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ABSTRACT 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

School of Electronics and Computer Science 

Doctor of Philosophy 

Susceptibility Weighted Image Analysis Methods for Hypoxic-Ischaemic 

Encephalopathy Prognosis 

by Zhen Tang 

Neonatal hypoxic-ischaemic encephalopathy (HIE) is a major cause of newborn deaths and 

neurodevelopmental abnormalities around the world. Susceptibility weighted imaging can provide 

assistance in the prognosis of neonatal HIE. The propose of this research is to develop a new automated 

system to assess neonatal brain injury and developmental outcome by detecting and analysing vessel features 

in SWI images. 

In this research, a dataset of SWI images acquired from 42 infants with neonatal HIE is used for feature 

extraction. Firstly, the ridges representing the veins in the SWI images are detecting to obtain features 

including the width, intensity value, length of veins, and Hessian eigenvalues for ridges. The normalized 

histograms of these features are used as feature vector for classification. Individual or concatenated feature 

vectors are fed into kNN and random forest classifiers to predict the neurological outcomes of infants with 

HIE at the age of 24 months. We select the balanced SWI dataset to avoid the bias. The feature vectors 

containing width, intensity, length and eigenvalue show a promising classification accuracy of 78.67% ± 

2.58%. Then we use the feature vectors to train support vector regression and random forest regression 

models for predicting the motor score and cognitive score of infants with HIE assessed by Barley-III at the 

age of 24 months. Our mean relative errors for cognitive and motor outcome scores are 0.113±0.13 and 

0.109±0.067 respectively. The features derived from the ridges of the veins are good predictors of 

neurological outcome in infants with neonatal HIE.   

Further, we design a supervised classifier for automatic prognosis of automated detection of SWI signs of 

HIE. This classifier also enables to determination of brain regions which have been affected by hypoxic-

ischaemic by extracting appropriate features from SWI images. Our classifier can classify the veins in the 

SWI images into normal and abnormal group by clinical assessment outcomes. The number and location of 

abnormal veins in the brain of HIE neonates will predict the neurodevelopmental outcomes of infants with 

HIE at the age of 24 months. Our classifier proposed in this study demonstrates a superior performance in 
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HIE prognosis for the dataset associated with cognitive and motor outcomes. The accuracy of early 

prediction of motor outcome at 2 years of age using SWI images in newborns by our classifier achieves 75% 

± 13.9%. We also employed the linear regression, polynomial regression, and support vector regression 

model to predict outcomes and the lower mean relative errors for motor and cognitive outcomes are 

0.088±0.073 and 0.101±0.11 respectively.  

Then we extract the feature vectors of global and local brain by the histogram of oriented gradient descriptor. 

We obtain the brain regions associated with motor and cognitive function by image registration. The 

histogram of oriented gradient feature vectors of these brain regions are fed into the kNN and random forest 

classifiers to predict the motor and cognitive outcome. The result shows an effective classification for 

cognitive outcome, which achieved an accuracy of 76.25±10.9. 

In addition, we propose a convolutional neural network model to classify the SWI images with HIE. Due to 

the lack of a large dataset, transfer learning method with fine-tuning a pre-trained ResNet 50 is introduced. 

we train a convolutional neural network model to classify the SWI images with HIE. Due to the lack of data, 

transfer learning method with fine-tuning a pre-trained ResNet 50 network is introduced. The balanced 

datasets are selected randomly to avoid bias in classification. Then we develop a rule-based system to 

improve the classification performance, with an accuracy of 0.933 ± 0.086. We also compute heatmaps 

produced by the Grad-CAM technique to analyze which areas of SWI images contributed more to the 

classification results. 

Our research demonstrates that the features derived from the vascular ridges improve the prognostic value 

of SWI images in HIE. Furthermore, our findings suggest that it is possible to predict neurological, motor, 

and cognitive outcomes by numerical analysis of their neonatal SWI images and to identify brain regions on 

SWI affected by HIE. 
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Chapter 1 

Context and Contributions 

1.1. Introduction 

Hypoxic-ischaemic (HI) brain injury is a type of neonatal brain damage caused by oxygen 

deprivation and limited blood flow, and it is an important cause of perinatal death or 

neurodevelopmental (motor, cognitive, behavioural and speech) impairment in newborns 

worldwide [1-2]. About 0.2% of infants are affected by HI in developed countries [3]. In 

addition, 20% to 50% percent of asphyxiated newborns show hypoxic-ischemic 

encephalopathy (HIE) and die in the neonatal period. As many as 25% of survivors show 

permanent neuropsychological disorders [4]. HIE carries a high risk for neuro-motor, cognitive 

and behavioural difficulties, epilepsy, and visual and hearing impairment in survivors. Early 

diagnosis and assessment of the injury location and its extent is important for counselling and 

identifying those who may benefit from early intervention [5]. Because of the complexity of 

HI brain damage, traditional methods of diagnosing HIE results are time-consuming and 

inefficient [6]. Therefore, the application of an automatic method would be useful to streamline 

the procedure for specialists to make an early diagnosis.  
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1.1.1. Aetiology of HIE 

Various problems or medical complications may cause HIE, any of which can occur before, 

during or after the baby is born [7-8]: (1) in the antepartum period, e.g. problems with blood 

circulation to the placenta, lung malformations; (2) during the intrapartum period, e.g. 

umbilical cord accidents, prolonged late stages of labour; (3) in the postpartum period, e.g. 

severe cardiac or pulmonary disease, severe prematurity. 

   

                                              a.                                                             b. 

Figure 1. 1 a) Decreased blood flow to brain [28] (Reproduced with permission of Ref. 28, Copyright 
of © 2016 Nucleus Medical Media. All rights reserved.); b) Ischaemic stroke [29] (Reproduced with 
permission of Ref. 29, Copyright of © 2020 current nanoscience. All rights reserved.) 

Perinatal asphyxia is a major cause of HIE in neonates, as it is associated with a lack of blood 

supply to the brain cells and low oxygen levels, resulting in neonatal brain dysregulation and 

secondary brain damage [9-10]. Asphyxia can be caused by any factor that impairs blood 

circulation and gas exchange between the mother and the foetus and causes a decrease in blood 

oxygen concentration [11]. According to statistics, intrauterine asphyxia occurs in 50% of 

newborns under normal circumstances, birth asphyxia occurs in about 40% of newborns and 

only 10% of newborns are born with a congenital condition [12]. The occurrence of perinatal 

asphyxia is closely related to several factors [11]: 

1) umbilical cord prolapse 

2) uterine rupture 

3) maternal collapse 
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4) placental abruption 

5) maternal comorbidity, etc. 

1.1.2. Pathogenesis of HIE 

The human brain is supplied with energy by glucose oxidation and its metabolism is so active 

that it can account for over 50% of the whole body’s oxygen consumption [13]. The brain tissue 

of newborns is very low in glycogen, and therefore cerebral blood circulation is the key to 

supporting the entire energy supply [7]. 

Hypoxic leads to damage to the cell membranes of the neonatal brain metabolism, a severe 

deficiency of adenosine triphosphate, impairment of sodium pump transport channels, lactate 

build-up and increased carbon dioxide, resulting in metabolic acidosis [10]. The vicious cycle 

of reduced perfusion and increased permeability of the vascular wall eventually leads to cellular 

oedema, further exacerbating the ischaemic environment. Excessive leakage of intracellular 

water molecules, sodium ions and proteins creates neuronal cell death accompanied by 

intracranial haemorrhage [14]. If prolonged, it often results in irreversible brain damage, which 

clinically manifests as permanent neurological deficits, such as mental retardation, ataxia, 

intermittent epilepsy and spasticity, and even cerebral palsy [14]. Figure 1.2 shows that the 

pathogenesis of hypoxic-ischaemic encephalopathy. 

With intensive clinical research, it was found that the main mechanism of neonatal ischaemic-

hypoxic encephalopathy lies in the disturbance of cerebral blood flow (CBF). Lactic acid 

accumulation and local tissue acidosis disrupt the automatic control of CBF, leading to brain 

cell necrosis [14-15]. The increased venous pressure and damage to the endothelium can cause 

capillaries or small veins to rupture and bleed due to venous stasis and increased partial 

pressure of carbon dioxide stimulated by hypoxic [9]. Changes in CBF include chronic 

ischemia and hypoxic (damage to the brain’s selective vulnerability), acute ischemia and 

hypoxic (damage to the thalamus and brainstem nuclei) and impaired vascular homeostasis 

[16].  
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Figure 1. 2 Pathogenesis of hypoxic-ischaemic encephalopathy 

1.1.3. Medical image analysis of HIE 

Besides the clinical presentation, the diagnosis of HIE can be made by electroencephalography 

(EEG), brainstem auditory evoked potentials, transcranial Doppler ultrasound, cranial 

computed tomography (CT) and cranial magnetic resonance imaging (MRI) to detect brain 

damage in newborns [17]. 

EEG in neonates could be susceptible to interference. And increased cerebral blood flow will 

cause a decrease in brain wave amplitude and fast waviness. Transcranial Doppler ultrasound 

has a limited scanning range as the ultrasound probe probes through the fontanelle. Brainstem 

auditory evoked potentials require relatively undisturbed shielding. CT has the inherent 

disadvantage of radiation exposure [17-18]. 

In contrast, MRI is increasingly used in the diagnosis and prognostic assessment of HIE 

because of its radiation-free, high soft-tissue resolution and the ability to image multiple 

sequences and modalities to comprehensively assess the localisation and extent of the lesion 

[18]. 

1) Conventional MRI sequences 

Conventional MRI sequences, including T1WI, T2WI and T2-FLAIR, can clarify the 

location and extent of HIE lesions and their relationship to surrounding structures. The 

water content of the brain is high in the neonatal period. Some of the white matter has not 

yet been myelinated, and there is little difference between the water content in the cortex 

and white matter. It is difficult to distinguish grey matter from white matter in conventional 

T1W1 and T2W1 [19]. 
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2) Diffusion weighted imaging 

Diffusion weighted imaging (DWI) is more sensitive to HI diffusion restriction of brain 

cells, especially for the display of lesions in the white matter areas of the brain, the internal 

capsule, and parts of the corpus callosum [20].  

3) Perfusion weighted imaging 

Perfusion weighted imaging assesses local tissue viability and function by quantifying 

blood perfusion at the capillary level in brain cells. Arterial spin-labeled perfusion MR 

imaging is used to assess cerebral blood flow in hypoxic ischaemic [21]. 

4) Diffusion tensor imaging 

Diffusion tensor imaging is a functional imaging technique based on the directionality and 

integrity of in vivo cerebral white matter fibrils presented on DWI, which reflects the 

diffusion characteristics of water molecules in various directions by diffusion tensor and 

vector. Diffusion tensor imaging can evaluate HIE-induced white matter damage by 

showing abnormalities in the white matter fibrils of the brain [22]. 

5) Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS) imaging allows the study of metabolite levels in 

living cells and quantifies biochemical characteristics. MRS allows quantitative monitoring 

of changes in lactate, choline, creatine and glutamine concentrations and can provide 

quantitative evidence of tissue hypoxic in HIE [23]. 

6) Susceptibility weighted imaging 

Susceptibility weighted imaging (SWI) is based on thin high-resolution scans of gradient-

echo sequences combined with three-dimensional fully flow-compensated sequence 

reconstruction. Dynamic-compensated sequence reconstruction is very sensitive to local 

magnetic field inhomogeneities such as calcifications, haemorrhages, iron deposits; e.g. 

haemorrhage, and iron deposition, can identify small foci of haemorrhage in the brain 

parenchyma. SWI has potential diagnostic value in neonatal HIE and confirms that the 

pathological changes in HIE are closely related to the nature and extent of the injury. SWI 

sequences are significantly better than conventional sequences in detecting and displaying 

haemorrhagic foci in children with HIE [24]. 
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1.1.4. Why use SWI in HIE 

Magnetic SWI is a new MRI technique that is widely used in clinical practice to highlight 

paramagnetic material in the blood by exploiting differences in magnetic susceptibility between 

different tissues [24-25]. Its considerable sensitivity detects intracerebral haemorrhage, venous 

vasculature and iron deposition. In addition to the magnitude information used by conventional 

MRI, SWI utilises phase information and undergoes image post-processing to combine the 

phase image with the magnitude image to create a unique image contrast [24]. As shown in 

Figure 1.3, due to the large phase difference between the vessel and the surrounding tissue, 

SWI can obtaine a phase image (see in Fig1.3 (a)) using a high resolution scan. In order to 

remove the low frequency phase interference caused by the uneven background magnetic field, 

a low-pass filter (see in Fig1.3 (b)) is applied to the original phase image to obtain a phase 

mask (see in Fig1.3 (c)). Then the phase mask is multiplied several times with the magnitude 

image (see in Fig1.3 (d)) provided by the MRI to obtain a clear SWI image (see in Fig1.3 (e)) 

[25]. It is noted that figure1.3 was provided by the hospital and will therefore be different from 

the other SWI images in this thesis. 

     
                          a. Phase image.                     b. Filtered phase.                    c. Phase mask. 

   
                                            d. Magnitude image.          e. Susceptibility weighted imaging. 

Figure 1. 3 Susceptibility weighted image structure [25] 
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1.2 Contributions 

The main contributions in the thesis arising from this research, are as follows: 

1 We developed a new automated system to classify SWI images to evaluate neonatal HI 

injury by detecting and analysing ridges within these images. In this research, a dataset 

of SWI–MRI results acquired from 42 infants with HIE during the neonatal period was 

obtained based on ridge analysis of the SWI images. All data is provided by the hospital. 

The results of each patient's follow-up are also assessed by a team of experts. More 

details of the data will be discussed in Chapter 3. 

Features including the width of the blood vessels, the change in intensity of the veins’ 

pixels in comparison with neighbouring pixels, the length of the blood vessels and 

Hessian eigenvalues for the ridges were extracted. Normalised histogram parameters in 

the single or combined features were used to classify SWI images by k-nearest 

neighbours (kNN) and random forest classifiers. The mean and standard deviation of 

the classification accuracies were derived by randomly selecting 11 datasets ten times 

from those with a normal neurological outcome (n = 31) at age of 24 months and those 

with an abnormal neurological outcome (n = 11) to avoid classification biases due to 

any imbalanced data. We also employed support vector regression (SVR) to predict the 

scores of motor and cognitive outcomes assessed 24 months after the birth.  

This is the first time to use vein’s features of neonatal brain with HIE on the SWI images 

for prognostication. In [76], only hessian eigenvalue of veins in neonatal brain was 

extracted for classification of patients with HIE and normal infants group. Compared 

to the work in [76], we extracted more features from vessels, and could predict 

neurodevelopmental outcomes at two years old by using SWI images of infants with 

HIE at birth. In the same classifier, the accuracy by using our features with 78.67±2.58% 

is better than the accuracy obtained using the features in [76], which is 72.27±4.85%. 
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                 Figure 1. 4 An example of ridge detection [26] 

2 We propose an algorithm to separate vessels damaged by HIE from normal vessels. 

Such an algorithm would then enable us to find the regions of the brain affected by 

HI injury, and therefore it would help us assess the associations of the affected brain 

regions with neurodevelopmental outcomes. We have measured the performance of 

our algorithm in various scenarios. By using our algorithm proposed in this paper in 

brain regions implemented in the outcomes of interest, we have found some 

measurements showing strong correlations with outcomes determined by clinical 

experts who have examined the patients two years after SWI images have been taken. 

This is the first study to classify in the appearance of vessels in SW images into two 

normal and abnormal groups with indirect supervisions. In the previous studies [53-

54, 56], the damaged areas of the brain in infants with HIE were usually identified by 

specialists. Our work avoids the time-consuming and complicated prognosis of 

neonatal HIE depending on neurologists. 

3 We analysed the SWI images by using a histogram of oriented gradients (HOG) as a 

global feature to identify areas of the neonatal brain affected by HIE. Forty-two infants 

with neonatal HIE have undergone SWI in the neonatal period and have been 

investigated through neurodevelopmental assessment at 24 months of age. HOG 

features are used to represent the SWI images of the whole brain and the region of 

interest separated from the brain image registration algorithm. We used kNN and 

random forest to classify the SWI images into normal and abnormal groups, and then 

we compared our results to our previous work. Figure 1.5 shows the HOG of an SWI 
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image with HIE. In order to clearly demonstrate the results of HOG applied to SWI, 

we have chosen a SWI image with the background noise removed. 

We use the HOG to extract features of neonatal brain with HIE on SWI images, which 

is more comprehensive than the study in [75]. In [75], only the deep medullary vein 

of the neonatal brain after HIE was used as the region of interest. However we use the 

HOG features from different areas in the brain. In [75], the rates of region of interest 

from HIE group and healthy group were used to compare to distinguish between 

infants with HIE and healthy infants. Our method predicts the results directly using 

the HOG features of the region of interest. 

   
                                            a. Original SWI image          b. HOG of SWI image 

                 Figure 1. 5 An example of histogram of oriented gradient of SWI image [27] 

4 In this research, we used deep learning methods to classify neonatal HIE SWI images 

by neurology outcome. We used transfer learning of ResNet 50 to train the SWI 

images with normal and abnormal neurology outcomes at 24 months of age in 

neonatal HIE. And then we computed heatmaps based on transfer learning to 

demonstrate which region of the brain contributed most to the classification of 

neurology outcomes at 24 months of age from SWI images of infants at birth. For 

abnormal patients, such regions can be interpreted as regions of the brain which have 

been damaged by HIE.  

This is also the first study to use the Grad-CAM technique to visualize the regions in 

SWI images affected by HIE. The results of the study support that injury to the motor 

areas can be demonstrated on SWI and that what is detected on SWI is consistent with 

anatomy and physiology, i.e. early injury to the motor areas leads to cerebral palsy. 

For recent studies on the application of deep learning to HIE [122], by training a 

gradient-enhanced deep learning model through using performing feature selection on 
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MRI, the prediction of poor motor outcomes after HIE achieved an accuracy of 85%. 

However, the accuracy of our deep networks based on rule-system reached 93.3%. 

1.3 Thesis overview 

⚫ Chapter 2: Review of the Development of Hypoxic-Ischaemic Encephalopathy 

Diagnostic Methods 

In this chapter, we will review the literatures on the diagnosis and long-term 

neurodevelopmental outcomes of neonatal HIE. We describe the scoring systems for neonatal 

HIE. The use of neuroimaging in neonatal HIE is also presented. We also introduce the 

development of computer vision techniques in detecting neonatal HIE. 

⚫ Chapter 3: Dataset 

This chapter presents the data we used in our experiments, including ethics, MRI protocols, 

and information of infants with HIE. 

⚫ Chapter 4: Ridge Detection and Analysis of Susceptibility-Weighted Imaging in 

Neonatal Hypoxic-Ischaemic Encephalopathy 

In this chapter, we will introduce an automated system for hypoxic-ischemic encephalopathy 

diagnosis by analysing SWI images. The features of veins in the SWI images such as width, 

intensity and length will be extracted by ridge detection. Finally, kNN and random forest 

classifiers will be used to classify the SWI images of neonates with HIE. These feature will be 

employed as regression analysis for motor and cognitive outcome. 

⚫ Chapter 5: Brain Regions Affected by Hypoxic-Ischaemic 

In this chapter, we will further analyse the features extracted from SWI images of infants with 

HIE to identify brain regions affected by neonatal HIE. For different neurodevelopmental 

outcomes of HIE survivors, we design algorithm 1 to detect the location of the veins affected 

by hypoxic-ischaemic in the brain. 

⚫ Chapter 6: Hypoxic-Ischaemic Encephalopathy Prognosis Using Susceptibility 

Weighted Image Analysis Based on Histogram Orientation Gradient 

This chapter will describe the Histogram of Oriented Gradients (HOG) descriptor to extract 

global and regional features from SWI images. These HOG features are used to classify HIE 

infants with neurodevelopmental outcomes at the age of 24 months. 
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⚫ Chapter 7: Deep Learning for HIE Prognoses 

This chapter will introduce the application of convolutional neural networks for the 

classification of SWI images with HIE. In order to consider the issue of SWI image 

contamination by noise and artefacts in the analysis of the classification of patients in the test 

group, we introduce two rules (Rule 1 and Rule 2) to avoid these issues. The Grad-CAM is 

used to analysis which areas of SWI images contributes more to the classification results. 

⚫ Chapter 8: Conclusions and Future Works 

In this chapter, conclusions are reached and ways of future works are discussed. 

1.4 List of Publications 

Here is the list of my publications from this research work: 

[1] Tang, Z., Mahmoodi, S., Dasmahapatra, S., Darekar, A., & Vollmer, B. (2020, July). Ridge Detection 

and Analysis of Susceptibility-Weighted Magnetic Resonance Imaging in Neonatal Hypoxic-Ischaemic 

Encephalopathy. In Annual Conference on Medical Image Understanding and Analysis (pp. 307-318). 

Springer, Cham. 

[2] Tang, Z., Mahmoodi, S., Darekar, A., & Vollmer, B. (2021). Hypoxic-ischaemic encephalopathy 

prognosis using susceptibility weighted image analysis based on histogram orientation gradient. In 15th 

International Joint Conference on Biomedical Engineering Systems and Technologies 

[3] Tang, Z., Mahmoodi, S., Darekar, A., & Vollmer, B. (2022). Automatic Veins Analysis of Susceptibility 

Weighted Image in Hypoxic-Ischaemic Encephalopathy. Magnetic Resonance Imaging (under review after 

revisions) 

[4] Tang, Z., Mahmoodi, S., Darekar, A., & Vollmer, B. (2022). Application of deep learning for neonatal 

hypoxic-ischaemic encephalopathy based on susceptibility weighted imaging. Pattern Recognition Letters 

(in submission) 
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Chapter 2 

Review of the Development of Hypoxic-
Ischaemic Encephalopathy Diagnostic 
Methods 

Since 1940, experiments have demonstrated that perinatal asphyxia causes brain damage [30], 

which means failure to establish breathing at birth could cause injury to the brain. As computer 

technology has developed, medical imaging has become an important tool for assessing 

hypoxic-ischaemic injury in infants. Tests to confirm HIE after symptoms have been detected 

include ultrasound, electroencephalogram (EEG) or amplitude-integrated 

electroencephalography (aEEG), computerised tomography (CT), magnetic resonance imaging 

(MRI) and magnetic resonance spectroscopy (MRS) [31]. Of these, aEEG is used to monitor 

seizure activity due to its longer time period than conventional EEG. The introduction of MRI 

enabled the presence, distribution and severity of acute lesions caused by perinatal cerebral 

hypoxic-ischaemic to be determined. It also allowed practitioners to detect brain damage and 

determine its severity. MRI is the most common imaging used for evaluating infants with HIE 

[17]. After deeper research into neonatal brains injured by hypoxic-ischaemia, different 

methods of MRI were invented, such as T1- and T2-weighted [19], diffusion-weighted (DWI) 
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[20], diffusion tensor (DTI) [22], perfusion-weighted (PWI) [21] and susceptibility-weighted 

(SWI) [24]. Of these, SWI is the newest MRI scan to be used on infants with HIE. 

This chapter reviews the neonatal HIE literature, which has been grouped into clinical 

diagnosis, medical imaging for diagnosis and prognosis and two-dimensional cerebral slices 

analysis using computer vision technologies. This study focuses on literature concerning image 

processing techniques when using MRI on infants with HIE.  

 
Figure 2. 1 Neonatal HIE diagnostics development 

2.1. Diagnosing hypoxic-ischaemic encephalopathy 

2.1.1. Clinical diagnosis 

After discovering that perinatal asphyxia caused brain damage in newborns, Apgar defined 

perinatal asphyxia by assessing the physiological condition of an infant soon after birth, 

resulting in the Apgar score [30]. Sarnat and Sarnat (1976) combined the clinical signs of the 

newborn with EEG results to create a staged system that classifies neonatal encephalopathy 

into three categories: mild (Stage 1), moderate (Stage 2) and severe (Stage 3) [32]; Thompson 

then established an HIE scoring system based on this that included clinical assessment of nine 

signs: tone, level of consciousness, fits, posture, Moro reflex, grasp, sucking reflex, respiration 

and fontanel [33].  

 

 



 

30 

 

2.1.2. Neuroimaging methods and scoring systems 

Due to the widespread use of neuroimaging in medicine, HIE is diagnosed using clinical signs 

and neuroimaging (CT, MRI and MRS). Figure 2.1 illustrates the development of the 

diagnostic method and neuroimaging to diagnose HIE in infants.  

Before different neuroimaging methods were introduced, EEG and aEEG were important tools 

for evaluating neonatal HIE [34]. At the neurodevelopmental follow-up, 84 infants were alive; 

64%, 21%, and 15% had normal, moderate or severe relapses, respectively. Their study showed 

that the EEG results between 36 and 60 h were closely related to prognosis. If the results in the 

first 48 hours were normal or slightly abnormal, then 95% of prognoses were normal or 

moderately impaired. Severe EEG abnormalities during the first 48 hours and 96% were 

considered poor prognoses (severe relapse or death) after two years [35]. 

Cranial ultrasonography and CT were the first methods used for evaluating HIE outcome in 

infants [36-37]. Cranial ultrasonography is a simple, non-invasive method that effectively 

determines the pattern and degree of hypoxic-ischaemic brain injury in newborns, particularly 

those born prematurely [36]. Although CT can detect haemorrhage well, MRI is better at 

assessing infants with HIE. However, CT is not recommended for neonates due to the radiation 

[31]. 

Since the 1980s, MRI has been used to assess infants with HIE, as it is better than cranial 

ultrasonography and CT for determining the location and degree of brain damage; it has 

become the standard tool for diagnosing HIE [38]. Magnetic resonance imaging sequences 

have evolved from conventional T1- and T2-weighted, DWI, to DTI and SWI. There are 

different image contrasts in the final brain images of infants with HIE due to the different 

parameters in different MRI sequences, such as the repetition and echo times [18]. T1-weighted 

sequences are useful for measuring myelination in neonates’ brains with HIE, and T2-weighted 

sequences can show cortical damage [39]. DWI can detect cerebral oedema caused by 

ischaemia and hypoxia [20]. DTI assesses structural abnormalities in the brains of infants with 

HIE using the directionality of water diffusion based on DWI [22]. SWI is very sensitive to 

venous blood and haemorrhage [40]. 

The development of different methods of using MRI to diagnose HIE has led to various scoring 

systems. Barkovich et al. [41] graded infants with HIE using T1- and T2-weighted images. The 

severity of brain damage was scored from 0 to 4 according to the degree of basal ganglia and 

watershed. A normal MRI was given a score of 0, and an abnormal signal in the basal ganglia 



 

31 

 

or thalamus was given a score of 1. A score of 2 indicated an abnormal signal in the cortex, a 

score of 3 meant abnormal signals in the cortex and basal nuclei, and a score of 4 represented 

abnormal signals in the whole cortex and basal nuclei. Rutherford et al.[42] also used T1- and 

T2-weighted images to investigate the relationship between the degree of damage to the 

posterior limb of the internal capsule (PLIC) and the neurodevelopmental outcome of infants 

with HIE at one year. Full-term newborns with HIE were graded according to the Sarnat system. 

All infants with abnormal PLIC signals showed neurodevelopmental impairment, whereas 

almost all neonates with normal PLIC signals had normal motor outcomes. A scoring system 

developed by Weeke et al.[43] contained 19 regions, including grey matter, cortex, corpus 

callosum and haemorrhage, with scores ranging from 0 (normal) to 57 (severe). This system 

assesses the damage, such as whether it is unilateral or bilateral, using T1- and T2-weighted 

imaging and DWI. The National Institute of Child Health and Human Development’s Neonatal 

Research Network developed a scoring system that grades brain damage from a score of 0 

(normal MRI) to 3 (cerebral hemispheric devastation) [44]. Four categories were used to arrive 

at a score of 1 or 2: 1A, lesions in the frontal and parietal subcortical areas; 1B, more extensive 

cerebral lesions in the frontal, parietal and occipital subcortical areas; 2A, lesions in the basal 

ganglia and thalamic area (BGT) and internal capsule (IC); 2B, lesions in the BGT, IC and 

cerebral areas.  

