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A B S T R A C T   

Formulations are ubiquitous in many industries. As formulations are being modified and re-developed to include 
more renewable and recyclable ingredients, the speed of formulations development becomes important. This 
study expands on the previous work demonstrating successful application of multi-objective Bayesian optimi
zation to design of formulations within a restricted set of the available ingredients. Here we develop an approach 
that resolves the un-solved to date problem in algorithmic formulations development, when a subset of in
gredients should be chosen from a larger available pool of suitable ingredients. The new DoE algorithm was 
demonstrated in a workflow making use of a ’make and test’ formulation robots. The developed new DoE 
procedure demonstrated an efficient selection of a subset of ingredients from a larger number of the available 
ones, optimizing their concentration and allowing assignment of differential priorities to the optimization 
objectives.   

1. Introduction 

Liquid formulated products are a type of liquid blends, tailored to 
meet specific customer-defined functionalities and properties, such as 
colour, fragrance, viscosity and functional performance, for example, 
cleaning performance in the case of domestic and personal care cleaning 
products (Uhlemann et al., 2020; Yunus et al., 2014). Liquid formula
tions are ubiquitous in many traditional applications, including phar
maceuticals, paints, food, cosmetics, detergents, pesticides and so on 
(Zhang et al., 2018). At the same time, there is an increasing demand for 
new formulations in which (i) components offer better functional per
formance at reduced concentrations, and (ii) some urgency in devel
oping formulations with a significantly improved environmental profile 
(lower toxicity to environment, lower life cycle emissions, lower overall 
footprint, etc.) (Heintz et al., 2014; Ten et al., 2017). 

Development of formulations is, however, a rather complex process. 
The characteristic feature of formulations is the relatively large number 
of components (typically called ‘ingredients’) in any single formulation: 
several functional components deliver the desired set of target perfor
mance features, typically as a result of synergistic emergent interactions; 
other (non-functional) ingredients are added to achieve the desired 

combination of properties, that could be fairly customizable for specific 
(e.g., regional or cultural) consumer preferences (Gani and Ng, 2015; 
Peremezhney et al., 2012). As a result, the development of new formu
lations or studies of substitution of ingredients in existing formulations 
are necessarily experimentally heavy and require expensive 
trial-and-error campaigns (Fung et al., 2016). 

The most common approaches for systematic development of 
formulated products can be categorized into two types (Kontogeorgis 
et al., 2019; Zhang et al., 2020): (i) the conventional experimental 
trial-and-error approach (Wesselingh et al., 2007), which is time and 
resource demanding, and (ii) integrated approaches combining data and 
models, which can give inaccurate solutions, as first principles pre
dictions of emergent properties of multi-component mixtures of func
tional molecules (polymers, surfactants, etc.) are not yet accurate 
enough for physical properties prediction (Conte et al., 2011). More
over, in many cases, formulation design is based on the choice of a 
certain subset of m components from a large number n of available 
chemicals (m < n). One typical example is the choice of a certain number 
of surfactants, which are used as stabilizers of emulsions and also 
influencing their final properties (Kontogeorgis et al., 2019). The 
number of possible combinations is very large when many components 
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are available. Due to manufacturing constraints or regulation issues, 
binary and ternary mixtures are often used in practice (Li et al., 2015). 
As a result, finding suitable binary or ternary mixtures with desired 
properties from all possible binary and ternary combinations is chal
lenging (Jouyban et al., 2011, 2006). For example, in a ternary mixture 
design (m = 3), if there are n = 10, 20, or 50 possible components to 
choose from, there are 120, 1140, and 1960 combinations, respectively. 
As n gets larger, finding an optimal design for each possible combination 
and comparing the obtained results becomes increasingly prohibitive. 
The situation is complicated by the fact that each component can be used 
at different concentrations, corresponding to different final properties, 
further expanding the search space. 

Here we ask a question - could we use an algorithmic design of exper
iments (DoE) approach, coupling statistical models with robotic experiments, 
to guide design of functional emulsions and to efficiently select optimal 
ingredients? 

