ONLINE-ONLY SUPPLEMENTARY MATERIAL

Supplementary	Table 1	. Identified bile ac	cids based on targeted	l metabolomics an	alysis ()	using UPLC-MS/M	(S)
			0		2		

	Name	MetaClass	HMDB ID	KEGG ID
CA	cholic acid	Primary unconjugated	HMDB0000619	C00695
HCA	hyocholic acid	Primary unconjugated	HMDB0000760	C17649
CDCA	chenodeoxycholic acid	Primary unconjugated	HMDB0000518	C02528
ΤαΜCΑ	tauro α-muricholic acid	Primary Tau-conjugated	NA	NA
THCA	taurohyocholic acid	Primary Tau-conjugated	HMDB0011637	C15516
TCA	taurocholic acid	Primary Tau-conjugated	HMDB0000036	C05122
TCDCA	taurochenodeoxycholic acid	Primary Tau-conjugated	HMDB0000951	C05465
GHCA	glycohyocholic acid	Primary Gly-conjugated	HMDB0240607	NA
GCA	glycocholic acid	Primary Gly-conjugated	HMDB0000138	C01921
GCDCA	glycochenodeoxycholic acid	Primary Gly-conjugated	HMDB0000637	C05466
βUCA	β-ursocholic acid	Secondary unconjugated	NA	NA
UCA	ursocholic acid	Secondary unconjugated	HMDB0000917	C17644
6-ketoLCA	6-ketolithocholic acid	Secondary unconjugated	NA	NA
βUDCA	3β-ursodeoxycholic acid	Secondary unconjugated	HMDB0000686	C17662
UDCA	ursodeoxycholic acid	Secondary unconjugated	HMDB0000946	C07880
HDCA	α-hyodeoxycholic acid	Secondary unconjugated	HMDB0000733	C15517
7-DHCA	7-ketodeoxycholic acid	Secondary unconjugated	HMDB0000391	NA
βCA	3β-cholic acid	Secondary unconjugated	HMDB0000419	NA
dehydroLCA	dehydrolithocholic acid	Secondary unconjugated	NA	NA
alloLCA	allolithocholic acid	Secondary unconjugated	HMDB0000381	NA
isoLCA	isolithocholic acid	Secondary unconjugated	HMDB0000717	C17658
LCA	lithocholic acid	Secondary unconjugated	HMDB0000761	C03990
7-ketoLCA	7-ketolithocholic acid	Secondary unconjugated	HMDB0000467	NA
12-ketoLCA	12-ketolithocholic acid	Secondary unconjugated	HMDB0000328	NA
βDCA	3β-deoxycholic acid	Secondary unconjugated	HMDB0000438	NA
DCA	deoxycholic acid	Secondary unconjugated	HMDB0000626	C04483
βCDCA	3β-chenodeoxycholic acid	Secondary unconjugated	HMDB0000361	C17660
TUDCA	tauroursodeoxycholic acid	Secondary Tau-conjugated	HMDB0000874	C16868

TLCA	taurolithocholic acid	Secondary Tau-conjugated	HMDB0000722	C02592
TDCA	taurodeoxycholic acid	Secondary Tau-conjugated	HMDB0000896	C05463
GUDCA	glycoursodeoxycholic acid	Secondary Gly-conjugated	HMDB0000708	NA
GDCA	glycodeoxycholic acid	Secondary Gly-conjugated	HMDB0000631	C05464
GLCA	glycolithocholic acid	Secondary Gly-conjugated	HMDB0000698	C15557
GLCA-3S	glycolithocholic acid-3-sulfate	Sulfated BAs	HMDB0002639	C11301
LCA-3S	lithocholic acid-3-sulfate	Sulfated BAs	HMDB0000907	NA
CDCA-3Glu	chenodeoxycholic acid-3-β-d-glucuronide	Glucuronidation	HMDB0002430	NA
NorCA	norcholic acid	Others	NA	NA
NorDCA	23-nordeoxycholic acid	Others	NA	NA

Note: NA indicates not available in HMDB or KEGG database.