Recently, Kitamura et al. [45] developed a grading scale system using deoxyhaemoglobin 

levels in the deep cerebral veins shown by SWI. This scoring system focuses on examining the 

prominent parts of the deep medullary veins rather than the entire venous system, because they 

are more consistently present than the cortical veins. The medullary vein is a small cerebral 

vein located in the deep white matter of the brain, and it is responsible for the flow of blood 

from the deep white matter of the brain to the cortical venous system. Each SWI sequence was 

assessed using seven categories: 1, absent deep medullary veins; 2, faint deep medullary veins; 

3, minimal deep medullary veins; 4, mildly prominent deep medullary veins; 5, moderately 

prominent deep medullary veins; 6, very prominent deep medullary veins; 7, extremely 

prominent deep medullary veins. Depend on the prominence of vein value, patients were 

divided into two groups: normal (with grading of 2-4) and abnormal (with grading of 1 and 5-

7). Variability between interobservers in the susceptibility-weighted imaging classification was 

analyzed by calculating k values. For agreement between the two neuroradiologists on the 

prominence of vein value ", the k value was 0.82. For the differences in clinical variables 
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between the good and poor outcome groups, the presence of clinical seizures was the only 

variable associated with worse neurological outcome (p = 0.02).  

Figure 2.2 shows SWI images with HIE graded from 1 to 7 (without 6) in the Kitamura scoring 

system. Kitamura scores for all SWI images are assessed by doctors with experience in 

neurology and neonatal disciplines at Southampton Hospital. Due to the limited dataset, there 

is no set of SWI images with a grading of 6. Table 2.1. illustrates the five scoring systems. 

Different scoring systems and MRI images will be used in different cases. In clinical practice, 

different scoring systems are used depending on the modality of the MRI image. The patient's 

T1- and T2- weighted images are usually assessed using the Barkovich scoring system, the 

Rutherford scoring system and the NICHD scoring system. The patient's DWI images are 

assessed using the Weeke scoring system and the SWI images are assessed using the Kitamura 

scoring system. In the field of medical image processing, T1- and T2- weighted images were 

mostly used early to predict the Barkovich score of newborns. With the development of MRI, 

more studies have used DWI images of patients to predict neurological outcomes. Today, SWI 

images are a more useful tool for predicting neonatal outcome because of their sensitivity to 

HIE. 
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a.                                                    b. 

   
c.                                                    d. 

   
e.                                                    f. 

Figure 2. 2 Susceptibility-weighted images showing the categories, except grading 6. a) Grading 1; b) 
Grading 2; c) Grading 3; d) Grading 4; e) Grading 5; f) Grading 7. 
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Table 2. 1 The five scoring system 

Study  MRI method Grading 

Barkovich et al. [41] T1- and T2-weighted imaging 0: normal MRI  

1: abnormal signals in the basal ganglia 

or thalamus  

2: abnormal signals in the cortex 

3: abnormal signals in the cortex and 

basal nuclei 

4: abnormal signals in the whole cortex 

and basal nuclei 

Rutherford et al. [42] T1- and T2-weighted imaging PLIC equivocal or abnormal 

Weeke et al. [43] T1- and T2-weighted imaging, 

DWI 

Grey matter 

Proton MRS  

White matter 

Cerebellum 

Intraventricular haemorrhage 

NICHD [44] T1- and T2-weighted imaging 0: normal 

1A: lesions in the frontal and parietal 

subcortical areas  

1B: more extensive cerebral lesions in 

the frontal, parietal and occipital 

subcortical areas 

2A: lesions in the BGT and IC 

2B: lesions in the BGT, IC and cerebral 

areas 

3: cerebral hemispheric devastation. 

Kitamura et al. [45] SWI 1: absent deep medullary veins 

2: faint deep medullary veins  
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3: minimal deep medullary veins  

4: mildly prominent deep medullary 

veins  

5: moderately prominent deep 

medullary veins  

6: very prominent deep medullary 

veins  

7: extremely prominent deep medullary 

veins 

 

Following the widespread use of neuroimaging, therapeutic hypothermia (TH) has become 

standard care for infants with HIE and can increase survival [46-48]. Infants who survive HIE 

are at higher risk of neurodevelopmental impairment due to damaged neural networks, motor 

impairment and cognitive defects. Follow-up and evaluation of affected infants are necessary 

to know the long-term effects of HIE and the prognostic value of neuroimaging [49-51].  

The British Association of Perinatal Medicine and the National Institute for Clinical Excellence 

suggest formal neurodevelopmental assessments of surviving infants at around two years of 

age [54] using methods such as the Bayley Scales of Infant and Toddler Development [52], 

which is a developmental assessment tool widely used to assess children from 1 to 42 months. 

Its third edition, Bayley-III, covers cognitive, language, motor, adaptive and social-emotional 

development. After TH, infants with HIE may still have motor and cognitive impairments [53].  

Edmonds et al. [54] assessed cognitive and behavioural outcomes in children, especially those 

without neuromotor impairment; 87 two-year-old children with HIE were tracked. For children 

(without cerebral palsy,) tested using the Bayley-III scales (n = 71), 94.4% had normal 

cognitive scores, 4.2% mild cognitive delay, and 1.4% severe cognitive delay. Furthermore, 

98.5% had normal motor scores (>85), 1.5% had a mild motor delay and none had a severe 

motor delay. 

Petra et al. [56] described the motor and behavioural outcome at two years old after perinatal 

HIE and explored the relationship between outcome and neonatal MRI results. Seventeen 

infants with HIE were classified as Sarnat Stage I (mild HIE), Stage II (moderate HIE) and 

Stage III (severe HIE). All infants with HIE had an MRI, including T1- and T2-weighted 
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imaging. A Barkovich scoring system was used for MRI assessment, and the second version 

of the Bayley Scales (Bayley-II) was used for assessing motor outcomes. The results showed 

that four out of six infants with mild HIE at birth had a mild delay at two, while seven of eleven 

with moderate HIE at birth had a mild delay at the same age. However, the infants mildly 

delayed at age two had a normal MRI assessment at birth.  

2.1.3. Magnetic resonance imaging as a predictor 

Recently, studies have examined using the MRI results of infants with HIE to provide clinicians 

with diagnostic information and have also explored the relationships between brain injury, 

neonatal MRI and the outcomes of infants aged 6 to 24 months. It is now common to use 

neonatal brain MRI results to predict the neurodevelopmental outcomes for infants with HIE 

to aid prognosis and home care [56]. 

Haataja et al. [57] collected the MRI T1- and T2-weighted images of 53 tern infants with HIE 

within 4 week from delivery. The images were assessed using the Rutherford system [42], 

neurological findings were scored at 9 to 14 months and motor function was assessed at two 

years. The results showed that the best scores were obtained from infants with normal or mild 

neonatal MRI findings. The lowest scores were associated with severe basal ganglia and white 

matter lesions, and infants with low neurological examination scores had severely limited 

motor function at two years. In [58], 36 infants diagnosed with HIE within 24 hours after birth 

were scanned using DWI and graded according to the Sarnat system. DWI showed high 

sensitivity (100%) but very low specificity (20%) in detecting permanent neurological sequelae 

when comparing the neurological findings from six-month-old infants. In [56], DWI results 

and apparent diffusion coefficient (ADC) mapping of 26 infants with HIE at an average of 5.4 

days scored using the Barkovich system were associated with neurodevelopmental outcomes 

at two years of age. In addition, the results suggested that MRI performed better than cranial 

ultrasonography imaging. Goergen et al. [59] analysed the DWI results of 19 infants with HIE 

at a mean of five days old, and their development at two was assessed using Bayley-III. The 

results showed a significant association between the DWI results and outcome at two. 

Francesca et al. [60] utilised EEG and MRI results as predictors for neurodevelopmental 

outcomes using Bayley-III at 12 and 18 months. Reduced activity of neonates with HIE at 72 

hours from birth shown in EEG results and diffuse changes in the basal ganglia registered by 

MRI were associated with poor neurodevelopmental outcomes at 18 months. Massaro et al. [2] 

showed that corpus callosum and corticospinal tract in 52 infants with HIE correlated with 
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neurodevelopmental outcomes assessed by Bayley-II at 15 and 21 months after hypothermia 

treatment. Nanavati et al. [61] determined the relationship between the MRI images of 17 

newborns with HIE graded according to the Barkovich system and the scores of second edition 

Bayley at 12 and 24 months. Massaro et al. [5] assessed the relationship between brain structure 

and function in the neonatal brain using DTI and network neurobehavioral scale in 45 neonates 

with HIE scanned eight days after birth. There was a significant correlation between 

corticospinal tract integrity and DTI and NICU Network Neurobehavioral Scale neuromotor 

performance. Trivedi et al. [62] evaluated the MRI results of neonates with moderate-to-severe 

HIE treated by TH, including white matter, cortical, cerebellar and brainstem. The poorer 

cognitive and motor outcomes were evaluated using Bayley-III at 18 to 24 months and were 

associated with higher MRI impairment results. Lakatos et al. [63] demonstrated the prognostic 

benefit of early MRI combined with MRS in neonates suffering from HIE. Tharmapoopathy et 

al. [64] evaluated 55 infants at birth and 18 months with HIE using the Rutherford MRI system 

and Bayley-III. Abnormal MRI patterns (e.g., BGT, white matter and PLIC) were associated 

with poor neurodevelopmental outcomes (e.g., cognitive, language and motor).  

Haack introduced an SWI sequence to MRI, which performed better in diagnosing cerebral 

vascular pathology and blood products of the neonatal brain [24,65]. SWI can reveal cerebral 

vascular lesions that other MRI methods may miss [66]. Steven et al. [67] compared the 

findings of serial MRI, DWI and SWI in an infant with HIE and showed that SWI could reveal 

areas suffered from hypoxic-ischaemic brain injury before showed on DWI. Early DWI results 

could be normal in some patients, but SWI would find damage. This suggests that SWI could 

play a key role in early diagnosis. Meoded et al. [66] found that SWI may be particularly useful 

in recognising intramedullary veins with low signals in early neonatal HIE. The SWI results of 

infants with HIE can also emphasise deep subventricular veins beyond T2-weighted image 

results (see Figure 2.3); this shows that SWI can aid the diagnosis of HIE. Tsui et al. [68] 

reported a case of a child with cerebral oedema. All intracranial vessels and the micro lesions 

that may accompany vascular lesions are well depicted on SWI. Li et al. [69] explored the 

correlation between the degree of brain damage, SWI grading, and MRS grading in neonatal 

HIE by comparing the detection rate of intracranial haemorrhagic foci and the number of 

damaged lobes on SWI and MRS. The results of 60 neonatal HIE cases were used for statistical 

analysis. SWI and MRS images showed that most infants with mild HIE had fewer than two 

damaged brain lobes, and all infants with severe HIE showed diffuse damage in whole brain. 
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a.                                                                           b. 

Figure 2. 3 An infant with HIE scanned at five days. a) T2-weighted image; b) SWI image [66] 

2.2. Image processing techniques  

Diagnosing and treating neonatal HIE by neurologists are time-consuming. Using image 

processing techniques to automate the diagnosis and predict outcomes is a major research 

subject [70]. This section describes the application of medical image processing techniques to 

MRI of infants with HIE in recent years 

2.2.1. T1-, T2-, and diffusion-weighted images 

As the first MRI sequence to aid the diagnosis of neonatal HIE, T1- and T2-weighted imaging 

was also the first sequence to be automated.  

Ghosh et al. [70] developed a computer imaging method, hierarchical region splitting (HRS), 

an imaging method that shows ischaemic lesions in neonatal hypoxic-ischaemic injury (HII) 

on T2-weighted imaging (T2WI). HRS is a region segmentation method that recursively 

segments the values from T2WI. Since different brain tissues have different contrast levels, a 

uniform area could represent a single brain tissue type. Ghosh et al. [70] rescaled the signal 

value of T2WI to a range (0–255) after removing the skull and the background noise. The signal 

spectrum histogram of T2WI was then calculated and normalised. Finally, the T2WI images 

were segmented repeatedly based on the threshold set by the histogram and obtained an image 

from each part to form a tree structure. HRS was stopped when the split region was considered 

a unified region. Manual segmentation was used to get the same brain tissue in T2WI for 
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comparison. The HRS method’s sensitivity, specificity and similarity combined with manual 

detection were 0.82, 0.86 and 1.47, respectively. Ghosh et al. [71] extended the functionality 

of HRS to quantify core–penumbra from T2WI or ADC maps of neonatal HII to animal models. 

Neonatal HII resulted in irreversibly injured core and salvageable penumbral tissues. 

Identification and quantification of salvageable tissue is the key to safe intervention. Their data 

showed that changes to specific MRI signals in damaged tissues reflect subtle differences in 

the characteristics of core–penumbra tissues, which can be detected and quantified by HRS. 

The problem with this method is that the threshold for segmenting MRI images cannot be 

adapted to other datasets and the parameters need to be constantly modified to find the optimum. 

Sarioglu et al. [72] defined moderate-to-severe and mild HIE in infants by assessing the texture 

of basal ganglia and thalami in T1- and T2-weighted images and ADC mappings. Thirty-five 

infants with HIE (15 mild and 20 moderate-to-severe) were in the experimental group, and 33 

infants with normal brains were in the control group. A two-dimensional axial of T1- and T2-

weighted images and ADC maps were input to LifeX software to calculate regions of interest. 

The grey levels were adapted to 128, and all pixel values were automatically scaled with an 

average ±3 standard deviation. Texture analysis of basal ganglia and thalami obtained from 

LifeX were calculated into 47 features: seven conventional values, two shapes, six histograms, 

seven grey-level co-occurrence matrices, eleven grey-level run-lengths, three neighbourhood 

grey-level difference matrices and eleven grey-level zone length matrices. Statistical analysis 

calculated the basal ganglia and thalami texture values for mild and moderate-to-severe HIE 

groups for T1- and T2-weighted images and ADC maps as the p-value. All features with p-

values less than 0.001 served as independent predictors for binary logistic regression analysis 

to predict moderate-to-severe HIE. Among these features, the histogram entropy values of 

basal ganglia on the ADC maps showed the best diagnostic performance for infants with 

moderate-to-severe HIE, with a sensitivity of 95%, a specificity of 93.3% and an accuracy of 

94.3%. Manually drawing the region of interest made it time-consuming to calculate the texture 

analysis for each patient. Another problem with this method is that it only predicts well for 

infants with moderate-to-severe HIE. 

Murphy et al. [73] proposed a new method for DWI to detect HIE. Observers used proprietary 

software to identify and mark every pixel on the ADC maps that considered representative of 

ischaemia (cytotoxic oedema). This was the first step in diagnosing, where the 2D slices of 

DWIs were inspected. Automatic detection of ischaemia was carried out using features of the 

ADC map and DWI in a supervised learning system using random forest classification. The 
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first step was to create a brain mask and eliminate the background and non-brain structures. 

Superpixel and watershed methods were used. The first step in detecting intensity-based 

homogeneous superpixels was to process the ADC image. A Gaussian kernel of 0.5mm was 

used to calculate the square sum of the image gradients in each slice’s X and Y directions. The 

non-zero value of the lowest 10% in the gradient image was set to zero, and the watershed 

transform method determined the final superpixel boundary. Then nine features were 

calculated in the superpixel to describe the grayscale and diffusion-weighted image of the 

superpixel in the ADC image and the location of the superpixel in the brain. The ischaemic 

lesions first were manually segmented in 20 subjects and then developed an automated 

algorithm using the random forest classifier. Finally, this algorithm’s median sensitivity and 

specificity were 0.72 and 0.99, respectively. The algorithm was then applied to a data set of 54 

subjects and used the results of an automated method to rate each subject. It significantly 

correlated with an MRI score assigned by experienced clinicians (p < 0.0001). The problem 

with this research is that due to reducing voxel results in this method, some valuable 

information in the HIE image was lost. 

In [74], a machine learning tool was developed to detect lesions and predict outcomes for 

neonatal HIE patients by mining multi-site clinical data. The machine learning method can 

identify the lesions and extract the patterns of brain injury in MRI to find the best prediction 

model. Accuracy was measured by comparing predicted results with actual results. Multi-site 

clinical data was retrospectively collected that could be used to develop MRI analysis tools to 

address the neonatal HIE data shortage. Clinical data included outcomes of hospital 

assessments and outcomes after two years. Bayley-III was used to assess developmental 

functions, including cognitive, language and motor. A framework was proposed to detect HIE 

lesions and isolate their ADC signals. A normative ADC atlas that quantified the normal range 

of ADC variation in space and time was developed. Voxels that trained patients to ignore 

normal changes in their temporal position were entered into new channels ( Z𝐴𝐷𝐶 maps) to 

separate HIE-related ADC changes from normal temporal ADC changes in neonatal brain 

development. The accuracy of using Z𝐴𝐷𝐶 maps and machine learning to detect HIE lesions in 

pilot data was 69%. The limitation of this approach is that it has not been validated in clinical 

data sets and lacks support for practical applications. 

 

 



 

41 

 

2.2.2. Susceptibility-weighted imaging 

Susceptibility-weighted imaging is a new MRI sequence [24]. Given the sensitivity of SWI to 

venous vessels in the brain, several studies have validated its effectiveness for the diagnosis 

and prognosis of HIE outcomes [69,75-76]. Several studies have described methods of 

automatic vein segmentation in SWI images [77-78]. It is noted that there is no public available 

SWI data. This section introduces some studies for automatic diagnosis of HIE using SWI 

images. 

In [76], feature extraction and classification were used to diagnose HIE patients using SWI 

images. A ridge line test was used to determine the centreline of the blood vessels. This ridge 

detection method is based on the retinal vessel segmentation method. First, a local median and 

Gaussian filters were used to remove noise. The zero crossing of the first derivative of the 

image was taken in the direction perpendicular to the ridge tangent. The derivative of the image 

could be calculated using the derivative of the Gaussian kernel. The ridge point was detected 

by setting the pixel corresponding to the local minimum value (valley ridge) to -1 and the local 

maximum value (ridge) to +1; otherwise, it was set to 0. However, the vessels corresponding 

to the ridges were the targets. So the Hessian matrix helped a lot. The absolute maximum 

eigenvalue of the Hessian matrix corresponding to each pixel on the ridge was calculated, and 

the corresponding pixel value in the ridge graph was set as the absolute maximum eigenvalue. 

The pixel value of the image point at the non-ridge position was zero. The direction of the 

eigenvector at the ridge point was perpendicular to the tangent of the ridge line. As a result, it 

got a hard ridge image and a soft ridge image for each SWI slice of every patient. Then, the 

histogram of soft ridges of all infant slices was calculated. These histograms ignored pixels 

with no grey that corresponded to the background and were unimportant. A soft ridge was fitted 

a curve with five parameters to avoid overfitting problems. In this method, SWI images were 

classified by k nearest neighbours based on the parameters of this curve. The accuracy was 

91.38%. In [79], an extended three-dimensional local binary pattern was developed to 

distinguish the oxygenated images of three-dimensional SW images of infants with HIE, 

thought to be related to the oxygenation levels of the blood – a possible marker of HIE. 

Seventeen individuals with their SWIs were considered in [79], where seven were affected by 

HIE. The best classification accuracy reported [79] was 89.9%. However, two issues were 

related to the classification inaccuracies presented in [76] and [79]. 1) The classification 

inaccuracies were calculated using Kitamura scores evaluated by radiologists. The data in these 
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studies were unbalanced. Therefore, the inaccuracies reported in these works are somewhat 

biased.  

Ning et al. [75] compared the small cerebral veins of neonates with HIE with healthy neonates 

using SWI. The study showed that the deep medullary veins of the brain were more prominent 

in neonates after HIE. Twenty infants with HIE and 33 healthy infants in the control group 

were included. Each infant had two axial SWI slices taken from the top of the lateral ventricle. 

The centrum semiovale in the first slice and white matter from the frontal lobe and temporal-

occipital junction in the second slice were selected as regions of interest (ROI) for quantitative 

analysis. Veins in the ROI were segmented according to signal intensity. The ratio of the 

segmented vein area to the ROI area was used as a marker to distinguish the HIE infant group 

from the normal infant group. The results showed that, when comparing the ratios in each ROI, 

the values in the healthy group were much lower than in the HIE group. The ratios were 0.097 

± 0.087, 0.067 ± 0.048 and 0.108 ± 0.093 in HIE group, and 0.321 ± 0.128, 0.302 ± 0.123 and 

0.325±0.125 in normal group. This study had three problems: 1) The data were unbalanced. 2) 

Too few slices were selected per patient. 3) The ROI was not selected sufficiently. 

However, we have solved this problem by randomly selecting balanced data. For each set of 

SWI images, we have selected more slices than in [75] and also select more brain regions for 

feature extraction. 

2.2.3. Deep learning for hypoxic-ischaemic encephalopathy  

In recent years, deep learning has been increasingly used in medical image analysis due to its 

better performance. Some studies have used deep learning techniques in HIE diagnosis [80-

82]. However, these studies used EEG or aEEG of full-term neonates with HIE as a dataset to 

train deep neural networks, and no published studies have used MRI images for deep learning 

for diagnosing neonatal HIE.  

Wang et al. [81] built an automated network model for diagnosing neonatal HIE using aEEG 

screen images. In this method, 606 aEEG images from 560 infants with HIE were collected, 

and each image included the aEEG image and the raw-EEG image; the case report was 

annotated. Based on the different clinical descriptions, the dataset was reconstructed into three 

classes with corresponding labels: 1) Dataset A, background pattern (149 images with 

abnormal tagging criterion and 457 images with normal); 2) Dataset B, sleep–wake cycling 

(324 images with sleep–wake cycling and 272 images without); 3) Dataset C, seizure ( 125 
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with seizure and 481 without); this means that three neural network models need to be trained 

to predict aEEG images with different labels. The data from the three classes were divided into 

training data and test data. Five-ford cross-validation was used for the imbalanced problem of 

the dataset. Every aEEG image with a corresponding label was fed into convolution neural 

networks as a vector, x. The input space, y, was obtained by adjusting the training model 

parameters. A pre-trained model of the neural network based on the ImageNet dataset was used 

to obtain parameters and then fine-tuned on the annotated aEEG images. After the care process, 

the fine-tuned network model was introduced into a multi-input structure and maximum feature 

combination operator to reduce interference in aEEG images. The visual geometry group, the 

inception network and the residual network were treated as pre-trained models. The training 

data sets with different labels were separately put into pre-trained network models. The result 

demonstrated that the maximum feature combination operator network model performed well 

in all three datasets. The accuracy of datasets A, B and C was 96.69%, 97.52% and 88.42%. 

But the time-consuming annotation of each aEEG image was a limitation of this method, and 

without the aid of MRI, the reliability of aEGG images is not good enough for diagnosis. 

2.3. Summary 

Prognosis of HIE have improved with the development of computer technology, neurology and 

scoring systems. The combined use of multimodal MRI images allows for more accurate 

assessment of HIE lesions and improves clinical prognosis performance. Initially, studies on 

neonatal HIE only assessed the clinical manifestations; however, with the development of 

computer technology, imaging results related to HIE was also assessed. As MRI has become 

standard in detecting HIE, researchers have tried to determine its predictive value, the 

relationship of MRI results to HIE and the long-term neurodevelopmental outcomes after 

hypothermia treatment. The scoring systems based on MRI images have also shifted from 

assessing basal ganglia or thalamus to evaluating more brain tissue and haemorrhages. Early 

diagnoses of cerebral ischaemia and hypoxia are difficult due to the poor neurological 

development of newborns. Cerebral haemodynamic disorder is one of the main mechanisms of 

damage in HIE. Changes in venous blood flow and blood products sensitive to SWI have been 

shown to have significant prognostic value. SWI images may eventually become a useful tool 

for predicting mid- to long-term neurological outcomes in patients with HIE. 
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Chapter 3 

Dataset 

3.1. Ethics 

Ethical approval for this study and use of anonymized routinely collected clinical outcome data 

was obtained from the Health Research Authority (HRA), Health and Care Research Wales, 

(HCRW) (IRAS ID 279072; REC reference 20/HRA/0260) and the National Research Ethics 

Service (NRES) London, City & East (IRAS ID 143392; REC reference 13/LO/1948). 

3.2. Patients  

Forty-two infants with neonatal HIE born at gestational age >36+6 weeks are included in this 

research. After undergoing hypothermia treatment, all newborns have MRI in the neonatal 

period as part of their clinical care. The participants in this study were scanned at a mean age 

of 7.8 days (min 1 day max 34 days) after birth. The British Association for Perinatal Medicine 

and the National Institute for Health and Clinical Excellence (NICE) currently recommend that 

children who survive neonatal HIE have a formal neurodevelopmental assessment at around 2 

years of age. All patients in this study were from the same hospital and were followed up by 

the same team of specialists.  
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In the context of a follow-up programme all infants had neurodevelopmental assessments at 

age 24 months including standardised neurological examination and assessment of cognitive, 

motor, and language development with the Bayley Scales of Infant and Toddler Development 

3, as shown in Figure 3.1. Children are assessed at the follow-up clinic using a standardised 

protocol that is carried out by a paediatric neurologist or neonatologist with experience in 

neurological and developmental assessment, together with a physiotherapist. Of the 58 

surviving neonates initially included, 16 were lost to follow-up due to moving or death, and 42 

were followed up at the age of 2 years. 

In this study, hypoxic regions in SWI images have not been annotated by clinical experts. 

However, we are demonstrating that with our methods, in SWIs we can measure some 

attributes associated with brain regions to show how much these brain regions have been 

affected by hypoxic-ischaemic.   

3.3. MRI Protocol 

MRI was performed on a 1.5 T Siemens Symphony MRI scanner, and included proton density 

(PD), T1-weighted, T2-weighted, turbo inversion recovery (IR), DWI, and SWI. SWI data was 

acquired using a, flow-compensated, spoiled gradient echo (FLASH) sequence, with the 

following pulse sequence parameters: TR/TE/flip angle = 50 ms / 40 ms / 12°, voxel size = 0.9 

× 0.9 × 2 mm3, bandwidth = 70 Hz/pixels. Infants were scanned whilst in natural sleep or under 

general anesthetic. 

According to a report from Southampton Hospital, SWI scores were more highly correlated 

with clinical outcomes than Barkovich scores [41]. The NHS does not currently have a standard 

for SWI in HIE applications. There are approximately 40-60 SWI slices for each newborn with 

HIE. We automatically sorted the slices for each group of patients and selected seven SWI 

images from the central slice in both directions, thus avoiding the interference of images 

containing noisy information (i.e. nose and eyes). 

3.4. Outcomes 

The neurological examination consisted of the assessment of cranial nerve function, 

movements, posture, reflexes, and muscle tone; and neurological status was then considered as 

either normal or abnormal (Cerebral Palsy). Of the 42 infants neurologically assessed at the 
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age of 2 years, 31 (73.8%) have a normal neurological outcome, and 11 (26.2%) have an 

abnormal neurological outcome. 

Bayley-3 is a standardised tool that assesses developmental function in infants aged between 1 

and 42 months [22]. It includes three sections: cognitive, language and motor; scaled scores 

and composite scores can be calculated from the raw scores. For this study, composite scores 

were used. Bayley-3 composite scores have a mean of 100 and a standard deviation (SD) of 15. 

Development is considered age appropriate if Bayley-3 composite scores are less than one SD 

of the mean (>85). Mild delay is graded according to a composite score greater than 1–1.5 SD 

below the mean (77.5–85), and a moderate or severe delay is graded if the score is more than 

1.5 SD below the mean (<77.5). In our study, we focus on cognitive and motor development 

as indicated by Bayley-3 composite scores. Outcome data on neurological status were available 

for 42 children. Since some of the children were unable to complete the Bayley Scales due to 

neurological impairment (n=11) or compliance with testing, Bayley-3 outcome data were 

available for 29 children for the cognitive scales, and for 28 children for the motor scales. 

  
a.                                                                                   b. 

 
c. 

Figure 3.1 a. Count of patients with neurology outcome. b. Count of patients with motor composite score. a. 
Count of patients with cognitive composite score.  
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Chapter 4 

Ridge Detection and Analysis of 
Susceptibility Weighted Imaging in Neonatal 
Hypoxic Ischaemic Encephalopathy 

In the previous chapters, we have described the advanced performance of susceptibility-

weighted imaging (SWI) in the detection of neonatal hypoxic-ischaemic encephalopathy (HIE). 

