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Abstract—There is an increasing desire to conduct
autonomous inspection of nuclear sites using robots. How-
ever, the presence of gamma radiation in nuclearsites induces
degradation in vision sensors. In this paper, the effects of
gamma radiation on a robot vision sensor (CMOS camera)
used for radiological inspection is examined. The analyses
have been carried out for two types of images at different
dose rates: a) dark images b) illuminated images. In this work,
dark images and chessboard images under illumination are
analysed using various evaluation metrics to evaluate the
effect of gamma radiation on CMOS Integrated Circuit (IC)
and electronic circuitry of the sensor. Experimental results
manifest significant changes in electrical properties like the
generation of radiation-induced photo signal in sensing circuitry and radiation-induced noise affecting the visual
odometry of the robot. System-level degradation for gamma dose rates upto 3 Gy/min intensifies, making data from
the imaging sensor unreliable for the visual odometry. However, images captured for gamma dose rate upto 3 Gy/min can
be used for surveillance purpose.
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Index Terms— Gamma-induced image degradation, CMOS image sensor, robotic inspection, vision sensor
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I. INTRODUCTION20

S INCE the inception of commercial nuclear sites, robots21

have played a crucial role due to their ability to access haz-22

ardous areas [1]. However, the catastrophic Fukushima-Daiichi23

accident has created a global demand to deploy the robots for24

periodic inspection of nuclear sites. Tele-operated robots like25

JAEA-3 and Quinc have conducted inspection of Fukushima26
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facility in the past [2]. A recent attempt of radiological 27

monitoring of Sellafield, the largest nuclear site in Europe, 28

using an autonomous robot has been made [3]. The inspection 29

of nuclear site is a cumbersome and challenging task which 30

requires robots to be equipped with CMOS image sensors to 31

perform real-time tasks like visual odometry and calibration. 32

However, the grave challenges of autonomous inspection 33

using vision sensors are intensified for nuclear facilities by the 34

presence of radioactive elements. These elements can trigger 35

degradation of sensors at a rapid rate and resulting in complete 36

breakdown of the robot inside the site [4]. The vulnerability 37

of CMOS image sensors to radioactive elements stems from 38

the fact that the CMOS Integrated Circuit (IC) of the sensor 39

which consists of a pixel array, address decoders and signal 40

processing circuit is exposed to the precarious environment. 41

Extensive research has been done to evaluate the effects of 42

radiation on semiconductor devices [5]–[8], range finding 43

devices [9], [10] and acoustic sensors [11]. The evaluation of 44

the effect of radiation on CMOS image sensors has focused 45

on sensor built using radiation-hardened design [12]. 46

The performance of cameras built using commercially 47

available radiation-hardened CMOS image sensors have been 48
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evaluated under various dose rates [13], [14]. The evaluation49

