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Abstract—Visual place recognition (VPR) is a robot’s ability to
determine whether a place was visited before using visual data.
While conventional handcrafted methods for VPR fail under ex-
treme environmental appearance changes, those based on convo-
lutional neural networks (CNNs) achieve state-of-the-art perfor-
mance but result in heavy runtime processes and model sizes that
demand a large amount of memory. Hence, CNN-based approaches
are unsuitable for resource-constrained platforms, such as small
robots and drones. In this article, we take a multistep approach of
decreasing the precision of model parameters, combining it with
network depth reduction and fewer neurons in the classifier stage
to propose a new class of highly compact models that drastically
reduces the memory requirements and computational effort while
maintaining state-of-the-art VPR performance. To the best of our
knowledge, this is the first attempt to propose binary neural net-
works for solving the VPR problem effectively under changing
conditions and with significantly reduced resource requirements.
Our best-performing binary neural network, dubbed FloppyNet,
achieves comparable VPR performance when considered against
its full-precision and deeper counterparts while consuming 99%
less memory and increasing the inference speed by seven times.

Index Terms—Binary neural networks, localization, visual-
based navigation.

I. INTRODUCTION

V ISUAL place recognition (VPR) addresses the problem
of determining whether a location has been visited be-

fore using visual information. VPR is a fundamental task for
autonomous navigation. It enables a robot to relocalize itself
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Fig. 1. FloppyNet is a compact and efficient binary network designed to enable
VPR on edge devices and robots with severe hardware constraints.

in the workspace when the position tracking fails or drifts due
to accumulated errors. However, variations in viewpoint and
appearance due to seasonal, weather, and illumination changes
render VPR challenging for mobile robots. While conventional
handcrafted techniques for VPR fail under extreme environmen-
tal changes, those based on deep convolutional neural networks
(CNNs) achieve state-of-the-art performance [81] but result in
heavy runtime processes and model sizes that demand a large
amount of memory.

Mobile robots are often equipped with resource-constrained
hardware that limits the usability of such demanding tech-
niques [32], [55]. Increasing the efficiency by saving memory
and reducing the computational effort to run a model without
sacrificing the performance is paramount for such resource-
constrained mobile robots. Higher efficiency enables VPR on
cheap hardware and frees resources for additional functionalities
to improve a robot’s navigation system.

Reducing resource demand while keeping VPR performance
at a reasonable level is a difficult task. To tackle this challenge,
in this article, we propose the multistep approach summarized
in Fig. 1 that combines binary neural networks (BNNs) [26],
[41] and depth reduction to obtain very compact models that
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drastically decrease the memory requirements and improve com-
putational efficiency. The subsequent VPR performance loss is
mostly countered by training the model with a classifier stage,
including a reduced number of full-precision neurons.

BNNs are a class of networks characterized by a single-bit
precision for both weights and activations instead of the 32 bits
used by conventional deep neural networks. So far, BNNs have
been employed and highly optimized for classification tasks
only, where they exhibit lower yet comparable accuracy to their
full-precision counterparts [12], [68]. However, classification
and VPR are different problems. The first aims to find the best
fit among categories, while VPR consists of matching different
images of the same scene. To the best of our knowledge, this arti-
cle is the first attempt to employ BNNs to solve the VPR problem
effectively under environmental changes and with significantly
reduced memory requirements and computational effort. Our
best model,1 dubbed FloppyNet, achieves comparable VPR
performance to its full-precision and deeper counterparts while
consuming 99% less memory and running seven times faster.
With a model size of 154 kilobytes, FloppyNet can therefore be
stored in an old 51/4-inch floppy disk!

The rest of this article is organized as follows. Section II
presents an overview of the related work. Section III presents the
proposed multistep approach to obtain compact BNNs for VPR.
The evaluation criteria and the experimental setup are described
in Section IV. A comprehensive binary layers analysis for
VPR applications is proposed in Section V. VPR performance
results and real-time benchmarks are presented and discussed
in Sections VI and VII, respectively. Section VIII compares
the proposed BNN with several handcrafted image descriptors.
Finally, Section IX concludes this article.

II. RELATED WORK

A. Visual Place Recognition

Environmental changes, such as illumination and viewpoint
variations, render VPR a very challenging task. As the core
problem of VPR is image matching, computing a robust image
representation is fundamental for developing reliable localiza-
tion systems in dynamic environments.

Before CNNs became popular for computer vision applica-
tions, the techniques employed for image matching consisted
mainly of handcrafted image descriptors. Histogram-of-oriented
gradients (HOG) [29], [34] calculates the gradient of every
image pixel to create a histogram, with each bar representing a
gradient angle and magnitude. HOG can be either used for VPR
as a global image descriptor [57] or to describe regions of interest
in an image [79]. SIFT [52] detects key-points in an image
using difference-of-Gaussian (DoG) and uses HOG to compute a
descriptor of their neighborhood. SURF [16] is partially inspired
by SIFT. It is employed in a variety of VPR methods [28],
[60]. Gist [61] is used for image matching in [72] and [70].
Gist employs a set of Gabor filters at different orientations and
frequencies to extract global features from an image. Those fea-
tures are then averaged and combined into a vector representing

1[Online]. Available: https://github.com/bferrarini/FloppyNet_TRO

the image. CoHOG [79] is a recent image descriptor proposed
as a trainingless and computationally efficient alternative to
CNN-based techniques. It uses image-entropy [80] to detect
regions of interest that are subsequently assigned with a HOG
descriptor. CoHOG is designed to achieve lateral viewpoint
tolerance.