However, there is no research investigating the relationship between the SWI images of infants 

with HIE at birth and the long-term neurodevelopmental outcomes after neonatal HIE. In this 

chapter, we develop a new automated system to evaluate venous vascular structure as 

prognostic indicators of developmental outcomes for infants with HIE by detecting and 

analysing ridges representing vessels on SWI images. 

4.1. Introduction 

As described in previous chapters, SWI images are very sensitive to the detection of vascular 

extraneous blood products and hypoxic-ischaemic veins [67]. The appearance of anoxic vessels 

is different from the healthy vessels in that the anoxic vessels look darker than the healthy ones 

[76]. Obviously, blood vessel analysis on the SWI will be useful for diagnosis of neonatal HIE. 

Automated blood vessel segmentation is an important topic in medical image analysis [86-87, 
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109]. For various modalities of medical images, there are many methods of vessel segmentation 

using computer-acid. In [124] and [126], the most recent and innovative blood vessel 

segmentation algorithms were reviewed, including vessel enhancement, deformable models, 

tracking and machine learning. As our study was analysing SWI images of neonates with HIE, 

the researchers' attention focused on the field of vessel segmentation on SWI images. 

Silvain et al. [77] proposed an automated method segmenting whole-brain venous blood in 

SWI by conditional random fields. The conditional random field model with multiple first- and 

second-order potentials (appearance, shape, location, smoothness potential and data-dependent 

edge potential) was built to segment cerebral veins on the raw SWI data. However, this method 

applied the SWI data consisting of 5 echoes. For SWI images acquired from different echoes, 

the random conditional field model needs to be explored. Ward et al. [78] generated a 

composite vein image by combining SWI images, quantitative susceptibility maps (QSM) and 

a vein atlas to improve the accuracy of automated vein segmentation. The vein atlas was created 

by manual vein tracing with authors. Three different automated vein segmentation methods 

were employed to generate SWI images, QSM images and composite vein images separately 

to evaluate the accuracy of segmenting the veins: 1) a Hessian-based vesselness filter followed 

by an Otsu threshold; 2) a statistical segmentation based on the Markov random field; 3) a 

ridge-based filter segmentation. The composite vein images showed improved performance for 

segmenting the veins, and the ridge-based segmentation method presented a good accuracy on 

SWI images. But this method relied heavily on the combination of SWI and QSM images. Sina 

et al. [127] proposed a new automated vein segmentation algorithm which combines vessel 

enhancement filter and local threshold methods with shearlet transform. QSM data and SWI 

images were processed and input to shearlet scale space. Then by local thresholding, local vein 

segmentations were computed. Frangi filter and a recursive vessel filter vein segmentation 

methods were used for comparison. The error metrics in this proposed algorithm was better 

than other two vein segmentation methods. Xiao et al. [109] suggested a way to segment small 

veins in SWI images using a deep learning network. The deep network contains 19 

convolutional modules. Dense connectivity was used to enhance the network performance. 

Segmentation results are obtained by dice coefficient, 0.756±0.043. The majority of vein 

segmentation methods for SWI images aim to obtain the global appearance of the veins. In our 

study, we expected to obtain more vein features (e.g. width and depth) by using the ridges of 

the veins. 
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The approach of vessel segmentation by determining the ridge of vessels has been used 

different medical tasks. The authors of [123] compared four methods applicable to the 

extraction of linear structures from mammograms including a method for ridge detection.  The 

authors of [125] used an iterative region-growing method to acquire the centreline pixels of the 

blood vessels. This method outperformed on the retinal blood vessel dataset to other method 

[128]. Most vessel segmentation studies extract the vessel features and classify the medical 

images. However they ignore the properties of the vessel features. Our aim is not only to 

classify SWI images using the vessel features, but also to further analyze the relationship 

between vessel features and poor outcomes.  

We use a ridge detection method for vessel segmentation on a balanced SWI dataset and 

employ the neurological outcomes of patients at the age of 24 months as the outcome measure. 

We present an automated HIE prognosis system by using the following four feature vectors: 

histograms of the width, intensity, length, and the largest eigenvalue of Hessian of vessels 

detected as ridges to predict neurological outcomes. Finally, we use support vector regression 

(SVR) to predict the cognitive and motor scores of infants assessed by Bayley-III Scales at age 

24 months from four feature vectors.  

4.2. Methods 

4.2.1. Image pre-processing 

Before processing SWI images, a brain mask is extracted to remove the background signal 

from the images to precisely identify vessels in the brain slices. We use an active contour model 

[83] for each SWI slice to obtain a binary brain mask that eliminates noise and background 

from the calvarium, as shown in Figure 4.2(b).  

The active contour is expressed as an energy minimization process. The target feature is a 

minimum of a suitably formulated energy functional. This energy functional includes more 

than just edge information: it includes properties that control the way the contour can stretch 

and curve. The minimum value of the energy function composed of the addition of the 

contour’s internal energy (𝐸𝑖𝑛𝑡), the constraint energy (𝐸𝑐𝑜𝑛) and the image energy (𝐸𝑖𝑚𝑎𝑔𝑒) is 

used to obtain the target feature. Representing the position of a snake parametrically by 𝑣  (s) =

 (𝑥(𝑠), 𝑦(𝑠)), we can write energy function as 
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𝐸𝑠𝑛𝑎𝑘𝑒 = ∫ 𝐸𝑖𝑛𝑡(𝑣(𝑠)) + 𝐸𝑖𝑚𝑎𝑔𝑒(𝑣(𝑠)) + 𝐸𝑐𝑜𝑛(𝑣(𝑠))
1

𝑠=0

𝑑𝑠 

In SWI images with neonatal HIE, this works by minimising the energy that is in part defined 

by the image and in part by the spline’s shape: length and smoothness. The minimization is 

done implicitly in the shape energy and explicitly in the image energy. 𝐸𝑖𝑛𝑡 controls the natural 

behaviour of the snake and hence the arrangement of the snake points, the image energy; 

𝐸𝑖𝑚𝑎𝑔𝑒  attracts the snake to chosen low-level features such as edge points; 𝐸𝑐𝑜𝑛 allows higher-

level information to control the snake’s evolution. 

We initialise a circle around the brain and use the default boundary condition to fit a closed 

curve. The closed curve is then transformed into a binary mask to remove the background of 

the brain. Figure 4.2(a) shows the original SWI of HIE and Figure 4.2(b) shows the result after 

using the active contour model. 

4.2.2. Ridge detection 

There are multiple methods for ridge detection, e.g. vessels tracking [129-130], model-based 

methods [132], morphology-based techniques [133], and image filtering technique [131]. In 

our opinion, as the vessel structure is shown clearly enough on the SWI image, we directly 

compute the zero-crossing point of the two-dimensional grey SWI images as the ridge line 

point. We have also used morphology-based [133] and method in [76] techniques to compare 

our approach. As shown in Figure 4.3, we can clearly observe that the morphology-based 

method does not detect all the vessels, and the method in [76] contains a lot of noise. However, 

our method extracted the fullest ridges from the SWI images. Now convolutional neural 

networks (CNN) method is also used to detect ridges [134]. However, lacking a manually 

annotated dataset and sufficient SWI images, we are unable to use deep learning methods for 

ridge detection.  

In SWI images, blood vessels appear to be ridge-like objects [87]. Zero-crossings of the image 

derivatives are therefore used to detect the vessels represented by ridges in two-dimensional 

SWI slices. Generally, using a convolution operator, image I(x,y;σ) can be generated by 

convolving the image I(x,y) with a Gaussian kernel G(x,y;σ) of variance σ, which could also 

reduce noise existing in SWI images. 

𝐼(𝑥, 𝑦; 𝜎) = 𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦; 𝜎) 
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We denote I(x,y) to be the SWI image in which we view the brain using the active contour 

model in section 4.2.1. The change in the gradient of intensity near a pixel is ascertained by the 

first derivative of the image I(x,y;σ). A ridge point is located where the intensity gradient 

vanishes. Such a point corresponds to the zero-crossing point. Finally, a connected pixel chain 

with one-pixel width is obtained for every ridge in the SWI images. In fact, the noise will affect 

the ridge detection to some extent. We set a threshold of image greyscale value to remove the 

influence of noise. Figure 4.2(b) shows the result. 

4.2.3. Hough transform for centre line removal 

The Hough transform (HT) [84] implementation defines a mapping from the image points into 

an accumulator space (Hough space). The mapping is achieved in a computationally efficient 

manner, based on the function that describes the target shape. HT counts the potential solutions 

in an accumulator array that stores the evidence or votes. This strategy is robust and able to 

handle the noise and occlusion. The point where this line intersects the line in an image is given 

by: 

𝜌 = 𝑥 cos(𝜃) + 𝑦 sin(𝜃) 

where θ is the angle of the line normal to the line in an image and ρ is the length between the 

origin and the point where the line intersects. Figure 4.2(c) shows that there is a centre line in 

the brain. Figure 4.2(d) shows the removed line via the Hough transform. 

4.2.4. Ridge segmentation 

Vessels form ridges in SWI images. To further analyse our SWI images, we need to initially 

detect and then segment each individual ridge. This segmentation later helps to extract features 

from each ridge individually. After ridge detection, all of the initial SWI images for infants 

with HIE are transformed into binary images where 1s (white pixels) represent ridges. A 

component labelling scheme for connected (ridge) pixels is used here for ridge segmentation. 

This algorithm is applied to a ridge map (a binary image) to assign a white pixel (ridge pixel) 

to an individual connected region belonging to a ridge with a certain label. Here, a local 3 x 3 

neighbouring window is used to visit each pixel in the ridge map to check eight connectivities 

surrounding each ridge pixel. 
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1 10 1 

1 1 1 

         (a)                                                                         (b) 

Figure 4. 1 (a) Bifurcation point template, where convolution with the ridge point is equal to or greater than 
13; (b) End point template 

However, before applying this process, it is vital to determine pixels representing the 

termination and bifurcation points as a part of the ridge segmentation. If a central point is a 

ridge pixel and there is only one neighbour, it becomes a termination point. A bifurcation point 

has at least two neighbours. The termination and bifurcation points are detected by looking for 

maxima in an image computed by convolving a ridge image with the template as shown in 

Figure 4.1(a) and searching for values of unity in an image obtained by convolving a ridge 

image with all rotated variants of the termination template as depicted in Figure 4.1(b). Two 

termination points in each connected ridge are stored in a list representing a segmented ridge. 

Bifurcation points are eliminated to separate crossing vessels. As shown in Figure 4.2(f), each 

blood vessel (ridge) in the binary ridge map is segmented and for illustration purposes is 

depicted in a certain colour. Additionally, 10 raw SWI slices belonging to the same neonate 

with HIE are selected and displayed as superimposed on top of each other. For entire set of 

slices, the minimum value of the pixels passed along the slice direction is taken as the pixel 

value in the projection plane. We perform a projection reconstruction of the 10 SWI slices to 

obtain a low-density image, minimum intensity projection (MinIP). Figures 4.2(f-g) show the 

SWI MinIP image along the slice direction and the projection reconstruction of ridge 

segmentation corresponding 10 SWI slices. It can be observed that the SWI MinIP image 

demonstrates a better continuity of the veins’ paths and extends visualization of small veins. 
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a.                                        b.                                        c. 

    
d.                                       e.                                       f. 

 
                                                                        g. 
Figure 4. 2 a) Axial SWI image for a 8-day-old term neonate with HIE and category 3 in Kitamura scoring 
system, normal neurology outcome at age of 2 years; b) The result from the active contour model; c) Ridge 
detection with the grey value threshold = 40, and the threshold of difference between the zero-crossing point 
and closest point is 270; d) The centreline of the brain removed with pixel = 2; e) Labelled veins are coloured,; 
f) Axial SWI MinIP image by 10 slcies; g) Ridge segmentation corresponding to the SWI MinIP image. 
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        a.                               b.                               c.                               d. 
Figure 4.3 a) Axial SWI image; b) Results of morphological operator; c) Result of the method in [76]; d) 
Result of our methods 

4.2.5. Feature extraction 

As we known, HIE will make the blood vessels in the brain of infants briefly lack blood. When 

the blood is reoerfused, the vessels will be in a state of expansion. There will be changes in the 

width of the blood vessels between the infants with HIE and normal infants. Meanwhile, blood 

products from the blood vessels going out will also be displayed in the SWI images. The 

appearance of hypoxic-ischaemic vessels is different from the healthy vessels in that the 

hypoxic-ischaemic vessels look darker than the healthy ones. In the course of HIE, the blood 

vessel length of normal infants and abnormal infants also changes. Therefore, the intensity and 

length of the vessels will be changed in the brain of infants with HIE. The eigenvalues of the 

Hessian matrix corresponding to the pixels of the ridges also become one of the prognostic 

indicators for infants with HIE. Four features, as described below, are extracted from the 

segmented vessels for vessel classification: 

1) Vessel Width Measurements 

Vessel width is calculated by measuring the distance between points on the vessel boundaries 

perpendicular to the ridge orientation as shown in Figure 4.3(a). For each labelled (segmented) 

ridge (blood vessel), a Canny edge detector is also applied to find the blood vessel edges. Then, 

the boundary points on the Canny edges are assigned to two sets on both sides of the ridge, as 

shown in Figure 4.3(a). Some junctions are derived from both sides of the ridge along a line 

normal to BC in Figure 4.3(a) by connecting three consecutive points on the ridge at point A, 

as shown in Figure 4.3(a). We can obtain the coordinates of ridge point A and the corresponding 

two edge points (𝑥1, 𝑦1) and (𝑥2, 𝑦2). The vessel width is defined as the shortest Euclidean 
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distance between these two points from boundaries in both sides of the ridge. Finally, the 

histogram of all vessel widths is calculated as a feature vector known here as Width . 

2) Vessel Intensity Measurements 

Depending on the level of blood oxygenation, SWI images for neonatal HIE will demonstrate 

veins with varying signal intensities. We utilise the difference between the intensity values of 

ridge points and those of boundary points of vessels as a marker of hemodynamic or vascular 

changes in the brain due to HIE. By tracking the ridge pixel coordinates of the vessel and the 

corresponding edge point pairs of the vessel boundary in the original SWI images, the 

maximum pixel value difference between the ridge point and the two shortest edge points on 

either side of the ridge point (Figure 4.4(a)) is measured and known here as vessel intensity as 

a feature for HIE outcome prognosis. Similar to the Width feature, the histogram of all vessel 

intensities is computed as a feature vector referred to as Intensity in this thesis. Figure 4.4(b-c) 

shows the vessel of an infant with HIE and the value of vessel pixels. 

3) Vessel Length Measurements 

We also measure the vessel length as a feature for HIE outcome prognosis. For each segmented 

ridge, we count the number of pixels from start point to end point as vessel length [107]. 

Ultimately, a histogram of all vessel lengths within an SWI dataset constitutes a feature vector 

known as Length here.  

4) Ridge Eigenvalue 

In SWI images, a ridge point is the local minimum point in the direction of the largest gradient 

change. The local intensity of the pixel on the ridge is derived from the Hessian matrix 

consisting of the second-order partial derivative of the SWI image. After calculating a 2 × 2 

Hessian matrix for every pixel on ridges in the two-dimensional SW image, for each ridge point, 

two eigenvalues (λ) of the Hessian matrix are computed, where the eigenvalue with the 

maximal absolute value is treated as a feature for HIE outcome prognosis.  

𝐻 =  (
𝐼𝑥𝑥 𝐼𝑥𝑦

𝐼𝑥𝑦 𝐼𝑦𝑦
) 

where 𝐼𝑥𝑦 =
𝜕2𝐼 

𝜕𝑥𝜕𝑦
 . A histogram of ridge eigenvalues is also considered as a feature vector 

known as Eigenvalue here. 
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              (a)                                                   (b)                                                      (c) 

Figure 4. 4 (a) The pixel pairs according to perpendicular line; (b) Greyscale SWI; (c) The value in a grey-
scale SW image. 

4.2.6. Error of vessel segmentation 

In some cases, real vessels may not be precisely the same as the ridges detected by our 

algorithm. The performance of the ridge detection method employed here is measured by 

computing the error in the vessels segmented by our method from the manually segmented 

vessels (ground truth). Five SWI slices, with a size of 290 × 256 pixels, covering different brain 

anatomy areas, from five infants are manually annotated as our ground truth for segmented 

vessels. Manual ridge segmentation is performed by experts to provide a ground truth for error 

measurements for our ridge detection algorithm. For time-consuming and other reasons, only 

five SWI images were annotated and then validated by clinicians. This sets up five mask images 

where pixels on vessels are set to one, and non-vessel pixels are considered to be zero. We 

manually segment 2,455 pixels as vessels in these five slices. Next, ridges of the same five 

slices are segmented by the segmentation algorithm used here. Figure 4.4 (a-c) shows 

segmentation of our method on SWI image with HIE and compare the ridges with manual 

segmentation. In addition, the SWI MinIP image created by 10 raw SWI slices with neonatal 

HIE and corresponding segmentation are shown in Figure 4.4 (d-f). We compute error pixels 

n as the difference in the number of pixels between automatically segmented ridges and 

manually segmented ridges of a vessel. The error is normalised as: 

p =  
ε

m
                       

where m is the total number of ground truth pixels for the vessel. There are 187 error pixels in 

the five SWI images; these are pixels present in automated vessel segmentation but absent in 

the manual image or vice versa. There is good consistency between the manual annotators (p 

< 0.05). The error accuracy in each of the five images is calculated using error pixels. We 

calculate the mean and standard deviation of the error as p = 7.75% ± 1.97% for our vessel 

segmentation algorithm. 
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a.                                          b.                                               c. 

   
                     e.                                            f.                                           g. 

Figure 4. 3 a) Axial SWI image for a 15-day-old term newborn with HIE and category 3 in Kitamura scoring 
system, normal neurology outcome at age of 2 years; b) Ridge segmentation for SWI image using our method; 
c) Manual segmentation. d) Axial SWI MinIP image through 10 slices; e) Automatic ridge segmentation 
corresponding to the SWI MinIP image; f) Manual segmentation corresponding to the SWI MinIP image. 

4.3. Classification for neurological outcomes 

4.3.1. Classification algorithms  

1) k-nearest neighbors (kNN) 

kNN is a non-parametric method used for classification and regression. In both cases, the input 

consists of the k closest training examples in the feature space. As we used Euclidean distance 

defined as: 

𝐷 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

where 𝑥, 𝑦 are the coordinates of image pixels and 𝑁 is number of pixels in the image. 

2) Random forest classification 
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Random forest [85] is a supervised learning algorithm. It can be used both for classification 

and regression. A forest is comprised of trees. Random forest creates decision trees on 

randomly selected data samples to obtain prediction from each tree and to select the best 

solution by means of voting. A random forest can fit a number of decision tree classifiers on 

various sub-samples of the dataset and uses averaging to improve the predictive accuracy and 

control over-fitting. The sub-sample size is always the same as the original input sample size. 

4.3.2. Results 

Having calculated the histogram of the width, intensity, length and Hessian eigenvalue of the 

vessels in the SWI images, 42 infants with information on neurology outcomes are classified 

into two groups: 31 with normal neurological outcomes and 11 with abnormal neurological 

outcomes (cerebral palsy). The SWI dataset and the approval are introduced in Chapter 3. To 

balance the data distribution, 11 out of the 31 patients with normal neurology outcomes are 

randomly selected for the classification process. This selection is performed 10 times in each 

experiment so that classification accuracies are reported as mean and standard deviation of the 

classification accuracies over these 10 experiments.  The selection of data can solve the 

problem of unbalanced data used for classification in [76] and [79]. Histograms of the four 

aforementioned features are normalised to the area below each histogram. These normalised 

histograms merge into a single feature vector by concatenating feature vectors and are then fed 

into a kNN and a random forest classifier to classify the SWI images into normal or abnormal 

groups. Meanwhile, we apply an unnormalized histogram to classify the SWI images. 
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Table 4. 1 Classification accuracy with unnormalized histograms 

Classifier Unnormalized Features Accuracy Result 

𝑘𝑁𝑁 

Width 70.45±5.39% 
Intensity 72.23±4.03% 
Length 73.39±3.11% 

Eigenvalue 70.45±3.21% 
Width + Intensity + Length 69.86±4.79% 

Width + Intensity + Length + Eigenvalue 69.72±3.98% 

Random Forest 

Width 70.17±4.51% 
Intensity 72.37±3.03% 
Length 73.93±5.79% 

Eigenvalue 71.91±7.43% 
Width + Intensity + Length 76.44±5.79% 

Width + Intensity + Length + Eigenvalue 76.72±5.43% 
 

Table 4. 2 Classification accuracy with normalized histogram 

Classifier Normalized Features Accuracy Result 

𝑘𝑁𝑁 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
 69.69±4.23% 

 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
 71.37±4.31% 

 
𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
 72.93±3.83% 

 
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

|𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒|
 72.27±4.85% 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
+

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
+

𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
 70.86±3.03% 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
+

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
+

𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
+

𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

|𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒|
 75.45±5.81% 

Random Forest 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
 71.17±7.45% 

 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
 72.83±5.67% 

 
𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
 74.33±8.68% 

 
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

|𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒|
 71.17±6.38% 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
+

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
+

𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
 78.33±4.43% 

 
𝑊𝑖𝑑𝑡ℎ

|𝑊𝑖𝑑𝑡ℎ|
+

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

|𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦|
+

𝐿𝑒𝑛𝑔𝑡ℎ

|𝐿𝑒𝑛𝑔𝑡ℎ|
+

𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

|𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒|
 78.67±2.58% 
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Table 4. 3 The Pearson’s Correlation Coefficient between the features 

 Width Intensity Length Eigenvalue 
Width 1 0.4831 0.1667 -0.1714 

Intensity 0.4831 1 0.4789 -0.3122 

Length 0.1667 0.4789 1 -0.1973 

Eigenvalue -0.1714 -0.3122 -0.1973 1 

 

To assess the difference between the two features, a paired t-test was used. A p-value of less 

than 0.05 was considered statistically significant. In Table 4.4, the classification results of 

concatenated features from the random forest are significantly better than eigenvalue (p <0.003) 

for normalized histogram. In the pairs of width and concatenated features, intensity and 

concatenated features (width, length, intensity, and eigenvalue), the random forest 

classification results show significant difference (p <0.05). 

Table 4. 4 The p-value between the different features 

Pairs Unnormalized histogram 

Intensity 

Normalized histogram 

 Knn RF Knn RF 

Width vs Intensity 0.413 0.233 0.462 0.677 
Width vs Length 0.181 0.174 0.121 0.402 

Width vs Eigenvalue 0.992 0.679 0.272 0.891 

Width vs WIL 0.817 0.017 0.584 0.036 

Width vs WILE 0.781 0.016 0.021 0.013 

Intensity vs Length 0.622 0.561 0.438 0.597 

Intensity vs Eigenvalue 0.212 0.733 0.704 0.518 

Intensity vs WIL 0.273 0.069 0.735 0.06 

Intensity vs WILE 0.248 0.063 0.077 0.018 

Length vs Eigenvalue 0.076 0.493 0.725 0.291 

Length vs WIL 0.154 0.307 0.163 0.321 

Length vs WILE 0.084 0.266 0.175 0.218 

Eigenvalue vs WIL 0.778 0.123 0.426 0.0086 

Eigenvalue  vs WILE 0.726 0.109 0.141 0.0009 

WIL vs WILE 0.998 0.885 0.023 0.827 

WIL: Width + Intensity + Length. WILE: Width + Intensity + Length + Eigenvalue 

The classification accuracies of unnormalized and normalized histograms are presented in 

Table 4.1 and Table 4.2, respectively. In Table 4.1, accuracy results with a single feature vector 
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show higher performance than the concatenated features. In both unnormalized and normalized 

histograms, the random forest classification performs better than the kNN classification while 

using the length and concatenated features. There are significant differences between two 

classifier with unnormalized histogram (p < 0.05). No significant differences were provided 

between the classification results for the normalized histogram. We can observe that 

unnormalized width, intensity, length and eigenvalue features get higher accuracy than the 

same normalized features when a single feature is used for kNN classification. As tabulated in 

Table 4.2, the highest accuracy 78.67% ± 2.58% is achieved by the random forest classifier 

with four feature vectors (width, intensity, length and Hessian eigenvalue). However, by using 

only length as a feature vector, a slightly better classification accuracy than the Hessian 

eigenvalue feature proposed in [76] is achieved. An interesting finding is that for unnormalized 

histogram, the classification performance decreases by using concatenated features. This is 

because when unnormalised histograms of multiple features are combined together, some 

redundant information is included. It can affect the classification results. In Table 4.1 and Table 

4.2, the classification strategy for both classifiers is a leave-one-out cross-validation with 

balanced data (11 patients with normal neurology outcome and 11 patients with abnormal 

neurology outcome). 
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a.   b.    

c.     d.  

e.     f.    

g.    h.   
Figure 4.4 Intra/inter-class variations for (a) Width, (b) Intensity, (c) Length, (d) Eigenvalue, (e) 
Width+Intensity+Length, (f) Width+Intensity+Length+Eigenvalue, (g) CMC associated with the kNN 
classifier, (h) ROC curve of our method with the random forest classifier 
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Figure 4.5 (a to f) illustrates the inter- and intra-class variation histograms for various 

combinations of the four aforementioned features for both normal and abnormal groups in our 

dataset. The blue bars in Figure 4.5 depict the intra-class variations for feature vectors in the 

same group, and the brown bars represent inter-class variations for feature vectors from 

different groups. As shown in Figure 4.5(f), the overlap between the two histograms is less 

than the overlaps of the histograms in Figure 4.5(a to d). This is consistent with the results 

presented in Table 4.2, indicating that the classification accuracy of combined features is higher 

than that of the single features. Figure 4.5(g) also shows the cumulative match characteristic 

(CMC) curve for the kNN classifier. As shown in figure 4.5(g), the highest accuracy is a 

concatenated vector of the four features, with 75.4% in rank 1. It is observed that all of the kNN 

classifiers achieve 100% accuracy in rank 2. Figure 4.5(h) displays the receiver operating 

characteristic (ROC) curves for the various features and their combinations when the kNN 

classifier is used for classification. As shown in figure 4.5(h) for each feature or its combination, 

the area under the ROC curve is also displayed. Figure 4.5(g and h) show the combination of 

four features mentioned above, i.e. width, intensity, length and Hessian feature vectors (blue 

curves) have performed best for this classification task. We also calculate Pearson’s correlation 

coefficient r for all possible pairs of feature vectors, as demonstrated in Table 4.3. The 

observation in Table 4.3 is that some features exhibit a certain dependency. This explains why 

the results of kNN classification for the combination of width, intensity and length are less 

accurate than the accuracy obtained using only one of the features. To increase the 

classification accuracy, we apply the random forest revealing a better performance as presented 

in Table 4.2. 

4.4. Regression analysis for motor and cognitive 

development 

HIE is associated with a high risk of cognitive and motor impairments in children [17]. Such 

impairments are evaluated by using the clinical outcomes of patients through a scoring system 

two years after birth. It is therefore important to predict such clinical outcomes immediately 

after the birth. In our database, motor and cognitive development of infants with neonatal HIE 

are assessed by Bayley Scales at age 24 months, which results in a scaled score [see Chapter 

3]. The scores can either be used as a continuous variable or one for which cut-offs of ‘normal’ 

or ‘delayed’ can be applied. In normal populations, both motor and cognitive scores have a 
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mean of 100 and a standard deviation (SD) of 15. A patient is considered to have a normal 

score if the score is within 1 standard deviation of the mean. Mild delay is a score equal or 

more than 1 SD but less than 1.5 SD below the mean, and moderate/severe delay is a score 

more than 1.5 SD below the mean. We have 29 patients with cognitive scores and 28 with 

motor scores. All groups include patients with both normal and abnormal neurological 

outcomes. There is no direct correlation between neurological outcomes and cognitive and 

motor scores.  

For children tested with the Bayley Scales, mean Bayley composite scores are broadly average 

[see Table 4.5]. When considering the presence of delay, 86.2% of tested children have normal 

cognitive scores (>85), 10.4% mild cognitive delay (77.5–85) and 3.4% severe cognitive delay 

(<77.5); and 89.3% have normal motor scores (>85), 7.1% mild motor delay (77.5–85), 3.6% 

severe motor delay (<77.5). 