To tackle the overall problem of complexity, cost and duration of 
formulations development, the first plausible solution is to make use of 
statistical methods that would maximize the amount of useful infor
mation derived from the available experimental data and could guide 
experimental programme in a Design of Experiments process. Recently, 
we have illustrated this approach with the high-throughput robotic 
systems guided by advanced machine-learning sampling algorithm, 
which led to a marked acceleration of the overall product development 
cycle (Cao et al., 2021, 2020). 

In this study we extend previous work by introducing a so-called 
“bridge” design of experiments methodology (Jones et al., 2015), to 
enable the earlier developed Bayesian algorithms to select a sub-set of 
ingredients from the available pool. Specifically, this was done for se
lection of surfactants in a cleaning liquid formulation model, in the 
absence of available physical models. The implemented bridge design 
approach allowed a trade-off between choosing formulations to explore 
the overall available experimental space, and estimation of flexible 
non-parametric models, and optimal choice of combinations to estimate 
a known parametric statistical model. Such methodology is particularly 
relevant for experiments measuring multiple responses, with differing 
modelling approaches being adopted for each response. 

The developed methodology was applied to a commercial formula
tion to simultaneously meet specific customer-defined binary and 
continuous targets: stability and viscosity. The aim was to demonstrate 
that the developed methodology can optimize two responses for a real 
detergent, allowing for the choice of a subset of ingredients from the 
available pool, while using a relatively small number of experiments, 
generated by robotic a robotic platform. 

2. Materials and methods 

2.1. Case study and materials 

The case study under consideration in this work is a commercial 
formulation which contains a polymer (P1 = Dehyquart CC7), a thick
ener (T1 = Arlyon TT), and three different surfactants. To develop and 
demonstrate the methodology, five available surfactants were used: 
Dehyton PK 45 (S1), Dehyton AB 30 (S2), Plantacare 818 (S3), Planta
care 2000 (S4), and Texapon SB 3 (S5). pH was adjusted using citric acid 
(ACS reagent, ≥ 99.5%, Sigma-Aldrich), used as received. 

The constraints of the input variables are given below:  

1) the sum of the concentrations of S1 to S5, of which three at most can 
be non-zero (or active), must be in the range 13.00 – 15.00 g L − 1.  

2) P1 concentration must be in the range 0.00 – 2.10 g L − 1  

3) T1 concentration must be in the range 0.00 – 2.10 g L − 1. 

Once the formulated product has been manufactured, it is tested for 
stability, which has a pass (1) or fail (0) outcome, and viscosity at a shear 
rate of 10 s − 1, which must be between 2.00 and 4.00 Pa⋅s. 

2.2. Experimental set-up 

The experimental samples were generated using the previously 
developed semi-automated robotic platform (Cao et al., 2021, 2020). 
Briefly, the platform consists of two stations: (i) for preparation and (ii) 
analysis of the prepared samples. The algorithmic procedure developed 
in this work (Section 3) generated a .csv file containing the experimental 
design to be tested. This triggered the first station, consisting of 8 syringe 
pumps separately feeding ingredients to the dispensing element. This 
was used to fill a batch of up to 24 sampling vials (Vsample = 10 mL) 
located on a rotating wheel. All surfactants were previously diluted in 
water to achieve a concentration of 20 g L − 1 in the feeding bottles and 
their pH was adjusted to 5.5. The generated samples were transferred 
into an incubator (Corning LSE 71 L shaking incubator) and processed at 
50 ◦C, 300 rpm for 2 h. The processed samples were cooled to ambient 
temperature and placed on the rotating wheel of the second station 
where the samples were automatically processed through a camera to 
distinguish between stable (homogeneous) and unstable (presenting 
phase separation) formulations. Automatic pH tests were carried out and 
no pH variations were observed in any sample after the processing. 
Finally, viscosity of the samples at a shear rate of 10 s − 1 was measured 
off-line in a non-automated fashion using a rotational viscometer (ARES 
Rheometric Scientific, strain controlled, Couette configuration). 

