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In the first part of this thesis we study string corrections to one-loop amplitudes of single-
particle half-BPS operators Op in AdS5 × S5 . The tree-level correlators (dual to AdS
scattering amplitudes via the AdS/CFT correspondence) in supergravity enjoy an accidental
10d conformal symmetry. Consequently, one observes a partial degeneracy in the spectrum
of anomalous dimensions of double-trace operators and at the same time equality of many
different correlators for different external charges pi=1,2,3,4. The one-loop contribution is
expected to lift such bonus properties, and its precise form can be predicted from tree-level
data and consistency with the operator product expansion.

Here we present a closed-form Mellin space formula for 〈Op1Op2Op3Op4〉 at order λ−3/2 in
the expansion around large λ valid for arbitrary external charges pi. Our formula makes
explicit the lifting of the bonus degeneracy among different correlators through a feature we
refer to as ‘sphere splitting’. While tree-level Mellin amplitudes come with a single crossing
symmetric kernel, which defines the pole structure of the AdS5 ×S5 amplitude, our one-loop
amplitude naturally splits the S5 part into two separate contributions. The amplitude also
exhibits a remarkable consistency with the corresponding flat space IIB amplitude through
the large p limit.

In the second part of this thesis we study the relation between the branch cut structure of
scattering amplitudes in planar N = 4 SYM and Grassmannian cluster algebras using the
novel language of Gröbner theory. We detail how to extract the familiar A-coordinates and
their respective adjacency conditions from the Gröbner fan of the Plücker ideal. Having
established this connection we apply similar techniques to the case of non dual conformal
invariant five-point kinematics where we extract the full non-planar symbol alphabet relevant
for the construction of five-point integrals/amplitudes.

Finally, we continue to study the connection between cluster algebras and scattering ampli-
tudes by considering the family of partial flag cluster algebras F (2, 4, n) in order to extract
information on the symbol alphabet for amplitudes with five-point and six-point non dual
conformal invariant kinematics.
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Chapter 1

Introduction

Scatttering experiments such as those performed at the Large Hadron Collider (LHC) have

been an invaluable tool for testing our most fundamental theories of nature. The object

measured in scattering experiments is the scattering cross-section which broadly speaking

measures the probability for a particular interaction to take place amongst a collection of

particles. To obtain the cross-section requires knowledge of the more fundamental object,

the scattering amplitude1, which can be calculated within the framework of Quantum

Field Theory (QFT). Scattering amplitudes then constitute some of the most fundamental

measurements we can make on the theories which govern our universe. But the limit of their

interest goes beyond just the experimental results they provide. They can also reveal deep

insights into the structure of QFTs which are often obscured by the familiar Lagrangian

description.

As an example consider processes relevant for physics at the LHC. The protons collided at

the LHC are made up of quarks and gluons whose interactions are governed by Quantum

Chromodynamics (QCD). One possible process which can take place is that a collection of

gluons come together to interact. Therefore we might ask what is the associated amplitude

for the scattering of n gluons. The usual starting point for any QFT calculation is the

Lagrangian from which the Feynman rules defining the interaction vertices can be read off.

1We may think of the scattering amplitude in QFT being analogous to the wavefunction in Quantum
Mechanics.

1



2 Chapter 1. Introduction

Figure 1.1: The three-point and four-point gluon vertices of QCD.

If the theory is weakly coupled we can organise the calculation into a perturbative expansion

in Feynman diagrams ordered by the number of loops. The Feynman rules can then be used

to convert each Feynman diagram into a mathematical expression. Thus, to calculate the

scattering amplitude of n gluons at leading order (the tree-level contribution) we sum over

all possible Feynman diagrams with n external legs, and no internal loops, which can be

built from the three-point and four-point point gluon vertices of Figure 1.1. However, these

calculations become intractable very quickly due to the combinatorial explosion which takes

place for the number of diagrams.

2g → 2g 4 diagrams

2g → 3g 25 diagrams

2g → 4g 220 diagrams

2g → 5g 2485 diagrams

By the time we consider 2g → 8g there are over ten million diagrams, eventually there

reaches a point where even these most powerful computers cannot handle the computations.

But, as shown by Parke-Taylor [4] this complexity is artificial, a remnant from the fact we

are trying to build an on-shell gauge independent object from gauge dependent diagrams

containing virtual off-shell particles. In fact, when written in the correct variables, these ten

million diagrams collapse to a single term. The same remains true for an arbitrary number

of gluons, where the result is summarised as1

AMHV
n =

〈ij〉4

〈12〉 . . . 〈n1〉 . (1.1)

Such a drastic simplification is a calling card to move away from the Feynman description

in search for a new understanding which makes this simplicity manifest!

The search for this simplicity has sparked an array of new efficient techniques for the

calculation of scattering amplitudes including: the on-shell tree level BCFW recursion

1Where the brackets are spinor-helicty variables and the ith and jth gluon are taken to have negative
helicity.
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relations [5, 6], which effectively reduce the problem of computing any n-point gluon

amplitude to consistently stitching together three-point amplitudes, in some cases, such as

the scattering of n gluons [7], this allows a closed form solution to the recursion relations;

whereas beyond tree level methods such as generalised unitarity [8] have been developed to

tackle the more complex analytic structure.

The perfect toy model for exploring these ideas further is provided by N = 4 Super Yang-

Mills (SYM) theory in 4d, which has many symmetries to make the theory tractable, whilst

still retaining rich mathematical structure, so as not to be trivial. The intensive study of

N = 4 has led to the discovery of beautiful mathematical structures hidden within scattering

amplitudes. At weak coupling, and in the planar limit, an all-loop integrand [9] has been

written down, extending the BCFW recursion relation to all loop orders. This construction

is closely related to the Grassmannian1 G(k, n) [10–12], which makes manifest both the

superconformal invariance, and its long illusive counterpart dual superconformal conformal

invariance [13].

However, of most relevance to this thesis, are the results for the amplitudes themselves. In

particular we will be interested in the branch cut structure of perturbative amplitudes in

planar N = 4 and their relation to certain structures in algebraic geometry. Considering the

branch cut structure of amplitudes has allowed the analytic bootstrap program to obtain

impressive results up to high loop orders [14–24]. The foundation of the bootstrap relies on

the link between the Grassmannian G(4, n) cluster algebras2 and the location of potential

branch cut singularities of the amplitude. This relation, first discovered in [28] and further

developed in [29], linked the A-coordinates of the cluster algebra to the symbol alphabet (the

positions of potential logarithmic singularities) of the amplitude. Furthermore, the link was

endowed with a geometric significance by the discovery of cluster adjacency [30] encoding

which consecutive branch cuts have non-zero residues. The bootstrap program has mainly

focused on six and seven points as their associated cluster algebras G(4, 6) and G(4, 7) are

of finite type.

Exploring the connection between the symbol alphabets of amplitudes in planar N = 4

SYM and the Grassmannian will be the focus of the second part of this thesis. Inspired by

the recent success of the application of Tropical geometry to scattering amplitudes [31–34],

and results from the mathematics literature [35, 36], we first set out to reformulate existing

results in the new language of the Gröbner fan. Having established this connection we ask

the exciting question of whether similar techniques may be applied to cases beyond N = 4

SYM where dual conformal symmetry is no longer present. Note, these question have begun

to be asked at the level of individual Feynman diagrams for instance in [37–39] where cluster

algebraic structures have also been seen to emerge. Our main example will be the non dual

1The Grassmannian G(k, n) is the set of k-planes in n dimensions.
2First discovered in [25–27].
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conformal invariant five-point kinematics whose planar and non-planar symbol alphabet

have been proposed in [37, 40]. In the final chapter of this section we will also return to the

question of how much a generalisation of the Grassmannian cluster algebras, the partial flag

cluster algebras, have to say about the symbol alphabet of non dual conformal invariant five

and six -point amplitudes.

But, the reasons to study N = 4 are not at an end yet. At strong coupling this theory also

provides a vital tool in the study of quantum gravity through the AdS/CFT correspondence!

The AdS/CFT correspondence [41] relates theories of quantum gravity in AdS to non-

gravitational Conformal Field Theories (CFT’s) living at the boundary in one less dimension,

the prime example being the duality between N = 4 SYM and type IIB string theory on

AdS5×S5. We will be particularly interested in the limit where we take the number of

colours N large and further take the ’t Hooft coupling λ = g2
Y MN to infinity. In this limit

the bulk theory reduces to weakly coupled IIB supergravity in AdS whose single particle

states are the supergravity fields.

Figure 1.2: Examples of exchange (left) and contact (right) Witten diagrams entering the
scattering amplitude at tree-level.

Let’s consider scattering amplitudes in this weakly coupled supergravity theory. Through

the AdS/CFT correspondence scattering amplitudes on the supergravity side are mapped

to correlation functions of gauge invariant operators on the CFT side. Our main point of

interest will be four-point correlation functions of half-BPS operators

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉, (1.2)

where the dual description of O2 corresponds to a state belonging to the graviton super-

multiplet and Op>2 its Kaluza-Klein (KK) partners. The standard algorithm for computing

such holographic correlators follows closely the example above for flat space amplitudes. As

before we can compute the supergravity amplitudes in a diagrammatic expansion in powers

of the small Newton constant, where the Feynman diagrams of flat space are replaced with

their AdS equivalent the Witten Diagrams. Consider the tree-level contribution, which we

obtain by summing over all tree-level exchange and contact Witten diagrams. This approach
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requires detailed knowledge of the cubic and quartic vertices appearing in the AdS effective

action, obtained by Kaluza-Klein reduction of IIB supergravity on S5. The effective action

is extremely complicated [42–44], with the scalar quartic vertices [43] alone filling 15 pages.

Furthermore, the number of exchange Witten diagrams grows rapidly with the KK level.

All in all making it practically impossible to go beyond the simplest cases of the lowest KK

modes [45–50], even where a solution does exist, it is given in the unenlightening form as a

sum of D̄ functions with complicated analytic structure.

These problems were solved in [51, 52] by rephrasing the question in Mellin space [53, 54]

where the analytic structure of the amplitude simplifies dramatically. In Mellin space the

holographic correlator becomes a rational expression in mandelstam-like invariants s, t, u,

whose poles and residues are dictated by Operator Product Expansion (OPE) factorization

analogous to their flat-space counterparts. This allowed [51, 52] to write down a beautifully

simple formula for the tree-level correlator for arbitrary KK modes! The result can be

summarised in a single term given by1

M(1,0) =
1

(s + 1)(t + 1)(u + 1)
. (1.3)

Since this landmark result there have been many exciting developments. The tree-level

result above allowed for a detailed study of the double-trace spectrum [56] at leading large

N , culminating in a general expression for the tree-level anomalous dimensions [56] which

itself hinted towards a hidden 10d conformal symmetry at tree-level [57]. Another direction

which has received attention is the study of stringy corrections arising from higher derivative

corrections to the AdS effective action [58–61]. If it were possible to resum the string

corrections at tree-level the resulting expression would be the analog to the Virasoro-Shapiro

amplitude in AdS!

Beyond tree-level a handful of correlators have been computed at one-loop both for super-

gravity [55, 62–66] and its stringy corrections [1, 62, 67]. Beyond this no general correlator

has been computed. Note, also at two loops results are further constrained to only the

simplest correlator of four supergraviton multiplets [68, 69]. The focus of the first part of

this thesis will be to remedy this for the first one-loop string correction where we shall write

down a general formula for arbitrary KK modes!

The above examples at strong and weak coupling exemplify not only the richness of N = 4,

but, also the power of the bootstrap philosophy, which can be summarised as follows: Instead

of performing lengthy QFT calculations why don’t we simply write down the only answer

with the correct analytic structure consistent with symmetries?

The remainder of this thesis is split into two topics which can be read independently. The

1Note, the result was first written in this form by [55].
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first discussing holographic correctors in N = 4 SYM around the supergravity limit, the

second discussing the mathematical structure of scattering amplitudes in planar N = 4 SYM

and beyond, a content outline for each can be found below.

1.1 Outline: Part I

In the first part of this thesis we study the correlation function of 1/2-BPS operators in

N = 4 SYM theory i.e.

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉. (1.4)

We will study these objects at tree level and one loop in Newton’s constant (or equivalently,

1/N2 and 1/N4 corrections in the CFT) and at the leading orders in string corrections to

Einstein gravity, i.e. leading orders in the α′ ∼ λ− 1
2 expansion, where λ is the ’t Hooft

coupling.

At tree level much is known about the structure of these correlators and general explicit

results exist both at the level of supergravity [51, 52], as well as its stringy corrections

[60, 61] up-to high orders in λ−1/2. However, at one-loop no such general formulae exist.

The one-loop supergravity correlator was studied for the simplest correlator 〈O2O2O2O2〉
in [64, 70] and more generally in [66] where a position space algorithm was presented for

boostrapping arbitrary one-loop correlators from tree level data. The one-loop supergravity

result was also studied in Mellin space in [63] where an explicit formula was presented for the

simplified family of correlators 〈O2O2OpOp〉. Furthermore, knowledge of one-loop stringy

correlators is known [1, 58, 59, 62, 67, 71] but only restricted to low charges and simplified

cases.

Our main focus will be to remedy this sorry state of affairs by presenting a formula for the

first one-loop string correction at order (λ)−3/2 for arbitrary external charges. Along the

way we will discuss the general picture for higher λ in order to (somewhat) systematise

the one-loop bootstrap, or at least provide a more educated ansatz than has otherwise

existed. The results presented in the first part of this thesis originate from [1, 2] where the

one-loop string correction was calculated for the simpler setting of 〈O2O2OpOp〉 in [1] and

later generalised to arbitrary KK modes in [2].

The remainder of Part I is organised as follows: In sections 2-5 we introduce the relevant

material to appreciate the construction of the one-loop amplitude including: a discussion of

correlation functions in Conformal Field Theories (CFT’s), the conformal block expansion

in N = 4 SYM, the AdS/CFT correspondence and the Mellin space formalism.

Next, at the beginning of Chapter 6, we describe in detail how the OPE (Operator Product

Expansion) can be used to build the one-loop amplitude from tree level data. It is also in

this chapter that we present our main result: a completely general formula for the one-loop



1.2. Outline: Part II 7

correlator at (λ)−3/2. Finally, in section 6.3 we show consistency of the one-loop amplitude

with the large p limit and the flat space limit in type IIB string theory.

1.2 Outline: Part II

In the second part of this thesis we begin with a study of perturbative scattering amplitudes

in planar N = SYM and the underlying mathematical structures which govern them. As we

will see the branch cut structure of these dual conformal invariant n-point amplitudes are

intimately connected with the Grassmannian cluster algebras G(4, n).

To motivate why an unfamiliar space such as the Grassmannian should appear in this

discussion it is enough to consider the question: what is the best way to describe the

kinematic space of massless amplitudes? Naively, amplitudes are functions of the external

momenta pµ
i . However, the momenta are constrained by the massless on-shell condition and

momentum conservation via

p2
i = 0;

n∑

i=1

pµ
i = 0, (1.5)

and hence it is natural to search for a set of variables which automatically satisfy these

constraints. The majority of the next two chapters will be focused on introducing this new

set of variables. This will lead us from spinor-helicity variables to momentum-twistors and

eventually, for the dual conformal invariant case of N = 4 SYM, to the Grassmannian

G(4, n) itself. In the more general setting where dual conformal symmetry is not present

the kinematic space is instead naturally associated to the partial flag F (2, 4, n).

With the correct variables to hand we continue to review the well established language of the

amplitude bootstrap programme and the important role the Grassmannian cluster algebras

have to play. Most importantly we introduce the notion of the symbol, an object encoding

the consecutive discontinuities of the amplitude, which is built upon the A-coordinates of the

cluster algebras G(4, n). We will review how the geometric structure of the G(4, n) cluster

algebra constrains the form of the symbol through cluster adjacency.

Having reviewed this necessary material we move on in Chapter 11 to the first result of this

section, to extract the A-coordinates and cluster adjacency rules, relevant for constructing

amplitudes in N = 4 SYM, from the G(4, n) cluster algebras via the novel language of the

Gröbner fan. A benefit of this approach is that it makes no reference to the cluster algebra

directly and hence has the potential to be more widely applicable for instance to the case of

amplitudes where dual conformal symmetry is no longer present. With this larger goal in

mind we conclude Chapter 11 with an application of the Gröbner fan technology to the non

dual conformal invariant five-point kinematics to see what we can learn about its symbol

alphabet. These results were originally presented in [3].

Finally, in Chapter 12 we return to the study of a generalisation of the Grassmannian cluster
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algebras, the partial flag cluster algebras F (2, 4, n), to see what role they have to play in

determining the symbol alphabet for non dual conformal invariant massless 5 and 6 point

amplitudes.



Part I

Holographic correlators

9





Chapter 2

Conformal Field Theory

This section provides a basic introduction to Conformal Field Theory emphasising on:

primary operators, their correlations functions, the Operator Product Expansion, and

conformal blocks. The main references followed are [72, 73].

The conformal transformations are given by the subset of diffeomorphisms x 7→ x′(x) which

keep the metric1 fixed up to a local rescaling. In d > 2 they are generated by the usual

isometries of flat space: translations Pµ and Lorentz transformations Mµν ; along with

dilatations D and special conformal transformations Kµ, which close to form the conformal

group SO(d, 2). A subset of the conformal algebra is given by

[D,Pµ] = Pµ, [D,Kµ] = −Kµ. (2.1)

As such we may think of Pµ and Kµ as raising and lowering operators for the dilatations.

Using the raising and lowering operators leads us to the classification of local operators, Oi,

with scaling dimensions ∆i defined by

[D,Oj(0)] = i∆jOj(0), (2.2)

into two types: primaries and descendants. The primary operators are defined as being

annihilated by special conformal transformations at the origin

[K,O(0)] = 0. (2.3)

Whereas the descendants can be obtained by acting on the primary operators with a linear

combination of derivatives, or in other words by repeatedly applying the generator of

translations Pµ. A primary operator together with its tower of descendants together form a

conformal multiplet.

1For our purposes we take this to be the metric of d-dimensional Minkowski space.

11
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The generators Pµ and Kµ act as raising and lowering operators of the scaling dimension

which move us around a conformal multiplet, with condition (2.3) defining the lowest

weight operator. Since we will be interested in CFT correlations functions, and descendants

are obtained trivially from their primaries by acting with derivatives, it follows that the

correlation functions of descendent operators can be obtained directly from that of their

primaries. Hence, from now we will discuss only primary operators.

2.1 Correlation functions of primary operators

We now demonstrate the power of conformal symmetry in fixing the form of conformal

correlation functions of primary operators. At two points, after having fixed a normalisation,

the correlation function of two scalar primary operators φi(xi) is completely fixed to be

〈φ1(x1)φ2(x2)〉 =
δ∆1∆2

x∆1+∆2
12

, (2.4)

where we have defined xij = xi − xj .

Again, at three points the correlation function is fixed, this time up to an overall constant

given by

〈φ1(x1)φ2(x2)φ3(x3)〉 =
λ123

|x|∆1+∆2−∆3
12 |x|∆2+∆3−∆1

23 |x|∆3+∆1−∆2
31

. (2.5)

The overall constant λ123 is known as the three-point coupling or OPE coefficient1 (for

reasons which will become clear).

However, at four points it is possible to form the conformal invariant cross ratios

u =
x12x34

x13x24
and v =

x14x23

x13x24
, (2.6)

on which the four point function can depend non trivially. As an example consider the

four-point function of identical operators φ with dimension ∆, this takes the most general

form

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
f(u, v)

x2∆
12 x

2∆
34

, (2.7)

where f(u, v) is some function of the conformal cross ratios.

Note, the left hand side of this equation is invariant under permutations of the positions

of the operators, therefore the function f(u, v) must also satisfy these crossing constraints.

The permutations are generated by the crossing 1 ↔ 2 implying

f(u, v) = f(u/v, 1/v), (2.8)

1These two terms will be used interchangeably.
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and 1 ↔ 3 implying

f(u, v) =

(
u

v

)∆

f(v, u). (2.9)

In the next section we will see how the OPE completely fixes1 the function f(u, v) in terms of

the spectrum of primary operators ∆, and the coefficients λijk appearing in the three-point

functions.

2.2 The OPE and conformal block expansion

A concept from CFT that will be used extensively in the next section is the OPE (Operator

Product Expansion). As the name suggests the OPE allows us to expand a product of

operators at two nearby space-time points over a linear combination of primaries and

descendants, this is summarised as

φi(x)φj(0) =
∑

O

λijOLO(x, ∂y)O(y)|y=0, (2.10)

where the sum runs over all primary operators of the theory, λijk are the coefficients appearing

in the three-point functions, and LO(x, ∂y) is a differential operator which reproduces the

contribution coming from all descendants whose form is completely fixed by conformal

symmetry.

Under insertion of the OPE an n-point correlation function can be reduced to a sum over

(n − 1)-point functions. Therefore, under repeated insertion, we can reduce the task of

calculating any n-point correlation functions to consistently stitching together three-point

functions with the correct OPE coefficients. In this way all correlation functions are fixed

by the knowledge of the spectrum of primary operators and the couplings of the three-point

functions {∆i, λijk} which collectively is known as the CFT Data.

Let us see this explicitly for the case of the four-point function. We can insert the OPE

twice into the correlation function as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑

O

λ12Oλ34O

[
LO(x12, ∂y)LO(x34, ∂z)〈O(y)O(z)〉|y=x(12)

z=x(34)

]
,

(2.11)

where we have defined x(ij) = (xi + xj)/2. Note, the function in the square bracket, known

as the Conformal Partial Wave (CPW), is completely fixed by conformal symmetry! The

above can be written as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x
2∆φ

12 x
2∆φ

34

∑

O

λ12Oλ34Og∆,`(u, v), (2.12)

1In fact to fix the correlation function from the OPE we need to also consider the two-point and three-point
functions with one spinning operator.
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Where g∆,`(u, v) are known as conformal blocks1 and (∆, `) label the dimension and spin of

the operator O. These functions represent the contribution to the four point function from

the conformal multiplet with primary operator O.

Since the CFT data defines all correlation functions, and hence the entire theory, we may

ask whether any random set {∆i, λijk} corresponds to a consistent CFT? The answer is no!

This can be seen by again considering CPW expansion of the four-point function. Above we

chose to perform the OPE as 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 which we represent diagrammatically

in Figure 2.1.

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑

O
λ12Oλ34O

O

1

2

4

3

Figure 2.1: The CPW expansion of the four-point function in the s-channel.

Alternatively we could have chose to perform the OPE as 〈φ(x1)φ(x2)φ(x3)φ(x4)〉, and since

the choice was arbitrary, both expansions must agree. This condition imposes constraints on

the CFT data which must be satisfied in order to define a consistent CFT. These consistency

conditions are referred to as crossing symmetry and are demonstrated pictorially in Figure

2.2. The crossing equations provide powerful constraints on the CFT data and form the

foundation of the conformal bootstrap [75, 76].

∑
O
λ12Oλ34O

O

1

2

4

3

=
∑

Õ
λ14Õλ23Õ Õ

1

2

4

3

Figure 2.2: The CPW expansion of the four-point function in the s and t channels.

In the next section we will review these ideas in the explicit example of N = 4 SYM where

we will identify the (super) primary operators we will focus on in the first part of this thesis

and provide explicit formulae for the conformal blocks.

1The form of the conformal blocks was originally developed in [74].



Chapter 3

N = 4 SYM

The field content of N = 4 SYM1 includes: one gauge field Aµ; four chiral fermions λA
α

with A = 1, .., 4; six real scalars φI with I = 1, ..., 6 transforming in the fundamental

representation of the R-symmetry group SO(6) ∼= SU(4); with all fields transforming in the

adjoint representation of the gauge group SU(N). The N = 4 SYM Lagrangian in four

dimensions is given uniquely by [78]

L4 = Tr
{

− 1

2
FµνF

µν − (Dµφ
AB)(Dµφ̄AB) + 2iλ̄Aσ̄

µDµλ
A +

1

2
g2

YM[φAB, φCD][φ̄AB, φ̄CD]

− 2gYM(λA[φ̄AB, λ
B] − λ̄A[φAB, λ̄B])

}
,

where the trace is taken over the gauge group SU(N); the six complex scalars φAB, trans-

forming in the antisymmetric rank-two representation of SU(4), are subject to the reality

condition, and are related to the six real scalars mentioned above by linear transformations.

At the classical level the theory is invariant under the conformal group SO(2, 4) ∼ SU(2, 2)

and by construction N = 4 supersymmetry. Together these combine into the larger

group of superconformal symmetries PSU(2, 2|4) under which the theory is invariant.

Remarkably, calculations of correlation functions have revealed no ultra-violet divergences

under perturbative quantization, and as a consequence, the renormalization group β-function

vanishes identically. As a result the superconformal group PSU(2, 2|4) remains an exact

symmetry of N = 4 SYM at the quantum level.

As mentioned the superconformal group PSU(2, 2|4) contains the conformal group SU(2, 2),

reviewed in the last section, whose generators are given by: translations Pµ, Lorentz

transformations Mµν , dilatations D and special conformal transformations Kµ. The N = 4

supersymmetry is then generated by adding four fermionic Poincaré supercharges Qa
α and

1The material covered in this section follows closely the review [77].

15
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Q̄α̇a with a = 1, . . . , 4 along with the SO(6) ∼ SU(4) R-symmetry generators TA with

A = 1, . . . , 15. As the Poincaré supercharges and special conformal transformations do not

commute it is necessary to add the conformal supercharges Sa
α and S̄α̇a which together close

to form the N = 4 superconformal algebra. We will now see how the operators of the theory

organise into representations of the superconformal group.

3.1 Superconformal symmetry and local operators

As discussed in the last section, primary operators satisfy the condition of being annihilated

by the generators of the special conformal transformations and define the highest weight

state of a conformal multiplet from which we can generate all descendants by acting with

derivatives (the generators of translations) which act as raising operators of the scaling

dimensions.

We follow an analogous story here to organise operators into representations of the su-

perconformal group. In addition to the generators of translations and special conformal

transformations we have another set of raising and lowering operators given by the super-

charges Q and S which raise and lower the scaling dimensions by units of 1/2. This allows

us to define a superconformal primary operator as satisfying the condition1

[S,O(0)] = 0. (3.1)

Note, this in fact implies the weaker notion of a conformal primary. Having identified the

highest weight states as the superconformal primaries we continue as before, acting with

the raising operators Q and P to build the entire superconformal multiplet. Note, the

supercharges themselves anticommute to give the generator of translations

{Qa
α, Q̄β̇b} = 2σµ

αβ̇
Pµδ

a
b , (3.2)

and in fact the entire multiplet can already be generated just by the supercharges. In

particular, there are only finitely many ways to combine the supercharges before arriving

at a derivative, and therefore a superconformal multiplet contains finitely many conformal

primaries.

Let us see how to construct such superconformal primaries explicitly. As we have just argued

any operator arising from the action of the supercharges Q on the fundamental fields cannot

be a primary operator. It is useful then to understand how the supercharges act on the

fundamental fields, this is given schematically by

[Q,φ] ∼ λ, [Q,F ] ∼ Dλ, {Q,λ} ∼ F + [φ, φ], {Q, λ̄} ∼ Dφ, (3.3)

1Note, for a superconformal primary we must also have [S̄, O(0)] = 0.
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where D is the covariant derivative, F is the field strength tensor, and we have dropped the

dependence on indices. With these expressions we conclude that a superconformal primary

cannot contain any expression appearing on the r.h.s of (3.3). Therefore, the only way to

construct a superconformal primary is through a combination of scalars φI in a symmetrised

way. The simplest such example is given by the single trace operators

str(φI1 . . . φIp)(x) (3.4)

where the In are SO(6) fundamental indices; str denotes the symmeterised trace over the

gauge group SU(N) and as a consequence of tr{φI} = 0 we have p ≥ 2. Generally, these

operators transform under reducible representations, i.e. the symmeterised product of n

fundamental representions, and irreducible representations can be obtained by removing the

traces, the simplest such example being the irreducible operators

∑

I

tr(φIφI) ↔ Konishi multiplet,

tr(φ{I1φI2}) ↔ Supergravity multiplet, (3.5)

where the curly braces indicate the traceless symmetrisation of the SO(6) indices. Through

the AdS/CFT correspondence the Konishi operator corresponds to an excited string state

and vanishes from the spectrum upon taking the supergravity limit (more on the supergravity

limit in the next chapter). Therefore, we will be most interested in the second class of

operator, which are more generally given by

OI1,...,Ip
p (x) = tr(φ{I1 . . . φIp})(x). (3.6)

The R-symmetry indices can be conveniently dealt with by introducing auxiliary SO(6)

vectors yI satisfying the null condition y · y = 0, resulting in

Op(x, y) = yI1 . . . yIptr(φI1 . . . φIp)(x). (3.7)

These operators transform in the symmetric traceless representation [0, p, 0] of the SO(6)

R-symmetry. They make up the 1/2-BPS operators, meaning they are annihilated by half

of the supercharges and, as a consequence, have protected scaling dimensions ∆ = p. As

we will see in the next section, in the limit of large N , the AdS/CFT correspondence maps

these operators to the supergravity multiplet and its KK partners. Therefore, by studying

the correlation functions of these 1/2-BPS operators, which we will next introduce, we are

dually probing scattering amplitudes of type IIB supergravity in AdS.

A variety of multi-trace operators may be constructed from products of the single-trace

operators introduced above. The simplest such example being the double-trace operators
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which take the schematic form

Op�
n∂{µ1,...,µl}Oq|[a,b,a].

As we shall see in the next chapter these will be the operators appearing in the long sector

of the OPE of two 1/2-BPS operators.

3.2 Four point functions of 1/2-BPS operators

We will be interested in correlation functions of these 1/2-BPS operators. As mentioned in

Chapter 2 the two and three-point functions are fixed, up to an overall constant, by conformal

symmetry. Moreover, the operators Op we consider here are protected by supersymmetry,

meaning their two and three-point functions are controlled completely by their free field

expressions. Therefore, the first non-trivial case is the four point correlator. Its most general

form is constrained by superconformal symmetry [79, 80], which splits the function into a

free theory contribution (g = λ = 0) plus an interacting term,

〈Op1Op2Op3Op4〉 = 〈Op1Op2Op3Op4〉free + 〈Op1Op2Op3Op4〉int . (3.8)

The free theory contribution can be computed via Wick contractions of the elementary fields

and contains disconnected and connected contributions,

〈Op1Op2Op3Op4〉free = 〈Op1Op2Op3Op4〉free,disc + 〈Op1Op2Op3Op4〉free,conn . (3.9)

The interacting term is further constrained [79] to take the form

〈Op1Op2Op3Op4〉int = p1p2p3p4N
Σ−2ĨP~pH~p(U, V, Ũ , Ṽ ), (3.10)

where we have introduced the short hand notation ~p = (p1, p2, p3, p4) to indicate the

dependence on charges and Σ = p1+p2+p3+p4

2 , as well as the conformal and R-symmetry cross

ratios:

U = xx̄ =
x2

12x
2
34

x2
13x

2
24

, V = (1 − x)(1 − x̄) =
x2

14x
2
23

x2
13x

2
24

,

Ũ = yȳ =
y2

12y
2
34

y2
13y

2
24

, Ṽ = (1 − y)(1 − ȳ) =
y2

14y
2
23

y2
13y

2
24

, (3.11)

using the notation xij = (xi − xj), and similarly y2
12 = y1 · y2. The prefactor

P~p =

∏
i<j g

p(ij)

ij

(g13g24)Σ
; gij =

y2
ij

x2
ij

,
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carries the correct conformal and R-symmetry weights, with gij denoting the propagator;

and the superconformal Ward identities fix Ĩ to take the form

Ĩ = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ). (3.12)

The only piece of the correlator depending on the gauge coupling gYM (or λ) is the function H~p,

which we will naturally refer to as the interacting part. It contains all non-trivial dynamical

information of the theory, and therefore only receives contributions from unprotected

operators. It is a polynomial in the R-symmetry cross-ratios (Ũ , Ṽ ), with a more complicated

analytic structure in the conformal cross-ratios (U, V ).

3.3 The superconformal block decomposition

We now wish to use the OPE to relate the expressions for the correlators to the CFT data.

The N = 4 SYM OPE for two 1/2-BPS operators can be summarised as

Op1(x1)Op2(x2) ∼
∑

O~τ

Cp1p2OLO(x12, ∂x2)O~τ (x2), (3.13)

where we have introduced the twist of the operator τ = ∆ − `, and the short hand notation

for the quantum numbers ~τ = (τ, `, a, b). The sum above runs over all primary operators

O~τ of twist τ , spin ` and su(4) representation [a, b, a] appearing in the tensor product

[0, p1, 0] ⊗ [0, p2, 0], and as before the operator LO generates the contribution from all

descendants. Upon inserting the double OPE expansion into the four-point correlator as

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉 we obtain the SCPW expansion.

The operators entering the SCPW expansion are either: short multiplets whose dimensions

and OPE coefficients are protected and are independent of the coupling gY M ; or long multi-

plets whose dimensions and OPE coefficients depend on the coupling and acquire quantum

corrections. The protected multiplets come entirely from the free theory contributions, while

unprotected (or long) multiplets come from both free theory and interacting contributions

〈Op1Op2Op3Op4〉 = 〈Op1Op2Op3Op4〉prot.
free + 〈Op1Op2Op3Op4〉long

free + 〈Op1Op2Op3Op4〉int.

(3.14)

Our focus will be on the superconformal block decomposition of the long sector

〈Op1Op2Op3Op4〉long = 〈Op1Op2Op3Op4〉long
free + 〈Op1Op2Op3Op4〉int. (3.15)

We denote the quantum numbers of the exchanged multiplet by ~τ = (τ, l, a, b) for a super-

conformal primary of twist τ = ∆ − l, spin l and su(4) representation with Dynkin labels
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[aba]. The expansion of the long part of the correlator into super blocks is then given by

〈Op1Op2Op3Op4〉long =
∑

~τ

c~p
~τ L

~p
~τ , (3.16)

where L is the superblock for long multiplets (see e.g. [81]),

L
~p
~τ = ĨP~p

(
V

Ṽ

)p(23)

B~p
τ,l(x, x̄)Υ~p

[aba](y, ȳ) . (3.17)

The conformal and su(4) factors of L are given by

B~p
τ,l(x, x̄) =

F
(α,β)
l+τ/2+2(x)F

(α,β)
τ/2+1(x̄) − F

(α,β)
l+τ/2+2(x̄)F

(α,β)
τ/2+1(x)

x− x̄
,

Υ~p
[aba](y, ȳ) =

F
(−α,−β)
−b/2 (y)F

(−α,−β)
−b/2−a−1(ȳ) − F

(−α,−β)
−b/2 (ȳ)F

(−α,−β)
−b/2−a−1(y)

y − ȳ
, (3.18)

where

F (α,β)
ρ (x) = xρ−1

2F1(ρ+ α, ρ+ β, 2ρ;x) . (3.19)

For compactness of notation we have introduced α = p2−p1

2 and β = p3−p4

2 . A more general

treatment, including the short multiplets, is considerably more subtle and has been detailed

in [81–84]. The block coefficients c~p
~τ are given in terms of product of OPE coefficients

c~p
~τ =

∑

O

Cp1p2OCp3p4O.

where again the sum runs over all superconformal primary operators O of twist τ , spin `

and su(4) representations [a, b, a] ∈ ([0, p1, 0] × [0, p2, 0]) ∩ ([0, p3, 0] × [0, p4, 0]).