Table 4. 5 Results from testing with the Bayley Scales 

 All tested children Number with 
Normal Scores  

Number with Mild 
Delay 

Number with 
Severe Delay 

Cognitive 
composite score, 
mean (SD), min-

max 

101.2 (17.76)  

min 60–max 145 
25 3 1 

Motor composite 
score, mean (SD), 

min-max 

100.7 (16.35)  

min 55–max 133 25 2 1 

Support vector regression (SVR) and random forest regression (RFR) are applied to find a 

regression model to predict the cognitive and motor scores, respectively, by using the four 

feature vectors (width, intensity, length and Hessian eigenvalue) that we have extracted, and a 

leave-one-out strategy is employed to evaluate the performance of the regression methods. 

These four feature vectors show promising results. Similarly, we use the unnormalized and 

normalized histograms of four feature vectors. By training the SVR and RFR models with the 

four feature vectors (as input, 𝑥𝑛) and cognitive or motor scores (as output, 𝑦𝑛), the mean 

absolute and mean relative score errors in our score calculations for all patients in our dataset 

can be predicted as shown in Table 4.6 and Table 4.7. Meanwhile, we obtain the prediction 

score of these infants from SVR and RFR models as shown in Table 4.8 to Table 4.11. 
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To measure the performance of these regression models, the error for each test patient is 

calculated as the absolute difference between the true score for cognitive or motor scores and 

the corresponding predicted score provided by using trained different regression models with 

these ratios and the mean relative error (MRE) as defined below: 

MRE =  
1

n
∑

|pi−ti|

ti

n
i=1          

where n is the number of patients in our database, 𝑝𝑖 is the regression model prediction value, 

𝑡𝑖  is the true value (ground truth). A mean and standard deviation are calculated for both 

absolute errors and MRE. 

Table 4. 6 Regression models with unnormalized parameters 

Regressions Groups Mean Error Mean Relative Error 

SVR  29 Patients with cognitive scores 12.34±9.45 0.116±0.09 

 28 Patients with motor scores 12.37±8.67 0.116±0.10 

RFR  29 Patients with cognitive scores 13.32±7.95 0.133±0.081 

 28 Patients with motor scores 12.58±8.43 0.116±0.09 

 

Table 4. 7 Regression models with normalized parameters 

Regressions Groups Mean Error Mean Relative Error 

SVR  29 Patients with cognitive scores 11.40±13.24 0.113±0.13 

 28 Patients with motor scores 10.98±7.67 0.109±0.067 

RFR  29 Patients with cognitive scores 15.14±11.65 0.131±0.10 

 28 Patients with motor scores 12.69±9.11 0.117±0.09 

 

In Table 4.6 and Table 4.7, each patient is given the predicted score by using the trained SVR 

and RFR. Errors are calculated for each test patient as absolute differences between the true 

scores of cognitive or motor scores and the corresponding predicted scores, and we obtain a 

mean and a standard deviation for the errors. The error divided by the average value of scores 

across the data is also used to compute the relative value. From Table 4.7, normalized 

histograms show better prediction than unnormalized histograms in Table 4.6 through the mean 

relative error. There are significant difference in all regression cases (p <0.001).  As shown in 

Table 4.7, the SVR regression method achieves better performance for predicting motor scores 

than predicting cognitive scores, i.e. the relative value for patients with motor scores is 0.109 

±0.067. However, the mean relative error for the cognitive scores is 0.113±0.13, which is 
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slightly higher than that for motor scores. It is expected that our regression errors decrease if 

we get more data with scores for clinical outcomes. 

 

 

Table 4. 8 Prediction Scores from SVR with normalized parameters 

 All tested children Number with 
Normal Scores 

Number with 
Mild Delay 

Number with 
Severe Delay 

Cognitive 
composite score, 
mean (SD), min-

max 

99.3 (4.7)  

min 91–max 110 
29 0 0 

Motor composite 
score, mean (SD), 

min-max 

101.3 (7.74)  

min 87–max 114 28 0 0 

 

Table 4. 9 Prediction Scores from RFR with normalized parameters 

 All tested children Number with 
Normal 
Scores 

Number with 
Mild Delay 

Number with 
Severe Delay 

Cognitive 
composite score, 
mean (SD), min-

max 

103.2 (9.5)  

min 85–max 127 
27 

2 (1 correct 1 
incorrect) 

0 

Motor composite 
score, mean (SD), 

min-max 

102.7 (6.1)  

min 89–max 115 28 0 0 

 

Table 4. 10 Prediction Scores from SVR with unnormalized parameters 

 All tested children Number with 
Normal 
Scores 

Number with 
Mild Delay 

Number with 
Severe Delay 

Cognitive 
composite score, 
mean (SD), min-

max 

99.4 (0.46)  

min 98–max 100 
29 0 0 
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Motor composite 
score, mean (SD), 

min-max 

100.7 (0.6)  

min 99–max 102 28 0 0 

 

 

 

Table 4. 1 Prediction Scores from RFR with unnormalized parameters 

 All tested children Number with 
Normal 
Scores 

Number with 
Mild Delay 

Number with 
Severe Delay 

Cognitive 
composite score, 
mean (SD), min-

max 

102.8 (5.9)  

min 83–max 113 
28 1 (1 incorrect) 0 

Motor composite 
score, mean (SD), 

min-max 

101.4 (4.9)  

min 85–max 109 27 1 (1 incorrect) 0 

In Table 4.8 to Table 4.11, we applied normalized and unnormalized parameters to fit the 

regression model, respectively. The predicted scores fluctuated around the median, which 

avoided overfitting each patient's original score. For the overall model, with a minimum 

amount of overfitting shows that the regression model performs well. We divide the patients 

with cognitive and motor scores into three groups, ‘normal’, ‘mild delay’ and ‘severe delay’. 

In 29 patients with cognitive scores, there are 25 infants in the normal group, 3 infants in the 

mild delay group and 1 in the severe delay group. In 28 patients with motor scores, there are 

25 infants in the normal group, 2 infants in the mild delay group and 1 in the severe delay group. 

However, in our prediction scores, almost all patients are concentrated in the normal group. 

We need to know which scores form the right and wrong groups and how many patients are 

grouped incorrectly and how many patients are grouped correctly. From the above table, the 

prediction results of the regression model with normalized histograms as feature vectors are 

better than those with unnormalized histograms. Figure 4.6 shows the errorbars between the 

true values and the prediction values of the regression model with normalized histogram and 

unnormalized histogram for cognitive scores (figure 4.6 (a, b, e and f), and for motor scores 

(figure 4.6(c, d, g and h).In Figure 4.6, the blue dots are the true composite scores, and the bar 

is an indication of the variation between the predicted value and the true value. As observed 
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from figure 4.6 (a), by using the SVR models with normalized histogram, the differences 

between predicted values and the true values are lowest for cognitive scores. Also for motor 

scores, the lowest differences between the predicted scores and the true scores are shown in 

figure 4.6 (c) obtained by SVR models with normalized histogram. The SVR models for motor 

scores perform the best, as the error range between the predicted scores and true scores wavered 

in a small range. 

      
          a.                                                                                      b. 

      

         c.                                                                                     d. 
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     e.                                                                                       f. 

      

  g.                                                                                           h. 

Figure 4. 5  (a) SVR with normalized features for cognitive score, (b) RFR with normalized features for 
cognitive score, (c) SVR with normalized features for motor score, (d) RFR with normalized features for 
motor score, (e) SVR with unnormalized features for cognitive score, (f) RFR with unnormalized features 
for cognitive score, (g) SVR with unnormalized features for motor score, (h) RFR with unnormalized 
features for motor score 

4.5. Summary 

In this chapter, we examined the structure and signal intensities of venous vessels to extract 

some features from SWI images of infants for HIE outcome prognosis. We used width, 

intensity and length to classify an infant into one of the neurologically normal or abnormal 

groups. In our approach, we used the Active Contour model to remove the background, which 

is outside the brain tissue. Then we applied the ridge detection method to obtain the ridges 

representing thevessels in order to enable us to compute histograms of width, intensity and 

length of vessels as our feature vectors. To this end, we applied a vessel segmentation method 

to segment each vessel in each SWI image with a separate label. We computed 1) the minimum 

Euclidean distance of the pixels on the vessel edge as width value, 2) the difference between 

the ridge point pixels intensity and edge pixels intensity as intensity value of the ridge and 3) 

the length of segmented ridges by counting the number of pixels labelled as a ridge. Meanwhile, 

we also measured the eigenvalues of the Hessian matrix for all ridge pixels and their 

neighbourhood and then normalised as well as concatenated all these features for classification. 

We balanced our training dataset to avoid any classification bias. All four features and their 

combinations were fed to kNN and random forest classifiers with a leave-one-out cross-

validation strategy. The concatenated features consisting of width, intensity, length and Hessian 

eigenvalue in the random forest classifier present the best accuracy rate of 78.67±2.58%. Our 

result is better than the classification accuracy reported in [76] which is 72.27±4.85%. It is also 



 

70 

 

noted that the data used in [76] is imbalanced and the classification in [76] has been achieved 

using the scale proposed by Kitamura [45]. However, in this chapter, our HIE classification is 

carried out by using a balanced dataset and classification accuracies have been evaluated based 

on two neurologically normal and abnormal outcomes for infant patients. Finally, we trained 

the SVR model to predict cognitive and motor scores and use mean relative errors to measure 

the performance of the regression. Due to the lack of data, the lowest relative error of our SVR 

model is associated with motor scores, with a mean relative error of 0.109±0.067. We expect 

these results to improve if we obtain more data on the scores for clinical outcomes. As a result, 

our method improves the prognostic value of SWI images in HIE. 
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Chapter 5 

Brain Regions Affected by Hypoxic-
Ischaemic 

Newborns diagnosed with hypoxic-ischaemic encephalopathy (HIE) at birth will have long-

term neurodevelopmental impairment [89]. In the previous chapter, we developed an automatic 

system to predict the developmental outcome of infants with HIE at the age of 24 months from 

susceptibility-weighted imaging (SWI) images scanned at birth by detecting and analysing 

veins on neo-natal SWI images. However, it would be interesting to find the brain regions 

which cause the long-term neurodevelopment impairment of infants with HIE. In this chapter, 

the feature vectors extracted from the SWI images of infants with HIE are further numerically 

analysed to determine the brain regions which have been affected by neonatal HIE. 

5.1. Introduction 

Perinatal asphyxia will cause hypoxic-ischaemic brain injury in infants at birth. Generally, 

newborns with a clinical diagnosis of HIE will be treated with therapeutic hypothermia (TH), 

which is an effective neuroprotective therapy [47]. Therapeutic hypothermia (TH) can reduce 

the risk of neurodevelopment deficits in infants with moderate to severe HIE, but survivors still 

show widespread neurodevelopment impairment [49]. Recent research illustrates that infants 
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with mild and moderate HIE suffer from long-term motor and cognitive deficits [89]. 

Following the use of neuroimaging as a diagnostic and prognostic tool for HIE, studies using 

neuroimaging of infants with HIE to analyse the relationship between areas of the brain 

damaged by hypoxic-ischaemic (HI) and long-term neurodevelopment outcomes have become 

increasingly popular.  

Tusor et al. [90] revealed that the fractional anisotropy values in the corpora callosa and 

posterior limbs of the internal capsule of neonates with unfavourable outcomes were still lower. 

This was done by analysing the relationship between the fractional anisotropy values exported 

from diffusion tensor imaging in different regions of the neonatal brain with HIE and the 

neurodevelopmental performance. A work [91] showed that the functional connectivity in 

prefrontal-hippocampal networks was disrupted in neonatal brains suffering from HIE, which 

was related to cognitive function. In another study [92], a high correlation was found between 

cerebral glucose metabolism and the severity of HIE, with the most active brain regions being 

the thalamus, the basal ganglia and the sensorimotor cortex. 

Jiang et al. [93] evaluated resting-state functional connectivity in the motor network of 16 

infants with HIE and 11 neurologically intact infants using T2-weighted images and analysed 

the differences in the functional connectivity between the two groups. The T2-weighted images 

were aligned to the neonatal template and segmented into white matter, grey matter and 

cerebrospinal fluid. For each infant in the two groups, spherical regions of interest (ROI) were 

placed in the motor cortex and motor association regions of each hemisphere on the T2 images 

and then these ROIs were extracted for analysis. The results showed that infants with HIE had 

reduced resting-state functional connectivity between primary motor areas and between 

hemispheres within the primary motor cortex compared to neurologically intact infants. This 

study reveals potential deficits in primary and co-motor areas in newborns with HIE but lacks 

the support of follow-up results. Megan et al. [94] collected 66 newborns with HIE classified 

according to the Sarnat system (mild, moderate and severe). The magnetic resonance imaging 

(MRI) scanning (including T1- and T2-weighted imaging, diffusion-weighted imaging and 

apparent diffusion coefficient mapping) were performed on 66 newborns with HIE after TH 

within 14 days of birth. MRI images of infants with HIE were scored using three scoring 

systems: the Barkovich score, the National Institute of Child Health and Human Development 

score and the Weeke score, and neurodevelopmental outcomes were assessed by Bayley Scales 

(Bayley-III) at two years of age. By analysing the relationship between the different scoring 

systems and neurodevelopmental outcomes, the results showed that these three scoring systems 
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were associated with the Bayley-III cognitive and motor composite scores at age two. In the 

Barkovich scoring system, a damaged basal ganglia/thalamus was associated with severe motor 

impairment, and the watershed injury pattern was related to cognitive impairment. However, 

this study was limited by the experts who scored the MRI images. The reliability was 

inconsistent between different scorers. 

Given the correlation of cerebral blood flow with HI injury and the clearly visible borders and 

morphological features of micro-haemorrhages in SWI images after HIE [69], we propose an 

algorithm to separate vessels damaged by HIE from normal vessels. Such an algorithm would 

then enable us to find the regions of the brain affected by HI injuries, and it would help us to 

assess the associations of the affected brain regions with the neurodevelopmental outcomes. 

5.2. Methods 

5.2.1. Image pre-processing 

The data and ethics approvals used in this chapter are taken from Chapter 3. We used the 

methods in Chapter 4 for image pre-processing and feature extraction of blood vessels on SWI 

images. While measuring the length of blood vessels in the neonatal brain, the coordinates of 

the start point and the identification number of the SWI slice where the vessel is found, and the 

identification number for each patient are stored row by row in a location vector to enable us 

to find the patient who this vessel is associated with as well as to locate the vessel inside the 

brain (x, y, and slice number).  

5.2.2. Experimental design and approach 

Based on our results in Chapter 4, our hypothesis is that in SWI images, there are some changes 

in the appearances of some vessels affected by HIE. Therefore we can assume that in a brain 

affected by hypoxia-ischaemia, there are two groups of vessels: normal and abnormal. Here we 

have used the term “abnormal” for vessels that are affected by HIE and therefore appear 

differently in SWI images from normal vessels. We are therefore aiming to locate the damaged 

brain regions by detecting these abnormal vessels and investigating if it is possible to predict 

the outcomes of clinical assessments at birth (24 months before the infants are clinically 

assessed) by analysing the patients’ SWI images. However, it is tedious and time-consuming 

for medical experts to annotate such abnormal vessels. In the absence of ground truth data 
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(vessels annotated/labelled by medical experts as abnormal), it is not trivial to separate normal 

and abnormal vessels in any given SWI. 

We, therefore, propose Algorithm 1 to be able to separate normal and abnormal vessels. 

Algorithm 1 is a supervised classification method to classify vessels into normal and abnormal 

groups without using any ground truth for normal and abnormal vessels by using the outcomes 

of clinical assessments as indirect supervision. In order to supervise the classification process 

in our algorithm proposed here, the neurological, motor and cognitive outcomes obtained from 

clinical assessments are used as ground truths to train Algorithm 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from the pseudo-code of the training of Algorithm 1, we initially consider all 

vessels in all with normal outcomes. Each vessel is represented by a feature vector which 

consists of concatenated feature vectors extracted from SWI images as described in Chapter 4. 

Therefore, in our feature space, there are vessels represented by their feature vectors extracted 

Algorithm 1: Training   

TV= total number of vessels in each patient 

MD = Mahalanobis Distance 

-Extract width, length, intensity and eigenvalue histograms (features) of 
all vessels 

-Calculate the Mean and Covariance Matrix of vessels in feature space for 
Normal patients 

// Finding optimal value 

-Set interval ranges 𝑟𝑡 for threshold T, 𝑟𝑞  for percentage q 

-FOR each vessel belonging to a patient, 𝑇 ∈ 𝑟𝑡 do 

     -Count the number of vessels (c) with MD >T  

     FOR 𝑞 ∈ 𝑟𝑞   do 

          IF 𝑐 𝑇𝑉⁄ ≥ 𝑞%  

              Classify the patient as abnormal 

          ELSE 

              Classify the patient as normal  

          END // for IF 

-Calculate the accuracy using the number of correctly Classified patients 

-Increase q 

END // for q  

-Increase T 

END // for T 

Find T and q with highest classification accuracy. 
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from slices of all patients with normal outcomes in our dataset. We then compute the centre 

and covariance matrix for these feature points (vessels) representing normal patients in the 

feature space. Each vessel is defined as a vector with three concatenated features (width, 

intensity, and eigenvalue histograms) as well as the value of the vessel length. Next, all vessels 

for all patients with abnormal outcomes are compared with our original feature points in the 

feature space. Then every vessel in the feature space is classified into one of two groups: normal 

or abnormal vessels. The Mahalanobis Distance (MD) [95] of a feature point from the original 

group of feature points in our feature space is computed. If the MD of this feature point is less 

than a threshold T, this feature point is considered to be a member of a group of normal vessels. 

However, if this MD is more than threshold T, then the feature point is considered to be a 

member of a group of abnormal vessels. MD is calculated as: 

𝐷 =  √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇)                                                             

μ is the mean vector, S is the covariance matrix for the original group (associated with normal 

patients) of feature points in our feature space, and x is the feature vector associated with a 

vessel in the feature space. The above operation is performed for all vessels of all SWI slices 

of a patient.  

The MD values of each vessel for each patient are calculated and saved row by row in two lists 

(normal and abnormal groups). MD values belonging to the same patient will have the same 

patient label. Each MD value is compared with a set threshold to determine if it is an abnormal 

value (above the threshold), which is considered to be a vessel affected by HIE. Raising the 

threshold means that most of the vessels in the abnormal group of patients are classified as 

normal, and vice versa. In finding the optimal threshold, we follow two rules: 1) if the MD of 

one or more vessels is judged to be abnormal in all SWI sections of an infant with HIE, then 

the infant is abnormal; 2) if all vessels in all SWI sections are less than the threshold, then the 

infant is normal. In general, the optimal threshold should be that all patients in the normal group 

are classified as normal and all patients in the abnormal group are classified as abnormal with 

at least one vessel settled in outlier. Therefore an increase or decrease in the T value will 

directly affect the classification performance of the different groups of patients. 

However, SWI images can be contaminated with noise and artefacts. This means that SWI 

images from patients with normal neurological findings can show abnormal signals, resulting 

in vessels with large MD values being classified as abnormal. To eliminate the effects of noise 

and artefacts, we introduced percentages of vessels to ensure accuracy of classification, i.e. a 
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patient with a certain percentage of total vessels with an MD value greater than a threshold is 

classified as abnormal. Therefore, we employ the following rule: 

If q% or more vessels of a patient are considered to be abnormal, then the patient is 
considered to have an abnormal outcome. Otherwise, the patient is considered to have a 
normal outcome. 

Therefore, it becomes important to determine the T value and percentage. With certain values 

for q and T, Algorithm 1 predicts some patients with normal outcomes and some other patients 

with abnormal outcomes. This is because each change in T or q value will affect the 

classification of patients in the normal and abnormal groups. We then measure the accuracy of 

our algorithm for these values of q and T by comparing the outcome of our algorithm with the 

outcome of the clinical assessments (ground truth). In order to examine the contributions of 

different T values including small changes on the classification of patients, we use the 

exhaustive method to measure the variation in classification accuracy for all T values in steps 

of 0.01 from 0 to the maximum MD value and for all q values in steps of 0.1% from 0. Table 

5.1, 5.2, and 5.3 show the different accuracies as T and q are changed at the steps for neurology 

outcome, motor outcome, and cognitive outcome. Due to space constraints, we have only 

shown part of the tables. 
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Table 5. 1 The accuracies of classification with all T and q values for neurology outcome 

Threshold 

T 
…     q=1.9% q=2% q=2.1%     ... 

 Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

… … … … … … … … … … 

7.6 0.73 0.78 0.76 0.63 0.875 0.81 0.54 0.875 0.76 

7.61 0.73 0.81 0.79 0.63 0.875 0.81 0.54 0.91 0.81 

7.62 0.73 0.84 0.81 0.63 0.91 0.84 0.54 0.93 0.84 

7.63 0.73 0.88 0.83 0.63 0.91 0.84 0.54 0.93 0.84 

7.64 0.73 0.91 0.86 0.54 0.94 0.84 0.45 0.96 0.84 

7.65 0.73 0.91 0.86 0.54 0.94 0.84 0.45 0.96 0.84 

7.66 0.73 0.94 0.88 0.54 0.96 0.86 0.45 0.96 0.84 

7.67 0.64 0.94 0.86 0.54 0.96 0.86 0.45 0.96 0.84 

7.68 0.64 0.96 0.88 0.54 0.96 0.86 0.45 0.96 0.84 

7.69 0.64 0.96 0.88 0.54 0.96 0.86 0.45 0.96 0.84 

7.7 0.64 0.96 0.88 0.54 0.96 0.86 0.45 0.96 0.84 

… … … … … … … … … … 
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Table 5. 2 The accuracies of classification with all T and q values for cognitive outcome 

Threshold 

T 
…     q=3.8% q=3.9% q=4%     ... 

 Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

… … … … … … … … … … 

7.03 0.75 0.72 0.72 0.75 0.76 0.75 0.75 0.76 0.75 

7.04 0.75 0.72 0.72 0.75 0.76 0.75 0.75 0.76 0.75 

7.05 0.75 0.76 0.75 0.75 0.8 0.78 0.75 0.8 0.78 

7.06 0.75 0.8 0.78 0.75 0.88 0.84 0.75 0.88 0.84 

7.07 0.75 0.8 0.78 0.75 0.88 0.84 0.75 0.88 0.84 

7.08 0.75 0.84 0.81 0.75 0.96 0.93 0.75 0.96 0.93 

7.09 0.75 0.88 0.84 0.75 1 0.96 0.75 0.96 0.93 

7.1 0.75 0.88 0.84 0.75 1 0.96 0.5 1 0.93 

7.11 0.75 0.88 0.84 0.75 1 0.96 0.5 1 0.93 

7.12 0.75 0.88 0.84 0.75 1 0.96 0.5 1 0.93 

… … … … … … … … … … 
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Table 5. 3 The accuracies of classification with all T and q values for motor outcome 

Threshold 

T 
…     q=4% q=4.1% q=4.7%     ... 

 Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

Normal 

group 

Abnormal 

group 

Total 

patients 

… … … … … … … … … … 

6.05 0.66 0.36 0.39 1 0.6 0.57 1 0.92 0.92 

6.06 0.66 0.439 0.46 1 0.76 0.78 1 0.92 0.92 

6.07 0.33 0.76 0.71 1 0.8 0.82 1 0.96 0.96 

6.08 0.66 0.76 0.75 1 0.84 0.86 1 1 1 

… … … … … … … … … … 

6.14 0.33 0.8 0.75 1 0.92 0.92 0.33 1 0.92 

6.15 0.33 0.96 0.89 1 0.96 0.96 0.33 1 0.92 

6.16 0 1 0.89 1 0.96 0.96 0.33 1 0.92 

6.17 0 1 0.89 1 1 1 0 1 0.89 

6.18 0 1 0.89 0.66 1 0.96 0 1 0.89 

… … … … … … … … … … 

 

By changing q and T, we measure the accuracies of Algorithm 1 for all values of q and T as 

shown in table 5.1, 5.2 and 5.3. Finally, we choose q and T values that correspond to the 

maximum accuracy. Figure 5.1(a) shows how Algorithm 1 accuracies change with respect to 

q by changing T. In figure 5.2(a), different accuracy curves with respect to q for the 

neurological assessment outcomes are plotted in different colours for the different values of T. 

Ideally, the maximum for Algorithm 1 accuracies is desired to be 100%. However, due to the 
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distribution of vessel feature vectors in the feature space, this may not be achievable. In such 

cases, we choose the maximum accuracy over all of the T and q values for an assessment 

outcome. Figures 5.1(b) and 5.1(c) also depict the accuracy curves of our algorithm over T and 

q for motor and cognitive developmental outcomes. Having found the optimal values for T and 

q for each assessment outcome, we then manage to separate normal and abnormal vessels in 

our feature space. 

 

                                    a.                                                                          b.       

 
                                     c. 

Figure 5. 1 Choosing threshold 𝑇 and percentage 𝑞 where the accuracy in the training stage is at maximum 
for a) Neurology outcome analysis, b) Motor outcome analysis and c) Cognitive outcome analysis 

5.2.3. Image registration 

The neurological assessment involves assessing various motor phenomena [30, 36]. We believe 

an abnormal neurological outcome is caused by damages in the posterior section of the frontal 

lobe in the brain of infants with HIE that are within the primary motor area, pre-motor area and 

supplementary motor area related to motor functions. We explore the relationship between the 

percentage of the affected vessels in these regions and the neurology outcomes. The motor 
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cortex is extensively engaged while using the Bayley-III assessment on two-year-old infants 

with HIE [54, 96]. We predict that motor scores are related to the percentage of abnormal 

vessels in the motor areas of the brain, as in the primary motor area, pre-motor area and 

supplementary motor area implicated in the motor outcomes. Cognitive functions are always 

interrelated using different brain areas covering attention, memory, language and executive 

functions. As measuring the number of abnormal vessels is related to cognitive functions, three 

areas of the brain are considered in our analysis: the frontal lobe, the temporal lobe and the 

parietal lobe. 

In order to look for the brain regions affected by HIE, we register the atlas, including the 

average intensity image, the tissue density maps, the structure density maps, and the maximum 

probabilistic maps and labels, as a reference template with the SWIs to identify individual lobes 

in the SWIs. The brain template LPBA40/AIR (https://resource.loni.usc.edu/resources/atlases-

downloads/) and Brodmann template are selected for this study. The image registration of SWI 

datasets is carried out using Advanced Normalisation Tools (ANTs) [97-98], which have the 

best quality for the registration of brain magnetic resonance images. We convert all SWI 

images of each infant in our dataset into 3D brain images to be registered. The strategy for the 

ANTs registration programme, for which we opt, is to map the SWI images onto the template 

brain images using similarity transform and obtain the registered SWI images. 

The LPBA40/AIR template provides a standard normalised space containing 56 brain 

structures and partition labels, such as the frontal lobe and parietal lobe [99]. Since the SWI 

images of each infant with neonatal HIE are transformed/registered into a template brain of an 

atlas-based on an image registration method, we map the 56 labels of the maximum probability 

maps onto the new registered SWI images for analysis. We eventually consider the primary 

motor area, pre-motor area, and supplementary motor area of the 3D images and explore the 

relationship between the vessel features of SWI in these areas and neurology and motor 

outcomes at 24 months of age. To explore the relationship between vessel features in SWI 

images and cognitive outcomes, the frontal lobe, parietal lobe and temporal lobe of the brain 

as cognitive areas were examined. Figure 5.2(c) displays the SWI images after registration. As 

shown in Figure 5.2(c), the area covered in blue represents the motor area. The motor areas of 

the brain in SWI images are therefore selected by registering SWI images to the template brain.  
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a. 
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d. 

Figure 5. 2 a) Raw SWI images of infants with HIE; b) template brain; c) SWI images after registration; d. 
motor area covered by blue colour. 