of effects of gamma rays on industrial camera based on CMOS50

image sensors has been conducted in recent past [15]. Another51

research work has focused on measuring the gamma-induced52

image degradation using Commercial Off-The-Shelf (COTS)53

image sensor [16]. Recent works have analysed a fixed pattern,54

temporal noise degradation and total ionizing dose induced55

by gamma rays, protons and neutrons in pinned photodiode56

CMOS image sensors [17]–[19] giving a new direction to57

the research. In some recent works, the COTS CMOS image58

sensors have been used as gamma ray detector [20], [21].59

Goiffon et. al [22] had discovered several original radiation60

effects such as an increase in pinning voltage, decrease in61

buried photodiode well capacity to name a few, when pinned62

photodiode CMOS Image sensor was exposed to 10 KGy63

ionizing radiation. Another study [23] showed that radiation64

exposure damages the gain brought by the epitaxial layer65

thickness in pinned photo diode CMOS image sensors.66

Recent advancement in imaging technologies has led to67

deployment of the COTS CMOS cameras for robots due to68

their low cost and weight, compact size, ease of use and69

compact data storage [3], [24]. With the deployment of robots70

to inspect nuclear sites, there exists a research gap where71

image degradation analysis of COTS CMOS image sensors72

used as a robot vision sensor needs to be conducted. In this73

work, we aim to bridge this research gap by analysing the74

degradation in dark images and images captured in illumina-75

tion when the Raspberry Pi camera (a robot vision camera) is76

exposed to different dose rates of gamma radiation.77

To this end, we had investigated the performance of three78

such COTS CMOS image sensors under gamma radiation79

exposure [25]. The three sensors analysed were: 1) Raspberry80

Pi camera [26], 2) Spy Camera [27] and 3) Trust USB81

Camera [28]. The experimental evaluation pointed out that82

the image degradation was less in Rapberry Pi camera as83

compared to other two. The reason behind better performance84

of Rapberry Pi camera can be attributed to the smaller pixel85

sensitive volume which in turn generates less gamma-induced86

photo signal allowing better performance. Taking a step further87

in this work, we measure the degradation in the images88

captured by Raspberry Pi camera during exposure of gamma89

radiation in detail. The main motivation behind this study is90

that the Raspberry Pi camera has been used as a robot vision91

sensor in the CARMA robot which had recently successfully92

monitored Sellafield nuclear site [3].93

The radiation environment of any nuclear site consists of a94

mixture of α, β, γ and neutron emitters [29]–[31]. Gamma95

rays are of particular concern due to their high penetration96

power, occurrence in nuclear decay chains and high dose rates.97

This is the main reason that majority of robots deployed for98

inspection of the nuclear facilities have focused on γ radia-99

tion [32]. In this paper, we study the degradation of Raspberry100

Pi sensor due to gamma radiation in two different directions101

by calculating various evaluation metrics. The first direction102

deals with the effect of radiation in dark conditions and second103

direction deals with the effect of radiation on captured images104

in presence of light source. Both these directions illustrate105

the effect of gamma radiation on the physical element of the106

sensor and electronic circuitry. Furthermore, a study has been107

carried out to elucidate the difference between the effects of 108

gamma flux and received cumulative dose on the Raspberry Pi 109

camera during the radiation exposure. A pertinent effort has 110

been made to investigate the impact of gamma radiation when 111

the sensor is still operational. Furthermore, a study has been 112

carried out to elucidate the difference between the effects of 113

the dose rate and the evolution of evaluation metrics with time 114

on the Raspberry Pi camera. 115

The remainder of the paper is organised as follows. 116

Section II provides an overview of the background studies in 117

this area. This is followed by a discussion on experimental 118

realisation in Section III. The analysis of dark images is 119

presented in-detail in Section IV. In Section V, we analyse the 120

images captured in presence of light source. The conclusion 121

of the investigative study is presented in Section VI. 122

II. BACKGROUND STUDIES 123

A nuclear environment exhibits several characteristics 124

like a variable radiation field, unstructured and potentially 125

unpredictable physical environments, extreme environmental 126

conditions (high temperature, pressure, steam, dust, non- 127

homogeneous illumination) and limited communication band- 128

width. These characteristics pose significant challenges to 129

sensors, especially, to CMOS image sensor which assists robot 130

to interpret its environment. 131

A. Robotic Inspection of Nuclear Sites 132

The history of the deployment of ground-based robots for 133

radiological inspection resonates with the occurrence of three 134

major nuclear accidents: 1)Three Mile, 2) Chernobyl and 3) 135

Fukushima Daiichi. The need for inspection of nuclear site 136

became an imperative, after first nuclear power plant disaster 137

of Three Mile in 1979. This resulted in deployment of the 138

first ever radiation survey robots like ROVER, LOUIE I and 139

LOUIEE II, which were remotely-operated in the basement of 140

nuclear facility after four years following the accident [24]. 141

Even though these robots had their own limitations centering 142

around autonomous navigation and failure recovery, they are 143

still lauded as a landmark in the nuclear industry. 144

Seven years later, the catastrophic accident of Chernobyl 145

initiated the immediate response in the form of deployment of 146

two tele-operated robots (STR-1). However, sensors deployed 147

in both the robots were rapidly disabled by the presence of 148

radioactive substances [33]. Since then, steadfast technological 149

advances have resulted in the development of sophisticated 150

robots with latest sensors which have successfully made 151

inroads into fields like transportation, industry and medicine. 152

However, the Fukushima accident in 2011 demonstrated that 153

our current robots have not reached required standard of 154

deployment in such extreme environments. 155

The robotics community dealt with this setback by modi- 156

fying many robots and making them tailor-made for radiation 157

inspection like JAEA-3 and Quince [2]. These tele-operated 158

robots infused confidence in research industry and saw a 159

series of robots like RICA [Robot d’Inspection pour Cellules 160

Aveugles] [34] and co-robots developed by Georgia Institute 161

of Technology [35] performing radiation survey with the help 162

of human input. 163
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Fig. 1. Experimental Setup at DCF, UK.