3. Theory 

The workflow used in this work is shown in Fig. 1. The experimental 
workflow described in Section 2 dispenses the required amounts of the 
selected ingredients, processes the formulations, tests their stability, and 
measures their viscosity. The algorithmic workflow is detailed in the 
following subsections. Briefly, initial sampling was used to efficiently 
explore the input space and to design appropriate experiments to 
maximize the information gain. This was successively used to trigger an 
iterative search of the optima, i.e. stable sample with a viscosity as close 
as possible to the 3.00 Pa⋅s, based on the trained surrogate models for 
the responses. 

3.1. Initial sampling 

The initial 230 experiments were performed using a maximin space 
filling design (Johnson et al., 1990) with the aim of efficiently exploring 
the entire chemical design space. The entire initial sampling is reported 
in the Supplementary material, Table S1. 

3.2. Design of experiments algorithm 

3.2.1. Objective function 
The objective function was inspired by the bridge design reported in 

Jones et al. (Jones et al., 1998), which has the dual objectives of opti
mality with respect to parameter estimation from a parametric model 
(D-optimality (Atkinson et al., 2007)), and space filling. However, the 
objective function in this work differs in three ways: 1) it does not use 
the same space filling criteria; 2) it is a weighted objective function; 3) it 
uses the Bayesian D-optimality objective function (Chaloner and Verdi
nelli, 1995; Ryan et al., 2016) which is focussed on estimation of a lo
gistic regression model, approximated using Monte Carlo integration 
(Overstall and Woods, 2017). A bespoke objective function and algo
rithm have been written to find an optimal design for these experiments, 
where the objective function considers two different types of outputs: a 
binary response from the stability test, and a continuous response from 
the viscosity test. 

For the binary output, there exists a variety of models suitable to 
model the discrete response, with the logistic and probit regressions 
being the most commonly used. The above-mentioned initial sampling 
was used to identify a suitable model by using forward variable selection 
with the following steps, modelled on Sure Independence Screening 
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(Fan and Lv, 2008):  

1) Fit models to each variable individually and identify the effects with 
p-values less than a given level of significance (set to 5% in this 
code).  

2) Fit models which contain at least two of the effects identified in Step 
1, and calculate AIC, BIC and deviance for these models.  

3) Identify models which minimise AIC, BIC and deviance, and from 
these select the model with the most terms (to avoid erroneously 
deleting variables at this stage). 

A logistic regression model with active parameters for the individual 
effect of S1, S4, P1 and P2 was found to be the best fitting model for 
these data. The initial sampling data were used to construct a prior 
distribution for this model, which was subsequently updated as new 
experimental data became available. To facilitate data collection, a 
Bayesian decision-theoretic methodology was incorporated into the 
bridge design approach described below. 

As mentioned in Section 1, there are no physical models available for 
the viscosity test. Analysis of the past experimental data for this test 
using polynomial regression did not find any suitable models. A 
nonparametric Gaussian Process (GP) model was selected as a flexible, 
data-driven approach that works well with small-to-moderate sized ex
periments (Rasmussen and Williams, 2006). GPs are typically fit to data 
derived from designs with good space-filling properties, allowing ac
curate prediction across the design space. 

The objective function used in this work is given by Eq. (1), and has a 
component relating to estimation of a logistic regression model and a 
component relating to a Euclidean distance between design points: 

∅(D) = ωlog(Ẽ[U(D)]) + (1 − ω)log(d(D)) (1)  

where: ω ∈ [0,1] is the weight placed on the part of the objective func
tion relating to the stability test response; (1 − ω) is the weight placed on 
the part of the objective function relating to the viscosity test response; D 
is the design scaled to be between 0 and 1; [U(D)] is the estimate of the 
expected utility for D, which is the part of the objective function related 
to the logistic regression for stability test responses; and d(D) is the 
average Euclidean distance between all possible pairs of rows in D, 
which is the space-filling part of the objective function related to the 
viscosity test responses. The expected utility is: 

E[U(D)] =

∫

u(θ, y, D)π(y|θ, D)π(θ|D)dθdy =

∫

u(θ, y, D)π(θ|D)dθdy

(2)  

where θ are the parameters in a logit model for the stability test response 
y, π(y|θ, D) is the posterior distribution of the response, π(θ|D) is the 
prior for θ and π(y, θ|D) is the joint distribution of y and θ. The utility 
function, u(θ, y, D), can be chosen based on the aims of the experiments. 

