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Abbreviation list: 

NAFLD, nonalcoholic fatty liver disease; NAFL, nonalcoholic fatty liver; NASH, 

nonalcoholic steatohepatitis; NITs, non-invasive tests; BA, bile acid; OB, obesity; NOB, 

non-obesity; MetS, metabolic syndrome; No-MetS, non-metabolic syndrome; AUROC, 

area under receiver operating characteristic curve; BMI, body mass index; SBP, systolic 

blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST, 

aspartate aminotransferase; HbA1c, hemoglobin A1c; HOMA-IR, homeostasis model 

assessment of insulin resistance; S, steatosis; L, lobular inflammation; B, ballooning; 

NAS, NAFLD Activity Score; HFS, Hepatic Fibrosis Score; FIB-4, Fibrosis-4 index; 

NFS, NAFLD Fibrosis Score; WC, waist circumference; WBC, white blood cell count; 

TLCA, taurolithocholic acid; 6-ketoLCA, 6-ketolithocholic acid; dehydroLCA, 

dehydrolithocholic acid; 7-DHCA, 7-ketodeoxycholic acid; TUDCA, 

tauroursodeoxycholic acid; NorCA, norcholic acid; UCA, ursocholic acid; TCA, 

taurocholic acid; βCA, 3β-cholic acid; βUCA, β-ursocholic acid; TCDCA, 
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taurochenodeoxycholic acid; GCA, glycocholic acid; HDCA, α-hyodeoxycholic acid; 

GCDCA, glycochenodeoxycholic acid; GGT, γ- glutamyltransferase; PLT, platelets; 

isoLCA, isolithocholic acid; CA, cholic acid; CDCA, chenodeoxycholic acid; 7-

ketoLCA, 7-ketolithocholic acid; HCA, hyocholic acid; GDHCA, glycodehydrocholic 

acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid; GDCA, glycodeoxycholic 

acid; TDCA, taurodeoxycholic acid. 
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Summary 

Dysregulated bile acid (BA) metabolism has been linked to steatosis, inflammation, and 

fibrosis in individuals with nonalcoholic fatty liver disease (NAFLD). However, 

whether circulating BA levels may accurately stage liver fibrosis in NAFLD is currently 

uncertain. We recruited 550 Chinese adults with biopsy-proven NAFLD and varying 

stages of fibrosis. Ultra-performance liquid chromatography coupled with tandem mass 

spectrometry was performed to quantify a total of 38 serum BAs. We found that 

compared with those without fibrosis, patients with NAFLD and mild fibrosis (stage 

F1) had significantly higher secondary BAs, as well as higher values of diastolic blood 

pressure (DBP), serum alanine aminotransferase (ALT), body mass index, and waist 

circumstance (WC). The combination of BA biomarkers with WC, DBP, ALT, or 

HOMA-estimated insulin resistance performed well in identifying mild fibrosis, 

especially in men and women, and in subjects with or without obesity, with AUROCs 

of 0.80, 0.88, 0.75 and 0.78 in the training set (n=385), and 0.69, 0.80, 0.61, and 0.69 

in the testing set (n=165), respectively. In comparison, the combination of BA and 

clinical biomarkers performed less well in identifying significant fibrosis (F2-4). In 

women and in non-obese subjects, the AUROCs were 0.75 and 0.71 in the training set, 

and 0.65 and 0.66 in the validation set, respectively. However, these AUROCs were 

higher than those observed for other commonly used non-invasive fibrosis scores, 

including the fibrosis-4 index, NAFLD fibrosis score, and Hepamet fibrosis score. In 

conclusion, secondary BA levels were significantly increased in individuals with 

NAFLD, especially in those with mild fibrosis. The combination of BA markers and 

clinical risk factors for identifying mild fibrosis is worthy of further assessment.  
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Introduction 1 

It has been estimated that nonalcoholic fatty liver disease (NAFLD) affects up to a third 2 

of the world’s adult population and the global prevalence of NAFLD will increase 3 

markedly in the next decade (1, 2). NAFLD includes a spectrum of potentially 4 

progressive liver conditions, ranging from nonalcoholic fatty liver (NAFL) to 5 

nonalcoholic steatohepatitis (NASH) and cirrhosis (3). About 20% of patients with 6 

NASH may progress to cirrhosis (4, 5) and it has been reported that the severity of liver 7 

fibrosis is the strongest histological predictor of liver-related outcomes and mortality in 8 

NAFLD (6, 7). To date, liver biopsy remains the “gold standard” method for staging 9 

fibrosis in NAFLD (8), but this method is invasive, expensive, can cause morbidity, and 10 

cannot be routinely used for monitoring disease progression or treatment responses in 11 

clinical practice (9, 10).  12 

 13 

Dysregulated bile acid (BA) metabolism has been implicated in the pathophysiology of 14 

chronic liver diseases, including NAFLD (11, 12). Primary BAs are synthesized from 15 

cholesterol in the liver. Following their synthesis, BAs are conjugated to an amino acid 16 

such as taurine and glycine and then secreted into bile, concentrated in the gall bladder, 17 

and released into the intestine after food ingestion. BAs carry out their important 18 

digestive functions aiding in the absorption of fats and fat-soluble vitamins (13). 19 

Besides, primary BAs are transported into the distal small bowel from where they are 20 

actively reabsorbed by the gut epithelium and return to the liver via enterohepatic 21 

circulation. Additionally, BAs pass into the colon and are bio-transformed into 22 

secondary BAs by intestinal microbiota through multiple different reactions, including 23 

deconjugation, 7α-dehydroxylation, 6α-hydroxylation, or epimerization (14). These 24 

secondary BAs are also absorbed and diversify the BA pool in the body. During this 25 

process, BAs can enter into the systemic circulation, and act as biologically active 26 

signaling molecules to regulate glucose and lipid homeostasis (15), mainly through the 27 

activation of specific receptors, such as farnesoid X receptor (FXR) and Takeda G 28 

protein-coupled receptor 5 (TGR5) (16). Dysregulated BA homeostasis and impaired 29 
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BA signaling can lead to liver damage, thereby contributing to the development and 30 

progression of NAFLD (17). Hepatic BA accumulation leads to hepatocyte apoptosis, 31 

mitochondrial damage, and endoplasmic reticulum stress (18). Both conjugated and 32 

unconjugated BAs at cholestatic levels also lead to a release of multiple 33 

proinflammatory cytokines, which can activate hepatic stellate cells and induce hepatic 34 

fibrogenesis (19). On this background of evidence, it is conceivable that modulation of 35 