However, the Fukushima Daiichi accident unveiled the spe-164

cific requirement which robotic technology needs to meet for165

deployment of robots in nuclear facility. The main requirement166

was autonomous inspection of site in minimum time using167

machine vision sensors. A major milestone to meet this168

requirement was the development of CARMA (Continuous169

Autonomous Radiation-Monitoring Assistance) [3] in 2018 for170

autonomous radiation inspection of Sellafield, the largest171

nuclear site of Europe.172

B. Effects of Gamma Radiation on Robot Vision Sensors173

Robot vision sensors, CMOS devices, are an integral part174

of image capturing subsystem of robot. Gamma ray induces175

total ionising dose which affects CMOS and semiconductor176

electronic materials as well as a variety of other materials177

used in the robot [32]. A particle radiation incident on any178

semiconductor surface deposits energy which creates electron-179

hole pairs in the semiconductor. The most notable effects occur180

in insulator in the semiconductor like gate or field oxides in181

CMOS devices. In the electron-hole pair, the low mobility of182

holes allows them to exit the insulator, slowly as compared183

to electrons. With passage of time and accumulated dose, this184

behaviour of holes allows positive charge to build up.185

The oxide trapped charges invoke a series of changes in the186

electrical property of the sensors, for instance generation of187

increased leakage current in CMOS transistor. COTS robot188

vision sensors along with lenses contain signal processing189

electronics, communication ports and voltage regulation. The190

Raspberry Pi camera is an excellent choice for robot vision191

sensors used in radiological inspection as it contains mini-192

mal signal processing circuitry, making it less vulnerable to193

change in electrical characteristics [25]. The effect of gamma194

radiation on Raspberry Pi sensors is a combination of the195

radiation effects on the CMOS IC and electronic circuitry.196

Field reports from Fukushima Daiichi nuclear facility have197

shown the presence of gamma radiations with dose rate198

upto 6.5 rad/hour (0.0011 Gy/min), with the anticipation of199

higher dose rates near the reactor [36]. According to the200

measurements performed in 2017 at the crippled Fukushima201

Power Plant, the gamma dose rate in the contaminated vessel202

of the reactor were close to 9 Gy/min [37]. The studies [38],203

[39] conducted at the Chernobyl nuclear site provide an204

approximate measured radiation levels in the vicinity of the205

main damaged reactor of the Chernobyl Nuclear Power Plant206

immediately after the accident. The gamma dose rate were207

as high as 5 Gy/min close to the reactor core, and fell to208

2.5 mGy/min in the nearby concrete mixing unit.209

Therefore, we analyse the degradation upto 4 Gy/min under 210

two circumstances: dark images and light images. The dark 211

images allow us to calculate metrics like the gamma-induced 212

photo signal which is the leakage current reflecting the leakage 213

mechanism occurring in the sensing element. The radiation 214

effect is analysed for images captured in presence of light 215

source by evaluating the image quality and handcrafted fea- 216

tures reflecting the changes induced in sensing element and 217

electronic circuitry by gamma radiation. 218

III. EXPERIMENTAL REALIZATION 219

A. Experimental Setup 220

1) Dalton Cumbrian Facility (DCF): A Co − 60 self shielded 221

irradiator located at the DCF, Cumbria, UK [40] was used 222

to conduct γ radiation experiments. The maximum dose 223

rate of 680 Gy/min can be provided by this γ radiation 224

source [40]. However, the absorbed dose rate can be varied 225

from 400 Gy/min to approximately 4 Gy/min using the dis- 226

tance from the source to the Device Under Test (DUT). It can 227

be further reduced to 0.06 Gy/min with attenuation. These 228

characteristics render the facility suitable for experimentation 229

under a range of dose rates. Figure 1 illustrates the experi- 230

mental setup employed in this research work. 231

The absorbed dose rates were measured using a Radcal 232

Corporation Accu-Dose+ base unit equipped with a 10 × 233

6 − 0.18 ion chamber (S/N 47-0458). The absorbed dose rate 234

was measured by placing the dose sensor right in front of the 235

camera (in the irradiation cavity) and the measurement of the 236

absorbed dose was carried out for a very small duration of 237

gamma exposure (1 minute). This allows us to calculate the 238

absorbed dose rate for the CMOS camera. The dose sensor was 239

then removed from the cavity for the radiation experiment. The 240

absorbed dose during the experiment can be easily calculated 241

by multiplying the measured dose rate with the irradiation 242

time. 243

The cavity at DCF is equipped with five lead attenua- 244

tor blocks placed adjacent to each other in front of the 245

source. Each block reduces the gamma flux by 2 times. The 246

experiments related to the dark image analysis presented in 247

Section IV are performed with all the attenuators in place. 248

Dose rates were varied by changing the position of the cameras 249

with in the cavity. For the images captured in presence of 250

light source, the cameras were fixed to the cavity door and 251

the chessboard image was pasted on the attenuator block. For 252

these experiments, the dose rates were ramped up by removing 253

the attenuator blocks while the cameras kept at fixed position 254

as elucidated in Figure 2. 255

2) Test Samples: The sample used in this experiment is a 256

Raspberry Pi Camera which is a low cost COTS CMOS image 257

sensor. For each experiment, different Raspberry Pi cameras 258

have been utilized to ensure reliability of the results. However, 259

for the first half of the experiments, the cameras are covered 260

with black tape to capture the dark images. 261

For the images caputured in presence of light source, 262

a chessboard of 12 × 12 squares was used as an object of 263

interest for the capture depicted in Figure 3. It was placed 264

at a maximum distance (width of the cavity- 20 cm) from 265

Raspberry Pi camera in the cavity. Chessboard images are used 266
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Fig. 2. Measurement setup for dose rate degradation analysis of chess
board images where A1,A2,A3,A4,A5 are the attenuation blocks (lead
blocks), C1,C2,C3 are the un-irradiated cameras utilized for the different
dose rate experiment, Rs is the radiation source which consists of three
cobalt rods, Img is the 12 × 12 chess board image.

Fig. 3. Chessboard captured without any radiation.

widely for assessing image quality, calibrations of commercial267

cameras and mapping the target site [41]–[43].268

The extension ribbon cable (2 m long) of the camera was269

used to place the camera control unit (Raspberry Pi board)270

outside the cavity to prevent it from being irradiated. During271

the experiment, the camera was accessed and controlled with272

software from within the Python programming language using273

the Pi Camera application programming interface (API). Raw-274

data format images were processed on the Raspberry Pi with 275

a Python script utilizing the NumPy library and saved in the 276

NumPy file format. The pre-processed raw images were later 277

transferred to a separate computer and read into MATLAB 278

with a NumPy data format reader. Further processing was 279

accomplished using MATLAB. To the best of author’s knowl- 280

edge, we ensured that the images are captured without any 281

pre-processing like “dark level correction”, that takes place 282

in the Image Signal Processor (ISP) of the Raspberry Pi’s 283

Graphical Processing Unit. Furthermore, a conscious effort 284

has been made to disable the automatic gain control feature of 285

the camera sensor while capturing the images by setting the 286

camera exposure in ‘off’ mode (through Pi Camera) . 287

IV. ANALYSIS OF DARK IMAGES 288

A. Evaluation Metrices 289

The characterization of the image sensor follows a stan- 290

dard procedure of measuring the sensor output in both com- 291

plete dark and under illumination source. In our previous 292

research [25], we had measured the dark response of three low 293

cost CMOS cameras: 1) Raspberry Pi, 2) Trust USB Camera 294

and 3) Spy Camera. The image degradation in the later two 295

cameras Trust USB and Spy was more as compared to the 296

Raspberry Pi camera. Therefore, in this work, we evaluate the 297

image degradation of Raspberry Pi camera in detail in com- 298

plete dark mode. To evaluate the degradation corresponding 299

metrics for the dark condition has been described as follows. 300

1) Pixel Saturation Factor (PiSF): PiSF is the fraction of the 301

sensor pixels that have pixel value greater than the threshold 302

value (50% of the saturation value) and can be mathematically 303

formulated as: 304

z = 0.5 × saturation value 305

Pi SF = number of pi xel wi th value ≥ z

total number of pi xels
(1) 306

The reason behind selecting the specific threshold value 307

of 50% is that (i) it coincides with the threshold value 308

generally used for binarization of images [44], and (ii) It helps 309

in evaluation of pixel charge induced by the radiations. 310

2) Gamma-Induced Photo Charge (DN) and Gamma-Induced 311

Photo Signal (DN/S): Gamma-induced charge is the charge 312

developed in the photosensitive device under dark conditions 313

when the camera is exposed to gamma radiations. The source 314

of this charge is the electrons released as a result of interaction 315

of gamma radiations with silicon. The charge developed for 316

a particular camera exposure time can be evaluated from the 317

captured dark images using the following equation: 318

μq = 1

L B

L−1∑

l=0

B−1∑

b=0

Imgq[l][b] (2) 319

where, μq is the mean gamma induced charge, Imgq is the 320

mean of η number of dark frames captured at a particular 321

exposure time, and L×B is the resolution of the mean captured 322

frame. 323

The amount of gamma-induced charge in the photosensi- 324

tive device increases with the increase in the camera expo- 325

sure/integration time. Therefore, an important metric is the rate 326
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at which gamma induced charge increases with the increase in327