In this case, Shannon information gain, which maximizes the expected 
divergence between the posterior and prior distributions, is used as the 
utility function. The prior for θ is adapted from the initial experimental 
results. 

Under the assumptions made in this work, E[U(D)] is not analytically 
tractable, and it is estimated using Monte Carlo integration as 

Ẽ[U(D)] =
1
B
∑B

b=1
u(θb, yb, D) (3)  

where yb and θb are sampled from π(y, θ|D), and B is the number of 
samples. This estimate is found using utilityglm function in the acebayes 
package in R given by Overstall and Woods (Overstall and Woods, 
2017). Here, we let B = 1000. 

Space filling designs can be used when a GP model is assumed for the 
response. Space filling designs impose restriction on the space of, or 
distance between, points in the design space. In this case, we use the 
average Euclidean distance as a space filling criterion for the viscosity 
test response. This distance is calculated using the pairwise distance 
between rows in the unscaled design, so D is converted from 0 to 1 
scaling back to the original scale in the function d(D) in Eq. 1. 

The weight on each of these two components can be adjusted based 
on the experimenter’s aims. For example, if it is assumed that the 
outcome of the stability test is more important than that of the viscosity 
test, ω > 0.5 would be appropriate, and vice versa. In this case, we set 
ω = 0.5 as we treat the two responses as equally important. 

3.2.2. Point exchange algorithm 
Point exchange algorithms find an optimal design by optimizing each 

row of the design with respect to a certain objective function, whilst 
assuming the other rows are fixed (Fedorov, 1972). These algorithms 
perform multiple loops through the design and continue to optimize 
rows until stopping criteria are met. In order to avoid any issues with 
local optima, such algorithms are run for multiple random starting de
signs. The optimal design is the design found using the algorithm from 
these random starts which maximizes the objective function. 

The estimated expected utility, Eq. (2), is computationally expensive 
to calculate, and hence also Eq. (1). Hence, we require a computation
ally efficient method of optimization. Also, we want to consider samples 
of possible values of Eq. (1) when choosing whether to accept or reject a 
proposed new row, as Eq. (2) is dependant on random samples from the 
joint distribution of θ and y. We therefore optimize the rows using the 
Efficient Global Optimization (EGO) algorithm (Jones et al., 1998), and 
accept or reject a proposed row using the Kolmogorov-Smirnov (KS) test 
(Smirnov, 1939). 

The EGO algorithm is a type of Bayesian optimization algorithm 
which can be used to optimize computationally expensive functions 
(Shahriari et al., 2016). Bayesian optimization algorithms fit a Gaussian 
process model to the observed function values, and then choose the next 

Fig. 1. Schematic diagram of the algorithmic-experimental workflow.  
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location at which to evaluate the function using an acquisition function 
that relies on this Gaussian process model. Points are iteratively added 
until a stopping criterion is met. 

The acquisition function is chosen to balance the objectives of 
exploring the space where little is known about the function and 
exploiting the information we have gained by observing the function at 
given points. Bayesian optimization is demonstrated for a function with 
a single controllable variable in Fig. 2. 

The EGO algorithm uses Expected Improvement (EI) (Mockus et al., 
1978) as the acquisition function, and continues to add points to the 
algorithm until the current maximum EI value is less than or equal to 1% 
of the current maximum objective function value. In this algorithm, we 
also add a restriction on the number of new points that can be added. 