In recent years, machine learning techniques have become
more and more popular in VPR applications. CNN-based meth-
ods achieve high performance in various environmental con-
ditions [83] and under viewpoint variations [82]. A pretrained
CNN for a different task can be used off-the-shelf for generating
an image descriptor in place of handcrafted local and global
image descriptors. For example, the features computed by the
convolutional layers of AlexNet [48] can be used to match place
images. Hou et al. [39] showed that the features extracted from
conv3 layer of AlexNet are robust to condition variations, while
those from pool5 work well for viewpoint changes. Bai et al. [14]
used those layers’ features to improve the matching performance
of SeqSLAM [59] under viewpoint changes. AMOSNet and
HybridNet [23] are variants of AlexNet trained on Specific
PlacEs Dataset (SPED) [23] in order to compute more specific
image representations for VPR. PlaceNet [84] is based on the
same idea, but it uses VGG-16 [69], which is trained on a large
dataset, dubbed Places365, organized in 365 place categories.
CALC [58] is a lightweight CNN proposed for addressing the
loop closure detection problem efficiently. CALC is trained
using an autoencoder to recreate a HOG descriptor from geo-
metrically distorted place images. Cross-Region-Bow [24], the
regional maximum activation of convolutions (R-MAC) [74],
CAMAL [46], and Region-VLAD [45] focus on features pooling
from a pretrained network as they consider feature extraction
and aggregation as two separated stages. On the other hand,
NetVLAD [13] consists of two stages trained end-to-end. The
first is a VGG-16 network that extracts the features from an
image followed by an aggregation layer to combine them in a
VLAD-like descriptor [43].

B. Binary Neural Networks

While CNNs are effective in addressing VPR, they include
many parameters that result in a large model size and heavy
computational effort. In the last decade or so, several tech-
niques have been proposed to decrease models’ runtime re-
quirements. Early approaches targeted redundant and nonin-
formative weights: Optimal Brain Damage [50] and Optimal
Brain Surgeon [38] decrease the number of connections using
the Hessian of the loss function. Han et al. [37] showed how
to reduce the number of parameters by one order of magnitude
in several state-of-the-art networks by weight pruning. Also,
a network’s size can be shrunk by lowering the precision of
the weights. However, postquantization yields performance loss,
which is more prominent as the precision lowers. In particular,
posttraining binarization (1-bit precision) enables the highest
model compression and computational speedup but impacts
heavily on a classifier’s accuracy [27].

Binary-aware training enables low-precision models with
acceptable classification accuracy [68]. Although training

https://github.com/bferrarini/FloppyNet_TRO


FERRARINI et al.: BINARY NEURAL NETWORKS FOR MEMORY-EFFICIENT AND EFFECTIVE VPR IN CHANGING ENVIRONMENTS 2619

binary models from scratch was attempted decades ago [66],
only recently, gradient-based techniques have become appli-
cable to BNNs. Courbariaux and Bengio [26] trained a full
binary network for the first time using straight-through-estimator
(STE) [17]. The key idea of STE is to keep in memory real-valued
weights, which are binarized only in the forward pass to compute
neurons’ activation and updated during backpropagation as in
a standard neural network. Afterward, several additions to the
field were proposed to improve BNNs. In XNOR-Net [65], the
convolutional blocks (CBs) are rearranged to increase classi-
fication accuracy. Batch-Normalization (BatchNorm) is usually
placed after the convolution and before the activation function. In
XNOR-Net, BatchNorm and binary activation precede convolu-
tion so that pooling occurs before binarization. DoReFa-Net [85]
exploits bitwise operations to compute the dot product between
a layer’s weights and the inputs in an efficient way to speed up
training. In [31], binarization threshold is learned along with
the weights to shorten the accuracy gap with full-precision
classifiers. Networks using a less extreme quantization have
been proposed as a more accurate alternative to binary networks.
Ternary networks [51], [86] use three values to encode weights.
Although they exhibit a significant memory reduction and sim-
ple arithmetics, ternary networks require 2-bits to store weights
and do not outperform BNNs by a wide margin [68].

To the best of our knowledge, BNNs have been used only for
classification so far. Unlike regular CNNs, BNNs have not been
considered for VPR yet. This article aims to contribute to the
field by proposing a class of highly compact binary networks to
solve the VPR problem effectively in changing environments.

C. BNNs Inference Frameworks

Binarization reduces a model’s size dramatically and en-
ables efficient convolution computation. However, BNNs cannot
express their full potential without an inference engine that
can efficiently compute bitwise operations. Different hardware
platforms implement binary primitives, such as XNOR and pop-
count, differently. Therefore, inference libraries typically target
one or a few hardware platforms to guarantee that the deployed
models can run efficiently. In this section, we present a se-
lection of the most relevant libraries and tools for deploying
BNNs.

Courbariaux and Bengio [26] released a GPU kernel-based
that speeds up convolutions by seven times using SIMD
(single instruction, multiple data) within a register (SWAR)
technique. DaBNN [20] is a stand-alone library to deploy
BNNs on ARM platforms. Binary convolutions are computed
by combining im2col transformation and GEMM (GEneral
Matrix Multiplication). DaBNN uses ad hoc implementation
written in ARM assembly that enables 8− 10× speedup
compared to a full-precision implementation. BMXNet [87]
extends MXNet [21] providing a complete ecosystem to
train and deploy BNNs. Like DaBNN, it computes binary
convolutions by combining im2col with GEMM. BMXNet
utilizes standard C++ to implement binary operations reaching
a 13× speedup compared to floating-point convolutions written
with the CBLAS library [77]. Riptide [35] is another end-to-end

framework for training and deploying BNNs, focusing on
integrating binary convolutions with those layers that cannot be
binarized, such as BatchNorm and activation functions. Models
are trained with Tensorflow [11] and compiled for deployment
with TVM [22]. A binary model compiled with Riptide is 4×
to 12× faster than its full-precision counterpart. Larq Compute
Engine (LCE) [15] is a part of the Larq project [36] to train and
deploy BNNs. As Riptide, LCE aims to integrate efficiently
binary convolutions with a model’s full-precision components.
Also, LCE proposes a binary kernel highly optimized for ARM
platforms. The convolution speedup is 8.5− 18.5×. Finally,
FINN [76] is an experimental tool targeting FPGAs supporting
PYNQ [7]. FINN does not include a training framework but can
compile PyTorch [64] models optimized with Bravitas [63].