exposure time. This metric is termed as gamma-induced photo328

signal. The methodology to evaluate the mean gamma-induced329

signal is presented in Section IV-B.330

The amount of charge induced in camera sensor for any331

arbitrary exposure time texp can be equated as:332

μ
tex p
q = μ0 + μs texp (3)333

where, μs is the mean gamma-induced signal, and μ0 is the334

mean gamma-induced charge for zero exposure time. However,335

it is not possible to capture a frame with zero exposure336

time. Therefore, it is common to use the frame captured at337

the smallest possible exposure time to evaluate μ0 (For our338

experiment minimum exposure time was 10 ms).339

3) Photogenerated Noise (PN): PN is essentially the noise340

level during the irradiation in dark conditions. The source of341

this noise are the photo generated electron-hole pairs due to342

the exposure of camera to radiation. It can be calculated by343

evaluating the variance of temporal signal over a series of344

frames for individual pixel and then by taking the average of345

all the pixels, which identifies the noise over the image [45]:346

σ 2
y,dark = 1

K N

K∑

j=1

N∑

i=1

(Pij − M)2 (4)347

P N = σy,dark (5)348

where K and N represent the total number of acquired frames349

and total number of pixels per frame, respectively. Pij is the350

j th pixel value from i th frame and M is the mean value of all351

the j th pixels of N frames.352

4) Dynamic Range (DR): DR is the ratio of the pixel satu-353

ration level (μsat ) and the noise floor (Photogenerated noise),354

as given by Equation 6.355

Dynamic Range (d B) = 20 log
μsat

P N
(6)356

B. Evaluation Methodology357

We capture a set of η number of frames under dark con-358

ditions1 at different exposure times (varying between 10 ms359

and 1300 ms). This process is performed for images captured360

with and without radiation exposure. For each exposure time,361

we calculate a mean dark frame. This is followed by calcu-362

lating parameters specified in Section IV-A using mean dark363

frame computed for each exposure rate. The parameters like364

PiSF, μq , DR, are computed using Equations 1, 3, 6, respec-365

tively. However, for gamma-induced photo signal, we compute366

the mean response
(I mgζ −I mgζ ′ )

(δtex p)
. Imgζ and Imgζ ′ are the367

images captured at two different exposure times 10 ms and368

1300 ms, respectively, and δtexp is the difference between two369

exposure times, i.e. 1290 ms. The photogenerated noise is370

computed using Equation 5 utilizing the images captured at371

smallest integration time (10 ms).372

Algorithm 1 elucidated the evaluation methodology used373

to evaluate the parameters of dark images. Five distinct dose374

rates (0.55 Gy/min, 1.34 Gy/min, 2 Gy/min, 3 Gy/min, and375

1In our experimental setup, η is considered between 5 to 10.

4 Gy/min) experiments were performed to analyse the effect of 376

gamma dose rate on the degradation of the mentioned metrics. 377

For each dose rate experiment, a new un-irradiated camera was 378

used to rule out any pre-experiment absorbed dose effect. The 379

five different cameras (R1, R2, R3, R4, and R5) used in the 380

experiments were all irradiated separately. For each dose rate 381

experiment, dark images were captured (during irradiation) at 382

the instant the cameras had been exposed to gamma dose 383

of 100 Gy. Such scheduling ensures consistency of analysis 384

as the metrics were evaluated using images captured from five 385

different cameras irradiated to same dose of 100 Gy at five 386

different dose rates. 387

Algorithm 1: Evaluation of Dark Images
Input:
1. Img = {Img1, . . . , Imgη} : Set of Dark Images;
2. χ : set of dose rate at which images are caputured;
Output: Evaluation metrices

1 for each dose rate in χ do
2 Calculate mean dark frame for each exposure time
3 METRIC CALCULATION
4 Calculate PiSF,μq , DR using Equation 1, 3, 6;
5 Calculate gamma-induced photo signal by computing

mean response
(I mgζ −I mgζ ′ )

(δtex p)
;

6 Calculate the Photogenerated noise from Equation 5
using the images captured at smallest integration
time (10 ms);

C. Results and Analysis 388

The evaluation of our metrics addresses four different 389

directions: 1) Pixel distribution, 2) Gamma-induced photo 390

charge, 3) Temporal variance and 4) Gamma-induced signal 391

evolution with time. The results for each direction is discussed 392

as follows. 393

1) Pixel Distribution: In this analysis, we look at the three 394

evaluations 1) histogram distribution, 2) PiSF and 3) Dark 395

Images. Figure 4 depicts the histogram distribution plot of 396

the sensors’ pixel values. The histogram distribution indicates 397

the percentage of fractional pixel value with respect to the 398

normalised pixel value. This representation facilitates the 399

evaluation of the charge developed in the sensor after exposure 400

to various levels of the gamma doses. A threshold of 50% of 401

the saturation value is used to gauge the induced pixel charge. 402

In normal condition, all sensor pixels have pixel value less than 403

the threshold value. An instant image degradation is observed 404

due to induction of gamma ray photo charge upon exposure 405

of camera to the gamma radiations. The extent of induced 406

charge depends on the gamma dose rate. For example, 8% 407

of the pixels exceed the 50% saturation threshold at dose 408

rate of 0.55 Gy/min. This number increases from 26% and 409

47% at dose rates of 1.34 Gy/min and 3 Gy/min, respectively. 410

Furthermore, similar analysis can be performed for different 411

threshold values. 412

Figure 5 shows PiSF plot as function of the gamma radia- 413

tion dose rate. PiSF is a linear function of the dose rate with a 414
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Fig. 4. Histogram distribution across different gamma dose rates
(Absorbed dose=100 Gy, texp = 1300 ms).