BA synthesis and metabolism could become a valid therapeutic option for NAFLD and 36 

its related metabolic diseases (20, 21). 37 

 38 

It is known that the high heterogeneity of NAFLD may result from a complex and 39 

multilayered dynamic interaction between different factors, such as sex, obesity, 40 

diabetes, and other coexisting metabolic disorders (22, 23), which are also closely 41 

associated with BA synthesis and metabolism. BA synthesis is higher in men than 42 

women with a wider inter-individual variation (24, 25). Sex-related differences in BA 43 

synthesis and metabolism have been shown in steatosis, NASH, and hepatocellular 44 

carcinoma (26). The differential BAs, related gut microbiota and signaling pathways 45 

need to be further investigated to better understand their effects on disease 46 

heterogeneity (27). Moreover, individuals with lean NAFLD have an obesity-resistant 47 

phenotype that could be, at least in part, mediated by higher levels of certain BAs and 48 

different gut microbiota composition (with higher amounts of microbes involved in BA 49 

metabolism), thus contributing to explain their milder liver disease and more favorable 50 

metabolic profiles compared to NAFLD individuals with obesity (28). Distinct 51 

signatures of gut microbiome and BAs have been also identified in the stool samples of 52 

individuals with lean NAFLD and fibrosis (29). Thus, it is reasonable to assume that a 53 

better understanding of BA profiles in different subgroups of NAFLD individuals can 54 

also help to better decipher the clinical heterogeneity of NAFLD and to develop more 55 

targeted pharmacotherapies for NAFLD and NASH. 56 

 57 

Therefore, in a large cohort of Chinese adults with biopsy-confirmed NAFLD and 58 
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fibrosis, we aimed to examine the differences in a large panel of circulating BA levels 59 

in patients with varying levels of liver fibrosis. In addition, we developed and validated 60 

prediction models using serum BAs and clinical/biochemical biomarkers, alone or in 61 

combination, for the non-invasive identification of mild and significant fibrosis, both 62 

in the whole cohort and in different subgroups of patients stratified by sex, and the 63 

presence or absence of obesity and metabolic syndrome. 64 

 65 

Materials and Methods 66 

Patient recruitment  67 

This is a retrospective analysis of our well-characterized Prospective Epidemic 68 

Research Specifically of NASH (PERSONS) cohort. All NAFLD patients in this study 69 

were consecutively recruited from 2016 to 2019 at the First Affiliated Hospital of 70 

Wenzhou Medical University in Wenzhou (China). The inclusion and exclusion criteria 71 

have been described extensively elsewhere (30). Briefly, patients were initially 72 

diagnosed with suspected NAFLD based on the presence of imaging-defined hepatic 73 

steatosis and/or persistently elevated serum transaminase levels with coexisting 74 

metabolic risk factors (such as overweight/obesity, type 2 diabetes, or metabolic 75 

syndrome), in the absence of significant alcohol consumption (≥140 g/week in men or 76 

≥70 g/week in women). All these patients underwent a diagnostic liver biopsy. 77 

Subsequently, we excluded from the analysis patients with at least one of the following 78 

criteria: (1) those with chronic liver disease from other etiologies (such as viral hepatitis 79 

or autoimmune hepatitis); (2) those chronically treated with drugs potentially inducing 80 

steatosis; (3) those with liver cancers or other extrahepatic malignancies; and (4) those 81 

with liver fat content <5% on histology. According to these exclusion criteria and the 82 

availability of serum samples, 550 Chinese adults with biopsy-proven NAFLD were 83 

included in the present study. Overweight/obesity was defined as BMI≥25. Metabolic 84 

syndrome was defined as having three or more of the following criteria: 85 

overweight/obesity, high triglyceride level (≥ 1. 7 mmol/L), reduced HDL cholesterol 86 

levels (HDL-c < 1.03 mmol/L for men and < 1.29 mmol/L for women), high blood 87 
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pressure ≥ 130/85 mmHg, and elevated fasting glucose level (≥ 5.6 mmol/L) or 88 

diagnosed with type 2 diabetes. Written informed consent was obtained from each 89 

subject before study participation. The research protocol was approved by the ethics 90 

committee of the First Affiliated Hospital of Wenzhou Medical University (2016-246, 91 

1 December 2016) and registered in the Chinese Clinical Trial Registry (ChiCTR-EOC-92 

17013562). 93 

 94 

Liver histology assessment 95 

An ultrasound-guided liver biopsy was performed using a 16-gauge Hepafix needle 96 

(Gallini, Modena, Italy). All biopsy specimens were analyzed by an experienced liver 97 

pathologist, who was blinded to participants’ clinical and laboratory data. The 98 

histologic features of NAFLD were scored according to the NASH-Clinical Research 99 

Network (NASH-CRN) scoring system (31). The stage of fibrosis was quantified 100 

according to Brunt’s criteria (32). Mild and significant fibrosis was defined as fibrosis 101 

F1 and ≥F2 on histology, respectively. 102 

 103 

Clinical and laboratory parameters 104 

In all participants, demographic characteristics and anthropometric measurements were 105 

collected on the day of the liver biopsy examination. Venous blood samples were 106 

obtained after overnight fasting for standard laboratory biochemical tests, including 107 

serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-108 

glutamyltransferase (GGT), bilirubin, albumin, glucose, insulin, lipids, creatinine, uric 109 

acid, and complete blood count. Homeostatic model assessment of insulin resistance 110 

(HOMA-IR) was calculated according to the following formula: fasting insulin (μU/mL) 111 

* fasting glucose (mmol/L) / 22.5 (33). Three commonly used non-invasive fibrosis 112 

scores were also calculated using established equations (34-36), including the fibrosis-113 

4 (FIB-4) index, NAFLD fibrosis score (NFS), and Hepamet fibrosis score (HFS). 114 

 115 

Serum BA measurement 116 
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A 20 µL serum sample together with 180 µL of acetonitrile/methanol (8:2) containing 117 

