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ABSTRACT
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Doctor of Philosophy

Artificial Intelligence in Team Sports

by Ryan Beal

The Sports Analytics Market is growing rapidly, in 2020 it was valued at over $1 billion
and is expected to reach over $5 billion by 2026. However, even with this level of growth
the use of Artificial Intelligence (AI) techniques have yet to fully be explored. The sports
analytics domain presents a number of significant computational challenges for AI and
Machine Learning. In this thesis, we propose a number novel methods for analysing team
sports data to help sports teams utilise AI to improve their strategic and tactical decision
making. By doing so, we present a number of contributions to the AI and sports analytics
communities. In particular, we present a model for the tactical decisions that are made
in football and show how game theoretic techniques can be used to optimise these. We
focus on both the short-term decisions made for individual games, as well as longer-
term decisions to maximise performance over a season. We show that we can increase
a teams chances of winning individual games by 16.1% and can increase a teams mean
expected finishing position by up to 35.6%. We also, introduce a new model for valuing
the teamwork between players in sports teams by assessing the outcomes of chains of
interactions between the players in a team. We then present a novel model for forming
teams based on this value and maximise teamwork by assessing the overlapping pairs in
a team. Our model is shown to better predict the real-world performance of teams by up
to 46% compared to models that ignore inter-agent interactions. Finally, we show how
we can use natural language processing techniques to improve the traditional statistical
methods for prediction sports match outcomes. We use domain expert written articles
from the media to train our models and we show that by incorporating the features
learned from the text, we can boost the accuracy of the traditional statistical methods
by 6.9%.
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Chapter 1

Introduction

Sports is a domain that has grown significantly over the last 20 years to become a key
driver of many economies, while at the same time, impacting our social and cultural
fabric. According to a recent report,1 the estimated size of the global sports industry is
$1.3 trillion, and has an audience of over 1 billion people, who may attend matches to
support their favourite teams, bet in various online or offline markets, or watch games
on the television for pure entertainment. Sport accounts for an estimated 1 million jobs
in the UK alone, with those involved in either playing games, managing teams or looking
after the health and fitness of players. At the core of these economic and social impacts,
are the individuals, players, and teams involved. Indeed, as we will demonstrate in this
chapter, predicting and optimising the performance in sports are challenging problems
but, so far, such problems have largely been dealt with by domain experts (e.g., coaches,
managers, scouts, and sports health experts) who rely on basic statistics. Specifically,
we focus on team sports as they present the most difficult challenges, and tend to have
the greatest audience and economic benefit.

We define a team sport as a game that typically involves two teams playing against each
other, each composed of a set of players with their individual roles and abilities. There
are many uncertainties in team sports that affect the final outcome and performance
of the teams. These decisions range from team selection, tactics (e.g., choosing where
players should be placed on a football field), player transfers (e.g., choosing which players
should be sold to or bought from another team) and planning training sessions (e.g.,
to help players recover from injuries or improve the collective performance of a team).
The results of such decisions can sometimes be quickly obtained and learnt from (e.g.,
tactics may fail or succeed during a live game) or come through over a long period of
time (e.g., a player may recover differently based on different long-term training regimes
or preparatory matches).

1https://www.plunkettresearch.com/statistics/Industry-Statistics-Sports-Industry-Statistic-and-
Market-Size-Overview.

1
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In recent years, the field of team sports (teams, governing bodies, academies etc.) has
adopted a range of technologies that collect large amounts of data from training and
matches that include the movement of players during games, their health statistics, and
their performance during games. Players train and compete while being monitored by
various sensors to gain more information about performances.2 Data acquired in this
way helps coaches and managers optimise training sessions and further improve perfor-
mance. For example, companies such as StatsBomb3 and STATSPerform4, specialise in
collecting and distributing sports data to teams and media outlets. Major teams around
the world already use a variety of datasets to make decisions and improve their on-field
performances. This tends to lead to an increase in prize money, higher proportions
of TV rights and more sponsorship deals. For example, the promotion of an English
Championship football team to the English Premier League is worth £200 million in
extra revenue.5 Professional betting companies also use such datasets to exploit inef-
ficiencies in the sports betting markets to generate profits. Some hedge funds use the
sports gambling markets as a way to make investments and exploit these sports betting
market inefficiencies.6

From a scientific point of view, the availability of such datasets presents a unique op-
portunity for the Artificial Intelligence (AI) and Machine Learning (ML) communities
to develop, validate, and apply new techniques in the real world. Indeed, several works
attempt to solve real-world challenges e.g., in disaster response (Ramchurn, Huynh, et
al. 2016; Ramchurn, Rogers, et al. 2008), and in autonomous unmanned aerial vehicle
(UAV) (Valckenaers et al. 2007; Pujol-Gonzalez et al. 2013) with AI techniques, tend to
rely on synthetic environments that ascribe standard probability distributions to the be-
haviours of entities involved or the external phenomena that impact on their behaviours.
For example, simulating the spread of fires in disasters and the ability of fire brigades in
extinguishing them, or the changes in energy consumption in power grids due to changes
in energy pricing. In contrast, real-world team sports data is available over long periods
of time, about the same individuals and teams, in a variety of environmental contexts,
thereby creating a unique live testbed for AI and ML techniques. Recent works such as
(Matthews, Ramchurn, and Chalkiadakis 2012) and (Vilar et al. 2013) have proposed
and validated novel performance prediction and combinatorial optimisation solutions
that have advanced the multi-agent and machine learning state of the art. Recently,
Tuyls et al. (2021) explored the use of AI in sports strategy with a focus on football.
Here, the authors stress that football analytics offers tremendous value for both advances
in football itself, but also for the field of AI.

2https://www.forbes.com/sites/bernardmarr/2015/03/25/big-data-the-winning-formula-in-sports.
3https://statsbomb.com.
4https://www.statsperform.com.
5https://www.telegraph.co.uk/football/2016/05/28/play-off-final-how-much-is-premier-league-

promotion-really-worth.
6https://www.businessinsider.com/inside-story-star-lizard-tony-bloom-2016-2.
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One key area where AI can benefit team sports is in the decision-making processes
made at all sports organisations. Often decisions are made using subjective information
and opinions of those in leadership roles within sports organisations. Examples of the
decisions made include player recruitment, opposition analysis, tactical selection and
training procedures. These decisions are often made under high pressure due to time
constraints (college drafts, transfer deadlines, etc.) and could be worth significant sums
of financial gain/loss (Massey and Thaler 2013). In Figure 1.1, we propose a decision-
making framework of typical team sports.

Figure 1.1: The Decision Making Process in team Sports.

This framework enables us to identify key research areas and questions. While research
in AI for team sports has grown over the last 20 years, it is unclear how the field of
AI and sports relate to each other or build upon each other as to date work tends
to either focus on specific types of team sports or specific prediction and optimisation
problems that are but one part of the whole field. Hence, in this thesis, we propose a
number of research questions for AI in team sports and evaluate the performance of key
models in the area. In Chapter 3 we focus on the “Match Preparation” section of Figure
1.1 and present new methods that allow decision-makers to optimise their tactics (e.g.,
team selection, formation, team style, etc.) by using game-theoretic techniques. We
also show how we can learn from games played and factor in the longer-term impact of
decisions. In Chapter 4 we propose a model to value teamwork, which is able to be used
across the decision-making framework. We discuss uses for selecting the best teams to
maximise the expected teamwork value but our methods could also be used for player
recruitment by predicting how well players will work together or in training to build
better teamwork amongst the current set of players. Finally, in Chapter 5 we focus
on the “Match” section of the framework. We propose a Natural Language Processing
(NLP) model on human-expert text to improve on the traditional statistical methods



4 Chapter 1 Introduction

of prediction. This can help decision-making by allowing teams to predict performance
and see the potential impact on the pitch of any decision made.

In the next subsection, we discuss the contributions of this thesis, their impacts on sports
games and how this relates to our decision-making framework.

1.1 Contributions

This thesis presents a number of models that have contributed to both the AI and sports
analytics communities. These can be summarised as follows:

• Tactics Optimisation: We proposed a novel mathematical model for the game
of football and the tactical decision-making process. Using real-world data from
760 real-world football games we can learn the payoffs for different team actions
and learn state transitions. We show that we can predict game-state transitions
with an accuracy of up to 90%. We also show we can accurately predict opposition
tactical decisions. By learning action payoffs, we can optimise pre- and in- match
tactical decisions to improve the probability of winning a game. This work has been
peer-reviewed and can be found in the following publication “Optimising Game
Tactics for Football”. Ryan Beal, Georgios Chalkiadakis, Timothy J. Norman
and Sarvapali D. Ramchurn. (2020). In: Proceedings of the 19th International
Conference on Autonomous Agents and Multi Agent Systems, pp. 141–149.

• Long-Term Planning: We propose a mathematical model for optimising the
long-term performance of human teams and apply this to the game of football.
We introduce a fluent objective to model the moving goals of the team over long
periods. This is based on accurate league simulations and further improves indi-
vidual game payoffs by using knowledge from prior games. In particular, we show
that we can increase teams finishing position on average by up to 2.9 ranks (out
of 20). By using a fluent objective and prior game knowledge we are able to show
an increased probability of improved long-term performance in real-world football
teams (by up to 35.6%). This work has been published and can be found at “Opti-
mising Long-Term Outcomes using Real-World Fluent Objectives: An Application
to Football”. Ryan Beal, Georgios Chalkiadakis, Timothy J. Norman and Sarva-
pali D. Ramchurn. (2021). In:Proceedings of the 20th International Conference on
Autonomous Agents and Multi Agent Systems, pp. 196–204.

• Valuing Teamwork: We propose a number of network metrics to capture the
contributions of individuals and sets of agents. We show that by using machine
learning models we can extract the value of teamwork which can be learnt from
data and then applied to the prediction of team performance. This is applied
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to both football and basketball and, we argue, can be applied to team formation
more generally. This work has been peer-reviewed and is published at “Learning
the Value of Teamwork to Form Efficient Teams”. Ryan Beal, Narayan Changder,
Timothy J. Norman and Sarvapali D. Ramchurn (2020). In: Thirty-Fourth AAAI
Conference on Artificial Intelligence,pp. 7063–7070.

• Team Formation: We propose a novel approach to team formation based on the
value of inter-agent interactions. Specifically, we propose a model of teamwork that
considers the outcomes of the chains of such interactions. This was also covered
in the above at AAAI-20 paper.

• NLP in Sports: We propose a novel combination of Open Information Extrac-
tion, Sentiment analysis and supervised ML methods for predicting the outcome
of games of football using human opinions from domain experts in the media. Our
approach uses a previously unexplored feature set in terms of football match out-
come predictions which can factor in human knowledge which is overlooked in tra-
ditional statistics. We test and validate our approach by predicting the outcomes
of 1770 football games over 6 seasons showing that we can boost the accuracy of
statistical approaches by 6.9% when predicting the outcome of events. This work
can be found at “Combining Machine Learning and Human Experts to Predict
Match Outcomes in Football: A Baseline Model”. Ryan Beal, Stuart Middleton,
Timothy J. Norman and Sarvapali D. Ramchurn (2021) In:In the Proceedings of
the Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
pp. 15447-15451.

• Other Contributions to Sports Analytics: As well as the contributions to the
AI community outlined above, during the thesis we have also contributed to the
sports analytics community with 2 publications (Beal, T. Norman, and Ramchurn
2020a; Beal, T. Norman, and Ramchurn 2020b) to the International Journal of
Computer Science in Sport (IJCSS) and a co-supervised paper (Merhej et al. 2021)
with a masters student at Knowledge Discovery and Data Mining (KDD-21). We
also organised the AAAI-20 Workshop on Artificial Intelligence in Team Sports
which bought together academics from both AI and sports analytics as well as key
industry leaders.
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1.2 Structure of Thesis

The remainder of this thesis is organised as follows:

• Chapter 2: provides a full literature review of work to date in team sports and
the different areas of research which can be broken down to match prediction,
decision-making, fantasy sports and injuries. This chapter also outlines the re-
search questions that the rest of this thesis will focus on.

• Chapter 3: In the first research chapter we explore the ability to use game
theoretic techniques to optimise tactics both pre-match and in-match. We then
expand on the model to factor in the longer-term impacts of the decisions made
in football.

• Chapter 4: Next, we discuss how we can value the teamwork between players
and introduce a new algorithm to form teams based on this teamwork to maximise
the value between the selected pairs and the overlapping pairs within the team.

• Chapter 5: The final research question explores the use of natural language
techniques to improve match prediction and shows how this can be used to boost
the predictive power of traditional statistical methods.

• Chapter 6: discusses our overall findings from the thesis and the impact of the
results from each of the chapters we have presented. We also discuss the future
work and the future of AI in team sports.

• Chapter 7: summaries the conclusions from our research.



Chapter 2

Literature Review

In what follows, we elaborate on the four key areas that we have identified where decisions
and predictions can be optimised due to the significant performance and financial benefits
that they may have:

• Match outcome prediction: Predicting the outcomes of sporting events is an
important factor for a number of stakeholders. According to a BBC report, the
global sports betting market is estimated to be worth around $244billion with
millions of bets placed all over the world.1 This means that the prediction of match
outcomes is key to the bookmakers who set the odds, and the punters who place
their bets. Match outcome prediction is also an important factor for teams that
affects their tactical decisions and overall recruitment and game strategy during a
season. There are many uncertainties that may affect the result of a given game
and we will elaborate on these in the rest of this chapter.

• Strategic and tactical decision-making: Many key decisions in the team
sports process affect performance both in-game and behind the scenes. These deci-
sions include player recruitment, tactics, team selection, developing youth players
and managing injuries. Player recruitment is one of the costliest parts of team
sports due to the price of purchasing new players and the wages that they de-
mand. The world’s highest transfer fee in football is £198million for Neymar in
2017 and the highest salary per season in the NFL is $76million for Aaron Rodgers.
The enormous value placed on these players is usually based on subjective mea-
sures by the clubs. This means that often, large sums of money can be paid for a
player who never lives up to the expectations of their price tag.

1https://www.bbc.co.uk/news/business-44362134.