Generally, there exist many operators with the same quantum numbers ~τ leading to a mixing

problem for the block coefficients c~p
~τ , which are not in one-to-one correspondence with the

OPE coefficients. To understand the OPE predictions we must first get a handle on the

spectrum of exchanged operators in the OPE, for this we now turn to understanding the

dual gravity description provided by the AdS/CFT correspondence. Having identified the

spectrum of operators we can then return to address the mixing problem.
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Holographic correlators and

AdS/CFT

Having introduced the four-point function of 1/2-BPS operators in N = 4 SYM we now

wish to show how through the AdS/CFT this is mapped to calculating string scattering

amplitudes in AdS5×S5. In this section we first review the original motivation for the

AdS/CFT correspondence. We will see how the coupling constants of both sides of the

correspondence are related, as well as how CFT operators and their correlators map to

supergravity states and their scattering amplitudes. The four-point correlator will be studied

in the supergravity limit and the traditional calculation using Witten diagrams will be

reviewed. The material covered in this section follows [77, 85, 86].

4.1 AdS/CFT from D3-branes

We are interested in the prototype example of the AdS/CFT correspondence, the equivalence

between N = 4 SYM theory in 4d with SU(N) gauge group, and IIB string theory on AdS5×
S5. To motivate this equivalence we follow the original argument of Maldacena and consider

a stack of N coincident D3-branes in the low energy, α′ → 0, limit [41].

The stack of D3-branes can be studied from two perspectives. The first is to consider them

within IIB string theory in flat-space. In this setup we have two types of excitations: the

open strings with end points on the D-branes, and the closed strings describing excitations

of empty space. Upon taking the low energy limit only massless string states survive. The

massless closed string excitations describe N = 4 SYM theory with SU(N) gauge group

living on the 4d world-volume of the branes. The massless closed string excitations then

describe free IIB supergravity in the bulk. Therefore, in the low energy limit, we have two

decoupled systems, the 4d CFT living on the branes, and free gravity propagating in the

21
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bulk, schematially

N = 4 SYM ⊕ IIB supergravity on R10. (4.1)

The dual (gravity) description is to consider the D-branes, which themselves carry charge/mass

and therefore deform the metric, as a solution to type IIB supergravity itself. The D3-brane

solution takes the form

ds2 = H−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) +H1/2(dr2 + r2dΩ2

5), (4.2)

H = 1 +
R4

r4
, R4 = 4πgsα

′2N.

We would like to see the same phenomenon as before, that upon taking the low-energy limit,

we are left with two decoupled theories. First, note that the energy E as measured by an

observer at infinity and the energy Er measured by an observer at position r are related by

a redshift factor given by

E = H−1/4Er. (4.3)

This implies that the same process brought closer and closer to r = 0 would appear, to an

observer at infinity, to have lower and lower energy. Therefore, upon taking the low energy

limit we will have two types of excitations: the massless excitations propogating in the bulk

region, and any kind of excitation that is sufficiently close to r = 0. Let us inspect the

metric (4.2) in these two regions. When r � R the metric reduces to 10d Minkowski space.

However, in the near-horizon limit r � R the metric reduces to

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 +R2dΩ2

5, (4.4)

i.e. the geometry of AdS5× S5 with common radius R. We see again that, in the low energy

limit, we have two decoupled systems: supergravity in flat space, and the full IIB string

theory living on AdS5× S5 i.e.

IIB superstring on AdS5 × S5 ⊕ IIB supergravity on R10. (4.5)

Note, in both viewpoints one of the decoupled systems is given by supergravity in flat space.

This led Maldacena [41] to the conjecture that N = 4 SYM in 4d with gauge group SU(N)

is dual to IIB superstring theory on AdS5× S5! The relation between the parameters of

both theories, where gs and gY M are the string and gauge theory couplings respectively, are

given by

gs =
g2

Y M

4π
, R4 = 4πgsα

′2N. (4.6)
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4.2 The supergravity limit

The conjecture as formulated above is valid for all values of N and string coupling gs ∼ gY M .

However, since string theory quantization on curved manifolds is currently out of reach, it is

interesting to study the correspondence in a more tractable limit in which the bulk theory

corresponds to IIB supergravity.

To arrive at the supergravity approximation we first take the ’t Hooft limit. In this limit we

fix the ’t Hooft coupling defined by λ = g2
Y MN and subsequently take N → ∞. On the field

theory side this corresponds to a topological expansion of Feynman diagrams with the leading

order given by planar diagrams. On the gravity side we notice that gs ∝ λ/N , and since

λ is being held fixed, taking N → ∞ will correspond to weak coupling string perturbation

theory. Having taken this limit the only remaining parameter is the ’t Hooft coupling

λ = R4/α′2 itself. To arrive at the supergravity limit strings must be well approximated by

point particles, this approximation is good when we take λ → ∞. As we see an expansion

around strong coupling on the CFT side corresponds to an expansion around weakly coupled

supergravity on the gravity side. It is this strong/weak duality which makes the AdS/CFT

correspondence so powerful.

Throughout the remainder of this section we will work in an expansion around the super-

gravity limit at large N and large λ. In this way corrections to supergravity are organised in

a double expansion: with 1/N corrections corresponding to a loop expansion in the bulk,

and the 1/λ expansion corresponding to adding a tower of string corrections.

4.3 State operator map

We now wish to map the four-point function of 1/2-BPS operators on the CFT side to its

gravity dual, this problem was originally addressed in [87, 88]. First, we must identify which

are the CFT operators dual to single particle states on the gravity side. In the strict large N

limit the single-trace 1/2-BPS operators are in fact dual to the supergravity spectrum: with

O2 dual to the graviton supermultiplet; and all higher operators Op≥3 dual to Kaluza-Klein

modes arising from the compactifcation of S5. However, as we include 1/N corrections this

is no longer true, and the single particle operators, dual to single particle supergravity states,

acquire contributions from multi-trace operators1 which come supressed in 1/N :

Op(x, y) = yI1 . . . yIptr{φI1 . . . φIp}(x) + (multi-trace). (4.7)

As first proposed in [56] the multi-trace terms in the definition of the single-particle super-

gravity operators are fixed by the condition that single particle operators are orthogonal

to all multi-trace operators i.e. 〈Op [Oq1 . . .Oqn ]〉 = 0. With this definition the multi-trace

1This was already noted in [89, 90] and more recently discussed in [52, 56, 63, 66, 91, 92].
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terms can be computed entirely by considering only the free theory. Building on the previous

work of [93], the multi-trace contributions for a general single-particle state was given in [92].

As an example consider O4, the first case for which the multi-trace terms are non-vanishing

[56], which is given by

O4 = Tr
(
φ4)− 2N2 − 3

N(N2 + 1)
O2O2 . (4.8)

It is more correctly these operators that we consider and it is their correlation functions

which correspond to supergravity scattering amplitudes on AdS5×S5.

4.4 Holographic correlators in the supergravity expansion

We will be interested in the expansion of the correlator around the supergravity limit at

large N and large λ. In particular we will be interested in the block decomposition of the

part of the correlator containing long multiplets which receives contributions from both the

free and interacting terms

〈Op1Op2Op3Op4〉long = 〈Op1Op2Op3Op4〉free long + 〈Op1Op2Op3Op4〉int. (4.9)

In the supergravity limit the free theory contribution is given by the expansion

〈Op1Op2Op3Op4〉free long = NΣ
[
〈Op1Op2Op3Op4〉(0)

free long +
1

N2
〈Op1Op2Op3Op4〉(1)

free long + . . .

]

(4.10)

Note, the free theory only contributes to leading order in 1/λ as it does not depend on the

gauge coupling. The leading large N contribution is of order1 NΣ with Σ = p1+p2+p3+p4

2

and comes from the disconnected free theory term, it is given by the products of two-point

functions,

〈Op1Op2Op3Op4〉disc = 〈Op1Op2〉〈Op3Op4〉+〈Op1Op3〉〈Op2Op4〉+〈Op1Op4〉〈Op2Op3〉 . (4.11)

Where the operators Op are orthogonal and normalised as follows2,

〈Op1Op2〉 = δp1p2(g12)p1Rp1 , Rp1 = p1N
p1 +O(Np1−2) , gij =

y2
ij

x2
ij

. (4.12)

The interacting term contributes solely to the long sector taking the form

〈Op1Op2Op3Op4〉int = p1p2p3p4N
Σ−2ĨP~pH~p(U, V, Ũ , Ṽ ;λ). (4.13)

1Note that
∑

i
pi is always even and so Σ is integer.

2The full normalisation is Rp = p2(p− 1)

[
1

(N−p+1)p−1
− 1

(N+1)p−1

]−1

= p1N
p1 +O(Np1−2) [92].
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As the only piece of the correlator dependent on the gauge coupling H~p admits a double

expansion. First, we expand around large N as

H~p = H(1)
~p +

1

N2
H(2)

~p + . . . , (4.14)

corresponding to a loop expansion in the bulk. While the tree level and one-loop coefficients

above are themselves expanded for large λ as follows

H(1)
~p = H(1,0)

~p + λ− 3
2 H(1,3)

~p + λ− 5
2 H(1,5)

~p + λ−3H(1,6)
~p + . . . ,

H(2)
~p = λ

1
2 H(2,−1)

~p + H(2,0)
~p + λ− 1

2 H~p
(2,1) + λ−1H(2,2)

~p + λ− 3
2 H(2,3)

~p + . . . , (4.15)

corresponding to adding stringy corrections to the leading order supergravity contribution.

These string corrections arise directly from higher derivative terms in the IIB supergravity

effective action.

At order NΣ−2, we have the contribution from connected free theory and the contribution

from the interacting part. The connected free theory along with the term H(1,0)
~p correspond

together to the tree level supergravity contribution. The tree level supergravity term

was shown by [51, 52] to have a particularly compact expression in Mellin space (to be

introduced in the next chapter). The tree level supergravity contribution is then followed

by an infinite tower of stringy corrections H(1,n)
~p , which arise from contact terms in the IIB

string theory effective action. Their structure is related to the Virasoro-Shapiro amplitude

in 10d flat-space via the flat space limit. The resummation of these terms has received much

attention [58–61, 71, 94] and are currently known (up to a handful of ambiguities not fixed

by the conformal bootstrap) to order λ−9/2. Again, their expressions are most conveniently

expressed in Mellin space.

The terms of order NΣ−4 in the double expansion (4.15) correspond to one-loop contributions

in AdS5. The leading term H(2,−1)
p corresponds to the presence of a quadratic divergence at

one loop in ten-dimensional supergravity, and is regulated by a R4 counterterm at one loop

in string theory. The term H(2,0)
p is the one-loop supergravity term, addressed in [63–66, 95].

The term H(2,1)
p corresponds to the genus-one contribution to the modular completion of

the H(1,5)
p term. The corresponding modular function is an Eisenstein series which receives

perturbative contributions only at genus zero and genus two [96] and we therefore expect

H(2,1)
p to vanish, consistent with the localisation analysis of [97, 98]. The term H(2,2)

p gives

rise, in the flat space limit, to the analytic part of the one-loop string amplitude studied

in [99]. It is non-vanishing and corresponds to the genus-one contribution to the modular

completion of the H(1,6)
p term. Finally, the term H(2,3)

p is the genuine one-loop string

correction induced by the presence of the H(1,3)
p term at tree level. This is the term which

we will construct in the first part of this thesis. The position space structure of one-loop

IIB supergravity amplitudes has been addressed in [64, 65, 70], culminating in a general
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algorithm for constructing correlators with arbitrary external charges [66]. Considering

further string corrections at one-loop has revealed a new type of singularity in their analytic

structure compared to the supergravity case [67].

More recently the two-loop supergravity contribution H(3,0)
~p , not shown in the expansion

above, has be considered for four graviton multiplets in [68, 69].

4.5 Witten diagram computation: tree level supergravity

As mentioned we will be working in an expansion around large N and large λ. In this limit

the bulk theory becomes weakly coupled type IIB supergravity with a small five-dimensional

Newton constant. Therefore, the task of computing correlation functions in the CFT is

mapped to computing scattering amplitudes in weakly coupled IIB supergravtiy on AdS5.

The standard method for computing the AdS amplitudes is through a perturbative Witten

diagram expansion in the small Newton constant. Therefore, to compute the supergravity

contribution to the four-point function of 1/2-BPS operators we sum over tree level exchange

and contact Witten depicted below. The rules for evaluating Witten diagram are analogous

Figure 4.1: Examples of exchange (left) and contact (right) Witten diagrams entering the
scattering amplitude at tree level.

to their flat-space Feynman counterparts: to each line connecting to bulk points z and w we

assign a bulk-to-bulk propogator GBB(z, w), and similarly to each line connecting the bulk

point x to the boundary point ~x we assign a bulk-to-boundary propogator GB∂(z, ~x), and

we integrate over all bulk interaction vertices. The propogators GBB(z, w) and GB∂(z, ~x)

are AdS Green’s functions with the appropriate boundary conditions.

The simplest such example of a contact Witten diagram is the four-point contact diagram of

external scalars with no derivatives in the quartic vertex given by the so called D-functions

D∆1∆2∆3∆4
(x1, x2, x3, x4) =

∫ ∞

0

dz0

zd+1
0

∫
ddx

4∏

i=1

GB∂(z, ~xi), (4.16)
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where the scalar bulk-to-boundary propogotar is given by

GB∂(z, ~xi) =

(
z0

z2
0 + (~z − ~xi)2

)∆i

, (4.17)

and ∆i is the scaling dimension of the ith boundary CFT operator. The more complicated

exchange diagrams take the form

A(4)
ex =

∫

AdS
dzdwGB∂(z, ~x1)GB∂(z, ~x2)GBB(z, w)GB∂(w, ~x3)GB∂(w, ~x4). (4.18)

Following this approach requires detailed knowledge of the cubic and quartic vertices

appearing in the AdS effective action, obtained by Kaluza-Klein reduction of IIB supergravity

on S5. The effective action is extremely complicated [42–44], with the scalar quartic vertices

[43] filling 15 pages. Furthermore, the number of exchange Witten diagrams grows rapidly

with the KK level, making it practically impossible to go beyond the simplest cases of the

lowest KK modes [45–50]. The extension to arbitrary charges, made in [51, 52], was achieved

by translating the problem into Mellin space which we shall now introduce.
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Chapter 5

Mellin space formalism

As first shown by Mack [53], and improved later by Pendones [54] in the context of holographic

theories in AdS, the CFT correlators are most conveniently represented in Mellin space. In

Mellin space the amplitude shares many similarities with a scattering amplitude, and in fact

can be understood as a curved completion of a flat space scattering amplitude, with the

latter recovered in the limit of large Mellin variables. The Mellin amplitude also has the

benefit of a simpler analytic structure than its position space counterpart whose poles and

residues are controlled by the OPE.

For holographic correlators in AdS5 × S5, it is possible to improve further the Mellin space

representation, by considering a double Mellin transform which treats equally the conformal

AdS and internal S space1. This double Mellin transform reads,

〈Op1Op2Op3Op4〉int = p1p2p3p4N
Σ−2Î

∫
dŝij

∑

šij

∏

i<j

[
x

2ŝij

ij y
2šij

ij Γ[−ŝij ]

Γ[šij + 1]

]
M~p(ŝij , šij) , (5.1)

where ŝij are AdS Mellin variables and šij are sphere Mellin variables subject to the

constraints,
∑

iŝij = −pj − 2 ,
∑

išij = pj − 2 . (5.2)

The factor Î, which removes two units of weight w.r.t. to the charges pi, is a consequence of

superconformal symmetry [79], and takes the form

Î = (x2
13x

2
24y

2
13y

2
24)2Ĩ , Ĩ = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ) , (5.3)

where x, x̄, y, ȳ parametrise the invariant cross-ratios as given in (3.11), this factor is invariant

under permutations of the external operators.

1This idea was first advocated in [55] and further refined in [60] and [61].

29
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The constraints on the Mellin variables can be solved as follows,

ŝ12 + p1+p2

2 = ŝ34 + p3+p4

2 = ŝ, š12 − p1+p2

2 = š34 − p3+p4

2 = š ,

ŝ14 + p1+p4

2 = ŝ23 + p2+p3

2 = t̂, š14 − p1+p4

2 = š23 − p2+p3

2 = ť ,

ŝ13 + p1+p3

2 = ŝ24 + p2+p4

2 = û, š13 − p1+p3

2 = š24 − p2+p4

2 = ǔ , (5.4)

with

ŝ+ t̂+ û = Σ − 2 , š+ ť+ ǔ = −Σ − 2 ; Σ = p1+p2+p3+p4

2 . (5.5)

We shall say that the variables ŝ, š define the s-channel and similarly for the other channels.

The variables ŝ, š and t̂, ť will be taken to be independent. The integral and the sum in (5.1)

only run over the independent variables ŝ, š and t̂, ť, and the sum will actually be finite, as

we will see. We can further accompany each channel in position and internal space with the

following combinations of charges,

cs = p1+p2−p3−p4

2 ; ct = p1+p4−p2−p3

2 ; cu = p2+p4−p1−p3

2 (5.6)

The parametrisation of ~p in terms of {Σ, cs, ct, cu} is invertible, with Σ being an invariant

under permutation, and the various triplets {ŝ, š, cs}, {t̂, ť, ct}, {û, ǔ, cu} transforming into

one another under crossing.

It is convenient to rewrite the correlator (5.1) by making manifest the dependence on the

cross-ratios, namely

〈Op1Op2Op3Op4〉int = p1p2p3p4N
Σ−2 Ĩ

∏
i<j gij

pi+pj
2

(g13g24)Σ
H~p(U, V, Ũ , Ṽ ), (5.7)

where

H~p(U, V, Ũ , Ṽ ) =

∫
dŝdt̂

∑

š,ť

U ŝV t̂Ũ šṼ ť Γ M~p . (5.8)

By definition, Γ = ΓsΓtΓu with

Γs =
Γŝ

Γš
;

Γŝ = Γ[p1+p2

2 − ŝ]Γ[p3+p4

2 − ŝ] = Γ[Σ
2 ± cs

2 − ŝ]

Γš = Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š] = Γ[1 + Σ
2 ± cs

2 + š].
(5.9)

Similarly for Γt and Γu. The ± abbreviation stands for taking the product of both Γ with +

and − signs. Note, the sum over š and ť is automatically truncated by the Γ functions in

the denominator of Γ, thus it is finite. See also section 5.1.1.

Under crossing transformation, the factor Γ is invariant while for the Mellin amplitude we
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find the following table.

Mp1p2p3p4(ŝ, t̂, š, ť) = Mp2,p1,p3,p4(ŝ, û, š, ǔ) = Mcs,+cu,+ct(ŝ, û, š, ǔ)

= Mp1,p2,p4,p3(ŝ, û, š, ǔ) = Mcs,−cu,−ct(ŝ, û, š, ǔ)

Mp1p2p3p4(ŝ, t̂, š, ť) = Mp4,p2,p3,p1(û, t̂, ǔ, ť) = Mcu,+ct,+cs(ǔ, ť, ǔ, ť)

= Mp1,p3,p2,p4(û, t̂, ǔ, ť) = M−cu,ct,−cs(û, t̂, ǔ, ť)

Mp1p2p3p4(ŝ, t̂, š, ť) = Mp1,p4,p3,p2(t̂, ŝ, ť, š) = Mct,+cs,+cu(t̂, ŝ, ť, š)

= Mp3,p2,p1,p4(t̂, ŝ, ť, š) = M−ct,−cs,cu(t̂, ŝ, ť, š)

(5.10)

The dependence on Σ is left implicit since Σ does not transform under crossing. It is clear

that crossing has simple properties w.r.t. the triplets {ŝ, š, cs}, {t̂, ť, ct}, {û, ǔ, cu}.

We will focus on the quantum regime of N = 4 SYM where the theory is dual to classical

supergravity (i.e. the regime where we first take N large and then take large ’t Hooft coupling

λ), and we will study the tree level and the one-loop contribution to the Mellin amplitude,

M = M(1) +
1

N2
M(2) + . . . , (5.11)

with both contributions themselves expanded for large λ as follows,

M(1) = M(1,0) + λ− 3
2 M(1,3) + λ− 5

2 M(1,5) + . . .

M(2) = λ
1
2 M(2,−1) + M(2,0) + λ−1M(2,2) + λ− 3

2 M(2,3) + . . . (5.12)

Where the large λ expansion corresponds to curvature/derivative corrections1.

5.1 tree level supergravity

The combination of analytic bootstrap techniques and the knowledge about the spectrum of

supergravity, which consists of protected half-BPS single-particle states and multi-particle

states (but no excited string states), allows one to solve the problem of computing the tree

level contribution to the four-point correlators. The expression for M(1,0) was given in

1The term λ
1

2 M(2,−1) corresponds to the R4 counterterm. A term λ− 1

2 M(2,1) would correspond to
the genus one contribution to the modular completion of λ− 5

2 M(1,5) and it vanishes. The term λ−1M(2,2)

corresponds to the genus one contribution to the modular completion of M(1,6).
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[51, 52], building on previous work [100]. In our notation

M(1,0) =
1

(s + 1)(t + 1)(u + 1)
, (5.13)

where the bold variables are given by

s = ŝ+ š ; t = t̂+ ť ; s + t + u = −4 . (5.14)

Let us study this expression in detail, in particular emphasising the link between poles in

Mellin space and exchanged operators in the OPE. This will help us to fully understand the

superconformal block decomposition and the operators which appear.

5.1.1 Tree Level OPE: poles vs quantum numbers

The interacting part of the correlator (5.7) is written as an expansion in monomials Ũ šṼ ť

over a triangle in the (š, ť) plane given by

š ≥ −min(p1+p2

2 , p3+p4

2 ) ; ť ≥ −min(p1+p4

2 , p2+p3

2 ) ; ǔ ≥ −min(p1+p3

2 , p2+p4

2 ) (5.15)

where ǔ = −Σ − 2 − š− ť. Finiteness of this sum is due to the sphere Γ functions in the

denominator of Γ factor, i.e. outside of (5.15) the factor 1/ΓšΓťΓǔ vanishes. The amplitude

is thus polynomial in Ũ and Ṽ . The triangle (5.15) is also in correspondence with the su(4)

representations [aba] flowing between the OPEs Op1(x1) × Op2(x2) and Op3(x3) × Op4(x4).

In particular, we will think of š as the conjugate variable to ‘twist’ for the sphere, i.e. b,

and ť as the conjugate variable for ‘spin’ on sphere, i.e. a.

The number of long su(4) channels a correlator contributes to depends only on the charges,

and can be accounted by introducing the degree of extremality κ. A nice and fully symmetric

expression for κ can be given as follows,

κ = min(p1+p2

2 , p3+p4

2 ) + min(p1+p4

2 , p2+p3

2 ) + min(p1+p3

2 , p2+p4

2 ) − Σ − 2 (5.16)

The number of long su(4) channels is then (κ+1)(κ+2)
2 . The reps [aba] flowing in the OPE

instead depend on the orientation of the charges and they are

a = 0, 1, . . . , κ ;
b = bmin, bmin + 2, . . . , bmin + 2κ

bmin = max(|p1 − p2|, |p4 − p3|)
(5.17)

Let us now translate the triangle in su(4) labels into the one in š and ť. We shall focus on š

first, since this is relevant for the (α′)3 amplitude.
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It is almost immediate to see that

š = šmin, šmin + 1, . . . , šmax

b = bmax, bmax − 2, . . . , bmin

;





šmin = − min(p1+p2

2 , p3+p4

2 )

šmax = − max( |p1−p2|
2 , |p4−p3|

2 ) − 2
(5.18)

where š is max when ť and ǔ are minimum and šmax − šmin = κ. In sum

b

2
= −š− 2. (5.19)

The change from su(4) harmonics Y[0b0] and monomials Ũ š is a triangular matrix of the form




Y[0,bmin,0]
...

Y[0,bmax,0]


 =




Ũ šmax

...

Ũ šmin


0

(5.20)

In particular, the monomial Ũ šmin is the one and only one contributing to [0bmax0], but as

we lower b ≤ bmax sequentially a new monomial each time starts contributing. The inclusion

of ť and a for each š and b is straightforward at this point. The total range of ť simply

covers ť = ťmin, ťmin + 1, . . . , ťmax = ťmin + κ with ťmin = −min(p1+p4

2 , p2+p3

2 ). In the same

way the total range of a covers a = 0, 1, . . . , κ.

Now that we have understood how the 4pt Mellin amplitude contributes to the various su(4)

channels, we would like to explain how the poles of

M(1,0) =
1

(s + 1)(t + 1)(u + 1)
, (5.21)

are in correspondence with contributions in twist for each su(4) channel. This will then lead

us to our classification of the three regions Below Window, Window, and Above Window.

The simple pole at s + 1 = 0 is equivalently described by ŝ = −1 − š. It follows from (5.20)

that if we look at [0b0] channels we find

lowest pole from s + 1 = 0

[0bmax0] ŝ = −1 − šmin = −1 + min(p1+p2

2 , p3+p4

2 ) = bmax

2 + 1
...

...
...

[0bmin0] ŝ = −1 − šmax = +1 + max( |p1−p2|
2 , |p4−p3|

2 ) = bmin

2 + 1

= unitarity bound

(5.22)

Since there is a triangular transformation between monomials and su(4) harmonics the value
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of ŝ written in the above table is actually the minimum value. Thus for labels [aba] simple

poles are given by

ŝ = [a+ b
2 + 1, . . . ,min(p1+p2

2 , p3+p4

2 ) − 1] (5.23)

Each simple pole contributes with a U ŝ. Now, because a long block of twist τ has a leading

power in U given by U τ/2, we find that poles in (5.22) imply the presence of a contribution

in twist starting at the unitarity bound τ = 2a+ b+ 2. Then, other simple poles coming

from (s + 1) = 0 add a new contribution in twist up to τ = min(p1 + p2, p3 + p4) − 2. We

refer to this region as ‘Below Window’.

Another sequence of simple poles contributing to the correlator comes from the Γ factor.

We define the Window Region by the sequence of simple poles at

ŝ = pmin, . . . , pmax − 1 ; Window Region, (5.24)

where pmin = min(p1+p2

2 , p3+p4

2 ) and pmax = max(p1+p2

2 , p3+p4

2 ).

Finally, also from Γ, we have an infinite sequence of double poles:

ŝ ≥ pmax ; Above Window. (5.25)

These double poles give rise to logU terms at tree level, upon performing the Mellin integral

over ŝ. We should notice that for p1 + p2 = p3 + p4 the Window is empty. In this case,

Above Window simply means above the threshold for exchange of long double traces, as

defined in (5.25).

The operators exchanged in the regions described in (5.23)-(5.24)-(5.25), whose OPE data

we are interested in, are two-particle operators which we will now introduce.

5.1.2 Two-particle spectrum

In the supergravity limit (N → ∞ and λ � 1) the only operators surviving are: the

single-particle operators Op, where the energy-momentum tensor, O2, corresponds to the

graviton multiplet; and Op≥3 corresponding to higher Kaluza-Klein modes coming from the

compactification of S5; and multi particle-states built from products of these. All other

operators correspond to massive string excitations which acquire infinite mass and decouple

from the spectrum.

The simplest of the multi-particle operators are the double-trace operators,Opq;~τ , with

classical dimension ∆(0) = τ + ` and spin `. They have the property that their leading order

three-point functions with external operators are non-vanishing. This is not true for higher

multi-particle operators built from a higher number of single-particle operators, which have

three-point couplings further suppressed by powers of 1/N . Therefore, at leading large N

in the supergravity limit the contributions to the OPE are controlled by the double-trace
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operators Opq;~τ
1.

For a given twist τ , spin and su(4) channel [a, b, a] a basis of long superconformal primary

operators is given schematically by [56]

Opq;~τ = Op∂
l
�

1
2

(τ−p−q)Oq, (p ≤ q). (5.26)

Where (pq) run over the d = µ(t− 1) pairs, with t = τ−b
2 − a,

D~τ = {(pq)|p = i+ a+ 1 + r; q = i+ a+ 1 − r + b} , (5.27)

parameterised by

i = 1, . . . , (t− 1), r = 0, . . . , (µ− 1), µ =





⌊
b+2

2

⌋
a+ l even,

⌊
b+1

2

⌋
a+ l odd.

(5.28)

This may be visualised as sweeping out a rectangle in the (p, q) plane pictured below. Note,

long operators have a minimum twist τ ≥ 2a+ b+ 4 one step above the unitarity bound.

Figure 5.1: The set D~τ pictured in the (p, q) plane. With vertical lines indicating operators
with the same anomalous dimension see [56] for full details.

Generally, for a given set of classical quantum numbers there exist many degenerate operators

causing operator mixing. We must then define the true scaling eigenstates, Krs, with well

defined scaling dimensions. This implies that the block coefficients of

〈Op1Op2Op3Op4〉long =
∑

~τ

c~p
~τ L

~p
~τ , (5.29)

are not in one-to-one correspondence with the three-point functions Cpq;Krs ∼ 〈OpOqKrs〉,
1For fixed p, q, τ and su(4) labels there exists a unique double trace operator of spin `. This is not true

for higher multi-particle states which have a growing number of operators with increasing spin.
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and instead we must sum over all degenerate operators in the set D~τ

c~p
~τ =

∑

(rs)∈D~τ

Cp1p2;KrsCp1p2;Krs . (5.30)

The parameters N and λ− 1
2 enter through the quantities Cpq;Krs and the dimensions ∆,

where Cpq;Krs admit the double expansion

Cpq;Krs = N
p+q

2

[ (
C

(0,0)
pq;Krs

+ λ−3/2C
(0,3)
pq;Krs

+ λ−5/2C
(0,5)
pq;Krs

+ . . .
)

+
1

N2

(
C

(1,0)
pq;Krs

+ λ−3/2C
(1,3)
pq;Krs

+ λ−5/2C
(1,5)
pq;Krs

+ . . .
)

+O(N−4)

]
. (5.31)

Similarly, the scaling dimensions admit the expansion,

∆Krs = τ + `+
2

N2

(
η

(1,0)
Krs

+ λ−3/2η
(1,3)
Krs

+ λ− 5
2 η

(1,5)
Krs

+ . . .
)

+
2

N4

(
λ

1
2 η

(2,−1)
Krs

+ η
(2,0)
Krs

+ λ− 1
2 η

(2,1)
Krs

+ λ−1η
(2,2)
Krs

+ λ−3/2η
(2,3)
Krs

+ . . .
)

+O(N−6).

(5.32)

The Equation (5.30), after expanding around large N and λ, defines the mixing equations.

Using these equations, along with results of Rastelli-Zhou for the general tree level super-

gravity correlator [51, 52], the mixing problem at various levels of generality was solved in

[64, 65, 101], culminating in explicit formulae for the leading order three-point functions,

and a fully factorised formula for the supergravity anomalous dimensions

η
(1,0)
Kpq

= −2M
(4)
t M

(4)
t+l+1

(`10 + 1)6

, (5.33)

where

M
(4)
t ≡ (t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2) , (5.34)

`10 = l + 2(p− 2) − a+
1 − (−)a+l

2
. (5.35)

It is important to notice that `10 only depends on p, which indicates the presence of a

residual degeneracy for operators on the vertical lines of, Figure (5.1). We will show later

that this makes certain OPE data needed for the one-loop computation impossible to un-mix

directly.

The tree level mixing problem has also been studied for the first string correction [56], where

η
(1,3)
K22+b

= − ζ3

840
δl,0δa,0M

(4)
t M

(4)
t+1(t− 1)3(t+ b+ 1)3 , (5.36)
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exhibits a simple pattern, namely only the lightest state acquires a non-vanishing anomalous

dimension, corresponding to the left most operator in the rectangle and to `10 = 0. Further-

more, the first string correction to the three-point functions was shown to vanish C(0,3)
pq;Krs

= 0.

The structure of the anomalous dimensions at higher string corrections has since elucidated

in [59, 60]. We will revisit the unmixing equations in full detail in Chapter 6.

5.2 tree level string-corrections

Much progress has been made in understanding λ− 1
2 corrections to the supergravity result.

Such stringy corrections arise from higher-derivative interaction terms to the AdS5×S5

effective action, taking the general form ∂2nR, where R is the ten-dimensional Riemann

curvature.

M(1) = M(1,0) + λ− 3
2 M(1,3) + λ− 5

2 M(1,5) + . . . . (5.37)

The first two terms given by M(1,3) and M(1,5) descend from the R4 and ∂2R4 supervertices

respectively, which upon dimensional reduction generate quartic vertices in AdS5 for all KK

modes. The analytic structure of the general correction term ∂2nR4 in Mellin space is simply

polynomial in the Mellin variables whose degree is dictated by n. Note, the polynomiality of

the tree level string corrections in Mellin space corresponds to the fact that they arise from

corrections to unprotected double-trace operators, whose poles are already included by the

Γ factor in the definition of the Mellin amplitude. Such polynomial solutions correspond to

spin truncated solutions to the crossing equations [71, 94, 102, 103].

Through the flat space limit [54, 104] the Mellin space expressions are related to the type

IIB closed string four-point scattering amplitude of four super-gravitons i.e. the Virasoro-

Shapiro amplitude. Comparison to the low energy (λ− 1
2 ) expansion of the Virasoro-Shapiro

amplitude completely fixes the leading terms in the polynomial Mellin amplitudes order by

order in λ− 1
2 . This relation was used first in [103] to fix the correlator of four super-gravitons

and later extended in [71, 94] to the 〈O2O2OpOp〉 family of correlators to the first few order

in the λ− 1
2 expansion.

Our focus will be on the first tree level (α′)3 string correction given simply by [58]

M(1,3) = 2ζ3(Σ − 1)3 . (5.38)

Note, this correction being constant is quite special, and corresponds to the truncation of

the spectrum to spin zero. Higher order α′ corrections come with non trivial polynomials

in the Mellin variables and have been studied systematically via the bootstrap programme

[58, 71, 103]. To various orders, fully explicit results have been computed in [59–61].