Fig. 5. PiSF v/s Dose Rate (Absorbed Dose = 100 Gy, texp = 1300 ms).

slope of 16% per Gy per min. It implies that all the image pixel415

values will exceed the threshold value if subjected to gamma416

radiation of dose rate greater than or equal to 6.25 Gy/min.417

Figure 6 depicts the dark images captured by Raspberry Pi418

cameras when exposed to gamma radiation (for exposure time419

of 1300 ms). The cameras are irradiated to the same dose420

of 100 Gy, but at different dose rates. A gradual increase421

in the image pixels with very high gamma-induced charge is422

observed with increase in dose rate.423

2) Gamma-Induced Photo Charge: The charge induced in424

the camera sensor under dark conditions when exposed to425

gamma radiation is known as gamma-induced photo charge.426

We analyse gamma-induced photo charge generated over the427

cross sectional area of our dark images. Figure 7 shows the428

gamma radiation-induced image degradation across the rows429

and columns of the dark images. A cross-section of 500 ×430

500 pixels from the centre of the image is selected for analysis.431

Figure 7(a) and Figure 7(b) depict the gamma-induced photo432

charge response of the central row and column vectors of the433

selected cross section for different dose rates. Furthermore,434

Figure 7(c) shows the gamma-induced photo charge of the row435

and the column vectors (at dose rate of 1.34 Gy/min) mapped436

on the same plot. Two observations evident from these plots437

are as follows:438

1) The mean gamma-induced photo charge of the row and439

column vectors and its variation across the image pixels440

increases with increase in dose rate.441

2) The gamma-induced charge variation across the column442

vector is more compared to row vector in the dark443

images as depicted in Figure 7(c).444

Now, we analyse the image degradation by looking at the 445

temporal variance in signal in form of PN. 446

3) Temporal Variance: In this section, we analyse the image 447

degradation in light of three parameters related closely to 448

temporal variance 1) PN, 2) Pixel saturation (μsat) and 3) DR. 449

Figure 8(a) shows the PN of the sensor plotted for different 450

dose rates. The PN increases with increase in the dose rate. The 451

increase is observed to be approximately proportional to the 452

square root of the dose rate. Figure 8(b) shows the normalized 453

photogenerated noise (to pre-radiation value) of the sensor in 454

log scale plotted for different dose rates. The noise floor is at 455

0 dB before exposure to gamma radiations. It increases with 456

increase in the dose rate reaching approximately 25 dB at 457

dose rate of 4 Gy/min. The increase in the noise floor plays 458

a significant role in the degradation of parameter DR, that is 459

analysed further in Figure 9. 460

Figure 9 depicts the effect of the gamma radiations on 461

DR, PN and saturation output of the camera sensor when 462

exposed to different gamma dose rates. The saturation output 463

is the mean pixel saturation value represented in the log scale. 464

The PN increases and the saturation output decreases with 465

the gamma exposure as depicted in Figure 9. This eventually 466

results in the reduction of the DR. Apart from an initial 467

steep drop, the dynamic range reduces fairly linearly with the 468

increase in the dose rate. The drop of 33.18 dB is observed 469

in DR. DR is an important parameter of commercial cameras, 470

particularly in context of producing high contrast images, as it 471

represents the camera’s ability to reliably produce the brightest 472

and darkest portions of the image. 473

Though the analysis presented so far provide useful insight 474

into the gamma-induced image degradation of the camera, 475

there are several important aspects that need to be explored: 476

(1) Evolution of the gamma-induced signal with time, and (2) 477

Whether the gamma-induced signal is more sensitive to the 478

radiation flux or the cumulative gamma dose? To explore these 479

aspects, we analyse the evolution of gamma-induced signal in 480

dark images with time. 481

4) Gamma-Induced Signal Evolution With Irradiation Time: 482

The analysis so far mainly presents the effect of dose rate 483

on the gamma-induced signal at a specific instant during the 484

gamma irradiation. In this section, we analyse the evolution of 485

the induced signal over the duration of the gamma irradiation 486

with an intent to elucidate the difference between the gamma 487

flux and absorbed cumulative dose effects. An experiment 488

is performed to facilitate the said objective. A un-irradiated 489

Raspberry Pi camera (R6) is exposed to a total dose of 250 Gy 490

in five radiation cycles. Radiation cycles here refer to periods 491

of constant dose rate gamma irradiation (of the same camera). 492

The dose rate during the first and fifth cycle is 2 Gy/min. 493

The dose rate during the second and fourth cycle is 3 Gy/min. 494

The dose rate during the third cycle is 4 Gy/min. The radiation 495

exposure time duration during each cycle (25 mins for Cycle 496

1 and Cycle 5, 16.7 mins for Cycle 2 and Cycle 4, and 497

12.5 mins for Cycle 3) is set such that the camera receives the 498

same dose of 50 Gy through out. The evaluation methodology 499

discussed in Section IV-B is utilized to measure the gamma- 500

induced signal at different points during the radiation cycles. 501

Figure 10(a) shows the evolution of the induced signal over the 502
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Fig. 6. Dark images captured using the Raspberry Pi cameras exposed to gamma irradiation (Absorbed dose=100 Gy, texp = 1300 ms) at dose
rate of (a) 0.55 Gy/min (b) 1.34 Gy/min (c) 2 Gy/min (d) 4 Gy/min.

Fig. 7. Gamma-induced charge for dark images obtained at various dose rates of gamma radiation exposure (Absorbed dose=100 Gy, texp =
1300 ms) with respect to (a) row index (b) column index (c) row and column index.

Fig. 8. Photogenerated noise as function of dose rate during γ exposure
(Absorbed dose=100 Gy, texp = 1300 ms).

radiation cycles. It is to be noted that there is a small window503

of 5 mins on the timeline at start of each cycle. This window504

represents the time when the radiation is off and setup is done505

for a dose rate measurement as discussed in Section III-A.506

Fig. 9. Evaluation metrics variation for dark images at different gamma
dose rates (Absorbed dose = 100 Gy, texp = 1300 ms).