7
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• Fantasy Sports Games: Fantasy sports are games (online2 or via newspapers)
open to the general public where competitors are challenged to predict the perfor-
mance of real-world sports teams and players, and to choose artificial or “fantasy”
teams composed of such players. The players in these fantasy teams are then
awarded points based on their real-world statistics. It is estimated that over 50
million people play fantasy sports in the US while over 5 million people regularly
play the Fantasy Premier League in the UK alone. Fantasy sports presents a
number of interesting computational challenges that can be addressed using AI
methods. These challenges include but are not limited to: prediction of individual
player performance, forming optimal teams based on player performances, predict-
ing the fluctuating player values, and creating betting strategies when entering
fantasy teams into competitions.

• Managing Injuries: Injuries to professional players can have a huge impact on
their careers. Injuries also cause the performance of a team to decline as well as
costing teams large sums of money in wages to a player who cannot play. In an
annual report by JLT3, all the injuries in the English Premier League were assessed
and it was shown that in the 2017-18 season, £217million in wages were paid to
injured players. Due to this, teams in all professional sports are now investing
significant efforts into predicting the risk of injury and helping prevent them. The
predictability of injuries in sport is discussed in (Lysens et al. 1984) which suggests
that injuries may be an area where AI could help benefit teams and players due
to the success observed when predicting health issues in the past (Srinivas, Rani,
and Govrdhan 2010).

In this review chapter (and the rest of this thesis), we focus our attention on the six
most popular team sports in the world: Association Football4, Rugby Union, One-Day
Cricket, American Football, Baseball and Basketball. We explore the existing relevant
literature, provide new insights based on our analysis of key statistics, provide a number
of frameworks to structure the computational challenges involved, and highlight open
areas of research. In this way, we will justify the novelty of the research questions that
are explored in this thesis.

2For example: www.draftkings.co.uk, www.fanduel.com, fantasy.premierleague.com.
3https://www.jlt.com/our-insights/our-insights/how-injuries-have-affected-the-english-premier-

league.
4Referred to as just “football” throughout this thesis.
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2.1 Match Outcome Prediction

Prediction of sports match outcomes is a complex computational problem due to the
range of uncertainties that can influence match results. These include: the team config-
urations, the health of players, the location of the match (home or away), the weather,
and team strategies.

Typically match outcomes consist of up to three possible outcome classes: home win,
away win and a draw/tie. The draw/tie is a more common result in football, but it
is still possible in all the team sports we focus on. When predicting these outcomes,
probabilities are assigned to each possible state that the game could end in. Some
models also focus on predictions for the scoreline or spread. The scoreline is the number
of points/goals scored by each team and the spread is the difference between the number
of points scored by each team. These are typically more challenging to predict due to
the increased number of possible outcomes. By assigning a probability to each possible
scoreline in a match, we are able to solve different prediction problems.

The multiple sources of uncertainties that exist when predicting match outcomes are
typically very difficult to characterise. In what follows, we highlight the accuracy of the
bookmakers in team sports and elaborate on the approaches that have been applied to
predict match outcomes, scorelines and points spread. We explore the earlier literature
that exists in statistics as well as literature outlining ML approaches.

2.1.1 Bookmaker Accuracy

Some of the match outcome prediction problems considered in this thesis are more
challenging than others. Bookmakers use sophisticated pricing models that assign “odds”
to an outcome (which reflect the likelihood) to maximise their chances of making a profit
(Graham and Stott 2008). By comparing who the bookmakers made favourite (shortest
odds) and the actual match outcome, we calculate a percentage accuracy5 and use this
to evaluate how predictable each sports outcome is. This provides an estimation of the
predictability of each sport. Bookmakers price markets based on their predictions of
the match as well as using the bets that are placed as an indicator of the likely match
outcome.

To demonstrate the variability across team sports, we focus on the prediction of match
outcomes (see Figure 2.1). As can be seen, Football has the lowest accuracy showing it is
the least predictable. This is to be expected due to the frequency of goals being far less
than the frequency of points scored in the other sports (see Appendix A). A draw/tie is

5Odds that are given across the whole of the past season (2016/17) with historic odds and results
data taken from https://www.oddsportal.com.
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Figure 2.1: Bookmakers Accuracy Across 2017/18 Season.

also much more common in football meaning there are 3 possible outcomes to consider
instead of just 2. Basketball is shown to have the highest accuracy by the bookmakers.
This may be due to the high number of points scored in a game or a smaller playing
area with fewer players.

2.1.2 Statistical Approaches

Some studies have focused on finding ways that the game of football could be modelled
and to find inefficiencies in the UK football betting market. Dixon and Coles (1997)
set out to exploit the inefficiencies and bias in UK football betting markets. Building
upon the seminal work by Maher (1982), they developed an initial model to assign prob-
abilities to each of the different game outcomes (home win, away win and draw/tie).
Using this they are also able to form a new betting strategy. The model is based on
the different abilities of both teams, calculated from prior matches. These abilities are
broken into attack and defence and normalised based on the abilities of the opponents.
Their model also takes into account a home advantage as discussed in (S.R. Clarke and
J. Norman 1995). They can gain positive returns in a betting strategy. They use a tech-
nique based on a Poisson regression model, modifying Maher’s basic bivariate Poisson
model to give the equation shown in (3).

Pr(Xi,j = x, Yi,j = y) = τλ,µ(x, y)λ
xexp(−λ)

x!
µyexp(−µ)

y! (2.1)

Where, λ = αiβjγ and µ = αjβi and τ is a parameter for low scorelines fully defined in
(Dixon and Coles 1997). In these equations x and y represent the goals scored by the
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home and away team respectively ([x, y] ∈ N), αi is the attacking parameter, βi is the
defensive parameter and γi represents the home advantage of team i ([βi, γi, αi] ∈ R).
Finally i represents the ID of the home team and j the ID of the away team.

Dixon and Robinson (1998) studied the effect of the scoring rate changing depending
on the current score of a game of football. They found that the scoring rate generally
increases for both teams throughout the match, most likely due to the tiredness of players
that leads to mistakes in defending. They also found the scoring rates of home and away
teams depend on the current score. Each scoreline is modelled as a different game-state.
When the scores are level, the scoring rates are similar to those at 0-0. If the home team
is leading, the home and away rates generally decrease and increase respectively. If the
away team is leading, the rates of both home and away teams tend to increase. Their
findings can be used to find match outcome probabilities and to attempt to improve
on Dixon and Coles (1997). This is done by finding the probability of each state and
integrating over all the possible times and for each possible route to arrive at the final
game state (x, y).

Crowder et al. (2002) again builds upon the work of Dixon and Coles (1997) by changing
the original models’ calculations of attack and defence efficiencies. The new framework
assumes that the efficiencies evolve through time (rather than remaining constant) ac-
cording to some unobserved bivariate stochastic process. The original stochastic process
model is replaced with an approximation that yielded a more tractable computation
without comprising the predictive power. Dixon and Pope (2004), evaluate the value
and significance of the statistical forecasts from their earlier work in relation to betting
market prices. They performed a detailed re-examination of match outcome odds and
correct score odds across a number of years between 1993 to 1996. They suggest that the
football betting market (at the time) remained inefficient6 and the earlier models dis-
cussed in (Dixon and Coles 1997) could still be used effectively to earn positive returns
when used with a strict trading rule to select the games to place a bet on.

More recently, (McHale and Scarf 2011) focuses on international matches instead of En-
glish League games. The authors present a new model for the number of goals scored
by each team in a match and can be used for match outcome predictions. The model
used in this paper is based on Copula functions (Nelsen 2006) which generate bivariate
dependent discrete distributions which are used to forecast the match scorelines. As this
paper is based on international football matches, it may not be as successful if used for
domestic leagues due to significant differences between international and league foot-
ball. In comparison to the domestic leagues, there is a gulf in quality between teams
that could play against each other internationally. Furthermore, international teams do
not play as often. Therefore, datasets detailing the performance of international teams

6Where inefficiency in the match outcome betting market will be indicated if returns are greater
than the return on an uninformed, random betting strategy.
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may not be as reflective of the current ability/form of the team and players. In a differ-
ent study, Karlis and Ntzoufras (2008) use the Skellam distribution (Skellam 1948) to
predict the winning margin of games during the EPL 2006/07 season. The Skellam dis-
tribution models the difference between two independent Poisson distributed variables.
Using these distributions, probabilities are assigned to the possible goal differences and
therefore the match outcomes.

Turning to American football, there are many applications of statistical techniques to
predict match outcomes and scoreline predictions. A birth-process model (Harville 1980)
uses a linear approach to create a baseline for NFL predictions in American Football,
building on work that he had originally tested on college and high school American Foot-
ball (Harville 1976). More recently, (Boulier and Stekler 2003) compare their model with
human prediction and the bookmakers in the NFL between 1994-2000. They evaluate
the use of “Power Scores” (published in the New York Times) as a predictor by creating
forecasts generated from probit regressors. A probit model is a type of regression where
the dependent variable can take only two values, e.g., home win or away win (Cappellari
and Jenkins 2003). This model was able to improve the accuracy of the predictions made
by human experts. However, it was unable to improve on the bookmakers’ accuracy.
In turn, Leung (2014) uses the teams’ current ability based on other rating systems
such as “Elo Ratings”7, which were initially designed to rank chess players (Coulom
2007). Leung (2014) makes predictions on the outcomes of college American Football
matches using historic results and a sum of other metrics (e.g., historic power indexes,
Pythagorean wins, offensive strategy and turnover differential), the highest total sum is
the predicted winner. The paper states that the model achieves high accuracy, but it
does not detail how this was tested. Finally, (Baker and McHale 2013) looks to predict
the exact scores in a game of American football. The authors use similar methods which
were used for football in (Dixon and Coles 1997). The model takes each team’s attacking
and defensive abilities and finds the probabilities of the final state of the game score-
line using a Chapman-Kolmogorov forward equation (Gardiner 2009). This achieves an
accuracy of 66.9% outperforming Boulier and Stekler (2003) who achieved 61%.

In basketball, (Zak, Huang, and Siegfried 1979) calculates the production efficiency of
points scoring for each team and using the “Richmond” technique (Richmond 1974)
they are able to estimate the potential scoring output of teams. Therefore, this could be
used to make match outcome predictions. They also evaluate the basketball home-field
advantage. Finally, “Yoopick” (Goel et al. 2008) outlines a different approach to create a
sports prediction market. The market they create directly allows estimation of the entire
point spread probability distribution within a single unified market. Punters bet on the
outcome of the points difference of a game landing in a given interval with the interval
prices determined by Hanson’s logarithmic market scoring rule market maker (Hanson

7These ratings are a measure of strength based on head-to-head results and quality of opponent.
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2007). This paper has yet to be tested against the accuracy of the more traditional
betting markets.

In the next section, we will explore the ML methods that have been applied to the match
outcome prediction problem for the sports this thesis focuses on.

2.1.3 Machine Learning Approaches

Many of the ML works involve Bayesian approaches and we focus on such approaches
primarily. We also generally cover other approaches that have most recently come to
the fore.

2.1.3.1 Bayesian Methods

Bayesian methods have been particularly popular as they can be used to express hy-
potheses (potentially by experts in the game) and then learn the parameters that can
lead to more accurate predictions. As well as this, their ability to naturally quantify
uncertainty makes Bayesian methods particularly useful in sports where it is likely there
are relatively few observations to draw conclusions from. Rue and Salavesen (2000) ap-
ply a dynamic Bayesian linear model to estimate the time-dependent skills of all teams
in the English Premier League (EPL). These skills are used to predict the outcomes of
the matches. The model uses a Markov-Chain Monte Carlo (MCMC) method to make
estimations on the attack and defence abilities of teams. The MCMC method is partic-
ularly useful to model the changing abilities of the teams across the season and therefore
the abilities need to be updated after each game week. Previous results between teams
are used to aid the predictions alongside the attack and defence abilities. They achieved
an accuracy of 54%. At the time this was slightly better than the bookmakers’ accuracy
for the English Premier League and Division One results.

Joseph, Fenton and Neil (2006) compare a Bayesian approach to other machine learn-
ing approaches for predicting football outcomes. They test a number of algorithms on
Tottenham Hotspur Football Club over the 1995–1997 seasons. The methods they com-
pare are naive Bayesian Network (BN), a Data-Driven BN (learns the structure of the
network by using the correlation between the attributes), a K-nearest neighbour imple-
mentation and a Decision Tree. The results confirm the potential of Bayesian Networks
when they are built by a reliable domain expert. The advantage of this is the model
is able to provide accurate predictions without requiring large datasets. However, this
work is focused solely on predicting the outcomes of a single team’s results which means
it would have to be re-implemented for every team if used on a wider scale.
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Following on from this, (Constantinou, Fenton, and Neil 2012) apply Bayesian Models
to football match outcomes across two Premier League seasons. Their model (known as
“pi-football”) uses a selection of variables such as team strength, team form, team psy-
chology and fatigue for both teams in a match to generate the outcome prediction. Some
of their parameters are more subjective compared to team strength and form which can
be calculated using the number of points a team has accumulated and goals scored/-
conceded. The “pi-football” model can be used to generate profits against maximum,
mean, and common bookmakers’ odds. This model was improved further in (Constanti-
nou, Fenton, and Neil 2013) by identifying the key features (e.g., team strength, form,
and fatigue with motivation) to reduce the inputs into the model. The number of fea-
tures are reduced from 21 in total (10 for each team plus one representing discrepancy)
to 10 (5 for each team).

Other examples of Bayesian approaches to football match prediction include a study to
predict results in the 2006 Germany World Cup (Suziki et al. 2009) and a Bayesian hier-
archical model that was used to predict games in Italian football (Baio and Blangiardo
2008). In more recent work there have been studies for using Bayesian approaches to
predicting games in-play (Robberechts, Van Haaren, and Davis 2021). In this paper, the
authors introduce a Bayesian statistical framework that predicts the probability of the
match ending in a win, draw and loss by using a set of contextual game state features
as the game evolves over 90 minutes.