Both M(1,0) and M(1,3) come with interesting properties which are simple to see in our
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formalism: We would expected M(1,0) to be function of all variables {ŝ, t̂, š, ť, p1, p2, p3, p4}
but it happens to depend only on the specific combinations s = ŝ + š and t = t̂ + ť,

u = −s − t − 4. Moreover, it does not depend explicitly on the charges pi at all. In a similar

way, M(1,3) is just a constant, but for the factor of (Σ − 1)3 (which is singlet under crossing).

The crucial observation is that both M(1,0) and M(1,3) can be understood as 10d objects. In

the case of supergravity, it was shown in [57] that M(1,0) enjoys a 10d conformal symmetry.

In the case of tree level α′ corrections, the authors of [61] showed that M(1,3) (and in fact

M(1,i≥3)) is the dimensional reduction of a 10d contact diagram in AdS5 × S5. Since the

operators Op(x, y) are Kaluza-Klein modes, the 10d structure of the tree level correlators

implicitly constrains the way the Mellin amplitude depends on the charges.

At tree level the ultimate goal would be to resum all the α′ corrections to M(1,0). The

resummed M(1), as function of α′, would then give the Virasoro-Shapiro amplitude in

AdS5 × S5, i.e. the generalisation of the well known type IIB flat space amplitude. It is a

non-trivial problem because the bootstrap program leaves unfixed a number of ambiguities at

each order in α′. Additional input, from supersymmetric localisation [94, 97, 98], is already

crucial to fix the ambiguities that appear at (α′)5 [59].

5.3 Loop corrections

Higher order corrections in 1/N2 have been considered both at the level of supergravity and

its stringy corrections. At one-loop, O(1/N4), the supergravity term M(2,0) was considered

in Mellin space by [55, 62, 63, 71] with the most general formula given for the 〈O2O2OpOp〉
family of correlators. A complimentary position space approach was developed in [64, 65, 95]

resulting in a general algorithm for constructing the one-loop correlator [66]. The one-loop

string corrections have also been considered both in Mellin and position space [1, 62, 67]

with the most general correlator considered being 〈O2O2OpOp〉 at λ−3/2. Recently the

two-loop, O(1/N6), supergravity contribution M(3,0)
~p was constructed in position space for

the 〈O2O2O2O2〉 correlator [68, 69].

However, up to now no general expressions for the correlator beyond tree level are known! At

one-loop the supergravity expression has been studied in [66] but proven too complicated to

write down a general closed form expression. The perfect candidate to uncover the structure

of one-loop amplitudes is given by the first string correction M(2,3) at one-loop in AdS5 ×S5,

due to the simplifcation of the double trace spectrum which truncates to 10d spin zero.

In the next chapter we will construct explicit formulae for M(2,3), for arbitrary external

charges, generalising previous work done in [1, 58, 59, 62, 67, 71], and we will outline what

is the general picture to go higher order in λ. This will involve implementing a one-loop

bootstrap programme similar to that in [66] to extract pieces of the one-loop correlator from

tree level results which we will also review.



Chapter 6

One-loop string corrections in

AdS5×S5

This chapter is dedicated to the study of one-loop string contributions beyond the one-loop

supergravity correlators M(2,0) studied in [66], the work here was originally presented in [1, 2].

We will focus on M(2,3) at (α′)3, generalising previous work done in [1, 58, 59, 62, 67, 71].

Along the way we will discuss the general picture for higher orders in α′. We will explain

how the bootstrap program works in the next section. Here we would like to summarise our

main results and novelties, compared to the existing literature.

The OPE determines the gravity amplitude from CFT data of exchanged two-particle

operators at tree level.1 In the case of M(2,3), the CFT data comes from M(1,0) and

M(1,3), which we reviewed above in (5.13) and (5.38). Within certain ranges of twist which

we refer to as Above Window, Window, and Below Window, the tree level OPE carries

information about the maximal log2 U discontinuity, the logU discontinuity and the analytic

contribution, respectively. The Above Window region contains the log2 U discontinuity and

is fully determined by the OPE. The Window and the Below Window are finite ranges in

the twist and give additional information on the structure of the amplitude. Indeed, as

for M(2,0) in supergravity [66], the log2 U discontinuity is not enough to bootstrap the full

one-loop amplitude, and the information coming from Window and Below Window is crucial

to obtain the final result.

In order to appreciate the various novelties of one-loop physics, let us begin by noting that

the Γ factor used to define the Mellin transform in (5.7) has itself a bonus property. It is

invariant under variations of the charges pi which swap pairs of values pi + pj for i, j in the

1Up to a handful of ambiguities which cannot be fixed by the current bootstrap program.

39
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s, or t, or u channel. For instance, if we highlight the s channel in,

Γ =
Γ[p1+p2

2 − ŝ]Γ[p3+p4

2 − ŝ]

Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
ΓtΓu (6.1)

this is invariant under variations of the charges such that the values of p1 + p2 and p3 + p4

swap, but the other combinations pi + pj remain unchanged. Let us emphasise that this

property is not crossing symmetry, hence the use of the term variations. In terms of the

cs, ct, cu parametrisation of the charges, see e.g. (5.9), the variations we are discussing just

amount to exchange the values ±cs. In (6.1) we looked at the s channel, but of course the

same reasoning applies to the other channels.

To have a concrete and simple example of the bonus property in mind, consider the case of

correlators ~p = (4424) and ~p = (3335). These correlators have indeed the same Γ, but more

importantly, since the Mellin amplitudes M(1,0) and M(1,3) are themselves invariant under

the aforementioned variations, the interacting correlators are equal at the corresponding

orders in the expansion,

H4424(U, V, Ũ , Ṽ ) = H3335(U, V, Ũ , Ṽ ). (6.2)

Recall that H~p is introduced in (5.7) and, up to numerical factors normalisations dictated

by (5.7) and free propagators removed, is just the interacting part of 〈Op1Op2Op3Op4〉.

More generally, we shall say that two correlators are degenerate when they have the same

values of Σ and |cs|, |ct|, |cu|. We will show that whenever two correlators are degenerate in

the tree level α′ expansion, this degeneracy is lifted at one-loop at the corresponding order

in α′. This lift was first discussed in supergravity [66] but its expression at the level of the

Mellin amplitude was not yet investigated. In this paper we provide very concrete formulae

which exhibit the degeneracty lifting in the case of M(2,3), and we believe that analogous

formulae will hold at higher orders in α′.

The Mellin amplitude will be written in the following way,

M(2,3)
~p =

[
W(AW )

~p (ŝ, š) + R(W )
~p (ŝ, š) + B(BW )

~p (ŝ, š)
]

+ crossing , (6.3)

where the superscripts indicate which region of OPE data was used to fix the function,

i.e. Above Window (AW), Window (W) and Below Window (BW).

The first term in (6.3) is given by

W(AW )
~p = w~p(ŝ, š) ψ̃(0)(−s) , (6.4)

where w~p(ŝ, š) is a polynomial and ψ̃(0)(−s) ≡ ψ(0)(−s)+γE is the digamma function shifted

by the Euler constant. This term is entirely determined by the OPE prediction for the
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log2 U discontinuity, corresponding to exchange of two-particle operators Above Window

(AW).

The second term in (6.3) represents the novelty of the one-loop function. It takes the form,

R(W )
~p (ŝ, š) =

6∑

z=0

1

s − z

[
(š+ p1+p2

2 − z)z+1 r
+
~p;z(ŝ, š) + (š+ p3+p4

2 − z)z+1 r
−
~p;z(ŝ, š)

]
, (6.5)

where crossing implies that r
± are related to each other, and given in terms of a single

function with certain residual symmetry in the charges ~p:





r
+
~p = r{−cs,−ct,cu}

r
−
~p = r{+cs,+ct,cu}

; r{cs,ct,cu} = r{cs,−ct,−cu} ; r{cs,ct,cu} = r{cs,cu,ct}. (6.6)

The function r~p;z(ŝ, š) is a polynomial, for each z, determined by OPE predictions for the

log1 U discontinuity in the Window. The poles in z come with the bold font variables, and

the structure of poles in ŝ, š, follows. We will explain this in the next sections.

Let us comment on the reason why R(W ) represents a novelty: When we look at R(W )

together with the Γ functions, say we focus on Γs in the s-channel, the total amplitude

undergoes the following split,

R(W )
~p

Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]

=
1

s − z

[
r

+
~p;z

Γ[−z + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
+

r
−
~p;z

Γ[1 + p1+p2

2 + š]Γ[−z + p3+p4

2 + š]

]
(6.7)

In particular the sphere Γ functions (in Γ) split into two z-dependent gamma functions,

with residues r
± respectively. Since we will find that r

± have generic charge dependence,

i.e. they depend on ct and cu non trivially, it follows that r
± do not map to each other under

variations of charges that leave Γ invariant, and therefore the bonus property, exemplified

for instance in (6.2), is lifted. All together we refer to this phenomenon as sphere splitting.

The third term in (6.3) is found to take the form

B(BW )
~p (ŝ, š) =

2∑

z=0

(š+ p1+p2

2 − z)z+1(š+ p3+p4

2 − z)z+1

s − z
b~p;z(ŝ, š) , (6.8)

where again b~p(ŝ, š; z) are polynomials. This contribution is determined by OPE predictions

from the log0 U term in the Below Window region.

Remarkably, we find that
∑

z in (6.5) and (6.8) are finite and moreover the number of poles
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indexed by z is independent of the charges! This feature was already observed in [1] by

studying 〈O2O2OpOp〉 in the Window. It is not manifest from the form of the OPE, which

instead depends on charges by construction. In fact, in order for this truncation to happen,

there is a delicate interplay between W(AW ) and R(W ), and B(BW ).

The function W(AW ) contributes to log2 U discontinuity by construction, but also contributes

to the log1 U discontinuity in the Window and the analytic term log0 U in the Below Window

regions. Similarly, R(W ) contributes to log1 U in the Window region by construction but

also to the analytic term log0 U in the Below Window region. This cascading behaviour

results from our choice to use the bold font variables, s, t,u, in the parametrisation of the

poles of M, say ψ̃(0)(−s) and s − z in the s channel. This choice of parametrisation then

reveals an additional simplicity: the truncation of the number of poles in z. In particular,

we find that R(W ) only contains seven poles z = 0, . . . 6 at order (α′)3.

We can argue that the use of the bold font variables, s, t,u in the parametrisation of the poles

of M is natural from the perspective of large p limit [55], i.e. from the expected behaviour of

the amplitude when the charges ~p are taken to be large. The large p limit is well established

in various AdS × S backgrounds. In the case we are interested in, the crucial observation

is that, in the large ~p limit, the AdS5 × S5 Mellin amplitude asymptotes the flat space

amplitude of IIB supergravity, where s is identified with the corresponding ten-dimensional

Mandelstam invariant of the flat space amplitude. Now, the flat space amplitude of the

one-loop IIB amplitude has various log contributions, e.g. log(−s). It is natural that such

logs should arise from the digamma in the limit of large s as ψ̃(0)(−s) → log(−s). It follows

that s is the natural variable entering ψ̃(0)(−s) in the AdS5 × S5 Mellin amplitude. More

evidence supporting the use of s, t,u, in parametrising the poles of M also comes from our

preliminary investigations on the (α′)n+3 terms for n > 0, which show that the number of

poles grows with n, but remains finite, and is independent of tree level ambiguities.

Following similar logic, the poles of the function B(BW ), are parametrised by s, t,u. This

function was previously studied for the single correlator 〈O3O3O3O3〉 in [1]. We find that

only three poles at z = 0, 1, 2 are needed to match the OPE data. Again, this truncation

depends on the delicate interplay with both W(AW ) and R(W ). Finally, combining all

contributions we are able to explicitly verify consistency with the ten-dimensional flat

space limit. Since this property was not used in the detailed construction of the individual

contributions, this provides a strong consistency check on the form of our final results.

6.1 The AdS5× S5 OPE

Having reviewed the necessary material we now revisit the OPE to see which information is

accessible to us at one-loop, focusing particularly on string-corrected one-loop amplitudes,

given explicitly at λ−3/2 in the next section. It draws mainly from [66] where it was explained
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how the CFT data collected from tree-level correlators must be organised at one-loop, in

order to initiate the bootstrap program for arbitrary external operators ~p.

6.1.1 Large N expansion

With the spectrum of operators exchanged in the OPE at hand we can now begin to make

predictions for the block coefficients. Recall, the conformal block decomposition for the long

part of the correlator is given by

〈Op1Op2Op3Op4〉long =
∑

~τ

c~p
~τ L

~p
~τ . (6.9)

As mentioned in Section 5.1.2 the double-trace operators entering the OPE are degenerate in

free theory: for fixed free quantum numbers, ~τ , there are as many operators Opq as integer

pairs (pq) in the rectangle D~τ described in [56]. Therefore, the block coefficients c~p
~τ are not in

one-to-one correspondence with the CFT data and instead we must sum over all degenerate

operators

c~p
~τ =

∑

(rs)∈D~τ

Cp1p2KrsCp3p4Krs , (6.10)

where Krs are the true scaling eignestates. Upon expanding the scaling dimensions and the

three-point couplings1 CpipjKrs of the double-trace operators with the external single-particle

operators Opi
and Opj

,

∆Krs = τ + l +
2

N2
η

(1)
Krs

+ . . . , CpipjKrs = N
pi+pj

2

[
C

(0)
pipjKrs

+
1

N2
C

(1)
pipjKrs

+ . . .
]
, (6.11)

we can go ahead and write down the OPE predictions for the block coefficients in the large

N expansion. The long multiplet contribution to the full correlator (free+interacting) up to

one-loop is given by2

〈Op1Op2Op3Op4〉long =
∑

~τ∈AW

L
(0)
~p;~τL

~p
~τ (6.12)

+
1

N2



∑

~τ∈W

N
(1)
~p;~τ +

∑

~τ∈AW

V
(1)

~p;~τ log(u)


L

~p
~τ + . . .

+
1

N4



∑

~τ∈BW

K
(2)
~p;~τ +

∑

~τ∈W

H
(2)
~p;~τ log(u) +

∑

~τ∈AW

M
(2)
~p;~τ log2(u)


L

~p
~τ + . . .

To understand the above formula we note that C(0)
pipjK~τ

= 0 for τ < pi + pj . This follows

from the form of the long contribution to disconnected free theory, which is only non-zero in

1Note, the dependance of the anomalous dimensions and three-point coupling on the quantum numbers ~τ
has been suppressed.

2We have omitted terms with derivatives acting on the blocks as they do not affect the leading logs for
each region.
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the above-window region. Therefore, when taking the product of two three-point functions

Cp1p2(O~τ )Cp3p4(O~τ ) as in (6.10) we define three regions in the large N counting. Using the

notation τmax = max(p1 + p2, p3 + p4) and τmin = min(p1 + p2, p3 + p4), the three regions

are shown in Figure 6.1 and their OPE predictions are given by:

Above Window (τ ≥ τmax): Both three point functions C(0)
p1p2,Krs

and C
(0)
p3p4,Krs

have

leading order contributions in the 1/N expansion. The terms L(0), M (1) and N (2) only

receive contributions within the above window region where we have

L
(0)
~p =

∑

(rs)∈D~τ

C
(0)
p1p2;Krs

C
(0)
p3p4;Krs

, (6.13)

V
(1)

~p =
∑

(rs)∈D~τ

C
(0)
p1p2;Krs

η
(1)
Krs

C
(0)
p3p4;Krs

, (6.14)

M
(2)
~p =

∑

(rs)∈D~τ

1

2
C

(0)
p1p2;Krs

η
(1)
Krs

η
(1)
Krs

C
(0)
p3p4;Krs

. (6.15)

Window (τmin ≤ τ < τmax): One three point function is leading order, the other is 1/N

suppressed. Within this region we may calculate the terms N (1) and H(2) given by

N
(1)
~p =

∑

(rs)∈D~τ

C
(0)
p1p2;Krs

C
(1)
p3p4;Krs

+ C
(1)
p1p2;Krs

C
(0)
p3p4;Krs

, (6.16)

H
(2)
~p =

∑

(rs)∈D~τ

(
C

(1)
p1p2;Krs

C
(0)
p3p4;Krs

+ C
(0)
p1p2;Krs

C
(1)
p3p4;Krs

)
η

(1)
Krs

. (6.17)

Below window (2a+ b+ 2 ≤ τ < τmin): Both three-point functions are 1/N suppressed

leading to a genuine 1/N4 effect. Within this region we may calculate the term K(2) given

by

K
(2)
~p;~τ =

∑

(rs)∈D~τ

C
(1)
p1p2;Krs

C
(1)
p3p4;Krs

. (6.18)

Note, all of these expressions contain at most tree-level data, meaning we are able to predict

parts of the one-loop correlator with known tree-level results, this includes: the entire double

log discontinuity M
(2)
~p ; the log discontinuity H

(2)
~p in the Window; and the analytic piece

K
(2)
~p below window!
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Above

Threshold

Window

Below

Window

τ=2a+b+2

τ=2a+b+4

τ=p3+p4

τ=p1+p2

τ=τmin

τ=τmax

O(N0)

O(1/N2)

Cp1p2(Oτ ) =

O(N0)

O(1/N2)

= Cp3p4(Oτ )

Figure 6.1: The large N structure of Cp1p2,~τ Cp3p4,~τ for two particle operators Oτ in an
su(4) representation [aba], and varying twist.

6.1.2 Tree-level OPE

Due to the operator mixing the OPE data is better organised into matrices. Let us package

the anomalous dimensions η(1)
Krs

into a diagonal |D~τ | × |D~τ | matrix ηηη(1)
~τ . We then arrange

the leading order three-point functions into an |D~τ | × |D~τ | matrix C
(0)
~τ

(
C

(0)
~τ

)

(rs),(pq)
= C

(0)
pq;Krs

; (pq), (rs) ∈ D~τ . (6.19)

Similarly, we construct the full rank |D~τ | × |D~τ | matrices L
(0)
~τ and V

(1)
~τ for fixed ~τ

(
L

(0)
~τ

)

(p1p2),(p3p4)
= L

(0)
~p;~τ ; (p1p2), (p3p4) ∈ D~τ , (6.20)

(
V

(1)
~τ

)

(p1p2),(p3p4)
= V

(1)
~p;~τ ; (p1p2), (p3p4) ∈ D~τ . (6.21)

The matrix L
(0)
~τ gives the (diagonal) CPW coefficients from disconnected free theory, while

V
(1)
~τ comes from the logU terms arising from the double poles in the tree-level interacting

part. With these definitions we may re-write (6.13) and (6.14) as

L
(0)
~τ = C

(0)
~τ · C

(0)
~τ

T
; V

(1)
~τ = C

(0)
~τ · ηηη(1)

~τ · C
(0)
~τ

T
(6.22)

A similar organisation principle holds for the subleading three-point couplings C(1) which

arise from the window region. This time it is more naturally arranged into a vector C
(1)
(q1q2);~τ ,

labelled by ~τ and a fixed pair q1q2, such that q1 + q2 > τ ≥ 2a+ b+ 4, with the vector index

running over the operators

(
C

(1)
(q1q2);~τ

)

(rs)
= C

(1)
q1q2Krs;~τ ; (rs) ∈ D~τ . (6.23)
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p

q

A

B

C

D

A = (a+ 2, a+ b+ 2);

B = (a+ 1 + µ, a+ b+ 3 − µ);

C = (a+ µ+ t− 1, a+ b+ 1 + t− µ);

D = (a+ t, a+ b+ t);

Figure 6.2: The set R~τ pictured in the (p, q) plane. With vertical lines indicating operators
with the same anomalous dimension see [56] for full details.

The non-log tree-level data for the correlator 〈Oq1Oq2Op3Op4〉 in the window region is also

best encoded by the vector,

(
N

(1)
(q1q2);~τ

)

(p3p4)
=

∑

(rs)∈D~τ

C
(1)
q1q2Krs

C
(0)
p3p4Krs

; (p3p4) ∈ D~τ (6.24)

In this case it is crucial to consider both the tree-level contribution to 〈Oq1Oq2Op3Op4〉int

and connected free theory in the long sector. With these definitions we can thus re-write

(6.16) as

N
(1)
(q1q2);~τ = C

(1)
(q1q2);~τ · C

(0)
~τ

T
, (6.25)

where the first term has vanished since C(0)
q1q2Krs

= 0.

The above discussion holds for any value of the ’t Hooft coupling λ, but let us recall that we

are interested in the regime of large λ and expand the anomalous dimensions and three-point

functions accordingly,

η
(1)
Krs

= η
(1,0)
Krs

+ λ− 3
2 η

(1,3)
Krs

+ λ− 5
2 η

(1,5)
Krs

+ . . . ,

C
(0)
pipjKrs

= C
(0,0)
pipjKrs

+ λ− 3
2C

(0,3)
pipjKrs

+λ− 5
2C

(0,5)
pipjKrs

+ . . .

C
(1)
pipjKrs

= C
(1,0)
pipjKrs

+ λ− 3
2C

(1,3)
pipjKrs

+λ− 5
2C

(1,5)
pipjKrs

+ . . . .

The matrix L
(0)
~τ is independent of λ, being derived from the disconnected part of the free

theory correlator, hence we can also write L
(0)
~τ = L

(0,0)
~τ . The matrix V

(1)
~τ has an expansion

for large λ,

V
(1)
~τ = V

(1,0)
~τ + λ− 3

2 V
(1,3)
~τ + λ− 5

2 V
(1,5)
~τ + . . . . (6.26)

When we expand the mixing equations (6.22) order by order in λ− 1
2 we find the following

equations at leading order,

L
(0,0)
~τ = C

(0,0)
~τ C

(0,0)
~τ

T
,
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V
(1,0)
~τ = C

(0,0)
~τ ηηη

(1,0)
~τ C

(0,0)
~τ

T
. (6.27)

These equations give the eigenvalue problem solved in [56, 101], yielding the double-trace

spectrum of anomalous dimensions in supergravity which exhibit the partial residual degen-

eracy associated with the hidden conformal symmetry [57]. The supergravity contributions

to the anomalous dimensions of the operators are given by a very simple formula [56],

η
(1,0)
Kpq

= −2M
(4)
t M

(4)
t+l+1

(`10 + 1)6

(6.28)

where

M
(4)
t ≡ (t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2) , (6.29)

`10 = l + 2(p− 2) − a+
1 − (−)a+l

2
. (6.30)

The notation for `10 reflects the fact that this quantity can be interpreted as a ten-dimensional

spin [57]. For µ > 1 and t > 2 there is a residual degeneracy because `10 depends only on

p and not on q. This degeneracy is illustrated in Figure 6.2 which gives a sketch of the

rectangle D~τ with operators of common anomalous dimension connected by vertical lines.

The residual degeneracy is a reflection of the ten-dimensional conformal symmetry described

in [57].

At the next orders in the expansion we find at order λ− 3
2 ,

C
(0,3)
~τ C

(0,0)
~τ

T
+ C

(0,0)
~τ C

(0,3)
~τ

T
= 0 ,

C
(0,0)
~τ ηηη

(1,3)
~τ C

(0,0)
~τ

T
+ C

(0,3)
~τ ηηη

(1,0)
~τ C

(0,0)
~τ

T
+ C

(0,0)
~τ ηηη

(1,0)
~τ C

(0,3)
~τ

T
= V

(1,3)
~τ . (6.31)

At this order the anomalous dimensions are even simpler [58]. Only operators with `10 = 0,

i.e. with a = l = 0, i = 1, r = 0 (and hence (p, q) = (2, 2 + b)) receive an anomalous

dimension. In relation to the diagram Fig. 6.2, these operators sit at the left-most corner of

the rectangle D~τ . Their anomalous dimensions read,

η
(1,3)
K22+b

= − ζ3

840
δl,0δa,0M

(4)
t M

(4)
t+1(t− 1)3(t+ b+ 1)3 . (6.32)

At order λ− 5
2 the mixing equations read,

C
(0,5)
~τ C

(0,0)
~τ

T
+ C

(0,0)
~τ C

(0,5)
~τ

T
= 0 ,

C
(0,0)
~τ ηηη

(1,5)
~τ C

(0,0)
~τ

T
+ C

(0,5)
~τ ηηη

(1,0)
~τ C

(0,0)
~τ

T
+ C

(0,0)
~τ ηηη

(1,0)
~τ C

(0,5)
~τ

T
= V

(1,5)
~τ . (6.33)

Their solution was first given in [59]. Since then the general strucutre of the tree-level
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anomalous has been elucidated [60].

Here we are mostly concerned with the order λ− 3
2 equations, which in fact yield C(0,3) = 0

as part of their solution [58]. Note that this simplification does not hold at the next order,

i.e. C(0,5) 6= 0 [59]. By expanding the subleading couplings C(1) in λ− 1
2 we have,

C
(1,0)
(q1q2);~τ · C

(0,0)
~τ

T
= N

(1,0)
(q1q2);~τ ,

C
(1,3)
(q1q2);~τ · C

(0,0)
~τ

T
+ C

(1,0)
(q1q2);~τ · C

(0,3)
~τ

T
= N

(1,3)
(q1q2);~τ ,

C
(1,5)
(q1q2);~τ · C

(0,0)
~τ

T
+ C

(1,0)
(q1q2);~τ · C

(0,5)
~τ

T
= N

(1,5)
(q1q2);~τ . (6.34)

Again the order λ− 3
2 equation simplifies since C

(0,3)
~τ = 0.

6.1.3 One loop OPE

Having reviewed tree level data, we are ready to use it to study one-loop string theory in

AdS5 × S5. This amounts to bootstrap the one-loop correlators by knowing

〈Op1Op2Op3Op4〉long = . . .+
1

N4



∑

~τ∈BW

K
(2)
~p;~τ +

∑

~τ∈W

H
(2)
~p;~τ log(u) +

∑

~τ∈AW

M
(2)
~p;~τ log2(u)


L

~p
~τ +. . .

i.e. by knowing the values of M (2)
~p;~τ , H(2)

~p;~τ , and K
(2)
~p;~τ .

log2(U): The OPE data gathered from the disconnected and tree-level contributions allows

us to predict the log2 U terms at one loop. Such terms arise purely in the above window

region and, for fixed quantum numbers ~τ , can be arranged into a matrix M
(2)
~τ given by

M
(2)
~τ = 1

2 C
(0)
~τ · (ηηη(1)

~τ

)2 · C
(0)
~τ

T
= 1

2 V
(1)
~τ · (L(0)

~τ

)−1 · V
(1)
~τ . (6.35)

Thus the log2 U terms are entirely predicted from the disconnected and tree-level CPW

coefficients L and V. The above relation can be expanded in λ− 1
2 resulting in

M
(2,0)
~τ = 1

2C
(0,0)
~τ · (ηηη(1,0)

~τ

)2 · C
(0,0)
~τ

T
= 1

2V
(1,0)
~τ · (L(0)

~τ

)−1 · V
(1,0)
~τ , (6.36)

M
(2,3)
~τ = C

(0,0)
~τ · ηηη(1,0)

~τ · ηηη(1,3)
~τ · C

(0,0)
~τ

T
+ 1

2

[
C

(0,3)
~τ · ηηη(1,0)

~τ · ηηη(1,0)
~τ · C

(0,0)
~τ

T
+ tr.

]

= 1
2

(
V

(1,3)
~τ · (L(0)

~τ

)−1 · V
(1,0)
~τ + V

(1,0)
~τ · (L(0)

~τ

)−1 · V
(1,3)
~τ

)
. (6.37)

In the second line above we have used C
(0,3)
~τ C

(0,0)
~τ

T
+ C

(0,0)
~τ C

(0,3)
~τ

T
= 0, and that ηηη(1,0)

~τ

and ηηη(1,3)
~τ are diagonal and hence commute. The first condition at (α′)3 is obvious, since

C
(0,3)
~τ = 0. A formula like (6.37) holds at (α′)5 upon replacing V

(1,5)
~τ .

log1(U): In fact, for general charges, more information can be predicted about the structure
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of the one-loop amplitude. In the window region it is possible to predict the form of the

single logU behaviour. We arrange the one-loop partial wave coefficients into a vector

H
(2)
(q1q2);~τ labelled by a fixed pair of charges (q1q2) as above,

H
(2)
(q1q2);~τ = C

(1)
(q1q2);~τ · ηηη(1)

~τ · C
(0)
~τ

T
= N

(1)
(q1q2);~τ · (L(0)

~τ

)−1 · V
(1)
~τ . (6.38)

Recall that C
(1)
(q1q2);~τ exists only for operators K~τ such that τ < q1 + q2. Recall also that for

a correlator 〈OpOqOpOq〉 there is no Window.

In the cases with no residual degeneracy of the tree-level supergravity anomalous dimension

[56] the leading order three-point functions may themselves be un-mixed as in [64, 65, 101].

They can then be used to calculate the C
(1)
q1q2;~τ using (6.25), and finally the one-loop log(u)

contribution from the first equality above. This was the procedure used in [1] to construct the

〈O2O2OpOp〉 family of correlators and led to much new OPE data as described in Appendix

A. However, for the general case where the residual degeneracy makes this impossible we

must instead use the matrix equations given by the second equality.

If we now expand in λ− 1
2 we find

H
(2,0)
(q1q2);~τ = N

(1,0)
(q1q2);~τ · (L(0,0)

~τ

)−1 · V
(1,0)
~τ , (6.39)

H
(2,3)
(q1q2);~τ = N

(1,3)
(q1q2);~τ · (L(0,0)

~τ

)−1 · V
(1,0)
~τ + N

(1,0)
(q1q2);~τ · (L(0,0)

~τ

)−1 · V
(1,3)
~τ . (6.40)

log0(U): Finally, we can also obtain information about the (logU)0 terms in the below-window

region,

K(2)
q1q2q3q4

= C
(1)
(q1q2);~τ · C

(1)
(q3q4);~τ

T
= N

(1)
(q1q2);~τ · (L(0)

~τ

)−1 · N
(1)
(q3q4);~τ

T
. (6.41)

Once again we can expand in λ− 1
2 to obtain,

K(2,0)
q1q2q3q4

= N
(1,0)
(q1q2);~τ · (L(0,0)

~τ

)−1 · N
(1,0)
(q3q4);~τ

T
, (6.42)

K(2,3)
q1q2q3q4

= N
(1,3)
(q1q2);~τ · (L(0,0)

~τ

)−1 · N
(1,0)
(q3q4);~τ

T
+ N

(1,0)
(q1q2);~τ · (L(0,0)

~τ

)−1 · N
(1,3)
(q3q4);~τ

T
. (6.43)

which give the OPE predictions in terms of tree level data. Note, the Below Window

predictions are non trivial for the first time only at one-loop!

The double logarithmic behaviour at one-loop in supergravity has been studied extensively

[1, 63, 64, 66, 70]. It has been used to make predictions for the form of the one-loop

correlator both in position [1, 64, 66] and Mellin space [55, 63]. The relations (6.39) and

(6.42) only become relevant for correlators with multiple su(4) channels. These have been

studied in [66] with several explicit examples constructed in position space. The complication

in supergravity comes from the fact that both Window and Below Window predictions

are non-trivial at all spins, and it remains difficult to find the one-loop Mellin amplitude
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explicitly for generic external charges.

Our focus will be on the (α′)3 one-loop correlator and thus equations (6.37), (6.40) and

(6.43). The advantage of studying the M(2,3) amplitude, compared to supergravity, stems

from the truncation in spin of the spectrum of two-particle operators exchanged. This

simplifies the structure of the OPE predictions in the Window and Below Window regions,

and will indeed allow us to find an expression for the Mellin amplitude M(2,3)
~p for general ~p.

Given our understanding here, we believe that the same pattern applies at all orders in α′,

even though computationally it will become a bit more involved.

6.1.4 Window splitting

We already mentioned the existence of degenerate correlators, i.e. correlators that have the

same values of Σ and |cs|, |ct|, |cu|, and therefore such that Γ is unchanged. For example, two

correlators whose values of p1 + p2 and p3 + p4 swap, and the other pi + pj are unchanged.

At order M(1,0) and M(1,3) these correlators are necessarily proportional to each other since

both these Mellin amplitudes do not distinguish them. The situation at one loop is quite

different. The crucial point is that the OPE predictions now involve a sum over operators

which mixes degenerate and non-degenerate data at tree level.

The example of 〈O3O3O3O5〉 and 〈O4O4O2O4〉 discussed in (6.2) is quite useful to see what

is going on. The one-loop predictions in the Window will involve

[
N

(1,0)
35

]

(rs)=(24),(33)
;

[
N

(1,0)
44

]

(rs)=(24),(33)
,

[
N

(1,3)
35

]

(rs)=(24),(33)
;

[
N

(1,3)
44

]

(rs)=(24),(33)
, (6.44)

with indices (rs) running over the rectangle at τ = 6 in [020], i.e. {(24), (33)}. So even

though the purple colored coefficients come from correlators degenerate at tree level, and

which are therefore proportional to each other, the remaining data is genuinely distinct.

Thus, after matrix multiplication (see (6.38) and (6.41)), the one-loop result will distinguish

these correlators. The general statement will be that one-loop OPE predictions in the

window lift the tree-level degeneracy of correlators. This was first noticed in supergravity in

[66], and the same mechanism is at work here.

6.2 The one loop Mellin amplitude M(2,3)

In this section we translate the structure of the one-loop OPE data into the Mellin space

amplitude. We claim that

M(2,3)
~p =

[
W(AW )

~p (ŝ, š) + R(W )
~p (ŝ, š) + B(BW )

~p (ŝ, š)
]

+ crossing . (6.45)
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i.e. M(2,3)
~p naturally splits into three pieces, described below.

Our starting point will be to use the data from the OPE, at tree level Above Window, to

completely fix W(AW ). We will find that

W(AW )
~p (ŝ, š) = ψ̃(0)(−s) w(ŝ, š, cs; Σ) (6.46)

where w is a determined polynomial, and ψ̃(0) = ψ(0) + γE is a digamma function. The

latter accounts for the fact that WAW has to contribute to triple poles in order to generate

a log2 U discontinuity, and the Γ factor only gives at most double poles Above Window.1

The restricted dependence of w on the Mellin variables comes from the fact that the OPE

has support only on a = l = 0, and therefore w is function of s-type variables only, thus

w(ŝ, š, cs; Σ).

Note: The argument of ψ̃(0) being −s implies that contributions from W(AW ) are not

restricted to Above Window, but actually start at s = 0. As we explained in the previous

section, this is one unit above the unitarity bound s + 1 = 0, therefore W(AW ) contributes

also to the log1 U and log0 U discontinuities, respectively, in the Window and Below Window.

This fact will play an important role as observed in [1], and explained below.

