2

b= DOTURTD 7, 2 2 C 7 s (gep)

1t is actually convenient to resum the OPE predictions to exhibit the logV contribution explicitly, then
match. This type of resummation was called a one-variable resummation in [ 66] see section 4.3.
2In hppqd, x the su(4) channel to start with, and look at the residue of the rst pole as function of p
and g. The range of p; g is in nite and this gives a p;q dependent polynomial in the numerator and three
functions in the denominator. We then vary the su(4) channel, introducing b. By studying in the same
way the second pole, the third pole, etc..., we recognise [ 22324 n][n 222210 n+ 221 Thus, even
though we can access ve values of the twist, i.e. ve poles, we can single out [5 + F’“sz n] from looking

at B® where B := 224
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and

Sl B3, (2414 (cs)? 10cs+28 2(cw )2)BZ |, ...
Rs(n,b)—l—s+ &0 + 1 _
|

2n (+31582 + (2T (@] ngéz (cw)*(+3) B 4 ... B := Xbr4).

: z
(6.66)
The full expression forR can be found in the appendix, it is made of simple polynomials.

Note that above we have used the notationcy = ¢ + ¢y.

The fact that only ve polesin R are needed to t the OPE data is re ected by the factor
1[5+ WT'O? n], which automatically truncates when n "“sz +5. It implies that
beyond the fth pole, the OPE predictions are fully captured already by the function WAW 1
This is quite remarkable given that we are evaluatingW”"V in the Window. Let us also
emphasise thatRes; turns out to be only a linear polynomial in n. Considering that we are
tting ve poles, this is a non-trivial consistency check of our formula. A closely related
formula holds for R* in the sectorp, + p,  ps+ ps. Let us see why:

Above we considered the casp; + p2 < p3+ ps and found R , but note that it automatically
vanishes whenp; + p2 > p3 + ps. This is because ofl [ WTF’“ n] and the fact that
n p1+sz in the sum. Therefore, we are free to add both contributions in one formula and
write the following symmetric and analytic expression

(8:h=R

RM@&D =R, (&D+ RIE&D Ry

P1P2P3Pa (8;b (6.67)

P4pPspP2p1

whereR* is related to R by swapping charges in the appropriate way. Using thecs; ¢; ¢,
parametrisation, R; (8D =Ry o oD

fcs;cticug

Let us now come back to the Window splitting mentioned in section6.1.4 There, we
explained that degenerate correlators at tree level are those correlators with the same values
of and jcsj;jcj;jcuj which therefore are proportional to each other at orderM @9 and
M &3 because the bonus property is preserved. We can see from the explicit expressions
for Resy(n; b) that at one-loop this is not the case anymore. Coming back to our guiding
example of p= (3335) and p= (4424), we can see that

%:3335(n=3;b:2)= 3—:6 ; F§:4424(n=3;b=2)= ? (6.68)
where the LHS is simply the evaluation of (6.66), while the RHS is obtained from the (6.66)
upon cs ! Ccs and ¢y ! cy. As promised, the one-loop OPE distinguishes these two
correlators in the Window. Note instead that if we project the correlators onto the log? U
discontinuity Above Window, the corresponding contributions are still degenerate.

Figure 6.3 illustrates the general structure of poles of the remainder function, as we have
obtained it from OPE data. Notice now that R(W)(8;b) can be analytically continued Below
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[0; Bnin ;01 [0;Bruin +2;0] [0; B ; O]
T t

Above Window

Window

&= min( Plzpz; P3;P4)

Figure 6.3: Pole structure of the remainder function in the basis of spherical harmonics.
Black dots indicate a non-zero residue. Un- lled dots only receive contributions fromw (AW),

Window. Quite nicely, the factor 1 hn %I ensures vanishing at the unitarity bound,
thus giving the correct physical behaviour not just in the Window, where the function was
tted, but also Below Window! We infer that the remainder function can be understood
more properly to descend onto the range of twists above the unitarity bound, which means
we are free to start the sum in(6.64) from n “74. At this point it is clear that the pole
structure of RM) will be naturally labelled by bold font variables, in complete analogy with

the way WAW) descends in- and below- Window. Figures.4 illustrates the poles from the
latter viewpoint.

[0; bmin ; 0] [O; bimin +2;0] [0; bmax ; 0]
Above Window
Window

O e e o0

o

Figure 6.4. Pole structure of the remainder function after continuation Below Window.

To see more clearly the structure of poles irs, from the Window down to the Below Window,
let us point out that when we look at the [Obnax O] channel, the locuss = 0 pinpoints the
bottom of the window, below there is only the unitarity bound at s+1 = 0. Lowering
b < bmax, and looking at the [0b0] channels, the same locus = 0 enters the below window
region depicted in green.

Monomial basis, Crossing, and Sphere splitting

In this section we will turn the expression RMW)(4;b), written in the basis of harmonics
Y[owo}, into the monomials basisUSV!, yielding the nal Mellin amplitude corresponding to
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the Window region. The result right away is

RI(BW)(Q;S) =
z=0

~ (s+ B 2)p L (819)+ (s+ B 7)1 1 (8)9)  (6.69)

where the notationr refers to the factthat p1 + po= + csandpz+ ps = Cs. The
polynomials r are related to each other,

+ . — .
s = o aicug : e = Mt+csitaicug (6.70)

are simple to write down, see the list in ©.74).

The result for RW) in (6.69 has two important properties, which are tied to the window
splitting described in the previous section. These properties go together and are 1) the split
of , and 2) the dependence of on the chargesp. Both these properties provide the way
to distinguish betweenp; + p2 <ps+ pg and p; + p2 > p3 + ps at the level of the Mellin
amplitude. All together this is the sphere splitting we already mentioned in the summary.

In more details: Assume$ belongs to the Window, then § = min(®3P2; 23P4) + n for some
positive integer,n 0. Now, from s z =0 we obtain the value ofs, through the relation
z+min( B15P2; B3Py + s = n. Considering that

R;W)(é;s) |
[1+ pl*éf)z + s][1+ ps"épz: + 9] ; .
+
* 1 oz N oz
,0S Z [ z+ Pl';p2+s][1+ p3;P4+S] [1+ plzp2+s][ 7+ p3;P4+S]
(6.71)
we see that only one of the two terms contributes, because
P+ P2>pP3+ Pa P+ P2<pP3t P4
Z+ P3+2P4 + 5= n Z+ P1+2P2 + 5= n (672)
only r* contributes only r contributes

This splitting is analytic in the arguments of the  functions, and therefore the functionr ,
will be polynomial, i.e. there are no absolute value discontinuities. When we change basis,

+ _ . — .
e =Tt ¢ cicug , e = M+csi+acug (6.73)



60 Chapter 6. One-loop string corrections in AdS§ S°

wherer is given in the appendix. Here we will quote for illustration

(st 258 (st 255

p;6 15 !
_ (st 2558)( 30+11cs+2c2+9+3 cs+ 2+cZ +30s 25 12s2)
"eis = 30 (6.74)
= 30s%+10s3(  9) 5s( 30+1lcs+2c2+11+3 cs+ 2+C2 )+,
pa = 15 '

It is now clear how the sphere splitting on the Mellin amplitude achieves the window splitting
of section6.1.4 coming from the OPE. As mentioned already, to break the bonus property of
the we needr; .., g to depend not only oncs, but generically on all c; ¢;; ¢,. Considering
(6.74) for the s-channel, this indeed has non trivial dependence om; and ¢, (actually here
only on ¢y = ¢ + ¢y)t and therefore breaks the degeneracy of correlatorsl 9 and M 1:3),

As an example let us consider the correlatohQ,0,0,0yi, for which we havecs =2 p; =
2+p;qu =0 ands= 2, after substituting in these values the above formulae reduce to

4 (p+1).

n Tnaap (6.75)

M22ppin = 16
Note, the vanishing of ry5,5 and ry,,.6 €nsuring consistency with the ve pole picture in
the spherical harmonic basis.

Let us comment further on crossing symmetry, verifying that (6.73 is consistent with
crossing, and checking additional symmetries of. By starting from the following (subset of
crossing) relations,

w
Rgﬁgz;m:m(é;f\’ S;t) = Ré\;\{gl;m;ps(é;e S;t) = R((is; )Ct; Cu (S;f\' S;t) (6'76)
= ng)\i\{gs;pz;pl(g;e s;t) = R(VXS);CU o (& hst) (6.77)
= Ré\é\{gupl;pz(é?e t;s) = R(VXS); CtiCu (CHERY (6.78)

we nd that r are related to each other, and in fact are given in terms of a single function,

+ _ . — .
e =Tt c; cicug . fre = M+csi+aseug (6.79)

Lotherwise crossing would imply invariance under ¢s $  Gs.
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Moreover, crossing shows thatr has the following residual symmetry*

fosicieug = Tesi o cg o Mfesicicug = Mesieusag: (6.80)

This is in fact what happens when we look at the explicit expressions ofp;z(s;s).

Two nal comments.

1) The truncation in the number of poles can be seen to be in one-to-one correspondence
with the bound in the degree of the non factorisable polynomial appearing in the
numerator of r,,. Under this logic we cannot have a numerator pastrg.

2) Notice also that Mo:6 and rgs vanish in the Window precisely because of the factors
(s+ B3Pz 1) and (s + B3P2), thus guaranteeing consistency with the ve poles
picture in Figure 6.3. The new picture for the poles in the monomial basis is displayed
in Figure 6.5.

USmax 8 Smax 7 [JSmax 6 USmax 3 Smax 2 USmax 1 JSmax

O e e e
o e e
o

O e 00060606060 0609000 >
O e ee 000660 00000
Oe e e e oo oo oo o »

w

|

o

Figure 6.5: The pole structure of R™) in the monomial basis. Red: contributions lying
in the window. Green: contributions lying in the Below window.

6.2.3 Below Window completion

So far we have focussed on the Window region. We also understood th& W) has an
immediate analytic continuation to Below Window. Now we should ask whether we need or
not an additional reminder function Below Window? The answer is a rmative and in fact
we need a contribution B(BW) of the following form,

X2 (s+ plzpz Z)z41 (S+ Ds;m Z)741

(BW) /4. oy —
B 4;s) =
s (89) p—

by, (8:5): (6.81)

z=0

1The second property on the I.h.s. does not follow from (6.76)-(6.78). It has to do with exchanging
¢t $ ¢y and it comes from imposing (5.10) etc., on the full Mellin amplitude

RO e, (89)+ RYY, e (B t)+ ROV . (0 u):
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Then, together, the contribution from B(BW) and the contributions from both W®*W) and
R W) Below Window will reproduce the correct OPE prediction.

We nd that only poles z =0; 1; 2 receive a Below Window completion. Their explicit form

IS " "
— S+ .
bﬁ:Z - 15 ’

2 2 2
bp;l - (1 25 )4s 4s(1+i%+16 cs+t4 11 ); (6.82)

bpo_ 16s° 64s*  8s3(c2 15 2+4)+16 s? ( c2+26 2 29)+::
0~ 60

and can be read in the Appendix.

Again the truncation to three poles is in one-to-one correspondence with the bound on the
degree of the polynomial. It is interesting to note the below window region does not exhibit
the sphere splitting. For example in the s-channel these functions depend just orc2 and
thus are symmetric underp; + p2 $ ps + pa.

With the knowledge of WAW) RMW) and B(BW) the bootstrap program for M 3 is
completed, up to the following ambiguities:

Ambiguities. The ambiguities we can add to the one loop function are tree-like contribu-
tions of the form of contributions to the Virasoro-Shapiro tree amplitude and do not spoil
the one-loop OPE predictions in- and below- Window. For the case oM 3 we can add
the same as the functions corresponding tavl :"=3:56)  The caseM "=7) is simple to
exclude since it will contribute to the at space limit, and there is no such a contribution
in at space. Note that by construction the ambiguities listed above will contribute to the
log'(U) discontinuity, Above Window, rather than in the Window, and for the analytic part
they will contribute, in the Window, rather than Below Window. In other words, they lie
on top of what we xed by the OPE data at one-loop, and therefore contribute with a free
coe cient, as far as the bootstrap program is concerned.

6.3 Large p and the at space amplitude

In this section we will compute the large p limit of [ 55, i.e. the limit of M %) when the
external chargesp; (and thus the Mellin variables) are taken to be large. By the arguments
in [55], this limit reduces the amplitude to the full at space amplitude of 11B supergravity
where s;t;u become 10d Mandelstam invariants. The at space amplitude is quite a simple
amplitude, but M ? involves various pieces and therefore it will be quite an interesting
computation to show the nal result.

Let us focus on thes-channel, and introduce for conveniences=2s+ . To take the limit,
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we simply need to consider
fs;s;cg ! opfs;siesg 5 ! op; ;o op!l (6.83)

on the various entries in the Mellin amplitude, which we know explicitly as function of p.

The limit on W2V is straightforward and reads

i WEY L w(sisiai) (5) _ 3 4

4
Jy 08 lig 08 = 90 s*log( s) (6.84)

This is already the corresponding |IB at space result [L05. We conclude that for the large
p limit to hold the contributions from RM) and B(BW) must give vanishing contributions
in the limit.

One can see that the contribution fromB(&W) are subleading w.r.t to p® in the limit. However,
for each one of thez poles, the contribution from RM) individually is not subleading! In
fact, we nd the following contributions:

| i contribution from pole (z)
pole p!'lm 08
S 2 S 2 3 u u 2
z=6 | CorEe 2o, elE o) (6.85)
_ (s cs)7(s+cs)?
z=0 7680s

By inspection of (6.85), we nd that the leading term of each pole z is as leading aq6.84):
It has degree8 in p. However, whensumming over all contributions in the second column,
the result vanishes! This cancellation is quite remarkable, given that non trivial functions of
s and charges are involved. We nd then that the large p limit of the one-loop amplitude
M 23 and the at space IIB S-matrix, match perfectly. As a byproduct of our analysis
here we have given a non-trivial con rmation of the geometric picture associated with the
large p limit, as described in [55], and shown the self-consistency of the one-loop bootstrap
program.
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Chapter 7

Conclusions

In the rst part of this thesis we studied one-loop stringy corrections to the Mellin amplitude
of four single-particle operatorshQy, Op, Op, Op,i. We started from the AdSs  S° Mellin
representation in terms of variables conjugated to cross ratioss; s; f t, the Mellin amplitude
M 5, and the following kernel of Gamma function,

[ Plzpz S][ ps;pzt 9] t
[1+ Plzpz + S] [l+ p3;P4 + S]

us (7.1)

see discussion around5.9). Then, we gave explicit formulas for the leading order( 93
amplitude at one-loop, in the form,

_ h i
M ;2’3) = WéAW)(s;s)+ R;W)(s;s)+ stBW)(s;s) + crossing (7.2)

The various functions WAW): R(W)- B(BW) introduced in (6.3), are described in full details
in sections6.2.1, 6.2.2, and 6.2.3 respectively. Each one is bootstrapped from the OPE, and
labelled by a corresponding region of twists for the exchange of long two-particle operators.
We called these regions Above Window, Window and Below Window, following 6], where
the same classi cation was used to bootstrap the one-loop supergravity amplitude, mainly
in position space. The supergravity amplitude is still a rather complicated function, due to
the fact that the OPE has support for all spins. The ©corrections have instead nite spin
supports and therefore are simpler to deal with. We believe however that the lessons from
the study of ©amplitudes are general, and in fact best expressed in Mellin space.

The advantage of using Mellin space stems from the observation that the whole structure of
poles in Mellin space can be put in correspondence with the OPE, a result due to Mackg),
which here we have upgraded toAdSs S®. The pole structure takes into account both
and M . The poles ofM at tree level were shown to be captured by bold-font variables
[55], i.e. poles given by equations of the forrs+1 =0, wheres= §+ s, similarly for t, or

65
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u. Quite nicely, this way of parametrising the poles works at one loop, with two important
modi cations: Poles of M are now of the form ( s)ors z=0 forz=0;:::;6, and the
residues, compared to tree level, have generic dependence on the charges

Considering the various contributions to M 23 in (7.2) we have found:

(1) The double logarithmic discontinuity of the one-loop amplitude comes from W (AW)
and is xed by OPE data Above Window. It takes the form of ( s) times a non-trivial
polynomial in the Mellin variables, and for many aspects ts into the discussion of the tree
level Virasoro-Shapiro amplitude, as given in §0]. In particular, it can be givenas © on a
preamplitude. This expectation will be true to all orders in  ©

(2) The structure of R(MW) is the main novelty of the one-loop amplitude. This is determined
by OPE data in the Window. This OPE data is the one responsible for lifting a bonus
property of the supergravity amplitude, i.e. the fact that certain correlators are equal to
each other. Such a degeneracy of amplitudes follows from the special (crossing symmetric)
form of , and the peculiar charge dependence of the Mellin amplitudes, i.e. no dependence
at all in supergravity, and (P*P23Pe*Be 1)5 gt order ( 93.

The rst crucial result is that RMW) takes the form,

RI(SW)(Q;S) =
z=0

~ (s+ PR 2)pr 1, (89) +(s+ BOP 7)1, (858) 5 (7.3)
and comes with two separate contributions, singled out by thez-dependent Pochhammers.
This implies that when we look at RMW) together with the  functions, the total amplitude
undergoes the following split,

RW)
P
[1+ Pl+2F32 +s][1+ P3+2p4 + g

A (7.4)
i #

1 re .
— Pz + Pz
s z [ z+ pl;p2+s][l+ ps;p4+s] [1+ p1§p2+s][ 7+ P3+2p4+s]
The polynomials r are related by crossing,ry = 1t ¢; qicugr Ty = Mf+coitcicugr @nd

crucially have generic charge dependence. This structure, which all together we called
sphere splitting”, follows from the OPE.* Our result for R(W) shows neatly how the OPE
structure translates into a structure in Mellin space.