Moving away from football, Bayesian methods have been applied to other sports pre-
diction problems. In American football, (Glickman and Stern 1996) use a state-space
model with Bayesian diagnostics to predict games in the NFL (tested on 1993 season).
This paper focuses on predicting the points spread, as this is the main betting market
in the NFL. They produce good results when compared against the “Las Vegas betting
line”8 but were unable to outperform it. Thus, their model achieves an accuracy of
58.2% whereas the Las Vegas accuracy mwas 63% (at the time). When comparing the
mean squared errors of the point differences the model achieved 165.0 which was better
than the Las Vegas result of 170.5. In Baseball, (Yang and Swartz 2004) use a two-stage
Bayesian model to predict the winners of games in Major League Baseball (MLB). Data
from the 2001 season and an MCMC algorithm is used to carry out Bayesian inference
and to simulate outcomes of future games. This model performs well and can accurately
predict the winning percentage of an MLB team across a season but it does not state
the accuracy when used for individual match outcomes. Finally, there is an example of
Bayesian models being used for cricket outcomes in (Kaluarachchi and Aparna 2011).
They test a number of methods to predict the winning team and their final model (known
as CricAI) uses a Naive Bayes Classifier. On average they achieved an accuracy of 0.593
when using the Naive Bayes approach.

8https://www.complex.com/sports/2015/01/how-betting-lines-work.
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The Bayesian methods that we have discussed in this section have produced some good
results. However, they rely heavily on expert knowledge and also can be extremely
intensive computationally for complex models. In the next section, we will explore other
ML methods that have been applied to the match outcome problem and the results they
achieved.

2.1.3.2 Other ML Methods

Many other machine learning methods have been applied to the sports match outcome
prediction problem. In what follows we elaborate on these methods and summarise their
key properties in terms of outcome prediction.

Jayalath (2018) considers ODI Cricket prediction and focuses on quantifying the signifi-
cance of important features using classification and regression tree (CART) and logistic
regression approaches. The study identifies that the key feature to improve a team’s
chances of winning is home advantage. Building on this, (Jayantha et al. 2018) creates
a model for predicting ODI games using machine learning techniques and also outlines a
team recommendation system. The prediction model in the paper uses an SVM model
with linear, poly and RBF kernels. They use features such as batting and bowling av-
erages to create power rankings for each player. The model takes the line-ups of the
two teams and the player statistics in these line ups. The SVM models are trained with
historic win or lose percentages. When tested with the linear, poly and RBF kernels
they achieve an accuracy of 70.83%, 68.75% and 75% respectively.

As discussed in the previous sub-section, (A. Joseph, Fenton, and Neil 2006) apply other
machine learning techniques beyond Bayesian approaches for football. A decision tree
and a K-nearest neighbour model were developed. The MC4 Decision Tree achieved an
overall average test percentage result of 41.72%. The K-nearest neighbour method uses
a likeness approach, where the model finds similar instances to the test case and then
a voting mechanism is used to predict the outcome. This performed better than the
MC4 Decision Tree by achieving a test accuracy of 50.58%, the Bayesian approach in
the same paper achieved an accuracy of 59.21%. Baboota and Kaur (2018) again looks
at applying machine learning techniques to football match outcomes and compares the
results to bookmakers. They use feature engineering and exploratory data analysis to
find the feature set with the most important factors for predicting match outcomes.
They use a number of features with different weightings such as form, shots on target,
goals and more. They model the ternary classification problem to a binary classification
one, and a prediction is made for whether a team will win the match or not. The methods
that are tested by the authors are: Gaussian Naive Bayes, SVM (with RBF and linear
kernels), random forest and gradient boosting. They use training data from 2005-2014
in the EPL and they find that the best performing algorithm was the gradient boosting
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method (56.7%), followed by the random forest (56.4%), SVM models (RBF 54.5%,
linear 54.2%) and then finally the poorest performing was the Gaussian Naive Bayes
method (52.6%). Similarly, (Hucaljuk and Rakipović 2011) test a number of features
and classifiers. The features they use are the form of the team, previous meetings of
the teams, current league position, number of injuries and average number of goals
scored and conceded in a game. Six different learning classifiers are tested using these
features: Naive Bayes, Bayesian Networks, LogitBoost, k-nearest neighbours, random
forest and artificial neural networks. Datasets from the UEFA Champions League9 (a
cup competition as mentioned in Section 2.1) are used in this paper, focusing on only
96 games. They achieve an accuracy of up to 68% when using Neural Networks. This
is considerably higher than results in the EPL. This may be because, in the Champions
League, the best teams in Europe’s top leagues compete against weaker teams from
smaller football nations in the earlier stages of the competition meaning the match
outcomes are more predictable. There are also fewer games played in the Champions
League, so there is less data available for testing the models as shown by the test-set in
this paper only using 96 games.

McCabe (2002) uses neural networks to predict games of Rugby League10 in Australia.
This work is extended in (McCabe and Trevathan 2008) where again a model is created
with a neural network system using a multi-layer perception with a number of different
features such as prior performance data, game location, team rankings etc. This model
is able to perform well in Rugby League competitions with the average accuracy reaching
up to 67.5%. This work was also applied to football results in the EPL. The results from
this were compared to top human expert “tipsters” who also make weekly predictions
on the same games in the form of a competition called TopTipper11 and they were able
to reach the top percentile with the model against the other human experts.

Shi et al. (2013) consider the problem of predicting college basketball games in the US
NCAAB league. Five different machine learning models are developed: decision trees,
rule learners, artificial neural networks (multi-layer perception), naive Bayes and a ran-
dom forest, using data from 2009 to 2013. The methods all achieve between 68.4% to
74.5% accuracy. Their evaluation shows that a high level of accuracy is achieved when
using neural networks, and this can be used to beat human predictors. Finally, part of
the work performed in (Landers and Duperrouzel 2018) focuses on making predictions
on NFL match outcomes and point spreads which they apply to “Pick’em” style12 on-
line competitions. Their model uses 28 features such as bookmakers favourite, average
points (home and away), game location and more team performance-related statistics.

9https://www.uefa.com/uefachampionsleague/about.
10A similar but different sport to Rugby Union.
11http://www.toptipper.com.
12Pick’em is a game within Fantasy leagues where competitors guess who will win each American

Football game in the NFL game that game week.
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These features are used with an average perceptron and a boosted decision tree classifier
algorithm to create their model. They tested the model over three NFL seasons and find
the decision tree provided the best results achieving an average accuracy of 58%. This
work is compared to (Boulier and Stekler 2003) which achieves 61% and to the book-
makers who achieve 65.8% accuracy. Finally, work in (Beal, T. Norman, and Ramchurn
2020a) compares a number of different machine learning methods for predicting match
accuracy in the NFL.

In Table 2.1 we summarise the ML approaches that have been used for match outcome
predictions.13 These algorithms mainly use key team performance metrics as their fea-
tures such as points/goals scored and conceded, league position, form etc. However,
some key factors are not yet accounted for by the approaches that we have discussed.
These are largely the external factors that can impact the results of sports outcomes
(e.g., weather, player moods, changes in coaching, player transfers or impact of injuries).

ML Method Sport Application Paper Accuracy
Football Hucaljuk and Rakipovic (2011) 68.8% (UCL)
Basketball Shi et al. (2013) 72.2%

Neural Networks Rugby League McCabe and Tevathan (2008) 67.5%
Football Joseph et al. (2006) 41.7%
Basketball Shi et al. (2013) 69.2%

Decision Trees American Football Landers and Duperrouzel (2018) 58.0%
KNN Football Joseph et al. (2006) 50.6%

Football Baboota and Kaur (2018) 54.5%
SVM Cricket Jayantha et al. (2018) 75.0%

Football Baboota and Kaur (2018) 56.5%
Random Forest Basketball Shi et al. (2013) 62.2%

Football Baboota and Kaur (2018) 56.7%
Gradient Boosting Football Hucaljuk and Rakipovic (2011) 68.7% (UCL)

Table 2.1: ML Approach Summary

In this section, we have evaluated the different approaches that have been used to make
sports outcome predictions. Across all the different forms of predictions that we have
discussed, all appear to reach a “glass ceiling” which we discuss further when highlighting
our research questions. The papers we evaluated also show that football is the hardest
game to predict due to the low scoring nature of the game.

There are many decisions that occur before and during a game in team sports. All of
these have an impact on the outcome of sports matches. Therefore, in the following
section, we explore some of the decision making processes that exist in team sports.

13UCL = UEFA Champions League, KNN = K Nearest Neighbours, SVM = Support Vector Machine.
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2.2 Strategic and Tactical Decision Making

In this section, we turn our attention to the key decisions that arise when managing
sports teams both on and off the pitch. In particular, to structure our discussion we
propose a new framework discussed in the Introduction of this thesis (see Figure 1.1).
This framework captures the key processes that operate in team sports and the inter-
connection among these processes that create a number of feedback loops. Using such a
framework it is then possible to understand the importance of both machine and human
decision making throughout. In more detail, player transfers presents a recruitment
problem where teams want to ensure that they purchase the best possible players within
their budgets. The squad of players then train to prepare for matches and develop their
skills. During the training process, we can optimise the development of youth players
to ensure they reach their maximum potential. The next stage focuses on decisions that
are made to improve teams chances of winning games. This includes opposition analysis
which supports the team selection and tactical decisions made by managers/coaches.
Finally, these decision-making processes have feedback from the match outcomes and
the in-game team performance. All of these will be expanded upon within this section.

2.2.1 The Recruitment Problem

The recruitment of new players is a different process in every sport and usually involves
decisions from managers/coaches alongside the directors higher up in the sports organi-
sations. In football, players are bought and sold between clubs (as discussed in Section
2) whereas, in many American sports players are drafted14 and traded. In most cases,
clubs gather information on players (scouting), therefore the amount teams pay for a
player, relates to how well they think that the player will perform in the future and
how much they will impact the team. Many elements add uncertainty to the process,
namely concerning whether a player will continue performing well if the player will fit
into their new team, if the player will settle into a new environment and if the player will
stay free of injuries. These uncertainties are discussed when drafting a college player
into the NFL in (Hendricks, DeBrock, and Koenker 2003). Here it is suggested that
statistical discrimination and option value, influence choices in this market meaning
that some players could be over-valued. Modelling the uncertainties that exist in future
performances of players and predicting how well they will impact a team would provide
huge benefits to sports teams. This will allow the decision-makers to evaluate the risk of
the player before paying large sums of money. These types of predictions can also help
assign a monetary value to a player, so that a fair price is paid. There are a number
of factors that affect the price of a player some of these are explored in (Dobson and

14In a draft, teams take turns selecting from a pool of eligible players. Usually from a college or high
school system.
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Gerrard 1999). In Figure 2.2 we show the generic recruitment process that sports teams
follow when investing in new players.

Figure 2.2: The Player Recruitment Process.

All of the stages within the player recruitment process present different challenges that
can be improved through the use of AI methods. These are discussed below and corre-
spond to the numbered processes in Figure 2.2.

1. The first stage is identifying which areas in the team need to be improved. We
can go about this firstly by looking at the statistics of the team performance to
identify what in particular needs improvement (e.g., more goals in football or more
wickets in cricket). We can also highlight which individual players are not pulling
their weight in the team and look to improve these.

2. The next process is gathering intelligence on a large set of players, this can be
done in a number of ways. Teams have access to league datasets (statistical,
event-driven and tracking) where they can find information regarding player info.
These statistics are becoming more detailed and could be used alongside AI to
efficiently evaluate current ability and potential. This is an important inexpensive
stage of the process as it can save money further down the line by avoiding sending
scouts to watch players who are not right for a team. This can also help to identify
players that are overlooked by other clubs and help find the best value players.

3. Once we have basic data on players, scouts are deployed who will gather more
subjective information which may not show in the statistics. However, most teams
have a limited number of scouts (N) and a limited scouting budget. Therefore,
we must optimise this process so that the scouts time is not wasted and as many
players are watched as possible.

4. The information that the scouts collect is collated alongside the datasets collected
in process 2. Once all this information has been gathered, a team can use the
statistics, scouts data and scouts opinions to rank the players they have watched.
Using this teams can identify the players they would like to sign to improve their
team and estimate the costs involved for transfer fees and/or wages.
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5. Usually in a transfer or trade window teams will want to buy and sell multiple
players to improve the squad. This presents a budget optimisation challenge as
we want to purchase as many highly-rated players from the information gather-
ing process who can positively impact the team. Therefore, the objective of this
optimisation is to maximise the quality of the players that are purchased while
staying within the constraints of the transfer/wage budgets. There are also other
constraints set by the leagues such as squad sizes and wage caps. Finally, if a
team is to sell their current players they can increase their transfer/wage budgets
and create room for more new players. This is something that would need to be
treated with caution though, as it could ruin the cohesion of the players within
the team if we were to sell/buy too many players.

The processes we have discussed aim to improve the probability that a team will be
successful in the transfer market and presents interesting computational challenges that
are yet to be addressed by AI. The scouting process relates to AI literature which focuses
on learning from imperfect classifiers. An example of this is shown in (Simpson et al.
2013) where human decisions, with prior knowledge about the ability of that human’s
decision making, are combined with Bayesian approaches to make decisions. This can
be applied to scouting as we can use the teams’ scouts opinions on players, with the
knowledge of their prior scouting performance, alongside AI methods to rate players.
The challenge of deploying the scouts relates to optimisation literature such as (Dang
et al. 2006; Ramchurn, Polukarov, et al. 2010) as we aim to maximise the number of
high-quality players the scouts assess while meeting the time and budget constraints.
The transfer budget optimisation problem discussed in process 5 also relates to this
literature as we are aiming to maximise the quality of players that are bought within
the transfer and wage budgets where we can also sell current players to increase budgets.

Boon and Sierksma (2003) discuss the scouting of new team members to fill open po-
sitions and enhance the quality of teams. They calculate the potential value that new
players in a team would have, focusing specifically on football. Their model uses linear
programming to form an optimal team based on the quality of the players and their
positional weightings that they calculate. Once an optimal team is formed they can use
this for scouting purposes. Using a database of scouted players, players can be substi-
tuted into the team to calculate the effects that this would have and what value would
be bought into the team. This model could be improved by taking into account the
multiple positions that players can play in and the different roles players can take in
different positions (e.g., a central midfielder could be a defensive player and sit deeper or
could be more attacking to push further forward). This section mainly focuses on how
scouted players will impact a team rather than looking to identify players that could be
scouted and finding players that may have been overlooked by other teams.
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In the next sub-section, we explore how teams train youth players in their academies
which is another route that teams can take to improve their squad and bring in new
players.