Next, we will use window OPE data, and also contributions coming from W(AW ), to fix the

remainder function in the Window

R(W )
~p (ŝ, š) =

6∑

z=0

(š+ p1+p2

2 − z)z+1 r
+
~p;z(ŝ, š) + (š+ p3+p4

2 − z)z+1 r
−
~p;z(ŝ, š)

s − z
, (6.47)

with r
± are polynomials. We shall call R a remainder function since it gives the part of the

OPE Window predictions not captured by W(AW ). Remarkably, the interplay with W(AW )

will truncate the sum over z to a maximum of seven poles! It will be clear that this function

should also be extended to contribute to the Below Window region.

The determination of the function R(W ) is a central result of our investigation, since it

characterises the way the window splitting is implemented in Mellin space. We called this

phenomenon "sphere splitting", and it will be discussed in more detail in section 6.2.2.

Finally, using Below Window data, as well as contributions now coming from both W(AW )(ŝ, š)

and R(W )(ŝ, š), we fix the last piece of our ansatz2

B(BW )
~p (ŝ, š) =

2∑

z=0

(š+ p1+p2

2 − z)z+1(š+ p3+p4

2 − z)z+1

s − z
b~p;z(ŝ, š) . (6.48)

1Note the formula Γ[−ŝ+ p1+p2

2
]Γ[−ŝ+ p3+p4

2
]ψ(−s)W(AW )U ŝ → 1

2

[
∂2

ŝ
1

(ŝ−n)

]
W(AW )U ŝ.

2The division between R(W ) and B(BW ) is our choice. We do so because the explicit solution for R(W )

will have nice analytic properties Below Window, see section 6.2.2.
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This is also a remainder function, capturing the predictions of the OPE in the Below Window

region after contributions from both W(AW )(ŝ, š) and R(W )(ŝ, š) are taken into account. We

find that B(BW )(ŝ, š) also truncates, this time to just three poles in z. Again b~p;z(ŝ, š) is

polynomial.

In practice to arrive at the above expressions we first make an ansatz in Mellin space and

perform the contour integration to arrive at an expression in position space which we can

then expand in conformal blocks and match against the known OPE data.

6.2.1 Above window

The log2 U terms at order λ− 3
2 have a very simple form [1]. The reason behind this is that

only operators with `10 = 0 receive an order λ− 3
2 contribution to their anomalous dimensions.

Therefore, in the following expression for M
(2,3)
~τ ,

[
M

(2,3)
~τ

]
(p1p2),(p3p4)

=
∑

K∈R~τ

C
(0,0)
p1p2K η

(1,0)
K η

(1,3)
K C

(0,0)
p3p4K . (6.49)

only a single operator K contributes to the sum for a given τ and b! In Figure 6.2 this is the

operator labelled by the leftmost corner of the rectangle. If we now insert this expression into

the sum over long superconformal blocks to obtain the expansion of the log2 U discontinuity,

we find an expression that is almost identical to the expansion of the logU discontinuity at

tree level,1 but for the insertion of a factor of η(1,0) restricted to `10 = 0. By construction

this factor is a number (which includes the value of the denominator of η(1,0)) multiplying

the eigenvalue of a certain eight-order Casimir operator ∆(8) introduced in [57] in position

space, see in particular [1].

In Mellin space, the log2 U contribution comes from Γ × ψ̃(0)(−s), which is the source of all

triple poles. The knowledge of the log2 U coefficient will therefore fully fix

W(AW )
~p (ŝ, š) = ψ̃(0)(−s) w(ŝ, š, cs; Σ). (6.50)

From the discussion about the special form of (6.49) we infer that, apart for an overall

prefactor, the polynomial w is given by applying ∆(8) (rewritten in Mellin space) to 1, where

the latter is (up to a numerical factor) the tree level amplitude in the Virasoro Shapiro

amplitude at order (α′)3.

We have written the full expression of w(ŝ, š, cs; Σ) in the Appendix. Expanded in all

variables it has the form

w(ŝ, š, cs; Σ) = +
(Σ − 1)3

180

(
− 36c2

s + 9c4
s + 36c2

s š + . . . + 8šŝ3Σ4 + 2ŝ4Σ4
)
. (6.51)

1i.e.
∑

K∈R~τ
C

(0,0)

(p1p2)K
η

(1,3)
K

C
(0,0)
p3p4K

.
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A more compact representation can be given by the following double integral,

w(ŝ, š) =
i

2π

∫ ∞

0

dα

α

∫

C
dβ e−α−βαΣ+2(−β)−Σ+1

w̃(α, β) (6.52)

where C is the Hankel contour. The α integral is the Γ function integral, and the β integral

the reciprocal Γ function integral. Note that the integral in α is nothing but the integral

used by Penedones to study flat space limit [54], and the β-integral generalises that to the

compact space.

Then, w̃~p(α, β) is defined in terms of the following variables,

S = αŝ− βš, S̃ = αŝ+ βš, (6.53)

by the expression

w̃(α, β, cs; Σ) = (6.54)

1

90
(S − 3Σ) (S − 2Σ) (S − Σ)S + Σ2−c2

s

20

(
2S2 − 6SΣ + 5Σ2 − c2

s

)
+

− 1

30
S̃
(
2S2 − 9SΣ + 11Σ2 − 3c2

s

)
+

1

180

(
S2 − 36SΣ + 36(Σ2 − c2

s) + 7S̃2).

It is immediate to see that only c2N
s appear. In fact, since w is a function of s variables only,

the crossing relations,

Mp1p2p3p4(ŝ, t̂, š, ť) = Mp4,p3,p2,p1(ŝ, t̂, š, ť)

= =

Mcs,ct,cu(ŝ, t̂, š, ť) M−cs,ct,−cu(ŝ, t̂, š, ť)

(6.55)

implies that w is function of c2
s, i.e. since there is no cu dependence the invariance under

cs ↔ −cs follows. In particular, as for Γ factor, the polynomial w(ŝ, š, cs; Σ) has the same

bonus property.

Let us emphasise that the OPE does not immediately predict ψ̃(0)(−s). The Above Window

region only requires Γ[p1+p2

2 − ŝ]Γ[p3+p4

2 − ŝ]ψ̃(0)(−ŝ + pmax), since ŝ ≥ pmax is where the

triple poles are. However, the presence of ψ̃(0)(−s) is strongly motivated by the limit in

which the charges pi are large, and therefore s is large [55]. As explained already in the

Introduction, the key observation is that in this limit s becomes a 10d Mandelstam invariant

and the Mellin amplitude asymptotes the 10d flat space scattering amplitude. In the present

case we must recover the log(−s) of the type IIB flat space amplitude, and the latter comes

from ψ̃(0)(−s) in the limit of large s. We will later show in section 6.3 that in the large p

limit we recover exactly the type-IIB flat space amplitude!

It follows from the presence of ψ̃(0)(−s) that the range of twists where W(AW ) contributes
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is not restricted to the Above Window region, ŝ ≥ pmax, where W(AW ) naturally lives, but

embraces the bigger region bounded from below by the locus s = 0. We now understand that

W(AW ) contributes to the one-loop correlator starting from the first two-particle operator in

the Below Window region at τ = 2a+ b+ 4. Consequently W(AW ) gives contributions that

will add to those of R(W ) function and B(BW ) in- and below- Window, respectively. The

choice to write the Above Window contribution as described above has the consequence of

revealing the truncation of sum over z in the Window contribution to z = 0, . . . , 6, rather

than a range growing with the charges.

Flat space relation of the AdS5 × S5 amplitude

The fact that the polynomial w(ŝ, š, cs; Σ) can be written in terms of a pre-polynomial (6.54),

as in the case of the Virasoro-Shapiro amplitude studied in [60], suggests the following little

game: In flat space the part of the (α′)3 amplitude at one loop which accompanies log(−s)
is s4, and the tree-level (α′)7 amplitude is proportional to s4 + t4 + u4. Therefore, if we

assemble

M7 ≡ w(ŝ, š, cs; Σ) + w(t̂, ť, ct; Σ) + w(û, ǔ, cu; Σ) (6.56)

we expect by construction that this quantity has the correct 10d flat space limit. Is there

something more? Upon inspection, it turns out that M7 so constructed is actually the

tree-level (α′)7 amplitude constructed in [60, 61], up to an overall coefficient and a certain

choice of ambiguities! This observation stands at the moment as a curiosity, though quite

intriguing. It would be interesting to understand its origin further, and whether or not it

generalises beyond this case. We will leave this for a future investigation.

6.2.2 The Window

The log1 U projection of the (α′)3 correlator in the Window has the following one-loop OPE

expansion, for fixed quantum numbers ~τ ,

∑

K∈R~τ

C
(0,0)
p1p2,K

(
η

(1,3)
K C

(1,0)
p3p4,K + η

(1,0)
K C

(1,3)
p3p4,K

)
+
∑

K∈R~τ

C
(0,0)
p3p4,K

(
η

(1,3)
K C

(1,0)
p1p2,K + η

(1,0)
K C

(1,3)
p1p2,K

)

(6.57)

Formula (6.57) contains two terms symmetric under (p1, p2) ↔ (p3, p4). However, the two

terms never contribute together. This is because the (free theory value of the) twist of

the two-particle operator K is greater equal than max(p1 + p2, p3 + p4), and therefore in

the Window either C(0,0)
p1p2,K = 0 or C(0,0)

p3p4,K = 0. It follows that when we compute the

OPE predictions we only have access to one of the two terms at once. Nevertheless, we

do expect a final formula for the coefficients which is at the same time symmetric under

(p1, p2) ↔ (p3, p4) and also analytic in the charges. We can imagine several scenarios of
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which the simplest one is perhaps the one where a single contribution, say for concreteness

the one for p1 +p2 < p3 +p4, is such that upon a natural analytic continuation in the charges,

it automatically vanishes when p1 + p2 > p3 + p4, and vice-versa. The final symmetric result

will then be the sum of the two contributions. This simple scenario is indeed the one realised

by the amplitude.

In the analysis that follows it will prove useful to move between a Mellin space formula of

the type,

H~p(U, V, Ũ , Ṽ ) =

∫
dŝdt̂

∑

š,ť

U ŝV t̂Ũ šṼ ť Γ M~p(š, ť), (6.58)

and a formula where we perform the sum over š and ť and decompose into the basis of

spherical harmonics Y[aba]. We can start in the monomial basis, with an expression of the

form ∫
dŝdt̂ U ŝV t̂ ΓŝΓt̂Γû

∑

š,ť

Ũ šṼ ť

ΓšΓťΓǔ
F~p(ŝ, š), (6.59)

valid for F = {W(AW ),R(W ),B(BW )}, i.e. each one of the three functions that builds up our

amplitude. The sum over š and ť is finite, as we explained already. Then, upon decomposing

into spherical harmonics we can alternatively write,

∫
dŝdt̂ U ŝV t̂ ΓŝΓt̂Γû

∑

[0b0]

Y[0b0] F~p(ŝ, b). (6.60)

The notation F (ŝ, š) and F (ŝ, b) will then refer to F as being written in the monomial basis

and spherical harmonic basis, respectively.

As an example, we reproduce an interesting formula for the Above Window function

w~p(ŝ, b) =
(Σ − 1)3

Γ[0b0]
× 1

15 × 3!

4∑

i=0

(−1)i

(
4

i

)
(ŝ(ŝ+ 2 − i) − b

2( b
2 + 2))

×
(
ŝ− b+ 2

2

)

3−i

(
ŝ+

b+ 2

2

)

3−i

(
p1 + p2

2
− ŝ

)

i

(
p3 + p4

2
− ŝ

)

i
(6.61)

where the analogous factor of Γ[aba] function was found in [59].1

With either representation, i.e. F (ŝ, š) and F (ŝ, b), we can perform the ŝ and t̂ integration,

to arrive at an expression in position space which we can then decompose into conformal

blocks and match against OPE predictions.

1

Γ−1
[aba] =

(Σ − 2)!b!(b+ 1)!(2 + a+ b)

Γ[± p1−p2

2
+ b+2

2
]Γ[ p1+p2

2
+ b+2

2
]Γ[ p1+p2

2
− b+2a+2

2
]Γ[± p3−p4

2
+ b+2

2
]Γ[ p3+p4

2
+ b+2

2
]Γ[ p3+p4

2
− b+2a+2

2
]
.
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Spherical harmonic basis

We wish to compute first RW
~p (ŝ, b) in the spherical harmonic basis. This is derived from

matching the log1 U projection of the amplitude, i.e.

∫
dŝdt̂ U ŝV t̂ ΓŝΓt̂Γû

(
∑

b

Y[0b0]

[
W(AW )

~p (ŝ, b) + R(W )
~p (ŝ, b)

]
+ crossing

) ∣∣∣∣∣
log1 U

(6.62)

with the prediction from the OPE in the Window. Schematically, we expect

R(W )
~p (ŝ, b) =

∑

n

#

ŝ− n
; n ≥ min(p1+p2

2 , p3+p4

2 ). (6.63)

The task will be to find the residues # for the various values of the twist in the Window

Region, here labelled by values of τ = 2n. In (6.62) we have already restricted the summation

to a = 0, as a consequence of the truncation to spin zero valid at order (α′)3.

In practice, say we focus on the s channel, we will pick double poles in ŝ in the Window

(this will select the log1 U contribution), perform the t̂ integral, and obtain a function in

position space. This function contains up to log1 V and log0 V contributions (since there is

no ψ̃(−t) in the s channel). Note that for given power of U , both log1 V and log0 V come

with a non trivial rational function of V . These contributions are analytic in the small x, x̄

expansion, which is the expansion of the blocks we want to match.1

As in the case of 〈O2O2OpOp〉 considered in [1], we find that only five poles are necessary to

fit the OPE predictions2. In the sector p1 + p2 ≤ p3 + p4, we find

R−
~p (ŝ, b) =

∑

n≥
p1+p2

2

γ~p(n, b)

Γ[5 − n+ p1+p2

2 ]Γ[p3+p4

2 − n]

R
−
~p (n, b)

(ŝ− n)
, (6.64)

where the minus superscript stands for p1 + p2 ≤ p3 + p4, then n = p1+p2

2 , p1+p2

2 + 1, . . . runs

over half-twists, and

γ~p(n, b) =
b!(b+ 1)!(b+ 2)

Γ
[
±p12

2 + b+2
2

]
Γ
[
±p43

2 + b+2
2

]

(
p1+p2

2 − b+2
2

)

3

(
p1+p2

2 + b+2
2

)

3

Γ
[
n− b+2

2

]
Γ
[
n+ b+2

2

] (6.65)

1It is actually convenient to resum the OPE predictions to exhibit the log V contribution explicitly, then
match. This type of resummation was called a one-variable resummation in [66] see section 4.3.

2In 〈ppqq〉, fix the su(4) channel to start with, and look at the residue of the first pole as function of p
and q. The range of p, q is infinite and this gives a p, q dependent polynomial in the numerator and three
Γ functions in the denominator. We then vary the su(4) channel, introducing b. By studying in the same
way the second pole, the third pole, etc. . . , we recognise Γ[ p3+p4

2
− n]Γ[n− b+2a+2

2
]Γ[n+ b+2

2
]. Thus, even

though we can access five values of the twist, i.e. five poles, we can single out Γ[5 + p1+p2

2
− n] from looking

at B3 where B := b(b+4)
4

.
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and

R
−
~p (n, b) = B3

15 + (Σ2+14Σ−(cs)2−10cs+28−2(ctu)2)B2

60 + . . .

− 2n
[

(Σ+3)B2

15 + (Σ2+7Σ−(cs)2−cs+12−(ctu)2(Σ+3))B
30 + . . .

]
; B := b(b+4)

4 .

(6.66)

The full expression for R− can be found in the appendix, it is made of simple polynomials.

Note that above we have used the notation ctu = ct + cu.

The fact that only five poles in R− are needed to fit the OPE data is reflected by the factor

1
/
Γ[5 + p1+p2

2 − n], which automatically truncates when n ≥ p1+p2

2 + 5. It implies that

beyond the fifth pole, the OPE predictions are fully captured already by the function WAW !

This is quite remarkable given that we are evaluating WAW in the Window. Let us also

emphasise that Res~p turns out to be only a linear polynomial in n. Considering that we are

fitting five poles, this is a non-trivial consistency check of our formula. A closely related

formula holds for R+ in the sector p1 + p2 ≥ p3 + p4. Let us see why:

Above we considered the case p1 +p2 < p3 +p4 and found R−, but note that it automatically

vanishes when p1 + p2 > p3 + p4. This is because of 1
/
Γ[p3+p4

2 − n] and the fact that

n ≥ p1+p2

2 in the sum. Therefore, we are free to add both contributions in one formula and

write the following symmetric and analytic expression

R(W )
~p (ŝ, b) = R−

~p (ŝ, b) + R+
~p (ŝ, b) ; R+

p1p2p3p4
(ŝ, b) = R−

p4p3p2p1
(ŝ, b) (6.67)

where R+ is related to R− by swapping charges in the appropriate way. Using the cs, ct, cu

parametrisation, R+
{cs,ct,cu}(ŝ, b) = R−

{−cs,ct,−cu}(ŝ, b).

Let us now come back to the Window splitting mentioned in section 6.1.4. There, we

explained that degenerate correlators at tree level are those correlators with the same values

of Σ and |cs|, |ct|, |cu| which therefore are proportional to each other at order M(1,0) and

M(1,3), because the bonus property is preserved. We can see from the explicit expressions

for Res~p(n, b) that at one-loop this is not the case anymore. Coming back to our guiding

example of ~p = (3335) and ~p = (4424), we can see that

R
−
~p=3335(n = 3, b = 2) = −336

5
; R

+
~p=4424(n = 3, b = 2) = −348

5
(6.68)

where the LHS is simply the evaluation of (6.66), while the RHS is obtained from the (6.66)

upon cs → −cs and cu → −cu. As promised, the one-loop OPE distinguishes these two

correlators in the Window. Note instead that if we project the correlators onto the log2 U

discontinuity Above Window, the corresponding contributions are still degenerate.

Figure 6.3 illustrates the general structure of poles of the remainder function, as we have

obtained it from OPE data. Notice now that R(W )(ŝ, b) can be analytically continued Below
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ŝ = min(p1+p2

2 , p3+p4

2 )

[0, bmin, 0] [0, bmin + 2, 0]

. . .

Window

Above Window

[0, bmax, 0]

Figure 6.3: Pole structure of the remainder function in the basis of spherical harmonics.
Black dots indicate a non-zero residue. Un-filled dots only receive contributions from W(AW ).

Window. Quite nicely, the factor 1
/
Γ
[
n− b+2

2

]
ensures vanishing at the unitarity bound,

thus giving the correct physical behaviour not just in the Window, where the function was

fitted, but also Below Window! We infer that the remainder function can be understood

more properly to descend onto the range of twists above the unitarity bound, which means

we are free to start the sum in (6.64) from n ≥ b+4
2 . At this point it is clear that the pole

structure of R(W ) will be naturally labelled by bold font variables, in complete analogy with

the way W(AW ) descends in- and below- Window. Figure 6.4 illustrates the poles from the

latter viewpoint.

s = 0

s + 1 = 0

[0, bmin, 0] [0, bmin + 2, 0]

. . .

. . .

Window

Above Window

[0, bmax, 0]

Figure 6.4: Pole structure of the remainder function after continuation Below Window.

To see more clearly the structure of poles in s, from the Window down to the Below Window,

let us point out that when we look at the [0bmax0] channel, the locus s = 0 pinpoints the

bottom of the window, below there is only the unitarity bound at s + 1 = 0. Lowering

b < bmax, and looking at the [0b0] channels, the same locus s = 0 enters the below window

region depicted in green.

Monomial basis, Crossing, and Sphere splitting

In this section we will turn the expression R(W )(ŝ, b), written in the basis of harmonics

Y[0b0], into the monomials basis U šV ť, yielding the final Mellin amplitude corresponding to
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the Window region. The result right away is

R(W )
~p (ŝ, š) =

6∑

z=0

1

s − z

[
(š+ p1+p2

2 − z)z+1 r
+
~p;z(ŝ, š) + (š+ p3+p4

2 − z)z+1 r
−
~p;z(ŝ, š)

]
, (6.69)

where the notation r
± refers to the fact that p1 + p2 = Σ + cs and p3 + p4 = Σ − cs. The

polynomials r
± are related to each other,

r
+
~p = r{−cs,−ct,cu} ; r

−
~p = r{+cs,+ct,cu}, (6.70)

and given in the appendix. There are seven of them, since z = 0, . . . , 6. The first few are

are simple to write down, see the list in (6.74).

The result for R(W ) in (6.69) has two important properties, which are tied to the window

splitting described in the previous section. These properties go together and are 1) the split

of Γ, and 2) the dependence of r on the charges ~p. Both these properties provide the way

to distinguish between p1 + p2 < p3 + p4 and p1 + p2 > p3 + p4 at the level of the Mellin

amplitude. All together this is the sphere splitting we already mentioned in the summary.

In more details: Assume ŝ belongs to the Window, then ŝ = min(p1+p2

2 , p3+p4

2 ) + n for some

positive integer, n ≥ 0. Now, from s − z = 0 we obtain the value of š, through the relation

−z + min(p1+p2

2 , p3+p4

2 ) + š = −n. Considering that

R(W )
~p (ŝ, š)

Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
→

6∑

z=0

1

s − z

[
r

+
~p;z

Γ[−z + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
+

r
−
~p;z

Γ[1 + p1+p2

2 + š]Γ[−z + p3+p4

2 + š]

]

(6.71)

we see that only one of the two terms contributes, because

p1 + p2 > p3 + p4

−z + p3+p4

2 + š = −n
only r

+ contributes

p1 + p2 < p3 + p4

−z + p1+p2

2 + š = −n
only r

− contributes

(6.72)

This splitting is analytic in the arguments of the Γ functions, and therefore the function r
±,

will be polynomial, i.e. there are no absolute value discontinuities. When we change basis,

the sum over z truncates to seven poles z = 0, . . . , 6! and we find

r
+
~p = r{−cs,−ct,cu} ; r

−
~p = r{+cs,+ct,cu}, (6.73)
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where r is given in the appendix. Here we will quote for illustration

r~p;6 =
(š+ Σ+cs

2
−1)(š+ Σ+cs

2
)

15 ,

r~p;5 =
(š+ Σ+cs

2
)(−30+11cs+2c2

s+9Σ+3csΣ+Σ2+c2
tu+30š−2šΣ−12š2)

30 ,

r~p;4 =
30š4+10š3(Σ−9)−5š(−30+11cs+2c2

s+11Σ+3csΣ+Σ2+c2
tu)+...

15 ,

...

(6.74)

It is now clear how the sphere splitting on the Mellin amplitude achieves the window splitting

of section 6.1.4 coming from the OPE. As mentioned already, to break the bonus property of

the Γ we need r{cs,ct,cu} to depend not only on cs, but generically on all cs, ct, cu. Considering

(6.74) for the s-channel, this indeed has non trivial dependence on ct and cu (actually here

only on ctu = ct + cu)1 and therefore breaks the degeneracy of correlators M(1,0) and M(1,3).

As an example let us consider the correlator 〈O2O2OpOp〉, for which we have cs = 2 −p,Σ =

2 + p, ctu = 0 and š = −2, after substituting in these values the above formulae reduce to

r22pp;n = 16

(
4

n

)
(p+ 1)2

Γ[n+ 2]
. (6.75)

Note, the vanishing of r22pp;5 and r22pp;6 ensuring consistency with the five pole picture in

the spherical harmonic basis.

Let us comment further on crossing symmetry, verifying that (6.73) is consistent with

crossing, and checking additional symmetries of r . By starting from the following (subset of

crossing) relations,

R(W )
p1,p2,p3,p4

(ŝ, t̂, š, ť) = R(W )
p2,p1,p4,p3

(ŝ, t̂, š, ť) = R(W )
cs,−ct,−cu

(ŝ, t̂, š, ť) (6.76)

= R(W )
p4,p3,p2,p1

(ŝ, t̂, š, ť) = R(W )
−cs,ct,−cu

(ŝ, t̂, š, ť) (6.77)

= R(W )
p3,p4,p1,p2

(ŝ, t̂, ť, š) = R(W )
−cs,−ct,cu

(ŝ, t̂, š, ť) (6.78)

we find that r
± are related to each other, and in fact are given in terms of a single function,

r
+
~p = r{−cs,−ct,cu} ; r

−
~p = r{+cs,+ct,cu}. (6.79)

1otherwise crossing would imply invariance under cs ↔ −cs.
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Moreover, crossing shows that r has the following residual symmetry1

r{cs,ct,cu} = r{cs,−ct,−cu} ; r{cs,ct,cu} = r{cs,cu,ct}. (6.80)

This is in fact what happens when we look at the explicit expressions of r
±
~p;z(ŝ, š).

Two final comments.

1) The truncation in the number of poles can be seen to be in one-to-one correspondence

with the bound in the degree of the non factorisable polynomial appearing in the

numerator of r~p;z. Under this logic we cannot have a numerator past r~p;6.

2) Notice also that r~p;6 and r~p;5 vanish in the Window precisely because of the factors

(š + p1+p2

2 − 1) and (š + p1+p2

2 ), thus guaranteeing consistency with the five poles

picture in Figure 6.3. The new picture for the poles in the monomial basis is displayed

in Figure 6.5.

. . .. . . s = 0

s + 1 = 0

U šmaxU šmax−1U šmax−2U šmax−3U šmax−6U šmax−7U šmax−8

Figure 6.5: The pole structure of R(W ) in the monomial basis. Red: contributions lying
in the window. Green: contributions lying in the Below window.

6.2.3 Below Window completion

So far we have focussed on the Window region. We also understood that R(W ) has an

immediate analytic continuation to Below Window. Now we should ask whether we need or

not an additional reminder function Below Window? The answer is affirmative and in fact

we need a contribution B(BW ) of the following form,

B(BW )
~p (ŝ, š) =

2∑

z=0

(š+ p1+p2

2 − z)z+1(š+ p3+p4

2 − z)z+1

s − z
b~p;z(ŝ, š) . (6.81)

1The second property on the l.h.s. does not follow from (6.76)-(6.78). It has to do with exchanging
ct ↔ cu and it comes from imposing (5.10) etc., on the full Mellin amplitude

R(W )
cs,ct,cu

(ŝ, š) + R(W )
ct,cu,cs

(t̂, ť) + R(W )
cu,cs,ct

(û, ǔ).
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Then, together, the contribution from B(BW ) and the contributions from both W(AW ) and

R(W ) Below Window will reproduce the correct OPE prediction.

We find that only poles z = 0, 1, 2 receive a Below Window completion. Their explicit form

is
b~p;2 = 4(š+Σ−1)

15 ,

b~p;1 = (1−2š−Σ)(4š2−4š(1+2Σ)+16−c2
s+4Σ−11Σ2)

15 ,

b~p;0 = 16š5−64š4Σ−8š3(c2
s−15Σ2+4)+16š2Σ(c2

s+26Σ2−29)+...
60 ,

(6.82)

and can be read in the Appendix.

Again the truncation to three poles is in one-to-one correspondence with the bound on the

degree of the polynomial. It is interesting to note the below window region does not exhibit

the sphere splitting. For example in the s-channel these functions depend just on c2
s and

thus are symmetric under p1 + p2 ↔ p3 + p4.

With the knowledge of W(AW ), R(W ) and B(BW ) the bootstrap program for M(2,3) is

completed, up to the following ambiguities:

Ambiguities. The ambiguities we can add to the one loop function are tree-like contribu-

tions of the form of contributions to the Virasoro-Shapiro tree amplitude and do not spoil

the one-loop OPE predictions in- and below- Window. For the case of M(2,3) we can add

the same as the functions corresponding to M(1,n=3,5,6). The case M(1,n=7) is simple to

exclude since it will contribute to the flat space limit, and there is no such a contribution

in flat space. Note that by construction the ambiguities listed above will contribute to the

log1(U) discontinuity, Above Window, rather than in the Window, and for the analytic part

they will contribute, in the Window, rather than Below Window. In other words, they lie

on top of what we fixed by the OPE data at one-loop, and therefore contribute with a free

coefficient, as far as the bootstrap program is concerned.

6.3 Large p and the flat space amplitude

In this section we will compute the large p limit of [55], i.e. the limit of M(2,3) when the

external charges pi (and thus the Mellin variables) are taken to be large. By the arguments

in [55], this limit reduces the amplitude to the full flat space amplitude of IIB supergravity

where s, t,u become 10d Mandelstam invariants. The flat space amplitude is quite a simple

amplitude, but M(2,3) involves various pieces and therefore it will be quite an interesting

computation to show the final result.

Let us focus on the s-channel, and introduce for convenience s̃ = 2š+ Σ. To take the limit,
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we simply need to consider

{s, s̃, cs} → p {s, s̃, cs} ; Σ → pΣ, ; p → ∞ (6.83)

on the various entries in the Mellin amplitude, which we know explicitly as function of ~p.

The limit on WAW
~p is straightforward and reads

lim
p→∞

WAW
~p

p8
= lim

p→∞

w(ŝ, š, cs; Σ)ψ(−s)

p8
=
ζ3

90
Σ4s4 log(−s) (6.84)

This is already the corresponding IIB flat space result [105]. We conclude that for the large

p limit to hold the contributions from R(W ) and B(BW ) must give vanishing contributions

in the limit.

One can see that the contribution from B(BW ) are subleading w.r.t to p8 in the limit. However,

for each one of the z poles, the contribution from R(W ) individually is not subleading! In

fact, we find the following contributions:

pole lim
p→∞

contribution from pole (z)

p8

z = 6 (s̃−cs)2(s̃−cs−2Σ)3((s̃−Σ−ctu)(s̃−Σ+ctu))2

7680s

...
...

z = 0 (s̃−cs)7(s̃+cs)2

7680s

(6.85)

By inspection of (6.85), we find that the leading term of each pole z is as leading as (6.84):

It has degree 8 in p. However, when summing over all contributions in the second column,

the result vanishes! This cancellation is quite remarkable, given that non trivial functions of

s̃ and charges are involved. We find then that the large p limit of the one-loop amplitude

M(2,3), and the flat space IIB S-matrix, match perfectly. As a byproduct of our analysis

here we have given a non-trivial confirmation of the geometric picture associated with the

large p limit, as described in [55], and shown the self-consistency of the one-loop bootstrap

program.
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Chapter 7

Conclusions

In the first part of this thesis we studied one-loop stringy corrections to the Mellin amplitude

of four single-particle operators 〈Op1Op2Op3Op4〉. We started from the AdS5 × S5 Mellin

representation in terms of variables conjugated to cross ratios, ŝ, š, t̂, ť, the Mellin amplitude

M~p, and the following kernel of Gamma function,

Γ =
Γ[p1+p2

2 − ŝ]Γ[p3+p4

2 − ŝ]

Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
ΓtΓu, (7.1)

see discussion around (5.9). Then, we gave explicit formulas for the leading order (α′)3

amplitude at one-loop, in the form,

M(2,3)
~p =

[
W(AW )

~p (ŝ, š) + R(W )
~p (ŝ, š) + B(BW )

~p (ŝ, š)
]

+ crossing . (7.2)

The various functions W(AW ),R(W ),B(BW ), introduced in (6.3), are described in full details

in sections 6.2.1, 6.2.2, and 6.2.3, respectively. Each one is bootstrapped from the OPE, and

labelled by a corresponding region of twists for the exchange of long two-particle operators.

We called these regions Above Window, Window and Below Window, following [66], where

the same classification was used to bootstrap the one-loop supergravity amplitude, mainly

in position space. The supergravity amplitude is still a rather complicated function, due to

the fact that the OPE has support for all spins. The α′ corrections have instead finite spin

supports and therefore are simpler to deal with. We believe however that the lessons from

the study of α′ amplitudes are general, and in fact best expressed in Mellin space.

The advantage of using Mellin space stems from the observation that the whole structure of

poles in Mellin space can be put in correspondence with the OPE, a result due to Mack [53],

which here we have upgraded to AdS5 × S5. The pole structure takes into account both

Γ and M. The poles of M at tree level were shown to be captured by bold-font variables

[55], i.e. poles given by equations of the form s + 1 = 0, where s = ŝ+ š, similarly for t, or
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u. Quite nicely, this way of parametrising the poles works at one loop, with two important

modifications: Poles of M are now of the form ψ(−s) or s − z = 0 for z = 0, . . . , 6, and the

residues, compared to tree level, have generic dependence on the charges ~p.

Considering the various contributions to M(2,3) in (7.2) we have found:

(1) The double logarithmic discontinuity of the one-loop amplitude comes from W(AW )

and is fixed by OPE data Above Window. It takes the form of ψ(−s) times a non-trivial

polynomial in the Mellin variables, and for many aspects fits into the discussion of the tree

level Virasoro-Shapiro amplitude, as given in [60]. In particular, it can be given as ∆(8) on a

preamplitude. This expectation will be true to all orders in α′.

(2) The structure of R(W ) is the main novelty of the one-loop amplitude. This is determined

by OPE data in the Window. This OPE data is the one responsible for lifting a bonus

property of the supergravity amplitude, i.e. the fact that certain correlators are equal to

each other. Such a degeneracy of amplitudes follows from the special (crossing symmetric)

form of Γ, and the peculiar charge dependence of the Mellin amplitudes, i.e. no dependence

at all in supergravity, and (p1+p2+p3+p4

2 − 1)3 at order (α′)3.

The first crucial result is that R(W ) takes the form,

R(W )
~p (ŝ, š) =

6∑

z=0

1

s − z

[
(š+ p1+p2

2 − z)z+1 r
+
~p;z(ŝ, š) + (š+ p3+p4

2 − z)z+1 r
−
~p;z(ŝ, š)

]
, (7.3)

and comes with two separate contributions, singled out by the z-dependent Pochhammers.

This implies that when we look at R(W ) together with the Γ functions, the total amplitude

undergoes the following split,

R(W )
~p

Γ[1 + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]

=
1

s − z

[
r

+
~p;z

Γ[−z + p1+p2

2 + š]Γ[1 + p3+p4

2 + š]
+

r
−
~p;z

Γ[1 + p1+p2

2 + š]Γ[−z + p3+p4

2 + š]

]
(7.4)

The polynomials r
± are related by crossing, r

+
~p = r{−cs,−ct,cu}, r

−
~p = r{+cs,+ct,cu}, and

crucially have generic charge dependence. This structure, which all together we called

“sphere splitting", follows from the OPE.1 Our result for R(W ) shows neatly how the OPE

structure translates into a structure in Mellin space.