10 internal standards was added into a 96-well plate. The metabolite extraction was 118 

centrifuged at 10°C and 1,500 rpm for 20 min. After centrifugation, the supernatant was 119 

transferred to a microcentrifuge tube for lyophilization using a FreeZone freeze dryer 120 

equipped with a stopping tray system (Labconco, Kansas City, MO, USA). The 121 

supernatant was transferred to a 96-well plate for ultra-performance liquid 122 

chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) analysis 123 

(ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA) (37). The BA 124 

standards were obtained from Steraloids Inc. (Newport, RI, USA) and TRC Chemicals 125 

(Toronto, ON, Canada), and 10 stable isotope-labeled standards were obtained from 126 

C/D/N Isotopes Inc. (Quebec, Canada) and Steraloids Inc. (Newport, RI, USA). 127 

Column ACQUITY UPLC Cortecs C18 1.6 µM VanGuard pre-column (2.1×5 mm) and 128 

ACQUITY UPLC Cortecs C18 1.6 µM analytical column (2.1 × 100 mm) were used. 129 

Column temperature and sample manager temperature were 30°C and 10°C, 130 

respectively. The mobile phases were water with formic acid (pH =3.25) (A) and 131 

acetonitrile/methanol (80:20) (B). The gradient conditions at a flow rate of 0.4 mL/min 132 

were as follows: 0-1 min (5% B), 1-3 min (5-30% B), 3-15 min (30-100% B), 15-16 133 

min (100-5%B), 16-17 min (5%B). The source temperature and desolvation 134 

temperatures were 150°C and 550°C, respectively. Raw data generated by UPLC-135 

MS/MS were processed using the TargetLynx software to perform peak integration, 136 

calibration, and quantitation for each BA metabolite. Missing values were preprocessed 137 

using the quantile regression imputation of left-censored data (QRLIC) method (38). A 138 

total of 38 BAs were identified and quantified in serum samples (Supplementary Table 139 

1). Serum BAs were classified into 8 categories according to their chemical structures, 140 

including primary glycine or taurine conjugated BAs, primary unconjugated BAs, 141 

secondary glycine or taurine conjugated BAs, secondary unconjugated BAs, sulfated 142 

BAs, and glucuronidated BAs, respectively. 143 

 144 

Statistical analysis 145 
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R software (version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria) 146 

was applied for statistical analysis and visualization. The normal distribution of 147 

variables was initially tested using the Shapiro-Wilk test. Then, parametric tests (i.e., 148 

the Student’s t-test and the one-way ANOVA) were performed on variables with 149 

normal distribution. Meanwhile, non-parametric tests (i.e., the Mann-Whitney U test 150 

and the Kruskal Wallis test) were used for variables that were not normally distributed. 151 

The chi-square test was used for categorical variables. Spearman’s rank correlation 152 

coefficients were calculated to examine the associations between liver fibrosis, BAs, 153 

and other clinical and biochemical parameters. Random forest analysis was applied for 154 

biomarker selection. Binary logistic regression models were then performed to establish 155 

predictive models for fibrosis. Areas under receiver operating characteristic curves 156 

(AUROC) were calculated to evaluate the performance of non-invasive predictive 157 

models for identifying mild (F1) or significant fibrosis (F2-4). Two-tailed P<0.05 value 158 

was considered to be statistically significant. All P values were further adjusted for 159 

multiple testing corrections by the Benjamini and Hochberg statistical procedure. 160 

 161 

Results 162 

Clinical and biochemical biomarkers associated with mild and significant fibrosis 163 

The study design is summarized in Figure 1. A total of 550 Chinese adults with biopsy-164 

proven NAFLD were included in the study. They were further divided into six 165 

subgroups according to sex, and the presence or absence of obesity (OB) or metabolic 166 

syndrome (MetS). They were also divided into patients without fibrosis (stage F0), 167 

patients with mild fibrosis (stage F1), and those with significant fibrosis (stages F2-4). 168 

Clinical characteristics and BA profiles were then examined at different fibrosis stages 169 

for each patient subgroup. Meanwhile, all these 550 patients with NAFLD were 170 

randomly subdivided into the training (n=385) and validation (n=165) sets, according 171 

to a ratio of 7:3 (39), to develop and validate predictive models for the non-invasive 172 

diagnosis of mild and significant fibrosis. 173 

 174 
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The main clinical, biochemical, and histological characteristics of the whole cohort of 175 

NAFLD patients, stratified by increasing fibrosis stages are summarized in Table 1. 176 

Adiposity measures, diastolic blood pressure (DBP), alanine aminotransferase (ALT), 177 

aspartate aminotransferase (AST), HOMA-IR, hemoglobin A1c (HbA1c), white blood 178 

cell count (WBC) and hemoglobin increased significantly across fibrosis stages. 179 

Similarly, the histological severity of hepatic steatosis, lobular inflammation, and 180 

NAFLD Activity Score (NAS) increased significantly with increasing fibrosis stages. 181 

The Hepatic Fibrosis Score (HFS) emerged as the best non-invasive score for staging 182 

fibrosis compared to FIB-4 and NFS scores. 183 

 184 

Baseline clinical and biochemical parameters for discriminating mild and significant 185 

fibrosis were further evaluated and compared in the (aforementioned) six patient 186 

subgroups. Figure 2A shows the heatmap of their fold-change values by comparing 187 

either F1 vs. F0 or F2-4 vs. F0-1, respectively. DBP was increased significantly in most 188 

patient subgroups with mild fibrosis (P<0.001), except for women. Adiposity measures 189 

(BMI and WC) were increased in men and OB, MetS patient subgroups with mild and 190 

significant fibrosis. Serum liver enzymes (ALT, AST, and GGT) were increased in mild 191 

fibrosis as compared to F0. HbA1c and WBC were increased in significant fibrosis. The 192 

histological severity of steatosis and lobular inflammation increased with increasing 193 

fibrosis stages in most patient subgroups (all P<0.01). Also, NAS was a significant 194 

marker for discriminating mild fibrosis both in men and women, as well as in OB and 195 

MetS, subgroups. Among the three commonly used non-invasive fibrosis scores, HFS 196 

was better than FIB-4 and NFS scores to stage fibrosis. To summarize, twelve 197 

differential markers for mild or significant fibrosis identified in more than three patient 198 

subgroups are reported in Figure 2B, showing their differences among F0, F1, and F2-199 