The following three important observations are noted from 507

the Figure 10(a): 508

1) The gamma-induced signal appears to be more sensitive 509

to the gamma photon flux as compared to cumulative 510

radiation dose. This observation is consistent with earlier 511

results reported in [16]. In this work, it was observed 512

that the degradation of images captured during exposure 513

of constant dose rate was more due to initial dose in 514

comparison to the cumulative dose rate. 515

2) The induced signal in each cycle follows the pattern of 516

the dose rate i.e. it increases from Cycle 1 to Cycle 3 and 517

reduces in both the cycles, Cycle 4 and Cycle 5. 518

3) The mean induced signal is slightly higher in Cycle 5, 519

as compared to Cycle 1 despite the fact that camera 520

is exposed to the same gamma dose rate in both the 521
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Fig. 10. Evolution of gamma-induced signal during irradiation across
the radiation cycles.

remaining cycles. The same is true for two cycles, Cycle522

2 and Cycle 4, respectively.523

The above mentioned observations are elucidated more clearly524

in Figure 10(b). The reason for this increase is the additional525

dose received by the camera between the Cycle 1 and Cycle526

5 and Cycle 2 and Cycle 4.527

V. ANALYSIS OF IMAGES IN PRESENCE OF LIGHT528

SOURCE529

For our intended application of autonomous inspection of530

nuclear sites, the robot vision sensor (CMOS image sensor)531

will capture images in presence of illumination, most of532

the time image will have inhomogeneous illumination [46].533

Therefore, after evaluating the images in dark conditions,534

we perform the analysis of image degradation in condition of535

light. For this analysis, we do not cover Raspberry Pi camera536

with the black tape and assess the quality of captured images.537

For each experiment at different dose rate, a new Raspberry538

Pi camera is used. The quality assessment is performed by539

analysing captured chessboard images.540

A. Evaluation Metrics541

While inspecting the nuclear site, robot intends to use542

images captured by CMOS image sensor for various purpose.543

We have identified two main purpose of captured images: 1)544

surveillance, 2) navigation. If the images captured are used545

for the purpose of survelliance, their image quality needs to546

be assessed. For the purpose of navigation, we need to asses if547

the radiated images can be used as an input for navigation by548

the robot. In order to pursue our aim of image quality analysis, 549

we select standard metrics that resemble human visual system 550

closely for evaluation. Since the field of view change for 551

every dose rate, all the selected metrics are full reference 552

images metrics, i.e., degradation quality of the radiated image 553

is analysed in comparison to image without radiation exposure. 554

The image without radiation exposure is known as a ‘reference 555

image’, Ire f . Both, the reference image and radiated image 556

have same field of view. The full-reference image quality 557

metrics evaluated are described below. 558

1) Peak Signal to Noise Ratio (PSNR): PSNR is the ratio 559

of maximum signal power to power of radiation noise. The 560

signal refers to the reference image, Ire f and noise refers to 561

the radiated image, Ir . It is calculated using mean squared 562

error (MSE) which is defined as: 563

M SE = 1

L B

l−1∑

i=0

b−1∑

j=0

[Ire f [i ][ j ] − Ir [i ][ j ]]2 (7) 564

PSN R = 20log(Ire f ) − 10log(M SE) (8) 565

where Ire f has a resolution of size L × B . Lower PSNR 566

indicates higher radiation degradation. The parameter PSNR 567

varies between ∞ to 0. So, the PSNR value for the non- 568

irradiated camera (0 Gy/min) will be ∞. When the camera 569

becames non-operational then the PSNR value will be 0. 570

2) Structural Similarity Index (SSIM): This metric aims to 571

replicate human visual system which assess the quality of 572

image based on its sensitivity to difference in structure. 573

The quality of any image is assessed by comparing three 574

components: 1) luminance (l), 2) contrast (c), and 3) structure 575

(s). SSIM for a reference image Ire f and radiated image Ir is 576

calculated as: 577

SSI M(Ire f , Ir ) = [l(Ire f , Ir )]α[c(Ire f , Ir )]β [s(Ire f , Ir )]δ 578

(9) 579

where α, β, δ are parameters which define relative importance 580

of the three components. Higher the radiation degradation, 581

lower is the SSIM value. The value of SSIM parameter varies 582

between 0 and 1. The value of SSIM parameter for non- 583

irradiated camera (0 Gy/min) will be 1. The SSIM parmeter 584

will attain value 0 when the camera becames non-operational 585

due to the absorbed dose. 586

3) Entropy: Entropy of any image indicates the statistical 587

measure of randomness and is helpful in characterizing texture. 588

An entropy of an image (I) can be defined as : 589

H (I ) =
256∑

n=1

pn(I )log2(pn(I )) (10) 590

The entropy evaluation metric E for reference image Ire f and 591

radiated image Ir can be defined as: 592

E(Ire f , Ir ) = H (Ire f )

H (Ir )
(11) 593

Higher the radiation induced noise in the images, higher is 594

the entropy evaluation metric E value. The value of entropy 595

value metric E varies between 1 and ∞. The value of metric 596

E for non-irradiated camera (0 Gy/min) will be 1. The metric 597
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will be ∞ when the camera becames non-operational due to598