The second crucial result is the use of bold font variables to parametrise the poles &l . For
WAW) “this implies that W W) not only contributes to the OPE Above Window, where it

1From the OPE viewpoint this is also true at one-loop in supergravity [ 66].
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was bootstrapped, but cascades to Window and Below Window regions. Because of this, the
OPE predictions in the Window pick the contributions of both W(*W) and R(W)_ In this
sense,RW) is a remainder function, but precisely for this reason, the sum over in (7.3)
truncates to nitely many poles, z =0;:::6, rather than depending on the external charges.
Quite remarkably, the result for R(W) can itself be continued Below Window. Thus, with
the same logic,

(3) The function BBW) s

X (s+ B3P 7)(s+ BT 2
( 2 )Z+1( 2 )z+l bp;z(é;s); (7.5)

(BW)/a- o) —
B =

b (&) _—
z 0

and is itself a remainder function for WW) and R(W) in the Below Window region. In sum,
the analytic properties of all these functions are quite spectacular: they properly continue
from the Above Window down to the Below Window region, and correctly switch o outside
the physical range of relevance.

Finally, we studied the 10d at space limit, using the large p limit of [ 55]. The consistency
with the at space amplitude of IIB supergravity is again quite remarkable. The limit on
WAW) is already giving the at amplitude, and naively, each pole in z from RW) adds a
non vanishing contribution, non trivial in both s and the charges. However, upon summing
over z all these extra contributions correctly cancel out!

Let us conclude with an outlook. Our main focus has been understanding the structure of
the amplitude and the way Mellin space realises the various features of the OPE predictions
at one-loop. We focused on thg 92 contribution, but we believe that the logic behind the
construction of M 3 is valid to all orders in ( 9"*3. In particular the sphere splitting is
generic, and the number of poles irz increases withn but stays nite! It is only a matter of
computational e ort to x the various residues in the Window and Below Window. The
one-loop bootstrap program inAdSs  S° is thus understood at all orders in ©, but for the
usual ambiguities, which needs additional input to be xed. It would be interesting to nd
these extra constraints, either from localisation P4, 97, 99], or from sum rules [L06, 107].

It would be also interesting to understand the sphere splitting” from a diagrammatic point
of view. Perhaps a 10d master amplitude can be found which undergoes the sphere splitting"
onto RW) in a natural way. This is partially suggested by the remarkable cancellations that
take place when we tested the largg at space limit in section 6.3, and the fact that poles
are parametrised by bold font variables. Perhaps this point of view would give insight on
the way to arrange the one-loop supergravity result in a simple form.
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Chapter 8

Massless kinematics

In this section we begin the study of how best to describe the kinematic space on which
the amplitudes live. The momenta, p, , of an n-point massless scattering amplitude are
constrained via the massless on-shell condition and momentum conservation. As we shall
see in this chapter the massless on-shell condition can be trivialised through the use of
spinor-helicity variables (; ™) which we now introduce.

8.1 The w group

To best appreciate the bene t of introducing these new variables we begin with a general
discussion, following [L08 110, of particles and their transformation properties under the
Lorentz group. A particle is de ned as being a unitary irreducible representation of the
Poincaré group. Usually, in order to diagonalise translations, particles are labelled by their
momentum p , however, generally they can carry additional labels which we collectively call

. To label the one-particle states of a theory we can start from a reference momenturia ,
and a basis of stategk; i, from which we can de ne a basis for general momentunp given
by

jp; 1= U(L(p; K)ik; i (8.1

wherep =L (p;k)k and U(L(p;k)) is a unitary operator acting on the Hilbert space of
states.

We wish to understand how thejp; i transforms under a general Lorentz transformation
acting on our state we have

U() U(L(p:k)ik; i
U(LC pik)U(E_C i) Lipikpik; s
w

uQ) jp; i

71
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where moving to the second line we inserted the identity operator a&) (L ( p;K)U(L *( p;k)),
and used the fact that U( 1)U( 2) = U( 1 2).

Note, the Lorentz transformation W leaves the reference momentum invariantwW k = k
this subset of transformations is known as thélittle group. Since thejk; i already provide a
basis of states for momentumk, we may write

X
U(L( pk) D ok; §;
5 D o p; 9;

0

uQ) jp; i

where D o furnishes a representation of the little group.

In four dimensions, for massless particle:;;)2 =0, the reference momentum can be taken to
bek =(E;0;0;E) i.e. a particle travelling along the z-axis. The little group is therefore
given by SO(2) = U(1), corresponding to rotations around the z-axis, the representations of
which are labelled by the helicity h of the particle.

The consequence of this discussion for amplitudes is that, under a Lorentz transformation of
the momentum, the amplitudes transform under representations of the little group for each
particle i.e. we have v

A(fpi;hig) 70 (e "M )A(fpi;hig): (8.2)

i

It is this property that we wish to make manifest by introducing the spinor-helicity variables.
As we will see the spinor-helicity variables also have the desired property of trivially satisfying
the massless on-shell conditiorp? = 0.

8.2 The spinor-helicity formalism

The starting point is to de ne the matrix p _ obtained by contracting the momentum p
with the Pauli matrices given by

p_=p _= prmbbE =(L~) (8.3)

In these variables the on-shell condition becomes the vanishing of the determinant

det(p )=p§ P p3 p5=0: (8.4)

This implies that the matrix p _is not full rank, and that the massless on-shell condition
can be trivially satis ed by writing p _ as the outer product of two vectors given by

p_= "= l{ teo (8.5)
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For general complex momenta( ; ~) are independent, however, for real momenta and ~
are taken to be complex conjugates.

On the spinor-helicity variables the little group transformations act as the scaling

(; )7t ) (8.6)
which leaves the momentum invariant. Generally,t can be taken to be any complex numbet,
for the case of real momenta we havé = , which impliest=e ' .
Since the little group now acts simply as scalings on th€ ; ™), the particle helicity information

of the amplitude is directly encoded in its scalings under 8.6) by

ATt 5t g = (5 PAG o) (8.7)

i
In summary, we can view an amplitude as a Lorentz invariant function of the (; ™) which
scales correctly under a little group transformation (8.7).
The Lorentz invariants are constructed using the anti-symmetric tensor and -—which
we denote as

hji = ;

il= -

The familiar Mandelstam invariants s; are then given by
si =(pi+p)>=2p p = hjifij ] (8.8)

Since, the(; ™) are nothing other than two-dimensional vectors, any three or more must be
linearly dependent. This fact is summarised by the Schouten identity

Hj ihkli + hikihlj i + il ihjki = 0; (8.9)

and analogously for the square brackets. Furthermore, the angle and square brackets are
constrained by momentum conservation which implies

X
Hjiik]=0; 8 (i;k): (8.10)
j=1

Note, this is the rst instance of the Grassmannians appearing in the discussion of massless
kinematic since the same data can be expressed as the Grassmanni@fi2; n), one each for

Lstrictly the general complex scaling is not the little group of the previous discussion, U(1), but rather
its (non-compact) complexi cation GL(1).
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the and ~, where the Schouten identity tells us the dependancy of minors, and momentum
conservation implies that the and ~ two-planes are orthogonal.

8.3 Three-particle kinematics

The little-group scaling properties provide strong constraints on the form of amplitudes, in
fact, at three points, it is enough to x the amplitude completely. To see this rst consider
the momentum conservation condition for three-points given by

(pr+ p2+ p3)?=0 =) h 12[12] = h13i[13] = h23i[23] = 0: (8.11)
This condition has two classes of solution those in which the 's are parallel
h2 = 3 = 3 =0; (8.12)
and those in which the ™'s are parallel
[12] =[13] = [23] = 0: (8.13)

This implies that the three-particle amplitude is either a function of the hj i or [ij ]. Note,
when taking the momenta to be real, we take the and ~ to be complex conjugates and
only the trivial case where all brackets vanish remains, hence the three-point amplitudes
strictly only exist only for complexi ed momenta.

Imposing the correct little group scalings for each particle completely xes the form of the
amplitude, for the case of three gluons the two choices correspond to the MHV an¥HV
colour ordered amplitudes respectively

hL2i4

[121 |
h2h23h31

MHV 4+ .o+ . _
AT 258 )= [12][23][31]

AMV (1 ;2 :3%) = (8.14)
These three-point amplitudes constitute the building blocks for building higher point functions
through, for instance, the BCFW recursion realtions [5, 6]. Two particularly simple, and

famous, classes of solutions are given by the Parke-Taylod] formula

AMHV — hjilél MHV L (8.15)
n h2i:::mii’ " [12]:::[n1]’ '

where we have taken the two negative or positive helicities to be on the and j™ legs
respectively.

As discussed in the introduction, the textbook (o -shell) approach would have consisted of
calculating an enormous number of Feynman diagrams, all for them to collapse to a single
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term, emphasising the power of the on-shell approach. In fact many well known results
for identifying consistent QFT's, for instance the restriction to spin s < 2 particles, in the
on-shell approach, can be reformulated algebraically as consistency conditions coming from
unitarity on tree-level four-point amplitudes [ 111].

Colour ordering
In a gauge theory such as YM, or its supersymmetric cousilN =4 SYM, with gauge group
SU(N) it is always possible, by repeated application of the Fierz identity,

(T TH= 1L =N (8.16)

to decompose the colour structures appearing in expressions for the planar amplitudes
as a sum over the individual trace components. Where theT 2 are the generators of the
fundamental representation of SU(N ). As an example consider the four gluon amplitude
s-channel diagram which contains the factorcg = f @1223f aasa4 thjs can be decomposed as

Cs = f%af ahd | Tr[TaITaRTATA] Tr[TaTRTATY]
+Tr[TOTSTRTA]  Tr[TaTaTATR); (8.17)

Generally, in the planar limit (taking N !'1 ) we can express the amplitude as a sum over
the individual trace structures as

X
AP = g ,2 Tr[T® 20T ]AG( 10 n); (8.18)
n2Sn=Zn

where the A, are known as the colour ordered partial amplitudes.
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Chapter 9

More N =4 SYM

Before moving forward to consider the condition of momentum conservation let us take a step
back and return to discuss the symmetries oN =4 SYM. As we have seen in Chapter3 the
symmetries' include conformal symmetry, andN =4 supersymmetry, which combine into
superconformal symmetry. However, colour ordered amplitudes in the planar limit possess
an additional dual superconformal symmetry[13], hidden from the Lagrangian description,
acting in a dual space-time.

In this section we begin by organising amplitudes according to supersymmetry. This will
lead us to collect the component helicity dependant amplitudes into a single supersymmetric
object, the superamplitude making manifest the relations imposed by the supersymmetric
Ward identities. Next, we introduce twistor variables, which linearise the form of the
conformal generators. Finally, we introduce themomentum twistor variables, which simarly
linearise the action of the dual conformal transformations, as well as manifesting momentum
conservation. By the end of this section we will understand the connection between the
kinematic space of scattering amplitudes in planarN =4 SYM and the Grassmannian
G(4;n).

9.1 Supersymmetry

The patrticle content of N =4 SYM consists of: a single positive helicity gluon,4 helicity
+1=2 fermions, 6 scalars, 4 helicity 1=2 fermions, and one negative helicity gluon. The
particles are related by theN =4 SUSY algebra part of which reads

fQ*; Qg g=2P _g§; (9.1)

1The introduction of maximal SUSY may seem far removed from its non supersymmetric counterpart,
however, at tree-level, pure gluon scattering amplitudes are insensitive to the number of supersymmetries.

77
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R-symmetry indices. We can de ne the vacuum stateg+i andji associated to the positive
and negative helicity gluons respectively which satisfy

Qhj+1i=0; Qaj 1li=o: (9.2)

From (9.2) we generate the full tower of states by acting on those de ned above with the
SUSY generatorsQ and Q which act as raising and lowering operators of the helicity by
units of 1=2.

It is useful to manifest the action of as many SUSY's as possible. Due to the anti-commutator,
we can either choose this to be theQ or the Q. For this purpose we introduce the on-shell
chiral® super eld [117] which re-packages all16 states as
o . . 1 - 1 . , o
ji=j+li+ Aj+1=2ia+ o A Bilipg + o ABCi 1=2iagc + 1234 1i:(9.3)
Here the A are Grassmann variables which carry fundamentaSU(4) indices. On this chiral
super eld the SUSY generator Q acts as

QY i=dj i (9.4)
where of* = A is the supermomentum

Note, this book-keeping device is particularly powerful in the case oN =4 SYM as all
particles are contained within a single multiplet. In the on-shell formalism the action of the
SUSY generators is given by

P = ~. Qhz A QA:~_£: 9.5)

9.1.1 Superamplitudes

The supersymmetric ward identities [L13, 114 relate amplitudes whose external states are
related by supersymmetry, i.e. with the same total helicity. To make this property manifest
we introduce the superamplitude, A(f ; 7 @), which as well as being a function of( ; ™), is
also polynomial in the

As a consequence of (super) momentum conservation, and the simple multiplicative action
of their corresponding operators, the most general form of the superamplitude is given by
oy P P
(018)( in—l i i) 4( in=1

An(f: ™ g) = R R ] 9.6)

!Note, we could have equally chosen to manifest the action of the Q.
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where (@b indicates a bosonic delta functions andb fermionic. Note, the behaviour of the
fermionic delta function ©V( )= implies
X ¥ ¥ X
o= Tt (9.7)
i=1 =1 A=1 i=1

Since the SUSY Ward identities relate expressions with the same total helicity it is convenient
to decompose the superamplitude as

K 4
Anfs 7 9= Aua(; 7 0 (9.8)

k=0

where A\n;4k O ( %) is called the NMHV sector. The steps of4 in the order of the
's is a consequence of R-symmetry, with the only invariant contraction being with the
anti-symmetric tensor agcp -

This superamplitude acts as a generating function for all helicity con gurations, where to
obtain a speci c amplitude we need only nd the relevant term in the expansion. As an
example consider the MHV super-amplitude, for which we have&‘n;o =1, given by

P P

(018)( n . ) 4( n .~.)

MHV (¢ . ~ _ =1 0 ic1 i),
A (T3 T 9= M2 i ' (9-9)

This contains the terms!
x hij i4
MHV (¢ . ~ —( A V4@ o~ J

AR (s T 9= D7) (i:1 i ')7h12'::;m1i+"" (9.10)

corresponding to the Parke-Taylor amplitude from Equation (8.15. More generally, the
NXMHV sector contains the amplitude with (k + 2) negative helicity gluons and(n  k 2)
positive helicity gluons, along with all other amplitudes related by SUSY.

Let us remark that from the view of the superamplitude it is trivial to see that the all
positive and one-negative helicity amplitudes (and their conjugates) vanish 113 114 due to
the supermomentum conserving factor which is already of order eight in the 's. Note, at
three points there is an exception due to the special properties of three-point kinematics
where ak = 1 amplitude does in fact exist.

'Using the de niton = % asco * ® © P.
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9.1.2 Three-particle kinematics

Having introduced the superamplitudes let us return to the example at three-points. As
before we have the two types of amplitude the one in whichi'y / T2/ T3 given by

OB 1 1+ 22+ 33).

As(t5 9)= hL2ih23h31i ’ (0.11)
and the other amplitude with 1/ >/ 3 given by'
09 ([12] 3+[23] 1 +[31
As(FT @)= ([12] 53 +[23] 1 +[31] 2): (9.12)

[12][23][31]

Again, these three-particle amplitudes serve as the building blocks for the supersymmetric
version of the BCFW recursion [L15 117. In fact, in the case ofN =4 SYM, a closed form
formula has been given for all tree-level superamplitudes?].

9.2 Twistor space

As we have already seeiN =4 SYM possesses (super) conformal symmetry. However, in our
current coordinates (; ) the representation of the conformal generators are non-uniform:
for example the Lorentz generators are linear in derivatives whereas the generators of the
special conformal transformations come with two-derivatives. It is therefore desirable to
search for new coordinates in which the representation of the conformal generators become
linear.

These new coordinates are intimately connected to the question of how to best parameterise
null rays in space-time, which after all is a conformal invariant notion. We can specify a
null ray by choosing two points which lie on the ray x; and x, say, where we have

(X, %x7)?=0 =) det(x, x1) -=0: (9.13)

The second equality implies that every pointx _ on the null ray speci ed by the two points
must satisfy the incidence relation given by

X = (9.14)

for some choice of . Therefore, for some choice of ; ) we can construct a null ray in
space-time, we can collect these into a singlawistor?, Z', given by

ZA = : (9.15)

!Notice, the fermionic delta function is only of degree 4.
2Twistor variables were rst introduced by Penrose in [ 118] and their supersymmetric version was later
given by [119].
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Note, these objects are only de ned projectively i.e.Z”* tZ” since through (9.14) both
twistors de ne the same null ray. In this way we have identi ed null rays in space time with
points in CP3. In fact, it is exactly these twistor coordinates in which the representation of
the conformal generators become linear, acting asl4 on the A index!

We can construct sl4 conformal invariant objects by contracting with the epsilon symbol
given by
hikl i = agco ZAZPZSZP: (9.16)

Points () Lines

So we have seen a point in twistor space corresponds to a null ray in space-time. Let us
make complete the correspondence by considering a line in twistor space labelled by two
points Za and Zg and ask what this is mapped to in space-time, it turns out to be the point

- A B B A.
Xag = s 9.17
AB hAB i ( )
This makes clear the correspondence of points/lines in space-time with lines/points in twistor
space.