4 subgroups in the whole cohort. 200 

 201 

Overall BA profiles in NAFLD with mild and significant fibrosis  202 

Overall, we identified that secondary unconjugated BAs, primary glycine-conjugated 203 
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BAs, and primary unconjugated BAs covered more than 80% of the BA pool in the 204 

serum (Figure 3A). The secondary unconjugated BAs were increased in patients with 205 

mild and significant fibrosis. The top eleven abundant BAs were GCDCA, βUDCA, 206 

CDCA, CDCA, βCDCA, GCA, DCA, GUDCA, GLCA-3S, CA, and UDCA, 207 

respectively (Figure 3B). The chemical names of individual BAs and their 208 

classifications are reported in Supplementary Table 1. The circus plots showed 209 

differential BAs (P<0.05 highlighted in red) and their fold changes by comparing F1 vs. 210 

F0 (mild fibrosis, Figure 3C), and F2-4 vs. F0-1 (significant fibrosis, Figure 3D), 211 

respectively. TCA and nine secondary BAs were increased in mild fibrosis, while UCA, 212 

βUCA, 7-DHCA, and NorCA were increased in significant fibrosis.  213 

 214 

BA changes in mild and significant fibrosis in different subgroups  215 

We compared the changes of individual BAs in the presence of mild and significant 216 

fibrosis across the six different subgroups of NAFLD patients (Figure 4A). In general, 217 

BA profiles changed more significantly in patients with mild fibrosis than in those with 218 

significant fibrosis. Specifically, secondary BAs (HDCA, UCA, βCA, 7-DHCA, βUCA, 219 

dehydroLCA, 6-ketoLCA, and TLCA) were significantly increased in patients with 220 

mild fibrosis (F1) compared to those without fibrosis (F0). However, in the presence of 221 

significant fibrosis (F2-4 vs. F0-1), CA and CDCA increased in women but decreased 222 

in men and the no-MetS subgroup. Three secondary BAs (βCA, 7-DHCA, and βUCA) 223 

were increased in women and the OB and MetS patient subgroups. In the whole cohort 224 

of patients, ten serum BAs increased progressively across fibrosis stages (Figure 4B, 225 

all P<0.05). 226 

 227 

Spearman’s rank correlation analyses showed that twelve secondary BAs and two 228 

primary BAs were significantly associated with fibrosis, including NorCA, UCA, βCA, 229 

6-ketoLCA, HDCA, 7-DHCA, βUCA, dehydroLCA, TLCA, βCDCA, TCA, and 230 

TCDCA (Figure 4C). Meanwhile, six biochemical parameters (HbA1c, fasting glucose, 231 

HOMA-IR, ALT, AST, and WBC) and four demographic and anthropometric 232 



 
 

13 

parameters (weight, BMI, WC, and DBP) were significantly associated with liver 233 

fibrosis, together with HFS, NFS, S, and L indices. These aforementioned BAs and 234 

clinical/biochemical parameters were ordered by the number of connections between 235 

them in the Sankey plot, which indicated that NorCA, TCA, and TCDCA were more 236 

strongly (darker red color) associated with clinical/biochemical parameters. 237 

 238 

Biomarker discovery and validation for identifying fibrosis severity  239 

Through biomarker selection by random forest analysis and predictive modeling by 240 

logistic regression analysis, the combination of serum BAs and clinical/biochemical 241 

biomarkers enabled us to obtain optimal non-invasive predictive models for identifying 242 

liver fibrosis (Figure 5 and Table 2). Notably, the performance of these non-invasive 243 

predictive models differed in the six subgroups of NAFLD patients. In particular, we 244 

obtained four predictive models that had good performance in identifying mild fibrosis 245 

in men and women, as well as in OB and NOB patient subgroups, with AUROCs of 246 

0.80, 0.88, 0.75, 0.78 in the training set (threshold >0.7), respectively, and 0.69, 0.80, 247 

0.61, 0.69 in the validation set (threshold >0.6), respectively. Among these, the 248 

predictive model for identifying mild fibrosis in women was the best one. Accordingly, 249 

the predictive model for the whole cohort also achieved a relatively good performance 250 

in identifying mild fibrosis with AUROC values of 0.77 in the training set and 0.64 in 251 

the validation set, respectively. We also compared three commonly used non-invasive 252 

scores of fibrosis and identified that the HFS had the best performance in most of our 253 

NAFLD patients, while FIB-4 had the best performance in the no-MetS patient 254 

subgroup. However, both of these non-invasive fibrosis scores failed to achieve good 255 

diagnostic performance for identifying mild fibrosis (AUROC value < 0.7 in the 256 

training set or <0.6 in the testing set). 257 

 258 

In comparison, the predictive model for identifying significant fibrosis showed overall 259 

good performance in women and the NOB subgroup with AUROCs of 0.75 and 0.71 in 260 

the training set, and 0.65 and 0.66 in the validation set, respectively (Figure 5 and Table 261 
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2). Similar to the above-mentioned predictive models for mild fibrosis, the three 262 

commonly used non-invasive scores of fibrosis failed to achieve a good performance 263 

in both the training and validation sets for identifying significant fibrosis, with 264 

AUROCs less than 0.60.  265 

 266 

Discussion 267 

Our novel results show that compared with those without fibrosis, patients with NAFLD 268 

and mild fibrosis (stage F1) had significantly higher secondary BAs, as well as higher 269 

values of DBP, ALT, BMI, and WC. The combination of BA biomarkers with WC, DBP, 270 

ALT or HOMA-estimated insulin resistance performed well in identifying mild fibrosis, 271 

especially in men and women, and in subjects with or without obesity. The combination 272 

of BA biomarkers and clinical risk factors performed less well in identifying significant 273 

fibrosis (F2-4) although in this fibrosis group prediction was better in women and non-274 

obese subjects. Importantly, the AUROCs including BAs were higher than those 275 

observed for other commonly used non-invasive fibrosis scores, including the fibrosis-276 