absorbed dose.599

4) Handcrafted Feature Matching Decline (HFMD): Hand-600

crafted features are still deployed by robots as a fundamental601

method for visual odometry to estimate their locations. When602

the process of determining position and orientation of robot603

is carried out by analysing images, it is called as visual604

odometry [47]. In literature, many handcrafted feature-based605

methods have been proposed which extract features from606

images and match them with earlier images to estimates its607

position [48]. Features are set of interest points in images608

which are invariant to geometric and photometric changes609

such that even when the robot captures image from different610

viewpoints and illumination conditions the interest points611

are repeatable and can be easily matched from the original612

image. When the robots will be deployed in the nuclear613

site, the images captured by CMOS image sensors will have614

radaiation induced noise. Our aim is to evaluate how radiation615

noise affects the handcrafted features, for this purpose we616

use an evaluation metric which measures decline in matching617

of handcrafted features. Since, we have used a chessboard618

as an image of interest we use the popular Harris feature619

detectors [49] as an handcrafted feature detector. We use620

RANSAC [50] for outliers identification among the detected621

feature matches. The percentage of feature matching decline622

after radiation exposure is evaluated using following equation:623

H F M D = Mre f − Mr

Mre f
(12)624

where Mre f is the number of feature matches between a625

reference image with itself, and Mr is the number of features626

matches between the reference image and the radiated image.627

The value of H F M D parameter varies between 0 and 1. The628

value of metric H F M D for non-irradiated camera will be 0.629

B. Evaluation Methodology630

We capture a set of η number of frames under illumination631

source2. The chessboard of 12×12 is placed at end of the cav-632

ity (pasted on attenuator) such that field of view of the Rasp-633

berry Pi camera covers the entire chessboard. This is followed634

by calculating parameters specified in Section V-A using set635

of captured chessboard frames. Parameters like PSNR, SSIM636

and Entropy are computed using Equations 8, 9 and 11,637

respectively. However, to compute HFMD, first we detect638

Harris corner feature detector points F = { f1, f2, . . . , fm}639

in both reference image and radiated image and match these640

detected points. Now, for a given distance, using the RANSAC641

methodology, we determine set of outliers. Finally, using642

Equation 12 we compute HFMD parameter. The experiments643

are performed at three distinct dose rates (0.73 Gy/min,644

1.46 Gy/min, 2.92 Gy/min) to analyse the effect of gamma645

dose rate of images. For each experiment, a new un-irradiated646

camera was placed in the cavity to rule out any pre-experiment647

dose rate effect. The three different cameras (R7, R8 and R9)648

used in the experiments were all irradiated separately. Since,649

all the evaluation parameters required a reference image for650

2In our experimental setup, η is considered between 5 to 10.

calculation, a pre-radiated image was captured before each 651

camera was exposed to radiation. The radiated image was 652

captured after each camera had been exposed to 100 Gy. 653

As shown in Algorithm 1, we have calculated the above 654

mentioned parameters for each distinct dose rate. In our 655

experiment, the dose rates are varied between 0.0 Gy/min and 656

3 Gy/min. 657

Algorithm 2: Evaluation of Images in Presence of Light
Source

Input:
1. Imgr = {Img1

r , . . . , Imgη
r } : Set of Images captured

in presence of light ;
2. Imgref : pre-radiated image;
3. χ : set of dose rate at which images are caputured;
Output: Evaluation metrices

1 for each dose rate in χ do
2 METRIC CALCULATION
3 Calculate PSNR, SSIM, Entropy using

Equation 8, 9, 11;
4 Determine Harris feature points for reference image

FI mgre f and radiated image FI mgr .
5 Match the harris points in reference image with

radiated image. Remove the outliers in the matches
using RANSAC.

6 Calculate the HFMD parameter using Equation 12;

C. Results and Analysis 658

The evaluation of our metrics for images captured in pres- 659

ence of light source can be characterised in two categories: 660

1) Image Quality Analysis (IQA) and 2) Handcrafted Feature 661

Analysis (HFA). The results obtained for each category are 662

discussed in detail in the following sub-sections. 663

1) IQA: In the first category, the main aim is to analyse 664

the image quality of radiated images for the purpose of sur- 665

veillance. Since, the field of view and illumination condition 666

change at every dose rate, we look at three full reference 667

metrics 1) PSNR, 2) SSIM and 3) Entropy. Since, all three 668

IQA metrics are full reference, this implies that to compute 669

these three metrics we need two images: 1) Reference Image 670

(Ire f ) captured when image sensor is not subjected to any 671

radiation and 2) Radiated Images (Ir ) when the image sensor 672

is subjected to gamma radiation at certain dose rate. Both the 673

images Ire f and Ir are captured in the same environmental 674

settings. Images obtained with and without γ radiation of dose 675

rate 2.92 Gy/min are illustrated in Figure 11. 676

Figure 12(a) depicts the PSNR with respect to varying 677

dose rate. This representation facilitates evaluation of image 678

quality in terms of corrupting radiation induced noise. Higher 679

values are indicative of better quality of image. The PSNR 680

value across varying dose rate is indicative of the fact that 681

PSNR value decreases with increase in dose rate. This implies 682

that, as the dose rate increases, the radiation induced noise 683

also increases. Similarly, we analyse the SSIM parameter 684

with respect to dose rate. Figure 12(b) illustrates that SSIM 685
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Fig. 11. Chessboard images obtained with and without γ radiation
(Absorbed dose = 100 Gy, texp = 1300 ms) (a) Pre-radiated image
captured before camera is exposed to 2.92 Gy/min (b) Radiated image
when camera is exposed to 2.92 Gy/min.

Fig. 12. IQA metric with respect to varying γ radiation dose
rate(Absorbed dose = 100 Gy, texp = 1300 ms).