The second crucial result is the use of bold font variables to parametrise the poles of M. For

W(AW ), this implies that W(AW ) not only contributes to the OPE Above Window, where it

1From the OPE viewpoint this is also true at one-loop in supergravity [66].
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was bootstrapped, but cascades to Window and Below Window regions. Because of this, the

OPE predictions in the Window pick the contributions of both W(AW ) and R(W ). In this

sense, R(W ) is a remainder function, but precisely for this reason, the sum over z in (7.3)

truncates to finitely many poles, z = 0, . . . 6, rather than depending on the external charges.

Quite remarkably, the result for R(W ) can itself be continued Below Window. Thus, with

the same logic,

(3) The function B(BW ) is

B(BW )
~p (ŝ, š) =

∑

z≥0

(š+ p1+p2

2 − z)z+1(š+ p3+p4

2 − z)z+1

s − z
b~p;z(ŝ, š) , (7.5)

and is itself a remainder function for W(AW ) and R(W ) in the Below Window region. In sum,

the analytic properties of all these functions are quite spectacular: they properly continue

from the Above Window down to the Below Window region, and correctly switch off outside

the physical range of relevance.

Finally, we studied the 10d flat space limit, using the large p limit of [55]. The consistency

with the flat space amplitude of IIB supergravity is again quite remarkable. The limit on

W(AW ) is already giving the flat amplitude, and naively, each pole in z from R(W ) adds a

non vanishing contribution, non trivial in both š and the charges. However, upon summing

over z all these extra contributions correctly cancel out!

Let us conclude with an outlook. Our main focus has been understanding the structure of

the amplitude and the way Mellin space realises the various features of the OPE predictions

at one-loop. We focused on the (α′)3 contribution, but we believe that the logic behind the

construction of M(2,3) is valid to all orders in (α′)n+3. In particular the sphere splitting is

generic, and the number of poles in z increases with n but stays finite! It is only a matter of

computational effort to fix the various residues in the Window and Below Window. The

one-loop bootstrap program in AdS5 × S5 is thus understood at all orders in α′, but for the

usual ambiguities, which needs additional input to be fixed. It would be interesting to find

these extra constraints, either from localisation [94, 97, 98], or from sum rules [106, 107].

It would be also interesting to understand the “sphere splitting" from a diagrammatic point

of view. Perhaps a 10d master amplitude can be found which undergoes the “sphere splitting"

onto R(W ) in a natural way. This is partially suggested by the remarkable cancellations that

take place when we tested the large p flat space limit in section 6.3, and the fact that poles

are parametrised by bold font variables. Perhaps this point of view would give insight on

the way to arrange the one-loop supergravity result in a simple form.
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Part II

Scattering amplitudes
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Chapter 8

Massless kinematics

In this section we begin the study of how best to describe the kinematic space on which

the amplitudes live. The momenta, pµ
i , of an n-point massless scattering amplitude are

constrained via the massless on-shell condition and momentum conservation. As we shall

see in this chapter the massless on-shell condition can be trivialised through the use of

spinor-helicity variables (λ, λ̃) which we now introduce.

8.1 The little group

To best appreciate the benefit of introducing these new variables we begin with a general

discussion, following [108–110], of particles and their transformation properties under the

Lorentz group. A particle is defined as being a unitary irreducible representation of the

Poincaré group. Usually, in order to diagonalise translations, particles are labelled by their

momentum pµ, however, generally they can carry additional labels which we collectively call

σ. To label the one-particle states of a theory we can start from a reference momentum kµ,

and a basis of states |k, σ〉, from which we can define a basis for general momentum pµ given

by

|p, σ〉 := U(L(p, k))|k, σ〉, (8.1)

where pµ = Lµ
ν (p, k)kν and U(L(p, k)) is a unitary operator acting on the Hilbert space of

states.

We wish to understand how the |p, σ〉 transforms under a general Lorentz transformation Λ,

acting on our state we have

U(Λ)|p, σ〉 = U(Λ)U(L(p, k))|k, σ〉
= U(L(Λp, k))U(L−1(Λp, k)ΛL(p, k)

︸ ︷︷ ︸
W

)|k, σ〉,
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where moving to the second line we inserted the identity operator as U(L(Λp, k))U(L−1(Λp, k)),

and used the fact that U(Λ1)U(Λ2) = U(Λ1Λ2).

Note, the Lorentz transformation W leaves the reference momentum invariant, Wµ
ν k

ν = kµ,

this subset of transformations is known as the little group. Since the |k, σ〉 already provide a

basis of states for momentum k, we may write

U(Λ)|p, σ〉 = U(L(Λp, k))
∑

σ′

Dσσ′ |k, σ′〉,

=
∑

σ′

Dσσ′ |Λp, σ′〉,

where Dσσ′ furnishes a representation of the little group.

In four dimensions, for massless particles p2 = 0, the reference momentum can be taken to

be kµ = (E, 0, 0, E) i.e. a particle travelling along the z-axis. The little group is therefore

given by SO(2) ∼= U(1), corresponding to rotations around the z-axis, the representations of

which are labelled by the helicity h of the particle.

The consequence of this discussion for amplitudes is that, under a Lorentz transformation of

the momentum, the amplitudes transform under representations of the little group for each

particle i.e. we have

A({pi, hi}) 7→
∏

i

(e−i2hiθ)A({pi, hi}). (8.2)

It is this property that we wish to make manifest by introducing the spinor-helicity variables.

As we will see the spinor-helicity variables also have the desired property of trivially satisfying

the massless on-shell condition p2 = 0.

8.2 The spinor-helicity formalism

The starting point is to define the matrix pαα̇ obtained by contracting the momentum pµ

with the Pauli matrices given by

pαα̇ = pµσ
µ
αα̇ =

(
p0+p3 p1−ip2
p1+ip2 p0−p3

)
, σµ = (1, ~σ). (8.3)

In these variables the on-shell condition becomes the vanishing of the determinant

det(pαα̇) = p2
0 − p2

1 − p2
2 − p2

3 = 0. (8.4)

This implies that the matrix pαα̇ is not full rank, and that the massless on-shell condition

can be trivially satisfied by writing pαα̇ as the outer product of two vectors given by

pαα̇ = λαλ̃α̇,=

(
λ1λ̃1̇ λ1λ̃2̇

λ2λ̃1̇ λ2λ̃2̇

)
. (8.5)
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For general complex momenta (λ, λ̃) are independent, however, for real momenta λ and λ̃

are taken to be complex conjugates.

On the spinor-helicity variables the little group transformations act as the scaling

(λ, λ̃) 7→ (tλ, t−1λ̃), (8.6)

which leaves the momentum invariant. Generally, t can be taken to be any complex number1,

for the case of real momenta we have λ̃ = λ∗, which implies t = e−iθ.

Since the little group now acts simply as scalings on the (λ, λ̃), the particle helicity information

of the amplitude is directly encoded in its scalings under (8.6) by

A({tiλi, t
−1
i λ̃i, hi}) =

∏

i

(t−2hi
i )A({λi, λ̃i, hi}). (8.7)

In summary, we can view an amplitude as a Lorentz invariant function of the (λ, λ̃) which

scales correctly under a little group transformation (8.7).

The Lorentz invariants are constructed using the anti-symmetric tensor εαβ and εα̇β̇ which

we denote as

〈ij〉 = εαβλαλβ,

[ij] = εα̇β̇λ̃α̇λ̃β̇.

The familiar Mandelstam invariants sij are then given by

sij = (pi + pj)2 = 2pi · pj = 〈ij〉[ij]. (8.8)

Since, the (λ, λ̃) are nothing other than two-dimensional vectors, any three or more must be

linearly dependent. This fact is summarised by the Schouten identity

〈ij〉〈kl〉 + 〈ik〉〈lj〉 + 〈il〉〈jk〉 = 0, (8.9)

and analogously for the square brackets. Furthermore, the angle and square brackets are

constrained by momentum conservation which implies

n∑

j=1

〈ij〉[jk] = 0, ∀ (i, k). (8.10)

Note, this is the first instance of the Grassmannians appearing in the discussion of massless

kinematic since the same data can be expressed as the Grassmannian G(2, n), one each for

1Strictly the general complex scaling is not the little group of the previous discussion, U(1), but rather
its (non-compact) complexification GL(1).
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the λ and λ̃, where the Schouten identity tells us the dependancy of minors, and momentum

conservation implies that the λ and λ̃ two-planes are orthogonal.

8.3 Three-particle kinematics

The little-group scaling properties provide strong constraints on the form of amplitudes, in

fact, at three points, it is enough to fix the amplitude completely. To see this first consider

the momentum conservation condition for three-points given by

(p1 + p2 + p3)2 = 0 =⇒ 〈12〉[12] = 〈13〉[13] = 〈23〉[23] = 0. (8.11)

This condition has two classes of solution those in which the λ’s are parallel

〈12〉 = 〈13〉 = 〈23〉 = 0, (8.12)

and those in which the λ̃’s are parallel

[12] = [13] = [23] = 0. (8.13)

This implies that the three-particle amplitude is either a function of the 〈ij〉 or [ij]. Note,

when taking the momenta to be real, we take the λ and λ̃ to be complex conjugates and

only the trivial case where all brackets vanish remains, hence the three-point amplitudes

strictly only exist only for complexified momenta.

Imposing the correct little group scalings for each particle completely fixes the form of the

amplitude, for the case of three gluons the two choices correspond to the MHV and MHV

colour ordered amplitudes respectively

AMHV(1−, 2−, 3+) =
〈12〉4

〈12〉〈23〉〈31〉 , AMHV(1+, 2+, 3−) =
[12]4

[12][23][31]
. (8.14)

These three-point amplitudes constitute the building blocks for building higher point functions

through, for instance, the BCFW recursion realtions [5, 6]. Two particularly simple, and

famous, classes of solutions are given by the Parke-Taylor [4] formula

AMHV
n =

〈ij〉4

〈12〉 . . . 〈n1〉 , AMHV
n =

[ij]4

[12] . . . [n1]
, (8.15)

where we have taken the two negative or positive helicities to be on the ith and jth legs

respectively.

As discussed in the introduction, the textbook (off-shell) approach would have consisted of

calculating an enormous number of Feynman diagrams, all for them to collapse to a single
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term, emphasising the power of the on-shell approach. In fact many well known results

for identifying consistent QFT’s, for instance the restriction to spin s < 2 particles, in the

on-shell approach, can be reformulated algebraically as consistency conditions coming from

unitarity on tree-level four-point amplitudes [111].

Colour ordering

In a gauge theory such as YM, or its supersymmetric cousin N = 4 SYM, with gauge group

SU(N) it is always possible, by repeated application of the Fierz identity,

(T a)j
i (T a)l

k = δl
iδ

j
k − 1/Nδj

i δ
l
k, (8.16)

to decompose the colour structures appearing in expressions for the planar amplitudes

as a sum over the individual trace components. Where the T a are the generators of the

fundamental representation of SU(N). As an example consider the four gluon amplitude

s-channel diagram which contains the factor cs = fa1a2afaa3a4 this can be decomposed as

cs = fa1a2afaa1a2 ∝ Tr[T a1T a2T a3T a4 ] − Tr[T a1T a2T a4T a3 ]

+Tr[T a1T a4T a3T a2 ] − Tr[T a1T a3T a4T a2 ]. (8.17)

Generally, in the planar limit (taking N → ∞) we can express the amplitude as a sum over

the individual trace structures as

A(p)
n = gn−2

Y M

∑

σn∈Sn/Zn

Tr[T aσ1 . . . T aσn ]An(σ1, . . . , σn), (8.18)

where the An are known as the colour ordered partial amplitudes.
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Chapter 9

More N = 4 SYM

Before moving forward to consider the condition of momentum conservation let us take a step

back and return to discuss the symmetries of N = 4 SYM. As we have seen in Chapter 3 the

symmetries1 include conformal symmetry, and N = 4 supersymmetry, which combine into

superconformal symmetry. However, colour ordered amplitudes in the planar limit possess

an additional dual superconformal symmetry [13], hidden from the Lagrangian description,

acting in a dual space-time.

In this section we begin by organising amplitudes according to supersymmetry. This will

lead us to collect the component helicity dependant amplitudes into a single supersymmetric

object, the superamplitude, making manifest the relations imposed by the supersymmetric

Ward identities. Next, we introduce twistor variables, which linearise the form of the

conformal generators. Finally, we introduce the momentum twistor variables, which simarly

linearise the action of the dual conformal transformations, as well as manifesting momentum

conservation. By the end of this section we will understand the connection between the

kinematic space of scattering amplitudes in planar N = 4 SYM and the Grassmannian

G(4, n).

9.1 Supersymmetry

The particle content of N = 4 SYM consists of: a single positive helicity gluon, 4 helicity

+1/2 fermions, 6 scalars, 4 helicity −1/2 fermions, and one negative helicity gluon. The

particles are related by the N = 4 SUSY algebra part of which reads

{QA
α , Q̄α̇B} = 2Pαα̇δ

A
B, (9.1)

1The introduction of maximal SUSY may seem far removed from its non supersymmetric counterpart,
however, at tree-level, pure gluon scattering amplitudes are insensitive to the number of supersymmetries.
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where all other combinations of Q and Q̄ anticommute, and A,B = 1, . . . , 4 are SU(4)

R-symmetry indices. We can define the vacuum states |+〉 and |−〉 associated to the positive

and negative helicity gluons respectively which satisfy

QA
α | + 1〉 = 0, Q̄α̇A| − 1〉 = 0. (9.2)

From (9.2) we generate the full tower of states by acting on those defined above with the

SUSY generators Q and Q̄ which act as raising and lowering operators of the helicity by

units of 1/2.

It is useful to manifest the action of as many SUSY’s as possible. Due to the anti-commutator,

we can either choose this to be the Q or the Q̄. For this purpose we introduce the on-shell

chiral1 superfield [112] which re-packages all 16 states as

|Φ〉 = | + 1〉 + ηA| + 1/2〉A +
1

2!
ηAηB|0〉AB +

1

3!
ηAηBηC | − 1/2〉ABC + η1η2η3η4| − 1〉. (9.3)

Here the ηA are Grassmann variables which carry fundamental SU(4) indices. On this chiral

superfield the SUSY generator Q acts as

QA
α |Φ〉 = qA

α |Φ〉, (9.4)

where qA
α = λαη

A is the supermomentum.

Note, this book-keeping device is particularly powerful in the case of N = 4 SYM as all

particles are contained within a single multiplet. In the on-shell formalism the action of the

SUSY generators is given by

Pαα̇ = λαλ̃α̇, QA
α = λαη

A, Q̄α̇A = λ̃α̇
∂

∂ηA
. (9.5)

9.1.1 Superamplitudes

The supersymmetric ward identities [113, 114] relate amplitudes whose external states are

related by supersymmetry, i.e. with the same total helicity. To make this property manifest

we introduce the superamplitude, A({λ, λ̃, η}), which as well as being a function of (λ, λ̃), is

also polynomial in the η.

As a consequence of (super) momentum conservation, and the simple multiplicative action

of their corresponding operators, the most general form of the superamplitude is given by

An({λ, λ̃, η}) =
δ(0|8)(

∑n
i=1 λiηi)δ

4(
∑n

i=1 λiλ̃i)

〈12〉 . . . 〈n1〉 Ân({λ, λ̃, η}), (9.6)

1Note, we could have equally chosen to manifest the action of the Q̄.
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where δ(a|b) indicates a bosonic delta functions and b fermionic. Note, the behaviour of the

fermionic delta function δ(0|1)(η) = η implies

δ(0|8)(
n∑

i=1

λiηi) =
2∏

α=1

4∏

A=1

n∑

i=1

λiαη
A
i . (9.7)

Since the SUSY Ward identities relate expressions with the same total helicity it is convenient

to decompose the superamplitude as

Ân({λ, λ̃, η}) =
n−4∑

k=0

Ân,4k({λ, λ̃, η}), (9.8)

where Ân,4k ∼ O(η4k) is called the NkMHV sector. The steps of 4 in the order of the

η’s is a consequence of R-symmetry, with the only invariant contraction being with the

anti-symmetric tensor εABCD.

This superamplitude acts as a generating function for all helicity configurations, where to

obtain a specific amplitude we need only find the relevant term in the η expansion. As an

example consider the MHV super-amplitude, for which we have Ân,0 = 1, given by

AMHV
n ({λ, λ̃, η}) =

δ(0|8)(
∑n

i=1 λiηi)δ
4(
∑n

i=1 λiλ̃i)

〈12〉 . . . 〈n1〉 . (9.9)

This contains the terms1

AMHV
n ({λ, λ̃, η}) = (ηi)

4(ηj)4δ(4)(
n∑

i=1

λiλ̃i)
〈ij〉4

〈12〉 . . . 〈n1〉 + . . . , (9.10)

corresponding to the Parke-Taylor amplitude from Equation (8.15). More generally, the

NkMHV sector contains the amplitude with (k + 2) negative helicity gluons and (n− k − 2)

positive helicity gluons, along with all other amplitudes related by SUSY.

Let us remark that from the view of the superamplitude it is trivial to see that the all

positive and one-negative helicity amplitudes (and their conjugates) vanish [113, 114] due to

the supermomentum conserving factor which is already of order eight in the η’s. Note, at

three points there is an exception due to the special properties of three-point kinematics

where a k = −1 amplitude does in fact exist.

1Using the definition η4 = 1
4!
εABCDη

AηBηCηD.
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9.1.2 Three-particle kinematics

Having introduced the superamplitudes let us return to the example at three-points. As

before we have the two types of amplitude the one in which λ̃1 ∝ λ̃2 ∝ λ̃3 given by

A3({λ, η}) =
δ(0|8)(λ1η1 + λ2η2 + λ3η3)

〈12〉〈23〉〈31〉 , (9.11)

and the other amplitude with λ1 ∝ λ2 ∝ λ3 given by1

A3({λ̃, η}) =
δ(0|4)([12]η3 + [23]η1 + [31]η2)

[12][23][31]
. (9.12)

Again, these three-particle amplitudes serve as the building blocks for the supersymmetric

version of the BCFW recursion [115–117]. In fact, in the case of N = 4 SYM, a closed form

formula has been given for all tree-level superamplitudes [7].

9.2 Twistor space

As we have already seen N = 4 SYM possesses (super) conformal symmetry. However, in our

current coordinates (λ, λ̃) the representation of the conformal generators are non-uniform:

for example the Lorentz generators are linear in derivatives whereas the generators of the

special conformal transformations come with two-derivatives. It is therefore desirable to

search for new coordinates in which the representation of the conformal generators become

linear.

These new coordinates are intimately connected to the question of how to best parameterise

null rays in space-time, which after all is a conformal invariant notion. We can specify a

null ray by choosing two points which lie on the ray xµ
1 and xµ

2 say, where we have

(xµ
2 − xµ

1 )2 = 0 =⇒ det(x2 − x1)αα̇ = 0. (9.13)

The second equality implies that every point xαα̇ on the null ray specified by the two points

must satisfy the incidence relation given by

λαxαα̇ = µα̇, (9.14)

for some choice of µα̇. Therefore, for some choice of (λα, µα̇) we can construct a null ray in

space-time, we can collect these into a single twistor2, ZI , given by

ZA =
(

λα

µα̇

)
. (9.15)

1Notice, the fermionic delta function is only of degree 4.
2Twistor variables were first introduced by Penrose in [118] and their supersymmetric version was later

given by [119].
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Note, these objects are only defined projectively i.e. ZA ∼ tZA since through (9.14) both

twistors define the same null ray. In this way we have identified null rays in space time with

points in CP3. In fact, it is exactly these twistor coordinates in which the representation of

the conformal generators become linear, acting as sl4 on the A index!

We can construct sl4 conformal invariant objects by contracting with the epsilon symbol

given by

〈ijkl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l . (9.16)

Points ⇐⇒ Lines

So we have seen a point in twistor space corresponds to a null ray in space-time. Let us

make complete the correspondence by considering a line in twistor space labelled by two

points ZA and ZB and ask what this is mapped to in space-time, it turns out to be the point

xαα̇
AB =

λα
Aµ

α̇
B − λα

Bµ
α̇
A

〈AB〉 . (9.17)

This makes clear the correspondence of points/lines in space-time with lines/points in twistor

space.

Null-seperation ⇐⇒ Intersection

A final exercise, which will prove useful in the next section, is to ask what is the distance

between the two points xAB and xCD specified by the lines (ZAZB) and (ZCZD) in twistor

space, this distance is given by

(xAB − xCD)2 =
〈ABCD〉

〈AB〉〈CD〉 . (9.18)

In particular, this tells us that two points in space-time become null-seperated when the

corresponding lines in twistor space intersect i.e. when 〈ABCD〉 = 0 as shown in Figure 9.1.
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Figure 9.1: Two null-separated points in space-time, xAB and xCD, correspond to two
intersecting lines, (ZAZB) and (ZCZD), in twistor space. With the intersection point in
twistor space being dual to the null ray in space-time.

9.3 Momentum twistor space

We have just seen that, for a theory with conformal symmetry, a natural set of coordinates,

on which the action of conformal symmetry is linear, are the twistor variables, i.e. points

in CP3. In fact, for planar colour-ordered amplitudes in N = 4 SYM, there is a hidden

dual conformal symmetry1 [13], on top of the regular conformal symmetry, which acts in a

dual coordinate space. Naturally, we now introduce new variables that make this symmetry

manifest, this will lead to the notion of momentum twistor variables [121].

To motivate the definition of momentum-twistors let us first return to the goal set out at

the beginning of Chapter 8, to find some set of variables which trivialise both the on-shell

and momentum conservation conditions

p2
i = 0,

n∑

i=1

pµ
i = 0. (9.19)

We have seen how to solve the on-shell condition through the use of spinor-helicity variables,

instead lets now consider the momentum-conservation condition.

Given some ordering on the external momenta, naturally handed to us in the case of planar

N = 4 SYM by the colour ordered amplitudes, we can interpret momentum-conservation

as the closing of a light-like polygon constructed by joining the momentum end to end as

depicted in Figure 9.2. This polygon, instead of being labelled by its faces, i.e. the momenta,

can equally be described by providing its vertices, which leads us to the definition of the

1In fact the conformal and dual conformal symmetries combine into an infinite dimensional Yangian
symmetry under which the amplitudes are invariant [120].
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dual coordinates xi [122] defined by1

pαα̇
i = λα

i λ̃
α̇
i = xαα̇

i+1 − xαα̇
i , (9.20)

upon which the hidden dual conformal symmetry acts. Note, under identifying xn+1 = x1,

these coordinates trivially satisfy momentum conservation

n∑

i=1

pµ
i = xµ

2 − xµ
1 + xµ

3 − xµ
2 + . . .+ xµ

n − xµ
n−1 + xµ

1 − xµ
n = 0. (9.21)

With the dual coordinates to hand we can perform the same exercise as before and transform

to momentum twistor space. Again, the points xαα̇
i are mapped to a collection of lines in

CP3. Where, as we have seen from the last exercise in 9.2, that null separation of consecutive

points p2
i = (xi+1 − xi)

2 = 0 in the dual space translates to the intersection of consecutive

lines in momentum twistors space. This defines another polygon now in momentum twistor

space as depicted in Figure 9.2. Again, we can specify this polygon not by its edges but by

its vertices ZA
i i.e. the momentum twistors. It is these variables which trivialise both the

massless on-shell condition and momentum-conservation, and transform linearly under dual

conformal transformations!

To summarise, given a collection of n arbitrary points, ZA
i , in momentum twistor space, CP3,

we can construct n null momenta which satisfy momentum conservation! The map between

momentum twistors and the dual space follows directly from the formulae in the last section

where we have

ZA
i =

(
λα

i
µα̇

)
, xαα̇

i =
λα

i µ
α̇
i+1 − λα

i+1µ
α̇
i

〈ii+ 1〉 . (9.22)

Where, as before, dual conformal invariant objects are constructed by contraction with the

epsilon symbol

〈ijkl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l . (9.23)

1Let us emphasise that the x′s are NOT space-time points. For instance notice they have mass dimension
1.
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Figure 9.2: Momentum conservation pictured as a null polygon both in the dual space-time
(left) and momentum twistor space (right).

In this notation the multi-particle Mandelstam invariants become

si,...j−1 = (pi + . . .+ pj−1)2 = (xj − xi)
2 = x2

ji (9.24)

=
〈i− 1ij − 1j〉

〈i− 1i〉〈j − 1j〉 . (9.25)

Which, as can be seen from the denominator, are themselves not dual conformal invariant.

However, dual conformal invariant objects can be constructed by taking homogenous rational

combinations in which the two brackets cancel.

9.3.1 G(4, n)

We can finally understand why the Grassmannian appears in the discussion of scattering

amplitudes in planar N = 4 SYM. The n twistors can be organised into a 4 × n matrix as

(
Zi . . . Zn

)
, (9.26)

which parameterises a point in the Grassmannian G(4, n) modulo the rescaling of the Zi.

The dual conformal symmetry implies that the amplitudes must be functions of the sl4

invariant Plücker coordinates

〈ijkl〉 = det(ZiZjZkZl). (9.27)

Therefore we conclude the kinematic space of dual-conformal invariant massless kinematics

is identified with

Confn(P3) = Gr(4, n)/(C∗)n−1. (9.28)
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As we shall see in Chapter ?? this space can be associated with a cluster algebra whose

combinatorial structure provides crucial information for the analytic structure of amplitudes.

9.3.2 Super momentum-twistors

The above discussion has a supersymmetric extension which follows a similar construction.

The supermomentum conservation can be trivialised by introducing the dual coordinates

qαA
i = λα

i η
A
i = θαA

i+1 − θαA
i , (9.29)

from which we introduce the momentum super-twistors given by

Zi =
(

Zi
χi

)
, χA

i = 〈iθA
i 〉 = 〈iθA

i+1〉. (9.30)

Again, we have the equivalence Zi ∼ tiZi, and therefore the momentum super-twistors are

also defined projectively.

9.4 Bootstrapping loop amplitudes

Having reviewed the relevant kinematics, and introduced the variables on which our ampli-

tudes will depend, we now turn to the study of loop amplitudes in planar N = 4 SYM.

9.4.1 The BDS-like ansatz

When considering loop-amplitudes it is important to take into account the structure of

infrared divergences. This can be achieved by factoring out an infrared divergent piece

leaving over a finite remainder function

An = AIR
n Afin

n . (9.31)

However, the choice of AIR
n is not unique, and with different choices, the finite remainder

function can make manifest (or not) certain physical and mathematical properties. Therefore,

it is desirable to choose AIR
n such that Afin is as simple to compute as possible. Originally,

the factor was chosen to be the so called BDS ansatz [123, 124], the exact form of which

will not be relevant. However, this has the undesirable quality that neither the BDS ansatz,

nor the finite remainder function, satisfy the Steinmann relations [125]

Discsjj+1j+2(Discsii+1i+2A) = 0, ∀ j = i± 1, i± 2, (9.32)

whereas their product, the full amplitude, does! The Steinmann relations above are the

statement that the amplitude cannot have consecutive discontinuities in overlapping three-

particle (and their generalisation to higher point) Mandelstam invariants.
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To restore the Steinmann relations, for n 6= 0 mod 4, we can instead define the so called

BDS-like1 ansatz [127]

An = ABDS-like
n En, (9.33)

Again, the exact form of ABDS-like
n is not of relevance here. The important point is that

the function En is dual conformal invariant and satisfies the Steinmann relations, it can be

written entirely in terms of the momentum super twistors Zi, and has an expansion into

NkMHV sectors similar to Equation (9.8), given by

En = En,MHV + En,NMHV + . . . . (9.34)

The MHV term is degree zero in the Grassmann χi variables, and is simply a function of the

Zi, with dual conformal symmetry implying dependance only on of the 〈ijkl〉 four-brackets.

It has an homogeneity in each of the Zi of degree zero, and is therefore a function on the

configuration space of n points in P3, which we had already denoted as Confn(P3).

The NMHV term is degree four in the Grassmann variables and can be written as

En,NMHV =
∑

[ijklm]Eijklm(Z1, . . . , Zn), (9.35)

where the Yangian invariants are given by,

[ijklm] =
(χi〈jklm〉 + cyclic)4

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉 , (9.36)

and again the Eijklm are dual conformally invariant functions on Confn(P3).

Since we will be most interested in the six and seven point hexagon and heptagon amplitudes

these are the only terms in the NkMHV expansion which need be considered, since all others

can be obtained upon parity conjugation.

Moving forward all terms discussed above, collectively denoted F , will admit the perturbative

loop expansion

F =
∞∑

L=0

g2LF (L). (9.37)

9.4.2 Polylogarithms and their symbols

At six and seven points all available data for planar N = 4 SYM suggests that the L loop

amplitude can be expressed as weight 2L polylogarithms (polylogs for short). The polylogs

f (k) are a class of iterated integrals over logarithmic singularities, which at weight k can be

defined recursively to obey

df (k) =
∑

a∈A

f (k−1)
a d log a, (9.38)

1Further refinements on the choice of normalisation have also been considered, for a review see [126].
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where a are rational (algebraic) functions of the relevant kinematic variables, referred to as

letters, they run over the finite set of letters A known as the alphabet. By specifying the

alphabet we are provided with a class of polylogs defined recursively in weight. At weight-one

the function space is simply given by {log a|a ∈ A}. As an example for A = {x, 1 − x} we

generate the harmonic polylogs [128].

Alternatively, we can define polylogarithms directly in terms of iterated integrals. The so

called Goncharov polylogs [129] are defined recursively as

G(a1, a2 . . . , ak︸ ︷︷ ︸
weight k

;x) =

∫ x

0

dt

t− a1
G(a2, . . . , ak; t), (9.39)

where we have

G(a;x) =

∫ x

0

dt

t− a
, a 6= 0, G(0, 0, . . . , 0︸ ︷︷ ︸

k

;x) =
1

k!
logk x, (9.40)

from which the more familiar classical polylogs Lik(x) are obtained as a special case by

Lik(x) = G(0, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1;x). (9.41)

The total derivative formulation (9.38) can also be seen as defining the (k − 1, 1) piece of

the coproduct [29] of f (k) through

f (k−1,1) =
∑

a∈A

f (k−1)
a ⊗ d log a. (9.42)

Where, as a consequence of d2f (k) = 0, the (k − 1, k) coproduct satisfies the integrability

condition ∑

a∈A

df (k−1)
a ∧ d log a = 0. (9.43)

By applying the (n, 1) coproduct to the component functions f (k−1) all the way down to

weight zero we arrive at the notion of the symbol of the function f (k), alternatively the

(1, . . . , 1) piece of the coproduct, given by an element of the k-fold tensor product of the

space of one-forms spanned by the d log a

S(f (k)) = f (1,...,1) =
∑

~a∈Ak

ca1...ak
[d log a1 ⊗ . . .⊗ d log ak] .

:=
∑

~a∈Ak

ca1...ak
[a1 ⊗ . . .⊗ ak] .

In the second line we have used the notational convention of only recording the letters a
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in the arguments of the tensor product, for example the symbol of the classical polylogs is

given by

S(Lik(x)) = −[(1 − x) ⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
k−1

]. (9.44)

Note, the symbol inherits the familiar properties of logarithms namely

[a⊗ b1b2 ⊗ c] = [a⊗ b1 ⊗ c] + [a⊗ b2 ⊗ c], (9.45)

and

[a⊗ bp ⊗ c] = p[a⊗ b⊗ c] p ∈ Q. (9.46)

The symbol is a useful tool when dealing with polylogs as it provides an efficient route to

simplifying lengthy expressions, as demonstrated in [130] for the two-loop MHV amplitude

at six points [131]. It also encodes the branch cut and differential structure of the function

f (k). The derivative action is encoded by the right most element by

d [a1 ⊗ . . .⊗ ak] = [a1 ⊗ . . .⊗ ak−1] d log ak. (9.47)

Wheras the logarithmic branch cut structure is encoded in the first element, where to take

the singularity around a1 = 0 say we take all terms with initial entry is a1, the discontinuity

is then given by

disca1=0 [a1 ⊗ . . .⊗ ak] = 2πi [a2 ⊗ . . .⊗ ak] . (9.48)

9.4.3 The amplitude boostrap

The bootstrap programme [14–23] has used the symbol technology to great effect in order

to compute six and seven point amplitudes. The first step in the bootstrap program, after

having been provided with some alphabet1, is to build the associated function space (up to

weight 2L for the L loop amplitude) in which the amplitude lives. Note, this is not in fact

the entire k-fold tensor product space, since a general element (a word)

∑

~a∈Ak

ca1...ak
[a1 ⊗ ...⊗ ak], (9.49)

is not necessarily associated to the symbol of some function. To ensure that it is we must

impose the integrability conditions

∑

~a∈Ak

ca1...ak
a1 ⊗ ...⊗ ak︸ ︷︷ ︸

�
�
��aj⊗aj+1

d log aj ∧ log aj+1 = 0, ∀ j = {1, ..., k − 1}, (9.50)

1In our case the symbol alphabet is handed to us by the A coordinates of the Grassmannian cluster
algebras G(4, 6) and G(4, 7) for six and seven points respectively.
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which follow from the fact that d2f = 0 for all functions and encode the commutativity of

partial derivatives. The elements of A ⊗ . . .⊗ A which satisfy these conditions is known as

the space of integrable words1. After determining a basis of integrable words at some low

weight we can then iteratively construct bases at higher weight as outlined in [22, 132].

With a basis, b(2L)
i , of integrable weight 2L words to hand we can make an ansatz for the L

loop amplitude

F (L) =
∑

i

cib
(2L)
i , (9.51)

with some free coefficients ci. These coefficients can then be fixed by imposing consistency

conditions which the symbol of the amplitude is expected to obey. These include initial

and final entry [133] conditions, as well as constraints coming from the Steinmann relations,

collinear limits, multi-regge kinematics, discrete symmetries and as we shall see in the next

chapter cluster adjacency [30], for a review of the bootstrap program see [126].

1Note an integrable word is a linear combination of words which is itself integrable.
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Chapter 10

Grassmannian cluster algebras

The link between cluster algebras associated to the Grassmannians G(4, n), or more correctly

the 3(n−5)-dimensional spaces Confn(P3), and n-point scattering amplitudes in N = 4 SYM

was originally proposed in [28], where it was observed that the symbol of the two-loop MHV

remainder functions of [133] could be constructed explicitly in terms of cluster A-coordinates.

This connection explains the 9 and 42 letter alphabets for 6 and 7 point amplitudes

respectively, conjectured to be polylogarithmic with symbol alphabets given by the A-

coordinates of G(4, 6) and G(4, 7) to all loop orders, and has facilitated impressive calculations

in the context of the analytic bootstrap upto high loop orders [14–23]. Furthermore, the

link between A-coordinates and the singularities of the amplitudes was endowed with a

geometric interpretation with the discovery of cluster adjacecny [30, 132]. With cluster

adjacency stating that consecutive singularities can only appear in the symbol if there exists

a cluster in which both letters appear.