4 index, NAFLD fibrosis score, and Hepamet fibrosis score. 277 

 278 

BA changes and their associations with liver fibrosis 279 

Increased serum and hepatic BAs have been recognized as important metabolic factors 280 

in the pathophysiology of NAFLD and reported to be associated with greater severity 281 

of NAFLD and liver fibrosis (29, 40-46). However, most previously published studies 282 

had a case-control design and compared BA profiles between NAFLD patients and 283 

healthy controls or non-NAFLD individuals (Supplementary Table 2). In this cross-284 

sectional study of Chinese adults with biopsy-confirmed NAFLD, we measured a large 285 

panel of circulating BA levels and compared their changes in the presence of mild and 286 

significant liver fibrosis among different subgroups of NAFLD patients. We found an 287 

altered BA profile in the presence of mild fibrosis that was specifically characterized 288 

by increased primary BAs, mainly represented by CA, TCA, and GCA in the female 289 

and MetS patient subgroups, and by secondary BAs, mainly HDCA, UCA, CA, 7-290 
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DHCA, UCA, dehydroLCA, 6-ketoLCA, and TLCA, in the whole patient population 291 

(Figure 4A and Figure 4B). The overall secondary BA profiles were also increased in 292 

the presence of significant fibrosis, but their increases as compared to mild fibrosis (F2-293 

4 vs. F0-1) were not as significant and consistent as the increases observed in mild 294 

fibrosis (F1 vs. F0). Specifically, CA and CDCA were significantly increased in women 295 

but decreased in men and the no-MetS subgroup. Secondary BAs were found 296 

significantly increased in women and the OB, and MetS patient subgroups. Moreover, 297 

those BAs that were closely associated with liver fibrosis were also significantly 298 

correlated with serum liver enzymes and glycemic parameters (Figure 4C). 299 

 300 

It is possible to hypothesize that significant changes in secondary BA metabolism might 301 

be causally linked with intestinal dysbiosis and greater severity of liver fibrosis (47-49). 302 

In our study, we found that LCA species were significantly increased in patients with 303 

mild fibrosis, including TLCA, 6-ketoLCA, and dehydroLCA, and were closely 304 

associated with fibrosis severity (Figure 4). LCA species also increased significantly 305 

in the OB patient subgroup with significant fibrosis (Figure 4). A previous cross-306 

sectional study of 390 Mexican-American subjects screened with liver elastography 307 

also reported that higher serum LCA levels were associated with significant fibrosis 308 

(50). Compared to primary BAs, secondary BAs (e.g., DCA and LCA) can more 309 

effectively activate TGR5 which is expressed in Kupffer cells and hepatic stellate 310 

cells(HSCs) (51, 52). LCA is considered to be hepatotoxic as the most hydrophobic BA 311 

(53), and it has been used to produce a model of cholestatic liver damage (54). Serving 312 

as a physiological sensor of LCA, the pregnane X receptor (PXR) could be activated to 313 

protect against severe liver damage induced by LCA (55). However, experimental 314 

studies revealed that LCA and its derivatives may inhibit the activation of HSCs and 315 

have anti-inflammatory effects on liver fibrosis by inhibiting glycolysis and promoting 316 

oxidative phosphorylation, thus leading to macrophage polarization toward the M2 317 

phenotype (56). From these and other studies emerges that secondary BAs that are 318 

produced and/or modified through gut microbiota, and their enterohepatic circulation 319 
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and conjugation in the liver, could play a role in the early stage of fibrosis in NAFLD. 320 

 321 

Predictive models combining clinical and BA markers for fibrosis severity 322 

Several non-invasive fibrosis scores, such as FIB-4, NFS, and HFS scores, have been 323 

regarded as sufficiently reliable biomarkers for ruling out advanced fibrosis in NAFLD 324 

(34-36). In our study, HFS was better than FIB-4 and NFS to predict mild and 325 

significant fibrosis, but in any case, HFS did not achieve a good performance in 326 

identifying fibrosis (AUROC <0.6) in most subgroups of our NAFLD patients. The 327 

diagnostic performance of these three commonly used non-invasive fibrosis scores 328 

might vary with ethnicity, age, sex, disease severity, comorbidities, and treatment of 329 

patients (57, 58). Here, the integration of machine learning and logistic regression 330 

analyses allowed us to build non-invasive predictive models for identifying mild and 331 

significant fibrosis by combining clinical and BA biomarkers. DBP, ALT, AST, HOMA-332 

IR, fasting insulin, WBC, and HbA1c were closely associated with the severity of liver 333 

fibrosis, together with WC and BMI (Table 1, Figures 2 and 4). The predictive model 334 

by combining WC, DBP, and ALT with 6-ketoLCA, HDCA, dehydroLCA, TLCA, 335 

isoLCA, and βCA performed well in identifying mild fibrosis in our whole patient 336 

population (Figure 5 and Table 2). WBC and BMI were the two biochemical 337 

biomarkers selected for predicting significant fibrosis with 7-DHCA and TUDCA.  338 

 339 

Clinical heterogeneity of NAFLD  340 

A spectrum of variables, including sex, obesity, and metabolic disorders, may determine 341 

the heterogeneity of NAFLD observed in clinical practice (59). Thus, more accurate 342 

and refined characterization and stratification of this common liver disease are needed 343 

for precision medicine in NAFLD (60, 61). Applying a targeted metabolomics approach 344 

and integrating clinical biomarkers can help us to better define the specific metabolic 345 

features and biochemical snapshots among different patient subgroups that might 346 

contribute to precision medicine in NAFLD. In our study, increased serum 347 

aminotransferase levels and impaired glycemic control were associated with increased 348 
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liver fibrosis, particularly in men and in the OB and MetS patient subgroups (Figure 349 

2). In contrast, these associations were weaker in women and the NOB and no-MetS 350 

patient subgroups. These results are consistent with the existence of sex-related 351 

differences in NAFLD, supporting that men are at higher risk of visceral adiposity and 352 

MetS (62, 63). Meanwhile, we identified that BAs were closely associated with mild 353 

and significant fibrosis in women and the OB and MetS patient subgroups (Figure 4A). 354 

The non-invasive predictive models combining clinical markers and BAs showed good 355 

performance in identifying mild fibrosis in both sexes and the OB/NOB patient 356 

subgroups, but not so good in the MetS/no-MetS patient subgroups. For identifying 357 

significant fibrosis, we found that the predictive model performed better in women and 358 

the NOB patient subgroup. Thus, these results suggest that the effect of dysregulated 359 