D. Deep Neural Networks Benchmark Analysis

Benchmark analysis is an important step to take for un-
derstating a model’s usability with the target hardware. The
dominant evaluation metrics are inference time (or inference
latency), power consumption, and memory usage. Those metrics
are particularly relevant for robotic applications as they often
rely on constrained hardware and battery supply. TANGO [44]
employs those metrics to assess CNN models deployed on
several hardware platforms. The importance of energy usage is
emphasized by Palit et al. [62], who present an energy estimation
model along with empirical data from well-established CNNs.
DNNTune [78] uses inference time and energy consumption to
tune both CNNs and quantized networks for several application
scenarios.

Finding the best possible trade-off between memory usage
and performance is an essential task when resource-constrained
hardware is employed with deep neural networks. Howard
et al. [40] proposed a class of efficient networks for mobile appli-
cations using the classification accuracy to parameters number
as a tuning criterion. Bianco et al. [19] employ the accuracy
density metric to represent the efficiency of deployed models at
using their parameters. Unlike CNN, BNN’s memory allocation
efficiency received little or no attention so far. BNNs’ memory
footprint is usually evaluated only relatively to full-precision
counterparts disjointly from their performance [18], [65]. To fill
this gap, this article extends the accuracy-parameter trade-off
analysis to quantized networks and proposes a metric to assess
the memory allocation efficiency of BNNs for VPR applications.

III. BINARY NEURAL NETWORKS FOR VPR

This section presents a new class of BNNs for VPR and
provides implementation details. To achieve memory and com-
putational efficiency while maintaining reasonable VPR perfor-
mance, we propose a multistep approach to turn a standard CNN
into a compact yet effective feature extractor. Fig. 2 summarizes
the process. Binarization reduces the model size and speeds up
convolutions by enabling bitwise operations. Depth reduction
decreases the number of layers for further model size reduction
and faster computation. The subsequent performance loss due to
binarization and layer removal is countered chiefly by training
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Fig. 2. Proposed approach consists of three steps: Binarization reduces the
model size by about 97%. Depth reduction decreases the number of layers for
further model size and MAC number reduction. The subsequent performance
loss due to binarization is mainly countered by training the network with an
appropriately sized fully connected stage consisting of full-precision neurons.

the network with an appropriately sized fully connected (FC)
stage consisting of full-precision neurons.

A. Binarization

Binarization improves both memory usage and computational
speed. Storing a 32-bit weight requires four bytes, while a single
bit is needed for a binary one. Hence, by concatenating 32
binary weights into a floating-point variable, the resulting model
size is about 97% smaller than its full-precision counterpart.
Similarly, bitwise operations between weights and activations
are computed in parallel with 32 binary operands resulting in a
significant convolutions speedup.

Training a binary model with a reasonable performance gap
from its full-precision counterpart requires applying specific
techniques and some network structure adjustments. This sec-
tion has the two-fold purpose of describing the implementation
criteria we have taken and giving a gentle introduction to BNNs.

1) Training and Binary Function: Training BNNs with back-
propagation is not applicable as it requires a sufficient precision
to allow gradient accumulation to work [41]. Courbariaux and
Bengio [26] solved this problem with STE [17]. The funda-
mental idea of STE is that the quantization function is applied
in the forward pass but skipped during backpropagation. STE
keeps a set of full-precision weights denoted as proxies (WF )
which are binarized (WB) on forward pass to make a prediction
and compute a loss. Any function can be used as binarization
function. Courbariaux and Bengio used sign function

WB = sign(WF ) . (1)

In the backpropagation phase, WF are updated accordingly
to the loss gradient as in a regular network

∂Loss

∂WF
=

∂Loss

∂WB
. (2)

Activations are binarized in the forward pass similarly to the
weights. Fig. 3 shows the plots for the binarization function.
In the forward pass, it behaves as the sign function performing
binarization. In the backward pass, the function returns a clipped
identity of the gradient. Courbariaux and Bengio [26] observed
that canceling the gradient when activation (aF ) exceeds 1.0

Fig. 3. Sign quantizer in forward and backward passes.

improves a model’s accuracy

∂Loss

∂aF
=

{
∂Loss

∂WB
, if|aF | ≤ 1

0, otherwise.
(3)

The binary Models Presented in this article use sign as a
quantizer and are trained with Larq [36]. Larq is a framework
built on top of Keras [25], which offers full support to train
BNNs with STE.

2) Encoding Values: Binary encoding of weights and acti-
vations reduces dot products to a series of bitwise operations.
In particular, representing logical “0” and “1” with −1 and
1 renders convolutions and matrix multiplications a series of
XNOR and pop-count operations [26]. However, to exploit the
efficiency of binary operations, a dedicated compute engine or
specific hardware is required [26], [41]. A conventional compute
engine stores binary weights into 32-bit variables. As a result,
multiply-accumulate operations (MAC) in BNNs require the
same time and resources as in a full-precision network. A proper
compute engine concatenates 32 binary variables into a 32-bit
register and evaluates them altogether using bitwise operations.
Typically, a binary MAC is implemented as follows:

a1 += popcount(xnor(a32o , w32
1 )) (4)

where a32o and w32
1 are sets of 32 inputs and weights. Although

weights concatenation enables the computation of multiple bi-
nary MACs in parallel, 32× speedup is unrealistic. This limita-
tion depends on several factors, including instruction schedul-
ing, CPU pipeline stalls, and the hardware instruction set above
anything else. General purpose CPUs and GPUs have special-
ized instructions for fusing a floating-point MAC in a single
clock cycle. Conversely, in the binary case, no such instructions
exist. Hence, a binary MAC results from multiple instructions
on many hardware platforms such as Nvidia GPUs [3] and ARM
processors [1]. Therefore, if we let cb represent the number of
clock cycles to compute a binary MAC for a given hardware
platform, then the obtainable speedup is capped at 32/cb.