decreases with increase in dose rate. Higher SSIM parame-686

ter is indicative of less noise. This reinforces our previous687

observation that if the sensor is exposed to higher dose rate,688

the image captured has higher induced radiation noise.689

To establish this further, we evaluate the image quality 690

at different dose rate using entropy. Entropy is a statistical 691

measure of randomness. Lesser value of entropy metric E is 692

indicative of better quality of image. Figure 12(c) shows that 693

as the dose rate increases, the entropy metric E increases. 694

This elucidates that with the increment in dose rate the image 695

quality decreases indicating that higher dose rate exposure 696

results in the decline of image quality. However, the CMOS 697

image sensor was operational for all the dose rates with 698

absorbed dose of 100 Gy. Previous studies [16] have found 699

CMOS image sensor to be operational till the absorbed 700

dose of 1549 Gy when radiated with a constant dose rate 701

of 0.5 Gy/min. The radiated images are found useful for the 702

purpose of surveillance till absorbed dose rate of 500 Gy. 703

To gauge the usefulness of the image, the image quality 704

was quantified using parameter PSNR and SSIM which were 705

measured as 4.7 dB and 0.2, respectively. In our experiment 706

for different dose rates, the value of PSNR parameter varies 707

between 17.0711 dB - 14.3798 dB. The value of SSIM parame- 708

ter varies between 0.5756 - 0.1872. Entropy however, has not 709

been used in literature as parameter to measure degradation 710

due to gamma rays but fast neutron [9]. Entropy was a 711

good measure of degradation in case of fast neutron as the 712

radiation noise appeared in form of temporal blobs increasing 713

the randomness in image. In the experiment, we found out 714

that the entropy evaulation metric E varied between 1.0128 715

- 1.0317, not showing a substantial variation as the image 716

degradation increased with increase in the dose rate. From the 717

evaulation of all the three image quality parameters, we can 718

conclude that for the dose rates relevant for inspection of 719

nuclear site, the images captured by the robot using CMOS 720

image sensor for surveillance purpose are useable. 721

After evaluating IQA metric, we evaluate whether images 722

can be used as visual input for navigation by analysing HFA 723

parameter. 724

2) HFA: Handcrafted features play an important role in 725

visual odometry, allowing robot to estimate its location. In this 726

section, we analyse the effect of radiation in terms of matches 727

of handcrafted features in the images captured when the 728

sensor is exposed to γ radiation. Since, the object of interest 729

captured is a chessboard, we use Harris feature detector to 730

identify feature points in the image captured. As evident from 731

Figure 13(a), the detected Harris feature points in the image 732

consist of corner points in the chessboard images along with 733

feature points in the wires placed in the background. 734

We perform similar operations using detected Harris feature 735

points for radiated images. Figure 13(b) shows Harris feature 736

points for image captured when the sensor is exposed to γ 737

radiation of 2.92 Gy/min. We observe from Figure 13 that the 738

radiation induces salt and pepper noise in images degrading 739

the quality. This proves to be adversarial for Harris feature 740

detection to identify feature points in the images. For the 741

robot to estimate its position, the Harris features detected 742

in the reference images should be repeatable in the radiated 743

image. However, due to radiation noise instead of identifying 744

the corners of chessboard as features, the radiation noise is 745

identified as Harris feature. 746
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Fig. 13. Harris feature points detected for images obtained with and
without gamma radiation.

Fig. 14. HFMD with respect to varying γ radiation dose rate (Absorbed
dose = 100 Gy, texp = 1300 ms).

After detecting Harris feature points in both reference747

images and radiated images, we match the features detected in748

both the images. The outliers in the feature matches are elim-749

inated using RANSAC algorithm. Finally, we analyse Harris750

feature points matching decline in terms of evaluation metric751

‘HFMD’ calculated using Equation 12. Figure 14 depicts the752

variation of HFMD with respect to dose rate. We observe753

that HFDM parameter varies between 0.9744-0.9959 for the754

dose rate varying between 0 to 3 Gy/min. To the best of755

author’s knowledge, no such work targeting analysis of feature756

matching decline due to gamma radiation has been done. But,757

the parameter of feature matching decline has been used for758

the matching images with perturbation [51]. However, it was759

pointed out in [51] that if the feature matching parameter760

decline by 92.37% the loop closure using Harris feature in761

SLAM (ability of robot to recognize previously visited place)762

fails completely. This allowed us to conclude that the radiated 763

images cannot be used as an input for the purpose of visual 764

odometry. 765

VI. CONCLUSION AND FUTURE WORK 766

This study investigates the gamma-induced image degrada- 767

tion in the Raspberry Pi camera, a robot vision sensor, for 768

dose levels realistic for the inspection of non critical areas of 769

nuclear site environment. However, similar total ionizing dose 770

levels (100Gy - 1kGy) can be found in medical and space 771

applications [52]. The inaccurate sensing due to the absorbed 772

dose rate present significant challenges to robot’s long term 773

autonomy in gamma radiation field. Our previous studies had 774

elucidated that Raspberry Pi camera was able to perform better 775

than its counterpart COTS robot vision sensors. The less image 776

degradation is observed in CMOS image sensor with smaller 777

pixel sensitive volume which is responsible for reduction in 778

gamma-induced photo signal. This finding motivated us to 779

further analyse the degradation of Raspberry Pi camera under 780

various evaluation metrics. 781

The relevant evaluation metrics were calculated first for dark 782

images captured at different dose rates. The evaluation metrics 783

could be categorised in four classes: 1) Pixel Distribution, 2) 784

Gamma-induced photo signal, 3) Temporal Variance and 4) 785

Gamma-induced signal evolution with irradiation time. After 786

evaluating the dark images, we computed the degradation 787

in images captured when Raspberry Pi is exposed to light 788

source. To make the experiment more realistic, we captured 789

the image of chessboard as it is used by robot as an object for 790

calibration and other visual odometric operations. There were 791

two main objectives of analysing the degradation of images 792

captured in light source. The first aim was to gauge the image 793

quality for surveillance purpose and second aim was to assess 794

whether radiated images can be used for the purpose of visual 795

odometry. The image degradation analysis was classified in 796

two classes: 1) Image quality and 2) Handcrafted features. The 797

two diagnosis methodologies to evaluate the radiation induced 798

image degradation allowed us to conclude that when the sensor 799

is exposed to radiation upto 3 Gy/min, the images can be 800

used for surveillance purpose. However, with the decline in 801

HFMD parameter, radiated images cannot be used for visual 802

odometry as handcrafted features are no longer repeatable. 803

These parameters are indicative of faulty localisation, allowing 804

the robot control system to know when to stop trusting the 805

images captured by robot vision sensor based on radiometric 806

reading. 807

This evaluation can allow generation of future mitigation 808

strategies such as radiation noise removal which will allow 809

adjustment of the images captured by robot according to a pre- 810

programmed pattern. Based on the observations of the experi- 811

ments carried out in this paper, it will be worthwhile to explore 812

the following aspects in the future radiation experiments. 813

1) The analysis of the dark images captured during the 814

radiation cycles provides insights into the radiation- 815

induced signal and noise. However, these effects are not 816

permanent and are observed only during the duration of 817

the radiation cycles. The dark images may be captured 818

between the radiation cycles in the future experiment. 819
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The analysis of these images will provide insights into820

the parameters more relevant to sensor health such as821

dark charge, dark current, and read noise.822

2) The sensor parameters listed above may be measured823

for different absorbed doses. The evaluation of healing824

of these parameters with time and post radiation cycles825

may be conducted for different cumulative doses.826

3) Finally, the temperature of the camera sensor may be827

monitored over the duration of the experiment as it can828

effect both the radiation-induced signal and the dark829

current. However, the monitoring of temperature during830

the radiation cycle will be cumbersome as the reliability831

of the temperature sensor may be compromised due to832

the exposure to gamma radiations.833

These findings will be useful in understanding vulnerabil-834

ities and failure points of other CMOS image sensors which835

have similar operating system and supporting signal processing836

electronics.837
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