In this section we review the details of the G(4, 6) and G(4, 7) cluster algebras relevant

for 6 and 7 point amplitudes. This will set us up to reformulate the same ideas in the

new language of the (to be introduced) Gröbner fan in the next chapter. In addition we

point out the complications which arise at 8 points and beyond due to the appearance of

non-rational square root letters in the symbol alphabet of 8-point scattering amplitudes,

and the fact that the set of A-coordinates of G(4, 8) is no longer finite. We will return to

discuss both complications in detail in Chapter 12 of this thesis in the context of 6-point

scattering amplitudes with general kinematics.

10.1 The Grassmannian

The Grassmannian G(k, n) is the space of k-planes in n dimensions. A point of which can be

specified by k many n-component vectors organised into a k × n matrix. These matrices are

91
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defined up to row operations which leave the plane invariant, the resulting space of matrices

modulo GL(k) transformations is k(n− k) dimensional.

Alternatively, the Grassmannian can be described through the set of
(n

k

)
maximal minors

pi1...ik
or Plücker coordinates. On the set of Plücker coordinates row operations act as an

overall scaling and, modulo this overall scaling, the vector of Plücker coordinates may be

thought of as a point in the projective space P(n
k)−1. However, an arbitrary point in P(n

k)−1

is not necessarily realisable as a matrix, since the set of k× k minors of any k×n matrix are

not independent, and instead obey homogenous quadratic relations known as the Plücker

relations which take the form

pi1...ir[ir+1...ik
pj1...jr+1]jr+2...jk

= 0. (10.1)

We call the ideal generated by the Plucker relations inside the ring of polynomials in the

Plucker coordinates the Plucker ideal Ik,n. The Grassmannian can then be thought as the

projective variety inside P(n
k)−1 whose points vanish on the Plücker ideal. We will discuss

this algebraic formulation of the Grassmannian in much detail in the next chapter. As an

example consider the case of G(2, n), whose Plücker ideal is generated by the relations

I2,n = 〈pijpkl − pikpjl + pilpjk : 1 ≤ i < j < k < l ≤ n〉. (10.2)

In fact the Plücker relations are homogenous with respect to n independent rescalings

pi1...ik
7→ ti1 . . . tik

pi1...ik
for ti ∈ C∗. By modding out these local scalings we obtain the

(k − 1)(n− k − 1) dimensional configuration space of n points in Pk−1

Confn(Pk−1) = G(k, n)/(C∗n−1). (10.3)

10.2 Cluster algebras

A cluster algebra, originally developed in [25–27], can be specified by a choice of initial

cluster encoded by a quiver diagram. Where a quiver diagram is a collection of active and

frozen nodes, connected by arrows, with each node being assigned its own A-coordinate.

As an example consider Figure 10.1 which depicts the cluster algebra for G(4, n): it has

m = 3(n− 5) active nodes and n frozen nodes indicated by the blue vertices. In addition to

the initial cluster there are also a set of mutation rules which detail how the quiver diagram

and A-coordinates of one cluster transform into another. In the case of n = 6 and n = 7 the

mutation rules generate finitely many clusters, hence finitely many A-coordinates, and are

referred to as being of finite type.
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〈1 2 3 4〉

〈1 2 3 5〉

〈1 2 4 5〉

〈1 3 4 5〉

〈1 2 3 4〉

〈1 2 3 6〉

〈1 2 5 6〉

〈1 4 5 6〉

〈3 4 5 6〉

〈1 2 3n−1〉

〈1 2n−2n−1〉

〈1n−3n−2n−1〉

〈n−4n−3n−2n−1〉

〈1 2 3n〉

〈1 2n−1n〉

〈1n−2n−1n〉

〈n−3n−2n−1n〉

. . .

. . .

. . .

. . .

Figure 10.1: The initial cluster of G(4, n).

The arrows of the quiver diagram are described by the exchange matrix, b, with the elements

bij = (no. of arrows i → j) − (no. of arrows j → i) . (10.4)

Here the exchange matrix is skew-symmetric with indices running over all nodes (active

and frozen) and in the case of G(4, n) has dimension (m+ n) × (m+ n). Note, we need not

record arrows between frozen nodes so the bottom right (n× n) submatrix of b is irrelevant.

By performing a mutation on any active node k we obtain a new cluster with the exchange

matrix

b′
ij =





−bij if i = k or j = k.

bij + [−bik]+bkj + bik[bkj ]+ otherwise.
(10.5)

with [x]+ = max(x, 0). Where the A-coordinate associated to the mutated node becomes

a′
k =

1

ak

m+n∏

i=1

a
[bik]+
i +

m+n∏

i=1

a
[−bik]+
i . (10.6)

Given the initial cluster and mutation rules we can obtain the data for every other cluster

by repeated mutation on active nodes.

On top of the A-coordinates and b matrix we may assign additional data to the initial cluster.

We also have the coefficient matrix, given by the (m×m) identity matrix whose mutation

rules are given by

c′
ij =





−cij if j = k.

cij − [−cik]+bkj + cik[−bkj ]+ otherwise.
(10.7)

Additionally, to each active node ai we associate the g-vector ei, the unit vector in the ith
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direction, which upon mutating on the kth node transform as

g′
k = −gk +

n∑

i=1

[−bik]+gi +
n∑

j=1

[cjk]+b0
j , (10.8)

where b0
j , j ∈ {1, . . . ,m} corresponds to the jth column of b0, the exchange matrix for

the initial cluster. By following these mutation rules each A-coordinate generated will be

associated to its own unique g-vector.

A cluster subalgebra of codimension-one consisting of all clusters containing a given A-

coordinate can be generated by searching for some cluster with the chosen A-coordinate,

freezing it, and performing all possible mutations on the remaining active nodes. Similarly,

we can generate subalgbras of higher codimension by choosing some subset of coordinates

S, so long as they all appear in a single cluster together, freezing them, and performing all

mutations on the remaining active nodes to obtain a subalgebra of codimension-|S|. This

procedure terminates when we have specified all 3(n− 5) A-coordinates appearing in a single

cluster together i.e. a zero dimensional cluster algebra.

In the case where two A-coordinates appear together in a cluster we call them adjacent

otherwise we call them forbidden. The fact that some coordinates appear together in clusters

and others do not has been shown to have physical significance for scattering amplitudes.

Where in [30, 132] the notion of cluster adjacency was introduced which can be summarised

as follows: two letters (A-coordinates) can appear adjacent in the symbol of the amplitude iff

they appear in some cluster together. This can be used to significantly reduce the space of

integrable words needed in the amplitude bootstrap.

Note, the A-coordinates are not homogenous under rescaling the individual twistors and

hence do not strictly define coordinates on Confn(P)3. However, we can instead define the

homogenous X -coordinates with respect to a cluster given by

xj =
∏

i

a
bij

i , (10.9)

where j labels an active node and i runs over all nodes of the cluster. They have their own

mutation rules given by

x′
i =





1/xi k = i ,

xi
(
1 + x

sgn(bik)
k

)bik k 6= i .
(10.10)

for mutations on node i.

Since the X -coordinates range over 0 < x < ∞, in the real case, they can be seen as defining

a positive region in Confn(RP3). This region can be visualised as a polytope whose facets

correspond to the codimension-one subalgebras described above. Where the boundaries

of the facets correspond to codimension-two subalgebras, and so on, all the way down to
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the vertices of the polytope, corresponding to the individual clusters or dimension zero

subalgebras. In this picture the X -coordinates are viewed as edge coordinates, in the sense

that they correspond to the edges connecting to each vertex/cluster where they run over

0 < x < ∞. Note, this is compatible with the fact that, under mutation along an edge

(10.10), the associated X -coordinate inverts.

10.2.1 G(4, 6)

Let us see the above definitions at work in the simplest case of the cluster algebra associated

to G(4, 6)1. The quiver diagram of the initial cluster is given in Figure 10.2 with the three

active coordinates

a1 = 〈1235〉, a2 = 〈1245〉, a3 = 〈1345〉, (10.11)

together with the 6 frozen coordinates. The full list of 9 active coordinates are distributed

over 14 clusters connected in the topology of the Stasheff or A3 polytope as depicted in

Figure 10.3.

As mentioned each facet corresponds to the subalgebra obtained by freezing one of the active

coordinates: three square facets, or A1 ×A1 subalgebra, obtained by freezing e.g. 〈1245〉,
and six pentagonal facets, or A2 subalgebra, obtained by freezing e.g. 〈1235〉. The clusters

appear as the 14 vertices of the polytope: where the A-coordinates contained in a cluster

correspond to the three facets which intersect at the given vertex. As an example the initial

cluster can be seen as top left vertex of the Stasheff polytope highlighted in red.

The content of cluster adjacency is encoded by which facets share a codimension-two

subalgebra. As an example consider the adjacent pair {〈1235〉, 〈2456〉} which share an A1

subalgebra corresponding to the shared edge in the intersection of the two facets. However,

the pair of square faces defined by {〈1245〉, 〈2356〉} share no such boundary and are a

forbidden pair.

Note, the polytope depicted in 10.3 should not be thought simply in the abstract sense of

encoding the connections between clusters. But instead the interior, when restricting to

real momentum twistors, can be thought as the region inside the three-dimensional space

Conf6(RP3) where all the X -coordinates are strictly positive. Each vertex of the polytope

is then the origin in the set of X -coordinates defined by the cluster. For example the

X -coordinates of the initial cluster are given by

x1 =
〈1234〉〈1256〉
〈1236〉〈1245〉 , x2 =

〈1235〉〈1456〉
〈1256〉〈1345〉 , x3 =

〈1245〉〈3456〉
〈2345〉〈1456〉 . (10.12)

The point (0, 0, 0) in the (x1, x2, x3) coordinate system defines the vertex corresponding to

1More correctly the cluster algebra is associated to Conf6(P3) but we will continue to refer to the
Grassmannian.
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the initial cluster, with the X -coordinates running from 0 to ∞ along the three connected

edges.

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈345〉

Figure 10.2: The initial cluster of the G(4, 6) cluster algebra.

Alternatively we can define the set of homogeneous dihedral coordinates given by

uij =
〈ij + 1〉〈i+ 1j〉
〈ij〉〈i+ 1j + 1〉 , 0 < uij < 1, (10.13)

where the labels i and j are separated by at least two. Here we have introduced the two

bracket notation which replaces the four brackets with their complements for example

〈1234〉 → 〈56〉. In the case of n = 6 the dihedral coordinates form a complete set of nine

multiplicatively independent homogenous combinations of the A-coordinates. Hence, they

can be used as an alphabet for the construction of the hexagon polylogarithmic function

space.

〈1345〉 〈1356〉

〈2346〉〈1246〉

〈1245〉 〈2356〉

〈1235〉〈1235〉

〈2456〉

〈1346〉

Figure 10.3: The Stasheff polytope with each face labelled with the corresponding A-
coordinate. The initial cluster corresponds to the top left vertex highlighted in red at the
intersection of the faces 〈1235〉, 〈1245〉 and 〈1345〉.
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10.2.2 G(4, 7)

The initial cluster associated to G(4, 7) is depicted in Figure 10.4. By repeated mutation we

generate 42 distinct active A-coordinates distributed over 833 clusters. With each cluster

containing six active nodes along with the seven frozen nodes.

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈1237〉

〈1267〉

〈1567〉

〈2345〉 〈3456〉 〈4567〉

Figure 10.4: The initial cluster of the G(4, 7) cluster algebra.

When the pair (k, n) is coprime the frozen coordinates of G(k, n) can be used to homogenise

the active A-coordinates [19], such is the case at seven points, where we may construct 42

homogenous letters in one-to-one correspondence with the 42 active A-coordinates. These

are given by the cyclic rotations of

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉 , a21 =

〈1234〉〈2567〉
〈1267〉〈2345〉 ,

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉 , a41 =

〈2457〉〈3456〉
〈2345〉〈4567〉 ,

a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉 , a61 =

〈1(34)(56)(72)〉
〈1234〉〈1567〉 , (10.14)

which serve as the symbol alphabet for the construction of heptagon amplitudes. In the

above we have introduced the notation

〈1(23)(45)(67)〉 = 〈1234〉〈5671〉 − 〈1235〉〈4671〉. (10.15)

We may view the cluster algebra as the six-dimensional E6 polytope with 833 vertices and 42

codimension-one facets. Already at seven points it is not instructive to plot the entire cluster

algebra. However, we can still learn about the subalgebra structure by mutating the initial

cluster to the convenient form of the E6 Dynkin diagram topology given in Figure 10.5.

This makes clear the possible codimension-one subalgebras that are contained within the E6

cluster algebra: upon freezing a13 we obtain an A5 subalgebra; freezing a24 or a33 generates
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a D5 subalgebra; freezing a41 or a51 generates an A1 ×A4 subalgebra; finally freezing a62

would generate an A1 ×A2 ×A2 subalgebra. We may go further into the boundary structure

by considering adjacent pairs or codimension-two subalgebras. For instance the adjacent

pair {a13, a62} in the E6 cluster corresponds to an A2 ×A2 subalgebra.

As was already emphasised each cluster corresponds to a vertex of the polytope whose six

X -coordinates constitute a local coordinate system such that the vertex is at the origin.

The X -coordinates may then be associated with one-dimensional edges of the polytope

along which they range from 0 to ∞. The interior of the polytope is the region in which all

X -coordinates are positive.

a51a24 a62 a41 a33

a13

Figure 10.5: By mutation the initial cluster of G(4, 7) can be bought to the shape of an
E6 Dynkin diagram.

10.2.3 G(4, 8)

At 8 points and beyond complications arise due to the underlying cluster algebra no longer

being of finite type, and additional tools beyond that of the cluster algebra must be introduced

in order to extract information for the symbol alphabet of the corresponding amplitude.

There are two main reasons for this. First, the set of A-coordinates becomes infinite

which is not reflected by the finite set of letters needed to express say the two-loop NMHV

octagon [134]. Therefore, some truncation procedure, such as topicalization [31–34], must

be introduced to select a preferred subset of A-coordinates. Second, the symbol alphabet

starts to contain non-rational letters, with square roots appearing in the first instance for the

two-loop NMHV octagon [134], the calculation of which revealed a set of 18 multiplicatively

independent square root letters. More recently, the calculation of the 3-loop MHV octagon

[135] revealed the same set of 18 algebraic letters along with an additional 24 rational letters.

Both issues were dealt with in [31] where the set of 180 rational letters of the two-loop

NMHV octagon were recovered as rays of Trop+(I4,8), along with the 18 algebraic letters,

associated to special limit rays arising from infinite affine sequences of mutations within

the cluster algebra. Note, the additional 24 letters of the 3-loop MHV ampliutde were also

covered by the predictions of [31]. Many other closely related approaches have been applied

to the eight point case including plabic graphs, scattering diagrams to name a few [136–139].

In Chapter 11 we will use a new technique, which can be seen as a generalisation of the

tropical approach, to extract the A-coordinates of G(4, 6) and G(4, 7) along with their

adjacency rules. Furthermore, in Chapter 12 we will review the methods used in [31] for
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extracting square-root letters from infinite affine sequences in the more general setting of

non dual conformal invariant 6-point kinematics.

10.3 Cluster Adjacency

The condition of cluster adjacency, initially proposed in [30], can be phrased as follows: two

A-coordinates may appear adjacent in the symbol iff they appear together in some cluster.

This extends the role cluster algebras have to play in describing the analytic structure of

scattering amplitudes beyond simply the union of their A-coordinates and endows them

with a geometric significance. In the language of the cluster polytope a pair of A-coordinates

are adjacent if their corresponding facets share a codimension-two boundary.

Note, the adjacency conditions are defined on the inhomogeneous A-coordinates. Whereas

the amplitudes are dual conformal invariant polylogarithmic functions on Confn(P3) whose

symbol is written in terms of homogeneous multiplicative combinations of the A-coordinates.

However, these combinations can be expanded using (9.45) and (9.46) after which the

adjacency conditions can be applied.

The conditions imposed by cluster adjacency are similar in spirit to that of the Steinmann

relations. The Steinmann relations state that the double discontinuity of the (BDS-like

normalised) amplitude must vanish when taken in overlapping channels, for the three-particle

Mandelstams this can be summarised as

Discsjj+1j+2(Discsii+1i+2En) = 0, ∀ j = i± 1, i± 2. (10.16)

Since, at the level of the symbol, the discontinuity around some letter a = 0 is obtained by

isolating all terms beginning with a and chopping it off, the Steinmann relations can be seen

as placing constraints on the letters which can appear adjacently in the first two slots of

the symbol. The importance of these relations in constraining the symbol of hexagon and

heptagon amplitudes has been emphasised in [21, 22, 140].

In fact analogous constraints, the extended Steinmann relation [141], exist for adjacent slots

all along the symbol. These extended relations are closely connected with the notion of

cluster adjacency, with cluster adjacency implying the (exteneded) Steinmann relations, and

(at six and seven points) the extended Steinmann relations together with the physical initial

entry condition implying cluster adjacency.

At six points the adjacency conditions are best phrased by making use of the identification

of Conf6(P3) with Conf6(P1). At the level of Plücker coordinates this is achieved by

identifying the ordered four bracket 〈ijkl〉 with the ordered two bracket 〈nm〉, where

{n,m} = {1, 2, 3, 4, 5, 6}\{i, j, k, l} and n < m, which in turn can be identified with a chord

of the hexagon. In this way each cluster of the A3 polytope can be seen as representing a
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triangulation of the hexagon.

1

2

3 4

5

6

Figure 10.6: The three crossing chords corresponding to the square facets of the Stasheff
polytope which each are never found in some cluster together.

In this language the statement of cluster adjacency becomes: two coordinates are forbidden

(do not appear in a cluster together) iff their corresponding chords intersect. As an example

consider the three square facets of the Stasheff polytope, corresponding to the crossing

chords displayed in Figure 10.6, all of which are mutually forbidden pairs. Note, a similar

statement of adjacency holds more generally for the Grassmannians G(2, n) and chords of

the n-gon.

In the case of G(4, 7), and more generally G(k, n) for (k, n) coprime, we are able to use the

frozen coordinates to homogenise the active A-coordinate, and since the frozen coordinates

appear in every cluster they cannot possibly spoil cluster adjacency. Therefore, cluster

adjacency can be phrased directly on the 42 homogenous combinations defined in (10.14).

The full set of adjacency conditions for G(4, 7) were found in [30]. In particular out of the

903 pairs {aij , akl} which can be constructed from the 42 letter alphabet 441 are adjacent

and 462 are forbidden. We will see the 462 forbidden pairs arising in another context in the

next chapter.
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Adjacency from the Gröbner fan

In this chapter we wish to reformulate the results of the last section in the new language

of the Gröbner fan. This is inspired by the recent success of the application of Tropical

geometry to scattering amplitudes [31–34], which the Gröbner fan can be thought as a

generalisation of, and results from the mathematics literature [35, 36].

Our goal will be to extract the set of A-coordinates and forbidden pairs from the Gröbner

fan of the Plücker ideal GF(Ik,n). As we will see the A-coordinates will be encoded as

non-prime factors of initial ideals associated to maximal cones of the positive tropical fan

Trop+(Ik,n). Whereas, the forbidden pairs will be extracted from a single maximal Gröbner

cone obtained after extending the Plücker ideal to the full set of A-coordinates. We will

demonstrate these techniques for G(3, n) for n = 6, 7, 8 and discuss the possible outlook to

the n = 8 case. This is of particular relevance for G(3, 7) whose adjacency conditions dictate

the structure of planar N = 4 SYM amplitude symbols.

A benefit of this construction over the cluster approach is that it is very general, we can

compute the Gröbner fan for any polynomial ideal we wish to write down. This poses the

exciting question of whether similar techniques may be applied to scattering processes whose

kinematics are not governed by the Grassmannian i.e. where dual-conformal symmetry is

no longer present. We present an application of the Gröbner fan to non-dual conformal

invariant 5-point massless scattering, where we will recover the entire non-planar alphabet

Anp of [40], which we hope serves as a motivation to study the connection between Gröbner

theory and scattering amplitudes.

11.1 Gröbner and Tropical fans

As was discussed at the beginning of Chapter ?? the Grassmannian can be thought as the

projective variety inside P(n
k)−1 whose points vanish on the Plücker ideal Ik,n. As an example

101
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the G(2, n) Plücker Ideal is generated by the relations

I2,n = 〈pijpkl − pikpjl + pilpjk : 1 ≤ i < j < k < l ≤ n〉. (11.1)

Using this general viewpoint of the Grassmannian as an ideal generated by polynomial

relations we can introduce a fan structure on R(n
k) known as the Gröbner fan [142]. But, to

begin to understand the structure of the Gröbner fan we must first introduce the notion of

monomial orderings, initial ideals, and Gröbner bases our presentation of which follows that

of [35].

Let f be a polynomial in n variables (x1, . . . , xn) with coefficients in an algebraically closed

field K for which we use the notation

f =
∑

~α

c~αx~α, (11.2)

where we have introduced ~α = (α1, . . . , αn) ∈ Zn
≥0, and x~α is understood as the monomial

xα1
1 . . . xαn

n . Given some weight vector w ∈ Rn we can define the initial form of f with

respect to ~w as

in~w(f) =
∑

~α: ~α· ~w=m

c~αx~α, (11.3)

where m = min{~α · ~w : c~α 6= 0}. Furthermore, given an ideal I ⊂ K[x1, . . . , xn], we can

define its initial ideal with respect to ~w as the ideal generated by the initial forms of all

functions f ∈ I written as

in~w(I) = 〈in~w(f) : f ∈ I〉. (11.4)

If for some finite set of generators G = {g1, . . . , gr} ∈ I, such that I = 〈g1, . . . gr〉, we have

in~w(I) = 〈in~w(g) : g ∈ G〉 we call G a Gröbner basis of I with respect to ~w.

The next definition we need is that of a monomial order. A monomial order < on the set of

monomials x~α ∈ K[x1, . . . , xn] is a total order which satisfies

i) 1 ≤ x~α,

ii) if x~α < x
~β =⇒ x~α+~γ < x

~β+~γ .

This allows us to define the leading monomial of the polynomial f as in<(f) = c~β
x

~β , where

x
~β is the leading monomial with respect to < appearing in f with non-zero coefficient i.e.

x
~β = max<{x~α : c~α 6= 0}. Similarly, we can define the initial ideal of I with respect to < as

in<(I) = 〈in<(f) : f ∈ I〉. (11.5)

Note, we may always choose some weight vector ~w ∈ Rn such that in~w(I) = in<(I). The

converse is not generally true however.
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By varying the weight vector ~w we may study all possible initial ideals of I. This leads us

to the notion of the Gröbner fan GF (I) on Rn as follows: two weight vectors ~w1 and ~w2 lie

in the relative interior of the same cone C if and only if in~w1
(I) = in~w2

(I) i.e. they generate

the same initial ideal. Note, each full-dimensional (maximal) Gröbner cone is associated to

a monomial initial ideal specified by some monomial order <, consisting of all weight vectors

~w ∈ Rn such that in~w(I) = in<(I). A weight vector will lie on the boundary of a maximal

cone when the associated initial ideal is no longer monomial. It is this collection of maximal

Gröbner cones, together with their intersections, which we call the Gröbner fan GF (I).

Note, we are always free to shift a weight vector by any element of the the lineality space of

the Gröbner fan GF (I) without altering the initial ideal, where the lineality space is defined

as the linear subspace containing all elements ~l such that in~l
(I) = I.

We will also be interested in interesting subfans of the Gröbner fan, the first being the

tropical fan Trop(I) defined as the subfan

Trop(I) = {~w ∈ Rn : in~w(I) contains no monomial}. (11.6)

We may restrict further and define the totally positive tropical fan Trop+(I) given by

Trop+(I) = {~w ∈ Trop(I) : in~w(I) is totally positive}, (11.7)

where an ideal I ⊂ R[x1, . . . , xn] is called totally positive if it does not contain any polynomial

with all positive coefficients.

The above discussion is most easily demonstrated with an example, the simplest case being

G(2, 4), whose Plücker ideal is generated by a single polynomial

I2,4 = 〈p12p34 − p13p24 + p14p23〉 ⊂ R[p12, p13, p14, p23, p24, p34]. (11.8)

Let ~w = (w12, w13, w14, w23, w24, w34) ∈ R6 and f = p12p34 − p13p24 + p14p23 which being

the sole generator of I2,4 constitutes a Gröbner basis for any choice of weight vector ~w. A

generic weight vector ~w ∈ R6 can always be bought to the form (x, y, 0, . . . , 0) with some

suitable choice of lineality shift. The resulting Gröbner fan GF (I2,4) is depicted in the

(x, y) plane in Figure 11.1. The Gröbner fan GF (I2,4) consists of three maximal cones

labelled by the monomial initial ideals 〈p12p34〉, 〈p13p24〉 and 〈p14p23〉. The maximal cones

intersect to give the three rays of the tropical fan Trop(I2,4) given by e12 = (1, 0), e13 = (0, 1)

and e14 = (−1,−1), whose corresponding binomial initial ideals are 〈p14p23 − p13p24〉,
〈p12p34 + p14p23〉 and 〈p12p34 − p13p24〉. The positive part of the tropical fan Trop+(I2,4)

consists of the rays e12 = (1, 0) and e14 = (−1,−1) highlighted in red whose generators

contain terms of opposite sign, the ray e13 = (0, 1) is not contained in Trop+(I2,4) since it is

generated by a polynomial with all positive coefficients.
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〈p12p34 + p14p23〉

〈p14p23 − p13p24〉

〈p12p34 − p13p24〉

〈p14p23〉

〈p13p24〉

〈p12p34〉

x

y

Figure 11.1: The Gröbner fan structure of GF (I2,4) with each region labelled by its initial
ideal. Each point in the (x, y) plane corresponds to a 4-dimensional linear subspace of
R6 consisting of all weight vectors lineality equivelent to (x, y, 0, 0, 0, 0). The tropical fan
corresponds to the three rays, whilst the positive tropical fan corresponds to the two red
rays.

11.1.1 Forbidden pairs and A-coordinates

Moving forward the final definition needed is that of a prime (or alternatively non-prime)

ideal. An ideal I is non-prime if there exists two polynomials f 6∈ I and g 6∈ I such that their

product f · g ∈ I. In this case we call f and g non-prime factors of I. Note, a non-prime

ideal can always be decomposed into the intersection of finitely many prime components.

With all the necessary material reviewed let us remind ourselves of our goal: to extract (at

least in the finite cases) the A-coordinates and adjacency relations of the Grassmannian

cluster algebras G(k, n) from the Gröbner fan of the Plücker ideal GF (Ik,n), which in the

case of G(4, 6) and G(4, 7) provide vital information for the amplitude bootstrap in the form

of the symbol alphabet and adjacency rules. Such ideas were first presented in [35] for the

case G(2, n) and G(3, 6) and more generally for any cluster algebra of geometric finite type

in [36].

A-coordinates: The Plücker ideal is defined on the
(n

k

)
Plücker coordinates pi1,...,ik

. In the

case of the Grassmannians G(2, n) these make up the full set of A-coordinates. However,

for G(3, 6), and more importantly G(3, 7) relevant for heptagon amplitudes, A-coordinates

quadratic in the Plückers start to appear. As we shall explain these missing A-coordinates

appear as non-prime factors of initial ideals inside the maximal cones of Trop+(Ik,n).

Forbidden pairs: Generally, the rays of the positive tropical fan Trop+(Ik,n) will span

multiple maximal Gröbner cones. That is to say taking a suitably general1 weight vector ~w

lying in the span of the rays of Trop+(Ik,n) we will generate multiple monomial initial ideals.

However, upon extending the ideal by the missing A-coordinates the rays of Trop+(Iext
k,n)

resolve to span a single maximal Gröbner cone. The initial ideal of this maximal Gröbner cone

provides us with a list of monomials which are exactly the forbidden pairs of A-coordinates.

1A weight vector not lying in the intersection of maximal cones of the Gröbner fan.
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Note, in the case of G(2, n) all A-coordinates are present already for Ik,n and no extension

procedure is needed.

In the remainder of this section we review these ideas for the case of G(2, 5). Later in

Section 11.3 we return to the case of G(3, 6), already presented in [35], and further apply

this discussion to G(3, 7) relevant for heptagon amplitudes. We also discuss the remaining

finite case G(3, 8) and comment on the outlook beyond the finite type Grassmannians.

11.1.2 GF (I2,5)

We conclude this section with the example of G(2, 5). In the space of Plücker coordinates

(p12, . . . , p45) the five Plücker relations are given by

pijpkl − pikpjl + pilpjk = 0, 1 ≤ i < j < k < l ≤ 5. (11.9)

The Gröbner fan GF (I2,5) is simplicial, containing 132 maximal cone and twenty rays,

arranging the coordinates in lexicographic order

{w12, w13, w14, w15, w23, w24, w25, w34, w35, w45}, (11.10)

they are defined as

e12 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

...

e45 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (11.11)

along with ten more given by −eij .

There are 60 cones with four eij vertices and one −eij vertex and 60 more with three eij

vertices and two −eij vertices. The ten eij vectors defined above make up the rays of the

tropical fan, they are connected in a Petersen graph topology shown in Figure 11.2. The

positive tropical fan contains the five rays the ei,i+1 highlighted in red.

There is exactly one1 Gröbner cone spanned by the five rays {e12, e23, e34, e45, e15} of

Trop+(Ik,n). This cone has a Gröbner basis whose initial monomials are the crossing

chords (forbidden pairs) of the pentagon, i.e. p13p24 and cyclic. Therefore, from Gröbner

theory, we have recovered the important (for amplitudes) content of the G(2, 5) cluster

algebra i.e. the set of forbidden pairs of A-coordinates!

The case of G(2, n) was studied in detail in [35], where this construction was shown to hold

for all n i.e. the rays of the positive tropical fan span a single maximal Gröbner cone, whose

1There are eleven other maximal cones with all five vertices among the {eij}, corresponding to permuta-
tions of the above positive cone (i.e. different positive regions for other choices of ordering).
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e12

e45

e23e15

e34

e35

e13

e14e24

e25

Figure 11.2: The tropical fan Trop(I2,5) and its positive part highlighted red.

initial ideal is generated by the crossing chords of the n-gon, let us emphasise again these

are exactly the set of forbidden pairs of A-coordinates for the G(2, n) cluster algebra. As

was shown there for the case of G(3, 6), and we shall explain in Section 11.3, this is not the

case generally. Instead to identify a single maximal Gröbner cone, whose rays are given by

the positive tropical part, the ideal must first be extended by the missing A-coordinates. In

the next chapter we take a brief aside to describe how the positive tropical fan is calculated

in practice before returning to this issue of missing A-coordinates.

11.2 Trop+(Ik,n) from the web matrix

In practice it is only possible to compute the entire Gröbner fan for the most simple of

cases. Therefore, it is highly desirable to have an efficient route to calculating the positive

tropical part Trop+(Ik,n) directly without having it embedded in the entire Gröbner fan.

In this section we review the methods of [143] on this direct construction. For a detailed

discussion of this procedure and the structure of the resulting fans see [144, 145]. The cases

of interest will be Gr(3, n) for n = 6, 7, 8 which along with Gr(2, n) make up the finite type

Grassmannian cluster algebras.

Generally, the G(k, n) initial cluster has the form of a (k − 1) × (n− k − 1) array of active

nodes, in addition to k many frozen nodes, each labelled by an A-coordinate. An example of

the initial cluster for the case of G(2, 5) is given in Figure 11.3. Alternatively, we may instead

assign to each active node a X -coordinate, given by the product of incoming A-coordinates

over the product of the outgoing, which again organise themselves into a (k− 1) × (n−k− 1)

array with elements xrs.

Using xrs we can define the k × n web matrix W (k,n) = (Ik|M). Where M is given by the
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k × (n− k) matrix elements

mij = (−1)i+k
∑

~λ∈Yij

k−i∏

r=1

λr∏

s=1

Xrs, (11.12)

with the summation range Yij given by 0 ≤ λk−i ≤ ... ≤ λ1 ≤ j − 1. The web matrix thus

allows us to evaluate all A-coordinates as subtraction free polynomials in the X -coordinates

by identifying the Plücker coordinates with the maximal minors of the web matrix i.e.

pii...ik
= det(W

(k,n)
i1,...,ik

)(xrs) (11.13)

where W (k,n)
i1,...,ik

is understood as the matrix formed from W (k,n) by taking columns ii . . . ik.

〈1 2〉

〈1 3〉

〈2 3〉

〈1 4〉

〈3 4〉

〈1 5〉

〈4 5〉

Figure 11.3: The initial cluster of G(2, 5).

Let us demonstrate this with the example of G(2, 5) whose initial cluster is depicted in

Figure 11.3 from which we can read off the X -coordinates, they are given by

x11 =
〈12〉〈34〉
〈14〉〈23〉 , x12 =

〈13〉〈45〉
〈34〉〈15〉 . (11.14)

This in turn defines the web matrix to be

W (2,5) =

[
1 0 −1 −1 − x11 −1 − x11 − x11x12

0 1 1 1 1

]
. (11.15)

By identifying the Plücker coordinates pij with the maximal minor formed by columns i

and j of the web matrix as

pij = det(W
(2,5)
ij )(x11, x12), (11.16)

we immediately arrive at an expression for all A-coordinates as subtraction free polynomials

in the X -coordinates. As an example we have

p25 = x11 + x12x22,

We can now continue in tropicalizing the expressions for the A-coordinates, which amounts

to + and × begin replaced by their tropical counterparts min and +. The tropical version
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of the above Plücker is given by

p̃25 = min(x̃11, x̃11 + x̃12) , (11.17)

where p̃ and x̃ are used to emphasise that we are dealing with tropical expressions. This

tropical expression defines a piece-wise linear map on (x11, x12), with regions of linearity

separated by tropical hypersurfaces, and as such provide a fan structure on (x11, x12). For

example the tropical hypersurface of p̃25 is given by

x̃12 = 0 . (11.18)

By tropicalizing different subsets of the A-coordinates we can define different tropical

fans given by the common refinement of all fans in the subset of tropical expressions. In

practice we calculate the refinement of the tropical fan for a subset, S, of A-coordinates

via the Minkowski sum of their Newton polytopes. The tropical expressions for the frozen

coordinates do not contain any tropical hypersurface and hence do not contribute to the

structure of the fan.

Our focus will be on two fans in particular: the Speyer-Williams fan [143], obtained by

tropicalizing the set of all Plückers coordinates; and the cluster fan, where we choose

to tropicalise the entire set of A-coordinates. Note, for the case of G(2, n) the Plücker

coordinates themselves make up the entire set of A-coordinates and hence the Speyer-

Williams and cluster fans coincide. However, when considering G(3, 6), A-coordinates

quadratic in the Plückers begin to appear and hence the structure of the two fans begin to

differ.