3) Batch Normalization: Batch normalization (Batch-
Norm) [42] uses mini-batch statistics during training to adjust
and scale activations. The central role of BatchNorm in
full-precision networks is to speed up the training. In BNN,
BatchNorm is essential as it improves the performance and helps
training convergence [12], [67], [68]. It is worth mentioning
that the parameters of BatchNorm layers cannot be binarized;
however, they are few compared with the number of weights and
do not contribute significantly to a model’s size (see Table II).
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TABLE I
TEST DATASETS AND GROUND-TRUTH TOLERANCE

Fig. 4. Convolutional blocks in a CNN (left) and in a BNN (right).

4) Layers Order: A CB in a CNN consists of convolution,
BatchNorm, activation, and pool. BNNs achieve better perfor-
mance if the order of the layers is as follows: BatchNorm, binary
activation, convolution, and pool [65]. This layer arrangement
has a twofold purpose. First, it allows for pooling from real
values before binarization. Otherwise, the result would be a
tensor dense in “ones,” which is proven to negatively affect the
accuracy of a BNN [12]. Second, BatchNorm can replace bias
as it works as a threshold for the subsequent layer [67], [68].
As bias parameters cannot be binarized, not using them reduces
the memory and the number of full-precision MACs in binary
networks. The BNNs implemented for this article do not use
bias but use BatchNorm modules instead.

In the rest of this article, the term CB implies the presence of
BatchNorm in the proper position, as shown in Fig. 4.

5) First Layer Input: Full-precision inputs are recommended
to improve a binary model’s accuracy [41]. The model size
is unaffected since the weights are binary and the impact of
computational speed is acceptable when the convolution filters
is few compared to deeper layers. Accordingly with this con-
sideration, the binary networks presented in this article have the
first convolutional layer directly connected to the input image
with no binary activation and BatchNorm placed in the middle.

6) Padding: In full-precision networks, convolutions are of-
ten padded with zeros. This standard practice cannot be applied
to BNNs that require padded values within the encoding set to en-
able bitwise operations. Zero-padding, in a BNN using {−1, 1},
adds a third value along with −1 and 1 that renders convolutions
incompatible with bitwise operations. Our models, therefore, use
one-padding accordingly with the weights encoding {−1, 1}.

B. Depth Reduction

The primary motivation for depth reduction is to decrease the
number of a model’s parameters. Networks for classification
are deep and can have dozens of convolutional levels [47].
However, VPR is a different task and we empirically found that

it is possible achieving good performance with fewer layers and
weights. Not only the model size but also the computational
efficiency of the network benefits from depth reduction. For
example, our best model is obtained by removing the two in-
termediate convolutional layers from an AlexNet-like CNN, as
shown in Fig. 5(a). This operation decreases by 66% the weights
amount yielding significant model size and MACs reduction (see
Table III). In our experiments, the network resulting from depth
reduction is denoted by ShallowNet (see Fig. 2).

C. Fully Connected Stage Tuning

BNNs are highly optimized for classification. The FC stage
of classifiers is often populated with a large number of neu-
rons. AlexNet and VGG16, for example, include 4096 units in
each layer. When it comes to training a model for VPR, the
hyperparameters of the FC layers should be revised. Our best
binary model is trained using 256 32-bit neurons per FC layer
[see Fig. 5(b)]. The optimal FC size of 256 neurons has been
determined empirically by training and testing several models.
The use of a full-precision instead of binary FC stage is based
on the following considerations. Binary weights are a source of
gradient noise [41] that renders the training more complex and
longer to complete [75]. Using 32-bit FC reduces the number
of binary weights that need to be learned, making training more
stable. Smoother training has a lower chance to overshoot a
loss function’s minimum resulting in a better optimized model.
Fig. 6 shows the VPR performance of the proposed model for
various FC sizes. The performance peak corresponds to 256
full-precision neurons. It is relevant mentioning that FC-stage
tuning is applicable only when VPR is carried out with convo-
lutional features [see Fig. 5(c)]. This is the case of the proposed
FloppyNet, which uses pool5 features for VPR, as detailed in
Section IV-E.

IV. EXPERIMENTAL SETUP

This section provides details about the experimental setup
(including evaluation criteria, training, and test datasets) used
for assessing the VPR performance of the BNNs presented in
Section IV-D.

A. VPR Performance

VPR is cast as a loop-closure detection task [14]. Reference
images showing already visited locations are searched to find
the best match with the robot camera’s current view, namely
the query image. VPR is considered successful when a query
image is paired with one of the correct reference images. The
image descriptors used to match images are obtained by L2-
normalization of a network’s layer output

D =
X̂l

||X̂l||2
(5)

where X̂l is the output of the lth layer.
Descriptors are compared using Euclidean distance; the

shorter the distance, the higher the similarity between two
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TABLE II
BASELINE STRUCTURE AND MODEL SIZE BEFORE AND AFTER BINARIZATION. SIZE RATIO IS BETWEEN BINARIZED AND FULL-PRECISION MODELS

Fig. 5. (a) Depth reduction and (b) FC tuning applied to AlexNet. Depth reduction consists of removing conv3 and conv4 layers. (c) Three pooling layers are
kept to maintain the exact shape of the pool5 output feature map.

TABLE III
PROPOSED BNNS STRUCTURE AND MODEL SIZE

images

d = ||D1 −D2||2 (6)

where D1 and D2 are the image descriptors to be compared.
The reference image with the shortest distance from the query
is regarded as the current location.

Following the approach proposed in [33], VPR is evaluated
on a whole dataset with SP100 index. It represents the ratio of
places that are correctly recognized against the ground-truth.

B. Memory Allocation Efficiency

VPR performance is also evaluated in relation to memory
requirements. We define memory efficiency as the ratio of the
model size to SP100

ηm =
Msize

SP100
. (7)

ηm measures the memory cost per SP100 point, expressing
the trade-off between memory usage and VPR performance. The
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TABLE IV
Sp100 FOR EVERY LAYER IN BASELINE

The bold entity indicates the highest value in the row.