BA metabolism in hepatic fibrogenesis of NAFLD may play a differential role in 360 

different patient subgroups. It is, therefore, of great clinical importance to consider 361 

disease heterogeneity for exploring diagnostic and prognostic biomarkers of liver 362 

fibrosis in NAFLD.  363 

 364 

Taken together, this is one of the largest cross-sectional cohorts of Asian adults with 365 

biopsy-proven NAFLD focusing on the biomarker discovery for mild and significant 366 

liver fibrosis. The changes of secondary BAs observed in mild fibrosis, instead of in 367 

significant fibrosis, suggest an important role of these molecules in the early 368 

development of liver fibrosis in NAFLD. Different from some previous case-control 369 

studies, our study aims to identify the specific metabolic features among different 370 

NAFLD patient subgroups. However, it should be noted that a limitation of our study 371 

design is that our exploratory sub-group analyses have limited power to detect 372 

differences between groups. In the six different subgroups, the sample size in each 373 

group is not large enough and further studies are needed to verify our findings in other 374 

ethnic groups. Moreover, other studies are required to examine whether BA profiles 375 

may significantly differ between NAFLD and chronic liver diseases from other 376 

etiologies, and to elucidate whether different etiologies of chronic liver disease may 377 
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differentially impact BA pools for any given stage of fibrosis. Finally, gut microbiota 378 

composition in relation to BA metabolism and their complex cross-talk are future 379 

priorities in the NAFLD research arena. 380 

 381 

Conclusion 382 

The results of this large cross-sectional study show that the circulating levels of 383 

secondary BAs (including LCA species) were biomarkers for predicting mild liver 384 

fibrosis in Chinese adults with biopsy-proven NAFLD. In addition, the combination of 385 

BAs and clinical biomarkers had good performance in identifying liver fibrosis in 386 

NAFLD. Our newly developed predictive models achieved a better diagnostic 387 

performance in identifying mild fibrosis than significant fibrosis. We suggest further 388 

studies in different ethnic populations are now required to validate our findings.  389 
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Figure legends 

Figure 1. The flowchart of biomarker discovery and validation in patients with biopsy-

proven NAFLD.  

 

Figure 2. Comparison of clinical parameters in six subgroups of NAFLD patients in 

the training cohort. (A) The heatmap of fold changes of demographic, biological, and 

histological variables and non-invasive diagnostic indices between F1 and F0, and 

between F2-4 and F0-1 in the six patient subgroups of the training cohort. P values 

were tested by parametric or non-parametric tests (as appropriate). (B) The changes of 

potential clinical risk factors among NAFLD patients with F0, F1, and F2-4 stages. 

P<0.05 is demonstrated as an asterisk (*); P<0.01 is demonstrated as two asterisks (**); 

P<0.001 is demonstrated as three asterisks (***); and P<0.0001 is demonstrated as four 

asterisks (****). 

 

Figure 3. Overall bile acid profiles of patients with NAFLD. (A) The bar plot of relative 

abundances of different groups of bile acids from F0, F1 to F2-4 stages. (B) The bar 

plot of relative abundances of top-ten abundant bile acids from F0, F1 to F2-4 stages. 

(C-D) The circus plot of differential bile acids (fold changes) by comparing F1 vs. F0, 

and F2-4 vs. F0-1, respectively. The reference circle value is defined as a fold-change 

value of 1. 

 

Figure 4. The bile acid changes with the development of fibrosis in six subgroups of 

NAFLD patients in the training cohort. (A) The heatmap of fold changes of bile acids 

between F1 and F0, and F2-4 and F0-1 in the six patient subgroups of training cohort. 

P values were determined by non-parametric tests (as appropriate). (B) The bar plots of 

differential bile acid biomarkers among patients with F0, F1, and F2-4 fibrosis. P<0.05 

is demonstrated as an asterisk (*); P<0.01 is demonstrated as two asterisks (**); 

P<0.001 is demonstrated as three asterisks (***); and P<0.0001 is demonstrated as four 

asterisks (****). (C) The Sankey network of correlations among bile acids, clinical 
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parameters, and fibrosis in patients with NAFLD. Bile acids, clinical parameters, and 

liver fibrosis stage are shown as different colors of dots. The connecting lines between 

dots represent the correlation, with red lines referring to positive correlation, and green 

lines referring to negative correlation. And the width of connecting lines is depending 

on the correlation coefficients. P values and correlation coefficients were assessed by 

Spearman’s analysis. Only Spearman’s correlation analyses with a P value <0.05 were 

depicted. 

 

Figure 5. Predictive models for mild and significant liver fibrosis. The figure shows 

the area under the receiver operating characteristic curves (AUROC) with 

recommended prediction models with an excellent diagnostic performance marked with 

a red star. 
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Table 1. Demographic, biochemical, and histological characteristics of patients with biopsy-confirmed NAFLD (n=550), stratified by 
increasing stages of liver fibrosis. 
 