Null-seperation () Intersection

A nal exercise, which will prove useful in the next section, is to ask what is the distance
between the two pointsxag and xcp speci ed by the lines (ZaZg) and (ZcZp) in twistor
space, this distance is given by

PABCD i

MABIhCDI (9.18)

(Xag  Xcp)?=

In particular, this tells us that two points in space-time become null-seperated when the
corresponding lines in twistor space intersect i.e. whetfABCD i = 0 as shown in Figure9.1.
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Figure 9.1: Two null-separated points in space-time,xag and Xcp, correspond to two
intersecting lines, (ZaZg) and (ZcZp), in twistor space. With the intersection point in
twistor space being dual to the null ray in space-time.

9.3 Momentum twistor space

We have just seen that, for a theory with conformal symmetry, a natural set of coordinates,
on which the action of conformal symmetry is linear, are the twistor variables, i.e. points
in CP3. In fact, for planar colour-ordered amplitudes in N = 4 SYM, there is a hidden
dual conformal symmetry* [13], on top of the regular conformal symmetry, which acts in a
dual coordinate space. Naturally, we now introduce new variables that makehis symmetry
manifest, this will lead to the notion of momentum twistor variables [L21].

To motivate the de nition of momentum-twistors let us rst return to the goal set out at
the beginning of Chapter 8, to nd some set of variables which trivialise both the on-shell
and momentum conservation conditions

pF=0; P =0 (9.19)

We have seen how to solve the on-shell condition through the use of spinor-helicity variables,
instead lets now consider the momentum-conservation condition.

Given some ordering on the external momenta, naturally handed to us in the case of planar
N =4 SYM by the colour ordered amplitudes, we can interpret momentum-conservation
as the closing of a light-like polygon constructed by joining the momentum end to end as
depicted in Figure 9.2. This polygon, instead of being labelled by its faces, i.e. the momenta,
can equally be described by providing its vertices, which leads us to the de nition of the

In fact the conformal and dual conformal symmetries combine into an in nite dimensional Yangian
symmetry under which the amplitudes are invariant [ 120].
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dual coordinatesx; [127 de ned by?!

P—= i = X1 X (9.20)

upon which the hidden dual conformal symmetry acts. Note, under identifyingxn+1 = X1,
these coordinates trivially satisfy momentum conservation

X

P =X, Xi+ Xz X+ il X, X, (+X; X,=0: (9.21)

i=1
With the dual coordinates to hand we can perform the same exercise as before and transform
to momentum twistor space. Again, the points x; — are mapped to a collection of lines in
CP3. Where, as we have seen from the last exercise h2, that null separation of consecutive
points p?> = (xj+1  X;)? =0 in the dual space translates to the intersection of consecutive
lines in momentum twistors space. This de nes another polygon now in momentum twistor
space as depicted in Figured.2. Again, we can specify this polygon not by its edges but by
its vertices Z# i.e. the momentum twistors. It is these variables which trivialise both the
massless on-shell condition and momentum-conservation, and transform linearly under dual
conformal transformations!

To summarise, given a collection ofn arbitrary points, Z#, in momentum twistor space, CP,

we can constructn null momenta which satisfy momentum conservation! The map between
momentum twistors and the dual space follows directly from the formulae in the last section
where we have

A— .y - i F i+l T
Z: X T (9.22)

Where, as before, dual conformal invariant objects are constructed by contraction with the
epsilon symbol

hikl i = agco ZAZPZSZP: (9.23)

et us emphasise that the x% are NOT space-time points. For instance notice they have mass dimension
1.
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Figure 9.2: Momentum conservation pictured as a null polygon both in the dual space-time
(left) and momentum twistor space (right).

In this notation the multi-particle Mandelstam invariants become

Siij 1=(pi+ i+ 1)2 = (X Xi)2 = iji (9.24)
_h i gji
T h giihy i’ (9.25)

Which, as can be seen from the denominator, are themselves not dual conformal invariant.
However, dual conformal invariant objects can be constructed by taking homogenous rational
combinations in which the two brackets cancel.

9.3.1 G(4;n)
We can nally understand why the Grassmannian appears in the discussion of scattering
amplitudes in planar N =4 SYM. The n twistors can be organised into a4 n matrix as

Zi:iiZy (9.26)

which parameterises a point in the GrassmannianG(4; n) modulo the rescaling of theZ;.
The dual conformal symmetry implies that the amplitudes must be functions of the sy
invariant Plicker coordinates

hijkl i = det(ZiZ; ZuZ)): (9.27)

Therefore we conclude the kinematic space of dual-conformal invariant massless kinematics
is identi ed with

Conf,(P%) = Gr(4;n)=(C )" *: (9.28)
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As we shall see in Chapter?? this space can be associated with &luster algebrawhose
combinatorial structure provides crucial information for the analytic structure of amplitudes.
9.3.2 Super momentum-twistors

The above discussion has a supersymmetric extension which follows a similar construction.
The supermomentum conservation can be trivialised by introducing the dual coordinates

g = =M (9.29)
from which we introduce the momentum super-twistorsgiven by

Zi= %, f=hfi=h A0 (9.30)

Again, we have the equivalenceZ; tjZ;, and therefore the momentum super-twistors are
also de ned projectively.

9.4 Bootstrapping loop amplitudes

Having reviewed the relevant kinematics, and introduced the variables on which our ampli-
tudes will depend, we now turn to the study of loop amplitudes in planarN =4 SYM.

9.4.1 The BDS-like ansatz

When considering loop-amplitudes it is important to take into account the structure of
infrared divergences. This can be achieved by factoring out an infrared divergent piece
leaving over a nite remainder function

A, = ARADN: (9.31)

However, the choice ofA'nR is not unique, and with di erent choices, the nite remainder
function can make manifest (or not) certain physical and mathematical properties. Therefore,
it is desirable to chooseAR such that A" is as simple to compute as possible. Originally,
the factor was chosen to be the so called BDS ansata 23 124, the exact form of which
will not be relevant. However, this has the undesirable quality that neither the BDS ansatz,
nor the nite remainder function, satisfy the Steinmann relations [125

Discg; ., ., (DisCs;,, ,, A)=0; 8j=1i 1Li 2 (9.32)

whereas their product, the full amplitude, does! The Steinmann relations above are the
statement that the amplitude cannot have consecutive discontinuities in overlapping three-
particle (and their generalisation to higher point) Mandelstam invariants.
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To restore the Steinmann relations, forn 6 0 mod 4, we can instead de ne the so called
BDS-like! ansatz [127]
A, = ABDSke g . (9.33)

Again, the exact form of ABPSTke s not of relevance here. The important point is that
the function E, is dual conformal invariant and satis es the Steinmann relations, it can be
written entirely in terms of the momentum super twistors Z;, and has an expansion into
NXMHV sectors similar to Equation (9.8), given by

En = Enmuv + BEnnvnv il (9.34)

The MHV term is degree zero in the Grassmann ; variables, and is simply a function of the
Zj;, with dual conformal symmetry implying dependance only on of thehijkl i four-brackets.
It has an homogeneity in each of theZ; of degree zero, and is therefore a function on the
con guration space of n points in P2, which we had already denoted as Conf(P?3).

The NMHYV term is degree four in the Grassmann variables and can be written as
x .
Enonvnv = [iIKIM 1Ejkim (2151075 2Zn); (9.35)
where the Yangian invariants are given by,

( ihkimi + cyclic)* _
Hjkl ihjkim ihkimi ihimij ihmijk i’

liikim 1= (9.36)

and again the Ejum are dual conformally invariant functions on Conf,, (P3).

Since we will be most interested in the six and seven point hexagon and heptagon amplitudes
these are the only terms in theN*MHV expansion which need be considered, since all others
can be obtained upon parity conjugation.

Moving forward all terms discussed above, collectively denotedF , will admit the perturbative
loop expansion

®
F = gZLF(L): (937)
L=0

9.4.2 Polylogarithms and their symbols

At six and seven points all available data for planarN =4 SYM suggests that theL loop
amplitude can be expressed asveight 2L polylogarithms (polylogs for short). The polylogs
f (X are a class of iterated integrals over logarithmic singularities, which at weightk can be
de ned recursively to obey

X
d® =" f& Vdloga; (9.38)
a2A

LFurther re nements on the choice of normalisation have also been considered, for a review see 126].
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where a are rational (algebraic) functions of the relevant kinematic variables, referred to as
letters, they run over the nite set of letters A known as the alphabet By specifying the
alphabet we are provided with a class of polylogs de ned recursively in weight. At weight-one
the function space is simply given byflogaja 2 Ag. As an example forA = fx;1 xgwe
generate the harmonic polylogs 129.

Alternatively, we can de ne polylogarithms directly in terms of iterated integrals. The so
called Goncharov polylogs 129 are de ned recursively as

ZX
dt
G(Fll,az{.z..,a?,x)— ot alG(az,...,ak,t), (9.39)
weight k
where we have
ZX
coy — dt | . ey = Lk
G(a;x) = St a6o; G(?,_O,{.Z.; i X) = Kl log”® x; (9.40)
k

from which the more familiar classical polylogs Li(x) are obtained as a special case by
Lik(x) = G(?_O{z_? 1;x): (9.41)
k 1
The total derivative formulation (9.38 can also be seen as de ning thék 1;1) piece of
the coproduct [29] of f (K) through

X
fe th =" & D dloga: (9.42)
a2A

Where, as a consequence alf (K) =0, the (k 1;k) coproduct satis es the integrability
condition

ok Y~ dloga=0: (9.43)
a2A

By applying the (n; 1) coproduct to the component functionsf ¢ 1 all the way down to
weight zero we arrive at the notion of the symbol of the function f (), alternatively the

space of one-forms spanned by thdloga

X
S(f W) = f @D = Ca;:ia, [dlogay @i dlogag]:
a2A k
X
= Cajiiay [A1 110 &]:
a2A K

In the second line we have used the notational convention of only recording the lettera
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in the arguments of the tensor product, for example the symbol of the classical polylogs is

given by
S(Lik(xN =11 x) x ' %I (9.44)
k 1
Note, the symbol inherits the familiar properties of logarithms namely
[a b c=[a b c+[a b (] (9.45)
and
[@a B cd=pa b ¢ p2Q (9.46)

The symbol is a useful tool when dealing with polylogs as it provides an e cient route to
simplifying lengthy expressions, as demonstrated in]3Q for the two-loop MHV amplitude
at six points [131]. It also encodes the branch cut and di erential structure of the function
f (. The derivative action is encoded by the right most element by

dlaz i1 a&l]=[a1 ::: ak 1]dlogag: (9.47)

Wheras the logarithmic branch cut structure is encoded in the rst element, where to take
the singularity around a; = 0 say we take all terms with initial entry is az, the discontinuity
is then given by

disci,=0 [a1 i1 &l=21i[ax i &]: (9.48)

9.4.3 The amplitude boostrap

The bootstrap programme [L4 23] has used the symbol technology to great e ect in order
to compute six and seven point amplitudes. The rst step in the bootstrap program, after
having been provided with some alphabet, is to build the associated function space (up to
weight 2L for the L loop amplitude) in which the amplitude lives. Note, this is not in fact

the entire k-fold tensor product space, since a general element (aord)

X
Capa [@1 1 &l (9.49)

a2A K

is not necessarily associated to the symbol of some function. To ensure that it is we must
impose the integrability conditions

X
Cay ::ay Fl_i%_a$d|093j ~logaj+1 =0; 8j =f1l 5k 1g; (9.50)

k
a2A a a1

YIn our case the symbol alphabet is handed to us by the A coordinates of the Grassmannian cluster
algebras G(4; 6) and G(4;7) for six and seven points respectively.
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which follow from the fact that d?f =0 for all functions and encode the commutativity of
partial derivatives. The elements of A ::: A which satisfy these conditions is known as
the space ofintegrable words. After determining a basis of integrable words at some low
weight we can then iteratively construct bases at higher weight as outlined in 22, 137].

With a basis, q(ZL), of integrable weight 2L words to hand we can make an ansatz for the
loop amplitude

X
FO =" gp®s; (9.51)

|
with some free coe cients ¢;. These coe cients can then be xed by imposing consistency
conditions which the symbol of the amplitude is expected to obey. These include initial
and nal entry [ 133 conditions, as well as constraints coming from the Steinmann relations,
collinear limits, multi-regge kinematics, discrete symmetries and as we shall see in the next
chapter cluster adjacency B(], for a review of the bootstrap program see 126.

!Note an integrable word is a linear combination of words which is itself integrable.
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Chapter 10

Grassmannian cluster algebras

The link between cluster algebras associated to the Grassmanniar(4; n), or more correctly
the 3(n  5)-dimensional spaceonf,(P3), and n-point scattering amplitudes in N =4 SYM

was originally proposed in R§], where it was observed that the symbol of the two-loop MHV
remainder functions of [L33 could be constructed explicitly in terms of cluster A-coordinates.

This connection explains the 9 and 42 letter alphabets for 6 and 7 point amplitudes
respectively, conjectured to be polylogarithmic with symbol alphabets given by theA-
coordinates ofG(4; 6) and G(4; 7) to all loop orders, and has facilitated impressive calculations
in the context of the analytic bootstrap upto high loop orders [14 23]. Furthermore, the
link between A-coordinates and the singularities of the amplitudes was endowed with a
geometric interpretation with the discovery of cluster adjacecny[30, 132. With cluster
adjacency stating that consecutive singularities can only appear in the symbol if there exists
a cluster in which both letters appear.

In this section we review the details of the G(4;6) and G(4; 7) cluster algebras relevant
for 6 and 7 point amplitudes. This will set us up to reformulate the same ideas in the
new language of the (to be introduced) Grébner fan in the next chapter. In addition we
point out the complications which arise at 8 points and beyond due to the appearance of
non-rational square root letters in the symbol alphabet of 8-point scattering amplitudes,
and the fact that the set of A-coordinates ofG(4; 8) is no longer nite. We will return to
discuss both complications in detail in Chapter 12 of this thesis in the context of 6-point
scattering amplitudes with general kinematics.

10.1 The Grassmannian

The GrassmannianG(Kk; n) is the space ofk-planes inn dimensions. A point of which can be
speci ed by k many n-component vectors organised into & n matrix. These matrices are

91
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de ned up to row operations which leave the plane invariant, the resulting space of matrices
modulo GL (k) transformations is k(n k) dimensional.

Alternatively, the Grassmannian can be described through the set of, maximal minors
pi,:i, Or Plicker coordinates. On the set of Pllcker coordinates row operations act as an
overall scaling and, modulo this overall scaling, the vector of Plicker coordinates may be
thought of as a point in the projective spaceP(E) 1 However, an arbitrary point in p() 1
is not necessarily realisable as a matrix, since the set & k minors of anyk n matrix are
not independent, and instead obey homogenous quadratic relations known as the Pliicker
relations which take the form

Pis:ielirer ik Py e sz ik = 0 (10.1)

We call the ideal generated by the Plucker relations inside the ring of polynomials in the
Plucker coordinates the Plucker ideallx.,. The Grassmannian can then be thought as the
projective variety inside P(k) 1 whose points vanish on the Plicker ideal. We will discuss
this algebraic formulation of the Grassmannian in much detail in the next chapter. As an
example consider the case o6(2; n), whose Plicker ideal is generated by the relations

lo;n = o P PP + PuPk -1 i<j<k<l ni: (10.2)

In fact the Plicker relations are homogenous with respect ton independent rescalings
iy 7' tip it P, for ti 2 C . By modding out these local scalings we obtain the
(k 1)(n k 1) dimensional con guration space ofn points in Pk 1

Conf,(P* 1= G(k;n)=(C " 1) (10.3)

10.2 Cluster algebras

A cluster algebra, originally developed in P5 27], can be speci ed by a choice of initial
cluster encoded by a quiver diagram. Where a quiver diagram is a collection dactive and
frozen nodes, connected by arrows, with each node being assigned its owincoordinate.
As an example consider Figurel0.1 which depicts the cluster algebra forG(4;n): it has
m =3(n 5) active nodes andn frozen nodes indicated by the blue vertices. In addition to
the initial cluster there are also a set of mutation rules which detail how the quiver diagram
and A-coordinates of one cluster transform into another. In the case oh =6 and n =7 the
mutation rules generate nitely many clusters, hence nitely many A-coordinates, and are
referred to as being of nite type.
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h234
N

h1235 — hl236 B h23n 1i — hl 2 3ni
U N I .

h245 — hl256 B h2n 2n 1i — h2n 1ni
U NG I N

h1345 — hl456 B hn 3n 2n 1l — hln 2n 1ni
U N 1 N

h1234 34546 BN M 4n 3n 2n 1i m 3n 2n 1ni

Figure 10.1: The initial cluster of G(4;n).

The arrows of the quiver diagram are described by theexchange matrix b, with the elements
bj =(no. ofarrowsi! j) (no. of arrowsj ! i): (10.4)

Here the exchange matrix is skew-symmetric with indices running over all nodes (active
and frozen) and in the case 0fG(4; n) has dimension(m + n) (m + n). Note, we need not
record arrows between frozen nodes so the bottom righfn  n) submatrix of bis irrelevant.

By performing a mutation on any active node k we obtain a new cluster with the exchange

matrix 8

< . T N
0 = bj ifi=korj = k: (105)
" by +[ bklibg + bk[bg ]+ otherwise

with [x]+ = max(x; 0). Where the A-coordinate associated to the mutated node becomes

0 1 "v+n ny*
asz

n
[ bxl.

a : 10.6

a i (10.6)

i=1 i=1

ai[hk I

Given the initial cluster and mutation rules we can obtain the data for every other cluster
by repeated mutation on active nodes.