Fig. 6. AverageSP100 across all the test datasets for full-precision and binary
fully connected stages at different layer sizes.

lower is ηm, and the more efficient is the model at using memory.
Memory efficiency is a generalization of the trade-off analysis
between accuracy and parameters density [19] to low-precision
networks whose memory footprint also depends on weight
quantization, and hence, the use of model size instead of the
number of weights in (7). Moreover, ηm can be applied to net-
works having the same structure but different weight precision
to determine the relationship between VPR performance and
quantization, providing additional information to characterize a
low-precision network or choose the optimal quantization for an
application.

C. Inference Latency and Power Usage

Inference latency, Ti, and power usage (Pw) measurements
are taken from deployed models. Ti is the time required by
a model to complete a forward pass. The time intervals to
load an image and consume the output are excluded from the
measurement so that Ti reflects the actual computational effort
for an image representation. Pw is measured directly on the
hardware platform and used to determine the inference energy
cost

Ei = PwTi . (8)

1) Training Data: The dataset used to train all the models
is Places365 [5], [84]. It is a place-themed dataset consisting of
1 803 460 images divided into 365 categories with between 3068
and 5000 images in each category. The validation set includes
100 images per location class.

2) Test Data: On long-term runs, a robot visits a place at
different times or from different directions. These factors yield
changes in the appearance of places captured by the robot’s

Fig. 7. Corresponding image pair from each test dataset.

camera. In order to provide comprehensive results, test data
include four datasets, each containing environmental and/or
viewpoint changes. All datasets have two subsets that correspond
to different traverses of the environment (see Fig. 7). One is the
reference dataset representing the previous knowledge of the
environment while the other is the query dataset that represents
the current traverse. The datasets include a different number of
query images. To compute fair average performance indicators
(e.g., Table IV), we randomly sampled 200 query images from
each of them for a total of 800 images.

The datasets are detailed below and summarized in Table I.
1) GardenPoints Walking [73]: This dataset includes three

traverses of the Queensland University of Technology (QUT).
The experiments employed Right-Day and Right-Night to test
VPR under illumination changes and mild lateral shifts. Ground-
truth is built by frame correspondences with a tolerance of ±2
frames [53].

2) Nordland [71]: A set of four traverses captured along a rail
track in Norway in every season. The experiments employed
Summer and Winter journeys as reference and query datasets,
respectively. The ground-truth is built with a tolerance of ±5
frames [53].

3) Old City [56]: A urban dataset with two traverses show-
ing the same location from different perspectives to generate
the viewpoint variations experienced by a 6-DOF (degrees-of-
freedom) aerial robot. The ground-truth data are available from
the authors [10].

4) RobotCar Cross-Seasons [49]: A subset of the Oxford
RobotCar dataset [54] consisting of two sequences of 206 sunny
query images and 202 dusk reference images recorded on board
of a car driving in an urban environment. This dataset includes
illumination changes, mild lateral viewpoint shifts, and dynamic
elements such as pedestrians, cars, and shadows. Ground-truth
is built by frame correspondences with a tolerance of±5 frames.
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Fig. 8. FloppyNet layer structure. The output features used for VPR are from
the pool5 layer.

5) Binary Network and Comparison Baseline: The net-
works used for the experiments are based on the AlexNet
archetype [48], which is one of the most used network types
for VPR [13], [24], [45], [74]. AlexNet-type networks’ structure
consists of several CBs alternated with pool layers followed by
a FC stage with one or more hidden layers.

The baseline CNN, denoted by Baseline in this article, is very
similar to a standard AlexNet [48] except for the use of Batch-
Norm and pool layers with a 2× 2 nonoverlapping kernel for
higher accuracy [48]. Baseline network has five CBs followed by
a FC stage with two hidden layers, including 4096 neurons each.
The detailed structure is shown in Table II using the following
notation. C(k, s, h) indicates a CB with kernel size k, stride
s and h channels (filters). A similar notation is used for max
pooling: P (k, s). FC layers are indicated with FC(n), where n
is number of neurons. The model sizes and MACs reported in
Table II are cumulative per network layer. For example, if the
baseline is cut to use fc6 features, the corresponding size of the
model is 158.32 MiB, and the MACs are 1.1 billion. BinaryNet
is the binary version of Baseline. The bottom part of Table II
shows the number of binarizable parameters. The remaining
32-bit parameters are due to BatchNorm as described in Sec-
tion III-A3. However, their contribution to the binary model size
is negligible. BinaryNet sizes vary from the 3.12% of Baseline
at conv1, which is not preceded by a BatchNorm layer, to
3.18% at pool5.

6) FloppyNet: FloppyNet consists of three binary CBs and
three pool layers, as shown in Fig. 8. Binarization, jointly
with depth reduction applied to Baseline, resulted in a compact
model of 154 KiB. The layers removed in the depth reduction
step are conv3 and conv4. The output layer of FloppyNet is
denoted as pool5 by convention. We kept the same name as in
Baseline network since they have the same structure and pro-
vide feature vectors with the same shape and element number:
6× 6× 256 = 9216 elements.

The primary motivation for FloppyNet is to reduce the model
size further and shorten the inference latency. With two fewer
convolutional layers, FloppyNet uses 33% of the memory of
BinaryNet at the pool5 layer, computing 39% fewer MACs (see
Table III).

Binarization and depth reduction cause a performance loss
that is mostly compensated by tuning the FC stage properly for
the training. Our best model is obtained with 256 full-precision
neurons in both fc6 and fc7. This training approach’s effective-
ness is demonstrated in Section VI where FloppyNet is compared
against ShallowNet, which is trained without tuning the FC
stage.