Characteristics F0 (n=145) F1 (n=273) F2-4 (n=132) P-value P-value* 
Demographics           
Age (y) 42.34 ± 12.26 42.82 ± 12.07 43.45 ± 13.28 0.900 0.949 
Male sex, n (%) 104 (72%) 203 (74%) 89 (67%) 0.345 0.345 
Height (cm) 167.14 ± 8.44 167.63 ± 8.24 166.58 ± 9.34 0.607 0.763 
Weight (kg) 72.11 ± 12.28 75.86 ± 13.24 76.29 ± 14.89 1.66E-02 5.00E-02 
BMI (kg/m2) 25.68 ± 2.96 26.88 ± 3.61 27.4 ± 4.46 2.84E-04 1.80E-03 
WC (cm) 89.1 ± 7.91 92.08 ± 8.42 93.75 ± 9.49 2.30E-05 3.00E-04 
SBP (mmHg) 125.43 ± 16.16 128.83 ± 14.95 128.27 ± 16.74 0.127 0.291 
DBP (mmHg) 77.68 ± 10.07 83.07 ± 9.98 81.43 ± 10.82 2.37E-06 4.60E-05 
Obesity, n (%) 101 (70%) 219 (80%) 111 (84%) 8.25E-03 1.40E-02 
Type 2 diabetes, n (%) 51 (35%) 126 (46%) 72 (55%) 4.90E-03 1.20E-02 
Hypertension, n (%) 73 (50%) 178 (65%) 81 (61%) 1.22E-02 1.50E-02 
MetS, n (%) 80 (55%) 194 (71%) 103 (78%) 1.04E-04 5.20E-04 
Biochemical parameters           
ALT (U/L) 63.9 ± 92.88 73.35 ± 61.25 73.46 ± 67.85 4.11E-03 1.80E-02 
AST (U/L) 41.36 ± 44.45 45.26 ± 32.7 49.6 ± 36.93 5.52E-03 2.20E-02 
ALP (U/L) 89.06 ± 44.86 86.33 ± 27.22 85.7 ± 36.78 0.806 0.916 
GGT (U/L) 71.48 ± 97.04 70.55 ± 59.48 78.49 ± 100.94 0.221 0.384 
TBIL (μmol/L) 14.74 ± 12.04 14.14 ± 7.09 14.04 ± 6.7 0.951 0.951 
DBIL (μmol/L) 5.83 ± 9.35 4.8 ± 2.35 4.87 ± 2.2 0.332 0.498 
IBIL (μmol/L) 8.92 ± 4.44 9.34 ± 5.03 9.16 ± 4.91 0.547 0.711 
Total protein (g/L) 76.83 ± 5.42 76.85 ± 5.87 76.93 ± 5.58 0.83 0.916 
Albumin (g/L) 45.97 ± 3.85 45.79 ± 4.29 45.55 ± 4.22 0.943 0.951 
Globulin (g/L) 31 ± 4.1 30.95 ± 3.82 31.38 ± 4.15 0.473 0.659 
A/G ratio 1.51 ± 0.24 1.5 ± 0.21 1.48 ± 0.26 0.469 0.659 
Glucose (mmol/L) 5.67 ± 1.86 5.82 ± 1.57 6.01 ± 1.94 0.072 0.186 
Insulin (pmol/L) 121.34 ± 125.77 125.76 ± 109.18 136.71 ± 119.09 0.181 0.371 
HOMA-IR score 4.94 ± 7.79 5.04 ± 6.35 5.4 ± 5.5 3.62E-02 0.101 
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HbA1c (%) 6.07 ± 1.75 6.25 ± 1.52 6.57 ± 1.51 6.28E-04 3.50E-03 
Creatinine (μmol/L) 67.77 ± 14.53 67.73 ± 13.91 65.86 ± 15.91 0.158 0.343 
Uric acid (μmol/L) 384.57 ± 101.22 388.24 ± 101.55 381.17 ± 111.2 0.771 0.916 
Total cholesterol (mmol/L) 5.12 ± 1.15 5.15 ± 1.17 5.15 ± 1.27 0.846 0.916 
Triglycerides (mmol/L) 2.31 ± 1.69 2.21 ± 1.33 2.51 ± 2.92 0.821 0.916 
HDL-c (mmol/L) 1.04 ± 0.24 1.01 ± 0.22 1 ± 0.24 0.296 0.482 
LDL-c (mmol/L) 3.1 ± 0.9 3.03 ± 0.89 2.99 ± 1.02 0.499 0.671 
WBC (×109/L) 5.92 ± 1.35 6.27 ± 1.53 6.47 ± 1.76 1.40E-02 5.00E-02 
RBC (×109/L) 4.96 ± 0.49 4.97 ± 0.51 4.89 ± 0.56 0.226 0.384 
Hb (g/L) 146.52 ± 14.63 149.53 ± 14.21 145.06 ± 16.29 1.55E-02 5.00E-02 
PLT (×109/L) 248.37 ± 63.88 240.21 ± 59.46 252.42 ± 66.12 0.207 0.384 
Liver histology features           
Steatosis, n (%)   

 
  

0 43 (30%) 42 (15%) 17 (13%)  

4.26E-05 4.10E-04 
1 51 (35%) 85 (31%)  37 (28%)  
2 19 (13%) 56 (21% ) 31 (23%) 
3 32 (22%) 90 (33%) 47 (36%) 
Ballooning, n (%)    

  
0 0:21 (14%)  64 (23%)  20 (15%)  

0.203 0.384 1 80 (55%)  134 (49%)  74 (56%)  
2 44 (30%) 75 (27%) 38 (29%) 
Lobular inflammation, n (%)    

  
0 19 (13%) 14 (5%) 2 (2%)  

2.55E-07 1.00E-05 
1 112 (77%)  200 (73%)  89 (67%)  
2 13 (9%) 56 (21%)  37 (28%)  
3 1 (1%) 3 (1%) 4 (3%) 
NAS score 3.41 ± 1.65 3.93 ± 1.78 4.28 ± 1.59 7.72E-05 6.00E-04 
Non-invasive fibrosis scores           
FIB-4 14.73 ± 6.63 14.99 ± 6.86 17.33 ± 10.53 0.325 0.498 
NFS 0.55 ± 1.41 0.76 ± 1.38 0.95 ± 1.68 0.076 0.186 
HFS 0.06 ± 0.09 0.09 ± 0.12 0.12 ± 0.18 3.00E-03 1.50E-02 
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Abbreviations: BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; MetS, metabolic 
syndrome; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, γ- glutamyltransferase; TBIL, total 
bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; A/G, the ratio of albumin to globulin; HOMA-IR, homeostasis model assessment of insulin 
resistance; HbA1c, hemoglobin A1c; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; WBC, white blood 
cell count; RBC, red blood cell count; Hb, hemoglobin; PLT, counts of platelet; S, steatosis; B, ballooning; L, lobular inflammation; FIB-4, Fibrosis-
4 index; NFS, NAFLD Fibrosis Score; HFS, Hepatic Fibrosis Score. P-values are assessed by parametric or non-parametric tests (as appropriate). 
*P-values assessed by the Benjamini–Hochberg procedure after multiple testing corrections. 
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Table 2. Predictive diagnostic performance of established non-invasive models for different stages of liver fibrosis in the training and 
testing sets. 
 