On top of the A-coordinates andb matrix we may assign additional data to the initial cluster.
We also have thecoe cient matrix , given by the (m m) identity matrix whose mutation
rules are given by

0 < Gjj ifj = k:
G =. _ (10.7)
"6 [ ckl+bg + ck[ bgls otherwise

Additionally, to each active node a; we associate theg-vector g;, the unit vector in the ith
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direction, which upon mutating on the k™ node transform as

0 X X 0
Ok = Okt [ bkl]+gi+ [Cik ]+ bj ; (10.8)
i=1 j=1

the initial cluster. By following these mutation rules each A-coordinate generated will be
associated to its own uniqueg-vector.

A cluster subalgebra of codimension-one consisting of all clusters containing a givei-
coordinate can be generated by searching for some cluster with the chosén-coordinate,
freezing it, and performing all possible mutations on the remaining active nodes. Similarly,
we can generate subalgbras of higher codimension by choosing some subset of coordinates
S, so long as they all appear in a single cluster together, freezing them, and performing all
mutations on the remaining active nodes to obtain a subalgebra of codimensiojgj. This
procedure terminates when we have speci ed alB(n  5) A-coordinates appearing in a single
cluster together i.e. a zero dimensional cluster algebra.

In the case where twoA-coordinates appear together in a cluster we call thermadjacent
otherwise we call themforbidden. The fact that some coordinates appear together in clusters
and others do not has been shown to have physical signi cance for scattering amplitudes.
Where in [30, 137 the notion of cluster adjacencywas introduced which can be summarised
as follows: two letters (A-coordinates) can appear adjacent in the symbol of the amplitude i
they appear in some cluster togetherThis can be used to signi cantly reduce the space of
integrable words needed in the amplitude bootstrap.

Note, the A-coordinates are not homogenous under rescaling the individual twistors and
hence do not strictly de ne coordinates onConf,,(P)3. However, we can instead de ne the
homogenousX -coordinates with respect to a cluster given by

Xj = ol ; (10.9)

where | labels an active node and runs over all nodes of the cluster. They have their own
mutation rules given by 8
< 1= k=1i;

:Xi 1+Xign(hk) bik k6 i:

0_

x0 = (10.10)

for mutations on nodei.

Since the X -coordinates range ovel0 < x < 1 , in the real case, they can be seen as de ning

a positive region in Conf, (RP%). This region can be visualised as a polytope whose facets
correspond to the codimension-one subalgebras described above. Where the boundaries
of the facets correspond to codimension-two subalgebras, and so on, all the way down to
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the vertices of the polytope, corresponding to the individual clusters or dimension zero
subalgebras. In this picture the X -coordinates are viewed agdge coordinatesin the sense
that they correspond to the edges connecting to each vertex/cluster where they run over
0<x < 1. Note, this is compatible with the fact that, under mutation along an edge
(10.10, the associatedX -coordinate inverts.

10.2.1  G(4;6)

Let us see the above de nitions at work in the simplest case of the cluster algebra associated
to G(4;6)'. The quiver diagram of the initial cluster is given in Figure 10:2 with the three
active coordinates

a; = h1235; ap,= hl245; az= hl345; (10.112)

together with the 6 frozen coordinates. The full list of 9 active coordinates are distributed
over 14 clusters connected in the topology of the Stashe o0iA3 polytope as depicted in
Figure 10.3

As mentioned each facet corresponds to the subalgebra obtained by freezing one of the active
coordinates: three square facets, oA; A; subalgebra, obtained by freezing e.ghl245,
and six pentagonal facets, orA, subalgebra, obtained by freezing e.ghl235. The clusters
appear as thel4 vertices of the polytope: where theA-coordinates contained in a cluster
correspond to the three facets which intersect at the given vertex. As an example the initial
cluster can be seen as top left vertex of the Stashe polytope highlighted in red.

The content of cluster adjacency is encoded by which facets share a codimension-two
subalgebra. As an example consider the adjacent paith1235 ; 245dg which share anA1
subalgebra corresponding to the shared edge in the intersection of the two facets. However,
the pair of square faces de ned byfh1245;hH235dg share no such boundary and are a
forbidden pair.

Note, the polytope depicted in 10.3 should not be thought simply in the abstract sense of
encoding the connections between clusters. But instead the interior, when restricting to
real momentum twistors, can be thought as the region inside the three-dimensional space
Confs(RP®?) where all the X -coordinates are strictly positive. Each vertex of the polytope
is then the origin in the set of X -coordinates de ned by the cluster. For example the
X -coordinates of the initial cluster are given by

_ h234h1256  _ h1235h1456  _ hl245h3456

*17 {1236h1245° 2~ M256h1345' 3~ 12345nh1458 (10.12)

The point (0;0;0) in the (X1;X2;X3) coordinate system de nes the vertex corresponding to

IMore correctly the cluster algebra is associated to Confs(P?) but we will continue to refer to the
Grassmannian.
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the initial cluster, with the X-coordinates running from0to 1 along the three connected
edges.

h1234

N
h235 — hl236

AN

h1245 — hl256

AN

h1345 — hl456

AN

h2345 345

Figure 10.2: The initial cluster of the G(4;6) cluster algebra.

Alternatively we can de ne the set of homogeneouddihedral coordinates given by

o = N+ 1ihi+1ji
Y ohjihi+ 1) + 10

O<u ij < 1; (10.13)

where the labelsi and j are separated by at least two. Here we have introduced the two
bracket notation which replaces the four brackets with their complements for example
h1234 ! h 56i. In the case ofn = 6 the dihedral coordinates form a complete set of nine
multiplicatively independent homogenous combinations of theA-coordinates. Hence, they
can be used as an alphabet for the construction of the hexagon polylogarithmic function
space.

h1245 h2356

h2456

Figure 10.3: The Stashe polytope with each face labelled with the correspondingA -
coordinate. The initial cluster corresponds to the top left vertex highlighted in red at the
intersection of the facesh1235, h1245 and h1345.
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10.2.2 G(4;7)

The initial cluster associated to G(4; 7) is depicted in Figure 10.4 By repeated mutation we
generate4?2 distinct active A-coordinates distributed over 833 clusters. With each cluster
containing six active nodes along with the seven frozen nodes.

h1234

N

h1235 — hl236 — hl237

N N

h1245 — hl256 — hl267

N N

h1345 — hl456 — hl567

N N

h2345 h3456 567

Figure 10.4: The initial cluster of the G(4;7) cluster algebra.

When the pair (k; n) is coprime the frozen coordinates of5(k; n) can be used to homogenise
the active A-coordinates [L9], such is the case at seven points, where we may construd?
homogenous letters in one-to-one correspondence with thd2 active A-coordinates. These
are given by the cyclic rotations of

- 23415672367 . 2342567
17 H237h1267h3456 ' 21~ h1267h2345
. his672347 _ tp457h3456
317 1123704567 417 12345n4567
_ hL(23)(45)(67)i _ hL(34)(56)(72)i
517 “11234n1567 361~ 1123401567 (10.14)

which serve as the symbol alphabet for the construction of heptagon amplitudes. In the
above we have introduced the notation

HL(23)(45)(67)i = h1234h5671 h 1235h4671: (10.15)

We may view the cluster algebra as the six-dimensionaEg polytope with 833vertices and42
codimension-one facets. Already at seven points it is not instructive to plot the entire cluster
algebra. However, we can still learn about the subalgebra structure by mutating the initial
cluster to the convenient form of the Eg Dynkin diagram topology given in Figure 10.5
This makes clear the possible codimension-one subalgebras that are contained within thes

cluster algebra: upon freezinga;z we obtain an As subalgebra; freezingay4 or azz generates
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a D5 subalgebra; freezingas; or as1 generates anA1 A4 subalgebra; nally freezing ag»
would generate anA; A, A, subalgebra. We may go further into the boundary structure
by considering adjacent pairs or codimension-two subalgebras. For instance the adjacent
pair fais; ag2g in the Eg cluster corresponds to anA, A, subalgebra.

As was already emphasised each cluster corresponds to a vertex of the polytope whose six
X -coordinates constitute a local coordinate system such that the vertex is at the origin.
The X-coordinates may then be associated with one-dimensional edges of the polytope
along which they range from0to 1 . The interior of the polytope is the region in which all

X -coordinates are positive.

ais

|

az4 asg as2 aq1 ass

Figure 10.5: By mutation the initial cluster of G(4;7) can be bought to the shape of an
Es Dynkin diagram.

10.2.3 G(4;8)

At 8 points and beyond complications arise due to the underlying cluster algebra no longer
being of nite type, and additional tools beyond that of the cluster algebra must be introduced
in order to extract information for the symbol alphabet of the corresponding amplitude.
There are two main reasons for this. First, the set of A-coordinates becomes in nite
which is not re ected by the nite set of letters needed to express say the two-loop NMHV
octagon [L34. Therefore, some truncation procedure, such as topicalization31 34], must
be introduced to select a preferred subset of-coordinates. Second, the symbol alphabet
starts to contain non-rational letters, with square roots appearing in the rst instance for the
two-loop NMHV octagon [134], the calculation of which revealed a set 0fL8 multiplicatively
independent square root letters. More recently, the calculation of the3-loop MHV octagon
[135 revealed the same set 018 algebraic letters along with an additional 24 rational letters.

Both issues were dealt with in B1] where the set of180 rational letters of the two-loop
NMHYV octagon were recovered as rays ofrop* (l4.), along with the 18 algebraic letters,
associated to specialimit rays arising from in nite a ne sequences of mutations within
the cluster algebra. Note, the additional 24 letters of the 3-loop MHV ampliutde were also
covered by the predictions of B1]. Many other closely related approaches have been applied
to the eight point case including plabic graphs, scattering diagrams to name a fewl36 139.

In Chapter 11 we will use a new technique, which can be seen as a generalisation of the
tropical approach, to extract the A-coordinates of G(4;6) and G(4;7) along with their
adjacency rules. Furthermore, in Chapter12 we will review the methods used in B1] for
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extracting square-root letters from in nite a ne sequences in the more general setting of
non dual conformal invariant 6-point kinematics.

10.3 Cluster Adjacency

The condition of cluster adjacency, initially proposed in [30], can be phrased as followstwo
A-coordinates may appear adjacent in the symbol i they appear together in some cluster.
This extends the role cluster algebras have to play in describing the analytic structure of
scattering amplitudes beyond simply the union of their A-coordinates and endows them
with a geometric signi cance. In the language of the cluster polytope a pair ofA-coordinates
are adjacent if their corresponding facets share a codimension-two boundary.

Note, the adjacency conditions are de ned on the inhomogeneouA -coordinates. Whereas
the amplitudes are dual conformal invariant polylogarithmic functions on Conf, (P3) whose
symbol is written in terms of homogeneous multiplicative combinations of theA-coordinates.
However, these combinations can be expanded usinfP.45 and (9.46) after which the

adjacency conditions can be applied.

The conditions imposed by cluster adjacency are similar in spirit to that of the Steinmann
relations. The Steinmann relations state that the double discontinuity of the (BDS-like

normalised) amplitude must vanish when taken in overlapping channels, for the three-particle
Mandelstams this can be summarised as

Discg; ., ., (DisCs;; 1,, B0)=0; 8j =1 Li 2 (10.16)

Since, at the level of the symbol, the discontinuity around some lettera = 0 is obtained by
isolating all terms beginning with a and chopping it o, the Steinmann relations can be seen
as placing constraints on the letters which can appear adjacently in the rst two slots of
the symbol. The importance of these relations in constraining the symbol of hexagon and
heptagon amplitudes has been emphasised 2], 22, 14Q.

In fact analogous constraints, the extended Steinmann relation 141], exist for adjacent slots
all along the symbol. These extended relations are closely connected with the notion of
cluster adjacency, with cluster adjacency implying the (exteneded) Steinmann relations, and
(at six and seven points) the extended Steinmann relations together with the physical initial
entry condition implying cluster adjacency.

At six points the adjacency conditions are best phrased by making use of the identi cation
of Confs(P3) with Confg(P1). At the level of Pliicker coordinates this is achieved by
identifying the ordered four bracket hjkl i with the ordered two bracket hnmi, where
fn,mg=f1;2;3;4,;5;6gnfi;j;k;| gand n <m, which in turn can be identi ed with a chord

of the hexagon. In this way each cluster of theAs polytope can be seen as representing a
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triangulation of the hexagon.

Figure 10.6: The three crossing chords corresponding to the square facets of the Stashe
polytope which each are never found in some cluster together.

In this language the statement of cluster adjacency becomes: two coordinates are forbidden
(do not appear in a cluster together) i their corresponding chords intersect. As an example
consider the three square facets of the Stashe polytope, corresponding to the crossing
chords displayed in Figure 10.6, all of which are mutually forbidden pairs. Note, a similar
statement of adjacency holds more generally for the Grassmannians(2; n) and chords of
the n-gon.

In the case ofG(4; 7), and more generallyG(k; n) for (k;n) coprime, we are able to use the
frozen coordinates to homogenise the activé -coordinate, and since the frozen coordinates
appear in every cluster they cannot possibly spoil cluster adjacency. Therefore, cluster
adjacency can be phrased directly on the42 homogenous combinations de ned in(10.14).
The full set of adjacency conditions forG(4; 7) were found in [30]. In particular out of the
903 pairs f ajj ; ay g which can be constructed from the42 letter alphabet 441 are adjacent
and 462 are forbidden. We will see the 462 forbidden pairs arising in another context in the

next chapter.
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Adjacency from the Grdbner fan

In this chapter we wish to reformulate the results of the last section in the new language
of the Grébner fan. This is inspired by the recent success of the application of Tropical
geometry to scattering amplitudes B1 34], which the Grébner fan can be thought as a
generalisation of, and results from the mathematics literature B5, 36].

Our goal will be to extract the set of A-coordinates andforbidden pairs from the Grobner
fan of the Plucker ideal GF(lx.n). As we will see theA-coordinates will be encoded as
non-prime factors of initial ideals associated to maximal cones of the positive tropical fan
Trop™ (Ix:n). Whereas, the forbidden pairs will be extracted from a single maximal Grébner
cone obtained after extending the Plicker ideal to the full set ofA-coordinates. We will
demonstrate these techniques foiG(3; n) for n = 6;7; 8 and discuss the possible outlook to
the n =8 case. This is of particular relevance forG(3; 7) whose adjacency conditions dictate
the structure of planar N =4 SYM amplitude symbols.

A bene t of this construction over the cluster approach is that it is very general, we can
compute the Grobner fan for any polynomial ideal we wish to write down. This poses the
exciting question of whether similar techniques may be applied to scattering processes whose
kinematics are not governed by the Grassmannian i.e. where dual-conformal symmetry is
no longer present. We present an application of the Grobner fan to non-dual conformal
invariant 5-point massless scattering, where we will recover the entire non-planar alphabet
Anp Of [40], which we hope serves as a motivation to study the connection between Grébner
theory and scattering amplitudes.

11.1 Groébner and Tropical fans

As was discussed at the beginning of Chapte?? the Grassmannian can be thought as the
projective variety inside P(d) 1 whose points vanish on the Plicker ideal y.,. As an example

101
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the G(2;n) Plicker Ideal is generated by the relations
l2n = Mj P PPy + PPk 1 i<j<k<I ni: (11.1)

Using this general viewpoint of the Grassmannian as an ideal generated by polynomial
relations we can introduce a fan structure onR() known as the Grobner fan [L42. But, to
begin to understand the structure of the Grobner fan we must rst introduce the notion of
monomial orderings, initial ideals, and Grébner bases our presentation of which follows that
of [35].

Xt iiix,". Given some weight vectorw 2 R" we can de ne the initial form of f with

respect to w as X

ing(f) = CX; (11.3)

~. - WwW=m
wherem = minf~ w: c. 6 0g. Furthermore, given an ideal | K[X1;:::;Xn], we can
de ne its initial ideal with respect to w as the ideal generated by the initial forms of all
functions f 2 | written as
ing(1) = hny(f):f 2 1i: (11.4)

inw(l1) = hng(g) : g 2 Gi we call G a Grobner basisof | with respect to w.

The next de nition we need is that of a monomial order. A monomial order < on the set of

i)l x7;
i)ifx <x =) xTT<x
This allows us to de ne the leading monomial of the polynomialf asin<(f)= c.x , where

X is the leading monomial with respect to< appearing inf with non-zero coe cient i.e.
X = max<fx~ :c. 6 0g. Similarly, we can de ne the initial ideal of | with respect to < as

inc(1)= hinc(f): f 2 1i: (11.5)

Note, we may always choose some weight vecto® 2 R" such that iny(l) = in<(l). The
converse is not generally true however.
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By varying the weight vector w we may study all possible initial ideals ofl . This leads us
to the notion of the Grébner fan GF (1) on R" as follows: two weight vectorsw; and w» lie
in the relative interior of the same coneC if and only if iny, (1) = inw,(l) i.e. they generate
the same initial ideal. Note, each full-dimensional (maximal) Grébner cone is associated to
a monomial initial ideal speci ed by some monomial order<, consisting of all weight vectors
w 2 R" such that iny (1) = in<(l). A weight vector will lie on the boundary of a maximal
cone when the associated initial ideal is no longer monomial. It is this collection of maximal
Grobner cones, together with their intersections, which we call the Grobner fanGF (1).

Note, we are always free to shift a weight vector by any element of the the lineality space of
the Grébner fan GF (1) without altering the initial ideal, where the lineality space is de ned
as the linear subspace containing all elementt such that in (1) = I.