2.2.2 Training and Developing Youth Players

Young players can be trained by professional teams from ages as young as six.15 Thus,
teams can play a huge part in how they develop players and how they bring these players
into the first team squad once they are old/good enough. The process of bringing players
through youth systems can be fine-tuned and optimised at many stages. This can involve
making sure that their training is tuned to improve their skills efficiently and ensuring
that they are given the right amount of experience at the right times either in the first
teams or by being sent out on loan to smaller clubs. The challenge of personalising
the training regime of youth players, therefore, involves a number of prediction and
optimisation problems that could be addressed by AI techniques. This is particularly so
when such training regimes need to cope with significant degrees of uncertainties in player
performance (e.g., injuries, variability in mood, or weather conditions). Many studies
have explored the effects of injuries to youth players. Price et al. (2004) highlights the
nature and severity of injuries that occur at the academy level and (Gall et al. 2010)
evaluates the fitness characteristics of young players in youth academies, highlighting
which of these characteristics improve players chances of proceeding to higher levels.

De Silva et al. (2018) have also used the player tracking data that is available as a tool
for training youth players and for physical performance management in football. They
tested their work in a professional Premier League football academy. This research uses
standard statistical analysis to compare the activity demands in key playing positions,
such as Central Midfielders and Centre Forwards. This study helps to provide insights
from an elite performance environment regarding the relationship between player ac-
tivity levels during training and matches and how they vary by playing position. This
is an example of where machine learning based analytics could be used by a leading
professional club to extend their knowledge and make changes to some of their training
practices.

Finally, (Fister et al. 2015) outlines the challenges for computational intelligence in
sport. The authors discuss the problems and current work that exist in sports (not just
team sports) domain and in particular training for athletes. They open up a number of
research questions in the area of training for sports and showed a necessity for developing
an artificial personal trainer to optimise sessions. They also outline the process of sports
training, showing the key components and a programming model. The paper mainly

15American youth players come through a college and draft system rather than individual teams
having youth teams.
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focuses on training that is not specific to any sport or skill such as for strength and
power. However, it is still a useful tool for us to identify the stages in the team sports
training process that can be optimised using artificial intelligence.

Next, we turn our focus to the team selection problem where managers/coaches select
the players to play in games.

2.2.3 Team Selection

Team selection is a key tactical decision in team sports which has to factor in many
uncertainties. In essence, the challenge involves picking a set of players to play in a game,
which will maximise the chances of winning. There are many different combinations of
possible team selections which are different for each sport. For example in football there
is a squad of 25 players and need to select a team of 11, therefore there are 4457400
different possible team line-ups. This is calculated using

(n
r

)
where n is the number of

players and r is the size of the team.

The team selection process also involves thinking about developing younger players.
This is a balancing act between selecting a team that will win against thinking about
using youth players. In most cases these players are bought into games as substitutes
or are selected to be used in less important games such as pre-season friendlies or cup
games.

In American football, cricket and baseball it is generally easier (compared to football
and basketball) to identify which players have been performing well and therefore the
challenge of finding a team that maximises the chances of winning is slightly easier.
This is due to the statistical element of the scoring to see the contribution (e.g., yards
gained, runs scored etc). That said, there is a lack of academic work which has focused
on solving this problem. In football and basketball, it can typically be a challenge to
attribute each player’s contribution to a team. In these sports, there are a number of
other factors that make a good performance other than just scoring or creating goals.

Deep learning has also been applied to model the behaviours of players in both Basketball
and Football (Le et al. 2017; Seidl et al. 2018). Here, deep imitation learning has been
used to “ghost” teams so that a team can compare the movements of its players to
the league average or the top teams in the league. A simulation is run to see how an
AI team would move in certain situations with the AI team created by “ghosting” the
characteristics of average and top teams. This helps to identify where teams can make
changes to their players’ movements and change events to improve the probability of
scoring a basket/goal or reduce the probability of conceding. Le et al. (2013) is also an
example of multi-agent approaches to imitate and learn the movements of players in a



Chapter 2 Literature Review 23

game of football. The authors show that having a coordination model for the roles of
players gives substantially improved imitation in comparison to conventional baselines.

Other factors that may need to be considered in this area involve predicting what an op-
position will do: their line-up, their formation, their set-pieces, what style they will play,
what areas of the pitch they target, where a player will aim a penalty and many more.
An example of work that forms teams based on an opposition is shown in (Jayantha
et al. 2018) where the authors create a team recommendation system for cricket teams
which is based on selecting players who increase the probability of the team winning.
This is also explored in more detail in (Gürpınar-Morgan et al. 2020) where the authors
present a model to predict shot type using deep learning.

The team selection problem in sport relates to team formation literature in the multi-
agents domain such as (Chalkiadakis and Boutilier 2012) which proposes new methods
for coalition team formation. Coalition formation is the analysis of one or more groups
of agents, called coalitions, that together jointly determine their actions. They inte-
grate decision making during repeated coalition formation under type uncertainty using
Bayesian reinforcement learning techniques. Matthews, Ramchurn and Chalkiadakis
(2012) form optimal teams for fantasy sports games under the constraints that the fan-
tasy sports problem presents. They do this by predicting the performance of football
players (in terms of how many fantasy points they will score) and then form a team
that maximises the number of expected points. This could be extended to aid team
selection for sports teams and improve teams chances of winning. Vilar et al. (2013)
discuss the complex social systems that are presented by team sports. The authors fo-
cus on the pattern-forming dynamics that emerge from collective offensive and defensive
behaviours. They evaluate the differences in strategies and formations of two teams in
a single game of football to understand the successful and unsuccessful relationships in
the teams. This type of study provides significant results to demonstrate how complex
systems analysis can help to better understand performance in football, by assessing
team behaviour as a collective rather than individually.

One new approach to team formation in sports has been shown in the work in this thesis
(Chapter 4). Work published in (Beal, Changder, et al. 2020) aims to value the inter-
agent teamwork between players in sports teams. This teamwork value can then be used
to form the optimal team of players that will work best together. The paper introduces
a novel team formation method that considers the interactional alignment which allows
us to form a team based on agent pairs that not only work well as a pair but overlap
to create many other strong pairs in a team. Work in (Bransen and Van Haaren 2020)
also explores the notion of teamwork in football and presents a new method to value
teamwork between players based on the “Expected Threat” (xT) model (discussed in
the next subsection).
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There have also been Game Theoretic approaches to optimising teams of agents in other
domains. These approaches have shown success in real-world applications. An example
of this is shown for Stackelberg Security Games (SSG), the success of SSG is discussed in
(A. Sinha et al. 2018). In an SSG a defender must defend a set of targets using a number
of resources, whereas the attacker is able to learn the defender’s strategy and attack after
planning. Fang, Stone and Tambe (2015) use game theory and the application of an
SSG to optimise the protection of endangered animals and fish stocks.

An important factor to be considered in the team selection process is to ensure that the
players selected in the team are right for the team tactics. The approaches to tactical
decision making, made by the manager/coach, are discussed in the next section.

2.2.4 In-Game Tactics

The in-game tactics used by teams to enhance their chances of winning games vary a
lot from sport to sport. When creating tactics many factors must be considered such as
the opposition team and their weaknesses as well as the ability of the players available.
Getting tactics right can give teams a huge advantage and can allow weaker teams to win
games that they are not expected to. In football, tactics cover the formation that the
team will use, the “style” that they play in, set-piece selection and many more. American
Football tactics cover the plays that are selected by the coaches and coordinators.

There have been a number of studies that aim to better understand the tactics in sports.
Fernandez and Bornn (2019) provide a model to assess the expected ball possession that
each team should have in a game of Football. The expected possession value (EPV)
assigns a point value to every tactical option available to a player at each moment of a
possession, allowing analysts to evaluate each decision that a player makes. In this paper,
machine learning is used to estimate the parameters which are used in the model, such as
pass and turnover probabilities which are estimated using logistic regression. A similar
model is also applied to Basketball (Cervone et al. 2014) where points are predicted
and player decisions are valued. Similarly, (Yue et al. 2014) focus on play prediction
in Basketball developing models for anticipating near-future events given the current
game state. These models are validated using 2012/13 NBA data and show that their
model can make accurate in-game predictions. Building on this, (Zheng, Yue, and Hobbs
2016a) studies the problem of modelling spatiotemporal trajectories of the players using
expert demonstrations. In particular, they look to see how a basketball player makes
decisions with long term goals in mind, such as moving around opposition players or
scoring points. They propose a model that uses both long-term and short-term goals
and instantiates this as a hierarchical neural network trained using a large dataset of
tracking data from professional basketball games. They show that this model generates
more realistic trajectories compared to non-hierarchical baselines as judged by human
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expert sports analysts. This work could be improved by modelling the defensive team
as well as the offensive team to give a more accurate simulation of the plays. Finally,
for basketball, (K. Wang and Zemel 2016) focuses on offensive play call classification.
This helps teams to understand the strategies of the opposition to influence the final
match outcome. They apply variants of neural networks to SportVU16 tracking data
and find they are able to label play sequences quickly with high precision. Using a
Recurrent Neural Network (RNN) they can achieve a precision of 90% and recall rate of
59% (when making predictions if the probability of the classifier is above 70%).

Other papers that focus on tactics in team sports include (Bojinov and Bornn 2016)
which evaluates how in football a “pressing” tactic affects performance and disrupts the
opposition’s defences. By doing so, they are able to define and learn a spatial map of each
team’s defensive weaknesses and strengths which is useful for coaches when preparing
to face an opposition. In a similar fashion, (Hobbs et al. 2018) aims to quantify the
value of transitions17 in a game of football. They aim to explore how teams create goal-
scoring opportunities based on their transitions and find that if a team counter-attacks
immediately rather than looking to maintain possession, the chances of scoring rises by
4.4% and chances of having a shot rises by 24.4%.18

Power, Hobbs et al. (2018) focus on set-pieces in football (e.g., corners, free-kicks, penal-
ties). They discuss a number of “myths” regarding set-pieces and then prove/disprove
these myths. For example, they show that a team is more likely to score from set-piece
than in normal possession (1.8% chance of scoring from set-pieces vs 1.1% in open play).
They also find that the type of delivery and the defensive set-up of the oppositions can
significantly affect the chances of scoring. Work in (Shaw and Gopaladesikan 2020) also
explores corners in football and aims to identify the best strategy for these. Finally,
(Lucey et al. 2012) models team behaviours in football using entropy maps, created
from team ball movements, which give a measure of predictability of team behaviours
across the field. This provides a useful tool for coaches and decision-makers to be able
to analyse opposition teams.

We have highlighted the studies that focus on the tactics within team sports. These ap-
proaches aim to decompose and break down how teams play which give more interesting
insights for coaches. This can be useful for teams when setting up their own tactics to
maximise their chances of winning against another team. The concept of using game
theory to optimise tactical decision making is explored further in this thesis (Chapter
3) as well as in (Beal, Chalkiadakis, et al. 2020; Beal, Chalkiadakis, et al. 2021). In the
next sub-section, we explore work that focuses on individual players performances.

16https://www.stats.com/sportvu-basketball.
17overloading the opposition when they have just lost the ball.
18This study was run over the 2016/17 EPL season.
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2.2.5 In-Game Player Performance

Measuring player performance is an important factor in the decision making processes
in team sport. This helps to provide the feedback to identify when changes need to
be made to team line-ups, tactics and when transfers need to be made. A number of
papers focus on ways to measure performance objectively with data. Whitaker, Silva
and Edwards (2017) use a Bayesian approach to determine the abilities of players using
different event types. They implement a Poisson model for event types and can then
infer player abilities from this. These inferences allow English Premier League players
to be ranked and for differences between players to be visualised. Power et al. (2016)
focus on measuring the risk and reward of passes in a game of football. This gives new
methods to evaluate player passing performance and identify key players in a team who
execute the key passes consistently.

More recently, there has been a rise in models which aim to extract the value of actions
that players make within sports games. The first of these is “Expected Goals” (xG)
in football (Spearman 2018) which aims to add a probability of scoring from a shot
using models trained from thousands of shots in historic data which are trained based
on shot location and the context of the opposition players.19 Other models have built
on this concept to value actions away from shots, these include the “Expected Threat”
(xT)20 and “VAEP” models (Decroos et al. 2019). These aim to assign values to passes
or dribbles based on the contribution to increasing the likelihood of your team scoring
or reducing the likelihood of the opposition scoring. These have also been extended in
(Merhej et al. 2021) which aims to value defensive actions based on the predicted xT
of what has been stopped. Similarly, (Stöckl et al. 2021) looks to better understand
defenders performances using graph convolutional networks and (Llana, Madrero, and
Fernández 2020) aims to create more off-ball metrics for exploiting an opponent’s spatial
weaknesses. Finally, (Van Roy et al. 2021) aims to evaluate the decisions made by players
in games and if they were optimal.

Power, Cherukumudi, et al. (2019) focus on the performance of football goalkeepers.
They simulate each goalkeepers performance when facing a number of example shots
and compare which goalkeeper would concede the least number of goals. They do this
by using a “spatial descriptor” for each goalkeeper which is made up of features such
as clean-sheet percentage, win percentage and save percentage for in different thirds of
the goal. This type of player performance modelling was also explored within baseball
to evaluate how a batter will perform against certain pitchers (Alcorn 2018). As well
as evaluating player performances, this type of analysis could be useful to simulate the

19xG models have begun to be widely accepted across football and are now features as a stat on BBC
Match of the Day - https://www.bbc.co.uk/sport/football/41822455.

20https://karun.in/blog/expected-threat.html.
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performances of new signings into a team. Also in Baseball, (Bouzarth et al. 2021)
presents a mathematical approach to defensive positioning.