V. BNN LAYERS ANALYSIS

The first question to answer when a convolutional network
is employed as a feature extractor is: which layer is the most
suitable to build a distinctive image descriptor? This section
provides a VPR performance assessment of the features from
every layer in both Baseline network (Section IV-D) and its
binary counterpart, BinaryNet. The results obtained drove the
design of FloppyNet toward the use of pool5 as an output layer.

CNNs can learn features at different levels of abstraction.
Convolutional features retain some spatial information. How-
ever, as the depth increases, pool layers induce the loss of such
a spatial information in favor of translation invariance. In FC
layers, the activation of a neuron depends on every neuron in the
previous level. Hence, the spatial information vanishes while
improving the invariance to viewpoint changes and translation
in particular [39]. The second question we need to answer is:
how does binarization impact layers’ features and VPR matching
performance?

The answers to these questions are given in Tables IV and V,
which show SP100 for every layer of Baseline and BinaryNet,
respectively. In Baseline, FC layers and deeper convolutions
handle viewpoint changes better than initial layers. Fc6 and
fc7 obtain the highest performance under the extreme view-
point changes that characterize Old City. Pool5 is the best on
GardenPoints, which includes mild viewpoint shifts other than
day-light variations. On the other hand, shallower layers deal
better with appearance changes. Nordland includes only sea-
sonal variations, and the best layer is conv4 with SP100 = 95%.
These results partially confirm the findings of a previous study
on a standard AlexNet [39], which indicates conv3 as the best
layer to deal with appearance changes while pool5 and, in some
cases, fc6 as the best choice to deal with viewpoint changes.

Binarization negatively affects VPR performance, but the
characteristics of the layers are more or less unchanged. As
shown in Table V, pool5 achieves the highest performance on
the same dataset as for Baseline. Similarly, FC layers outperform
the others on Old city.

Overall, pool5 is the layer that guarantees the highest average
performance across the four datasets. The average SP100 is
73.8% for Baseline and 64.3% for its binary counterpart. The
gap is moderate (9.5%), especially considering that BinaryNet at
pool5 requires only 3.18% of memory used by the Baseline (see
Table II). The average SP100 is computed across all the datasets
as they formed a single environment to simulate a workspace, in-
cluding a wide variety of viewpoint and appearance changes. For
a robot navigating such a workspace, pool5 features guarantee
the most reliable and consistent VPR performance. Accordingly,
we designed FloppyNet with the same shape progression of
the feature maps as in BinaryNet to have the output layer with
similar characteristics as pool5. As detailed in Section IV-E, this
is obtained by removing two inner CBs: conv3 and conv4.

VI. VPR PERFORMANCE COMPARISON

FloppyNet is compared against several other networks. These
include HybridNet, VGG-16, CALC, Baseline (Section IV-
D), BinaryNet, ShallowNet, and a 8-bit implementation of
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TABLE V
Sp100 FOR EVERY LAYER IN BINARYNET

The bold entity indicates the highest value in the row.

TABLE VI
MODELS’ PERFORMANCE AND EFFICIENCY FOR RASPBERRY PI 4 IMPLEMENTATIONS

Fig. 9. FloppyNet is compared on a variety of imaging conditions against the (a) Baseline, BinaryNet, and ShallowNet, (b) full-precision networks, and (c)
several FloppyNet versions with different quantization levels.

FloppyNet. ShallowNet is the version of FloppyNet trained with
regular FC layers of 4096 binary neurons as described in Sec-
tion III-B. HybridNet [23] is a version of AlexNet with an addi-
tional CB trained on ImageNet and tuned on SPED dataset [23].
To avoid training data influencing the results, we trained an
HybridNet model by replacing ImageNet with Places365, which
is the dataset used to train the other models considered for the
experiments. The results for HybridNet are obtained with pool6
features. VGG-16 [69] is a very deep network if compared to
FloppyNet since it includes 13 CBs. It is relevant to include
VGG-16 in the comparison because several multistaged VPR
methods widely use it as a feature extractor. Some examples are
R-MAC [74], Cross-Region-Bow [24], and NetVLAD [13]. The
VGG-16 model has been trained from scratch using Places365,
and the features used for the tests are from the very last pool
layer. CALC [58] is a lightweight CNN designed to address VPR
with low resource requirements. CALC includes about 137 K
parameters: a small fraction of 3.75 M of Baseline and 1.24 M
of FloppyNet (see Table VI). We used the model trained on
Place365 shared by the authors. The 8-bit version of FloppyNet
is included in the comparison to show that BNNs also scale
well to 8-bits quantization, demonstrating potential applicabil-
ity of binarization for VPR as a more efficient yet effective
approach.

A. Comparison With the Baseline

FloppyNet aims to achieve similar performance as the starting
Baseline network (Section IV-D) with higher efficiency. Fig. 9(a)
shows comparative results between FloppyNet, Baseline, and
the intermediate design steps: BinaryNet and ShallowNet (Sec-
tion IV-E). Binarization and depth reduction negatively impact
the VPR performance. BinaryNet and ShallowNet score the
lowest SP100 on every dataset, exhibiting a substantial gap from
Baseline. FloppyNet outperforms BinaryNet and ShallowNet
on every dataset confirming that tuning the FC stage during the
training (Section III-C) mitigates the performance loss due to
binarization and depth reduction.

In general, Baseline has better performance than FloppyNet.
However, on GardenPoints, Nordland, and Robotocar, the
difference is small and is due to a few places with some
particular characteristics.

The most difficult locations to recognize for FloppyNet are
those presenting strong viewpoint variations. On Old City, the
SP100 difference is 8.5%, which is the highest among the test
datasets. An analysis on GardenPoints mismatches confirms
such a FloppyNet’s weakness. GardenPoints presents mild later
shifts except in a few locations where FloppyNet fails while
Baseline succeeds (see Fig. 10(a)).
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Fig. 10. Some significant query results from (a) GardenPoints, (b) Nordland, and (c) RobotCar Cross-Seasons datasets.