We will also be interested in interesting subfans of the Grobner fan, the rst being the
tropical fan Trop (1) de ned as the subfan

Trop(l)= fw2 R" :iny(l) contains no monomiab: (11.6)
We may restrict further and de ne the totally positive tropical fan Trop *(l) given by
Trop™ (1) = fw2 Trop(l) : iny(l) is totally positive g; 11.7)

where anideall  R[x1;:::;Xp]Iis calledtotally positive if it does not contain any polynomial
with all positive coe cients.

The above discussion is most easily demonstrated with an example, the simplest case being
G(2;4), whose Plicker ideal is generated by a single polynomial

l2.4 = hP1oP3a  P13P2a+ P1aPosi  RIP12; Pi3; P14; P23; P24; P3al: (11.8)

Let w = (W12, W13; Wi4; Wo3; Wog; Wag) 2 R® @and f = p1opas  Paspaa + PraPzs Which being
the sole generator ofl 2.4 constitutes a Grobner basis for any choice of weight vectom. A

suitable choice of lineality shift. The resulting Grobner fan GF (l,.4) is depicted in the

(x;y) plane in Figure 11.1. The Grobner fan GF (12.4) consists of three maximal cones
labelled by the monomial initial ideals hp12p34i, Mp13p24i and hpy4p23i. The maximal cones
intersect to give the three rays of the tropical fan Trop (1 2:4) given by e;2 = (1;0), e13=(0;1)

and e;4 = ( 1; 1), whose corresponding binomial initial ideals arehpisp2z  p13p24i,

hp12P34 + P1aPesi and hpiopssa  pispai. The positive part of the tropical fan Trop™ (12:.4)

consists of the raysei;> = (1;0) and ez4 = ( 1; 1) highlighted in red whose generators
contain terms of opposite sign, the raye;3 = (0; 1) is not contained in Trop™ (12.4) since it is

generated by a polynomial with all positive coe cients.
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y
hP12P34 + PraP23i B
X

| MP1apesi
hp12Psai _
hp1ap23  P13P24i

hp13P24i
hp1oP3sa  P13p2si

Figure 11.1: The Grobner fan structure of GF (I 2.4) with each region labelled by its initial
ideal. Each point in the (x;y) plane corresponds to a4-dimensional linear subspace of
R® consisting of all weight vectors lineality equivelent to (x;y; 0;0; 0;0). The tropical fan
corresponds to the three rays, whilst the positive tropical fan corresponds to the two red
rays.

11.1.1 Forbidden pairs and A-coordinates

Moving forward the nal de nition needed is that of a prime (or alternatively non-prime)

ideal. Anideal | is non-prime if there exists two polynomialsf 62 and g 62 such that their
product f g2 I. In this case we callf and g non-prime factors ofl. Note, a non-prime
ideal can always be decomposed into the intersection of nitely many prime components.

With all the necessary material reviewed let us remind ourselves of our goal: to extract (at
least in the nite cases) the A-coordinates and adjacency relations of the Grassmannian
cluster algebrasG(k; n) from the Grobner fan of the Pliicker ideal GF (I.,), which in the
case ofG(4; 6) and G(4; 7) provide vital information for the amplitude bootstrap in the form

of the symbol alphabet and adjacency rules. Such ideas were rst presented ir8}] for the
caseG(2;n) and G(3; 6) and more generally for any cluster algebra of geometric nite type
in [36].

A-coordinates: The Plicker ideal is de ned on the E Plucker coordinatesp,;..i, . In the

case of the Grassmannian$(2; n) these make up the full set ofA-coordinates. However,
for G(3;6), and more importantly G(3;7) relevant for heptagon amplitudes, A-coordinates
guadratic in the Pluckers start to appear. As we shall explain thesemissing A -coordinates

appear as non-prime factors of initial ideals inside the maximal cones of Trop(lk:n)-

Forbidden pairs:  Generally, the rays of the positive tropical fan Trop™ (I«.n) will span
multiple maximal Grébner cones. That is to say taking a suitably general weight vector w
lying in the span of the rays of Trop* (1.n) we will generate multiple monomial initial ideals.
However, upon extending the ideal by the missingA-coordinates the rays of Trop ™ (I ,f;xrf)
resolve to span a single maximal Grobner cone. The initial ideal of this maximal Grébner cone
provides us with a list of monomials which are exactly the forbidden pairs ofA-coordinates.

LA weight vector not lying in the intersection of maximal cones of the Grébner fan.
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Note, in the case ofG(2;n) all A-coordinates are present already foll ., and no extension
procedure is needed.

In the remainder of this section we review these ideas for the case @(2;5). Later in
Section 11.3we return to the case ofG(3;6), already presented in B5], and further apply
this discussion to G(3; 7) relevant for heptagon amplitudes. We also discuss the remaining
nite case G(3;8) and comment on the outlook beyond the nite type Grassmannians.

11.1.2  GF(l2s)

We conclude this section with the example ofG(2;5). In the space of Plicker coordinates

Pij Pk PPt PPk =0; 1 i<j<k<l 5: (11.9)

The Grobner fan GF (l2:5) is simplicial, containing 132 maximal cone and twenty rays,
arranging the coordinates in lexicographic order

f W12, Wi13; Wi4; W1s; Wo3; Waa; Was; W3ag; Was; Wasg; (11.10)
they are de ned as

ei2 = (1;0;0;0;0;0;0; 0; 0;0) ;

es5 = (0,0;0;0;0;0;0;0;0; 1); (11.11)

along with ten more given by ¢; .

There are 60 cones with fourg; vertices and one g vertex and 60 more with three e;
vertices and two g vertices. The teneg; vectors de ned above make up the rays of the
tropical fan, they are connected in a Petersen graph topology shown in Figuré1.2 The
positive tropical fan contains the ve rays the e +1 highlighted in red.

There is exactly oné Grobner cone spanned by the ve raysfeis; €3; €34, €45, €159 Of
Trop™ (Ik:n). This cone has a Grobner basis whose initial monomials are the crossing
chords (forbidden pairs) of the pentagon, i.e.pi3p24 and cyclic. Therefore, from Grébner
theory, we have recovered the important (for amplitudes) content of the G(2;5) cluster
algebra i.e. the set of forbidden pairs ofA -coordinates!

The case ofG(2; n) was studied in detail in [35], where this construction was shown to hold
for all n i.e. the rays of the positive tropical fan span a single maximal Grébner cone, whose

'There are eleven other maximal cones with all ve vertices among the fe; g, corresponding to permuta-
tions of the above positive cone (i.e. di erent positive regions for other choices of ordering).
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€35

€24 A €14

€13 €25

Figure 11.2: The tropical fan Trop(l2:5) and its positive part highlighted red.

initial ideal is generated by the crossing chords of then-gon, let us emphasise again these
are exactly the set of forbidden pairs ofA-coordinates for the G(2; n) cluster algebra. As
was shown there for the case of5(3;6), and we shall explain in Section11.3 this is not the
case generally. Instead to identify a single maximal Grébner cone, whose rays are given by
the positive tropical part, the ideal must rst be extended by the missing A-coordinates. In
the next chapter we take a brief aside to describe how the positive tropical fan is calculated
in practice before returning to this issue of missingA-coordinates.

11.2 Trop *(ln) from the web matrix

In practice it is only possible to compute the entire Grobner fan for the most simple of
cases. Therefore, it is highly desirable to have an e cient route to calculating the positive
tropical part Trop™ (l.n) directly without having it embedded in the entire Grobner fan.
In this section we review the methods of 43 on this direct construction. For a detailed
discussion of this procedure and the structure of the resulting fans se€ 44, 145. The cases
of interest will be Gr(3;n) for n =6;7;8 which along with Gr(2;n) make up the nite type
Grassmannian cluster algebras.

Generally, the G(k; n) initial cluster has the formofa (k 1) (n k 1) array of active
nodes, in addition to k many frozen nodes, each labelled by ai-coordinate. An example of
the initial cluster for the case of G(2;5) is given in Figure 11.3 Alternatively, we may instead
assign to each active node & -coordinate, given by the product of incoming A-coordinates
over the product of the outgoing, which again organise themselves into ¢k 1) (n k 1)
array with elements Xs.

Using X;s we can de ne thek n web matrix W& = (1,jM). Where M is given by the
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k (n k) matrix elements

i X by iy
mj =( 1)"7 Xrs; (11.12)
~2Yij r=1 s=1
with the summation range Yj given by O K i o 1 j 1. The web matrix thus

allows us to evaluate allA-coordinates as subtraction free polynomials in theX -coordinates
by identifying the Pliicker coordinates with the maximal minors of the web matrix i.e.

Pi; i = det( W|(1kn)| J(Xrs) (11.13)
where W) is understood as the matrix formed fromw ") by taking columns i :: :iy.
ht 2i
N
M3 — 4 —[ ms |
N N
s | | 4 | | ms |

Figure 11.3: The initial cluster of G(2;5).

Let us demonstrate this with the example of G(2;5) whose initial cluster is depicted in
Figure 11.3from which we can read o the X -coordinates, they are given by

h12ih34i hl3h45
X11= Hiain2g X12= (5ainig - (11.14)
This in turn de nes the web matrix to be
#
wes= 1 0 1 1 xun 1 Xn XuXp (11.15)

1 1 1

By identifying the Plicker coordinates pj with the maximal minor formed by columns i
andj of the web matrix as
pi = det( W) (xu1; x12); (11.16)

we immediately arrive at an expression for allA-coordinates as subtraction free polynomials
in the X -coordinates. As an example we have

Pos = X11 + X12X22;

We can now continue in tropicalizing the expressions for theA -coordinates, which amounts
to + and begin replaced by their tropical counterparts min and +. The tropical version
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of the above Pllcker is given by
P25 = MiN(X11; %11 + X12) ; (11.17)

where p and x are used to emphasise that we are dealing with tropical expressions. This
tropical expression de nes a piece-wise linear map ofix11; X12), with regions of linearity
separated by tropical hypersurfaces, and as such provide a fan structure ofx11;x12). For
example the tropical hypersurface ofpys is given by

X12 = 0: (11.18)

By tropicalizing di erent subsets of the A-coordinates we can de ne di erent tropical
fans given by the common re nement of all fans in the subset of tropical expressions. In
practice we calculate the re nement of the tropical fan for a subset,S, of A-coordinates
via the Minkowski sum of their Newton polytopes. The tropical expressions for the frozen
coordinates do not contain any tropical hypersurface and hence do not contribute to the
structure of the fan.

Our focus will be on two fans in particular: the Speyer-Williams fan [L43, obtained by
tropicalizing the set of all Pliickers coordinates; and the cluster fan, where we choose
to tropicalise the entire set of A-coordinates. Note, for the case ofG(2;n) the Plucker
coordinates themselves make up the entire set of\-coordinates and hence the Speyer-
Williams and cluster fans coincide. However, when considerings(3;6), A-coordinates
guadratic in the Plickers begin to appear and hence the structure of the two fans begin to
dier.

11.2.1 Trop *(l25)

Let us nish the example of Trop™ (I25). The G(2;5) web matrix, written in (11.15, allows
us to write the 10 Plicker variables pj in terms of the two X -coordinates(x11; X12) as

Pui = p23=1; P2a =1+ Xi1; P25 = 1+ Xi11+ X11X12;

P34 = X11; P3s = X11 + X11X12; Pas = X11X12: (11.19)

Taking these expressions as the input to the Minkowski sum operation offan [146 we
obtain Trop™ (I12:5). The resulting fan is depicted in Figure 11.4. It has ve regions of
linearity whose boundaries are given by the ve rays

f(1;0);(0;1);( 1,0);(0; 1);(1; 1o

Note, the tropical fan as described above is parameterised in the space of tHex11; %12)
variabels. However, as discussed inlfi4, 145, we can map the ve rays above to those
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presented in Section11.1.2 by taking the scalar product of the unit vectors g; with the
vector of tropicalized Plicker coordinates i.e.

X
(%11;%12) 7! B (%11, %12) € : (11.20)
1i¢ 5

The ve rays given above up to lineality map to fejs; e45; €23; €15; €349. In particular, the
regions between the rays of Figurel1l.4 map to the red edges between the corresponding
rays in Figure 11.2

X11

Figure 11.4: The tropical fan Trop™ (I 2:5).

11.3 Adjacency from the Grobner fan

As emphasised already in the case d&(2;n) the Speyer-Williams and cluster fan coincide
since the full set of A-coordinates are given solely by the Pluckers. But for the remaining
nite type Grassmannians this is no longer the case. In this section we wish to begin with
the Speyer-Williams fan, by tropicalizing only the Plicker coordinates, and see where the
additional information of the missing A-coordinates and adjacency conditions is hidden
inside the structure of Trop™ (Ix.n) and GF (I.n). Note, these questions were originally
asked in B5] and later extended in [36]. Before we begin let us remind ourselves where we
nd this additional information:

A-coordinates : The missing A-coordinates appear as non-prime factors in the initial ideals
of maximal cones of Trop (I ).

Frobidden pairs : Upon extending the ideal by the missingA-coordinates the rays of
Trop™ (Ix:n) Span a single maximal Grébner cone. The initial ideal of this maximal Grébner
cone, of the extended ideal, provides us with a list of monomials which are exactly the
forbidden pairs of A-coordinates.
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11.31 G(3;6)

The case ofG(3;6) was covered in detail in B5] we review here the relevant discussion and
provide additional detail on the calculation. The Plicker ldeal |36 is generated by three
and four-terms relations of the form

P123P145 + P125P134  P124P13s =0;::: (11.21)
P123Pase  Pi1seP23a + P1aeP23s  PrasPze = 0;::: (11.22)

in the ring of polynomials in the 20 Plicker coordinatespjx . We obtain the Speyer-Williams
[143 fan by tropoicalizing all Plucker coordinates as explained in the last section. The
positive tropical fan is spanned by 16 rays given by

(1;0;0;0); ( 1,0,0,0); 1; 1,0,0); 0;0;1; 1);
(0; 1;0; 0); (0; 1,0,0); (1;0; 1;0); ( 1,0,0;1);
(0;0; 1; 0); (0;0; 1;0); (1;0;0; 1); 0;1,1; 1)
(0;0;0; 1); (0;0;0; 1); (0;1;0; 1); (1, 1, 1,0); (11.23)

in x space with the ordering (x11; %21; ¥12; ¥22). The maximal cones of the fan are four-
dimensional regions within which all minors are linear, which can be intersected with
the unit sphere to produce 3-dimensional facets of a polyhedral complex. The fan had8
maximal facets given by46 terahedra and 2 bipyramids. They themselves have2-dimensional
boundaries corresponding to some minor being between two regions of linearity. There are
98 of these 2-dimensional boundaries, which themselves are bounded b6 edges, which are
further bounded by 16 points. The 16 points correspond to the intersection of the rays in
(11.23 with the unit sphere. This information can be summarised by thef -vector given by
f3.6 = (16; 66, 98;48). Sometimes we would also like to keep information on the number of
vertices of each facet, for this we use the notation

f36 = (161;667; 983; 464 + 255);

where we understand the right most element asi6 tetrahedrons (4-vertex objects) and two,
non-simplicial, bipyramids (5-vertex objects).

In contrast with the G(2;n) case, the Speyer-Williams fan does not single out an individual
maximal Grobner cone of GF(l3:). In fact, calculating initial ideals inside the span of the
16 positive rays of Trop™ (13.6) we nd 9 maximal Grébner cones. However, as shown in3p),
we can resolve the positive tropical part into a single maximal Grobner cone by extending
the ideal. To decide how to extend the ideal we search the maximal non-prime cones of
Trop™ (13:6) which will provide for us the missing A-coordinates as non-prime factors.
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Let us now describe this resolution in detail. Out of the 48 maximal cones only2 are
associated with non-prime initial ideals. They are given by two bipyramids each of which
are spanned byb5 rays given by

by = sparf( 1,0;0;1);(0;0;1,0);( 1,0;0;0);(0;1,0,0);(0;1,1;, 1)g
:= sparf by; bio; bi3:byg; bisg;
bp = sparf(1; 1; 1;0);(1;0; 1;0);(1; 1;0;0);(0;0;0; 1);(1;0,0; 1)g
= sparf bp1; bpo; bpaibpg; psg: (11.24)

The Grobner fan structure GF(l 3:6) splits each bipyramid into a collection of three tetrahedra,
each with its own initial ideal, by introducing an additional edge between the poles of the
bipyramids as indicated in Figure 11.5 This can be viewed as each bipyramid intersecting
three of the nine maximal Grébner cones spanned by the rays ofrop™ (13.6). The three

non-prime initial ideals generated insideb; can be written as the intersection of two prime

ideals as

N nforg(13:6) = NNpnfong(l3:6) [ MaiVh ing nep,g(13:6) [T P2seP13a  P234aPisegi;
iNgnforzg(13:6) = NNppnfosg(l3:6) [ MaiVh ing nep,g(13:6) [T P12aP3se  P123Pasegi;
N nforag(13:6) = NNpnfoag(l3:6) [ MaiVh ing ey, g(13:6) [T P126P3as  P125P34sgi:

bis P126 P345 P125 P346 P124 P3s6 P123 P4s6 P256 P134 P234 P156

Figure 11.5: The bipyramid by inside Trop™ (I3), on the left hand we have the full
bipyramid with its 5 rays, on the right the bipyramid is split into three tetrahedra by the
structure of the Grébner fan. Each tetrahedron is labelled by the quadratic hon-prime
factor found in the initial ideal, note all three expressions are equivalent modulo the Plicker
relations.