Turning to Basketball, (Felsen and Lucey 2017) evaluates NBA players’ body pose and
shooting styles to find any correlations between the player body shape and shooting
success. They find statistically significant differences in distributions of attributes de-
scribing the style of movement of different phases of the shot. In American Football,
(Burke 2019) uses Deep Learning to quantify Quarterback decision-making again allow-
ing us to identify the NFL quarterbacks who have the best decision-making skills which
is a vital part of this position in a game of American Football. Their model correctly
identifies the targeted receiver in 60% of cross-validated cases. They find when passers
target the predicted receiver, passes are completed 74% of the time, compared to 55%
when the QB targets any other receiver. Their approach gives a new way for teams
to quantitatively assess quarterback decision-making performance. Finally, Correia et
al. (2011) assess players’ decisions when making passes in Rugby Union based on the
positions of oppositions and teammates.

The majority of the work that we have discussed in this section focuses on finding new in-
sights into tactical analysis in sport. These studies help identify the strengths of different
tactical processes and find new ways of evaluating player and team performances. There
are good examples of work in football and basketball however not as many in American
football or rugby where tactical decisions are also key to winning games. There still
remains a number of areas where AI could impact tactical decision making. This work
would mainly be focused on how individual agents (the players) perform in different
teams, with different tactics and how much impact they have on the game outcomes.
This type of analysis could benefit all of the processes that we showed in Figure 3 as
AI could improve player transfers, match preparation and help to gain better feedback
from the outcomes of games.

Next, we turn our focus to fantasy sports games and the computational challenges that
these present.

2.3 Fantasy Sports Games

In America alone, an estimated 32 million people take part in fantasy NFL games (Amer-
ican Football) with an average spend of $467 per person, per season totalling to around
$15billion across the season and in the UK over 5 million people take part in the Fan-
tasy Premier League for football.21 There are fantasy sports games for nearly every
professional team sport and there are many different sites and leagues ranging from
competitions with millions of competitors to small leagues run between friends.

21http://www.forbes.com/the-70-billion-fantasy-football-market.
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In fantasy sports games competitors select a team of real-life players, who are assigned a
value/salary, within a given budget. Dependent on how well the players perform in real
life they are given corresponding fantasy points (e.g., for a goal/assist in football or a
touchdown in American football). The aim of the game is to maximise how many points
the selected team can obtain under the constraints of the fantasy game. Figure 2.3 shows
the process of fantasy sports games. Initial values, based on knowledge of the players’
ability, are set for the players before the season starts and the fantasy competitors select
an initial team. This team of players is then awarded points each game-week based on
their real-world performance (if the player does not play they receive no points). The
values of the players can also be updated throughout the season so that the players
who have performed better than expected will then cost the reflective amount. The
fantasy league standings are updated each week and once all the N game-weeks have
been completed, prizes are awarded based on the standings.

Figure 2.3: The Fantasy Sports Game Process.

Traditionally people compete in a league across the season, with the aim to accumulate
the most points whilst having restrictions on the number of changes/transfers that can
be made to a team. In these games the “game-week” processes shown in Figure 2.3 are
repeated for every set of matches (usually once a week). Leagues such as these have
been running for many years. A good example of this is the Fantasy Premier League
(FPL) for Football in the English Premier League, which is extremely popular in the
UK and worldwide. In the FPL there are 38 game-weeks therefore N = 38. This means
that in fantasy games such as this the transfer stage is key to success as, dependent on
the fantasy league, the number of transfers is limited (e.g, in the FPL there is a limit
of 1 transfer per game-week). Due to the rules on transfers, when selecting the initial
team and making changes it is important to consider the players’ future performances
as well as just the next game-week.

More recently Daily Fantasy Sports (DFS) sites, such as FanDuel and DraftKings, have
seen a large growth in popularity. These sites offer leagues that only run for one game-
week rather than across the whole season, meaning that a new team is selected each week
instead of making transfers. In these types of fantasy games new teams are formed every
week from scratch, therefore in Figure 2.3 the value for N = 1. This means that only
an initial team is set and only one future game needs to be considered when predicting
the players’ performance.
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Although there has been significant growth in fantasy sports, there is a lack of research
focus on ways that AI could be used to improve competitors performances or using AI
automated teams to compete against humans. There are a small number of studies in
fantasy sports. The seminal work in this area (Matthews, Ramchurn, and Chalkiadakis
2012), provides the first real-world benchmark for sequentially optimal team formation
in this domain. More recently, (Landers and Duperrouzel 2018; Beal, T. Norman, and
Ramchurn 2020b) use machine learning techniques for NFL fantasy leagues. When
forming teams to enter into fantasy sports leagues, two key computational challenges
are presented. These are:

• Player Performance Prediction: Predicting how well a player will perform in
the real-world and therefore the number of points that a player will obtain both
in a single game and over a given time period.

• Team Formation Optimisation: Selecting an optimal team using the perfor-
mance predictions so that the constraints of the fantasy league are met. This
also includes the challenge of making effective transfers in longer running fantasy
leagues.

As well as using AI to form teams and aid competitors fantasy performances there are
other challenges highlighted in Figure 2.3 that can be addressed using AI. Examples
of these challenges are: player price forecasts, opponent modelling after every match
(as competitors are able to see other competitors teams), draft strategies and betting
strategies to maximise the chances of winning cash in DFS fantasy games.

2.3.1 Player Performance Prediction

Predicting the player performance is key to selecting which players are worth having in
a fantasy team. If a player (and the team he plays for) performs well, more points will
be accumulated for the fantasy team. There are a number of factors that need to be
considered when predicting how well an individual is likely to perform and this varies
significantly based on the sport being played and the position that the player plays in.
For example, in football when a striker’s performance is predicted, the aim is to predict
the number of goals that he/she may score whereas for a defender we focus on predicting
if his/her team will keep a clean sheet (concede no goals). Also, it must be considered
how likely a player is to play in a given game, as players may not play due to injuries
and tactical decisions. If a player does not play, they receive no fantasy points. These
examples show a small number of the many uncertainties that need to be considered
when making predictions on future performances.
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When predicting player points, a feature set for each player (in a given game week) is
taken as an input, this is referred to as X where n is the number of features (shown
in Equation 2.2). Example features for an American Football player would be yards
gained per game, number of touchdowns scored and games played. In football, example
features would be goals scored, number of assists, number of clean sheets and minutes
played. The feature set could also be made up of previous fantasy points scored from a
number of prior weeks. Once a feature set is formed, a target vector Y represents the
points scored by the player in the given game week, corresponding to the feature data
in X. Equation 2.2 shows X and Y for n features and i players where xi,n is the nth

feature for the ith player and yi,w is the ith player’s points in game-week w. Next, a
machine learning algorithm can be trained using X and Y to produce a function φ, that
can output the prediction of Y using the features in X. A row of X, Xj can be used
with this to make a prediction on the corresponding row in Y . This gives φ(Xj) = Yj .
Different ML methods can be tested across the different sports.

X =


x1,1 x1,2 x1,3 . . . x1,n

x2,1 x2,2 x2,3 . . . x2,n
...

...
...

...
xi,1 xi,2 xi,3 . . . xi,n

Y =


y1,w

y2,w
...

yi,w

 (2.2)

When making player performance predictions in a daily fantasy contest we can be much
more precise as the predictions only need to focus on how that player will perform
in the specific game. Whereas, in more traditional leagues future performances must
be considered as well as just the next game. Thus, a player who will perform well
in multiple future games will be selected and not just one who will perform well in a
single game (which may be against a poor opposition). This is considered by the model
shown in (Matthews, Ramchurn, and Chalkiadakis 2012) where predictions for a players
performance are made for a number of future game-weeks.

Matthews, Ramchurn and Chalkiadakis (2012) predict a player’s performance and the
number of points that a player will score based on the prediction of a given game using
the (Dixon and Robinson 1998) framework. The authors choose to use this approach as
the Dixon and Robinson model treat football as a dynamic situation-dependent process
as well as its proven success in the football betting domain. Dixon and Robinson’s
score predictions work by taking each club’s attacking and defending efficiencies from
past results and then using these to derive the probabilities of the side scoring different
numbers of goals in a given match. Using the match outcome prediction, Matthews
attributes the probability of a player scoring points based on the 4 most significant
point-scoring categories in the FPL.
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1. Player appearance in a game (worth 2 points per player playing over 60 minutes
and 1 point for any player playing under 60 minutes). For this a three-state
categorical distribution is used, the states are: starting, substitute or unused.
Three probabilities are computed for each category and the highest probability is
assigned to the player to obtain the predicted points.

2. Clean sheet22 (worth 4 points to a defender/goalkeeper and 1 point to a midfielder).
For clean sheets, the probability of a team not conceding can be calculated using
the scoreline distributions from the Dixon and Robinson model and points can be
predicted based on these probabilities.

3. Goals scored (worth 6 points for a defender/goalkeeper, 5 points for a midfielder
and 4 points for a striker). This is calculated using a Bernoulli distribution (Gel-
man et al. 2004) or a Binomial distribution over a single trial, describing a players
probability of scoring the goal given he was playing at that time.

4. Goals created (worth 3 points per player). Another Bernoulli distribution is used
for this, again describing the players’ probability of creating the goal given he was
playing at the time.

Turning to American Football, the NFL study (Landers and Duperrouzel 2018) for
player point prediction starts by engineering features from FanDuel that their model
uses. In their paper they test two different feature sets (FD1 and FD2). They also
test two different methods and compare using the different feature sets. The methods
they test are a least-squares with averaged perceptron (Lehtokangas et al. 1995) and
a boosted decision tree (Schapire 2003). These methods are evaluated by using the
coefficient of determination to measure the accuracies (R2). The boosted decision tree
achieves average accuracy of 0.417 using FD1 and 0.250 using FD2 while the least-
squares approach achieves 0.401 on FD1 and 0.146 on FD2. Other related work has
shown similar results to those in (Sugar and Swenson 2015). It is noted that different
methods could be tested for different positions in American Football. This is because the
roles of different positions differ more than in other sports (e.g, Quarterback vs Running
Back).

The current studies for player predictions show applications of machine learning tech-
niques providing good benchmarks in both football and American Football. Further
techniques could be tested in these sports to improve on the current benchmarks. These
could also be tested with new feature sets such as time-series data which would anal-
yse the form of the players over a given number of game-weeks. Matthews, Ramchurn
and Chalkiadakis (2012) focus on the FPL fantasy game, it may be useful to test this
work on a DFS site to see if it also performs well in these fantasy games. Landers and

22When a team concedes no goals.
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Duperrouzel (2018) only focus on DFS so it would also be interesting to see how their
predictions would work in a more traditional multiple-week league. There also remain
gaps in the literature for predicting performances of players in other sports where fantasy
games are popular such as Basketball and Baseball.

The player score predictions become more valuable when combined with a good team
optimiser, allowing the maximum points to be accumulated each week. The methods
for team formation that currently exist in the literature are outlined in the next section.

2.3.2 Team Formation Optimisation

Selecting the best team of players within the given constraints of the fantasy site is
vitally important, as shown in Figure 2.3 this process is repeated sequentially across a
season with constraints for changes that can be made to the team. This process involves
choosing players with different abilities, prices and risks that need to be considered. As
discussed in the previous section we may also need to consider the future performances
of these players over a number of given game-weeks. In formation problems, there are
some actors, with their own abilities and characteristics that have formed a team to
perform a task to achieve a common objective in a real-world domain. Within the
fantasy sports team formation problem, there is a set of players (the actors), with their
own abilities (predicted points) and we are looking to maximise the number of these
points (the common objective). Therefore, it is key to get the best players possible into
a high performing fantasy team. The fantasy problem relates to other works in the AI
community. In particular, (Dang et al. 2006) focuses on choosing the best sensors to
surveil an area, (Ramchurn, Polukarov, et al. 2010) focuses on dispatching optimal teams
of emergency responders and (Chalkiadakis and Boutilier 2012) looks at the appropriate
set of agents to work within a coalition formation problem.

In fantasy sports, the main aim is to select a number of players, all of whom are assigned
a value, in different positions within a given budget. For example in the FPL, there are
around 500 players available to select from, all with a position and a given value and
15 need to be selected (2 goalkeepers, 5 defenders, 5 midfielders, 3 forwards). The total
value of the selected team most not exceed £100m. Eleven of those fifteen players are
put up as your ‘starting 11’ (in a selected formation) and they will be the ones who will
earn your fantasy points. The remaining players are ‘subs’ and will automatically come
into the starting 11 if one of the current players does not play.23 This means that the
players are selectable in over 1025 ways. One team is selected at the start of the season
and then one transfer is permitted per game-week. In DFS competitions a fresh team
is created each week, therefore the optimisation is simpler. Figure 2.4 shows example
team formation set-ups from FPL and DraftKings.

23Rules: https://fantasy.premierleague.com/a/help.
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Figure 2.4: Example Fantasy Team Set Ups.

(a) FPL (b) DraftKings

Formally, a generic fantasy sports team involves selecting a team of players to fill N
number of positions places within a team (e.g., a fantasy NFL team requires 10 players).
There may be given positional constraints depending on the sport in questions (e.g., 1
goalkeeper, 3-5 defenders, 3-5 midfielders and 1-3 strikers to fill 11 spots in a football
fantasy team). The fantasy sports optimisation problem is defined in Equation 2.3
(excluding other different constraints that the different leagues have in place).

argmax(
N∑
n=1

pointsn)

s.t.
N∑
n=1

selectedn = teamSize

N∑
n=1

valuen ≤ budget

(2.3)

Where n represents the ID of a player, which is used to identify if that player is selected
(selectedn ∈ {0, 1}) and what the player value is (valuen ∈ {Z}). Our objective is to
maximise the total number of points (pointsn ∈ {R}) while staying within the given
team size and ensuring that the combined salaries/values of the players are below the
given budget constraint.