Finally, for the SWI images of neonates with HIE in the neurology outcome group, the motor 

outcome group and the cognitive outcome group, all of the affected vessels detected through 

Algorithm 1 are recorded. Based on the experience of clinical experts and previous literature 

findings, we analyse the relationship between the percentage of abnormal vessels in different 

regions in SWI images and the developmental outcomes of infants. Two statistical methods are 

used to determine the location of the affected vessels: one is to observe where the affected 

vessels belonged on the SWI images according to previous empirical knowledge. The second 

is to obtain the location of the affected vessels with the help of SWI image registration. In 

reference to the list established during the measurement of vessel length, the affected vessel is 

mapped onto a ridge within the labelled motor or cognitive region. If more than half the length 

of the abnormal vessel is present in these regions, the affected vessel belongs to these regions. 

As shown in Figure 5.3, two vessels are detected as ‘abnormal’ by Algorithm 1 from an SWI 

image of infants with HIE who had an abnormal neurology outcome at the age of two years. 

Comparing the ridges in the motor areas on the registered SWI images, one ‘abnormal’ vessel 

is located in the motor area. 
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a.                                               b. 

Figure 5. 3 a. Two vessels are detected as ‘abnormal’ by Algorithm 1; b. Ridges on the registered SWI 
image. 

5.3. Results 

5.3.1. Relationship between brain regions with affected vessels and 

neurological outcome 

With 42 infants assessed clinically for neurological outcomes, a threshold of T=7.66 and a 

percentage of q=1.9% correspond with the best accuracy for our algorithm to enable us to 

separate the normal and abnormal vessels as depicted in figure 5.4 (a).  Table 5 shows the effect 

of small changes in T and q values with respect to the results. The best total accuracy for 

Algorithm 1 is 88.1%, with 29 out of 31 patients with a normal neurology outcome being 

correctly grouped (93.55%) and eight out of 11 patients with an abnormal neurology outcome 

being correctly grouped too (8/11: 93.75%). The fact that the maximum total accuracy here is 

less than 100% (88.1%) implies that some normal vessels are grouped as abnormal, and some 

abnormal vessels are grouped as normal. We expect that Algorithm 1 will classify the patients 

with normal neurology outcome and patients with abnormal neurology outcome into normal 

and abnormal groups 100% correctly. This is for the training data. We, therefore, propose a 

fine-tuning method in the following paragraph to find a more accurate boundary, separating 

normal and abnormal vessels by using a kNN classifier. 

Fine-tuning: The aim of fine-tuning is to find a more accurate boundary between normal and 

abnormal vessels in the feature space. Such a fine-tuning technique can improve our algorithm 

performance to up to 100% in the training stage. To this end, we choose two thresholds: 𝑇𝑖, 𝑇𝑜 
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in the neighbourhood of the threshold 𝑇𝑚𝑎𝑥, corresponding to the maximum accuracy to ensure 

that 𝑇𝑖 < 𝑇𝑚𝑎𝑥  < 𝑇𝑜 . These thresholds divide the feature space into three regions: The first 

region is the inner feature subspace considered to contain normal vessels (i.e. MD <𝑇𝑖) and the 

outer feature subspace (and second region) is considered to accommodate abnormal vessels 

(i.e. MD >𝑇𝑜). The third region is the middle subspace between these two above regions (i.e., 

𝑇𝑖 < MD<𝑇𝑜). By setting these two thresholds, some feature points are placed in the middle 

subspace between the inner and outer subspaces in the feature space. The feature points in the 

middle subspace are considered as a test set, and the rest of the feature points inside the inner 

and outer regions are used to train a kNN classifier. This kNN classifier classifies the feature 

points in the middle subspace (the test set) into the normal group (in the inner subspace) and 

the abnormal group (in the outer subspace) to determine a more accurate boundary between 

normal and abnormal groups in the feature space. We keep decreasing 𝑇𝑖 and increasing 𝑇𝑜 step 

by step and measure the classification accuracy in each step. We stop the fine-tuning process 

if either the classification accuracy reaches 100% or the maximum classification accuracy 

decreases with respect to the previous iteration. In our experiments, with the first step, we have 

always reached 100% accuracy and therefore terminate the fine-tuning process. It is noted that 

q and 𝑇𝑚𝑎𝑥 are kept constant during the fine-tuning process.  

Once each patient has met our rule (q=1.9%) and been correctly grouped, the fine-tuning is 

complete at 100% accuracy. Here, the two thresholds are 7.6 and 7.71. Before analysing the 

motor regions damaged by the HI injury, based on neurological outcomes, we perform a 

validation experiment with balanced data (11 patients with abnormal neurology and 11 patients 

with normal neurology randomly selected from 31 patients in the group with normal neurology 

as the training dataset) to measure the performance of Algorithm 1. A leave-one-out strategy 

is employed here, which means that Algorithm 1 is trained on all balanced data except for one 

test patient. Having trained our algorithm by computing T and q, we then measure the number 

of cases (classification accuracy) where the test patient is classified correctly. The random 

selection of 11 out of 31 patients from the normal group is repeated ten times, and the 

classification accuracy is measured each time. The final accuracy is calculated as 0.727±0.056 

(the mean ± standard deviation over these ten experiments). Table 5.4 shows the classification 

results of these ten experiments. 
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Table 5. 4 Performance of classification over ten times 

                    Actual patients 

 

Test patients 

Neurology 

outcome (Normal) 

Neurology outcome 

(Abnormal) 

1st experiment 

Neurology outcome (Normal) 7 2 

Neurology outcome 

(Abnormal) 
4 9 

2nd experiment 

Neurology outcome (Normal) 9 4 

Neurology outcome 

(Abnormal) 
2 7 

3rd experiment 

Neurology outcome (Normal) 8 3 

Neurology outcome 

(Abnormal) 
3 8 

4th experiment 

Neurology outcome (Normal) 8 4 

Neurology outcome 

(Abnormal) 
3 7 

5th experiment 

Neurology outcome (Normal) 9 5 

Neurology outcome 

(Abnormal) 
2 6 

6th experiment 

Neurology outcome (Normal) 10 2 

Neurology outcome 

(Abnormal) 
1 9 

7th experiment 

Neurology outcome (Normal) 9 4 

Neurology outcome 

(Abnormal) 
2 7 

8th experiment 

Neurology outcome (Normal) 7 3 

Neurology outcome 

(Abnormal) 
4 8 
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9th experiment 

Neurology outcome (Normal) 8 2 

Neurology outcome 

(Abnormal) 
3 9 

10th experiment 

Neurology outcome (Normal) 9 5 

Neurology outcome 

(Abnormal) 
2 6 

After the fine-tuning process, the abnormal vessel percentage for each patient is recalculated. 

We explore the relationship between the percentage of the affected vessels in the cortical motor 

regions of the brain (the primary motor area, the pre-motor area and the supplementary motor 

area) and the neurology outcomes. In these 42 patients, all of the vessels grouped as abnormal 

by Algorithm 1 with fine-tuning are counted. Finally, the ratio of the number of abnormal 

vessels in the motor areas to the total number of abnormal vessels, the ratio of the number of 

abnormal vessels in motor areas to the total number of vessels in the motor areas, and the ratio 

of the length of abnormal vessels in motor areas to the total length of vessels in motor areas are 

measured separately for each patient in the normal and abnormal groups to evaluate the 

relationship between the neurological outcomes and motor cortex damage for neurological 

outcomes at the age of 2 years. For the number of abnormal vessels detected by Algorithm 1 

in the motor area, the abnormal vessel counts and the ratios measurements are achieved by the 

observer’s experience and the registering SWI image with labelled motor areas from a brain 

template. As demonstrated in Figure 5.4, the number and percentage of the affected vessels in 

the first six figures (i-vi) were counted and calculated by the observer, and the number and 

percentage of the affected vessels in the last six (a-f) were counted automatically and calculated 

by comparison with the labelled areas. The mean and standard deviation of the ratios in infants 

with a normal neurology outcome and infants with an abnormal neurology outcome is shown 

in Figure 5.4, which shows the individual ratio as blue dots for infants with a normal neurology 

outcome and red dots for infants with an abnormal neurology outcome in scatterplots. 
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i.                                                                            ii. 

  
iii.                                                                     iv. 

  
v.                                                                       vi. 
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a.                                                                        b. 

  

c.                                                                     d. 

   

e.                                                                     f. 
Figure 5. 4 Ratio of the number of affected vessels in the motor area to the total number of affected 
vessels: i) and iv) are by the observer, and a) and d) are from the labelled motor areas; Ratio of the 
number of affected vessels in the motor area to the total number of vessels in the motor area: ii) and v) 
by the observer, and b) and e) are from the labelled motor areas; Ratio of the length of affected vessels 
in the motor areas (primary, pre- and supplementary) to the total length of vessels in the motor area: iii) 
and vi) are by the observer, and c) and f) are from the labelled motor areas. 
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As observed in Figure 5.4 (b and e), there is a significant difference in the ratios between the 

normal and abnormal groups. And after the SWI image registration, there is less overlap in 

ratios between the normal and abnormal groups. Our results indicate that the ratio of affected 

vessels in the motor regions by SWI images to the total number of vessels in the motor areas 

is correlated to neurological outcomes after HIE. Consequently, the neurological outcome at 

the age of two years could almost always be predicted by the ratios of the affected vessels 

described above in the motor areas of cerebral SWI in newborns with HIE. Due to the initial 

misclassification where two patients with normal neurology are marked as having abnormal 

motor outcomes and three patients with abnormal neurology are classified as patients with 

normal neurology, even after fine-tuning, there is some overlap between the range of ratios for 

the percentages of affected vessels in patients with normal and abnormal neurology. 

5.3.2. Affected brain regions associated with delayed motor development 

Of the 28 infants with HIE who were assessed with Bayley-3 scales, 25 infants have normal 

motor development (>85), two infants have mild motor delay (77.5-85), and one has severe 

motor delay (<77.5). As observed in Figure 5.1(b), the highest total accuracy of 100% is 

achieved with a threshold T of 6.17 and a percentage q of 4.1%, and a threshold T of 6.08 and 

a percentage q of 4.7%.  These are the ideal values for an optimal threshold T and percentage 

q, where patients in both the normal group with the normal motor outcome and the abnormal 

group with mild motor delay and severe motor delay are 100% correctly grouped by Algorithm 

1. 

Before measuring the number of affected vessels in the motor regions of the brain, we perform 

an experiment to measure the classification accuracy of Algorithm 1 with unseen test data for 

validation. We use balanced data (three patients with delayed motor scores and three patients 

with normal motor scores randomly selected from 25 from the normal motor score group). A 

leave-one-out strategy is then used here to measure the accuracy. In this balanced data (3 

patients with delayed motor scores and 3 patients with normal motor scores), only one patient 

is used as the test data and the rest are all put into Algorithm 1 as the training data. The final 

accuracy of classification using our algorithm to separate patients with delayed motor scores 

from normal motor scores is computed by repeating the above process ten times with random 

selections from the patients’ dataset with normal motor outcomes to achieve an accuracy of 

0.75±0.139 (mean ± standard deviation). Table 5.5 shows the classification results of these ten 

experiments. 
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Table 5. 5 Performance of classification over ten times 

                    Actual patients 

 

Test patients 

Normal motor 

score 

Abnormal motor 

score 

1st experiment 

Normal motor score 2 0 

Abnormal motor score 1 3 

2nd experiment 

Normal motor score 2 0 

Abnormal motor score 1 3 

3rd experiment 

Normal motor score 3 1 

Abnormal motor score 0 2 

4th experiment 

Normal motor score 1 1 

Abnormal motor score 2 2 

5th experiment 

Normal motor score 1 0 

Abnormal motor score 2 3 

6th experiment 

Normal motor score 2 1 

Abnormal motor score 1 2 

7th experiment 

Normal motor score 2 1 

Abnormal motor score 1 2 

8th experiment 

Normal motor score 2 0 

Abnormal motor score 1 3 

9th experiment 

Normal motor score 3 0 

Abnormal motor score 0 3 

10th experiment 

Normal motor score 2 1 

Abnormal motor score 1 2 
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Based on previous knowledge, we firstly predict that motor scores are related to the percentage 

of abnormal vessels in the motor areas of the brain. In these 28 patients, all of the vessels are 

grouped as abnormal with the most optimal thresholds T of 6.17, a percentage q of 4.1%, 

thresholds T of 6.08 and a percentage q of 4.7% are considered. Having trained our Algorithm 

1 with fine-tuning, the following terms are measured: 

𝑅𝑚1: The ratio of the number of abnormal vessels in the motor area to the total number of 
abnormal vessels in the brain. 

 𝑅𝑚2: The ratio of the number of abnormal vessels in the motor area to the total number of 
vessels in the motor area. 

𝑅𝑚3: The ratio of the length of abnormal vessels in the motor area to the length of total vessels 
in the motor areas. 

Similarly, two counting methods were used for the number of abnormal vessels detected by 

Algorithm 1 in the motor areas. One is generated by the observer and the other by registering 

the SWI images. Figure 5.5 shows the ratios under the two counting methods and Table 5.6 

shows the correlation between the motor score and 𝑅𝑚1, 𝑅𝑚2 and 𝑅𝑚3 with T of 6.17 and q of 

4.1%.  
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a.                                                                           b. 

  
c.                                                                         d. 

  
e.                                                                        f. 

Figure 5. 5 The ratio of the number of abnormal vessels in the motor area to the total number of affected 
vessels in the brain, a) is by the observer and d) is from the labelled motor areas; The ratio of the number of 
abnormal vessels in the motor area to the total number of vessels in the motor area, b) is by the observer and 
e) is from the labelled motor areas; The ratio of the length of abnormal vessels in the motor area to the total 
length of vessels in the motor area, c) is by the observer and f) is from the labelled motor areas. All plots in 
this figure are with T of 6.17 and q of 4.1%. 
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Table 5. 6 Correlation of ratios with motor scores (T of 6.17 and q of 4.1%) 

By observer 

Ratio measurement  Motor score p-value 

𝑅𝑚1 -0.51 0.004 

𝑅𝑚2 -0.71 0.000016 

𝑅𝑚3 -0.65 0.00019 

By registering SWI image 

Ratio measurement  Motor score  

𝑅𝑚1 -0.58 0.00116 

𝑅𝑚2 -0.76 0.000003 

𝑅𝑚3 -0.65 0.000164 

As shown in Figure 5.5, scatterplots of these ratios with respect to motor scores in the first 

three figures (a-c) were counted and calculated by the observer and the rest three figures (c-f) 

by the registering SWI image. Table 5.3 respectively shows the correlation between the motor 

score and 𝑅𝑚1, 𝑅𝑚2 and 𝑅𝑚3 with T of 6.17 and q of 4.1%. As observed from this figure, there 

are negative correlations between motor scores in one side with 𝑅𝑚1, 𝑅𝑚2 and 𝑅𝑚3 in the other 

side. It is noted from table 5.6 that the correlation between the motor score and the percentage 

of the abnormal vessels in motor areas to the total number of vessels in the motor area is -0.76 

(p-value < 0.0001) which is the highest among other measurements. The difference between 

all ratios and motor scores is significant (p-value < 0.005). 

Figure 5.6 illustrates the ratios under two counting methods and Table 5.7 illustrates the 

correlation between the motor score and 𝑅𝑚1, 𝑅𝑚2 and 𝑅𝑚3 with T of 6.08 and q of 4.7%. 
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a.                                                                           b. 

  

c.                                                                           d. 

 

  

e.                                                                           f. 

Figure 5. 6 The ratio of the number of abnormal vessels in the motor area to the total number of affected 
vessels in brain, a) is by the observer and d) is from the labelled motor areas; The ratio of the number 
of abnormal vessels in motor area to the total number of vessels in motor area, b) is by the observer and 
e) is from the labelled motor areas; The ratio of the length of abnormal vessels in motor area to the total 
length of vessels in motor area, c) is by the observer and f) is from the labelled motor areas. All plots 
in this figure are with T of 6.08 and q of 4.7%. 
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Table 5. 7 Correlation of ratios with motor scores (T of 6.08 and q of 4.7%) 

By observer 

Ratios measurement  Motor score p-value 

𝑅𝑚1 -0.62 0.00045 

𝑅𝑚2 -0.73 0.000009 

𝑅𝑚3 -0.71 0.000022 

By registering SWI image  

Ratios measurement  Motor score  

𝑅𝑚1 -0.53 0.0033 

𝑅𝑚2 -0.73 0.000012 

𝑅𝑚3 -0.63 0.00029 

As shown in Figure 5.6, scatterplots of these ratios with respect to the motor scores in the first 

three figures (a-c) were counted and calculated by the observer and the rest of the three figures 

(d-f) were counted and calculated automatically by the registering SWI image. Table 5.7 shows 

the correlation between the motor score and 𝑅𝑚1, 𝑅𝑚2 and 𝑅𝑚3 with T of 6.08 and q of 4.7%. 

As observed from this figure, there are negative correlations between the motor scores on one 

side with 𝑅𝑚1  and 𝑅𝑚2  and 𝑅𝑚3  on the other side. As seen in Table 5.7, the correlation 

between the motor score and the percentage of abnormal vessels in the motor areas to the total 

number of vessels in the motor area is -0.73, indicating the highest correlation of any other 

measure. The difference between all ratios and motor scores is significant (p-value < 0.005). 

As shown in both Figures 5.5 and 5.6, as the percentage of abnormal vessels increases in the 

motor cortex, the motor score decreases. The results presented in Figures 5.5 and 5.6 

demonstrate that the percentage of abnormal vessels in the motor areas is correlated with motor 

development for patients with normal and abnormal neurology. For patients whose motor 

scores are considered delayed (motor score <85), these abnormal vessels are clustered in areas 

associated with the motor function of the brain. It has been clarified in [135] that HIE patients 

with poor blood perfusion to several important brain structures (precentral gyrus) had Bayley-

III scores below 80. However, the precentral gyrus is the anatomical location of the primary 
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motor cortex. As shown in the figure 5.7, in patients with a motor score of less than 85, the 

abnormal vessels detected by Algorithm 1 are almost concentrated in the motor cortex. White 

ridges represent abnormal blood vessels. The presence of these vessels in the motor cortex of 

patients with a normal motor score is lower than those in patients with abnormal motor 

outcomes. Therefore, the number of abnormal vessels found in SW images of the motor cortex 

of the neonatal brain affected by hypoxia-ischaemia is related to motor development at the age 

of two years. 

  

     

Figure 5. 7 The location of abnormal veins in patients with delayed motor scores (<85). 

In addition to the motor areas, we measure the ratios of abnormal vessels detected by Algorithm 

1 in other regions with T of 6.17 and q of 4.1% and T of 6.08 and q of 4.7%, respectively, such 

as the frontal lobe, temporal lobe, parietal lobe and occipital lobe. The ratios of abnormal 

vessels in the temporal lobe cannot be counted and plotted due to only two abnormal vessels 

being detected in this region. For each lobe, the same three ratios of abnormal vessels are 

calculated as follows: 
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𝑅𝑚𝑓1, 𝑅𝑚𝑝1 or 𝑅𝑚𝑜1: The ratio of the number of abnormal vessels in the frontal, parietal or 
occipital lobe to the total number of abnormal vessels in the brain. 

 𝑅𝑚𝑓2, 𝑅𝑚𝑝2 or 𝑅𝑚𝑜2: The ratio of the number of abnormal vessels in the frontal, parietal or 
occipital lobe to the total number of vessels in the frontal, parietal or occipital lobe. 

𝑅𝑚𝑓3, 𝑅𝑚𝑝3 or 𝑅𝑚𝑜3: The ratio of the length of abnormal vessels in the frontal, parietal or 
occipital lobe to the length of total vessels in the frontal, parietal or occipital lobe. 

Figure 5.8 shows the ratios of abnormal vessels in the frontal, parietal and occipital lobe, and 

Table 5.8 shows the correlation between the motor score and 𝑅𝑚𝑓1−𝑚𝑓3 , 𝑅𝑚𝑝1−𝑚𝑝3  and 

𝑅𝑚𝑜1−𝑚𝑜3  with T of 6.17 and q of 4.1%. Here, all abnormal vessel counts and the ratio 

measurements are achieved automatically by registering the SWI images, including the 

detected abnormal vessels, with a brain template containing all brain lobes.  
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a.                                                                         b. 

  
c.                                                                         d. 

  
e.                                                                         f. 
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g.                                                                         h. 

 
i. 

Figure 5. 8 The ratio of the number of abnormal vessels in the frontal (a), parietal (d) and occipital (g) 
lobe to the total number of affected; The ratio of the number of abnormal vessels in the frontal (b), 
parietal (e) and occipital (h) lobe to the total number of vessels in the frontal, parietal and occipital lobe; 
The ratio of the length of abnormal vessels in the frontal (c), parietal (f) and occipital (i) lobe to the 
total length of vessels in the frontal, parietal and occipital lobe. All plots in this figure are with T of 
6.17 and q of 4.1%. 
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Table 5. 8 Correlation of ratios with motor scores (T of 6.17 and q of 4.1%) 

Frontal lobe 

Ratio measurement  Motor score p-value 

𝑅𝑚𝑓1 -0.33 0.088 

𝑅𝑚𝑓2 -0.65 0.00017 

𝑅𝑚𝑓3 -0.62 0.0004 

Parietal lobe  

Ratio measurement  Motor score  

𝑅𝑚𝑝1 0.34 0.079 

𝑅𝑚𝑝2 0.15 0.4347 

𝑅𝑚𝑝3 0.15 0.4482 

Occipital lobe  

Ratio measurement  Motor score  

𝑅𝑚𝑜1 -0.22 0.2670 

𝑅𝑚𝑜2 -0.24 0.2149 

𝑅𝑚𝑜3 -0.16 0.4039 

The scatterplots of these ratios of the frontal, parietal and occipital lobe with respect to motor 

scores are shown in Figure 5.8. Table 5.8 shows the correlation between the motor score and 

ratios of the frontal, parietal and occipital lobe with T of 6.17 and q of 4.1%. It is noted from 

Table 5.8 that the correlation between the motor score and the percentage of abnormal vessels 

in the frontal lobe to the total number of vessels in the frontal lobe is -0.65 (p-value<0.0002), 

which is the highest among other measurements but is still lower than the correlation in motor 

area. As observed from this figure, the ratio of abnormal vessels in the frontal lobe has a strong 
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correlation with the motor score (Figure 5.8(b) and (c)), while the correlation between the 

motor score and the ratio of abnormal vessels in the parietal and occipital lobe is not significant, 

as shown in Figure 5.8 (d – i).  

Figure 5.9 shows the ratios of abnormal vessels in the frontal, parietal and occipital lobe and 

Table 5.9 shows the correlation between the motor score and 𝑅𝑚𝑓1−𝑚𝑓3 , 𝑅𝑚𝑝1−𝑝3  and 

𝑅𝑚𝑜1−𝑚𝑜3 with T of 6.08 and q of 4.7%. 

  
a.                                                                         b. 

   
c.                                                                         d. 
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e.                                                                         f. 

   
g.                                                                         h. 

 
i. 

Figure 5. 9 The ratio of the number of abnormal vessels in the frontal (a), parietal (d) and occipital (g) lobe 
to the total number of affected; The ratio of the number of abnormal vessels in the frontal (b), parietal (e) 
and occipital (h) lobe to the total number of vessels in the frontal, parietal and occipital lobe; The ratio of 
the length of abnormal vessels in the frontal (c), parietal (f) and occipital (i) lobe to the total length of vessels 
in the frontal, parietal and occipital lobe. All plots in this figure are with T of 6.08 and q of 4.7%. 
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Table 5. 9 Correlation of ratios with motor scores (T of 6.08 and q of 4.7%) 

Frontal lobe 

Ratio measurement  Motor score p-value 

𝑅𝑚𝑓1 -0.31 0.1096 

𝑅𝑚𝑓2 -0.56 0.00133 

𝑅𝑚𝑓3 -0.59 0.0010 

Parietal lobe  

Ratio measurement  Motor score  

𝑅𝑚𝑝1 0.48 0.0094 

𝑅𝑚𝑝2 0.28 0.1472 

𝑅𝑚𝑝3 0.22 0.2542 

Occipital lobe  

Ratio measurement  Motor score  

𝑅𝑚𝑜1 -0.12 0.5296 

𝑅𝑚𝑜2 -0.26 0.1767 

𝑅𝑚𝑜3 -0.17 0.3681 

Figure 5.9 shows scatter plots of the ratios of the frontal, parietal and occipital lobe relative to 

motor scores with T of 6.08 and q of 4.7%. Table 5.5 shows the correlations between motor 

scores and the ratios of the frontal, parietal and occipital lobes, respectively. As can be seen in 

Table 5.9, the correlation between motor score and the ratio of the length of abnormal vessels 

in the frontal lobe to the length of total vessels in the frontal lobe was -0.59 (p-value<0.001), 

which was the highest among other measurement. Comparing with the ratios of the motor areas, 
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the percentage of the abnormal vessels in motor areas to the total number of vessels in the 

motor area possesses the best correlation with the motor score, which is -0.76 (p-value < 

0.0002). 

Figures 5.8 and 5.9 show the results of the percentage of abnormal vessels in the same cortex 

for HIE patients with motor outcome by using different optimal thresholds (T=6.17 and 

T=6.08). We explore the ratios of abnormal vessels in all brain lobes. Since there is almost no 

number of abnormal vessels detected from Algorithm 1 in the temporal lobes of patients with 

motor outcome, we only calculate the ratios of the number of abnormal vessels in frontal lobe, 

parietal lobe, and occipital lobe. In all scatter plots, patients with a ratio of zero are shown due 

to the absence of abnormal vessels detected in the frontal lobe, parietal lobe, or occipital lobe. 

The comparison shows that at a threshold T=6.17, the correlation between motor scores and 

the percentage of abnormal frontal vessels and the total number of frontal vessels is the highest 

of all measurements, which is -0.65 (p-value<0.0002). The scatter plots show that the 

correlation between motor scores and the ratios of the number of abnormal vessels in the frontal 

lobe at a threshold of 6.17 is stronger than that at a threshold of 6.08. The ratios of abnormal 

vessels in the parietal and occipital lobes using both thresholds (T=6.17 and T=6.08) are not 

correlate significantly correlated with motor scores (p-value >0.005).  

5.3.3. Affected brain regions associated with cognitive development 

The vessels of 29 infants of which 25 infants had normal cognitive outcome (cognitive 

scores>85), 3 infants with mild cognitive delay (cognitive scores between 77.5 and 85) and one 

severe cognitive delay (cognitive scores <77.5), are optimally partitioned by our 

aforementioned algorithm proposed in this chapter with a threshold T of 7.09 and a percentage 

q of 3.9%. In the training stage, Algorithm 1 achieves 100% accuracy for patients that have 

normal cognitive score and 75% accuracy for patients that have mild and severe cognitive delay, 

and the total accuracy is therefore 96.55%. We also use the kNN classifier for fine-tuning as 

proposed in section 5.3.1 and improve the accuracy of 100% in the training stage as observed 

in Figure 5.1(c). As observed from this figure, there are two thresholds: 7.06 and 7.13 for which 

the classification accuracy reaches 100%. 

Before measuring the correlations between our measurements with cognitive scores, we 

undertake an experiment to measure the performance of our algorithm using a leave-one-out 

strategy with unseen test data by balancing our dataset with cognitive outcomes i.e., 4 patients 

with delayed cognitive scores and 4 patients with normal cognitive score randomly selected 
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from 25 normal cognitive score group. In our dataset, there are four patients with delayed 

cognitive scores. For balanced data, we randomly selected four datasets ten times from the 

patients with normal cognitive. The final accuracy for classifying patients with delayed 

cognitive score and patients with normal cognitive score is computed as, 0.65 ± 0.098 (mean ± 

standard deviation) by repeating the experiment 10 times the aforementioned experiment in the 

above paragraph. The results are summarised in table 5.10 and are compared with the 

classification accuracies for Random Forest and kNN. As can be observed from the table, 

Algorithm 1 has superior performance for the datasets associated with cognitive and motor 

outcomes. 