We choose to accept or reject a proposed new row based on a com
parison of samples of Eq. (1) for a design with and without this new row, 
which are found by generating R (R = 1000 in this work) samples from 
the joint distribution of θ and y. The KS test compares two samples to 
assess whether they come from the same distribution, where the null 
hypothesis is that these samples come from the same distribution. If the 
p-value of the KS test is less than α (set to 0.05 in this work), then there is 
evidence to reject this null at a 100α% significance. Hence, such a p- 
value for a KS test between two samples of Eq. (1) gives evidence to 
suggest that the objective function distribution after the swap differs 
from that before the swap and, therefore, gives evidence to accept the 
proposed new row. We also add the condition that the objective function 
itself must have increased, as we want to find the design which maxi
mizes Eq. (1). An example of the estimated densities for these samples is 
given in Fig. 3. The Point Exchange Efficient Global Optimization 
(PEEGO) algorithm, summarized in Scheme 1, has been packed as an R 
package which is available online (https://github.com/sustainable-pro 
cesses/PEEGO; https://doi.org/10.5281/zenodo.5908388). 

4. Results and discussion 

As explained in Section 3.1, the algorithm was trained using a 
maximin space filling design consisting of 230 data points. 52% of the 
samples in the training data set were stable, 12.61% met the viscosity 
target and only 3.48% passed both criteria. The algorithm was run in 

Fig. 2. Illustration of a Bayesian optimization approach (adapted from Shahriari et al. (Shahriari et al., 2016)). The red points are the current evaluations of the 
function f(x), the solid black line is the Gaussian process estimate of the objective function, the dotted black line is the unknown objective function. The purple 
shaded area gives the uncertainty in the prediction of the objective function. Note that new points, given by red points, are added where the acquisition function 
is maximized. 

Fig. 3. The estimated densities of two objective function samples, one before a 
swap (black line) and one after a swap (blue line). The KS test for the com
parison of these two samples has a p-value of less than 0.05, hence the null 
hypothesis that these two samples are drawn from the same distribution can be 
rejected at a 5% level. 
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order to suggest an experimental bridge design of 48 samples. The entire 
DoE is reported in the Supplementary Information (Table S2). In Fig. 3, 
it is shown that the blue line (the new design) in the plot shifted to the 
right of the black line (the initial design). Based on the p-value for the KS 
test, we infer that by applying the point exchange algorithm, the new 
design can give more information about the system than the original 
design. 

In Table 1, we show a comparison between the percentage of samples 
passing stability and viscosity criteria in the training data set and in the 
suggested DoE. In the latter, 91.67% of the samples were stable, and 
12.5% passed both criteria. This may be ascribed to the fact that in the 
initial design we select experimental points according to a space-filling 
criterium, without taking into account the information gain of the 
models. Therefore, in order to gain more information of the system, the 
algorithm seeks to explore the part never seen in the initial dataset, more 
likely to consist of stable samples in the right viscosity range. 

The resulting dataset was used to train a GP for the prediction of 
viscosity of samples and to guide optimization of the formulation within 
three experimental iterations. To mimic a common situation in product 

Scheme 1. The Point Exchange Algorithm for the Specific Problem.  

Table 1 
Comparison between the training data set and the suggested DoE: percentages of 
sample that passed and/or failed stability and viscosity tests.   

Maximin DoE (%) Bridge-Design DoE (%) 

Stability test: passed 
Viscosity test: passed 

3.48 12.50 

Stability test: failed 
Viscosity test: passed 

9.13 0.00 

Stability test: passed 
Viscosity test: failed 

48.70 79.17 

Stability test: failed 
Viscosity test: failed 

38.69 8.33  
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development, some prior knowledge was included in the data set. In fact, 
it was known that mixtures of the surfactants without any added poly
mer and thickener show a water-like viscosity. The trained GP was used 
to predict the viscosity response over the entire input variable space. At 
each iteration the candidates predicted to be closer to the midpoint of 
the desired target range (2.0 – 4.0 Pa•s) were selected. Using the trained 
classifier, solutions predicted to be unstable were discarded, and the 
resulting 20 best experiments were tested experimentally. The 60 ex
periments carried out are reported in the Supplementary Information, 
Table S3. In Table 2 the formulations passing both criteria are reported. 
Interestingly, all 60 experiments resulted in clear, stable formulations, 
20% of which passed the viscosity test. 