Matthews, Ramchurn and Chalkiadakis (2012) approach the FPL team optimisation as
a sequential team formation problem which is formalised as a Markov decision process
(MDP). The model in this paper considers the limited transfers that could be made
meaning that the future performances of players are considered when making changes.
A reinforcement learning approach is used, working under uncertainty regarding the
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underlying MDP dynamics. In an MDP the agent (in this case the fantasy competitor)
and the environment (fantasy game) interact continually, the agent selecting actions (by
selecting a team each game-week) and the environment responding to these actions (in
the form of points) and presenting new situations to the agent. Using an MDP means
that the model is able to assess the possible rewards that come from the possible actions
that are made (in FPL this would be the action of making a transfer). The problem
can then be treated as an optimisation problem. Matthews et al., set up the problem
as a Multi-Dimensional Knapsack Packing (MKP) (Korte and Vygen 2012) and solve
the optimisation using IBM ILOG’s CPLEX 12.3. A number of different setups of the
MKP were tested. These include Q-Learning and Bayesian Q-Learning with different
parameters. By doing this Matthews was able to obtain a model that ranked in the top
percentile and give a benchmark for how AI and machine learning models can perform
in the FPL.

When forming fantasy teams for the NFL in DFS competitions, Landers and Duperrouzel
(2018) compare four different approaches for team optimisation, these are:

1. Selecting a completely random team to loosely model the behaviour of a human
with no knowledge of the sport.

2. Selecting a random team from a filtered dataset with just the higher-performing
players. This is to loosely mimic the behaviour of a player with general knowledge
about the sport.

3. A filtered optimised approach picks a team from the filtered set and uses a brute
force algorithm to select the best team based on maximising the predicted points,
that fits the constraints.

4. Filtered actual best selects the best possible team from the filtered data set to give
a view of what the best performing team would be.

Using the player points prediction models discussed in the last section, 100 teams are
selected using each of the above methods for each prediction method. The authors are
able to evaluate the performances using the following metrics: The average points return
of the 100 teams, the maximum points return and the percentage of teams that produce a
profit.24 This is compared against the work in (Sugar and Swenson 2015) which achieves
a success rate25 of 71.4% whereas (Landers and Duperrouzel 2018) achieve a success rate
of 82% for weeks 3-9 in the 2016 season. However, this would need more testing due to
the small sample size (7 game weeks) meaning the results are not statistically significant.

24The amount of points needed to break even is set to 111.21.
25Success rate = number of weeks that the model would earn a profit.



Chapter 2 Literature Review 35

Matthews, Ramchurn and Chalkiadakis (2012) were able to achieve good results by
solving their optimisation problem as an MKP. As a brute force method for team op-
timisation is used on a filtered dataset in (ibid.) there may be more efficient ways for
this to be done, such as a similar approach using CPLEX in (Matthews, Ramchurn, and
Chalkiadakis 2012). Using this type of approach would ensure an optimal team is se-
lected and improve the run-time efficiency in comparison to a brute force approach. This
is explored in (Beal, T. Norman, and Ramchurn 2020b). Another area to explore would
be to model the uncertainties in the players’ performances rather than predicting their
points. This would allow teams with different levels of risk and reward to be selected
which may be useful in a DFS competition multiple teams can be entered. This could
be achieved by using a stochastic optimisation approach (Ermoliev and Wets 1988).
There also remain gaps in the fantasy sports process where AI could be used to forecast
the player prices, assess opponents fantasy teams and create AI betting strategies to
maximise the chances of generating profits in DFS fantasy games. DFS strategies are
discussed in (Haugh and Singal 2018) where a portfolio of teams is used to maximise
the chances of generating profits.

In the next sub-section, we will discuss the impact that injuries have on sports teams
and how AI can be used effectively in this domain.

2.4 Injury Prediction and Prevention

Contact team sports have a high risk of injury (Drawer and Fuller 2002b). If a team
is missing their star players the probability of winning matches decreases significantly.
Moreover, it is not financially beneficial to pay large wages to players who are unable to
play. The economic impact of injuries is highlighted in the annual report by JLT3 who
evaluate the injuries that occur in the Premier League every season. They found in the
2016-17 season over £175million of wages were paid to injured players. The impact in
Football is also discussed in (Drawer and Fuller 2002a). Being able to predict when these
injuries are likely to occur and change real-world variables to reduce the likelihood of
the injury, presents an interesting computational problem. Lysens et al. (2012) discuss
the predictability of sporting injuries.

Vast amounts of data is now collected in relation to individual players in both competitive
matches and in training. All professional sports are now collecting this data in real-time
for both competitive matches and training. Companies such as Catapult Sports and
STATSports sell GPS trackers that sports teams in multiple sports across the world
use to monitor their players. The type of features that are collected by these trackers
include but are not limited to:
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• Distance covered

• Meters per min

• Speeds reached

• # sprints

• Sprints distances

• Intensity

• Heart rates

• Impacts

• Stress load

This data alongside the historical medical data that is collected by physios and club
doctors can give a feature set for players that have yet to be studied by the AI community.
As well as collecting other features from the club doctors and physios, we can form a
list of injuries that have occurred to the players. An example of a standard machine
learning formulation for predicting injuries could involve training a model based on a
list of injuries that have occurred. Using this as training data, we can extract a relevant
feature set (from a given time frame) such as Acute:Chronic Workload and the number
of competitive minutes played, alongside historic data such as previous injuries to that
player. To avoid bias in injury models, we would also need to consider examples of
where no injury occurred to ensure the model has awareness of different injury rates from
player to player. Using this type of formulation, standard machine learning classification
methods could be used to calculate the probabilities of a player getting injured given the
feature data and identify what real-world changes can be made to reduce the chances
of injury. Highly accurate models for this would provide huge real-world value to both
the athlete/player who can extend his/her career if better protected and injuries are
avoided, as well as the team who can plan more effectively so they do not lose top
players to injuries.

There has been a number of studies in relation to injuries in sport that have mainly
focused on the medical domain. Some relevant literature that supports the theory that
AI could have a part to play in this domain are summarised in this section. There are a
number of computational challenges that injury prediction presents for AI. The current
literature is broken down into medical research and research that has been focused on
the use of wearable sensors in sports teams.

2.4.1 Sports Medicine Research

There have been many studies in the Sports Medicine community focused on the causes of
injuries in sports and studying a number of large datasets. Firstly, (Hägglund, Waldén,
and Ekstrand 2006) evaluates how previous injury is a risk factor for future injuries
at the top level of football. The study compares two seasons (2001-2002) worth of
injury data from 12 elite Swedish male football teams. They use a multivariate model
to determine the relationship between a previous injury and the risk it causes. They
found players who were injured in the 2001 season had a greater risk of injury in the
following season compared with non-injured players. Particularly, players with previous
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hamstring, groin, and knee joint injuries were two to three times more likely to suffer the
same injury in the following season. This work was extended in (Hägglund, Waldén, and
Ekstrand 2009; Hägglund, Waldén, and Ekstrand 2013), looking at 14 football teams
across Europe between 2001-2012. This study focused on the injury characteristics and
variation of injuries during a match, season and consecutive seasons over the time period
discussed. It found that the rate of some injury types decreased over the last 11 years.
However, training and match injury rates and the rates of muscle and severe injuries
remain high. It was also found that the risk of injury increased with time in each half of
matches. Clearly, such works point to patterns in datasets that could be used in machine
learning algorithms to determine the risk of injury and to optimise the recovery process.

Fuller (2018) models the effect of the player workloads on the injuries in the English
Premier League. The study shows how a team’s injury burden varies from day to day
during a season, based on a team’s match and training schedules. It also compares suc-
cessful and unsuccessful Premier League teams and how their training loads affect their
number of injuries. They find that a successful team undertakes fewer training sessions
each week so there are fewer opportunities in which to influence training activities and
to reduce injuries. A similar study (Bowen et al. 2016), investigates the relationship
between physical workload and injury risk in elite youth football players. They also
found higher workloads were associated with greater injury risk. This highlights that
workloads can be used as a metric in an AI model for injury prediction. Workloads
have been seen as a significant factor in injury prediction, (Hullin et al. 2016) evaluates
the Acute:Chronic Workload Ratio (ACWR) in Rugby League players and find that a
greater ACWR increases injury risk. The ACWR is calculated by dividing the acute
workload (fatigue) by the chronic workload (fitness). This is defined as:

ACWRt = Lt−7/Lt−28 (2.4)

where L is the players load26, t is the current day. Therefore, it is a ratio of the last seven
days load to the last twenty-eight days load. This, along with other related variables,
could be key in using machine learning to predict injury.

There are examples of injury studies in other sports such as Basketball and American
football. In Basketball (Podlog et al. 2015) surveys the injuries in the National Bas-
ketball Association over a 25-year period and identifies the relationship of injuries to
team performance. In American Football, Ward et al. (2018), finds that regardless of

26A common method for calculating workload is by multiplying the athletes’ perceived exertion
(sRPE) by session duration (e.g, if an athlete reports an sRPE of 5 and trained for 90 minutes, the
athlete’s workload for the day would be 450 arbitrary units (AU)).
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the position, training days with high amounts of volume and intensity share an associa-
tion with increased risk of injury while training days of a high amount of low-intensity
training share a relationship with a decreased risk of injury.

In the next sub-section, we discuss the applications using the data from the wearable
sensors that we discussed at the start of this section.

2.4.2 Wearable Sensor Research

Due to the amount of data that is collected from the wearable sensors, some sports
teams have begun to look at ways that this can be used to benefit sportsmen and
women. Firstly a study by Kelly et al. (2012) researched how wearable sensors can be
used to automatically detect collisions in Rugby. As we discussed in Section 2.3 Rugby
is a very high impact sport and tackling is the most common cause of injury in Rugby,
and therefore having a way of automatically modelling tackles can improve the work
of the medical staff. The work was compared against collisions which were manually
labelled using data from elite club and international level players. The paper tested a
number of different algorithms for this problem such as Support Vector Machines, Neural
Networks and Convolutional Neural Networks (CNN). The results show the model is able
to identify collisions to a high level of accuracy, achieving a recall and precision rating
of 0.933 and 0.958, respectively using CNNs. The model can give coaching and medical
staff tackle-specific measurements, in real-time, which can be used in injury prevention
and rehabilitation strategies. Following on from this, (Cust et al. 2018) reviewed the
ways that machine learning and AI can be used to classify certain movements in sport.

In the next section, we will discuss the findings from this chapter and highlight the
computational challenges and open areas that exist for AI in the team sports domain
that will be explored throughout the thesis.

2.5 Identifying Open Areas of Research

Here, we discuss our findings from the literature review and highlight the open areas of
research that exists in this domain. These are organised into the key sections that we
have explored in this chapter. We identify a number of novel research questions that
are yet to be addressed by any academic literature. We then target the ones that will
be focused on in the chapters of this thesis.
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2.5.1 Match Outcome Prediction

As we highlighted in Section 2.1, there is a large amount of existing academic litera-
ture which focuses on statistical methods for predicting sporting outcomes. Relatively
speaking there has been less work that applies machine learning, deep learning and AI
approaches. The existing literature that we have evaluated appears to have reached a
glass ceiling, this is highlighted in Table 2.2 where we show the prediction current top
(published to our knowledge) match outcome accuracy within each individual sport.27

Table 2.2: Current Best Accuracy.
Sport Accuracy Paper
Football 56.7% Baboota and Kaur (2019)
American Football 66.9% Baker and McHale (2013)
Rugby League 67.5% McCabe and Trevathan (2008)
Cricket 75.0% Jayantha et al. (2018)
Basketball 72.2% Z.Shi (2013)

Fewer studies focus their attention on solving the match outcome problem in American
Football, Baseball and Rugby Union. Algorithms that have shown to be successful in
other papers for predicting match outcomes and scorelines, could be applied to these
sports to compare the results to the statistical approaches outlined in the current lit-
erature. Papers such as (Baboota and Kaur 2019) and (Hucaljuk and Rakipović 2011)
apply and test a number of ML algorithms to solve the match outcome problem in foot-
ball. The approach of applying, testing and comparing different ML techniques could
also be applied to American Football, Rugby Union and Baseball to find which tech-
niques are successful in these sports with the available datasets. In particular, neural
networks have shown to be successful when applied to Rugby League in (McCabe and
Trevathan 2008).

There are many factors that make it challenging to accurately predict sports match
outcomes (e.g., uncertainties in team form, injuries to players, players mood, team
morale, weather, playing conditions and changes in management). Finding ways to
quantify how these uncertainties will impact a game is also a challenge. What makes
sports games so entertaining is the element of randomness and luck that play a big part
in the outcome. This is especially the case in a lower scoring game such as football.
For example, the underdog team may get some luck in the form of a deflected goal
or a refereeing decision going their way, this then allows them to pull off an upset.
The majority of the current literature focuses on the final events of the game such as
outcomes (win/loss/draw) and scorelines. In turn, there is less work that focuses on the
more granular predictions which can aid the final outcome forecast. Examples of how
more granular approaches can help are outlined as follows:

27Football focused on domestic league games.
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• Modelling the problem using match processes to train a model that is able to
recognise what outcome occurred when similar set-ups and conditions have been
observed before. Deep learning techniques could be used for this approach, specif-
ically Long Short Term Memory known as LSTMs (Hochreiter and Schmidhuber
1997), a type of recurrent neural networks which have shown to be successful
when using historic datasets. Due to the vast amounts of historic datasets that
are available for team sports, this approach may prove to be successful.

• Create models based on attack and defence player movements in order to gain a
better understanding of their performances when they are facing each other in a
game. This may improve the current work as some teams attacks may be more
effective against some types of defences than others (e.g., a blitz defence may be
more successful against a running attack in American Football). Applying multi-
agent systems and coalition formation techniques to imitate the player movements
and simulate their performances is one example of how to achieve this.

• Basing predictions on tactical set-ups of the teams. This approach would factor
in the formation of the two teams, the style of plays and teams set pieces (e.g., in
football, a team set up in a 4-4-2 formation may have an advantage against a team
in a 5-3-2 formation). For this, an application of Game Theory approaches could
be used to assess different teams tactics against other teams (e.g., Stackelberg
games).