Table 5. 10.  Performance of classification in ten times 

                    Actual patients 

 

Test patients 

cognitive 

score >85 
cognitive score ≤ 85 

1st experiment 

cognitive score >85 3 1 

cognitive score ≤ 85 1 3 

2nd experiment 

cognitive score >85 2 1 

cognitive score ≤ 85 2 3 

3rd experiment 

cognitive score >85 3 1 

cognitive score ≤ 85 1 3 

4th experiment 

cognitive score >85 2 2 

cognitive score ≤ 85 2 2 

5th experiment 

cognitive score >85 2 1 

cognitive score ≤ 85 2 3 

6th experiment 

cognitive score >85 1 1 

cognitive score ≤ 85 3 3 

7th experiment 

cognitive score >85 2 1 

cognitive score ≤ 85 2 3 
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8th experiment 

cognitive score >85 2 1 

cognitive score ≤ 85 2 3 

9th experiment 

cognitive score >85 2 0 

cognitive score ≤ 85 2 4 

10th experiment 

cognitive score >85 3 1 

cognitive score ≤ 85 1 3 

Cognitive functions are interrelated, and overlap using different brain areas covering, for 

example, attention, memory, language, and executive functions. Here, to measure the number 

of abnormal vessels related to cognitive functions, three areas of the brain are considered in 

our analysis: the frontal lobe, temporal lobe and parietal lobe. The vessels grouped as abnormal 

after fine-tuning with a threshold of T=7.09 in each of the three lobes are counted (q=3.9%), 

and the following terms are calculated: 

𝑅𝑐1: The ratio of the number of abnormal vessels in the three lobes to the total number of 
abnormal vessels in the brain. 

 𝑅𝑐2: The ratio of the number of abnormal vessels in the three lobes to the total number of 
vessels in the three lobes. 

𝑅𝑐3: The ratio of the length of abnormal vessels in the three lobes to the length of total vessels 
in the three lobes. 

In the same way, two counting methods were used for the number of abnormal vessels detected 

by Algorithm 1 in the three lobes. One is obtained by an observer and the other automatically 

by registering the SWI images. Figure 5.10 shows the scatterplots of the ratios from the two 

counting methods and Table 5.11 shows the correlation between the cognitive score and 𝑅𝑐1, 

𝑅𝑐2 and 𝑅𝑐3 with T of 7.09 and q of 3.9%.  
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a.                                                                         b. 

  
c.                                                                         d. 

      
e.                                                                         f. 

Figure 5. 10 The ratio of the number of abnormal vessels in three lobes to the total number of affected vessels 
in brain, a) is by the observer, b) is from the labelled three lobes; The ratio of the number of abnormal vessels 
in the three lobes to the total number of vessels in the three lobes, c) is by the observer, d) is from the labelled 
three lobes; The ratio of the length of abnormal vessels in three lobes to the total length of vessels in three 
lobes, e) is by the observer, f) is from the labelled three lobes. All plots in this figure are with T of 7.09 and 
q of 3.9%. 
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Table 5. 11 Correlation of ratios with cognitive scores (T of 7.09 and q of 3.9%) 

By observer 

Ratio measurement  Cognitive score  p-value 

𝑅𝑐1 0.05 0.7916 

𝑅𝑐2 -0.49 0.007 

𝑅𝑐3 -0.56 0.0014 

By registering SWI image  

Ratio measurement  Cognitive score  

𝑅𝑐1 0.04 0.8351 

𝑅𝑐2 -0.48 0.008 

𝑅𝑐3 -0.52 0.0042 

The scatter plots in Figure 5.10 depict the various relationships between the ratios of abnormal 

vessels in the three lobes with respect to cognitive development. The scatterplots of these ratios 

in the first three figures (a-c) are counted and calculated by the observer and the rest three 

figures (d-f) are counted and calculated by the registering SWI image. Table 5.11 shows the 

correlation between the cognitive score and 𝑅𝑐1, 𝑅𝑐2 and 𝑅𝑐3 with T of 7.09 and q of 3.9%. As 

observed from this figure, the measurements 𝑅𝑐2 and 𝑅𝑐3 demonstrate stronger correlations 

with the cognitive scores, but the measurement 𝑅𝑐1 does not show any significant correlation 

with the cognitive scores at all. The correlation coefficient is -0.52 for abnormal vessels length 

as tabulated in Table 5.11.  

Except for the combined three lobes, we measure the ratio of abnormal vessels detected by 

Algorithm 1 in each individual lobe, such as the frontal, temporal, parietal and occipital lobes. 

Here, all abnormal vessel counts and ratio measurements depend on registering SWI image 

with a brain template containing all brain lobes. For each lobe, same three ratios of abnormal 

vessels are calculated as follow: 

𝑅𝑐𝑓1 , 𝑅𝑐𝑡1, 𝑅𝑐𝑝1  or 𝑅𝑐𝑜1 : The ratio of the number of abnormal vessels in the only frontal, 
temporal, parietal or occipital lobe to the total number of abnormal vessels in the brain. 
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 𝑅𝑐𝑓2, 𝑅𝑐𝑡2, 𝑅𝑐𝑝2 or 𝑅𝑐𝑜2: The ratio of the number of abnormal vessels in the only frontal, 
temporal, parietal or occipital lobe to the total number of vessels in the only frontal, temporal, 
parietal or occipital lobe. 

𝑅𝑐𝑓3 , 𝑅𝑐𝑡3,  𝑅𝑐𝑝3  or 𝑅𝑐𝑜3 : The ratio of the length of abnormal vessels in the only frontal, 
temporal, parietal or occipital lobe to the length of total vessels in the only frontal, temporal, 
parietal or occipital lobe. 

Figure 5.11 shows the ratios of abnormal vessels in only frontal, temporal, parietal and occipital 

lobes and Table 5.12 shows the correlation between the cognitive score and 𝑅𝑐𝑓1−𝑐𝑓3, 𝑅𝑐𝑡1−𝑐𝑡3,  

𝑅𝑐𝑝1−𝑐𝑝3 and 𝑅𝑐𝑜1−𝑐𝑜3 with T of 7.09 and q of 3.9%. 
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a.                                                                         b. 

   

c.                                                                         d. 

   

e.                                                                         f. 
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g.                                                                         h. 

   

i.                                                                         j. 

   

k.                                                                         l. 

Figure 5. 11 The ratio of the number of abnormal vessels in different lobes to the total number of affected 
vessels in brain, a) frontal, d) temporal, g) parietal, j) occipital; The ratio of the number of abnormal vessels 
in the different lobes to the total number of vessels in the different lobes, b) frontal, e) temporal, h) parietal, 
k) occipital; The ratio of the length of abnormal vessels in different lobes to the total length of vessels in 
these lobes, c) frontal, f) temporal, i) parietal, l) occipital. All plots in this figure are with T of 7.09 and q of 
3.9%. 
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Table 5. 12 Correlation of ratios with cognitive scores (T of 7.09 and q of 3.9%) 

Frontal lobe 

Ratio measurement  Cognitive score p-value 

𝑅𝑐𝑓1 -0.12 0.5261 

𝑅𝑐𝑓2 -0.36 0.0586 

𝑅𝑐𝑓3 -0.5 0.006 

Temporal lobe  

Ratio measurement  Cognitive score  

𝑅𝑐𝑡1 0.003 0.9893 

𝑅𝑐𝑡2 -0.36 0.05 

𝑅𝑐𝑡3 -0.21 0.2737 

Parietal lobe  

Ratio measurement  Cognitive score  

𝑅𝑐𝑝1 0.26 0.1778 

𝑅𝑐𝑝2 -0.24 0.2075 

𝑅𝑐𝑝3 -0.24 0.2007 

Occipital lobe  

Ratio measurement  Cognitive score  

𝑅𝑐𝑜1 -0.15 0.4465 

𝑅𝑐𝑜2 -0.34 0.0664 

𝑅𝑐𝑜3 -0.3 0.1121 
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Various relationships between the ratios of abnormal vessels in the frontal, temporal, parietal 

and occipital and cognitive development are presented in the scatter plots in Figure 5.11. The 

cognitive scores for this group are not strongly correlated with our aforementioned 

measurements, while the correlations between the cognitive scores and the ratios of abnormal 

vessels length in only the frontal lobe is significant as illustrated in Figures 5.11(c). The 

correlation coefficient is -0.5 (p-value <0.01) for the ratios of abnormal vessels length in the 

frontal lobe as tabulated in Table 5.12. In summary, the length of abnormal vessels in the frontal, 

temporal, and parietal lobes is the best predictor for cognitive scores assessed at the age of 2 

years, that the correlation coefficient is -0.52 (p-value <0.005). Our results here is inline with 

the fact the HIE related brain injury causing cognitive impairments is spread over a few lobes 

in the brain and is not located in a specific lobe. As shown in Figure 5.12, the abnormal vessels 

detected by Algorithm 1 in patients with delayed cognitive scores are mainly located in the 

frontal lobe, temporal lobe and parietal lobe. 

   

   
Figure 5. 12 The location of abnormal veins in patients with delayed cognitive scores (<85). 
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5.3.4. The inter- and intra- class variations 

Figure 5.13 shows the inter- and intra- class variations for two normal and abnormal (vessel) 

groups for neurology outcome (figure 5.13 (a and b)), motor development (figure 5.13 (c, d 

and e)), and cognitive development (figure 5.13 (g and h)). In Figure 5.13, the green histograms 

illustrate the intra-class variations for vessels within the same group, while the red histograms 

represent the inter-class variations for vessels from the two different groups. The histograms 

of feature points are normalized to the area below each histogram. In figures 5.13 (a, c and f), 

all vessels from patients with normal neurology outcome, normal motor score and normal 

cognitive score are considered as normal, and all vessels from patients with abnormal 

neurology outcome, delayed motor cognitive developments are deemed as abnormal 

respectively. As observed from figures 5.13(a, c and f), the two histograms are heavily 

overlapped. The corresponding Receiver Operator Characteristic (ROC) curve for these three 

cases shown in figure 5.13(h) indicates a low performance (around 50% classification accuracy) 

for such a vessel classification system. Figure 5.13(b) depicts inter-class and intra-class 

variation histograms between abnormal and normal vessels groups after the vessels are 

classified as normal and abnormal for neurology outcomes by our Algorithm 1 with fine-tuning 

proposed in this paper. Figures 5.13(d and e) present the histograms for inter- and intra- class 

variations between the abnormal and normal vessel groups after the classification of vessels 

into normal and abnormal by our Algorithm 1 with thresholds T of 6.17 and T of 6.08 for motor 

outcomes, while figure 5.13(g) represents the abnormal and normal vessel groups classified by 

Algorithm 1 with fine-tuning for cognitive outcomes. As observed from figures 5.13(b, d, e, 

and g), the inter/intra class variation histograms show a better separated features for normal 

and abnormal vessel groups in the feature space. As observed in figure 5.13(h), the ROC curve 

corresponding to the intra/inter class variations of figure 5.13(g) demonstrates a higher 

performance in classification (with an AUC higher than 72%). As shown in Figure 5.13(b, d, 

e, and g), the overlap between two histograms and the areas under the ROC curves (orange, 

red, yellow, and brown curves) demonstrate a better performance after Algorithm 1 classifies 

normal and abnormal vessels in our feature space. 
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a.                                                                                           b. 

   
c.                                                                                           d. 

   
e.                                                                                           f. 
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g.                                                                                           h. 

Figure 5. 13 Intra/inter class variations of neurology outcome for: a) original abnormal group and normal 
group;  b) abnormal group and normal group classified by our Algorithm 1 with fine-tuning; Intra/inter class 
variations of motor outcome for: c) original abnormal group and normal group; d) abnormal group and 
normal group classified by our Algorithm 1 with T of 6.17; e) abnormal group and normal group classified 
by our Algorithm 1 with T of 6.08; Intra/inter class variation of cognitive outcome for: f) original abnormal 
group and normal group; g) abnormal group and normal group classified by our Algorithm 1 with fine-
tuning; h) ROC curve of above inter- and intra- class variation plots. 

5.3.5. Regression analysis for motor and cognitive development 

For each of 28 patients with motor scores and 29 patients with cognitive scores, we use these 

different ratios, like 𝑅𝑚1 to 𝑅𝑚3, and 𝑅𝑐1 to 𝑅𝑐3, respectively as new features to predict motor 

and cognitive development scores. As our earlier work in Chapter 4, we also employ support 

vector regression (SVR), linear regression (LR) and polynomial regression (PR) to predict the 

new test. Given a database of n patients with ratios, 𝑥𝑛  ∈  ℝ𝑚, as input and the corresponding 

Bayley composite scores 𝑦𝑛 as output, the motor or cognitive score for a new patient can be 

predicted by employing different ratios calculated in the previous section through training the 

LR, PR and SVR model using these ratios (as 𝑥𝑛) and the associated motor or cognitive scores 

(as 𝑦𝑛). The error of regression method is measured by using a leave-one-out strategy. 

To measure the performance of these regression models, the error for each test patient is 

calculated as the absolute difference between the true score for cognitive or motor scores and 

the corresponding predicted score provided by using trained different regression models with 

these ratios, and the mean relative error (MRE) as defined below: 

𝑀𝑅𝐸 =  
1

𝑛
∑

|𝑝𝑖 − 𝑡𝑖|

𝑡𝑖

𝑛

𝑖=1
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where n is the number of patients in our database, 𝑝𝑖 is the regression model prediction value, 

𝑡𝑖 is the true value (ground truth). A mean and standard deviation are calculated for both 

absolute errors and MRE. 

All ratios used for regressions are generated by registering SWI images in order to avoid human 

errors. The mean relative errors measured by LR model, PR model and SVR model are 

presented in Table 5.13 and Table 5.14 to measure the performance of predicting motor scores, 

and in Table 5.15 to measure the performance of predicting cognitive scores. Here the MRE of 

SVR model is calculated using a polynomial kernel with degree = 2 to compare the results 

trained with the four vascular features by the same SVR model in Chapter 4. PR model only 

shows the lowest MRE measured by the associated degree. Due to the lack of sufficient data, 

the Bayley-III composite scores of infants with HIE appears to be discrete rather than 

continuous. This makes the standard deviation values very large. 

Table 5. 1 Regression prediction errors for motor scores (T of 6.17 and q of 4.1%) 

Regression  Mean error MRE 

LR model 

𝑅𝑚1 10.92±9.54 0.108±0.095 

𝑅𝑚2 8.94±7.43 0.088±0.073 

𝑅𝑚3 11.30±7.17 0.112±0.071 

𝑅𝑚𝑓1 13.22±9.82 0.13±0.097 

𝑅𝑚𝑓2 9.92±9.08 0.099±0.09 

𝑅𝑚𝑓3 10.81±8.78 0.107±0.087 

𝑅𝑚𝑝1 12.57±10.62 0.125±0.105 

𝑅𝑚𝑝2 12.83±11.13 0.127±0.11 

𝑅𝑚𝑝3 12.69±11.1 0.126±0.11 

𝑅𝑚𝑜1 12.28±11.32 0.12±0.11 

𝑅𝑚𝑜2 12.17±11.42 0.12±0.11 

𝑅𝑚𝑜3 12.46±11.8 0.123±0.12 

PR model 𝑅𝑚1 (degree = 4) 9.77±6.93 0.098±0.069 
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𝑅𝑚2 (degree = 4) 9.65±7.055 0.098±0.07 

𝑅𝑚3 (degree = 2) 11.39±6.12 0.11±0.061 

𝑅𝑚𝑓1 (degree = 2) 12.19±10.61 0.12±0.105 

𝑅𝑚𝑓2 (degree = 2) 10.77±7.18 0.106±0.071 

𝑅𝑚𝑓3 (degree = 2) 12.37±10.33 0.123±0.102 

𝑅𝑚𝑝1 (degree = 3) 11.73±10.67 0.116±0.106 

𝑅𝑚𝑝2 (degree = 2) 12.61±11.57 0.125±0.114 

𝑅𝑚𝑝3 (degree = 2) 12.79±11.39 0.127±0.113 

𝑅𝑚𝑜1 (degree = 2) 12.56±11.67 0.124±0.116 

𝑅𝑚𝑜2 (degree = 2) 12.86±11.72 0.127±0.116 

𝑅𝑚𝑜3 (degree = 2) 12.88±12.12 0.127±0.12 

SVR model 

𝑅𝑚1 12.53±8.26 0.124±0.082 

𝑅𝑚2 9.86±8.73 0.097±0.086 

𝑅𝑚3 9.84±8.41 0.097±0.079 

𝑅𝑚𝑓1 14.18±14.29 0.14±0.14 

𝑅𝑚𝑓2 9.73±9.02 0.097±0.089 

𝑅𝑚𝑓3 12.46±12.8 0.12±0.13 

𝑅𝑚𝑝1 12.11±10.73 0.12±0.106 

𝑅𝑚𝑝2 12.07±10.78 0.11±0.107 

𝑅𝑚𝑝3 11.89±10.94 0.118±0.108 

𝑅𝑚𝑜1 11.99±11.0 0.11±0.109 

𝑅𝑚𝑜2 11.10±11.35 0.11±0.112 

𝑅𝑚𝑜3 11.86±11.07 0.117±0.109 
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Table 5. 14 Regression prediction errors for motor scores (T of 6.08 and q of 4.7%) 

Regression  Mean error MRE 

LR model 

𝑅𝑚1 11.85±9.31 0.117±0.09 

𝑅𝑚2 9.63±7.67 0.97±0.076 

𝑅𝑚3 11.5±7.36 0.114±0.073 

𝑅𝑚𝑓1 13.23±10.04 0.12±0.099 

𝑅𝑚𝑓2 10.92±9.42 0.108±0.09 

𝑅𝑚𝑓3 10.78±9.26 0.107±0.092 

𝑅𝑚𝑝1 11.86±9.53 0.117±0.094 

𝑅𝑚𝑝2 12.39±10.84 0.12±0.1 

𝑅𝑚𝑝3 12.47±10.98 0.12±0.109 

𝑅𝑚𝑜1 12.94±11.19 0.128±0.11 

𝑅𝑚𝑜2 12.39±10.97 0.123±0.108 

𝑅𝑚𝑜3 12.36±11.58 0.12±0.115 

PR model 

𝑅𝑚1 (degree = 4) 10.96±5.92 0.108±0.058 

𝑅𝑚2 (degree = 2) 11.56±8.88 0.115±0.088 

𝑅𝑚3 (degree = 2) 10.69±8.36 0.106±0.083 

𝑅𝑚𝑓1 (degree = 2) 12.58±10.54 0.124±0.104 

𝑅𝑚𝑓2 (degree = 2) 11.81±8.44 0.117±0.083 

𝑅𝑚𝑓3 (degree = 2) 12.93±9.4 0.109±0.063 

𝑅𝑚𝑝1 (degree = 3) 13.06±10.79 0.129±0.107 

𝑅𝑚𝑝2 (degree = 2) 12.58±11.11 0.124±0.11 

𝑅𝑚𝑝3 (degree = 2) 12.97±10.82 0.128±0.107 
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𝑅𝑚𝑜1 (degree = 2) 13.05±11.6 0.129±0.115 

𝑅𝑚𝑜2 (degree = 2) 12.73±11.15 0.126±0.11 

𝑅𝑚𝑜3 (degree = 2) 13.06±11.68 0.129±0.116 

SVR model 

𝑅𝑚1 13.53±9.306 0.134±0.092 

𝑅𝑚2 10.98±9.71 0.109±0.096 

𝑅𝑚3 10.86±8.86 0.107±0.088 

𝑅𝑚𝑓1 14.78±16.64 0.146±0.165 

𝑅𝑚𝑓2 10.64±9.4 0.105±0.093 

𝑅𝑚𝑓3 11.56±11.97 0.11±0.118 

𝑅𝑚𝑝1 13.93±14.98 0.138±0.148 

𝑅𝑚𝑝2 14.2±10.50 0.141±0.104 

𝑅𝑚𝑝3 13.66±11.3 0.135±0.11 

𝑅𝑚𝑜1 13.72±12.88 0.136±0.127 

𝑅𝑚𝑜2 14.33±14.63 0.142±0.145 

𝑅𝑚𝑜3 13.0±12.25 0.129±0.121 

 

Table 5. 2 Regression prediction errors for cognitive scores (T of 7.09 and q of 3.9%) 

Regression  Mean error MRE 

LR model 

𝑅𝑐1 13.18±13.03 0.13±0.131 

𝑅𝑐2 12.35±11.23 0.12±0.111 

𝑅𝑐3 12.58±10.52 0.124±0.103 

𝑅𝑐𝑓1 12.77±13.21 0.126±0.13 

𝑅𝑐𝑓2 13.06±12.53 0.129±0.123 

𝑅𝑐𝑓3 11.67±11.85 0.115±0.117 
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𝑅𝑐𝑡1 13.58±13.57 0.134±0.13 

𝑅𝑐𝑡2 13.59±11.61 0.134±0.114 

𝑅𝑐𝑡3 13.14±12.64 0.129±0.124 

𝑅𝑐𝑝1 12.75±12.61 0.126±0.124 

𝑅𝑐𝑝2 13.24±12.11 0.13±0.119 

𝑅𝑐𝑝3 13.33±12.49 0.13±0.12 

𝑅𝑐𝑜1 13.84±11.5 0.136±0.114 

𝑅𝑐𝑜2 13.88±12.48 0.137±0.123 

𝑅𝑐𝑜3 11.32±10.42 0.111±0.103 

PR model 

𝑅𝑐1 (degree= 2) 13.74±13.35 0.135±0.131 

𝑅𝑐2 (degree= 2) 11.32±10.42 0.119±0.103 

𝑅𝑐3 (degree= 2) 13.158±11.98 0.13±0.118 

𝑅𝑐𝑓1 (degree= 2) 13.15±13.49 0.129±0.133 

𝑅𝑐𝑓2 (degree= 2) 14.15±14.43 0.139±0.142 

𝑅𝑐𝑓3 (degree= 2) 12.07±11.34 0.119±0.112 

𝑅𝑐𝑡1 (degree= 2) 19.66±35.67 0.19±0.35 

𝑅𝑐𝑡2 (degree= 2) 13.42±12.05 0.132±0.119 

𝑅𝑐𝑡3 (degree= 2) 13.73±13.34 0.135±0.131 

𝑅𝑐𝑝1 (degree= 2) 12.9±11.97 0.127±0.118 

𝑅𝑐𝑝2 (degree= 2) 13.23±12.81 0.13±126 

𝑅𝑐𝑝3 (degree= 2) 13.65±12.26 0.134±0.12 

𝑅𝑐𝑜1 (degree= 2) 18.42±25.83 0.18±0.252 

𝑅𝑐𝑜2 (degree= 2) 14.48±12.01 0.143±0.118 

𝑅𝑐𝑜3 (degree= 2) 14.46±13.05 0.145±0.131 
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SVR model 

𝑅𝑐1 10.25±11.84 0.101±0.11 

𝑅𝑐2 14.74±17.05 0.145±0.16 

𝑅𝑐3 13.35±13.03 0.132±0.13 

𝑅𝑐𝑓1 12.31±12.86 0.121±0.127 

𝑅𝑐𝑓2 14.74±17.05 0.145±0.168 

𝑅𝑐𝑓3 10.26±11.85 0.109±0.117 

𝑅𝑐𝑡1 21.39±51.9 0.211±0.513 

𝑅𝑐𝑡2 11.95±11.94 0.118±0.117 

𝑅𝑐𝑡3 12.39±13.42 0.125±0.132 

𝑅𝑐𝑝1 12.47±12.8 0.123±0.126 

𝑅𝑐𝑝2 12.77±12.68 0.12±0.125 

𝑅𝑐𝑝3 12.41±12.88 0.122±0.127 

𝑅𝑐𝑜1 12.08±12.98 0.119±0.128 

𝑅𝑐𝑜2 12.95±13.22 0.128±0.13 

𝑅𝑐𝑜3 13.08±15.69 0.136±0.155 

Predicting motor scores 
in Chapter 4 

 
10.98±7.67 0.109±0.067 

Predicting cognitive 
scores in Chapter 4 

 
11.40±13.24 0.113±0.13 

 

As observed from Table 5.13, Table 5.14 and Table 5.15, SVR achieves a better performance 

in predicting motor scores than in predicting cognitive scores in terms of both mean error value 

of 9.84±8.41 and MRE value of 0.097±0.079 for patients with motor scores. Both of mean 

errors and MRE computed by using ratios obtained from Algorithm 1 (p-value <0.001) 

outperforms the regression results presented in Chapter 4 (p-value <0.001). Also the single 

variable linear regression model for 𝑅𝑚2  shows lower mean error value of 8.94±7.43 and MRE 

value of 0.088±0.073 for motor scores, and the polynomial regression (degree=2) with 𝑅𝑐1 



 

124 

 

leads to the mean error value of 11.32±10.42 and MRE value of 0.111±0.103 for cognitive 

scores. It is noted that the best regression result in Table 5.13 is reported in bold. For a clearer 

comparison, we use the error bars to present the results of the different tables as shown in figure 

5.14. 

 

                           a.                                                 b.                                                   c.     

 

                           d.                                                 e.                                                   f.     

   

                           g.                                                 h.                                                   i.     

Figure 5. 14 (a -c): Regression prediction errors for motor scores (T of 6.17 and q of 4.1%); (d-f): Regression 

prediction errors for motor scores (T of 6.08 and q of 4.7%); (g-i): Regression prediction errors for cognitive 

scores (T of 7.09 and q of 3.9%). 

5.4. Summary 

Such a vessel classification has helped us analyse and identify brain regions responsible for 

abnormal outcomes based on neurological, motor and cognitive assessments. It is interesting 

to note that our vessel classification is based on the outcomes of clinical assessments rather 

than the purely image based scoring system proposed by Kitamura [45]. We have measured 
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the performances of our algorithm in various scenarios. By using our algorithm proposed in 

this paper, in brain regions implemented in the outcomes of interest, we have found some 

measurements showing strong correlations with outcomes determined by clinical experts who 

have examined the patients two years after SW images have been taken. The accuracy of early 

prediction of outcome at the age of two years using SW images in newborns with HIE by 

Algorithm 1 is approximately 70%. Our experiments therefore demonstrate that Algorithm 1 

outperforms traditional Random Forest and kNN classifiers in the datasets associated with 

cognitive and motor outcomes. It is also competitive in the dataset associate with neurological 

outcome. Algorithm 1 is also used here to find the brain areas affected by the HI injury. 

Table 5. 16 Classification performance comparison 

 Neurology outcome Motor outcome Cognitive outcome 

Random forest 78.67±2.58 69.91±18.92 61.25±13.75 

kNN 75.45±5.81 48.33±9.46 53.75±15.64 

Algorithm 1 72.7±5.6 75.0±13.9 65.0 ± 9.8 

In patients with HIE, abnormalities of blood vessels in the cortical motor areas are closely 

associated with abnormal neurological outcomes and motor development, with the highest 

correlation coefficients of -0.76. The detection of damaged blood vessels within this region in 

early SW images can help determine the type and severity of neurological impairment and 

motor development in infancy. The correlations of our measurements associated with the 

abnormal vessels (in the frontal, temporal and parietal lobes) with cognitive outcomes are lower. 

The length of vessels affected by HIE in the frontal, temporal, and parietal lobes shows the 

highest correlation of -0.52 with cognitive scores. Due to a lack of data, the lowest relative 

error of our regression model is related to motor scores, with an MRE of 0.088±0.073. 

Therefore, our analysis of SW images of patients with HIE provides additional information to 

support prognostication and identification of those who may benefit from early intervention. 
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Chapter 6 

Hypoxic-Ischaemic Encephalopathy 
Prognosis Using Susceptibility Weighted 
Image Analysis Based on Histogram 
Orientation Gradient 

In the previous chapters we described the ability of vascular structures on weighted magnetic 

resonance imaging (SWI) images to predict long-term neurodevelopmental outcome in 

hypoxic-ischaemic encephalopathy (HIE) survivors. And we mainly analyzed the vessel 

features of patients with HIE. Furthermore, we want to explore the relationship between vessel 

features combined with the surrounding tissue of SWI images and the neurological outcome of 

infants with HIE. The histogram of oriented gradients (HOG) descriptor [100] is able to 

effectively local features of the image. Here the clear  vessel appearance provided by SWI 

image can be detected by the HOG descriptor. In this chapter, we use HOG operator to analyse 

SWI images to identify areas of the neonatal brain affected by HIE. 
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6.1. Introduction 

As mentioned previously, magnetic resonance imaging (MRI) has become the standard for the 

assessment and study of neonatal HI injury and developmental abnormalities [17]. SWI image 

is increasingly used in clinical practice because of its sensitivity to haemorrhage and 

calcification [101]. As SWI images can sensitively capture the blood vessels and vascular 

structures in the brain, we apply the histogram orientation gradient (HOG) feature descriptor 

for object detection. HOG is a powerful feature extraction technique that calculates the 

occurrences of gradient orientation in local parts of an image. Dalal and Triggs [100] first 

presented a histogram of oriented gradients to identify the people in images. Subsequently, 

HOG feature descriptor has been used in the brain tumor detection [102] and the early diagnosis 

of Alzheimer’s disease [103]. However, HOG has not been applied in the detection and 

diagnosis of the SWI image with HIE. 