Similarly for b, we have the cyclic copy of the above given by

iNpnfbyg(l3:6) = NNp,ntp,g(l3:6) [ M2iVh ing, e, g(13:6) [T PrasPess  P123Pasedi;
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iNp,nfbysg(13:6) = MNpyntpygg(13:6) [ M2iVh iNp, e, g(13:6) [T P136P245s  Pr26P34sgi;
iNpnfbyag(13:6) = NNp,nep,ag(l3:6) [ M2iVh ing, e, g(13:6) [T P1ssP2za  PrasPssgi:

Where we understand for instanceing, ntp,,, o(13:6) as the initial ideal of 136 associated to the
cone spanned by the raydy n fby1g and we have de ned the sets of monomials

M1 = fp2ss; P236; P24s; P24s; P135; P136; P145; P1460;

M2 = fp124; P125; P134; P135; P246; P256; P346; P3560:

Most importantly notice the three quadratic non-prime factors appearing in each cone
modulo the Plicker ideal are equivalent to either

P12[34156 O P23[45161; (11.25)

where we have de nedpj jujmn = Piji Pkmn  Pijk Pmn - These are exactly the two missing
A-coordinates, which along with the 14 monomials contained inM1 [ M2, make up the full
set of active A-coordinates!

b1y

b1z bia = +

b1s

Figure 11.6: The bipyramid b; now depicted insideTrop*(Ig;e), on the right hand side
the bipyramid is split into two tetrahedra by the structure of the Grébner fan both of which
are associated to prime ideals.

Extending the Plucker ideal as

196 =136 \hth  Pioapsi  RIP123;1:1; Pase; tl; (11.26)

de nes a new ideal and hence a new Grtbner farGF(Ig;e). The positive tropical fan
Trop™ (|g{6) has the f -vector given by frgﬁ = (161;66p;99;; 48, + 15) which now contains
only a single non-prime bipyramid. The transition from f 3.6 to fge can be seen as adding a
triangle to the equator of the bipyramid by as shown in Figure11.6 which now splits into
two terahedra with prime initial ideals. Note, also the rays of Trop™* (I ??;6) now span only 3
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maximal Grobner cones.

Extending the ideal further as
196 =196 \N®  Posuseri  RIP123; i1 ; Pase; Gu; l; (11.27)

de nes yet again a new Grobner fanGF (15§) whose positive tropical part Trop™ (15%)
is simplicial, with fg%t = (161; 66; 1003; 504), and contains no non-prime maximal cones.
Again this can be viewed as adding a triangle to bipyramidi,.

Furthermore, the rays of Trop ™ (I g;xg) now span a single maximal Grébner cone whose initial
ideal is generated by

f 0LOp; P1240k; P1250k; P134Ck; P135Ch; P135Ck; P124P135; P136Ch ; P124P136; P125P136; P1450h; P146Ch; P125P146;
P135P146; P2350; P124P235; P134P235; P146P235; P23601; P124P236, P125P236; P134P236; P135P236: P145P2365
P245Ch ; P134P245; P135P245; P136P245; P24601; P2460k; P125P246; P134P246; P135P246; P136P246, P145P2465
P235P246; P2560k; P134P256; P135P256; P136P256; P145P256, P146P256; P34602; P125P346; P135P346; P145P346;

P235P346; P245P346,; P3560k; P124P356, P145P356, P146P356, P245P356, P246P3560;

which are exactly the 54 forbidden pairs of A-coordinates!

1132 G(3;7)

We now go beyond the results of 35 and considerG(3; 7). Again to obtain the Speyer-

Williams fan for G(3;7) we tropicalise the 35 Pliicker coordinates. In the space of variables
(%11; %12; ¥13; %21, %22, X¥23) the positive Tropical fan is spanned by42 rays with 6-dimensional

maximal cones. The structure of the fan is summarised by

f37=1(1,42 392 1463 2583 2163 595 + 637 + 285 + 7 9);

where we have included the information on the number of vertices for the maximal cones
only.

We begin the search for the missingA-coordinates by calculating the initial ideals associated
to the 79 maximal cones. Selecting one of th@ nine-vertex maximal cones we nd its initial
ideal is non-prime and contains in particular the non-prime factors

f P12[341673 Pe7[12)45: P12[35]679;

with the remaining 6 maximal cones providing us with their cyclic copies®. In total we nd

!Note, the rst and second variables are already cyclic copies of one another.



114 Chapter 11. Adjacency from the Grobner fan

all 14 missing quadratic A-coordinates:

Os1 = Pi2pa456 @nd cyclic;

061 = Pei23pas and cyclic; (11.28)

appearing as non-prime factors of the7g maximal cones. By extending the ideal by all14
variables as

159 = 137\h 61 Proaapseii:1;067  Pseprzjaal RIP123; 0115 Ps67; 1 ii1 07l (11.29)
the positive tropical fan Trop * (I 3‘?;)(}) becomes simplicial with thef -vector
f§’§t =(421;39%;1547%; 2856,; 249%; 833%):

Moreover, the rays of Trop™ (I §;X7t) span a single maximal Grobner cone whose initial ideal
gives us the list of 462 forbidden neighboursrelevant for the symbol alphabet of heptagon
amplitudes.

11.3.3 G(3;8)

In the space of variables(x11; ¥12; ¥13; ¥14; %21; %22; %23, %¥24) the positive tropical Speyer-
Williams fan is spanned by 120rays with 8-dimensional maximal cones. The structure of
the fan is summarised by

fa.g =(1;120,2072 14088 48544 93104 10085257768 13612)
with the maximal cones given by
9672 + 16969 + 10921 + 48011 + 41612 + 10413+ 8814+ 3215 + 2416+ 817:

At this point the calculations become cumbersome, so let us emphasise the main di erences
to the previous two cases. First, there are 8 moréA-coordinates than there are rays of the
Speyer-Williams fan, which must appear when we begin to extend the ideal. Second, the
A-coordinates not only contain expressions quadratic in the Pliicker but also contain cubic
expressions given by

f P12134j5[6 7189 P12[35]8[67145) P12[348]677359 @nd cylic; (11.30)

where we have made the de nitionpjj jijmpnrjst = Pil Pminrist  Pijk Pim [nr Jst-

Lets's start by addressing the missing rays. By searching as before a sing87 cone we nd
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the following 6 non-prime factors

f Pg1[23)45: Pa1[23)46: Pse[78]141 Ps6[78]23; P23[45]71; P23[46]719" (11.31)

With the remaining cones providing their cyclic copies. Note, this is only 48=56 of the
missing quadratic A-coordinates ofG(3; 8), we are still missing the cyclic copies 0P,3j45)71,
this is in correspondence with the8 missing rays mentioned earlier. However, extending the
ideal by the 6 factors' of (11.31) and calculating the Trop* part generates one new ray!
With the structure of the maximal cones now becoming

11454 + 16969 + 97119+ 41211 + 32812 + 8913+ 6914+ 2815+ 1716+ 7 17:

Which as we can see has borken up one of th&7-vertex maximal cones. An interesting
question to ask is which of the maximal cones contain the new ray. They are given by

2705 +709+4610+ 1811 +10120+ 413+ 2 14:

By searching inside the2;4 cones we nd the extra quadratic factors pse71123 and Pgij24s6:

whose cyclic copies are thé8 remaining A-coordinates. We can repeat this procedure for
each cyclic copy of(11.31) to nd the 8 missing rays of the cluster fan and all quadratic
A-coordinates:

f Pg1[2345: Pe1[23146: Ps6[78]14: Ps6[78]23: P23[45]71: P23ja6]71; Psep71j23d + Cyclic: (11.32)

It would be interesting to understand whether such quadratics can be found without rst
extending the ideal.

We now move to a brief discussion of the missing cubic coordinates. First, we note that
a preliminary search of the fanTrop™ (I3.7) provided us with no cubic non-prime factors.
However, by adding in all 56 quadratic we would expect the cubicA-coordinates to appear
as non-prime factors quadratic now in the full set of A-coordinates. After extending the
ideal with the missing cubics the results of B6], applying to any nite cluster algebra of
geometric type, tell us that we would again see the rays offrop ™ (| §f§) spanning a single
maximal Grobner cone whose initial ideal is generated by the forbidden pairs of the cluster
algebra. We did not perform this calculation here due to the computational complexity, and
the fact that G(3;8) is not relevant for N =4 SYM amplitudes. A more detailed exploration
of this in the future would be interesting since it might provide an insight to the in nite
case ofG(4; 8).

The N =4 pSYM octagon alphabet is known to contain non-rational square root letters,

1We do not add all 6 8 cyclic copies at once as this slows down the computation. However, upon adding
all 48 quadratics we would generate a fan with 128 rays, the same number asA-coordinates.
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accounted within the cluster algebra by considering coordinates associated ttmit rays,
arising from the limit of particular a ne mutation sequences inside the G(4;8) cluster
algebra, as described in more detail in the next chapter. It would be interesting to study
this phenomenon through the lens of the Grobner fan.

11.4 Beyond the Grassmannian

So far our discussion has been focused on extractily-coordinates and adjacency rules from
the Grébner fan of the Plucker ideal for the nite type Grassmannians G(3;n) forn =6;7;8.
In fact, in [ 3€], this procedure was shown to work more generally for any geometric cluster
algebra of nite type. However, what we are most interested in is how much physical
information can be extracted from the Grobner fan. For the cases of5(4;6) and G(4;7)
the answer is the entire symbol alphabet and adjacency rules relevant for constructing the
hexagon and heptagon amplitudes oN =4 SYM. This motivates the question of whether
the Grobner fan provides a useful tool for the study of other kinematic ideals beyond the
dual-conformal invariant case?

In this section we hope to provide a positive answer to this question by considering the
example of non dual conformal invariant 5-point massless scattering. Even in this more
generalised case much of the discussion from Secti@4 follows. Such amplitudes/integals
may still be expressed in terms of polylogarithmic functions to which we can still associate
a symbol and an alphabet. In fact, at two loops all functions relevant for two-loop planar
ve-particle scattering were computed in [37], leading to the 26 letter alphabet A,. This was
later extended to 31 letters relevant for the non-planar caseAnp in [40] where it was used to
bootstrap individual two-loop Feynman integrals.

The goal of this section is to demonstrate how asimilar exploration of the Grébner fan
associated to the ve-point kinematic ideal Is,; can generate theentire non-planar alphabet
relevant for constructing (at least at two loops) ve-point massless amplitudes/integrals.
Note, we do in fact miss one symbol letterWs;. However, the failure to recover Wy
is consistent with the various calculations made for ve point processes, where it has
been observed to be absent from (the suitably de ned nite part of) the two-loop N =4
SYM [147, 148 and N =8 SUGRA [149 150 amplitudes at two-loops. Similar two-loop
observations have been made for theyq ! [15]] and gluon amplitudes [L52, 153 in
QCD.

It is important to note that this computation is only an analogy to the Grassmannian cases
for two reasons. First, in the case of the Grassmannian we imposed positivity conditions
by considering only non-prime factors appearing in the positive part of the tropical fan
Trop™* (Ik:n). However, for the ve-point ideal, we do not impose any such positivity conditions
and consider non-prime factors appearing in the full tropical fanTrop(Ispt). Second, in
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the case of the Grassmannian, having obtained the non-prime factors, we subsequently
used them in order to extend the ideal, perhaps repeating this procedure multiple times
as detailed for G(3;8). This had the e ect of eventually resolving the positive tropical
fan, of the fully extended ideal, into a collection of simplices all with prime initial ideals.
Furthermore, this singled out a single maximal Grobner fan whose initial ideal contained
the forbidden pairs of A-coordinates, providing us with physical adjacency conditions on the
symbol alphabet in the cases 0fG(4; 6) and G(4; 7). However, for the the ve-point case we
perform no such extension. Having obtained the non-prime factors appearing in the tropical
fan we terminate the procedure, since the extension relies on a notion of positivity which we
do not have for the ve-point case, and the fact that we already nd the full non-planar
alphabet relevant for constructing amplitudes. Note, in particular this means we do not
attempt to extract any adjacency rules. That being said it is encouraging the same idea of
symbol letters appearing as non-prime factors inside maximal cones of the tropical fan of
the kinematic ideal follows through to the ve-point case.

11.4.1 The ve-point two-loop symbol alphabet

The kinematics of ve-point massless scattering is described on the 5 external momentg,

subject to the massless on-shell conditiom = 0 and momentum conservation ;p; =0.
Out of the momenta we can construct10 scalar productss; =2p; pj, ve of which are
independent, following the choice of 154 they are given by

Vi = Si+1 = 2P Piert (11.33)
It will also prove useful to introduce the following Gram determinant
=det2 p p)=(trs)% (11.34)

where we have introduced the notationtrs = tr( sp,p.R,p,). Note, when written in terms

of * -variables' [159 = trg can be expressed as a purely rational function.

nally obtained in [37] and consists 0f26 letters given by

Wi = vi; Ws+i = Vito + Vis3; Wio+i = Vi Vi3,
a; B P

Wis+i = Visz Vi Vit Wos+i = ﬁﬁ; W3 = ; (11.35)
|

where thei indices run from 1 to 5 and we have introduced the notation

Qi = ViVi+1  Vi+1Vi+2 t Vit2Visz  ViViva  Vi+3Vi+4:
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By closing the planar alphabet under permutations the authors of B0] generalised the
alphabet to the non-planar caseAn, = Ay [f Wo1;::: W20, where we introduce the ve
additional non-planar letters given by

Woo+i = Vis2 + Visz Vi Vis1: (11.36)

As for the planar N =4 SYM case the non planar alphabetAn, provides the starting point
for the construction of integrable polylogarithmic symbols relevant for the bootstrap of
ve-point massless non-planar amplitudes/integrals [4Q].

11.4.2 Non-planar alphabet from the Grdbner fan

Inspired by the appearance of symbol letters A-coordinates) as non-prime factors of the
Plicker ideal we wish to apply similar ideas to the ve-point ideal Isp in order to generate
the non-planar alphabet Anp.

To de ne the kinematic space for general ve-point massless scattering, instead of using
momentum twistor variables, it is instructive to consider spinor-helicity variables. The
spinor helicity variables are constrained by two sets of relations, the Schouten identity and
momentum conservation, at ve points these becomé

Hj ihkli h ikihjli + hlihjki =0: [ij k1] [ik]Gl]+[i1]Gk] = 0; (11.37)

forl i<j<kc<l 5 and
hrifrm] =0; (11.38)
r=1
for n;m 2 f 1;2;3;4;5g. Collectively these equations generate the ideall sy, relevant for
ve-point massless kinematics whose GrobneiGF(Ispt) and Tropical fan Trop (Isp¢) we now
study.

The ideal Isp is de ned on the ten g; := hji and ten &; := [ij ] variables with i < j

help of gfan [146 and macaulay2 [15€6] where we determine the fan is simplicial, containing
65 rays and anf -vector given by

fspt = (165,550 1395 1035)

The full set of 65 rays are given by: 20 unit vectors e and & wheree; is the unit vector in
the @; direction and respectively g; is the unit vector in the &; direction; 5 vectors of the
form z; = isi € lineality equivalent to # = GE 10 permutations of r4s = Vi3 + €45,

!Note, the appearance of the two-brackets hj i indicating the problem no longer has dual-conformal
symmetry.
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lineality equivalent to 45 = w123+ €45, Where we have de nedvjk = ej + ek + e and
similarly for wj ; nally the 30 permutations of y1:23.45 = V123 + V145 = ¥1:2345.

Figure 11.7: A bipyramid by of Trop(Ispt), on the left hand side we have the full bipyramid
labelled by its 5 rays, on the right hand side the bipyramid is split into three tetrahedra.
Each tetrahedron is labelled by the quadratic non-prime factor found in the initial ideal,
where all three expressions are equivalent modulbsy; .

Amongst the 1035 maximal cones only45 are non-prime: 30 given by the permutation

copies off y1.23.45; Z1; I 45; Y 1:45:2309; and an additional 15 given by the permutation copies of
fy1.23.45;r23; 145, Y1:45230. Note, these tertahedra t together into 15 bipyramids. As an

example consider Figurell.7where we have a single bipyramid: the left tetrahedron with the
rays fy1.23.45; Z1; I 45, Y 1.45,239; produces the non-prime factorhl2i[12]+ h13i[13], transposing
2$ 4and 3% 5we nd the right tetrahedron with the rays fyi.23.45;Z1;r23;Y1.45230; and

non-prime factor hl4i[14] + hl5i[15]; nally the middle tetrahedron has the rays given by

fy1.23.45; I 23; I 45; Y 1:45:230; wWhich produces the non-prime factori23i[23] h 45 [45] As was
the case forG(3; 6) the three non-prime factors appearing in the bipyramid are equivalent
modulo the ideal I 5pt.

To generate the full set of non-prime factors modulo the ideal s,; we need only take the
permutation copies of 23 [23] h 45i[45] which produces15 quadratic expressions given by

M23i[23] h 45i[45] FR4i[24] h 35[35] FR5i[25] h 34i[34]
ML3i[13] h 45i[45] ML4i[14] h 35[35] ML5i[15] h 34i[34]
ML2i[12] h 45i[45] ML4i[14] h 25 [25] ML5i[15] h 24i[24];
2i[12] h 35 [35] hL3i[13] h 25i[25] L5 [15] h 23i[23]
L2i[12] h 34i[34] L3 [13] h 24i[24] hL4i[14] h 23i[23] (11.39)

Along with the fay ; &; g this provides us with 35 expressions from which to form homogenous
combinations.
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To see that we are in fact recovering the same content as the symbol alphabéi,, we re-write
the entire non-planar alphabet in terms of spinor helicity variables given by the cyclic copies
of!