    Stage F1 vs. F0      

Group Panel Content Training 
AUC 

Testing 
AUC 

All  
(n=550) 

BA + Clinical panel 
WC + DBP + 6-ketoLCA + HDCA + dehydroLCA + TLCA + isoLCA + 
ALT + βCA 0.77 0.64 

Non-invasive diagnostic 
index HFS 0.58 0.55 

Men  
(n=396) 

BA + Clinical panel 
DBP + WC + 6-ketoLCA + TLCA + βCA + AST + HOMA-IR + CDCA-
3Glu 0.80 0.69 

Non-invasive diagnostic 
index HFS 0.67 0.54 

Women  
(n=154) 

BA panel NorCA + UCA + THCA + TUDCA + TLCA + TCDCA + GHCA 0.88 0.80 
Non-invasive diagnostic 
index HFS 0.75 0.65 

Obese 
(n=431) 

BA + Clinical panel DBP + ALT + TLCA + βUCA + βCA + TCA + GCA 0.75 0.61 
Non-invasive diagnostic 
index HFS 0.65 0.51 

Non-obese 
(n=119) 

BA + Clinical panel dehydroLCA + DBP + HOMA-IR + 6-ketoLCA 0.78 0.69 
Non-invasive diagnostic 
index HFS 0.71 0.66 

MetS 
(n=377) 

BA + Clinical panel ALT + TLCA + NorCA/NorDCA + 7-DHCA 0.70 0.59 
Non-invasive diagnostic 
index HFS 0.65 0.59 

No-MetS  
(n=173) 

BA panel HDCA/HCA 0.64 0.53 
Non-invasive diagnostic 
index FIB-4 0.61 0.59 

    Stage F2-4 vs. F0-1     

Group Panel Content Training 
AUC 

Testing 
AUC 

All  
(n=550) 

BA + Clinical panel 7-DHCA + WBC + TUDCA + BMI 0.64 0.58 
Non-invasive diagnostic 
index HFS 0.55 0.60 

Men  BA + Clinical panel UDCA/CDCA + WBC + βUDCA + βUCA + BMI 0.67 0.54 
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(n=396) Non-invasive diagnostic 
index NFS 0.53 0.37 

Women  
(n=154) 

BA panel 7-DHCA + HbA1c 0.75 0.65 
Non-invasive diagnostic 
index HFS 0.62 0.56 

Obese 
(n=431) 

BA + Clinical panel WBC + UCA + NorCA + GCA + TCA + GUDCA 0.65 0.51 
Non-invasive diagnostic 
index HFS 0.56 0.60 

Non-obese 
(n=119) 

BA + Clinical panel 7-DHCA/CA 0.71 0.66 
Non-invasive diagnostic 
index FIB-4 0.60 0.43 

MetS 
(n=377) 

BA + Clinical panel WBC + 7-DHCA 0.65 0.59 
Non-invasive diagnostic 
index HFS 0.56 0.58 

No-MetS  
(n=173) 

BA panel 7-DHCA + CDCA-3Glu/CDCA 0.61 0.59 
Non-invasive diagnostic 
index NFS 0.57 0.46 

NB: Panel type, contents, and performances in both the training cohorts and testing cohorts of different prediction models are reported. For the sake 
of clarity, the recommended prediction models with good performances have been marked in bold. 
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STROBE Statement—checklist of items that should be included in reports of observational studies 
 
 Item 

No Recommendation 
Page  
No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title 
or the abstract 

1 

(b) Provide in the abstract an informative and balanced summary of 
what was done and what was found 

6 

Introduction 
Background/rationale 2 Explain the scientific background and rationale for the investigation 

being reported 
9 

Objectives 3 State specific objectives, including any prespecified hypotheses 9 

Methods 
Study design 4 Present key elements of study design early in the paper 10 
Setting 5 Describe the setting, locations, and relevant dates, including periods 

of recruitment, exposure, follow-up, and data collection 
10 

Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and 
methods of selection of participants. Describe methods of follow-up 
Case-control study—Give the eligibility criteria, and the sources and 
methods of case ascertainment and control selection. Give the 
rationale for the choice of cases and controls 
Cross-sectional study—Give the eligibility criteria, and the sources 
and methods of selection of participants 

10 

(b) Cohort study—For matched studies, give matching criteria and 
number of exposed and unexposed 
Case-control study—For matched studies, give matching criteria and 
the number of controls per case 

/ 

Variables 7 Clearly define all outcomes, exposures, predictors, potential 
confounders, and effect modifiers. Give diagnostic criteria, if 
applicable 

 

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data and details of 
methods of assessment (measurement). Describe comparability of 
assessment methods if there is more than one group 

11 

Bias 9 Describe any efforts to address potential sources of bias / 
Study size 10 Explain how the study size was arrived at 10 
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 

applicable, describe which groupings were chosen and why 
12 

Statistical methods 12 (a) Describe all statistical methods, including those used to control 
for confounding 

12 

(b) Describe any methods used to examine subgroups and 
interactions 

13 

(c) Explain how missing data were addressed 12 
(d) Cohort study—If applicable, explain how loss to follow-up was 
addressed 
Case-control study—If applicable, explain how matching of cases 
and controls was addressed 
Cross-sectional study—If applicable, describe analytical methods 
taking account of sampling strategy 

/ 

(e) Describe any sensitivity analyses 13 
Continued on next page  
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Results 
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, included in the 
study, completing follow-up, and analysed 

 

(b) Give reasons for non-participation at each stage  
(c) Consider use of a flow diagram Fig1 

Descriptive 
data 

14* (a) Give characteristics of study participants (eg demographic, clinical, social) 
and information on exposures and potential confounders 

Table 
1 

(b) Indicate number of participants with missing data for each variable of 
interest 

/ 

(c) Cohort study—Summarise follow-up time (eg, average and total amount) Table 
1 

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over 
time 

11 

Case-control study—Report numbers in each exposure category, or summary 
measures of exposure 

 

Cross-sectional study—Report numbers of outcome events or summary 
measures 

 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates 
and their precision (eg, 95% confidence interval). Make clear which confounders 
were adjusted for and why they were included 

16 

(b) Report category boundaries when continuous variables were categorized  
(c) If relevant, consider translating estimates of relative risk into absolute risk for 
a meaningful time period 

 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 
sensitivity analyses 

16 

Discussion 
Key results 18 Summarise key results with reference to study objectives 18 
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 

imprecision. Discuss both direction and magnitude of any potential bias 
21 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 
limitations, multiplicity of analyses, results from similar studies, and other 
relevant evidence 

20 

Generalisability 21 Discuss the generalisability (external validity) of the study results 17 

Other information 
Funding 22 Give the source of funding and the role of the funders for the present study 

and, if applicable, for the original study on which the present article is based 
4 

 
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and 
unexposed groups in cohort and cross-sectional studies. 
 
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and 
published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely 
available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 
available at www.strobe-statement.org. 
 