FloppyNet scores almost the same SP100 as Baseline on
Nordland, 84% versus 85%. The mismatches are mainly be-
tween locations showing tunnel entrances. Fig. 10(b) shows two
examples of mismatch. FloppyNet retrieves the same reference
image on two different queries, including a tunnel.

FloppyNet scores a good SP100 on RobotCar as well. The
SP100 difference with Baseline is caused by a series of wrong
matches in the two locations shown in Fig. 10(c). The high illu-
mination contrast and the occlusions due to dynamic elements,
such as cars and shadows, are possibly the cause of FloppyNet’s
failures.

B. Comparison With Full-Precision CNNs

Full-precision and deeper networks obtain better VPR per-
formance than the proposed binary network [see Fig. 9(b)].
Substantial gaps are exhibited on Garden Points and Old City
by VGG-16 and HybridNet, respectively. On the other hand,
those two networks are far larger than FloppyNet even without
considering the weights’ precision. FloppyNet scores an average
SP100 of 68.7% using 1.24 M binary parameters and computing
653 M MACs. The highest average SP100 is achieved by VGG-
16, 77.9%. However, VGG-16 includes 14.7 M weights and
computes 15.3 B floating-point MACs resulting in two orders of
magnitude longer inference latency (see Table VI). The small
number of parameters penalizes CALC, which our network
outperforms by a large margin on every dataset. Moreover,
its low VPR performance is not compensated by a sufficient
computational efficiency as CALC is about two times slower
than FloppyNet, as detailed in Section VII-A.

C. Weight Precision Impact

Fig. 9(c) presents a comparison between our best FloppyNet
model and its 8-bit and full-precision versions to examine the
impact of weight quantization on place recognition capabilities.
Increasing the quantization bits has a positive effect on VPR
performance. FloppyNet-8 bit outperforms FloppyNet in every
test scenario and nearly closes the gap with Baseline (Section IV-
D) except on Old-City. Indeed, the reduced depth affects VPR
performance on significant viewpoint changes, as discussed in
Section VI-A. Overall, FloppyNet has slightly lower perfor-
mance than the higher precision models except on GardenPoints,
where the gap from the 8-bit implementation is the largest, 6%.

On the other hand, 8-bit quantization yields eight times larger
models and almost doubles the inference latency and energy
consumption, as shown in Section VII. The higher resource
demand of 8-bit quantization might be unsuitable for extremely
cheap hardware, where binarization can be used instead. Finally,
further increasing the precision of the weights does not signif-
icantly improve the VPR capabilities of the proposed network.
As shown in Fig. 9(c), 8-bit and 32-bit models score similar
SP100 on every dataset.

D. Memory Efficiency

Table VI presents the memory efficiency for all the compared
networks. SP100 is the average score on the four datasets.
Binary networks have extremely low ηm values compared to any
full-precision network. FloppyNet requires 2.24 KiB per SP100

point, while CALC, the most memory-efficient CNN, requires
13.26 KiB. ShallowNet has the same size as FloppyNet but lower
SP100, hence it uses memory less efficiently: ηm = 2.45 KiB.
FloppyNet-8 bit performs better on average than the 1-bit model
by 2.7% but requires about eight times the memory. The con-
siderably higher ηm = 16.99 KiB reflects this trend, indicating
that the increase of the model size does not correspond to a
proportional increase in VPR performance.

E. Binarization, Depth Reduction, and FC-256

Fig. 11 shows SP100 relatively to Baseline (Section IV-D)
resulting from using binarization (Bin), depth reduction (Depth),
and FC-stage tuning (FC256) separately and their relevant com-
binations. The features used to obtain the results are from the
pool5 layer.

Depth reduction (Depth) yields a full-precision network with
better performance on Nordland and RobotCar. Depth reduc-
tion makes the output layer of a model retaining more spatial
information compared to Baseline. Shallower layers are more
suitable to deal with appearance changes (see Table IV). For
this reason, depth reduction improves the performance on Nord-
land and Robotcar datasets that present significant appearance
changes while none or mild viewpoint variations. Training a
full-precision model with 256 neurons in the FC stage (FC256)
helps VPR significantly to tackle extreme 6-DOF viewpoint
variations. FC256 model achieves 25% higher SP100 on Old
City than the original model trained with 4096 neurons in the
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Fig. 11. SP100 is relative to Baseline (dotted line) of several combinations
of the three techniques used by FloppyNet: depth reduction, binarization, and
training using a fully connected stage with 256 neurons. The features used for
VPR are from pool5 layer.

FC stage. In classifiers, the FC stage is usually sized as large
as possible to maximize accuracy while avoiding overfitting.
Conversely, the empirical evidence shows that VPR benefits
from a smaller FC stage. These results suggest that the FC stage
has different roles in classification and VPR tasks.

Depth reduction does not help Sp100 scores of the binarized
models. The values of Sp100 for binary (bin) and shallow binary
networks (bin+dep) are very close to each other on every test
dataset (Nordland in particular), which is rather unexpected
considering the full-precision case (Depth). The red bars in
Fig. 11 represent FloppyNet, which implements all the steps
of the proposed approach. The addition of FC-stage tuning
counters the Sp100 loss due to binarization and depth reduction
in every tested scenario (except Garden Point), supporting the
effectiveness of the proposed training approach.

VII. BENCHMARK ANALYSIS

The software framework used to deploy binary models is
Larq Compute Engine (LCE) [15]. LCE consists of a model
compiler and a kernel to compute binary convolutions within the
Tensorflow Lite runtime environment (TFlite) [9], [30]. LCE was
a natural choice as it is part of the Larq ecosystem [36] we used to
train our models. The 8-bit and full-precision implementations
use the built-in TFlite compute kernel.

The evaluation criteria are the inference latency and power
usage. Inference latency indicates the time required to complete
an inference, namely to compute an image representation. Power
usage is measured on a model execution and is used to determine
the energy cost per inference [see (8)]. The platform employed
for the experiments is a Raspberry PI4 (RPI4) that sits on an
ARMv8 Cortex-A72 running at 1.5 GHz [8]. The operating
system is Ubuntu 20.04 Linux, 64-bit.