W, = h2i[12] We = 1B4i[34] + M5 [45]
Wi = H34i[34] + H35i [35] Wig = hL3i[13]
_ . . ] _ M5 [51n2[24]
W21 = hl3i [13] + h34i [34], W26 = [45]|’5]J [12]|’Q44 )
Way = [45]161i[12]24 h 45 [51]L.2i[24] (11.40)

With this representation it is clear that letters fW;g>, [f W;g?%s [f Wig®%e are given by
multiplicative combinations of the fa; ; &; g variables. Furthermore, the remaining 15 letters
fWigl [f Wigld; [f WigZ,,, themselves related by theSs permutation symmetry, are
exactly the 15 non-prime factors appearing in the Grobner fan of the spinor-helicity ideal!
To see this explicitly note we have

We = 34i[34] + M5 [45] = hL2i[12] h 35 [35]
Wi = h34i[34] + H85i[35] = M12i[12] h 45i [45]
Woy = h13i[13] + HB4i[34] = hl4i[14] h 25i[25] (11.41)

all of which appear in (11.39. It follows then that taking homogenous combinations of letters
fW;g¥, is equivalent to taking homogenous combinations of ajj ; &;j g and the permutations
of the non-prime factors 23i[23] h 45i[45] Note, as already emphasised, we do not recover
the letter W31. However, this is consistent with W31 not appearing in the expressions for
suitably de ned amplitudes.

'Let us emphasise the fact that in spinor-helicity variables the rationality of letters  fWoag;:::;Wa1g
becomes manifest.



Chapter 12

Cluster algebras for massless
kinematics

We have seen that the Grassmannian cluster algebras are very useful tools for extracting
information on the branch cut structure of scattering amplitudes in planar N =4 SYM. In
this chapter we wish to study a generalisation of the Grassmannian, the partial ag varieties
F (2;4;n), naturally associated to n-point massless kinematics, to see how much information
they contain relevant for the ve and six -point massless alphabets. As mentioned in the
last section the planar ve-point massless amplitude/integrals are constructed (at least at
two-loops) from a 26-letter alphabet A, [37]. At six points partial information of the symbol
alphabet also exists [57 16( revealing a symbol alphabet consisting of both rational and
square root letters. Note, the connection between these symbol alphabets for Feynman
integrals and the Grassmannian cluster algebraG(4; n) was studied in [L61]. Where, using
the alphabet for G(4; 8) presented in B1], the authors were able to recover partial information.
In particular by taking the line (Z7Zg) as the in nity twistor all but two of the letters of
the planar ve-point one mass integrals [L57] were recovered, along with22 letters of the
ve-point massless alphabet B7] which upon cyclic completion recovered the fullA; n fWs19
alphabet. A similar analysis was also presented in38], more recently the ve-particle
alphabet was obtained viaSchubert problemsn [39)].

At ve-points the cluster algebra associated to the partial ag F(2;4;5) is of nite type
containing 14 active A-coordinates along with6 frozen. Upon cyclic completion this generates
a set of 25 expressions which can be used to forr20 of the symbol letters appearing inA,
leaving only 5 letters unaccounted for. Furthermore, as was carried out in 40], by completing
this list of 20 symbol letters under permutations we generate the same set &0 non-planar
letters of the last section including the entire planar alphabet. At six points, like the case of
the GrassmannianG(4; 8), the cluster algebra associated td- (2; 4; 6) is no longer of nite

1This chapter is based on incomplete work hopefully to appear in full on arXiv in the coming months.
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type, and as such the symbol alphabet for6 points contains algebraic square root letters.
Following the methods of [31] we extract a single square root-letter from so calledlimit
rays of the F (2; 4; 6) cluster algebra which appears in the symbol alphabet presented inlp7]
for ve-point one-mass integrals.

As a nal remark we emphasise that the cluster algebraF (2; 4;n) is contained as a sub-
algebra inside the GrassmannianG(4;n +2). So, in fact, we see that the dual-conformal
invariant symbol alphabet at n + 2 points contains information relevant for the n-point non
dual-conformal invariant amplitude obtained by restricting to the appropriate sub algebra!

12.1 Partial ag varieties

To introduce the partial ag varieties we must rst introduce the notion of a ag in a nite
dimensional vector spaceV, this is given by an increasing sequence of linear subspaces each
contained in the next i.e.

Vo Vi i W=V,

where de ning dim(V;) = d; we have

O=dp<di<:::<dy=n;

GrassmannianG(k; n) = F(k;n) is just the case of ags of lengthl or the space ofk-planes
in n-dimensions.

First, let's see why such objects as partial ag varieties appear in the discussion of massless
scattering. As described in the last section at ve points the kinematic space relevant for
massless scattering is given by the ideal generated b{i1.37) in spinor helicity variables.
Alternatively, a perhaps more appropriate choice of variables for the planar case is momentum
twistors, in these variables the ideal is generated by

hj ihkli h ikihjli + hlihjki =0; (12.1)
forl i<j<kc<l 5 along with
hl5h1234 + hl4ih1235 + h13ih1245 + hl12ih1345 =0 (12.2)

and its cyclically related relations. This set of relations encodes the dependencies between
ordered2 2and4 4 minors of a4 5 matrix i.e. the partial ag variety F(2;4;5).

!Note, in contrast to the Grassmannian, the appearance of the two-brackets hj i := hjl 1 i, wherel; is
the in nity twistor, indicates that the problem is no longer dual-conformal invariant.
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More generally the ideal associated tm-point massless kinematics is given by the partial
ag variety F(2;4;n). Much like the Grassmannians 62 the partial ag varieties can be

endowed with a cluster structure [L63 which we outline in the next two sections forF (2; 4;5)
and F (2; 4, 6).

12.2 Five-particle alphabet from F(2;4;5)

The rst example we consider is the case of (2; 4;5) whose initial cluster is depicted in
Figure 12.1 with active and frozen coordinates given by

fag; i a49 = fpraPi2ss  P1sP1234; P134s; P123s; P12450;
ff1,::0,f6Q = fp23as; P3aP123s  P3sP1234; Pas; P1s; P1234; P120: (12.3)
Here, and in the remainder of this chapter, we switch to the notationp; = hji and

P = Hjkl i. This cluster algebra is of nite type D4, and by performing mutations we nd
the full set of 20 A-coordinates distributed over 42 clusters, they are given by

Aras) = f P12, P13; P14; P15; P23; P24; P25; P34; P35; Pas; P1234; P1235; P1345; P1245, P2345;
P14P1235  P15P1234; P34P1235  P35P1234; P35P1245  P45P1235;

P34P1245  PasP1234; P24aP1235  P25P12340: (12.4)

Note, in particular there are two cyclic classes of quadratic coordinates, in the second and
third lines, which do not come with their full cyclic completions. Therefore, we may cycle
the entire cluster algebra to nd all ve cyclic copies of the quadratics given by

P14P1235  P15P1234; P34P1245  PasP1234;
P12P2345  P25P1234; P15P2345  P4sP123s5;
P13P2345  P23P1345; P12P1345  P15P1234;
P34P1245  P24P134s; P12P2345  P23P1245,
P3sP1245  PasPi2ss; P3aP1235  P23Pi3as! (12.5)

This procedure generates25 A-coordinates given by the (pj ;i ) as well as the ten
guadratics above. By taking homogenous combinations of thes25 expressions we are able
to recover 20=26 of the known symbol letters of 5-point scattering which in momentum
twistor variables now read

P1235 . W = P34P15P2345 + P23P45P1345
P15P23’ P23P34P4sP15

!Note, these A-coordinates do not necessarily belong to the same cluster algebra.
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_ PzaPi1235  P23P134s, _ P13(P12P23as  P25P1234) .
Wi = ; Wis+i =
P23P34P15 P12P15P23P34
Wi = P1245(P23P1345  P13P2345) . Wiy = P35P1234P1245  P45P1234P1235 + P14P1235P2345
P24P1235P1345 ’ P12P23P34PasPs51 '

(12.6)

The 5 symbol letters of the planar alphabet A, we fail to produce by this method, along
with W3, as explained in the last chapter, areWg and its cyclic copies. It is interesting
to note that they are trivially positive i.e. after ensuring thepj and pj are positive the
positivity of Wg follows.

However, by completingf W1; W11; W1s; W2eg under permutations of the external momenta
not only do we produce the missing planar lettersWg but also the non-planar letters Wog+
given by

Wy = P12P23P45P1345  P12P34P45P1235 + P12P34P15P2345  P23P45P15P1234

(12.7)
P12P23P34P45P15

and it's cyclic copies. Hence, we recover the san@0=31 letters of A,, [40] as the last chapter
by completing under permutations the A-coordinates appearing in theF (2; 4;5) cluster
algebra.

fa fa fs

~

N

a — a <+ fs

f2

fa

Figure 12.1. The initial cluster of the partial ag cluster algebra F(2;4;5).

12.2.1 G(4;7) embedding

As mentioned earlier the partial ag cluster algebra F (2; 4;5) appears as a codimension-two
subalgebra of theG(4; 7) cluster algebra. This is demonstrated in Figure12.2 the left hand
side depicts a cluster appearing inG(4; 7) showing the 7 active coordinates, by freezing nodes
p123e and asz and setting p; = pj 67 We are left with the cluster subalgebra of the partial
ag F(2;4;5) on the right hand side. In this gure we have changed notation compared
to Equation (10.14 where a; is now understood as the non-homogenouA -coordinates of
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G(4;7) i.e. those appearing in (L2.9).

fi: h1234i h2345i h3456i 4567 h1567i h1267i h1237
aigi: h2367i h1347i h1245i h2356i h3467i h1457i h1256i
agj: h2567i h1367i h1247i h1235i h2346i h3457i h1456i
asj: h2347 h1345i h2456i h3567i h1467 h1257i h1236i
agi: h2457i h1356i h2467i h1357i h1246i h2357i h1346i

asi: NL(23)(45)(67) i M2(34)(56)(71) i hB(4B)(67)(12) i MA(56)(71)(23) i hB(67)(12)(34) i h6(71)(23)(45) i h7(12)(34)(56) i
agi: M1(34)(56)(72) i h2(45)(67)(13) i M3(56)(71)(24) i MA(67)(12)(35) i 16(71)(23)(46) i h6(12)(34)(57) i h7(23)(45)(61) i
(12.8)

Therefore, we see that information on the ve-point alphabet can be recovered from the
GrassmannianG(4; 7), where upon ignoring all A-coordinates which do not treat the points
6 and 7 as a line, highlighted inred in (12.8), we recover the alphabet ofF (2; 4; 5).

P2367

P1236 |+— |353| «— 862 «— P2467 — P1467 P23 — 862 «— P24 —» P14

Figure 12.2: The embedding of ag F (2;4,;5) inside the GrassmannianG(4; 7).

Returning to the picture of lines in momentum twistor space this can be seen as taking the line
(Z6Z7) as the in nity twistor 1, . With the two brackets de ned as pj = hj 671 = hjl 1 i.

(272Z1)

(Z6Z7)

(Z223) (Z4Z5s)

(Z4Zs) (Z3Z34)

Figure 12.3: LHS: The con guration of lines in CP? relevant for the case of seven point
dual-conformal invariant kinematics. RHS: By taking the line 118 = (z£Z8) as the in nity
twistor we reduce to the case of general ve-point massless kinematics.

12.3 An algebraic letter from F(2;4;6)

As discussed in Sectiorl0.2.3for the case ofG(4; 8) complications arise when the underlying
cluster algebra is no longer of nite type, and additional tools beyond that of the cluster
algebra must be introduced in order to extract information for the symbol alphabet of the
corresponding amplitude. The rst complication being that the set of A-coordinates becomes
in nite which is not re ected by the nite set of letters needed to express say the two-loop
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NMHV octagon [134]. Therefore, some truncation procedure, such as tropicalizationq1 34],
must be introduced to select a preferred subset of-coordinates. The second, related,
issue is that the symbol alphabet starts to contain non-rational letters, with square roots
appearing in the rst instance for the two-loop NMHV octagon [134], the calculation of
which revealed a set ofl8 multiplicatively independent square root letters. Both issues were
dealt with in [ 31] where the set of180 rational letters of the two-loop NMHV octagon were
recovered as rays offrop ™ (I 4:8), along with the 18 algebraic letters, associated to special
limit rays arising from in nite a ne sequences of mutations within the cluster algebra.

fa fs «——  as
NG

fs — a — fe
NG N

fa - & — a
N NN

fi - a8 — a& — a — fy

Figure 12.4. The initial cluster of the partial ag cluster algebra F(2;4;6).

For the more general kinematics we consider in this chapter square root letters start to
appear already at6-points [157 160. Therefore, we wish to follow the method presented in
[31] to explore the set of square roots appearing in the= (2; 4; 6) cluster algebra to see how
they relate to square roots known to appear in6-point integrals.

The cluster algebra associated td-(2; 4; 6) is of ane Dg type, its initial cluster is depicted
in Figure 12.4, with active and frozen coordinates given by

ff1;::0,f70 = fposas; Paase; PssP1234  PasP1235 + PasPi23e; Pse; Pis; P12; P12320:  (12.9)

This is an example of an in nite type cluster algebra, however as a subalgebra d&(4; 8), it

is of nite mutation type. The in nity of A-coordinates arise from rank two (a ne A(Zz))
cluster algebras connected by double arrows, as depicted in Figure2.5 which generate an
in nite mutation sequence by repeated mutation on nodeswgy and zg. This in nity may

be organised by selecting from eacIA\(zz) sequence a single representative refered to as an
origin cluster. Note, the origin cluster can always be bought into the form given at the
left of Figure 12.6 In this picture we ignore all active coordinates not connected to the
double arrow nodes (which do not play a role in the mutation rules) and combine all frozen
nodes incoming tozy (outgoing from wp) into f, (fw). Similarly, we collect all active nodes
connected towg and zg asb= b bpbs.

Each origin cluster generates two in nite sequences of clusteA -coordinates given by the
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N
\WO/ ~4

Figure 12.5: An example of an origin cluster with a doubled arrow between the two cluster
A-coordinates (wg; zg) where frozen nodes are omitted. Thea; nodes not connected to
(wp; o) form an A, subalgebra of clusters containing the samevg, zop and b nodes and hence
the same mutation sequence.

recursion relations

ZnvoZn = GF"+ 22,00 WproWn = GoF" + w2, ; (12.10)
depending on whether the choice of initial mutation waswg or zg i.e. the top and bottom
panels of Figure12.6. Note, here we have de ned the coe cients G, = bf, and G, = bf,,
similarly the factor F is de ned as the product over frozen coordinates= = ff,.

b b b
/N /" \ /N
Wo == 20 y 21 e=—1Zp - y Ll == 23 > Znw2Zn = GF"+ 22,
oo P NG
fw fs fw fz fw f2
b b b
/N /\ /N
Wo == 70 > Wo e=Wp o > W == W1 ... > WneaWn = GyF" + w2,

oo oo bt

fW fz fW fZ fW fZ

Figure 12.6: The double in nite mutation sequence (z,;w,) generated by repeated mu-

tations on the a ne A(zz) cluster subalgebra of theF (2; 4; 6) cluster algebra. The two left
hand clusters depict the origin clusters and the blue/red nodes indicate on which node we
are performing the mutation.

The solution to this recursion relation was detailed in [31] and takes the form

1 P~ P~ P P~
Zn = oup 0+ Bz )( P+ ) "+(20 Bz )(P. )" (12.11)
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where we have de ned

fowp+ z 221 zoP
p,= 20", g, == 7. - p2 gy, (12.12)
29
and similarly the solution for the w sequence is obtained from the above formulae under

swappingz $ w under which (P,, F; ) are invariant.

The sequence ofy-vectors, associated to theA-coordinates (z,*; w,), for such A(zz) cluster
algebras were studied already in64] and have their own simple transformation rules. An
example of the limit rays generated by the mutation sequencez, and w, are depicted
in Figure 12.7. As can be seen from this gure by taking the limit of the sequence from
both directions we approach the samdimit ray , g1 , depicted by the green line. Note, the
square root  appearing in a sequencéz,; w,) will be the same for all sequences which
asymptote to a given limit ray, and therefore to each limit ray g1 we may associate a single
square root .

Figure 12.7: The g-vectors associated to the double in nite mutation sequencgz,; wy).
The two black arrows indicate the initial cluster with both sequences asymptoting to the
same limit ray g1 indicated by the green line.

To search for origin clusters we perform all possible mutations of lengtH, starting from
the initial cluster, selecting those which have the desired form. We nd that the number
of origin clusters saturates to 16 5 already for mutation sequences of lengtH = 11, with
the factor of 5 coming from performing mutations on the A, subalgebra of active nodes not
connected to eitherzy or wo. We nd that all 16 origin clusters asymptote to the same limit

!Let us emphasise that the use of blue here does not correspond to frozen. But, is instead used to
distinguish the took mutation directions.
2We have searched all sequences up td = 17 which did not produce any additional origin clusters.
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ray given by
g1 =(; 1,0,0;1;, 1;0): (12.13)

Note, this is in stark contrast with G(4; 8) which contains in nitely many limit rays which
themselves must be truncated using some other procedure such as tropicalziatio1, 165.
The square root associated to this limit ray is found to be given by

_ 2 .2 > 2 2 2
= P1256P3s4 T P1234P56 + P3456P12

2(P1256P1234P34P56 + P1256P3456P12P34 + P1234P3456P12P56); (12.14)

which is exactly the square root letter 3 appearing in the symbol alphabet at six-points
e.g. see Equation (5.11) of 157!
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Chapter 13

Conclusion

In the second part of this thesis, following the work of B5, 36], we mapped the problem
of extracting cluster algebra data relevant for the planarN = 4 amplitude bootstrap to
studying the structure of the Grdbner fan of the Pliicker ideal. Most importantly we saw
that

The missing A-coordinates appear as non-prime factors in the initial ideals of maximal
cones of Trop (Ix:n).