11.2.1 Trop+(I2,5)

Let us finish the example of Trop+(I2,5). The G(2, 5) web matrix, written in (11.15), allows

us to write the 10 Plücker variables pij in terms of the two X -coordinates (x11, x12) as

p1i = p23 = 1, p24 = 1 + x11, p25 = 1 + x11 + x11x12,

p34 = x11, p35 = x11 + x11x12, p45 = x11x12. (11.19)

Taking these expressions as the input to the Minkowski sum operation of gfan [146] we

obtain Trop+(I2,5). The resulting fan is depicted in Figure 11.4. It has five regions of

linearity whose boundaries are given by the five rays

{(1, 0), (0, 1), (−1, 0), (0,−1), (1,−1)}.

Note, the tropical fan as described above is parameterised in the space of the (x̃11, x̃12)

variabels. However, as discussed in [144, 145], we can map the five rays above to those
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presented in Section 11.1.2 by taking the scalar product of the unit vectors eij with the

vector of tropicalized Plücker coordinates i.e.

(x̃11, x̃12) 7→
∑

1≤i<j≤5

p̃ij(x̃11, x̃12)eij . (11.20)

The five rays given above up to lineality map to {e12, e45, e23, e15, e34}. In particular, the

regions between the rays of Figure 11.4 map to the red edges between the corresponding

rays in Figure 11.2.

x̃11

x̃12

Figure 11.4: The tropical fan Trop+(I2,5).

11.3 Adjacency from the Gröbner fan

As emphasised already in the case of G(2, n) the Speyer-Williams and cluster fan coincide

since the full set of A-coordinates are given solely by the Plückers. But for the remaining

finite type Grassmannians this is no longer the case. In this section we wish to begin with

the Speyer-Williams fan, by tropicalizing only the Plücker coordinates, and see where the

additional information of the missing A-coordinates and adjacency conditions is hidden

inside the structure of Trop+(Ik,n) and GF (Ik,n). Note, these questions were originally

asked in [35] and later extended in [36]. Before we begin let us remind ourselves where we

find this additional information:

A-coordinates: The missing A-coordinates appear as non-prime factors in the initial ideals

of maximal cones of Trop+(Ik,n).

Frobidden pairs: Upon extending the ideal by the missing A-coordinates the rays of

Trop+(Ik,n) span a single maximal Gröbner cone. The initial ideal of this maximal Gröbner

cone, of the extended ideal, provides us with a list of monomials which are exactly the

forbidden pairs of A-coordinates.
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11.3.1 G(3, 6)

The case of G(3, 6) was covered in detail in [35] we review here the relevant discussion and

provide additional detail on the calculation. The Plücker Ideal I3,6 is generated by three

and four-terms relations of the form

p123p145 + p125p134 − p124p135 = 0, . . . (11.21)

p123p456 − p156p234 + p146p235 − p145p236 = 0, . . . (11.22)

in the ring of polynomials in the 20 Plücker coordinates pijk. We obtain the Speyer-Williams

[143] fan by tropoicalizing all Plücker coordinates as explained in the last section. The

positive tropical fan is spanned by 16 rays given by

(1, 0, 0, 0), (−1, 0, 0, 0), (1,−1, 0, 0), (0, 0, 1,−1),

(0, 1, 0, 0), (0,−1, 0, 0), (1, 0,−1, 0), (−1, 0, 0, 1),

(0, 0, 1, 0), (0, 0,−1, 0), (1, 0, 0,−1), (0, 1, 1,−1),

(0, 0, 0, 1), (0, 0, 0,−1), (0, 1, 0,−1), (1,−1,−1, 0) , (11.23)

in x̃ space with the ordering (x̃11, x̃21, x̃12, x̃22). The maximal cones of the fan are four-

dimensional regions within which all minors are linear, which can be intersected with

the unit sphere to produce 3-dimensional facets of a polyhedral complex. The fan has 48

maximal facets given by 46 terahedra and 2 bipyramids. They themselves have 2-dimensional

boundaries corresponding to some minor being between two regions of linearity. There are

98 of these 2-dimensional boundaries, which themselves are bounded by 66 edges, which are

further bounded by 16 points. The 16 points correspond to the intersection of the rays in

(11.23) with the unit sphere. This information can be summarised by the f -vector given by

f3,6 = (16, 66, 98, 48). Sometimes we would also like to keep information on the number of

vertices of each facet, for this we use the notation

f3,6 = (161, 662, 983, 464 + 25),

where we understand the right most element as 46 tetrahedrons (4-vertex objects) and two,

non-simplicial, bipyramids (5-vertex objects).

In contrast with the G(2, n) case, the Speyer-Williams fan does not single out an individual

maximal Gröbner cone of GF(I3,6). In fact, calculating initial ideals inside the span of the

16 positive rays of Trop+(I3,6) we find 9 maximal Gröbner cones. However, as shown in [35],

we can resolve the positive tropical part into a single maximal Gröbner cone by extending

the ideal. To decide how to extend the ideal we search the maximal non-prime cones of

Trop+(I3,6) which will provide for us the missing A-coordinates as non-prime factors.
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Let us now describe this resolution in detail. Out of the 48 maximal cones only 2 are

associated with non-prime initial ideals. They are given by two bipyramids each of which

are spanned by 5 rays given by

b1 = span{(−1, 0, 0, 1), (0, 0, 1, 0), (−1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1,−1)}
:= span{b11, b12, b13.b14, b15},

b2 = span{(1,−1,−1, 0), (1, 0,−1, 0), (1,−1, 0, 0), (0, 0, 0,−1), (1, 0, 0,−1)}
:= span{b21, b22, b23.b24, b25}. (11.24)

The Gröbner fan structure GF(I3,6) splits each bipyramid into a collection of three tetrahedra,

each with its own initial ideal, by introducing an additional edge between the poles of the

bipyramids as indicated in Figure 11.5. This can be viewed as each bipyramid intersecting

three of the nine maximal Gröbner cones spanned by the rays of Trop+(I3,6). The three

non-prime initial ideals generated inside b1 can be written as the intersection of two prime

ideals as

inb1\{b12}(I3,6) = 〈inb1\{b12}(I3,6) ∪M1〉 ∩ 〈inb1\{b12}(I3,6) ∪ {p256p134 − p234p156}〉,
inb1\{b13}(I3,6) = 〈inb1\{b13}(I3,6) ∪M1〉 ∩ 〈inb1\{b13}(I3,6) ∪ {p124p356 − p123p456}〉,
inb1\{b14}(I3,6) = 〈inb1\{b14}(I3,6) ∪M1〉 ∩ 〈inb1\{b14}(I3,6) ∪ {p126p345 − p125p346}〉.

=b12 b14

b11

b15

b13

+

p126p345 − p125p346

+

p124p356 − p123p456 p256p134 − p234p156

Figure 11.5: The bipyramid b1 inside Trop+(I3,6), on the left hand we have the full
bipyramid with its 5 rays, on the right the bipyramid is split into three tetrahedra by the
structure of the Gröbner fan. Each tetrahedron is labelled by the quadratic non-prime
factor found in the initial ideal, note all three expressions are equivalent modulo the Plücker
relations.

Similarly for b2 we have the cyclic copy of the above given by

inb2\{b22}(I3,6) = 〈inb2\{b22}(I3,6) ∪M2〉 ∩ 〈inb2\{b22}(I3,6) ∪ {p145p236 − p123p456}〉,
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inb2\{b23}(I3,6) = 〈inb2\{b23}(I3,6) ∪M2〉 ∩ 〈inb2\{b23}(I3,6) ∪ {p136p245 − p126p345}〉,
inb2\{b24}(I3,6) = 〈inb2\{b24}(I3,6) ∪M2〉 ∩ 〈inb2\{b24}(I3,6) ∪ {p156p234 − p146p235}〉.

Where we understand for instance inb1\{b11}(I3,6) as the initial ideal of I3,6 associated to the

cone spanned by the rays b1 \ {b11} and we have defined the sets of monomials

M1 = {p235, p236, p245, p246, p135, p136, p145, p146},
M2 = {p124, p125, p134, p135, p246, p256, p346, p356}.

Most importantly notice the three quadratic non-prime factors appearing in each cone

modulo the Plücker ideal are equivalent to either

p12[34]56 or p23[45]61, (11.25)

where we have defined pij[kl]mn = pijlpkmn − pijkplmn. These are exactly the two missing

A-coordinates, which along with the 14 monomials contained in M1 ∪M2, make up the full

set of active A-coordinates!

=b12 b14

b11

b15

b13

+

Figure 11.6: The bipyramid b1 now depicted inside Trop+(I ′
3,6), on the right hand side

the bipyramid is split into two tetrahedra by the structure of the Gröbner fan both of which
are associated to prime ideals.

Extending the Plücker ideal as

I ′
3,6 = I3,6 ∩ 〈q1 − p12[34]56〉 ⊂ R[p123, . . . , p456, q1], (11.26)

defines a new ideal and hence a new Gröbner fan GF (I ′
3,6). The positive tropical fan

Trop+(I ′
3,6) has the f -vector given by f ′

3,6 = (161, 662, 993, 484 + 15) which now contains

only a single non-prime bipyramid. The transition from f3,6 to f ′
3,6 can be seen as adding a

triangle to the equator of the bipyramid b1 as shown in Figure 11.6 which now splits into

two terahedra with prime initial ideals. Note, also the rays of Trop+(I ′
3,6) now span only 3
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maximal Gröbner cones.

Extending the ideal further as

Iext
3,6 = I ′

3,6 ∩ 〈q2 − p23[45]61〉 ⊂ R[p123, . . . , p456, q1, q2], (11.27)

defines yet again a new Grobner fan GF (Iext
3,6 ) whose positive tropical part Trop+(Iext

3,6 )

is simplicial, with f ext
3,6 = (161, 662, 1003, 504), and contains no non-prime maximal cones.

Again this can be viewed as adding a triangle to bipyramid b2.

Furthermore, the rays of Trop+(Iext
3,6 ) now span a single maximal Gröbner cone whose initial

ideal is generated by

{q1q2, p124q2, p125q2, p134q2, p135q1, p135q2, p124p135, p136q1, p124p136, p125p136, p145q1, p146q1, p125p146,

p135p146, p235q1, p124p235, p134p235, p146p235, p236q1, p124p236, p125p236, p134p236, p135p236, p145p236,

p245q1, p134p245, p135p245, p136p245, p246q1, p246q2, p125p246, p134p246, p135p246, p136p246, p145p246,

p235p246, p256q2, p134p256, p135p256, p136p256, p145p256, p146p256, p346q2, p125p346, p135p346, p145p346,

p235p346, p245p346, p356q2, p124p356, p145p356, p146p356, p245p356, p246p356},

which are exactly the 54 forbidden pairs of A-coordinates!

11.3.2 G(3, 7)

We now go beyond the results of [35] and consider G(3, 7). Again to obtain the Speyer-

Williams fan for G(3, 7) we tropicalise the 35 Plücker coordinates. In the space of variables

(x̃11, x̃12, x̃13, x̃21, x̃22, x̃23) the positive Tropical fan is spanned by 42 rays with 6-dimensional

maximal cones. The structure of the fan is summarised by

f3,7 = (1, 42, 392, 1463, 2583, 2163, 5956 + 637 + 288 + 79),

where we have included the information on the number of vertices for the maximal cones

only.

We begin the search for the missing A-coordinates by calculating the initial ideals associated

to the 79 maximal cones. Selecting one of the 7 nine-vertex maximal cones we find its initial

ideal is non-prime and contains in particular the non-prime factors

{p12[34]67, p67[12]45, p12[35]67},

with the remaining 6 maximal cones providing us with their cyclic copies 1. In total we find

1Note, the first and second variables are already cyclic copies of one another.



114 Chapter 11. Adjacency from the Gröbner fan

all 14 missing quadratic A-coordinates:

q51 = p12[34]56 and cyclic,

q61 = p61[23]45 and cyclic, (11.28)

appearing as non-prime factors of the 79 maximal cones. By extending the ideal by all 14

variables as

Iext
3,7 = I3,7 ∩ 〈q51 − p12[34]56, . . . , q67 − p56[12]34〉 ⊂ R[p123, . . . , p567, q51, . . . , q67], (11.29)

the positive tropical fan Trop+(Iext
3,7 ) becomes simplicial with the f -vector

f ext
3,7 = (421, 3992, 15473, 28564, 24995, 8336).

Moreover, the rays of Trop+(Iext
3,7 ) span a single maximal Gröbner cone whose initial ideal

gives us the list of 462 forbidden neighbours relevant for the symbol alphabet of heptagon

amplitudes.

11.3.3 G(3, 8)

In the space of variables (x̃11, x̃12, x̃13, x̃14, x̃21, x̃22, x̃23, x̃24) the positive tropical Speyer-

Williams fan is spanned by 120 rays with 8-dimensional maximal cones. The structure of

the fan is summarised by

f3,8 = (1, 120, 2072, 14088, 48544, 93104, 100852, 57768, 13612),

with the maximal cones given by

96728 + 16969 + 109210 + 48011 + 41612 + 10413 + 8814 + 3215 + 2416 + 817.

At this point the calculations become cumbersome, so let us emphasise the main differences

to the previous two cases. First, there are 8 more A-coordinates than there are rays of the

Speyer-Williams fan, which must appear when we begin to extend the ideal. Second, the

A-coordinates not only contain expressions quadratic in the Plücker but also contain cubic

expressions given by

{p12[34]5[67]89, p12[35]8[67]45, p12[34]8[67]35} and cylic, (11.30)

where we have made the definition pij[kl]m[nr]st = pijlpkm[nr]st − pijkplm[nr]st.

Lets’s start by addressing the missing rays. By searching as before a single 817 cone we find
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the following 6 non-prime factors

{p81[23]45, p81[23]46, p56[78]14, p56[78]23, p23[45]71, p23[46]71}. (11.31)

With the remaining cones providing their cyclic copies. Note, this is only 48/56 of the

missing quadratic A-coordinates of G(3, 8), we are still missing the cyclic copies of p23[45]71,

this is in correspondence with the 8 missing rays mentioned earlier. However, extending the

ideal by the 6 factors1 of (11.31) and calculating the Trop+ part generates one new ray!

With the structure of the maximal cones now becoming

114548 + 16969 + 97110 + 41211 + 32812 + 8913 + 6914 + 2815 + 1716 + 717.

Which as we can see has borken up one of the 17-vertex maximal cones. An interesting

question to ask is which of the maximal cones contain the new ray. They are given by

2708 + 709 + 4610 + 1811 + 1012 + 413 + 214.

By searching inside the 214 cones we find the extra quadratic factors p56[71]23 and p81[24]56,

whose cyclic copies are the 8 remaining A-coordinates. We can repeat this procedure for

each cyclic copy of (11.31) to find the 8 missing rays of the cluster fan and all quadratic

A-coordinates:

{p81[23]45, p81[23]46, p56[78]14, p56[78]23, p23[45]71, p23[46]71, p56[71]23} + cyclic. (11.32)

It would be interesting to understand whether such quadratics can be found without first

extending the ideal.

We now move to a brief discussion of the missing cubic coordinates. First, we note that

a preliminary search of the fan Trop+(I3,7) provided us with no cubic non-prime factors.

However, by adding in all 56 quadratic we would expect the cubic A-coordinates to appear

as non-prime factors quadratic now in the full set of A-coordinates. After extending the

ideal with the missing cubics the results of [36], applying to any finite cluster algebra of

geometric type, tell us that we would again see the rays of Trop+(Iext
3,8 ) spanning a single

maximal Gröbner cone whose initial ideal is generated by the forbidden pairs of the cluster

algebra. We did not perform this calculation here due to the computational complexity, and

the fact that G(3, 8) is not relevant for N = 4 SYM amplitudes. A more detailed exploration

of this in the future would be interesting since it might provide an insight to the infinite

case of G(4, 8).

The N = 4 pSYM octagon alphabet is known to contain non-rational square root letters,

1We do not add all 6 × 8 cyclic copies at once as this slows down the computation. However, upon adding
all 48 quadratics we would generate a fan with 128 rays, the same number as A-coordinates.
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accounted within the cluster algebra by considering coordinates associated to limit rays,

arising from the limit of particular affine mutation sequences inside the G(4, 8) cluster

algebra, as described in more detail in the next chapter. It would be interesting to study

this phenomenon through the lens of the Gröbner fan.

11.4 Beyond the Grassmannian

So far our discussion has been focused on extracting A-coordinates and adjacency rules from

the Gröbner fan of the Plücker ideal for the finite type Grassmannians G(3, n) for n = 6, 7, 8.

In fact, in [36], this procedure was shown to work more generally for any geometric cluster

algebra of finite type. However, what we are most interested in is how much physical

information can be extracted from the Gröbner fan. For the cases of G(4, 6) and G(4, 7)

the answer is the entire symbol alphabet and adjacency rules relevant for constructing the

hexagon and heptagon amplitudes of N = 4 SYM. This motivates the question of whether

the Gröbner fan provides a useful tool for the study of other kinematic ideals beyond the

dual-conformal invariant case?

In this section we hope to provide a positive answer to this question by considering the

example of non dual conformal invariant 5-point massless scattering. Even in this more

generalised case much of the discussion from Section 9.4 follows. Such amplitudes/integals

may still be expressed in terms of polylogarithmic functions to which we can still associate

a symbol and an alphabet. In fact, at two loops all functions relevant for two-loop planar

five-particle scattering were computed in [37], leading to the 26 letter alphabet Ap. This was

later extended to 31 letters relevant for the non-planar case Anp in [40] where it was used to

bootstrap individual two-loop Feynman integrals.

The goal of this section is to demonstrate how a similar exploration of the Gröbner fan

associated to the five-point kinematic ideal I5pt can generate the entire non-planar alphabet

relevant for constructing (at least at two loops) five-point massless amplitudes/integrals.

Note, we do in fact miss one symbol letter W31. However, the failure to recover W31

is consistent with the various calculations made for five point processes, where it has

been observed to be absent from (the suitably defined finite part of) the two-loop N = 4

SYM [147, 148] and N = 8 SUGRA [149, 150] amplitudes at two-loops. Similar two-loop

observations have been made for the qq̄ → γγγ [151] and gluon amplitudes [152, 153] in

QCD.

It is important to note that this computation is only an analogy to the Grassmannian cases

for two reasons. First, in the case of the Grassmannian we imposed positivity conditions

by considering only non-prime factors appearing in the positive part of the tropical fan

Trop+(Ik,n). However, for the five-point ideal, we do not impose any such positivity conditions

and consider non-prime factors appearing in the full tropical fan Trop(I5pt). Second, in
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the case of the Grassmannian, having obtained the non-prime factors, we subsequently

used them in order to extend the ideal, perhaps repeating this procedure multiple times

as detailed for G(3, 8). This had the effect of eventually resolving the positive tropical

fan, of the fully extended ideal, into a collection of simplices all with prime initial ideals.

Furthermore, this singled out a single maximal Gröbner fan whose initial ideal contained

the forbidden pairs of A-coordinates, providing us with physical adjacency conditions on the

symbol alphabet in the cases of G(4, 6) and G(4, 7). However, for the the five-point case we

perform no such extension. Having obtained the non-prime factors appearing in the tropical

fan we terminate the procedure, since the extension relies on a notion of positivity which we

do not have for the five-point case, and the fact that we already find the full non-planar

alphabet relevant for constructing amplitudes. Note, in particular this means we do not

attempt to extract any adjacency rules. That being said it is encouraging the same idea of

symbol letters appearing as non-prime factors inside maximal cones of the tropical fan of

the kinematic ideal follows through to the five-point case.

11.4.1 The five-point two-loop symbol alphabet

The kinematics of five-point massless scattering is described on the 5 external momenta pµ
i

subject to the massless on-shell condition p2
i = 0 and momentum conservation

∑
i p

µ
i = 0.

Out of the momenta we can construct 10 scalar products sij = 2pi · pj , five of which are

independent, following the choice of [154] they are given by

vi = sii+1 = 2pi · pi+1. (11.33)

It will also prove useful to introduce the following Gram determinant

∆ = det(2pi · pj) = (tr5)2, (11.34)

where we have introduced the notation tr5 = tr(γ5/p4/p5/p1/p2
). Note, when written in terms

of ‘β-variables’ [155]
√

∆ = tr5 can be expressed as a purely rational function.

The planar (two-loop) five point alphabet Ap = {W1, . . . ,W20} ∪ {W26, . . . ,W31} was origi-

nally obtained in [37] and consists of 26 letters given by

Wi = vi, W5+i = vi+2 + vi+3, W10+i = vi − vi+3,

W15+i = vi+3 − vi − vi+1, W25+i =
ai −

√
∆

ai +
√

∆
, W31 =

√
∆, (11.35)

where the i indices run from 1 to 5 and we have introduced the notation

ai = vivi+1 − vi+1vi+2 + vi+2vi+3 − vivi+4 − vi+3vi+4.
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By closing the planar alphabet under permutations the authors of [40] generalised the

alphabet to the non-planar case Anp = Ap ∪ {W21, . . .W26}, where we introduce the five

additional non-planar letters given by

W20+i = vi+2 + vi+3 − vi − vi+1. (11.36)

As for the planar N = 4 SYM case the non planar alphabet Anp provides the starting point

for the construction of integrable polylogarithmic symbols relevant for the bootstrap of

five-point massless non-planar amplitudes/integrals [40].

11.4.2 Non-planar alphabet from the Gröbner fan

Inspired by the appearance of symbol letters (A-coordinates) as non-prime factors of the

Plücker ideal we wish to apply similar ideas to the five-point ideal I5pt in order to generate

the non-planar alphabet Anp.

To define the kinematic space for general five-point massless scattering, instead of using

momentum twistor variables, it is instructive to consider spinor-helicity variables. The

spinor helicity variables are constrained by two sets of relations, the Schouten identity and

momentum conservation, at five points these become1

〈ij〉〈kl〉 − 〈ik〉〈jl〉 + 〈il〉〈jk〉 = 0; [ij][kl] − [ik][jl] + [il][jk] = 0, (11.37)

for 1 ≤ i < j < k < l ≤ 5 and
5∑

r=1

〈nr〉[rm] = 0, (11.38)

for n,m ∈ {1, 2, 3, 4, 5}. Collectively these equations generate the ideal, I5pt, relevant for

five-point massless kinematics whose Gröbner GF(I5pt) and Tropical fan Trop(I5pt) we now

study.

The ideal I5pt is defined on the ten aij := 〈ij〉 and ten ãij := [ij] variables with i < j

organised as (a12, . . . , a45, ã12, . . . , ã45). We compute the tropical fan Trop(I5pt) with the

help of gfan [146] and macaulay2 [156] where we determine the fan is simplicial, containing

65 rays and an f -vector given by

f5pt = (1, 65, 550, 1395, 1035).

The full set of 65 rays are given by: 20 unit vectors eij and ẽij where eij is the unit vector in

the aij direction and respectively ẽij is the unit vector in the ãij direction; 5 vectors of the

form zi =
∑

j 6=i eij lineality equivalent to z̃i =
∑

j 6=i ẽij ; 10 permutations of r45 = v123 + ẽ45,

1Note, the appearance of the two-brackets 〈ij〉 indicating the problem no longer has dual-conformal
symmetry.
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lineality equivalent to r̃45 = ṽ123 + e45, where we have defined vijk = eij + eik + ejk and

similarly for ṽijk; finally the 30 permutations of y1,23,45 = v123 + ṽ145 = ỹ1,23,45.

Figure 11.7: A bipyramid b1 of Trop(I5pt), on the left hand side we have the full bipyramid
labelled by its 5 rays, on the right hand side the bipyramid is split into three tetrahedra.
Each tetrahedron is labelled by the quadratic non-prime factor found in the initial ideal,
where all three expressions are equivalent modulo I5pt.

Amongst the 1035 maximal cones only 45 are non-prime: 30 given by the permutation

copies of {y1,23,45, z1, r45,y1,45,23}; and an additional 15 given by the permutation copies of

{y1,23,45, r23, r45,y1,45,23}. Note, these tertahedra fit together into 15 bipyramids. As an

example consider Figure 11.7 where we have a single bipyramid: the left tetrahedron with the

rays {y1,23,45, z1, r45,y1,45,23}, produces the non-prime factor 〈12〉[12] + 〈13〉[13]; transposing

2 ↔ 4 and 3 ↔ 5 we find the right tetrahedron with the rays {y1,23,45, z1, r23,y1,45,23}, and

non-prime factor 〈14〉[14] + 〈15〉[15]; finally the middle tetrahedron has the rays given by

{y1,23,45, r23, r45,y1,45,23}, which produces the non-prime factor 〈23〉[23] − 〈45〉[45]. As was

the case for G(3, 6) the three non-prime factors appearing in the bipyramid are equivalent

modulo the ideal I5pt.

To generate the full set of non-prime factors modulo the ideal I5pt we need only take the

permutation copies of 〈23〉[23] − 〈45〉[45] which produces 15 quadratic expressions given by

〈23〉[23] − 〈45〉[45], 〈24〉[24] − 〈35〉[35], 〈25〉[25] − 〈34〉[34],

〈13〉[13] − 〈45〉[45], 〈14〉[14] − 〈35〉[35], 〈15〉[15] − 〈34〉[34],

〈12〉[12] − 〈45〉[45], 〈14〉[14] − 〈25〉[25], 〈15〉[15] − 〈24〉[24],

〈12〉[12] − 〈35〉[35], 〈13〉[13] − 〈25〉[25], 〈15〉[15] − 〈23〉[23],

〈12〉[12] − 〈34〉[34], 〈13〉[13] − 〈24〉[24], 〈14〉[14] − 〈23〉[23]. (11.39)

Along with the {aij , ãij} this provides us with 35 expressions from which to form homogenous

combinations.
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To see that we are in fact recovering the same content as the symbol alphabet Anp we re-write

the entire non-planar alphabet in terms of spinor helicity variables given by the cyclic copies

of1

W1 = 〈12〉[12], W6 = 〈34〉[34] + 〈45〉[45],

W11 = 〈34〉[34] + 〈35〉[35], W16 = 〈13〉[13],

W21 = 〈13〉[13] + 〈34〉[34], W26 =
〈45〉[51]〈12〉[24]

[45]〈51〉[12]〈24〉 ,

W31 = [45]〈51〉[12]〈24〉 − 〈45〉[51]〈12〉[24]. (11.40)

With this representation it is clear that letters {Wi}5
i=1 ∪ {Wi}20

i=16 ∪ {Wi}30
i=26 are given by

multiplicative combinations of the {aij , ãij} variables. Furthermore, the remaining 15 letters

{Wi}10
i=6 ∪ {Wi}15

i=11 ∪ {Wi}25
i=21, themselves related by the S5 permutation symmetry, are

exactly the 15 non-prime factors appearing in the Gröbner fan of the spinor-helicity ideal!

To see this explicitly note we have

W6 = 〈34〉[34] + 〈45〉[45] = 〈12〉[12] − 〈35〉[35],

W11 = 〈34〉[34] + 〈35〉[35] = 〈12〉[12] − 〈45〉[45],

W21 = 〈13〉[13] + 〈34〉[34] = 〈14〉[14] − 〈25〉[25], (11.41)

all of which appear in (11.39). It follows then that taking homogenous combinations of letters

{Wi}30
i=1 is equivalent to taking homogenous combinations of {aij , ãij} and the permutations

of the non-prime factors 〈23〉[23] − 〈45〉[45]. Note, as already emphasised, we do not recover

the letter W31. However, this is consistent with W31 not appearing in the expressions for

suitably defined amplitudes.

1Let us emphasise the fact that in spinor-helicity variables the rationality of letters {W26, . . . ,W31}
becomes manifest.



Chapter 12

Cluster algebras for massless

kinematics

We have seen that the Grassmannian cluster algebras are very useful tools for extracting

information on the branch cut structure of scattering amplitudes in planar N = 4 SYM. In

this chapter we wish to study a generalisation of the Grassmannian, the partial flag varieties

F (2, 4, n), naturally associated to n-point massless kinematics, to see how much information

they contain relevant for the five and six -point massless alphabets1. As mentioned in the

last section the planar five-point massless amplitude/integrals are constructed (at least at

two-loops) from a 26-letter alphabet Ap [37]. At six points partial information of the symbol

alphabet also exists [157–160] revealing a symbol alphabet consisting of both rational and

square root letters. Note, the connection between these symbol alphabets for Feynman

integrals and the Grassmannian cluster algebra G(4, n) was studied in [161]. Where, using

the alphabet for G(4, 8) presented in [31], the authors were able to recover partial information.

In particular by taking the line (Z7Z8) as the infinity twistor all but two of the letters of

the planar five-point one mass integrals [157] were recovered, along with 22 letters of the

five-point massless alphabet [37] which upon cyclic completion recovered the full Ap \ {W31}
alphabet. A similar analysis was also presented in [38], more recently the five-particle

alphabet was obtained via Schubert problems in [39].

At five-points the cluster algebra associated to the partial flag F (2, 4, 5) is of finite type

containing 14 active A-coordinates along with 6 frozen. Upon cyclic completion this generates

a set of 25 expressions which can be used to form 20 of the symbol letters appearing in Ap

leaving only 5 letters unaccounted for. Furthermore, as was carried out in [40], by completing

this list of 20 symbol letters under permutations we generate the same set of 30 non-planar

letters of the last section including the entire planar alphabet. At six points, like the case of

the Grassmannian G(4, 8), the cluster algebra associated to F (2, 4, 6) is no longer of finite

1This chapter is based on incomplete work hopefully to appear in full on arXiv in the coming months.
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type, and as such the symbol alphabet for 6 points contains algebraic square root letters.

Following the methods of [31] we extract a single square root-letter ∆ from so called limit

rays of the F (2, 4, 6) cluster algebra which appears in the symbol alphabet presented in [157]

for five-point one-mass integrals.

As a final remark we emphasise that the cluster algebra F (2, 4, n) is contained as a sub-

algebra inside the Grassmannian G(4, n+ 2). So, in fact, we see that the dual-conformal

invariant symbol alphabet at n+ 2 points contains information relevant for the n-point non

dual-conformal invariant amplitude obtained by restricting to the appropriate sub algebra!

12.1 Partial flag varieties

To introduce the partial flag varieties we must first introduce the notion of a flag in a finite

dimensional vector space V , this is given by an increasing sequence of linear subspaces each

contained in the next i.e.

V0 ⊂ V1 ⊂ . . . ⊂ Vk = V,

where defining dim(Vi) = di we have

0 = d0 < d1 < . . . < dk = n,

and (d1, . . . , dk) is referred to as the signature of the flag. The partial flag F (d1, . . . , dk) can

then be described as the space of all flags of signature (d1, . . . , dk). The familiar case of the

Grassmannian G(k, n) = F (k, n) is just the case of flags of length 1 or the space of k-planes

in n-dimensions.

First, let’s see why such objects as partial flag varieties appear in the discussion of massless

scattering. As described in the last section at five points the kinematic space relevant for

massless scattering is given by the ideal generated by (11.37) in spinor helicity variables.

Alternatively, a perhaps more appropriate choice of variables for the planar case is momentum

twistors, in these variables the ideal is generated by1

〈ij〉〈kl〉 − 〈ik〉〈jl〉 + 〈il〉〈jk〉 = 0, (12.1)

for 1 ≤ i < j < k < l ≤ 5 along with

〈15〉〈1234〉 + 〈14〉〈1235〉 + 〈13〉〈1245〉 + 〈12〉〈1345〉 = 0 (12.2)

and its cyclically related relations. This set of relations encodes the dependencies between

ordered 2 × 2 and 4 × 4 minors of a 4 × 5 matrix i.e. the partial flag variety F (2, 4, 5).

1Note, in contrast to the Grassmannian, the appearance of the two-brackets 〈ij〉 := 〈ijI∞〉, where I∞ is
the infinity twistor, indicates that the problem is no longer dual-conformal invariant.
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More generally the ideal associated to n-point massless kinematics is given by the partial

flag variety F (2, 4, n). Much like the Grassmannians [162] the partial flag varieties can be

endowed with a cluster structure [163] which we outline in the next two sections for F (2, 4, 5)

and F (2, 4, 6).

12.2 Five-particle alphabet from F (2, 4, 5)

The first example we consider is the case of F (2, 4, 5) whose initial cluster is depicted in

Figure 12.1 with active and frozen coordinates given by

{a1, . . . , a4} = {p14p1235 − p15p1234, p1345, p1235, p1245},
{f1, . . . , f6} = {p2345, p34p1235 − p35p1234, p45, p15, p1234, p12}. (12.3)

Here, and in the remainder of this chapter, we switch to the notation pij = 〈ij〉 and

pijkl = 〈ijkl〉. This cluster algebra is of finite type D4, and by performing mutations we find

the full set of 20 A-coordinates distributed over 42 clusters, they are given by

AF (2,4;5) = {p12, p13, p14, p15, p23, p24, p25, p34, p35, p45, p1234, p1235, p1345, p1245, p2345,

p14p1235 − p15p1234, p34p1235 − p35p1234, p35p1245 − p45p1235,

p34p1245 − p45p1234, p24p1235 − p25p1234}. (12.4)

Note, in particular there are two cyclic classes of quadratic coordinates, in the second and

third lines, which do not come with their full cyclic completions. Therefore, we may cycle

the entire cluster algebra to find all five cyclic copies of the quadratics given by

p14p1235 − p15p1234, p34p1245 − p45p1234,

p12p2345 − p25p1234, p15p2345 − p45p1235,

p13p2345 − p23p1345, p12p1345 − p15p1234,

p34p1245 − p24p1345, p12p2345 − p23p1245,

p35p1245 − p45p1235, p34p1235 − p23p1345. (12.5)

This procedure generates 25 A-coordinates1 given by the (pij , pijkl) as well as the ten

quadratics above. By taking homogenous combinations of these 25 expressions we are able

to recover 20/26 of the known symbol letters of 5-point scattering which in momentum

twistor variables now read

W1 =
p1235

p15p23
, W6 =

p34p15p2345 + p23p45p1345

p23p34p45p15
,

1Note, these A-coordinates do not necessarily belong to the same cluster algebra.
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W11 =
p34p1235 − p23p1345

p23p34p15
, W15+i =

p13(p12p2345 − p25p1234)

p12p15p23p34
,

W26 =
p1245(p23p1345 − p13p2345)

p24p1235p1345
, W31 =

p35p1234p1245 − p45p1234p1235 + p14p1235p2345

p12p23p34p45p51
.

(12.6)

The 5 symbol letters of the planar alphabet Ap we fail to produce by this method, along

with W31 as explained in the last chapter, are W6 and its cyclic copies. It is interesting

to note that they are trivially positive i.e. after ensuring the pij and pijkl are positive the

positivity of W6 follows.