A. Inference Latency and Computation Speedup

Fig. 12(a) compares the inference latency of Baseline
(Section IV-D) and two FloppyNet implementations: 1-bit and
8-bit. The values reported in the figure are an average of 100 runs
using four threads, namely employing all the cores available in

the RPI4’s CPU. FloppyNet has a latency of 18.2 ms, which is
about seven times shorter than Baseline’s (132.4 ms).

Table VI presents the inference latency for all the tested
models. FloppyNet is considerably faster than any other full-
precision CNN including CALC, which computes only 186 M
MACs, 28.5% of FloppyNet’s MACs. However, it takes a consid-
erably longer inference time than our network, 45.1 ms against
18.2 ms, while achieving considerably lower VPR performance
[see Fig. 9(b)]. BinaryNet’s latency enables an analysis of the
speedup contributions provided by binarization and depth reduc-
tion. BinaryNet has the same structure as Baseline except for the
binary weights and runs in 21.6 ms, resulting in six times faster
than its full-precision counterpart. Depth reduction removes two
convolutions from BinaryNet, shortening the execution by a
further 16%. Latency measures demonstrate that FloppyNet also
scales well to 8-bit quantization. FloppyNet-8 bit completes
an inference in 33.2 ms, resulting almost twice slower than
FloppyNet.

B. Power Usage

The power usage is measured with an ampere meter connected
to the USB-C power port of the RPI4. The energy spent per
inference by a model, Ei, depends on the power absorbed by
the RPI4, Pw, and the inference latency, Ti [see (8)]. Pw is
stable during an inference depending only on a model’s weights
precision because of the computational kernel used: LCE for
binary models and TFlite for 8-bit and full-precision models.
The measured Pw is 2.54 W, 2.62 W, and 2.88 W for binary,
32-bit, and 8-bit models, respectively. As Ti varies in a wider
range than Pw (see Fig. 12), Ei depends mainly on a model’s
inference latency. The rightmost columns of Table VI show the
power absorption and inference energy for every model. BNNs
consume less energy than any other considered network. In
particular, FloppyNet uses 46.2 mJ per inference, which is con-
siderably more energy-efficient than the 8-bit implementation
and Baseline spend of 95.5 and 346.4 mJ, respectively.

VIII. COMPARISON WITH HANDCRAFTED DESCRIPTORS

This section compares FloppyNet with several handcrafted
image descriptors relevant for VPR applications [81]. They
include HOG [29], GIST [61], and CoHOG [79]. The results
show that our model has significantly better VPR capabilities
while having comparable or higher computational efficiency
than the considered handcrafted descriptors.

A. Handcrafted Descriptors Setup

The platform employed for measuring the processing time
is a Raspberry PI4 (RPI4), as in the previous section. The
handcrafted descriptors setting used for the experiments are as
follows.

1) HOG: We used the OpenCV 4.5.0 implementation with
a cell size of 16× 16 and block size of 32× 32, as suggested
in [81]. The input image size is set to 256× 256 pixels, which
is similar to FloppyNet’s input size of 227× 227 pixels.
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Fig. 12. (a) Inference latency and (b) energy usage of FloppyNet models and Baseline executed with four threads on a Raspberry PI4.

Fig. 13. (a) VPR performance and (b) computational latency of HOG, CoHOG, and GIST compared with FloppyNet. The latency is measured on a Rasperry PI4.

2) CoHOG: We used the code shared by the authors with
their recommended settings [2]: cell size of 16× 16, 8 bins, and
entropy threshold of 0.4. The image size is 256× 256 pixels.

3) Gist: It is available in the C library Lear’s GIST through
the pyleargist python wrapper [6]. Gist is used with the pa-
rameters indicated by the authors [4]: four blocks and eight
orientations per scale. We set the image size to 128× 128 pixels
to keep the Gist’s latency comparable with the other methods.
Indeed, using 256× 256 images extends Gist’s processing time
by roughly four times.

B. Results Discussion

Fig. 13 shows the results. FloppyNet achieves substantially
better VPR performance on every dataset scoring an average
SP100 of 68.7%. Gist achieves the highest VPR performance
among the handcrafted descriptors but results in the slowest one
taking 105 ms to process an image.

Our network is the fastest technique when running using all
the four RPI4’s cores. However, Gist and HOG implementations
cannot run on multiple threads. We reported the inference latency
for FloppyNet running on a single thread in Fig. 13(b) for a
fair comparison. Only HOG runs faster than our network taking
20.4 ms to process an image instead of the 39.1 ms required

by FloppyNet (1-thread). On the other hand, HOG exhibits a
wide VPR performance gap on every dataset. HOG scores an
average SP100 of 39.4%, whereas FloppyNet achieves SP100 =
68.7%. We conclude that the shorter latency of HOG does not
compensate for the poor VPR performance it achieves compared
to our network.

IX. CONCLUSION

In this article, we proposed FloppyNet, a compact binary
network, to solve the VPR problem. FloppyNet achieved
comparable VPR performance to deeper and full-precision
networks in changing environments with drastically lower
memory requirements and substantial computational speedup.
Such lightweight networks open up several opportunities for
embedded systems and edge computing in general. FloppyNet
may be employed to enable VPR on very cheap hardware
or replace standard CNNs to free up resources to allocate
for additional functionalities to improve a robot’s navigation
system or increase the frame rate on low-cost embedded
applications. For example, NetVLAD is a two-stage image
descriptor that uses VGG to extract image features that
are subsequently postprocessed to compute a robust image
representation. VGG is a large network that requires a relatively
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long time to extract image features. If a BNN, such as
FloppyNet, is used instead, NetVLAD’s memory requirements
and computational efficiency improve dramatically. This
example suggests that a natural extension of this article
investigates the applicability of BNNs in multistage descriptors
that use a CNN as a feature extractor.
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