• Analyse the players’ personality, moods, and mental state, in the build-up to games
when making match outcome predictions. This would allow models to consider how
players perform in certain games. For example, certain players may perform better
in the finals of a competition or in fighting against relegation to a lower league,
while other players may “choke” and their performance will deteriorate in these
types of game (Beilock and Gray 2007). Natural Language Processing techniques
(Sebastiani 2002; Manning and Schütze 1999; Collobert and Weston 2008) could
thus be used to monitor pre/post-match press conferences and interviews that
players give. This could also be used to analyse the managers’ confidence levels in
their scheduled pre-match interviews. Another approach could be to monitor the
players’ social media accounts by using sentiment analysis on their online public
posts (Bo Pang, Lillian Lee, et al. 2008). There exist numerous approaches that
aim to leverage social media by means of natural language processing (Farzindar
and Inkpen 2015; Pak and Paroubek 2010). However, some issues that arrive from
this type of analysis such as: not all players show up in press conferences, press
conferences are often pre-prepared and players’ social media accounts are often
controlled by media managers/agents.
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Stekler, Sendor and Verlander (2010) explore a number of problems with prediction
models in team sports and test current models against alternative forecasting methods
(such as experts and the betting market) as well as examining existing biases in the
models. Furthermore, (S. Ganguly and Frank 2018) focus their attention on problems
when predicting teams’ win probabilities (many of the works we have evaluated use win
probabilities). Firstly, the authors suggest that win probabilities lack sufficient context,
and the models should respond to in-game factors such as injuries. Next, it is suggested
that the current win probability models should incorporate a level of uncertainty due
to the many possible events and scorelines that make up the match outcome. Finally,
they explore the “what-ifs” in sports games and use these to model the “alternative
outcomes”. For example, what if a teams star player gets injured in the first half of a
game - how would this affect the outcome? Modelling match outcome problems in this
way allows for the discussed issues to be addressed and could lead to more accurate
predictions.

2.5.2 Strategic and Tactical Decision Making

There are many key decisions and complex tasks in team sport, these decisions must
consider the many existing uncertainties. Figure 1.1 outlines a number of decision-
making processes, how they link together and how they are evaluated through feedback.
This process diagram gives a framework for the areas where future work to improve the
decision making in team sports can occur. The first of these processes is the recruitment
of players through transfers and trading. Clubs make large investments into players who
they believe will improve their teams. However, an issue with this is that when a new
player signs for a team there is no guarantee he/she will perform to the levels expected
for the cost. This presents us with the challenge of being able to use AI to successfully
predict what impact new players will have on the team. This could save teams millions
on transfer fees and wages for players who fail to live up to expectations as well as
helping clubs to identify undervalued players. We also explored how AI could be used
to improve and aid the scouting process, where information is gathered about players.
Clubs have limited resources both for scouts time and money, therefore this presents
an optimisation problem where AI techniques could be used to improve this process for
teams. We can use techniques that learn from imperfect classifiers to improve scouting,
such as those shown in (Simpson et al. 2013). These techniques provide a platform to
combine humans scouting ability with machines to provide more accurate reports on
players.

Some questions remain in team selection and tactical decision-making. Some more
recent work has explored how individuals impact a team in papers such as (Alcorn 2018;
Power, Cherukumudi, et al. 2019). In these papers, players performances are simulated
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in different scenarios to give a comparison. This type of analysis could be built on in
all sports to identify the impacts that the individuals have within the complex team
systems. Coaches could use this to identify how changes in their style of play, with their
current set of players, would affect the performance of the team. Simulations could also
be used for player recruitment as potential new players could be simulated to show how
they would perform in a new team.

Applications of Game Theoretic approaches such as Stackelberg Games could be used
for tactics in team sports, to create strategies and tactics that maximise the rewards in a
game and improve the chances of exploiting weaknesses in opponents teams. Finally, AI
techniques could be used to optimise the training process to help players reach their full
potentials. This is especially the case for youth players who may be at a club from an
early age and where there are a number of decisions that need to be made to help them
(e.g., should he/she be sent out on loan and should he/she play in the first team). Using
AI to support these decisions could ensure that the best development path is selected
to find the optimal results of that individual player.

The decision-making processes within team sports present interesting computational
challenges for AI due to the number of existing uncertainties at every stage. These
challenges can help us to understand and model the complex systems within team sports
and apply novel techniques using AI.

2.5.3 Fantasy Sports

To be successful in fantasy sports there are many real-world and in-game factors that
must be considered. These include: team formation and player point prediction, chang-
ing strategies based on other competitors teams, predicting the values of players so the
total value of the fantasy team is maximised, and modelling the risk of the fantasy team
so that profit-making strategies can be created for DFS.

Matthews, Ramchurn and Chalkiadakis (2012) and (Landers and Duperrouzel 2018) are
two examples of the small amount of academic literature which use ML techniques and
team formation optimisation in fantasy sports. The team formation methods that are
used in (Matthews, Ramchurn, and Chalkiadakis 2012) can ensure that optimal teams
are formed based on their player predictions whereas, in (Landers and Duperrouzel
2018) a brute force method is used for team formation. Therefore, the application of
the techniques used by Matthews and his co-authors for team formation would provide
value in other fantasy competitions (especially DFS where the team formation is vital
for the single game-week). This could have a big impact on fantasy sports in American
Football due to the size of the market and the amount of extra performance data that
is available. As well as applying new team formation methods, other machine learning
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feature sets and techniques could also give new results and comparisons. For example,
using time-series analysis on prior game performances would be a novel feature-set to test
which may give an accurate representation of the players form and give more accurate
points predictions.

As well as the methods that we have described for player points prediction and team
formation optimisation, there are a number of other open areas within fantasy sport.
Firstly, creating and running fantasy teams presents human-machine interaction chal-
lenges where a mixture of human knowledge and AI-based optimisation could be used
to improve human performance. For example, it may be worth studying the effects of
using an AI-based team formation approach with human player performance predictions
and vice-versa. This would allow us to evaluate what parts of fantasy sports games are
skill and what is down to chance and luck. This is especially important in the USA due
to restrictions on gambling (Boswell 2008).

Finally, in DFS competitions, multiple teams can be entered into the same league by a
single competitor. Meaning that a portfolio of teams can be entered to maximise the
chances of winning. By modelling the risk and uncertainties of players points different
teams can be formed at different levels of risk, meaning that the fantasy team should
contain “higher risk” players that other competitors may have been overlooked by other
players in that league. By entering a portfolio of teams at different risks, competitors
can create strategies that maximise their chances of generating a profit while avoiding
selecting teams that other competitors in the league may have picked. This type of
strategy is discussed in (Haugh and Singal 2018) and could be supported by AI work
using a stochastic optimisation approach (Ermoliev and Wets 1988) and ideas from
portfolio risk management strategies (Dunis et al. 2016).

2.5.4 Injury Prediction

Sports injury prediction is an area where almost no literature exists in the AI commu-
nity. Therefore, further work should be focused on applying machine and deep learning
techniques to the data that can be obtained from sports teams. The developed models
should highlight players who are likely to get injured in a given training session or a
competitive match. To build these models it would be important to use the expertise of
the doctors and physios at the clubs to identify what new approaches and features could
be used when predicting injury as well as collecting as much data as possible even if this
needs to be shared amongst clubs to make players safer. It would be key for these studies
to focus on muscular and similar injuries that could be prevented by changes in training
load and other variables. It is worth noting that an approach to predicting injury may
need to be more granular as different features cause different injuries. Therefore, some
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methods may be better at identifying different injuries to different body parts (e.g., a
single model to predict hamstring tears in footballers would be very beneficial).

There are many papers that suggest Acute:Chronic Workload Ratio (ACWR) and in-
juries are related and this variable could be used in a predictive model. It is worth
noting however that Bornn et al. (2019) suggest that the value of ACWR may have
been over-estimated by other papers. It would be almost impossible to predict injuries
inflicted by opposition players in contact. However, models such as (Kelly et al. 2012),
are used for contact injuries to aid the medical staff in sports teams and help improve
their responses by providing information quickly from sensors. If prediction models for
injuries were proved to be successful they would become a vital tool in the sporting world
due to the economic and performance-based benefits that they would lead to (e.g., the
financial benefits discussed in the JLT annual injury report).3

2.6 Research Questions

In the previous section, we discussed the open research areas that have been exposed
from our review of the current literature. From this we identify the following research
questions that will form each chapter in this thesis:

• Optimising Short-Term and Long-Term Team Strategy in Football: Chap-
ter 3 will explore how AI and game theoretic techniques can be used to optimise the
tactics selected by the manager in football games that can maximise the chances
of winning a game or avoiding defeat. We identified this as a research topic using
the framework presented in Figure 1.1 and saw an opportunity to research the use
of game theory for the selection of tactics in football which has yet to be explored
in great detail.

• Learning The Value of Teamwork to Form Efficient Teams: In Chapter
4, we research how we can extract the value of teamwork from sports teams and
present a novel model for forming teams based on maximising the overlapping
teamwork between pairs of players. This area was identified again from the decision
making aspect of sports as we aim to drive more insights into human teams and
then give ways of using this information to improve the chances of winning games.
Our work in AAAI-20 Beal, Changder, et al. 2020 was the first to extract the
value of teamwork in sports games and has helped to build a new area of research
already being utilised by professional teams.

• Combining Machine Learning and Human Experts to Predict Match
Outcomes in Football: Our final area of research in Chapter 5 is focused on the
use of NLP techniques to improve the match prediction accuracy. In the previous
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section, we discussed the “glass-ceiling” that exists in sports prediction and we
prose a new method using text data from the media and social media to break
through and learn from previously unexplored datasets. This helps learn more
human context that may be missed by traditional data.

The first of these is expanded on in the next chapter which will focus on “Optimising
Short-Term and Long-Term Team Strategy in Football”.





Chapter 3

Optimising Short-Term and
Long-Term Team Strategy in
Football

In this chapter, we present a novel approach to optimise tactical and strategic decision
making in football both for individual matches and in the long-term across a season.
We model individual matches as a multi-stage game compromised of a Bayesian game
to model pre-match decisions and a stochastic game to model in-match state transitions
and decisions. We then model teams’ long-term objectives for a season and track how
these evolve to give a fluent objective to guide decision-making. We also present a
method to predict the probability of game outcomes and predict the final outcome of a
season to monitor long-term objectives. Empirical evaluation using real-world datasets
from 760 matches shows that using optimised tactics through Bayesian and stochastic
games, increases the chances of a team winning an individual game by 16.1% and 3.4%
respectively. We also show that by using optimised tactics with our fluent objective and
prior games, we can increase a team’s mean expected finishing distribution in the league
by up to 35.6%.

3.1 Introduction

Many real-world settings can be modelled as games involving opposing teams of play-
ers. In these types of games, each team optimises its tactical decisions to maximise its
expected outcome (e.g., to win points, trophies, or control over resources). Examples
include politics where teams of politicians aim to win an election as a party (Snidal
1985) and security where teams of agents schedule their rota to protect facilities against
attackers (Paruchuri et al. 2008; Shieh et al. 2012). In the simplest case, such games
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can be simple one-shot interactions (e.g., elections or a quiz competition) while in more
complex cases (e.g., league games or military conflict scenarios), such encounters are re-
peated with teams of agents aiming to optimise their long-term performance over a series
of inter-related multi-step games (i.e., each game may involve multiple rounds of inter-
action), where one game’s outcome feeds into the next one and so on. In this chapter,
we focus on a model for such games and the long-term optimisation of decision-making
in team sports, specifically on games of football. Here, the availability of real-world
datasets presents a unique opportunity for game theoretic techniques to be developed,
validated, and applied in the real-world. Across team sports, real-world data is avail-
able over long periods of time, about the same individuals and teams, in a variety of
environmental contexts, thereby creating a unique live testbed for our techniques.

In football, tactical decisions may include assigning positions to players, composing a
team, and reacting to in-game events. Such decisions have to be made against significant
degrees of uncertainty, and often in very dynamic settings where a range of factors can
influence performance (e.g., health of players, mood of the team, weather, location of
games). Football presents us with an interesting challenge where a team of human agents
compete against other teams of agents across long periods (usually up to 8 months) and
the success of teams is not only judged in individual games but how they perform over
a season in a league format. Leagues are made up of a set of teams that play every
other team twice, both home and away. Teams are awarded points based on winning,
losing or drawing and at the end of the season teams are awarded prize money and other
incentives based on their points gained in comparison to all other teams in a league
rankings/standings.

Prior AI research in team sports, and specifically football, has focused more on the
contribution of individual agents within a team (Decroos et al. 2019; Beal, Changder,
et al. 2020). However, to date, there is no formal model for the tactical decisions to
improve a team’s probability of winning and how these can be optimised in the longer
term. There are a number of tactical decisions that are made both pre-match and during
the match that are often made through subjective opinions (Andrienko et al. 2019).

In this chapter, we propose a formal model for the game of football and the tactical
decisions that are made in individual games. We model the decisions made in football
as a 2-step game: a Bayesian game into a stochastic game (Shoham and Leyton-Brown
2008). Our Bayesian game is used to represent the pre-match tactical decisions that are
made due to the incomplete information regarding the tactical choices of the opposition.
We then use a stochastic game to model the in-match tactical decisions based on the
different states that unfold during a game of football. This to our knowledge is the first
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model to exploit AI decision making that is trained and tested on real-world datasets
over long periods of time.1

We also propose a formal model for optimising the long-term performance of football
teams. We assess how they can add more context to their decisions and learn from other
games that unfold in the league. We introduce the novel notion of a fluent objective
which is a long-term objective of the agent that may change over time. We stress that
these variables can take the form of a broader goal (e.g., initially a team aims to finish
in the top 4 of a league but after a good start this changes to aim to win the league). We
use Markov chain Monte Carlo simulations to set achievable objectives that add more
context to the tactical decision-making process within individual games. We also take
inspiration from observational learning literature (Borsa et al. 2019; Bandura 2008; Jang
and Cho 1999) to learn which tactics are most effective from other games that happen
in the league.