Upon extending the ideal by the missingA-coordinates the rays ofTrop™ (Ix.n) span a
single maximal Grobner cone. The initial ideal of this maximal Grébner cone, of the
extended ideal, provides us with a list of monomials which are exactly the forbidden
pairs of A-coordinates.

In particular this was applied to the case ofG(3; 7) whose set ofA -coordinates and adjacency
rules are used as the starting point of the heptagon bootstrap.

Inspired by these results we wished to see whether the Grébner fan could provide a useful
tool in extending these ideas beyond dual conformal kinematics. The example of non-dual
conformal kinematics we considered was ve-point massless amplitudes whose (two-loop)
planar A, and non-planar alphabetsA,, were discovered in $7, 40]. By inspecting the initial
ideals of maximal cones of the Grobner farGF(lsy:) we were able to recover the entire
(relevant) non-planar alphabet as non-prime factors.

With these results there are a humber of interesting questions to consider:
Can we study GF(l4;g) to see square-root letters arising?

At ve-points does a similar extension procedure, as carried out for the Grassmannian,
yield any useful information i.e. do the expressions which are produced after extending
appear in the symbol alphabet at higher loops?
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How much of the symbol alphabets 157 16Q of six-point non dual conformal invariant
kinematics can be recovered from the analysis of the Grobner fan GfFept)?

We have also provided evidence that the family of partial ag varieties F (2;4;n) contain
relevant information for the scattering of n-point non dual conformal invariant amplitudes
analogous to the relation between Grassmannian cluster algebras and = 4 SYM amplitudes.

In the case ofF (2; 4;5) we were able to obtain20=25 of the (relevant) symbol letters of the
ve-point planar alphabet A, as cyclic completions ofA -coordinates. After completing under
the full set of permutations this recovered the full non-planar alphabetA,,. Furthermore,
we saw that the cluster algebraF (2; 4; 6) contains a single limit ray whose associated square
root letter

_ 2 2 2 2 2 2
= P1256P34 + P1234P56 T P3456P12

2(P1256P1234P34P56 + P1256P3456P12P34 + P1234P3456P12P56) (13.1)

appears in the symbol alphabet at six-points i.e. Equation (5.11) of 157!

Again there are a number of interesting questions to consider. First, why do we need to
utilise the entire permutation symmetry to recover the planar letters Wg and its cyclic copies,
whereas the authors of 7] were able to recover these letters by considering limits o6(4; 8)?
Second, how much of the rational alphabet at six-points can we recover fronk (2; 4;6)? Due
to the connection to G(4; 8) an interesting calculation would be to take the truncated G(4; 8)
alphabet presented in B1], remove all letters which do not treat points 7 and 8 as a line,
complete under the cyclic (or full permutation) group, and see how much of the six-point
alphabet [157 16(Q is recovered. Finally, can the connection to theF (2; 4; n) partial ags be
used to develop some organisation principle for the symbols of non dual conformal invariant
amplitudes similar to cluster adjacency for the case oN =4 SYM?
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Appendix A

Window unmixing

A.1 Unmixing subleading three-point functions

As an example let us consider the family of correlatord?2ppi rst outlined in [ 1], which have
the simpli cation of having a single SU(4) channel[0; O; 0] whose degeneracy of operators is
fully lifted at tree level. As we will see this allows us to obtain explicit expressions for the
sub-leading supergravity and string corrected three-point functions. The one-loodog(u)
OPE coe cient is given by

HED = % 00 (I @O, cwy 0 (A1)

22pp;~ ~ 22K gq \~ppiKgg Kqqg PPiKgg Kag
(q9)2D -

where the labels are given by

~=1f;1 =0;[0;0; 0g;
D-=f(adia 39 (A.2)
and Cﬁ);;kK)qq are the tree-level supergravity and string corrected three-point functions for

k =0 and k = 3 respectively. The three-point functions appearing in (A.1) can be extracted
from the non-log(u) contribution to tree-level correlators of the form hppgd, whose window
region is denedp 5 <. The generalisation to hppqq is essential for the unmixing of
degenerate operators.

As indicated in (A.1) there is not a one-to-one correspondence between three-point functions
and conformal block coe cients. Therefore, to calculate the individual three-point functions
we need to unmix the degenerate operators entering the block coe cients. The correlators
h22ppi do not provide enough information to solve this degeneracy problem, instead we
must consider a more general set of correlators taking the fornfppgq. At each level in
twist we have (t 1) degenerate operators, wheré = =2, thus to solve we must consider
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the set of (t 1) families of correlators with2 p t. As mentioned before, the relevant
information is encoded in the noniog(u) contribution to the tree-level correlators, whose
OPE coe cients are given by

K 1
(1:k=1;3) _ (0;0) ~(L:k)y .
Nppgai-— = 1(Cpp;i Caqii ) (A.3)
i=

when looking at the window regionp t<gq.

Having detailed where the required data can be found, the unmixing procedure is best
illustrated with an example. With one operator at twist four, and therefore no mixing, the
three-point functions can indeed be calculated just using data from thet22qqg family. Thus,
the rst instructive case where operator mixing happens is at twist six.

At twist six we wish to compute the couplings C(%:;‘I) and C(%;IQ‘) fork =0 and k =3
(supergravity and string corrected) respectively. Following the discussion above, to have
enough information to perform the unmixing both the R22qg and h33qqg family of correlators
are needed. To ensure twist six lies within the window for both sets of correlators, we must
have g > 3. As shown in (A.3), within the window region the conformal block coe cients
are given by

(0;0) ~(1:k=1,3) (0:0) ~(L:k=1;3) _ py(1:k=1:3).
C2211 Cqqa + C22:2 Coq2 = N22qq; =67

(0;0) ~(1:k=1,3) (0:0) ~(L:k=1;3) _ py(1:k=1;3).
Cs311' Cqqa + Ca32 Cqq2 = N33qq; =6+

(A.4)

for 22qg and h33qq respectively. This can be nicely repackaged in matrix form by

2 (0;0) (0-0)3 (1'k-1'3)3 (1-|<—1-3)3
24C221 Co25 4Cqqn 5 _ 4N22gq =6 5. (A.5)
cl0 00" ~@k=13)" Ty (Lk=1;3) " '
331 33;2 qq2 33qq; =6

from which the desired couplings can be readily obtained. This can be easily generalised to
arbitrary twists

CgO;O)Cgl;k::LB) — NEl;kzl ;3); (A.G)
0;0 1:k=1;3) _ 1;k=1;3).
(€% N = e, (A7)

where the matrix is now (t 1) (t 1) dimensional. During this process much new OPE
data has been generated. We were able to nd a closed formula for all order 32 string
corrected and supergravity three-point functions in the singlet with * = 0 and degeneracy
labels (i;r) = (1;0).

The string corrected three-point functions are non-vanishing only for degeneracy labeal = 1
(mirroring the behaviour of the string anomalous dimensions i(l;?’)) and are given, fort<p,
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by the following formula

C&)iﬁ)ﬂ(t) o3 (DUPp(t DA+ D3R+ )2@E+)(p t)(pr2+t)

: = © (A8)
0;0
cip,, (1) 1680 (p 1(p)
where we have
S
. P
SR, (=" 105 28 & (oetes) (A9)

(t+2)( t+ g)(t+ g)'

The subleading supergravity three-point functions have also been calculated, again fdr< p,
and found to be

Copee (1) _ ( 1fpt(t + 1)(t +2) (p O(p+t+2).
o, o PPTRPTE TGy A

It is interesting to note that the ratio of the second term in ( A.10) with A.9 is given by
(1:0)= (1:3),
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Appendix B

Results

In this section we provide the full formulae for the Above Window, Window and Below
Window functions appearing in the main text.

B.1 Above Window

The function appearing in the Above Window is given by

w(8;s;cs; ) = 1—20( 1)3(9¢} 542 2 182 252+90c2 s?  10832s®+54¢2 %s  126¢2 s
36c2 258+ 144C2s8+36C2s 182 287 90c2 ~s?  108c28% +54¢2 28+ 126C2 s
+36C28 36c2+45 4+36 2+2 4% 28 3s%+142 2s* 308 s*+240s°
12 4s3+120 3s® 420 2s%+600 s®+8 “s°8 56 3s%6+64 2s5%8+224 s°8
384s°8 288&°+40 “4s? 254 3s2+518 2s? 364 s2+12 4s?4? 156 25?47
+4325%8% 36 4s?8+120 3s°6+108 25?8 480 s?8+144s’8+48s®> 66 ‘s
+198 3s 168 2s+72 s+8 4s83+56 3s8%+64 258 224 s&° 384s8°
36 “s8? 120 3582 +108 2s8? +480 s8%+144s8%+80 “s8 332 2s8+48s8
+2 “8*+28 38*+142 28*+308 7s*+2408* 12 44 120 38 420 %8 600 S°
288¢° + 40 “4%+254 382 +518 262 +364 "s?+488% 66 ‘4 198 38 168 28
72 7s): (B.1)

B.2 Window and below window remainder functions

The residue function in the spherical harmonic basis is given by

1
%(n;b)=@(6483 16B%c2 160B%cs 32B%c2, 64B%n  19B2n+16B2 2+224B?
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+448B2 + 8Bc2c2, + 32Bc2n + 32Bc2 + 64BcsCl, +32Bcsn 64Bcs  192Bcs +4Bcy,

+32Bc2n +96 Bc2n 8Bc2, 2 96BcZ,  208Bc, 32Bn 2 224Bn  384Bn

+32B 2+192B +256 B 16c3n  c2ci, 8c2cA,n+16c3c2, +16¢2n +32 2n 6esCy,
24csC2, N+ 96CsC2, + 16csn 2 +128csn +256 csn 4chn 126 n+ ¢, 2+10c, +16 cf,

+8c2n 2+104c5,n +224 cAn 16¢h, 2 1603, 2562, 16n 3 16 ? 51n  512n):
(B.2)

The 7 Window poles in the monomial basis are given by:

_ s+ g5 (st %),

"oi6 15
(s+ *5%)( 30+1lcs+2c2+9 +3 & + 2+ +30s 25  125?)
Mps = ;
30
1
e = 5452405 +B0S( 9)+40s%30 2¢ 36 1o ? 1)

+4s( 32 +29 2 6cs 2+30cs +182 ¢s 22, +14 &2 3 3+ 24150  240)
+(6c+18c2 +66 c2+8c2c, +18c2 2+150c2 +116 c2+12cscl, +40 ¢, +6¢cs 3
+102cs 2+104cs  576cs+ cf, +4C2, 2+32¢2,  20ck, +18 3+20 2 480 +64)) ;
g3 = 2i40

+12¢2c2, 12632, s+48c2c2, +2¢2 3+66¢2 2+210c2 +80 c2s® 722 2 384c3s?

24c2 25 96c2 s+96C3s  32c2+2csCl + 606G, 2+60csc3,  40csCAS?  24csC2, S

48csC2 s+58csC2, 265 ‘+8cs 2+42cs 2 400 +160 ces* +160cs s® +320css®

24cs %s®>  48(cs s° 67Xss?  16cs s 96cs 2s+320cs s+ 1056css  960cs + cf,

act s+5c) +12¢2 2+26¢3, +80 2,s° 8¢, S° 1442, 1262, 2s 4832, s+144Cs

1042, 5 7% 26° 176 2 384 320s°+800s*+80 2s°+320 s® 160G3+8 352

96 2s> 320 s2+2080s> 4 4s 32 35+96 2s+480 s 12165+ 384);

1 +
2= 7o5(S CST DS +3c¢ 2s+14ct+883R, +28 2+328 4032 83 s

56c3s +112¢3 +12c2¢2,  16c3c2,s+56¢2c2, 2¢2 3+12¢2 2+80c2 +80 c2s® 56c2 s?
27%2s%> 122 2s 1042 s 264c2s+60csC, +40csc2,  80csc3,s? 320G, S 144csC2s
12csc2, 3cs * 1605 2 80cs 2 48(cs +240 css*+160cs s3+800css® +8cs % 1605 S°
16css”> 8cs 3s  40cs 2s+240cs s+1152css  960cs  12chs+6¢h,  4c, 3 16¢3, 2

12¢2, +160 ¢, s3+16¢2, s 323, 16c, 2s 482, s+240cis 144, ° 104 48°3
96 2+192  480° 80 s*+80 2s°+160 s® 1440°+24 3s?+112 2s?+240 s?+960s?

2 %s+8 3s+120 %s 768+ 768);

1 +
me oge(s Po Dy G +adseBds 108 & +2 dds 6dd 22 ads’

2+7c¢}  Acis+29ct+6c3cE, +8c 2+80cC 40c3s®  16c3 s 32c3s+142¢3
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+4c¢2 ?+16C2s2+8C2 s+72c%s 4C2 205G + CsC2, 2 +20csC2, 82 +4CsC2, S+48CsC2,S

+10cs 2+56cs  48cs* 1605 S 224css®  4cs 2s? 16cs s° 19X’ 8cs 2s 80cs s
256css +112¢s+ ¢f +4 chs+ o+ 2 3+6C2, 2 62,  40c3s® 1262, s? 56C2,S?

+2¢2, %s 162, s 96c5s 8, +2 3 42 80 +96s°+32 s*+240s" 8 %s®+96 §°
4 352 32 252+16 s?2+240s® 8 3s 24 2s+96 s+160s 128 +4808° +26¢sC));

1 Cs +
50 = 28505 5 1)3(16C2s  csCp, + 8CsC2, S + 24¢sC2, s+ 16CsC2,  16css?  96css® 1280552
OBcss+ ¢ +2 cys+2cy, 16¢,,  16c(,s° 8¢, §7 48s® 24, s T2 s 32
+16 s*+160s*+96 s3+352s3+128 s?+320s?+16 2s+96 s+128s+32s° 32 S):

(B.3)
The 3 Below Window poles are given by:

4(s+ 1)
(1 25 )4s? 4s(1+2)+16 2+4 11 2
B = 15 ’

Be;0

1
a)(1635 64s* 832 15 2+4)+16s?( c2+26 2 29)

+s(cd 2c2 2 8c2+289 4 296 2+16)+12( 135 2+4 c2): (B4)

B.3 Combining RY and B(EW)

Note rst that we can rewrite the result for B(®W) using the same split used foR W), In
this way we can write

X (s+pi2 2)41PL(8:S)+(S+ p3a  2)z41P..(8:s
Wéz)(é;s): (s+p )z+1 P, ( i (Z p )z+1 P g, ( ); (B.5)
z 0
whereWéz)(é;s) = R'(SW) + Béw) and
Pe =Pt o cicug Po = Precoraiag (B.6)

Of course only the poles atz = 0;1;2 are modi ed by the addition of BEW) w.r.t. the
contribution of RW),

Certain analyticity in z can be made manifest for thePéZ). Assuming we focus onP, for
concreteness, the idea is that the ratioP, [1+ P3P2+ s][ z+ B3P4 4+ ] can be further
decomposed by writingP, as a polynomial in Pochhammers. This is initially suggested by
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the special form of Pg and Ps which have a partial factorised form of this sort, i.e.

— (s* s 1)(s+ 155
p;6 15 !
_ (st 2558)( 30+11cs+2c2+9+3 cs+ 2+cZ +30s 25 12s2)
- 30 '

P

(B.7)
P

B5

In this way we can absorb thes dependence into thez-independent , and get a structure
of the form,

P.(S;Cs; C; Cu; ) X Pzw(Cs; Ct; Cu; ) (B.8)

[1+ P1;p2+s][ 7+ p3;p4+s]_ Loz |03+2P4+S][ W+ |01+2P2+S]

w

for each value ofz. By doing so we nd a lattice of points (w;z) of the form

Zy

1 (B.9)

For example, the horizontal axis atz = 0 corresponds to a polynomial of degree eight in
s, and therefore there are nine bullet points, the rst of which counts for a degree zero
contributions, going with w = 1, and the last one for a degree eight contribution, going
with w=7.

Rearranging the polynomials on the 45 diagonals, we nd simple analytic expressions.
For illustration,

Paw = £ Bin[¢] Cz+w=7
Pz;w — (6cst5 +:i(52 z 11) Bin[?] - Z+wW=6

(B.10)
Pry = —(Cu)lHe)GL 8 gins) . 74 w=5

and so on so forth. The pattern of the binomial Bin persists, and become®in[ %* ] where
# counts the number of on the various diagonals in(B.9). This binomial is always singled
out by the fact that some of the top degree terms inP;.y, as function of z, contribute
with a constant times such binomial. In the above formulae, these top degree terms are
(cw)? f cs; gwhenz+ w=6, and (¢y)? whenz+ w=5.
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The analytic structure in (6.66) suggests from the very beginning a sort of analyticity ofP,
in z, and the rearrangement into P,.,, in (B.10), is an example. On the other hand, had we
started with a general parametrisation of P, as a polynomial ins; cs; ¢;; ¢y; , and tted data
in- and below- Window, we would have found some free coe cients left. There is indeed a
subtlety with a P, so constructed, which is the following: Pieces oP, cancel out in the sum

[s+P5P241]P; [ s+ P35 PA4]P,
p1tp p3*tp
[s+ 21552 7] [s+ 2355 7]

+ ¥
[ s+ p12p2 +1][ s+ p32p4 +1]

(B.11)

Using that [ X +1]=[ X z]=(X Z)z+1 is polynomial in X, and expanding the whole
numerator in (B.11), it is simple to see that contributions of the form c2N*1f (s;Z; ¢ c2; )

for any function f, cancel out. We haven't encountered this subtlety in our discussion above
because the functions inR (W), nicely enough, do not have it.
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