However, by completing {W1,W11,W15,W26} under permutations of the external momenta

not only do we produce the missing planar letters W6 but also the non-planar letters W20+i

given by

W21 =
p12p23p45p1345 − p12p34p45p1235 + p12p34p15p2345 − p23p45p15p1234

p12p23p34p45p15
, (12.7)

and it’s cyclic copies. Hence, we recover the same 30/31 letters of Anp [40] as the last chapter

by completing under permutations the A-coordinates appearing in the F (2, 4, 5) cluster

algebra.

f5f4f3

f2

f1

a1 a3

a2 a4 f6

Figure 12.1: The initial cluster of the partial flag cluster algebra F(2, 4, 5).

12.2.1 G(4, 7) embedding

As mentioned earlier the partial flag cluster algebra F (2, 4, 5) appears as a codimension-two

subalgebra of the G(4, 7) cluster algebra. This is demonstrated in Figure 12.2: the left hand

side depicts a cluster appearing in G(4, 7) showing the 7 active coordinates, by freezing nodes

p1236 and a53 and setting pij := pij67 we are left with the cluster subalgebra of the partial

flag F (2, 4, 5) on the right hand side. In this figure we have changed notation compared

to Equation (10.14) where aij is now understood as the non-homogenous A-coordinates of
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G(4, 7) i.e. those appearing in (12.8).

fi: 〈1234〉 〈2345〉 〈3456〉 〈4567〉 〈1567〉 〈1267〉 〈1237〉
a1i: 〈2367〉 〈1347〉 〈1245〉 〈2356〉 〈3467〉 〈1457〉 〈1256〉
a2i: 〈2567〉 〈1367〉 〈1247〉 〈1235〉 〈2346〉 〈3457〉 〈1456〉
a3i: 〈2347〉 〈1345〉 〈2456〉 〈3567〉 〈1467〉 〈1257〉 〈1236〉
a4i: 〈2457〉 〈1356〉 〈2467〉 〈1357〉 〈1246〉 〈2357〉 〈1346〉
a5i: 〈1(23)(45)(67)〉 〈2(34)(56)(71)〉 〈3(45)(67)(12)〉 〈4(56)(71)(23)〉 〈5(67)(12)(34)〉 〈6(71)(23)(45)〉 〈7(12)(34)(56)〉
a6i: 〈1(34)(56)(72)〉 〈2(45)(67)(13)〉 〈3(56)(71)(24)〉 〈4(67)(12)(35)〉 〈5(71)(23)(46)〉 〈6(12)(34)(57)〉 〈7(23)(45)(61)〉

(12.8)

Therefore, we see that information on the five-point alphabet can be recovered from the

Grassmannian G(4, 7), where upon ignoring all A-coordinates which do not treat the points

6 and 7 as a line, highlighted in red in (12.8), we recover the alphabet of F (2, 4, 5).

p2467 p1467a62a53p1236

p2367

p24 p14a62p23

Figure 12.2: The embedding of flag F (2, 4, 5) inside the Grassmannian G(4, 7).

Returning to the picture of lines in momentum twistor space this can be seen as taking the line

(Z6Z7) as the infinity twistor I∞. With the two brackets defined as pij = 〈ij67〉 = 〈ijI∞〉.

(Z1Z2)

(Z2Z3)

(Z3Z4)

(Z4Z5)

(Z5Z6)

(Z6Z7)

(Z7Z1)

(Z6Z7)

(Z1Z2)

(Z2Z3)

(Z3Z4)

(Z4Z5)

(Z5Z1)

Figure 12.3: LHS: The configuration of lines in CP3 relevant for the case of seven point
dual-conformal invariant kinematics. RHS: By taking the line IAB

∞ = (ZA
6 Z

B
7 ) as the infinity

twistor we reduce to the case of general five-point massless kinematics.

12.3 An algebraic letter from F (2, 4, 6)

As discussed in Section 10.2.3 for the case of G(4, 8) complications arise when the underlying

cluster algebra is no longer of finite type, and additional tools beyond that of the cluster

algebra must be introduced in order to extract information for the symbol alphabet of the

corresponding amplitude. The first complication being that the set of A-coordinates becomes

infinite which is not reflected by the finite set of letters needed to express say the two-loop
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NMHV octagon [134]. Therefore, some truncation procedure, such as tropicalization [31–34],

must be introduced to select a preferred subset of A-coordinates. The second, related,

issue is that the symbol alphabet starts to contain non-rational letters, with square roots

appearing in the first instance for the two-loop NMHV octagon [134], the calculation of

which revealed a set of 18 multiplicatively independent square root letters. Both issues were

dealt with in [31] where the set of 180 rational letters of the two-loop NMHV octagon were

recovered as rays of Trop+(I4,8), along with the 18 algebraic letters, associated to special

limit rays arising from infinite affine sequences of mutations within the cluster algebra.

f7

f6

f5f4

f3

f2

f1

a1

a2

a3 a5 a7

a4

a6

Figure 12.4: The initial cluster of the partial flag cluster algebra F(2, 4, 6).

For the more general kinematics we consider in this chapter square root letters start to

appear already at 6-points [157–160]. Therefore, we wish to follow the method presented in

[31] to explore the set of square roots appearing in the F (2, 4, 6) cluster algebra to see how

they relate to square roots known to appear in 6-point integrals.

The cluster algebra associated to F (2, 4, 6) is of affine D6 type, its initial cluster is depicted

in Figure 12.4, with active and frozen coordinates given by

{a1, . . . , a7} = {p15p1236 − p16p1235, p1456, p1345, p1256, p1245, p1236, p1235},
{f1, . . . , f7} = {p2345, p3456, p56p1234 − p46p1235 + p45p1236, p56, p16, p12, p1234}. (12.9)

This is an example of an infinite type cluster algebra, however as a subalgebra of G(4, 8), it

is of finite mutation type. The infinity of A-coordinates arise from rank two (affine A(2)
2 )

cluster algebras connected by double arrows, as depicted in Figure 12.5, which generate an

infinite mutation sequence by repeated mutation on nodes w0 and z0. This infinity may

be organised by selecting from each A
(2)
2 sequence a single representative refered to as an

origin cluster. Note, the origin cluster can always be bought into the form given at the

left of Figure 12.6. In this picture we ignore all active coordinates not connected to the

double arrow nodes (which do not play a role in the mutation rules) and combine all frozen

nodes incoming to z0 (outgoing from w0) into fz (fw). Similarly, we collect all active nodes

connected to w0 and z0 as b = b1b2b3.

Each origin cluster generates two infinite sequences of cluster A-coordinates given by the
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w0

z0

b1 b2 b3

a1

a2

Figure 12.5: An example of an origin cluster with a doubled arrow between the two cluster
A-coordinates (w0, z0) where frozen nodes are omitted. The ai nodes not connected to
(w0, z0) form an A2 subalgebra of clusters containing the same w0, z0 and bi nodes and hence
the same mutation sequence.

recursion relations

zn+2zn = CzFn + z2
n+1; wn+2wn = CwFn + w2

n+1, (12.10)

depending on whether the choice of initial mutation was w0 or z0 i.e. the top and bottom

panels of Figure 12.6. Note, here we have defined the coefficients Cz = bfz and Cw = bfw,

similarly the factor F is defined as the product over frozen coordinates F = fwfz.

w0 z0

b

fw fz

z1 z0

b

fw fz

z1 z2

b

fw fz

zn+2zn = CzFn + z2
n+1

w0 z0

b

fw fz

w0 w1

b

fw fz

w2 w1

b

fw fz

wn+2wn = CwFn + w2
n+1

Figure 12.6: The double infinite mutation sequence (zn, wn) generated by repeated mu-

tations on the affine A(2)
2 cluster subalgebra of the F (2, 4, 6) cluster algebra. The two left

hand clusters depict the origin clusters and the blue/red nodes indicate on which node we
are performing the mutation.

The solution to this recursion relation was detailed in [31] and takes the form

zn =
1

2n+1

[
(z0 +Bz

√
∆)(Pz +

√
∆)n + (z0 −Bz

√
∆)(Pz −

√
∆)n] , (12.11)
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where we have defined

Pz =
fzw0 + z1

z0
, Bz =

2z1 − z0P
∆

, ∆ = P2
z − 4F , (12.12)

and similarly the solution for the w sequence is obtained from the above formulae under

swapping z ↔ w under which (Pz, F ,∆) are invariant.

The sequence of g-vectors, associated to the A-coordinates (zn
1, wn), for such A

(2)
2 cluster

algebras were studied already in [164] and have their own simple transformation rules. An

example of the limit rays generated by the mutation sequences zn and wn are depicted

in Figure 12.7. As can be seen from this figure by taking the limit of the sequence from

both directions we approach the same limit ray, g∞, depicted by the green line. Note, the

square root
√

∆ appearing in a sequence (zn, wn) will be the same for all sequences which

asymptote to a given limit ray, and therefore to each limit ray g∞ we may associate a single

square root
√

∆.

Figure 12.7: The g-vectors associated to the double infinite mutation sequence (zn, wn).
The two black arrows indicate the initial cluster with both sequences asymptoting to the
same limit ray g∞ indicated by the green line.

To search for origin clusters we perform all possible mutations of length l, starting from

the initial cluster, selecting those which have the desired form. We find that the number

of origin clusters saturates2 to 16 · 5 already for mutation sequences of length l = 11, with

the factor of 5 coming from performing mutations on the A2 subalgebra of active nodes not

connected to either z0 or w0. We find that all 16 origin clusters asymptote to the same limit

1Let us emphasise that the use of blue here does not correspond to frozen. But, is instead used to
distinguish the took mutation directions.

2We have searched all sequences up to l = 17 which did not produce any additional origin clusters.
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ray given by

g∞ = (1,−1, 0, 0, 1,−1, 0). (12.13)

Note, this is in stark contrast with G(4, 8) which contains infinitely many limit rays which

themselves must be truncated using some other procedure such as tropicalziation [31, 165].

The square root associated to this limit ray is found to be given by

∆ = p2
1256p

2
34 + p2

1234p
2
56 + p2

3456p
2
12

− 2(p1256p1234p34p56 + p1256p3456p12p34 + p1234p3456p12p56), (12.14)

which is exactly the square root letter ∆3 appearing in the symbol alphabet at six-points

e.g. see Equation (5.11) of [157]!
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Chapter 13

Conclusion

In the second part of this thesis, following the work of [35, 36], we mapped the problem

of extracting cluster algebra data relevant for the planar N = 4 amplitude bootstrap to

studying the structure of the Gröbner fan of the Plücker ideal. Most importantly we saw

that

• The missing A-coordinates appear as non-prime factors in the initial ideals of maximal

cones of Trop+(Ik,n).

• Upon extending the ideal by the missing A-coordinates the rays of Trop+(Ik,n) span a

single maximal Gröbner cone. The initial ideal of this maximal Gröbner cone, of the

extended ideal, provides us with a list of monomials which are exactly the forbidden

pairs of A-coordinates.

In particular this was applied to the case of G(3, 7) whose set of A-coordinates and adjacency

rules are used as the starting point of the heptagon bootstrap.

Inspired by these results we wished to see whether the Gröbner fan could provide a useful

tool in extending these ideas beyond dual conformal kinematics. The example of non-dual

conformal kinematics we considered was five-point massless amplitudes whose (two-loop)

planar Ap and non-planar alphabets Anp were discovered in [37, 40]. By inspecting the initial

ideals of maximal cones of the Gröbner fan GF(I5pt) we were able to recover the entire

(relevant) non-planar alphabet as non-prime factors.

With these results there are a number of interesting questions to consider:

• Can we study GF(I4,8) to see square-root letters arising?

• At five-points does a similar extension procedure, as carried out for the Grassmannian,

yield any useful information i.e. do the expressions which are produced after extending

appear in the symbol alphabet at higher loops?
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• How much of the symbol alphabets [157–160] of six-point non dual conformal invariant

kinematics can be recovered from the analysis of the Gröbner fan GF(I6pt)?

We have also provided evidence that the family of partial flag varieties F (2, 4;n) contain

relevant information for the scattering of n-point non dual conformal invariant amplitudes

analogous to the relation between Grassmannian cluster algebras and N = 4 SYM amplitudes.

In the case of F (2, 4, 5) we were able to obtain 20/25 of the (relevant) symbol letters of the

five-point planar alphabet Ap as cyclic completions of A-coordinates. After completing under

the full set of permutations this recovered the full non-planar alphabet Anp. Furthermore,

we saw that the cluster algebra F (2, 4, 6) contains a single limit ray whose associated square

root letter

∆ = p2
1256p

2
34 + p2

1234p
2
56 + p2

3456p
2
12

− 2(p1256p1234p34p56 + p1256p3456p12p34 + p1234p3456p12p56), (13.1)

appears in the symbol alphabet at six-points i.e. Equation (5.11) of [157]!

Again there are a number of interesting questions to consider. First, why do we need to

utilise the entire permutation symmetry to recover the planar letters W6 and its cyclic copies,

whereas the authors of [37] were able to recover these letters by considering limits of G(4, 8)?

Second, how much of the rational alphabet at six-points can we recover from F (2, 4, 6)? Due

to the connection to G(4, 8) an interesting calculation would be to take the truncated G(4, 8)

alphabet presented in [31], remove all letters which do not treat points 7 and 8 as a line,

complete under the cyclic (or full permutation) group, and see how much of the six-point

alphabet [157–160] is recovered. Finally, can the connection to the F (2, 4, n) partial flags be

used to develop some organisation principle for the symbols of non dual conformal invariant

amplitudes similar to cluster adjacency for the case of N = 4 SYM?
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Appendix A

Window unmixing

A.1 Unmixing subleading three-point functions

As an example let us consider the family of correlators 〈22pp〉 first outlined in [1], which have

the simplification of having a single SU(4) channel [0, 0, 0] whose degeneracy of operators is

fully lifted at tree level. As we will see this allows us to obtain explicit expressions for the

sub-leading supergravity and string corrected three-point functions. The one-loop log(u)

OPE coefficient is given by

H
(2,3)
22pp;~τ =

∑

(qq)∈D~τ

C
(0,0)
22;Kqq

(C
(1,3)
pp;Kqq

η
(1,0)
Kqq

+ C
(1,0)
pp;Kqq

η
(1,3)
Kqq

) (A.1)

where the labels are given by

~τ = {τ, l = 0, [0, 0, 0]},
D~τ = {(qq)|q ≤ τ

2
}, (A.2)

and C
(1,k)
pp,Kqq

are the tree-level supergravity and string corrected three-point functions for

k = 0 and k = 3 respectively. The three-point functions appearing in (A.1) can be extracted

from the non-log(u) contribution to tree-level correlators of the form 〈ppqq〉, whose window

region is defined p ≤ τ
2 < q. The generalisation to 〈ppqq〉 is essential for the unmixing of

degenerate operators.

As indicated in (A.1) there is not a one-to-one correspondence between three-point functions

and conformal block coefficients. Therefore, to calculate the individual three-point functions

we need to unmix the degenerate operators entering the block coefficients. The correlators

〈22pp〉 do not provide enough information to solve this degeneracy problem, instead we

must consider a more general set of correlators taking the form 〈ppqq〉. At each level in

twist we have (t− 1) degenerate operators, where t = τ/2, thus to solve we must consider
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the set of (t− 1) families of correlators with 2 ≤ p ≤ t. As mentioned before, the relevant

information is encoded in the non-log(u) contribution to the tree-level correlators, whose

OPE coefficients are given by

N
(1,k=1,3)
ppqq,~τ =

t−1∑

i=1

(C
(0,0)
pp,i C

(1,k)
qq,i ) , (A.3)

when looking at the window region p ≤ t < q.

Having detailed where the required data can be found, the unmixing procedure is best

illustrated with an example. With one operator at twist four, and therefore no mixing, the

three-point functions can indeed be calculated just using data from the 〈22qq〉 family. Thus,

the first instructive case where operator mixing happens is at twist six.

At twist six we wish to compute the couplings C(1,k)
qq,1 and C

(1,k)
qq,2 for k = 0 and k = 3

(supergravity and string corrected) respectively. Following the discussion above, to have

enough information to perform the unmixing both the 〈22qq〉 and 〈33qq〉 family of correlators

are needed. To ensure twist six lies within the window for both sets of correlators, we must

have q > 3. As shown in (A.3), within the window region the conformal block coefficients

are given by

C
(0,0)
22,1 C

(1,k=1,3)
qq,1 + C

(0,0)
22,2 C

(1,k=1,3)
qq,2 = N

(1,k=1,3)
22qq,τ=6 ,

C
(0,0)
33,1 C

(1,k=1,3)
qq,1 + C

(0,0)
33,2 C

(1,k=1,3)
qq,2 = N

(1,k=1,3)
33qq,τ=6 ,

(A.4)

for 〈22qq〉 and 〈33qq〉 respectively. This can be nicely repackaged in matrix form by


C

(0,0)
22,1 C

(0,0)
22,2

C
(0,0)
33,1 C

(0,0)
33,2




C

(1,k=1,3)
qq,1

C
(1,k=1,3)
qq,2


 =


N

(1,k=1,3)
22qq,τ=6

N
(1,k=1,3)
33qq,τ=6


 , (A.5)

from which the desired couplings can be readily obtained. This can be easily generalised to

arbitrary twists

C
(0,0)
t

~C
(1,k=1,3)
t = ~N

(1,k=1,3)
t , (A.6)

(C
(0,0)
t )−1 ~N

(1,k=1,3)
t = ~C

(1,k=1,3)
t , (A.7)

where the matrix is now (t− 1) × (t− 1) dimensional. During this process much new OPE

data has been generated. We were able to find a closed formula for all order λ−3/2 string

corrected and supergravity three-point functions in the singlet with ` = 0 and degeneracy

labels (i, r) = (1, 0).

The string corrected three-point functions are non-vanishing only for degeneracy label i = 1

(mirroring the behaviour of the string anomalous dimensions η(1,3)
i ) and are given, for t < p,
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by the following formula

C
(1,3)
pp,K22

(t)

C
(0,0)
22,K22

(t)
=

ζ3

1680

(−1)tt2p(t− 1)(1 + t)3(2 + t)2(3 + t)Γ(p− t)Γ(p+ 2 + t)

Γ(p− 1)Γ(p)
, (A.8)

where we have

C
(0,0)
22,K22

(t) =
√

105 · 23−4tπ

√
Γ(t)Γ(t+ 2)

(t+ 2)Γ(t+ 3
2)Γ(t+ 5

2)
. (A.9)

The subleading supergravity three-point functions have also been calculated, again for t < p,

and found to be

C
(1,0)
pp,K22

(t)

C
(0,0)
22,K22

(t)
=

(−1)tpt(t+ 1)(t+ 2)

720
(p(p+ 1)(p+ 2) − Γ(p− t)Γ(p+ t+ 2)

Γ(p− 1)Γ(p)
). (A.10)

It is interesting to note that the ratio of the second term in (A.10) with A.9 is given by

η(1,0)/η(1,3).
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Appendix B

Results

In this section we provide the full formulae for the Above Window, Window and Below

Window functions appearing in the main text.

B.1 Above Window

The function appearing in the Above Window is given by

w(ŝ, š, cs; Σ) =
1

180
(Σ − 1)3(9c4

s − 54c2
sΣ2 − 18c2

sΣ2š2 + 90c2
sΣš2 − 108c2

s š
2 + 54c2

sΣ2š− 126c2
sΣš

− 36c2
sΣ2šŝ+ 144c2

s šŝ+ 36c2
s š− 18c2

sΣ2ŝ2 − 90c2
sΣŝ2 − 108c2

s ŝ
2 + 54c2

sΣ2ŝ+ 126c2
sΣŝ

+ 36c2
s ŝ− 36c2

s + 45Σ4 + 36Σ2 + 2Σ4š4 − 28Σ3š4 + 142Σ2š4 − 308Σš4 + 240š4

− 12Σ4š3 + 120Σ3š3 − 420Σ2š3 + 600Σš3 + 8Σ4š3ŝ− 56Σ3š3ŝ+ 64Σ2š3ŝ+ 224Σš3ŝ

− 384š3ŝ− 288š3 + 40Σ4š2 − 254Σ3š2 + 518Σ2š2 − 364Σš2 + 12Σ4š2ŝ2 − 156Σ2š2ŝ2

+ 432š2ŝ2 − 36Σ4š2ŝ+ 120Σ3š2ŝ+ 108Σ2š2ŝ− 480Σš2ŝ+ 144š2ŝ+ 48š2 − 66Σ4š

+ 198Σ3š− 168Σ2š+ 72Σš+ 8Σ4šŝ3 + 56Σ3šŝ3 + 64Σ2šŝ3 − 224Σšŝ3 − 384šŝ3

− 36Σ4šŝ2 − 120Σ3šŝ2 + 108Σ2šŝ2 + 480Σšŝ2 + 144šŝ2 + 80Σ4šŝ− 332Σ2šŝ+ 48šŝ

+ 2Σ4ŝ4 + 28Σ3ŝ4 + 142Σ2ŝ4 + 308Σŝ4 + 240ŝ4 − 12Σ4ŝ3 − 120Σ3ŝ3 − 420Σ2ŝ3 − 600Σŝ3

− 288ŝ3 + 40Σ4ŝ2 + 254Σ3ŝ2 + 518Σ2ŝ2 + 364Σŝ2 + 48ŝ2 − 66Σ4ŝ− 198Σ3ŝ− 168Σ2ŝ

− 72Σŝ). (B.1)

B.2 Window and below window remainder functions

The residue function in the spherical harmonic basis is given by

R
−
~p (n, b) =

1

960
(64B3 − 16B2c2

s − 160B2cs − 32B2c2
tu − 64B2nΣ − 192B2n+ 16B2Σ2 + 224B2Σ
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+ 448B2 + 8Bc2
sc

2
tu + 32Bc2

sn+ 32Bc2
s + 64Bcsc

2
tu + 32Bcsn− 64BcsΣ − 192Bcs + 4Bc4

tu

+ 32Bc2
tunΣ + 96Bc2

tun− 8Bc2
tuΣ2 − 96Bc2

tuΣ − 208Bc2
tu − 32BnΣ2 − 224BnΣ − 384Bn

+ 32BΣ2 + 192BΣ + 256B − 16c3
sn− c2

sc
4
tu − 8c2

sc
2
tun+ 16c2

sc
2
tu + 16c2

snΣ + 32c2
sn− 6csc

4
tu

− 24csc
2
tun+ 96csc

2
tu + 16csnΣ2 + 128csnΣ + 256csn− 4c4

tunΣ − 12c4
tun+ c4

tuΣ2 + 10c4
tuΣ + 16c4

tu

+ 8c2
tunΣ2 + 104c2

tunΣ + 224c2
tun− 16c2

tuΣ2 − 160c2
tuΣ − 256c2

tu − 16nΣ3 − 160nΣ2 − 512nΣ − 512n).

(B.2)

The 7 Window poles in the monomial basis are given by:

r~p;6 =
(š+ Σ+cs

2 − 1)(š+ Σ+cs

2 )

15
,

r~p;5 =
(š+ Σ+cs

2 )(−30 + 11cs + 2c2
s + 9Σ + 3csΣ + Σ2 + c2

tu + 30š− 2šΣ − 12š2)

30
,

r~p;4 =
1

240
(240š4 + 80š3(Σ − 9) + 40š2(30 − 2c2

s − 3csΣ − 11cs − c2
tu − Σ2 − 11Σ)

+ 4š(−3c2
sΣ + 29c2

s − 6csΣ2 + 30csΣ + 182cs − 2c2
tuΣ + 14c2

tu − 3Σ3 + Σ2 + 150Σ − 240)

+ (6c4
s + 18c3

sΣ + 66c3
s + 8c2

sc
2
tu + 18c2

sΣ2 + 150c2
sΣ + 116c2

s + 12csc
2
tuΣ + 40csc

2
tu + 6csΣ3

+ 102csΣ2 + 104csΣ − 576cs + c4
tu + 4c2

tuΣ2 + 32c2
tuΣ − 20c2

tu + 18Σ3 + 20Σ2 − 480Σ + 64)),

r~p;3 =
1

240
(2c5

s + 7c4
sΣ − 4c4

s š+ 29c4
s + 6c3

sc
2
tu + 8c3

sΣ2 + 80c3
sΣ − 40c3

s š
2 − 16c3

sΣš− 32c3
s š+ 142c3

s

+ 12c2
sc

2
tuΣ − 12c2

sc
2
tuš+ 48c2

sc
2
tu + 2c2

sΣ3 + 66c2
sΣ2 + 210c2

sΣ + 80c2
s š

3 − 72c2
sΣš2 − 384c2

s š
2

− 24c2
sΣ2š− 96c2

sΣš+ 96c2
s š− 32c2

s + 2csc
4
tu + 6csc

2
tuΣ2 + 60csc

2
tuΣ − 40csc

2
tuš

2 − 24csc
2
tuΣš

− 48csc
2
tuš+ 58csc

2
tu − 2csΣ4 + 8csΣ3 + 42csΣ2 − 400csΣ + 160csš

4 + 160csΣš3 + 320csš
3

− 24csΣ2š2 − 480csΣš2 − 672csš
2 − 16csΣ3š− 96csΣ2š+ 320csΣš+ 1056csš− 960cs + c4

tuΣ

− 4c4
tuš+ 5c4

tu + 12c2
tuΣ2 + 26c2

tuΣ + 80c2
tuš

3 − 8c2
tuΣš2 − 144c2

tuš
2 − 12c2

tuΣ2š− 48c2
tuΣš+ 144c2

tuš

− 104c2
tu − Σ5 − 7Σ4 − 26Σ3 − 176Σ2 − 384Σ − 320š5 + 800š4 + 80Σ2š3 + 320Σš3 − 1600š3 + 8Σ3š2

− 96Σ2š2 − 320Σš2 + 2080š2 − 4Σ4š− 32Σ3š+ 96Σ2š+ 480Σš− 1216š+ 384),

r~p;2 = − 1

480
(š− cs + Σ

2
− 1)(c5

s + 3c4
sΣ − 2c4

s š+ 14c4
s + 8c3

sc
2
tu + 2c3

sΣ2 + 32c3
sΣ − 40c3

s š
2 − 8c3

sΣš

− 56c3
s š+ 112c3

s + 12c2
sc

2
tuΣ − 16c2

sc
2
tuš+ 56c2

sc
2
tu − 2c2

sΣ3 + 12c2
sΣ2 + 80c2

sΣ + 80c2
s š

3 − 56c2
sΣš2

− 272c2
s š

2 − 12c2
sΣ2š− 104c2

sΣš− 264c2
s š+ 6csc

4
tu + 40csc

2
tuΣ − 80csc

2
tuš

2 − 32csc
2
tuΣš− 144csc

2
tuš

− 12csc
2
tu − 3csΣ4 − 16csΣ3 − 80csΣ2 − 480csΣ + 240csš

4 + 160csΣš3 + 800csš
3 + 8csΣ2š2 − 160csΣš2

− 16csš
2 − 8csΣ3š− 40csΣ2š+ 240csΣš+ 1152csš− 960cs − 12c4

tuš+ 6c4
tu − 4c2

tuΣ3 − 16c2
tuΣ2

− 12c2
tuΣ + 160c2

tuš
3 + 16c2

tuΣš2 − 32c2
tuš

2 − 16c2
tuΣ2š− 48c2

tuΣš+ 240c2
tuš− 144c2

tu − Σ5 − 10Σ4 − 48Σ3

− 96Σ2 + 192Σ − 480š5 − 80Σš4 + 80Σ2š3 + 160Σš3 − 1440š3 + 24Σ3š2 + 112Σ2š2 + 240Σš2 + 960š2

− 2Σ4š+ 8Σ3š+ 120Σ2š− 768š+ 768),

r~p;1 = − 1

240
(š− cs + Σ

2
− 1)2(−c3

sc
2
tu + 4c3

s š
2 + 8c3

s š− 10c3
s − c2

sc
2
tuΣ + 2c2

sc
2
tuš− 6c2

sc
2
tu − 2c2

sΣ − 8c2
s š

3
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+ 4c2
sΣš2 + 16c2

s š
2 + 8c2

sΣš+ 72c2
s š− 4c2

s − 2csc
4
tu + csc

2
tuΣ2 + 20csc

2
tuš

2 + 4csc
2
tuΣš+ 48csc

2
tuš

+ 10csΣ2 + 56csΣ − 48csš
4 − 16csΣš3 − 224csš

3 − 4csΣ2š2 − 16csΣš2 − 192csš
2 − 8csΣ2š− 80csΣš

− 256csš+ 112cs + c4
tuΣ + 4c4

tuš+ c4
tu + c2

tuΣ3 + 6c2
tuΣ2 − 6c2

tuΣ − 40c2
tuš

3 − 12c2
tuΣš2 − 56c2

tuš
2

+ 2c2
tuΣ2š− 16c2

tuΣš− 96c2
tuš− 8c2

tu + 2Σ3 − 4Σ2 − 80Σ + 96š5 + 32Σš4 + 240š4 − 8Σ2š3 + 96Σš3

− 4Σ3š2 − 32Σ2š2 + 16Σš2 + 240š2 − 8Σ3š− 24Σ2š+ 96Σš+ 160š− 128 + 480š3 + 26csc
2
tu),

r~p;0 =
1

480
(š− cs + Σ

2
− 1)3(16c2

s š− csc
4
tu + 8csc

2
tuš

2 + 24csc
2
tuš+ 16csc

2
tu − 16csš

4 − 96csš
3 − 128csš

2

− 96csš+ c4
tuΣ + 2c4

tuš+ 2c4
tu − 16c2

tuΣ − 16c2
tuš

3 − 8c2
tuΣš2 − 48c2

tuš
2 − 24c2

tuΣš− 72c2
tuš− 32c2

tu

+ 16Σš4 + 160š4 + 96Σš3 + 352š3 + 128Σš2 + 320š2 + 16Σ2š+ 96Σš+ 128š+ 32š5 − 32csΣš).

(B.3)

The 3 Below Window poles are given by:

b~p;2 =
4(š+ Σ − 1)

15
,

b~p;1 =
(1 − 2š− Σ)(4š2 − 4š(1 + 2Σ) + 16 − c2

s + 4Σ − 11Σ2)

15
,

b~p;0 =
1

60
(16š5 − 64š4Σ − 8š3(c2

s − 15Σ2 + 4) + 16š2Σ(c2
s + 26Σ2 − 29)

+ š(c4
s − 2c2

sΣ2 − 8c2
s + 289Σ4 − 296Σ2 + 16) + 12(Σ − 1)3(5Σ2 + 4 − c2

s)). (B.4)

B.3 Combining RW and B(BW )

Note first that we can rewrite the result for B(BW ) using the same split used for R(W ). In

this way we can write

W(2)
~p (ŝ, š) =

∑

z≥0

(š+ p12 − z)z+1P+
~p;z(ŝ, š) + (š+ p34 − z)z+1P−

~p;z(ŝ, š)

s − z
, (B.5)

where W(2)
~p (ŝ, š) := R(W )

~p + B(W )
~p and

P+
~p = P{−cs,−ct,cu} ; P−

~p = P{+cs,+ct,cu}, (B.6)

Of course only the poles at z = 0, 1, 2 are modified by the addition of B(BW ) w.r.t. the

contribution of R(W ).

Certain analyticity in z can be made manifest for the P(z)
~p . Assuming we focus on P−

z for

concreteness, the idea is that the ratio Pz
/
Γ[1 + p1+p2

2 + š]Γ[−z + p3+p4

2 + š] can be further

decomposed by writing Pz as a polynomial in Pochhammers. This is initially suggested by
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the special form of P6 and P5 which have a partial factorised form of this sort, i.e.

P~p;6 =
(š+ Σ+cs

2
−1)(š+ Σ+cs

2
)

15 ,

P~p;5 =
(š+ Σ+cs

2
)(−30+11cs+2c2

s+9Σ+3csΣ+Σ2+c2
tu+30š−2šΣ−12š2)

30 ,
(B.7)

In this way we can absorb the š dependence into the z-independent Γ, and get a structure

of the form,

Pz(š, cs, ct, cu,Σ)

Γ[1 + p1+p2

2 + š]Γ[−z + p3+p4

2 + š]
=

∑

w≥−1

Pz,w(cs, ct, cu,Σ)

Γ[−z + p3+p4

2 + š]Γ[−w + p1+p2

2 + š]
(B.8)

for each value of z. By doing so we find a lattice of points (w, z) of the form

w76510−1

z

6

5

−1 (B.9)

For example, the horizontal axis at z = 0 corresponds to a polynomial of degree eight in

s̃, and therefore there are nine bullet points, the first of which counts for a degree zero

contributions, going with w = −1, and the last one for a degree eight contribution, going

with w = 7.

Rearranging the polynomials on the −45◦ diagonals, we find simple analytic expressions.

For illustration,

Pz,w = 1
15 Bin[ 6

z ] ; z + w = 7

Pz,w = (6cs+5Σ+3(2z−11)
15 Bin[ 5

z ] ; z + w = 6

Pz,w = −(ctu)2+(cs)2(31−6z)+...
30 Bin[ 5

z ] ; z + w = 5

...

(B.10)

and so on so forth. The pattern of the binomial Bin persists, and becomes Bin[−1+#•
z ] where

# counts the number of • on the various diagonals in (B.9). This binomial is always singled

out by the fact that some of the top degree terms in Pz,w, as function of z, contribute

with a constant times such binomial. In the above formulae, these top degree terms are

(ctu)0 ⊗ {cs,Σ} when z + w = 6, and (ctu)2 when z + w = 5.
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The analytic structure in (6.66) suggests from the very beginning a sort of analyticity of Pz

in z, and the rearrangement into Pz,w in (B.10), is an example. On the other hand, had we

started with a general parametrisation of Pz as a polynomial in š, cs, ct, cu,Σ, and fitted data

in- and below- Window, we would have found some free coefficients left. There is indeed a

subtlety with a Pz so constructed, which is the following: Pieces of Pz cancel out in the sum

[
Γ[š+

p1+p2
2

+1]P+
z

Γ[š+
p1+p2

2
−z]

+
Γ[š+

p3+p4
2

+1]P−
z

Γ[š+
p3+p4

2
−z]

]

Γ[š+ p1+p2

2 + 1]Γ[š+ p3+p4

2 + 1]
. (B.11)

Using that Γ[X + 1]/Γ[X − z] = (X − z)z+1 is polynomial in X, and expanding the whole

numerator in (B.11), it is simple to see that contributions of the form c2N+1
s f(š, c2

s, c
2
t , c

2
u,Σ),

for any function f , cancel out. We haven’t encountered this subtlety in our discussion above

because the functions in R(W ), nicely enough, do not have it.
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