At this point, it is worth pointing out that a good number of candi
dates was obtained within a total number of 338 experiments carried out 
in 17 working days, without any need for a physical model for properties 
prediction. 80% of the time was needed for the non-automated viscosity 
tests, 20% of the time for the automated sample preparation and sta
bility tests, whereas the computational time was negligible. As a refer
ence, we can use the results recently published by some of the authors 
for a similar system using a combination of Latin hypercube sampling 
and Thompson-sampling efficient multi-objective optimization algo
rithm (TSEMO) coupled with a Bayesian classifier.19 In that case, the 
recipes of the formulations were optimized to obtain stable and clear 
formulations with the same target viscosity, but without allowing for a 
free choice of a surfactant. Only three surfactants were available, cor
responding to S2, S3, and S5 used in this work. The optimization pro
cedure was started using 96 LHC experiments and 128 further 
experiments were collected in 16 iterations of the optimization algo
rithm, with a total of 224 experiments performed. Although in the re
ported earlier paper the formulations were also optimized with respect 
to price, it is worth noting that in the current work the choice of three 
surfactants from the five available makes the input space variable one 
order of magnitude larger. However, thanks to the adoption of a 
maximin design coupled with a bridge-design approach, the total 
number of the required experiments increased only to 338. 

The examination of the solutions gives an insight into the role of the 
different ingredients in the processed formulations. The lowest occur
rence of surfactants S2, S3, and S4 suggests that interactions of these 
compounds with the other components have a higher probability to form 
unstable, turbid mixtures. As expected, the thickener T1 is responsible 
for higher viscosity of the samples and its concentration tends to be close 
to the upper limit of the adopted constraints; however, contrary to 
suggestions of human experts, the algorithm was able to find good so
lutions also using a concentration of T1 lower than 2 g L − 1, which 
significantly decreases price of the final product. Interestingly, although 
polymer P1 was considered by human experts to be responsible for the 
increase in viscosity, when certain combinations of surfactants are 
adopted, the polymer concentration can be reduced, suggesting that 
interactions between these ingredients are contributing to the increase 
in viscosity. 

As shown, this preliminary analysis gave some qualitative insight 
about the physics of the system. Current research is stressing the need of 
using the results of black-box optimizations and robotic experimental 
campaigns to derive some physical knowledge about the investigated 
systems: some examples can be found in the analysis of the hyper
parameters (Schweidtmann et al., 2018), the automated identification of 
physical laws from bare data (Neumann et al., 2020), and the analysis of 
the Pareto front (Cao et al., 2021). In this regard, future research will 
need to rationalize and combine these different approaches to maximize 
the amount of physical information derived from automated procedures. 

5. Conclusions 

In this work, the Point Exchange Efficient Global Optimization 
(PEEGO) algorithm was used to find a bridge-design of experiments to 
maximize the information gain, in order to find suitable solutions for a 
commercial formulated product. The corresponding R package is 
available on Github through the link (https://github.com/sustaina 
ble-processes/PEEGO). The proposed methodology was tested with the 
design of a commercial liquid formulated product, where only three 
surfactants can be chosen from a library of ingredients. A logistic model 
and a Gaussian process model was selected to describe a discrete and a 
continuous target of the product, i.e. stability and viscosity. The PEEGO 
algorithm was then applied to simultaneously optimize the information 
gain for the two responses. 

A cheap-to-evaluate GP was trained using the experimental results 
and used to predict the viscosity response over the entire input variable 
space. This triggered an iterative process that allowed to increase the 
percentage of samples passing both quality criteria from 3.68% 
(maximin DoE) and 12.50% (bridge-design DoE), to 20.00% over 60 
samples obtained in three iterations. This outperformed the results 
previously obtained for a similar case study, using a Latin hypercube 
sampling approach coupled with an iterative procedure, in the absence 
of a bridge-design approach. 

In addition to the good number of candidates obtained in a short time 
in the absence of physical predictive models, the a posteriori analysis of 
the obtained solutions gives some qualitative physical insight to the role 
of the different ingredients and their non-trivial complex interactions. 
Further research will be needed to rationalize this information using 
systematic approaches for the generation of physical knowledge from 
fast automated development of formulated products. 
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