Cohort Main results Ref. Year 171 Asians with biopsy-proven Levels of unconjugated and conjugated BAs were increased in stools of NAFLD 29 2020 subjects with fibrosis, and the total stool BAs were elevated in non-obese patients NAFLD and 31 non-NAFLD with significant fibrosis. Primary bile acids (CA, CDCA, GCDCA) and UDCA controls increased significantly with worsening fibrosis severity. Stool LCA level was elevated in obese subjects with significant fibrosis. Twin and Family cohort Twin and Family cohort: Higher chenodeoxycholyl-conjugates and lower 41 2019 (n=156): 36 NAFLD patients; glycohycholate was observed in NAFLD compared to non-NAFLD-controls. Biopsy-proven NAFLD cohort Biopsy-proven-NAFLD cohort: No differences in total BA were observed between NAFL versus NASH. The total unconjugated BA significantly decreased across (n=156)NASH categories. The total serum BA increased with increasing fibrosis stage. The primary-conjugated-BA proportion increased, whereas unconjugated BA, unconjugated-cholvl and chenodeoxycholvl-conjugates significantly decreased with increasing fibrosis stage. NAFLD patients (n=102) and Several glycine conjugated forms of BAs showed significant associations with higher 42 2021 controls (n=50) severity of liver inflammation and fibrosis. Plasma 7-Keto-DCA levels showed the strongest association with advanced stages of fibrosis [odds ratio(95% confidence interval)] 4.2(1.2-16.4), NASH 24.5(4.1-473), and ballooning 18.7(4.8-91.9). Plasma 7-Keto-LCA was associated with NASH 9.4(1.5-185) and ballooning 5.9(1.4-28.8). 43 Increased total primary BAs and decreased secondary BAs characterized patients 2018 NAFLD patients (25 NAFL, with NASH. Total conjugated primary BAs were higher in NASH versus NAFL and 37 NASH) and 24 controls and versus controls. NASH patients had higher conjugated to unconjugated CDCA, CA, and total primary BAs. The total CA/CDCA ratio was higher in NAFLD, regardless of presence or absence of diabetes. Conjugated CA and TCA directly and secondary to primary BA ratio inversely correlated to histological NAFLD activity score. A higher ratio of total secondary to primary BA decreased and higher conjugated CA increased the likelihood of having significant fibrosis. Circulating levels of total and individual BAs were higher in NASH patients 44 2020 Healthy controls (n=20), NASH compared with healthy controls. Levels of the GCA, TCA, GCDCA, and TCDCA, without (n=23) or with cirrhosis were significantly increased in cirrhotic vs noncirrhotic NASH patients, independent (n=11), and NASH-HCC of HCC occurrence. without (n=14) or with cirrhosis (n=19) Training cohort (n=87): 15 The ratio of circulating conjugated CDCA to MCA increased from healthy 45 2019 healthy controls, 24 non-NASH controls to non-NASH individuals and NASH individuals in a stepwise manner in the

Supplementary Table 2. Previously published cross-sectional studies examining circulating BAs in NAFLD.

		and 48 NASH patients; Testing	training cohort and was associated with greater histological severity of NASH:
		cohort (n=47): 25 non-NASH	steatosis, lobular inflammation, ballooning, and fibrosis stage. This ratio was also
		and 22 NASH patients	increased in the validation cohort of NASH patients, and it was able to predict NASH $(AUROC: 75\%)$ and significant fibracia $(AUROC: 71\%)$ in these two schorts
10	2021		(AUROC. 75%) and significant horosis (AUROC. 71%) in these two conorts.
46	2021	Discovery set of early chronic	Iotal BAs and conjugated BAs increased gradually. GCA/ICA and GDCA/IDCA
		liver disease study (n=122): 87	were altered with the severity of disease. Prediction model based on GCA/TCA and
		NAFLD and NASH patients,	GDCA/TDCA obtained AUROC values of 0.91 and 0.94 in the discovery set and
		and 35 healthy controls; testing	testing set, respectively.
		set (n=33): 12 NAFL and 21	
		NASH patients	
50	2020	390 subjects were screened	Total BAs were significantly higher in subjects with fibrosis, with CDCA displaying
		with liver elastography,	the greatest increase among individual BAs. The primary conju- gated BAs, GCA
		detecting significant liver	and GCDCA, displayed the strongest association with fibrosis by logistic regression.
		fibrosis in 58 subjects and	High LCA levels were strongly associated with advanced fibrosis. In contrast, DCA
		steatosis in 186 subjects.	and total unconjugated secondary BAs were positively associated with steatosis,
		-	whereas relative GUDCA was negatively associated.

Supplementary Figure 1. Diagnostic performance of selected individual biomarkers for identifying mild or significant fibrosis in different subgroups of NAFLD patients.