A method in [104] assessed the severity of ischaemic injury by quantitative analysis of deep 

medullary venous structures in SWI images, and the first-order texture parameters derived from 

SWI were employed to distinguish between infants with ischaemic injury and infants without 

normal brains. 38 infants with normal brain MRI and 7 neonates suffering from ischaemic were 

collected. A block shape was manually drawn in the white matter area on the SWI image of 

each infant to capture the region of interest (ROI) containing the deep medullary venous. The 

texture parameter values, entropy, skewness and kurtosis were obtained by calculating the grey 

scale value of the ROIs with deep medullary veins. Boxplots showed that the ischaemic group 

had significantly higher skewness than the normal group, with no significant difference in 

entropy or kurtosis between the two groups. The accuracy of classification for normal and 

ischaemic group based on skewness is 0.832. From the above study, we see that there are two 

major issues in SWI analysis in the context of neonatal HIE: (a) unbalanced data and (b) 

segmentation and extraction of different brain regions. 

In the present chapter, we propose an automatic framework to detect neonatal hypoxic-

ischaemic brain injury by extracting the HOG features of the brain and vessels in SWI images 

to analyse SWIs of HIE infants. Then, an image registration technique [98] is used to identify 

the brain regions by matching the SWIs with a brain template. The HOG is utilised to extract 

features of these brain regions. All extracted feature vectors are used in kNN and random forest 

algorithms for classification of HIE infants with neurodevelopmental outcome at the age of 24 

months. We also employ the linear regression, polynomial regression, and support vector 
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regression (SVR) model to predict motor and cognitive outcomes by using HOG features. 

Figure 6.1 shows the flow chart of our method.  

 

Figure 6. 1 The flow chart of our method 

6.2. Methods 

6.2.1 Image Pre-processing 

The data and ethical certification as used in this chapter are obtained from Chapter 3, which is 

42 infants with neonatal HIE. We apply an active contour model [83] for the brain segmentation 

to remove the skull, eyes and the background from the SWI images to reduce the noise in the 

images as shown in Figure 6.2(b). Before proceeding with the calculation of HOG feature 

vectors, we crop the SWI images into an image of 110×130 pixels (110 pixels width and 130 

pixels height) to avoid the effect of redundant HOG features from the background in SWI 

images, as shown in Figure 6.2(c). SWI images are 2D slices obtained by scanning different 

locations of the brain. Since the shape of the brain is variable in a set of SWI images of one 

patient, we compared different SWI image sizes to obtain HOG features. The HOG feature 

vector obtained using the size of 110×130 pixels contains the least redundant information, i.e. 

the HOG vector value is 0. 

6.2.2 Feature Extraction of HOG 

After we crop the SWI images, HOG descriptor is used to calculate the feature vectors of SWI 

images. The first step of HOG is to calculate the gradient of each pixel. We denote I(x, y) to be 

the SWI image and use a Sobel kernel of size (3×3) to obtain the horizontal and vertical 

gradients of each pixel. The gradient is composed of magnitude and angle from SWI images 

by using the following formulae for the absolute gradient: 
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𝑀(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2 

𝜃 = 𝐴𝑟𝑐𝑡𝑎𝑛
𝐺𝑦

𝐺𝑥
 

Here, 𝐺𝑥  and 𝐺𝑦  are the gradients of each pixel in x and y directions. M(x, y) denotes the 

magnitude and θ denotes gradient direction for the pixel. After obtaining the gradient 

(including magnitude and direction) of each pixel, the cropped SWI images are divided into 

10×10 pixels to form a cell. For each cell, a histogram with four bins and an angle range of 45 

degrees is developed. Finally, one cell is formed into a block. The histogram vector and the 

normalization process can be calculated as follows: 

𝑣 = {𝑏1, 𝑏2, … , 𝑏𝑖} 

𝑣’ = 𝑣 / √‖𝑣‖2
2 + 𝜀2 

where b is the value of each bin, ε is a small positive value used for regularization to avoid 

division by zero. 

For each SWI image of each infant with HIE, the total length of HOG features is 4×11×13 = 

572. We sum up the HOG features of each SWI image belonging to the same infant with 

neonatal HIE to create a feature vector, 𝑉𝑤ℎ𝑜𝑙𝑒, describing the image, and then the feature 

vector for each infant is normalised. Figure 6.2(d) shows HOG of SWI image with HIE. 
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a.                                                              b. 

 
c.                                                     d. 

Figure 6. 2 a) Original SWI image; b) SWI image after active contour; c) Cropped SWI image; d) HOG 
image. 

6.2.3 Image Registration 

To find brain regions affected by hypoxic ischaemia, we use the atlas and image registration 

tools in Chapter 5 to extract HOG features from different regions in SWI images. We convert 

all SWI images of each infant in our dataset into 3D brain images to be registered. The strategy 

on ANTs registration programme for which we opt for, is to map the SWI images to the 

template brain images using similarity transform and to obtain the registered SWI images. We 

eventually consider the primary motor area, premotor area, and supplementary motor area of 

3D images to explore the relationship between the HOG features of SWI images in these areas 

and neurology and motor outcomes at 24 months of age. To explore the relationship with 

cognitive outcomes frontal lobe, parietal lobe and temporal lobe of the brain as a 3D brain are 

examined. 
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As shown in Figure 6.3(b), the area in blue represents the motor area. The motor areas of the 

brain in SWI images are therefore selected by registering SWI images to the template brain and 

the motor areas are left in the 3D image with the rest of the brain being ignored (i.e. set to zero). 

   

a.                                                                   b. 

  
c.                                                                 d. 

  
e.                                                                 f. 

Figure 6. 3 a) Original brain image; b) Brain image after registration and motor area covered by blue; c) 2D 
SWI image of motor area; d) HOG of motor area; e) 2D SWI image of combined frontal lobe, parietal lobe 
and temporal lobe; f) HOG of cognitive area. 
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Finally, we consider the 3D motor region images as slices and compute HOG feature vector 

𝑉𝑚𝑜𝑡𝑜𝑟 associated with the motor region. In a similar fashion, we select frontal, parietal and 

temporal lobes for cognitive regions of the brain by using the aforementioned registration 

method. Then by only considering these three lobes on the 3D SWIs and ignoring the rest of 

the brain, we measure the HOG feature vectors  𝑉𝑙𝑜𝑏𝑒𝑠   associated with these three lobes. 

6.3. Result of Classification 

6.3.1 Classification for Neurology Outcome 

For 42 infants with HIE who were assessed with neurological examination, 31 infants have 

normal neurology outcome, and 11 infants have abnormal neurology outcome. In this 

experiment, 42 infants are categorised into two groups: normal and abnormal. HOG feature 

vectors  𝑉𝑤ℎ𝑜𝑙𝑒 and 𝑉𝑚𝑜𝑡𝑜𝑟 are assigned to each patient in both groups for classification. Two 

different types of classifiers, kNN and random forest (RF) are used to evaluate the classification 

performance. 

Before using the classification algorithms, we randomly select 11 patients from 31 normal 

patients to balance our dataset. This selection of 11 out of 31 patients with normal neurology 

outcome is repeated ten times, and 11 patients from each selection are sorted into classification 

tests with the 11 patients from the raw abnormal group. The mean and standard deviation of 

classification accuracies are finally calculated. Normalised HOG feature vectors 𝑉𝑤ℎ𝑜𝑙𝑒 and 

𝑉𝑚𝑜𝑡𝑜𝑟  are considered as input, respectively, to feed into kNN and RF classifiers. Meanwhile, 

we apply the unnormalised HOG feature vector to classify the neurology outcome. Leave-one-

out strategy is employed here. The final accuracy is reported in Table 6.1. 
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Table 6. 1 Classification accuracy for neurology outcome 

 HOG Feature vector kNN RF 

Unnormalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 57.71±8.24 67.72±9.51 

Mean(SD) 𝑉𝑚𝑜𝑡𝑜𝑟  58.62±8.94 62.12±8.06 

Normalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 58.18±7.04 68.58±7.53 

Mean(SD) 𝑉𝑚𝑜𝑡𝑜𝑟  58.63±6.23 65.28±6.82 

6.3.2 Classification for Motor Outcome 

For the 28 infants with HIE who were assessed with Bayley-3 scales, 25 infants have normal 

motor development (scores>85), two infants have mild motor delay (scores between 77.5–85), 

and one has severe motor delay (score<77.5). The normal group with normal motor outcomes 

and the abnormal group with mild motor delays and severe motor delays are used as two classes 

for classification. 

We employ HOG feature vectors 𝑉𝑤ℎ𝑜𝑙𝑒 and 𝑉𝑚𝑜𝑡𝑜𝑟 for each infant of two classes as training 

data. kNN and RF classifications are performed based on these feature vectors. 

Likewise, balanced data based on three infants with delayed motor scores and three infants 

with normal motor scores randomly selected from a group of 25 infants with normal motor 

scores has been used for classification. By repeating the above process ten times with random 

selections from normal group, the mean and standard deviation of classification accuracies are 

calculated. Leave-one-out strategy is employed here, and final accuracy is reported in Table 

6.2. 
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Table 6. 2 Classification accuracy for motor outcome 

 HOG Feature vector kNN RF 

Unnormalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 56.67±7.31 63.45±5.36 

Mean(SD) 𝑉𝑚𝑜𝑡𝑜𝑟  62.23±9.28 70.41±8.31 

Normalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 55.01±8.05 63.33±7.03 

Mean(SD) 𝑉𝑚𝑜𝑡𝑜𝑟  61.67±15.81 71.67±11.24 

6.3.3 Classification for Cognitive Outcome 

29 infants, of which 25 have normal cognitive outcome (scores>85), three had mild cognitive 

delay (scores between 77.5–85) and one had severe cognitive delay (scores <77.5), are 

partitioned by two groups: the normal group with normal cognitive outcomes and the abnormal 

group with mild and severe cognitive delay outcomes. Here, we use HOG feature vectors 

𝑉𝑤ℎ𝑜𝑙𝑒 and 𝑉𝑙𝑜𝑏𝑒𝑠  for each infant with cognitive outcome for kNN and RF classifications. 

      Again, we utilise the balanced data, in which four infants with delayed cognitive scores and 

four infants with normal cognitive scores were randomly selected from the 25 infants in the 

normal cognitive score group to measure the performance of kNN and RF classification with a 

leave-one-out strategy. By repeating ten times the aforementioned classification, the mean and 

standard deviation of final accuracy is computed in Table 6.3. 
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Table 6. 3 Classification accuracy for cognitve outcome 

 HOG Feature vector kNN RF 

Unnormalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 55.61±14.14 69.17±5.94 

Mean(SD) 𝑉𝑙𝑜𝑏𝑒𝑠 65.49±7.73 75.28±10.04 

Normalised 

Mean(SD) 𝑉𝑤ℎ𝑜𝑙𝑒 53.75±13.24 70.00±6.45 

Mean(SD) 𝑉𝑙𝑜𝑏𝑒𝑠 57.5±8.74 76.25±10.9 

6.3.2 Experimental Result 

The classification analysis based on the motor outcome and cognitive outcome of infants with 

HIE all are a two class classification task: normal group and abnormal group. Normalised HOG 

feature vectors from whole brain 𝑉𝑤ℎ𝑜𝑙𝑒and from different functional areas, including motor 

area 𝑉𝑚𝑜𝑡𝑜𝑟and cognitive regions of the brain 𝑉𝑙𝑜𝑏𝑒𝑠 , are fed to kNN and RF classification for 

comparison. All classification performances are compared to our previous work in Chapter 4, 

which means we extract features from motor area and frontal, temporal and parietal lobes by 

using the ridge detection method to classify. 

Table 6.4 shows the different classification results using features by using different approaches.. 

In the patient group with neurology outcome, extracted features using the method presented in 

Chapter 4 show better classification results rather than HOG features in both whole brain area 

and motor area of the brain. For motor development outcome, features from ridge detection 

still produce better accuracy than HOG features represented by vector 𝑉𝑤ℎ𝑜𝑙𝑒 in whole brain 

area. But in the motor area of the brain, the classification performance of feature vector 𝑉𝑚𝑜𝑡𝑜𝑟 

using HOG feature descriptor exceeds that of feature vectors discussed in chapter4. Compared 

with methods in Chapter 4, HOG features we propose in this chapter perform better with higher 

accuracies in both whole brain area and the combined frontal, temporal and parietal lobes of 

the brain for cognitive outcome. From Table 6.4, HOG features obtained from only the motor 

areas show better classification accuracies for HIE motor development outcome prognosis in 
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SWI images. Also the feature vectors generated by HOG descriptors in frontal, parietal and 

temporal lobes for cognitive regions of the brain are effective in classifying infants with 

cognitive outcome in SWI images. 

Table 6. 4 Classification performance comparison 

 Features kNN RF 

Neurology outcome 

Whole brain 
Ridge detection  75.45±5.81 78.67±2.58 

𝑉𝑤ℎ𝑜𝑙𝑒 58.18±7.04 68.58±7.53 

Motor Area 
Ridge detection  68.83±4.59 71.56±5.71 

𝑉𝑚𝑜𝑡𝑜𝑟  58.63±6.23 65.28±6.82 

Motor outcome 

Whole brain 
Ridge detection  48.33±9.46 69.91±18.92 

𝑉𝑤ℎ𝑜𝑙𝑒 55.01±8.05 63.33±7.03 

Motor Area 
Ridge detection  41.52±16.14 68.83±14.59 

𝑉𝑚𝑜𝑡𝑜𝑟  61.67±15.81 71.67±11.24 

Cognitive outcome 

Whole brain 
Ridge detection  53.75±15.64 61.25±13.75 

𝑉𝑤ℎ𝑜𝑙𝑒 53.75±13.24 70.00±6.45 

Frontal+ temporal+ 

parietal lobes 

Ridge detection  56.25±13.5 62.5±10.2 

𝑉𝑙𝑜𝑏𝑒𝑠 57.5±8.74 76.25±10.9 
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a.                                                                            b. 

       
c.                                                                           d. 

        
e.                                                                          f. 
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g. 

Figure 6. 4 Inter/intra-class variations associated with motor outcome for: (a) features obtained from Chapter 
4; (c) HOG features of whole brain with motor outcome; (d) HOG features of motor area. Inter/intra-class 
variations associated with cognitive outcome for: (b) features obtained from Chapter 4; (e) HOG features of 
whole brain with cognitive outcome; (f) HOG features of cognitive regions. (g) ROC curves of above 
inter/intra- class variations histograms 

Figure 6.4(a, c and d) show the inter-intra class variations for motor outcome and Figure 6.4(b, 

e and f)) for cognitive outcome. The green histograms represents the intra-class variation for 

infants in the same group and the red histograms show the inter-class for infants from two 

different groups. Histograms of features extracted using methods in Chapter 4 (figure 6.4(a and 

b)) and using methods in this chapter (figure 6.4(c, d, e, and f)) are normalised to the area below 

the histogram curve. As shown in figure 6.4(a and b), the two histograms are highly overlapped. 

Figure 6.4(c) presents the inter- and intra- class variation histograms of HOG feature vectors 

from whole brain area between normal and abnormal groups in infants with motor outcome, 

and furthermore figure 6.4(d) shows the inter- and intra-class variations of HOG features from 

motor area of brain. Figure 6.4(e) shows the inter/intra-class variation histograms of HOG 

features from whole brain area between normal and abnormal groups in infants with cognitive 

outcome, while figure 6.4(f) shows the variations of HOG features from the combined frontal, 

temporal and parietal lobes of the brain. The Receiver Operator Characteristic (ROC) curves 

corresponding to the inter- and intra- class variation histograms are shown in figure 6.4(g). As 

observed from figure 6.4(d and f), the overlap between two histograms and the areas under the 

ROC curves (brown and red curves) illustrate a better performance after using image 

registration to extract the HOG features of motor areas and cognitive areas. 

 



 

139 

 

6.4. Result of Regression 

For each of 28 patients with motor composite scores and 29 patients with cognitive composite 

scores, HOG feature vectors are used here to predict motor and cognitive composite scores 

respectively. A similar work has been presented in Chapters 4 and 5. Here we continue to use 

support vector regression (SVR), linear regression (LR) and polynomial regression (PR) to 

predict a score for an unseen test data. A database with n patients is presented with the HOG 

feature vectors as input and the corresponding composite scores as output for regression 

algorithms. By training the SVR, LR and PR models using these features and the related motor 

or cognitive scores, the HOG feature vectors can be used to predict a motor or cognitive score 

for an unseen patient’s data. The error of regression method is measured by using a leave-one-

out strategy. 

The mean relative error (MRE) is used to measure the performance of these regression models. 

𝑀𝑅𝐸 =  
1

𝑛
∑

|𝑝𝑖 − 𝑡𝑖|

𝑡𝑖

𝑛

𝑖=1
 

where n is the number of patients in our database, 𝑝𝑖 is the regression model prediction value, 

𝑡𝑖 is the true value (ground truth). A mean and standard deviation are calculated for both 

absolute errors and MRE. For comparison with previous work, we use the same SVR model as 

in Chapter 4, here using a polynomial kernel of degree = 2. The PR model shows only the 

lowest MRE measured. 

Table 6.5 presents the mean relative errors measured by the LR, PR and SVR models to 

measure performance in predicting motor scores, and Table 6.6 presents performance in 

predicting cognitive scores. 
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Table 6. 5 Regression prediction errors for motor scores  

Regression HOG Features Mean error MRE 

LR model 
𝑉𝑤ℎ𝑜𝑙𝑒 13.63±13.73 0.128±0.10 

𝑉𝑚𝑜𝑡𝑜𝑟  14.51±12.58 0.137±0.06 

PR model (degree=2) 
𝑉𝑤ℎ𝑜𝑙𝑒 13.60±13.75 0.135±0.136 

𝑉𝑚𝑜𝑡𝑜𝑟  14.46±12.49 0.139±0.073 

SVR model 
𝑉𝑤ℎ𝑜𝑙𝑒 11.91±10.97 0.118±0.10 

𝑉𝑚𝑜𝑡𝑜𝑟  11.91± 11.05 0.118±0.11 

 

Table 6. 6 Regression prediction errors for cognitive scores  

Regression HOG Features Mean error MRE 

LR model 
𝑉𝑤ℎ𝑜𝑙𝑒 15.83±12.04 0.156±0.118 

𝑉𝑙𝑜𝑏𝑒𝑠 16.52±14.47 0.163±0.143 

PR model (degree=2) 
𝑉𝑤ℎ𝑜𝑙𝑒 15.98±12.07 0.157±0.119 

𝑉𝑙𝑜𝑏𝑒𝑠 16.61±14.42 0.164±0.142 

SVR model 
𝑉𝑤ℎ𝑜𝑙𝑒 11.91±13.05 0.117±0.128 

𝑉𝑙𝑜𝑏𝑒𝑠 12.22±13.07  0.121±0.129 

Predicting motor scores 
in Chapter 4 

 
10.98±7.67 0.109±0.067 

Predicting cognitive 
scores in Chapter 4 

 
11.40±13.24 0.113±0.13 

As presented in Table 6.5 and 6.6, SVR model achieves a better performance than other 

regression models. SVR perform better in predicting cognitive scores than in predicting motor 

scores in term of MRE value of 0.117±0.128 for patient with HOG feature, 

𝑉𝑤ℎ𝑜𝑙𝑒. Overall, the use of HOG features in predicting motor scores is better than that for the 

prediction of cognitive scores. The mean error and MRE of the regression results in Chapter 4 

are superior to regression result by using the HOG feature vectors. It is noted that the best 

regression results in Table 6.5 and 6.6 is reported in bold. 
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6.5. Summary 

In this chapter, a HOG feature extraction method for infant HIE detection in SWI images has 

been used. We have here employed a HOG feature descriptor to gain feature vectors to predict 

motor and cognitive assessments of infants with HIE at the aged of 24 months by classifying 

HIE SWI images along with kNN and random forest classifiers into normal and abnormal 

groups based on neurological,. In addition, HOG feature vectors of some brain regions obtained 

from brain registration, which fit our SWI data to a brain template containing different function 

regions, are trained for classification, thus helping us to determine which areas of the brain are 

responsible for abnormal outcome. Compared to our previous work in Chapter 4, we achieve 

outstanding performance in the classification experimentations on HIE infants with motor 

outcome by using HOG features of motor areas of the brain in SWI images, 71.67±11.24, and 

similarly HOG features of frontal, temporal and parietal lobes of the brain show better 

classification performance for cognitive outcome, with 76.25±10.9 accuracy. In the future, we 

prefer to explore the relationship between other regions of the brain and assessment outcome 

at two years of age. Another interesting future work is to combine our previous method with 

the method presented in this paper to improve the performance of our system. 
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Chapter 7 

Deep Learning for HIE Prognoses 

In recent years, with the continuous development and advancement of medical image analyses 

and computer technology, deep learning, especially in relation to deep convolutional neural 

networks (CNNs), has rapidly become an indispensable tool and technical approach in medical 

research and clinical disease diagnoses and treatment by automatically extracting image 

features implicitly and directly from medical image datasets [108]. When comparing our 

previous traditional machine learning methods (e.g. K-nearest neighbours, support vector 

machines and random forest) to Algorithm 1 that we designed in previous chapters, it can be 

seen that deep learning involves task modules, such as feature learning and feature abstraction, 

in addition to model learning with the use of multi-layer task modules to complete the final 

learning task [105]. Despite its excellent performance in medical image analysis, the overfitting 

problem of deep learning on small and medium sized datasets and the lack of interpretability 

of neural network algorithms still exist [106]. 

This chapter will introduce several classical network models of convolutional neural networks 

and how they can be applied to our susceptibility weighted images (SWI) of hypoxic ischaemic 

encephalopathy (HIE). Our aim is to demonstrate that deep neural networks can be used for 

neonatal HIE neurodevelopmental outcome prognoses in SWI images and to explore the areas 

of the neonatal brain that are affected by hypoxic ischemic injuries. Although there are 
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currently studies using deep learning for vein segmentation from SWI images [109] and using 

deep neural networks for automated diagnoses of neonatal encephalopathy [82], there is no 

current study to use deep learning for HIE prognoses based on SWI images. Given the proven 

performance of different deep neural networks, we employ the CNN models to our datasets 

and calculate the gradient-weighted class activation mapping (Grad-CAM) [106] to highlight 

the important areas of the neonatal brain on the SWI images for predictions. 

7.1. Convolutional Neural Networks 

In early 1980, Kunihiko built on previous work to simulate the biological visual system, and 

he proposed a hierarchical, multi-layered, artificial neural network known as 'neurocognition' 

to handle handwritten character recognition [110]. Subsequently, LeCun et al. [111] proposed 

a gradient learning-based convolutional neural network algorithm in 1998 (see Figure 7.1) and 

used it successfully for handwritten numeric character recognition. Hinton et al. used Alex-Net 

[112] to win the ImageNet image classification competition [113]. Since then, convolutional 

neural networks have shown excellent performance in a wide range of computer vision tasks, 

such as image classification, image semantic segmentation, image retrieval and object detection.  

 

Figure 7. 1 Architecture of LeNet 

7.1.1. The Basic Structure and Components 

CNNs are a type of artificial neural network [108], and they are usually composed of several 

alternating convolutional and pooling layers with a fully connected layer at the end (see Figure 

7.2). Each of the convolutional layers has a fixed input size, and the CNNs achieve shift, scale 

and distortion invariance through local receptive fields, shared weights and sub-sampling, 

greatly reducing the degrees of freedom of the model [114]. 
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In general, convolutional neural networks extract high-level semantic information from the 

original data input layer by stacking layers of operations, such as convolution, pooling and non-

linear activation function mapping, and this is known as ‘feed-forward’. The different types of 

operations are normally referred to as ‘layers’ in a convolutional neural network, and 

convolution operations correspond to ‘convolutional layers’, pooling operations correspond to 

‘pooling layers’ and so on. Finally, the final layer of a convolutional neural network formalises 

its target task (classification, regression, etc.) as an objective function. By calculating the error 

or loss between the predicted value and the true value, the error or loss is passed backwards 

from the last layer to update the parameters of each layer by using the backpropagation 

algorithm. This process is repeated after the parameters have been updated until the network 

model converges, thus achieving the purpose of model training. 

 
a. 

 
b. 

Figure 7. 2 a) The convolutional layer; b) The structure of convolution neural networks 

The architecture of a typical CNNs is shown in Figure 7.2. In recent years, with the 

development of computer technology, more and more variant network models are created for 
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different image processing tasks [114], such as VGG-Nets [115], network-in-network [116], 

GoogLeNet (Inception) [117], residual networks [118] and squeeze-and-excitation networks 

[119].  

7.2. Residual Networks  

For the design of deeper convolutional neural networks, there is always a problem in that as 

the depth of the networks increase, the training error of the training data increases rather than 

decreases [120].  

To address this degradation problem, He et al. proposed residual learning that creates a direct 

link from input to output, the residual module [118]. For a stacked layer structure, its learned 

features are denoted as 𝐻(𝑥) when the input is x, and the optimisation objective of the network 

changes from the original fitted output 𝐻(𝑥) to the difference between the output and the input 

(𝐹(𝑥) = 𝐻(𝑥) − 𝑥). The formulation of 𝐹(𝑥) + 𝑥 can be realised by feed-forward neural networks 

with skip connections (see Figure 7.3). The residual module of ResNet [118] is defined by the 

following formula: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

A deformation of the above formula is as follows: 

𝐹(𝑥, {𝑊𝑖}) =  𝑦 − 𝑥 

With x and y as the input and output, the function 𝐹(𝑥) that the network needs to learn is the 

residual term 𝑦 − 𝑥 and is known as the ‘residual function’. There are two branches in residual 

learning: the residual function and the identity mapping to the input. These two branches are 

then passed through the rectified linear unit (ReLu) activation function to form the residual 

learning module. A network structure formed by stacking multiple residual learning modules 

is called the residual network. 

 

Figure 7. 3 The Inception module 
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The ResNet network is a reference to the VGG19 network, modified from it and adding residual 

units through the shortcut connection (see Figure 7.4). Additionally, the plain network shows 

degradation, but the ResNet network effectively solves the degradation problem. 

 
Figure 7. 4 The architecture of ResNet 50 

As the depth of the network further increases, ResNet uses two types of residual modules (see 

Figure 7.5). The graph on the left corresponds to a simple network, and the graph on the right 

corresponds to a deep network known as a ‘bottleneck residual block’.  
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Figure 7. 5 Different residual units 

7.3. Transfer Learning  

As previously described, CNNs require a large amount of labelled training data, and in medical 

domain, the datasets usually contain a small number of samples which is not enough for the 

training of a CNN [121].  This issue can be effectively solved by using the transfer learning 

technique [120] with a CNN model that has been pre-trained on other large datasets. Transfer 

learning can start with a pre-trained network in the source domain, including the network 

parameters and hyperparameters, and train it with the small dataset. This also implies that 

transfer learning reduces the time spent on training data and avoids overfitting.  

As we have a limited number of samples in the small dataset for training, we use residual 

networks with 50 layers (ResNet-50) that are pre-trained with the natural images dataset 

ImageNet [113], and we transfer the learning of a pre-trained model to our SWI images with 

HIE. ImageNet consists of more than 1.5 million images and spans over one thousand object 

classes. We replace the last fully connected layer and the classification layer in the pre-trained 

model to a set of layers that can classify our SWI images with HIE (see Figure 7.6). 
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Figure 7. 6 The flow chart of transfer learning. a) A ResNet 50 network pre-trained on the ImageNet dataset 
is retrained. b) The last fully connected layer and the classification layer in the pre-trained model are replaced. 
c) This network is retrained by SWI images. d) The transfer learning network is used to predict the testing 
SWI images. 

7.4.Visual illustrations 

To visualise the regions in input images which are important in the classification accuracy, we 

use the gradient-weighted class activation mapping (Grad-CAM) technique [106] to enhance 

the interpretability of the networks, meaning that the gradient of any target is used to produce 

a rough localisation map in the last convolutional layer, highlighting the important regions of 

the images used to predict the prognosis. 

To obtain the class discriminant localisation map Grad-CAM 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝ𝑢×𝑣 of width 𝑢 

and height v for any class 𝑐, the score gradient for the class is calculated first, which is the 

corresponding 𝑦𝑐  to the feature mapping 𝐴𝑘  of the convolutional layer 𝜕𝑦𝑐

𝜕𝐴𝑘 . The neuron 

importance weights of 𝑎𝑘
𝑐  are as follows: 

𝑎𝑘
𝑐 =  

1

𝑍
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑖𝑖

 

These are obtained by a global average pooling of the gradients derived from backpropagation. 

The notation 𝑦𝑐 means that the model determined the score of the input image as class c before 

entering SoftMax. The weights of 𝑎𝑘
𝑐  represents the partial linearisation of the neural network 

following A and captures the ‘importance’ of the feature map k for a target class c. Then, the 
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weighted combination of the forward activation map is implemented and obtained by the 

following ReLU function: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝑎𝑘

𝑐 𝐴𝑘

𝑘

) 

The purpose of ReLU is to focus on areas that have a positive impact on the classification of 

the model. As shown in Figure 7.7, given an image and a target class as input, the image is 

propagated through the CNNs and then computed by a specific task to obtain the raw score for 

that class. For all classes, the gradient is set to zero, except for the gradient of the needed class 

that is set to one. This signal is then back-propagated to the trained convolutional feature map 

of interest to obtain a Grad-CAM localisation (blue heat map). 

 
Figure 7. 7 Grad-CAM overview in our network  

 

7.5. Deep Learning for SWI Images with HIE 

7.5.1. The Dataset  

The data for this study includes 42 infants with neonatal HIE born at a gestational age > 36 + 

6 weeks. The ethical approval and MRI protocol has been described previously in Chapter 3. 

Each of the infants has a standardised neurological examination at 24 months of age by means 

of follow-up. 
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The neurological examinations consisted of the assessment of cranial nerve function, 

movements, posture, reflexes and muscle tone, and neurological status was then considered as 

either normal or abnormal (cerebral palsy). Out of the 42 infants that are neurologically 

assessed at two years of age, 31 of the infants (73.8%) have a normal neurological outcome, 

and 11 of the infants (26.2%) has an abnormal neurological outcome. 

For each infant with neonatal HIE, there are around 40~60 SWI slices after undergoing an MRI 

scan. To ensure robust training data, we select seven SWI images in both directions from the 

centre slice of each set of each patient, thus avoiding the interference of some images 

containing noisy information (i.e. nose and eyes) in the model, meaning that the data used for 

the deep leaning was 15 SWI images for each patient. Figure 7.8 shows the SWI images that 

were chosen and the deprecated SWI images. 

   
a.                                              b. 

   
c.                                              d. 

Figure 7. 8 Both a and b show the deprecated SWI images, and c and d show the selected SWI images. 
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7.5.2. Image Pre-Processing  

Before training the data, we used an active contour model for each SWI slice to obtain a binary 

brain mask that could eliminate background noise from calvarium. We then use a mask with 

110×130 (110 pixels width and 130 pixels height)  to match the centre of input image 

automatically and cropped the SWI images into an image of 110×130 pixels to avoid the effect 

from the background in SWI images (see Figure 7.9). 

   

a.                                             b. 

 
c. 

Figure 7. 9 a) an original SWI image, b)  the result after segmentation with active contour model, and c)  the 
cropped image after active contour. 

7.5.3. Fine Tuning 

The 42 infants with information on neurology outcomes were classified into two groups: the 

normal group (465 SWI images and 31 patients with normal neurological outcomes) and the 

abnormal group (165 SWI images and 11 patients with abnormal neurological outcomes; 
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cerebral palsy). To balance the data distribution, 11 out of the 31 patients with normal 

neurology outcomes were randomly selected for the training dataset. This selection was 

performed 10 times to train the CNNs model. After each selection, we randomly selected six 

patients with 90 SWI images (three patients from the normal group and three patients from the 

abnormal group) for testing and split the remaining patients into training and validation datasets 

(70% data for training and 30% data for validation). Finally, we transferred the learning of pre-

trained ResNet50 to our SWI images with HIE for classification by neurology outcome, as 

shown in Figure 7.6. As there were not enough datasets of patients with motor and cognitive 

outcome on which to train the transfer learning network, we only used data from patients with 

neurology outcome for training. 

7.6. Result and Analysis of Classification of Deep Learning 

In this subsection, transfer learning in conjunction with a pre-trained ResNet 50 is utilised to 

retrain the network by the SWI images with normal and abnormal neurology outcomes at 24 

months of age in neonatal HIE. Furthermore, the contributions of different brain regions in 

SWI images will be considered and Grad-CAM will be used to estimate the significance of the 

regions of the brain. 

The pre-trained model was fine-tuned by inputting SWI images, and a classification label will 

be assigned to each SWI image in the test dataset. This means that each patient will own 15 

normal or abnormal classification labels. For all of the slices of the same patient, the slices that 

obtain the same classification label as the neurology outcome of the patient at two years of age 

are named here as correctly predicted slices, otherwise the slices are referred to as incorrectly 

predicted slices.  

7.6.1. Result and Analysis of classification based on Networks 

After we apply transfer learning to the fine-tuned networks to conduct the classification of 

neurology outcome by using SWI images, each patient in the test group will receive 15 

classified outputs. The clinical neurology outcome of each patient is used as the ground truth 

for the slices belonging to the patient. According to the true and predicted labels of SWI images 

in the test group, we can calculate directly the accuracy, sensitivity and specificity. After the 

ten experiments are performed to measure the classification accuracies by selecting 10 

randomly selected patients for normal groups to balance our dataset, the mean and standard 
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deviation of classification accuracies for all experiments are computed here. The confusion 

matrices for the classification of every experiment are shown in Figure 7.10. 
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Figure 7. 10 The confusion matrices of ten experiments based on networks 

As observed from Figure 7.10, the accuracy, sensitivity and specificity are 0.644±0.056, 

0.703±0.121 and 0.598±0.109 respectively through using the classification result of each SWI 

image produced directly by the network. In terms of the accuracy, the fine-tuned networks have 

not performed very well. That is because for SWI images of some patients with HIE, there may 

be no HI injury or some subtle injury that would not lead to abnormal neurology at age 24 

months. This will affect the training of the network model. The sensitivity shows good 

performance, which indicates that the network models have a low miss detection rate, and it 

can classify most of the SWI images of patients with abnormal neurology outcomes into 

abnormal labels. Comparatively lower results for specificity mean that more patients with 

normal labels are falsely reported. 

7.6.2. Rule-based classification system 

In the previous subsection, we analyse the classification results for the SWI images in the whole 

test group. In fact we will prefer to consider the classification results for each patient rather 

than the slices. Given that the SWI images in our dataset are 2D MRI axial images of the brain 
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injured by hypoxic ischaemic of infants at the birth, we face two issues in this dataset. The first 

issue is that these SWI images may not have a good resolution and quality, also may be 

contaminated with noise, which means the slices from the patients with normal neurology 

outcome will appear abnormal signals causing slices to be predicted into the abnormal group. 

The second issue is that the amount of brain damage of patients in normal group suffered from 

hypoxic ischaemic at birth may be too small to affect the neurological outcome at two years of 

age. It is also noted that the brain damage of an abnormal patient with abnormal neurology 

outcome may not appear on each single SWI image from that patient. This is to say that an 

abnormal patient may also contain some SWI images showing normal neurology outcome. 

Therefore, we need to eliminate the effect of SWI images containing brain damage on the 

classification of normal patients and the effect of SWI images not containing any brain damage 

on the classification of abnormal patients. 

In order to consider the above two issues in the analysis of the classification of patients in the 

test group, we set the following rules with thresholds t and q: 

Rule1: When the ratio of (incorrectly predicted slices)/(total slices) of a patient is less than %t, 

the patient is classified based on the class of %(1-t) remaining slices. 

Rule2: If q% or more slices of a patient are predicted to be abnormal, the patient is considered 

as abnormal, otherwise the patient is considered to be normal. 

We employ Rule1 and Rule2 to consider the first and second issues in our dataset. Based on 

these two rules, we can calculate the accuracy of the classification for neurology outcome 

through deep neural networks. The accuracy will be measured by comparing the test outcomes 

that are determined by our ruled –based system with the outcomes of clinical assessments 

(ground truth).  

At the first step, we select a fixed t and then remove the incorrectly classified slices to measure 

the accuracy by following Rule1, where t is chosen in steps of 0.05 from t =0. Figure 7.11 

shows the different accuracies as t is changed at this step. In Table 7.1, the value of t is fixed 

and the mean and standard deviation of the classification accuracies are computed by ten 

experiments. As explained earlier, we repeat the test experiment by randomly choosing the 

normal patients to be in the normal class to balance our dataset.   
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Figure 7. 11 The accuracy results from the ten experiments under Relu1 

 

Table 7. 1 The accuracy of classification under Rule1 by fixed t 

Fixed t t=0 t=0.05 t=0.1 t=0.15 t=0.2 t=0.25 t=0.3 t=0.35 t=0.4 

Accuracies 0.2 

±0.153 

0.28 

±0.193 

0.51 

±0.094 

0.65 

±0.095 

0.70 

±0.105 

0.783 

±0.112 

0.867 

±0.105 

0.883 

±0.112 

1.0 

±0.0 

          

Fixed t t=0.45 t=0.5 t=0.55 t=0.6 t=0.65 t=0.7 … t=0.95 t=1.0 

Accuracies 1.0 

±0.0 

1.0 

±0.0 

1.0 

±0.0 

1.0 

±0.0 

1.0 

±0.0 

1.0 

±0.0 

… 1.0 

±0.0 

1.0 

±0.0 

As observed from Table 7.1, with t =0.45, the accuracy under Rule 1 reaches the maximum, 

1.0±0.0, and maintains this accuracy until t = 1.0.  
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We then explore the classification result under Rule 2 without t. Figure 7.12 shows the 

accuracies by considering Rule 2 in one experiment as q is changed. Similarly, q is incremented 

in steps of 0.05 from q =0. In Table 7.2, we fix the value of q and the mean and standard 

deviation of the classification accuracies are derived by ten experiments for ten random 

selections of normal paitents.  
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Figure 7. 12 The accuracy results from the ten experiments based our Rule 2 

 

Table 7. 2  The accuracy of classification under Rule 2 for various values of q 

Fixed q q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.516 

±0.095 

0.65 

±0.123 

0.683 

±0.095 

0.667 

±0.078 

0.766 

±0.086 

0.633 

±0.131 

0.567 

±0.116 

0.5 

±0.0 

          

Fixed q q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

… 0.5 

±0.0 

0.5 

±0.0 

 

As shown in Table 7.2, the best accuracy of classification under Rule 2 is 0.766 ± 0.086 when 

q = 0.25.  
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Limited by the amount of valid data, it is found that the accuracy of the test group stays the 

same after increasing the value of t or q in a certain range, while using the single Rule 1 or 

Rule 2. To better resolve the two issues  in our dataset which we discussed earlier, we combined 

Rule 1 and Rule 2 to improve the classification performance of our ruled based deep learning 

system. For each value of t, the slices which have been incorrectly classified are removed from 

the dataset. Then Rule 2 is applied on the remaining slices. This is to say, we select a value for 

t in steps of 0.05 in sequence from 0 to 0.4, then remove the corresponding incorrectly predicted 

slices and introduce q to the (1-t) remaining slices in each experiment, which means that in the 

remaining slices if q% or more slices of a patient are predicted to be abnormal, the patient is 

considered as abnormal, otherwise the patient is considered to be normal. Table (7.3-7.10) 

show the accuracies of classification by various values of t after we combine Rule 1 and Rule 

2. 

Table 7. 3 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.05 

t = 0.05 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.683 

±0.123 

0.717 

±0.112 

0.70 

±0.087 

0.750 

±0.087 

0.783 

±0.137 

0.683 

±0.122 

0.65 

±0.123 

0.5 

±0.0 

          

t = 0.05 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

Table 7. 4 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.1 

t = 0.1 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.749 

±0.117 

0.733 

±0.086 

0.766 

±0.086 

0.816 

±0.123 

0.783 

±0.137 

0.716 

±0.112 

0.70 

±0.105 

0.5 

±0.0 
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t = 0.1 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

 

 

 

Table 7. 5 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.15 

t = 0.15 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.766 

±0.086 

0.799 

±0.07 

0.833 

±0.136 

0.816 

±0.123 

0.849 

±0.094 

0.75 

±0.087 

0.70 

±0.105 

0.5 

±0.0 

          

t = 0.15 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

Table 7. 6 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.2 

t = 0.2 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.833 

±0.111 

0.866 

±0.105 

0.833 

±0.136 

0.883 

±0.08 

0.849 

±0.094 

0.75 

±0.087 

0.70 

±0.105 

0.5 

±0.0 

          

t = 0.2 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 0.5 0.5 0.5 0.5 0.5  0.5 0.5 
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±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 

 

 

 

 

 

 

 

 

 

Table 7. 7 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.25 

t = 0.25 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.866 

±0.105 

0.866 

±0.105 

0.883 

±0.08 

0.883 

±0.08 

0.833 

±0.111 

0.716 

±0.08 

0.666 

±0.136 

0.5 

±0.0 

          

t = 0.25 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

Table 7. 8 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.3 

t = 0.3 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.866 

±0.105 

0.899 

±0.116 

0.883 

±0.08 

0.866 

±0.07 

0.816 

±0.122 

0.70 

±0.105 

0.666 

±0.136 

0.5 

±0.0 

          

t = 0.3 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 
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Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

 

 

 

 

 

 

 

 

Table 7. 9 The accuracy of classification after combine Rule1 and Rule2 by fixed t =0.35 

t = 0.35 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.899 

±0.116 

0.933 

±0.086 

0.883 

±0.08 

0.866 

±0.07 

0.816 

±0.122 

0.70 

±0.105 

0.666 

±0.136 

0.5 

±0.0 

          

t = 0.35 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

 

Table 7. 10 The accuracy of classification after combine Rule 1 and Rule 2 by fixed t =0.4 

t = 0.4 q=0 q=0.05 q=0.1 q=0.15 q=0.2 q=0.25 q=0.3 q=0.35 q=0.4 

Accuracies 0.5 

±0.0 

0.899 

±0.116 

0.933 

±0.086 

0.883 

±0.08 

0.866 

±0.07 

0.816 

±0.122 

0.70 

±0.105 

0.666 

±0.136 

0.5 

±0.0 
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t = 0.4 q=0.45 q=0.5 q=0.55 q=0.6 q=0.65 q=0.7 … q=0.95 q=1.0 

Accuracies 0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

0.5 

±0.0 

 0.5 

±0.0 

0.5 

±0.0 

 

 

Figure 7. 13 Choosing t and 𝑞 where the accuracy is maximum 

As demonstrated in Table 7.10 and 7.11, the best accuracy of classification under combining 

Rule 1 and Rule 2 is 0.933 ±0.086 when t = 0.35 and q = 0.1 or t = 0.4 and q = 0.1. The 

combination of the rules and transfer learning with ResNet 50 produces a better performance 

compared to the accuracy of Algorithm 1. Figure 7.13 shows how accuracies change with 

respect to q by changing t under combining Rule 1 and Rule 2 based on deep learning. The 

Receiver Operator Characteristic (ROC) curves of rule based on deep learning and the 

Algorithm 1 for neurology outcome are shown in Figure 7.14. The ROC curve corresponding 

to the combined Rule 1 and Rule 2 demonstrates a higher performance in classification (with 

an area under curve higher than 92%). 
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Figure 7. 14 The ROC curve of our rule based deep learning and the Algorithm 1 

 

Table 7. 11 Classification performance comparison 

Methods Algorithm 1 Rule based Deep Learning 

Accuracy 0.727 ± 0.056 0.933 ±0.086 

 

7.6.3. Result and Analysis of Grad-CAM 

We employ Grad-CAM to explore which parts are important for identification of a SWI brain 

image with neonatal HIE. These blue heatmaps use different colours in order to show which 

regions of the brain are significant in assigning the images to a certain class. Figure 7.15 and 

7.16 show the average heatmap images for both the abnormal test group and the normal test 

group. The red areas in the heatmaps are the most important, and the blue parts are the least 

important regions of the images for assigning them to a certain group. 
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                        a. Average heatmap                                      b. Average total test images     

                                                             

                         c. Cover heatmap and test image                d. Heatmap with brain outline 

Figure 7. 15 Average heatmaps of abnormal group for SWI image classification 

As Figure7.15 demonstrates, it looks like that the motor area of the brain is more important 

and the other regions are less important for classification of SWI images based on ResNet-50. 

However, in the average heatmaps of normal group based on the same deep network, the 

parts of parietal lobe of the brain make more contribution than other parts (see Figure 7.16). 

In order to clearly analyse which part of the SWI images from the infants with neonatal HIE 

in abnormal group is more valued in the classification task of the ResNet-50, we use Grad-

CAM to calculate the average heatmap for each patient in the abnormal group and the 

heatmap of the central slice of a set of SWI images for each patient. 
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                        a. Average heatmap                                   b. Average total test images     

                                                        

                          c. Cover heatmap and test image            d. Heatmap with brain outline 

Figure 7. 16 Average heatmaps of normal group for SWI image classification 

In these heatmaps, there is activation outside of the brain. This is because when using transfer 

learning, the distribution of data in the source and target domains is different. Our pretrained 

network is based on the ImageNet dataset. This dataset may already contain information from 

MRI images. The performance of transfer learning depends on the similarity between datasets. 

The difference between the properties of the ImageNet dataset and the medical image dataset 

means that the pretrained model has weaker generalization on the small SWI dataset. Due to 

the limited data available, the network parameters of the ImageNet dataset affect the 

contribution of SWI images to the classification of patients.  
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Figure 7. 17 Average heatmaps of each patient in abnormal group with brain outlines 
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                     a. 

           

           

           

Figure 7. 18 The heatmaps of the middle slice of SWI images of each patient in abnormal group with brain 
outlines.  a) Location of the centre SWI slice in the brain 
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Figure 7.17 shows the average heatmaps of the 11 abnormal patients. Figure 7.18 illustrates 

the heatmaps of the middle slice (red line in Figure 7.18(a)) of SWI images of each patient in 

abnormal group. Although the different heatmaps show the contribution of different regions 

based on ResNet-50, the contribution of the motor area differs significantly from the other 

regions. In almost every heatmap of the patients in abnormal group, the motor area is the field 

of interest for classification decision based on ResNet-50 (red part). We also notice that these 

heatmaps are also under the influence of the large data set (ImageNet) they have been trained 

for.  

7.7. Summary 

In this chapter, a convolutional neural networks, known as residual networks (ResNet) with 

fine-tuned networks are employed to classify HIE patients into normal or abnormal groups by 

using their SWI images, and the main emphasis is on describing the residual networks that 

were applied in this study and the visualisation of the classification results. Here by fine-tuning 

a pre-trained ResNet 50 model, we use transfer learning method to train our SWI dataset. We 

acknowledge that our SWI dataset is too small even to use, the transfer learning. In order to 

improve the accuracy of system, we introduce a rule-based system to use two rules known as 

Rule 1 and Rule 2 in this thesis to improve the classification performance of our deep learning 

system for patients with neurology outcomes and we also use the Grad-CAM to present the 

brain regions important in each group. The deep learning approaches have better performances 

than the Algorithm 1 based on combining Rule1 and Rule2. The best accuracy for 

classification of patients by using our rule based deep learning method in the test data is 0.933 

±0.086.  

Additionally, we considered which parts of the brain in SWI HIE images contribute the most 

for allocating the patients to a particular class by presenting the average heat maps for each 

group. This is also the first study to use Grad-CAM to analysis which region of the SWI images 

with HIE contributes more to the classification results. We have plotted the average heatmaps 

for patients in the abnormal and normal groups, the average heatmaps for each patient in the 

abnormal group, and individual heatmap for the same location slice of each patient in the 

abnormal group. We compared the average heatmaps of patients in the abnormal and normal 

groups, which showed a greater contribution of the motor area to the classification of abnormal 

patients, while the parietal lobe play an important role in the classification of normal patients. 

The average heatmaps of each patient in abnormal group also support the greater contribution 
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of the motor area in the classification of abnormal patients to the abnormal group. This also is 

inline with medical finding [30,36]. 

In this study, as our small dataset posed a challenge to the deep learning task, we will consider 

collecting more data in future work to improve the accuracy of using SWI images taken at birth 

from infants with HIE to predict neurology outcomes assessed two years later. 
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Chapter 8 

Conclusions and Future Works 

8.1. Conclusions 

MRI imaging has become the standard for detecting neonatal hypoxic-ischemic 

encephalopathy (HIE) and plays a crucial role in the prognosis of HIE. There are major 

advances in combining different sequences of MRI images with computer vision algorithms to 

predict HIE. This thesis uses computer vision and deep learning techniques to extract some 

features from susceptibility-weighted imaging (SWI) images of infants with HIE for the 

prognosis of HIE. 

Since the SWI images could distinctively visualise the cerebral veins and the haemorrhagic 

parts of infants with HIE, we first investigated the structure and gray scale intensity of the veins. 

For this purpose, we have developed a new automated system for detecting ridges representing 

veins on the SWI images. We calculated the width, intensity value, length, and the eigenvalues 

of the Hessian matrix of ridges associated with the veins as feature vectors by analysing the 

ridges in SWIs. Individual or concatenated features from a balanced dataset were used as input 

for   k-nearest neighbours (kNN) and random forest classifiers with a leave-one-out validation 

strategy to classify SWI images for evaluating the neurology outcome of neonates with HIE at 

24 months of age. Meanwhile, we applied these feature vectors to train support vector 
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regression (SVR) and random forest regression models for predicting the composite motor and 

cognitive scores of infants with HIE at 24 months of age. The best classification accuracy 

associated with the random forest classifier for concatenated features consisting of width, 

intensity, length, and Hessian eigenvalues is 78.67 ± 2.58%. Our result is better than the 

classification accuracy reported in [76], which is 72.27 ± 4.85%. It is noted that we have used 

the data from the same group of patients as the dataset used in [76], and the dataset is not 

balanced in [76]. Mean relative error (MRE) was used to measure the performance of the 

regression models, with the lowest mean relative errors of 0.113 ± 0.13 and 0.109 ± 0.067 for 

the cognitive and motor composite scores, respectively. This is the first study to train a 

regression model by extracting features from SWI images of infants with HIE at birth to predict 

motor and cognitive scores of HIE survivors at 24 months of age.  

We further developed Algorithm 1 based on the  detected ridges to find where the brain has 

been damaged by hypoxic-ischaemic (HI) injury to predict the neurodevelopmental outcomes 

of newborns with HIE as they grow up. Algorithm 1 helped us to classify veins on SWI images 

into normal and abnormal groups supervised indirectly by clinical assessment outcomes. 

Experiments to measure the performance of Algorithm 1 in various scenarios showed that 

Algorithm 1 performed better than traditional kNN and random forest classifiers in datasets 

related to motor and cognitive outcomes. The accuracy for motor outcome using Algorithm 1 

was 75.0 ± 13.9% and the accuracy for cognitive outcome was 65.0 ± 9.8%. By analysing and 

identifying the veins classified in the abnormal group, we found that the abnormal veins on the 

SWI images of infants with HIE at birth were associated with follow-up outcomes of survivors 

at two years of age. The analysis of abnormal veins was accomplished by registering the SWI 

images with a brain template containing all brain lobes. We calculated the ratios of abnormal 

veins detected by Algorithm 1 in various brain areas of infants with HIE. Of these, there was 

a significant correlation between motor outcome and abnormal veins in cortical motor areas, 

with the strongest correlation coefficient of -0.76. Vein length in the frontal, temporal, and 

parietal lobes affected by HIE had the highest correlation with cognitive scores with a 

correlation value of -0.52. We also trained the regression models by using the ratios of 

abnormal veins and motor and cognitive composite scores. The lowest Mean Relative Error 

(MRE) value for the linear regression model correlated with motor scores, is computed here as 

0.088 ± 0.073. The polynomial regression model predicting cognitive scores obtained a 

minimum MRE value of 0.111 ± 0.103.  
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In addition, we exploited the histogram of oriented gradients (HOG) technique to obtain feature 

vectors to improve the classification performance of neurodevelopmental outcomes. Motor and 

cognitive regions of the brain on SWI images were obtained using the image registration 

method in Chapter 5. The HOG feature vectors of these regions were used as input for the kNN 

and random forest classifiers for classification. Compared to the previous results, the 

classification results for motor outcomes showed better performance than Chapter 4, with an 

accuracy of 71.67 ± 11.24. The combined HOG features of the frontal, temporal, and parietal 

lobes of the brain illustrated the better performance of classification for cognitive outcomes 

than Chapter 4 and Chapter 5, with an accuracy of 76.25 ± 10.9. 

Furthermore, deep learning approaches were used to classify the SWI images of infants with 

HIE based on the neurology outcomes. We used the transfer learning method to train the SWI 

images by fine-tuning a pre-trained ResNet 50 model and introduced a rule-based system, 

containing two rules: Rule 1 and Rule 2. The performance for the classification was 93.3% ± 

8.6. We also considered which parts of the brain contribute the most to the classification of 

SWI images with neurological outcomes. The heatmaps presented in Chapter 7 demonstrated 

that the motor areas were important for the classification of neonates with HIE. This is 

consistent with the measurement results from Algorithm 1. Deep learning methods have shown 

the best  classification performance than previous methods in the literature as well as in the rest 

of this thesis. 

In this thesis, we demonstrate that SWI image analysis of infants with HIE can provide 

additional information to predict neurodevelopmental outcomes at the age of two years. By 

developing Algorithm 1, for SWI images that were not annotated by clinical experts, we still 

identified the veins that were affected by hypoxic-ischaemic injury and demonstrated that the 

brain regions where the abnormal veins were located, were correlated with neurodevelopmental 

outcomes at two years of age. Although there are some studies of the degree of hypoxic-

ischaemic injury based on SWI images, there are no studies that classify damaged veins based 

on clinical assessment. We have also used HOG features as well as  deep learning methods on 

SWI images to improve the performance classification and regression. The results supported 

the relationship between damaged regions of the brain and neurodevelopmental outcomes. This 

is also the first study to use SWI images with HIE to train a deep learning network. 
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8.2. Future works 

With the development of neuroimaging and a deeper understanding of the pathological 

mechanisms of HIE, more and more studies are tending to explore the associations between 

veins and cerebral cortex damaged by hypoxic-ischaemic and long-term neurodevelopmental 

outcomes. A few studies are now also beginning to use neuroimaging of HIE patients to predict 

Bayley-III scores. However, the main issue in front of many HIE researchers is the lack of data. 

One of our most significant tasks in the future will be to collect more data on clinical 

assessment outcomes at various time periods. The expansion of the dataset will improve the 

results of the methods in this thesis. In addition, we would like to use our method to analyse 

the neurodevelopmental outcomes at 48 months of age or during adolescence for HIE survivors 

by using our methods. Also, we can use neural network models to predict motor and cognitive 

scores on a large enough dataset.  

In this work, we have focused on exploring the relationship between the functional cortex of 

the brain with HIE and developmental outcomes. One area for future work is to explore the 

relationship between damaged veins within other structures of the brain and long-term 

outcomes, such as veins near the corpus callosum, thalamus, and basal ganglia. We expect to 

combine these structures with veins in the cerebral cortex to improve the prognostic qualities 

of SWI images in HIE.  

Another interesting future work is to combine HOG features with features obtained from ridge 

detection to improve the performance of the current automatic diagnosis system for SWI 

images. The last but not the least direction for future work would be to compare our vessel 

classification scheme, based on clinical outcomes, with the vessel scoring system proposed by 

Kitamura [45]. 
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