Together these models for both individual matches and long-term decision making allows
us to learn the impact of given decisions on increasing the probability of winning a game.
This allows us to optimise the decisions that are made by a team and to identify tactical
decisions that boost the chances of winning. As the season progresses, teams learn more
about their upcoming opponents as they play more games — we encapsulate this into
our model. We validate and test our models and algorithms on data from real-world
matches. We show that our pre-match and in-match tactical optimisation can boost a
team’s chances of being successful and finishing higher in a league. We also show that we
can use machine learning effectively to learn the match outcome probabilities based on
the tactical decisions and accurately predict in-play state changes (the game scoreline).
Thus, this chapter advances the state of the art in the following ways:

1. We propose a novel model for the game of football and the tactical decision-making
process for optimising the long-term performance of human teams.

2. Using real-world data from 760 games from the past two seasons of the English
Premier League (EPL), we propose a model for different team actions and learn
scoreline transitions. In particular, we show that we can predict goals being scored,
which leads to transitions in game-states, with an accuracy of up to 90%. We also
show we can accurately predict the decisions that the opposition make which allow
us to pick better tactics that are more likely to be successful.

3. We set a fluent objective based on accurate league simulations and further improve
individual game payoffs by using knowledge from prior games. In particular, we

1This chapter expands on the models of two earlier papers (Beal, Chalkiadakis, et al. 2020; Beal,
Chalkiadakis, et al. 2021), showing how to couple the two models and with additional experiments to
demonstrate the value of the combined model.
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show that we can increase teams’ finishing position at the end of a season on
average by up to 2.9 ranks (out of 20).

4. By learning payoffs, we can optimise pre- and in-match tactical decisions to im-
prove the probability of winning a game by 16.1% and 3.4% respectively.

5. Using a fluent objective and prior game knowledge we can show an increased
probability of improved long-term performance of football teams (by up to 35.6%).

When taken together, our results establish benchmarks for a computational model of
football and data-driven tactical decision making in team sports. They show that by
looking ahead and thinking about long-term goals, teams can add more context to the
tactical decisions that are made for individual games and thus are more likely to achieve
the long-term objectives that they have set. Furthermore, our work opens up a new
area of research into the use of these techniques to better understand how humans make
decisions in sport.

The rest of this chapter is organised as follows. In Section 3.2 we outline the background
to tactical optimisation. Section 3.3 defines the model for single-game optimisation and
in Section 3.4 discusses the model for long-term optimisation across a season. Section
3.5 discusses how we solve our models for the game of football and we perform a number
of experiments in Section 3.6. Finally, in Section 3.7 we discuss our findings and Section
3.8 summarises.

3.2 Background and Related Work

In this section, we review key-related literature around applications of game theory to
real-world problems, we also give an overview of football tactics and show how they
influence the outcomes of games and performance across a season.

3.2.1 Modelling Real-world Strategic Interactions

Several works have modelled strategic decisions in a number of real-world applications
using Bayesian and stochastic games. For example, Synnaeve and Bessiere (Synnaeve
and Bessiere 2011) use Bayesian modelling to predict the opening strategy of opposition
players in a real-time strategy game, StarCraft. Work in (Paruchuri et al. 2008) focuses
on Bayesian Stackelberg games, in which the player is uncertain about the type of the
adversary it may face and in (Shieh et al. 2012) the authors present a game-theoretic
system deployed by the United States Coast Guard in the port of Boston for scheduling
their patrols.
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In (Chen et al. 2013), a model is developed for strategies in two-player stochastic games
with multiple objectives explored for applications in autonomous vehicle stopping games.
This paper shows one of the first applications of multi-objective stochastic two-player
games. Another example of a model for stochastic games is shown in (Kardeş, Ordóñez,
and Hall 2011) which shows the use of discounted robust stochastic games in a single
server queuing control. Finally, work in (Avsar and Baykal-Gürsoy 2002) models the
problem of inventory control at a retailer, formulating the problem as a two-person
nonzero-sum stochastic game.

The work we present in this chapter uses real-world data for a real-world problem cre-
ating a model that can feed optimised strategies from a pre-match Bayesian game into
an in-match stochastic game (Shapley 1953); to the best of our knowledge, this is the
first time such an intertwining is proposed in the literature.

3.2.2 Modelling Long-Term Decision Making

Here we review previous work that has looked at optimising strategic decisions with
long-term objectives. Our model of fluent objectives is inspired by these works. The
model described in (Ranganathan and R. Campbell 2003), enables context awareness to
help build context-aware applications. Similarly in our model, we aim to gain context of
performance in terms of league standing which is determined by the performance of our
team and the others in the league competition. This can help us make decisions based
on the rewards in the league standings which determine prize money and winnings at the
end of the competition. An example of a similar model is presented in (Sim and Choi
2003). Here, agents react to the situations presented by the ever-changing variables in
the stock market.

In our work, we consider how agents learn from prior games to gain a better understand-
ing of what tactics work against their opponents. This is closely related to the work
presented in (Borsa et al. 2019), where the authors explore the notion of “observation
learning” which is a type of learning that occurs as a function of observing, retaining
and imitating the behaviour of another agent. This applies to football as if we observe
another team perform well against another opponent then we may want to imitate their
tactics to help us to win.

3.2.3 Decision-Making in Sport

Past work in the sports domain focus on tactics and looking at game-states in football.
Firstly, work in (J. Jordan, Melouk, and Perry 2009) explores different risk strategies for
play-calling in American Football (NFL). Although game theory has not been applied
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to football tactics in prior work, in (Tuyls et al. 2021) the authors discuss the use of
game theory for penalty-taking in football (a free shot against a goalkeeper). Secondly,
(Fernández, Bornn, and Cervone 2019) provides a model to assess the expected ball
possession that each team should have in a game of football, this can be used to identify
where teams can make changes to their styles and to improve their tactics. Another
application of learning techniques in football is shown for fantasy football games in
(Matthews, Ramchurn, and Chalkiadakis 2012) and for the RoboCup competition in
(Stone and Sutton 2001; Stone, Sutton, and Kuhlmann 2005).

To give more background around these papers and the problem we are looking to solve,
in the next subsection, we provide an overview of football tactics and their importance
to the game.

3.2.4 Football Tactics Overview

The basic foundations of sports and football tactics are discussed in (Gréhaigne, God-
bout, and Bouthier 1999; Bate 1988) and applications of AI is discussed in (Beal, T.
Norman, and Ramchurn 2019). There are multiple tactical decisions that a coach or
manager must make before and during a game of football. These can have a signifi-
cant impact on the overall result of the game and can help boost the chance of a team
winning, even if a team does not have the best players. Managers and coaches prepare
for their upcoming matches tactically to the finest details, usually by using subjective
opinions of their own and opposition team/players. Example pre-game decisions that
are made by teams include:

• Team Style: A team playing style is a subjective concept that relates to the
team’s overall use of different playing methods. There are many different styles
that a team can use but these can be analysed using game statistics and similar
styles can be identified.

Style Description
Tika-Taka Attacking play with short passes.
Route One Defensive play with long passes.

High Pressure Attack by pressuring the opposition.
Park The Bus A contained defensive style.

Table 3.1: Example Playing Styles.

• Team Formation: The formation is how the players are organised on the pitch.
There is always 1 goalkeeper and 10 outfield players who are split into defenders
(DEF), midfielders (MID) and forwards (FOR). An example of a formation is 4-4-
2, this represents 4 defenders, 4 midfielders and 2 forwards. Figure 3.1 shows how
this is set up on the pitch (attacking in the direction of the arrows).



Chapter 3 Optimising Short-Term and Long-Term Team Strategy in Football 53

Figure 3.1: Example Team Formation (4-4-2).

• Selected Players: The selected players are the 11 players that are selected to play
in the given starting formation or selected to be on the substitute bench (between
5-7 players). Some players may perform better in different styles/formations or
against certain teams.

In terms of the in-game decisions that are made, one change that can be made is a
substitution (other examples include tweaks to the style and formation). To optimise
how this substitution is made, we can model the in-game decisions as a stochastic game
and look to make optimised substitutions that increase the probability of scoring a goal.
This can help teams to improve their chances of winning games by making the right
decision at the right time.

Due to the number of decisions that can be made by teams in football, there are many
uncertainties both in what the opponent may do and on how the decisions made may
affect the overall outcome of the game. In this chapter, we aim to address these uncer-
tainties by predicting what the opposition will do and how we should respond. In the
next sub-section, we discuss how these tactics are important in the long term as well as
for individual games.

3.2.5 Long-Term Football Tactics

In football, each game has an impact over a long period of time and on the overall league
standings. The final league standings is the final position of all teams in a league based
on the points they have gained over an N game season. In a standard football league
(e.g., English Premier League (EPL) or German Bundesliga), across a season, each team
plays each other twice (once home and once away) a win is worth 3 points, a draw 1
point and a loss no points. There are significant intrinsic and financial gains to be made
by finishing higher up the table and there are certain milestones that teams aim for to
boost their success such as qualification for European competitions.2

2http://eightyfivepoints.blogspot.com/2018/03/show-me-money-how-much-is-each-premier.html.
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The season is often broken down into given “game-weeks” where all teams play a game
within the week. We can therefore break down the season into these game weeks as
incremental steps in a game. In each week our team plays a game and some other games
also take place. Therefore, we want to maximise a team’s performance in their game
and learn from other games for the future when we play those teams (see Figure 3.4).

In this chapter, we aim to model teams tactical decisions not only in single games but
also based on the overall league environment and use fluent objectives to add context
to our decisions and prior games’ knowledge to replicate the successful tactics used by
other teams. This allows us to optimise the long-term performance of teams and improve
their league outcome.

3.3 A Formal Model for the Game of Football

We model the tactical decisions that are made in individual football matches into two
parts (shown in Figure 3.2). First, we model the pre-match tactical decision-making
process as a Bayesian game, taking into account the fact that each team has incomplete
information regarding the opposition’s tactical decisions before the game begins. Second,
we model the in-match decisions as a stochastic game due to changing states of a game
of football as the game progresses (see Section 3.3.2 for more details on the states of the
game). We use the Bayesian into a stochastic game model as a framework to conduct
learning in, rather than to solve for equilibria. This is because we have a dynamic
setting with multiple sources of uncertainty, where opponents change for every instance
of the game. In this context, solving for some kind of equilibrium is impractical, but
opponent types and probabilistic transitions among states that represent scorelines given
formation and style are natural in this problem. As such, our Bayesian and stochastic
game framework provides a natural model to facilitate learning in this domain.

Bayesian Game
(Pre-Match Tactics)

Stochastic Game
(In-Match Tactics)

Figure 3.2: Football Game Model

3.3.1 Pre-Match Bayesian Game

We define a Bayesian game consisting of two teams T = {Tα, Tβ} where Tα is the
team whose actions we are optimising and Tβ is the opposing team. Each team has a
corresponding action set a ∈ Aα and a ∈ Aβ that are sets of one-shot actions describing
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tactical choices before the match (e.g. some action a may represent selecting the team
formation or selecting the starting team).3

Each team may select a type Θ. We define this as θα and θβ where θ ∈ Θ. These types
correspond to the style of football that an opposition is likely to use (e.g., tika-taka,
route one or high pressure). To select better tactics a team must predict an opposition
type and actions. This is the teams’ prior beliefs about a team which in this case is
the probability that the opposition will play a given formation and style combination.
Our prior belief probability function is defined as p(aβ, θβ) ∈ [0, 1] which represents the
probability that a team Tβ will select a given action aβ (a team formation) and the style
θβ.

The payoff function in our game is used to represent the probability of gaining a positive
result from a game based on the selected actions, as well as the type and prior beliefs
of the opposition. We calculate the probability of a win, draw or loss for a team and
weight these based on their impact on league points. A win is weighted to 3, a draw to 1
and a loss to 0. The payoff utility function is then defined as u(aα, θα|aβ, θβ)) ∈ R. This
represents the payoff (weighted sum of result probabilities) based on the teams selected
actions (aα,aβ) and their style (θα,θβ) where a ∈ A and the type is θ ∈ Θ. We therefore,
define our Bayesian game as:

GB = (T,A,Θ, p, u) (3.1)

We assume that neither team knows the other’s tactics, but both have access to data
from previous games. This data can be used to predict the likely style and formation that
a team will use. A team looking to maximise their chances of winning a game would
select the action set of decisions and style which maximises the payoff function and
therefore gives the greatest probability of winning a game. However, there are multiple
strategies that we can take to optimise the selected decisions depending on the state of
the team in the real world (e.g., league position, fighting relegation, a knock-out cup
game etc). Therefore, we present three approaches to optimising the selected tactics:

• Best Response: maximises the chances of a win.

argmax
aα,θα

{ ∑
a1∈Aα

∑
a2∈Aβ

u(a1, θα|a2, θβ) · p(a2, θβ)
}

(3.2)

where, Aα and Aβ are the set of actions that team α and β can take respectively.
We aim to maximise the sum of payoffs u multiplied by the probability of the
opposition selecting the action a2 and style θβ. This approach has the highest risk
as we are not considering the opposition payoff, we just select the best payoff for
ourselves.

3A full list of the symbols used in this chapter can be found in the appendix.
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• Spiteful Approach: minimises the chances of losing.

argmin
aα,θα

{ ∑
a1∈Aα

∑
a2∈Aβ

u(a2, θβ |a1, θα) · p(a2, θβ)
}

(3.3)

where, we aim to minimise the sum of the payoffs u for the opposition team
multiplied by the probability of the opposition selecting the action a2 and style θβ.
By reducing the chances of the opposition winning the game, this increases the
chances of a draw or a win for our team. This approach is likely to select tactics
which are more reserved and defensive to increase chances of a draw as we do not
consider our payoff, instead we are selecting the payoff that limits the opposition.

• Expectimax Approach: In this approach we find the tactics that maximise
the chances of winning the game but also minimise the chances of the opposition
winning a game.

argmax
aα,θα

{ ∑
a1∈Aα

∑
a2∈Aβ

(u(a1, θα|a2, θβ)− u(a2, θβ |a1, θα)) · p(a2, θβ)
}

(3.4)

where, we aim to maximise the sum of the payoffs u for team α while also min-
imising the sum of the payoffs u for the opposition team. This is weighted by the
probability of the opposition selecting a2 and θβ.

The different optimisation approaches allow teams to select the tactics which are best
suited to their risk levels which may be dependant on the overall position of a team in
a league or the individual game scenario. The pre-match decisions that are made by
the team are then used as their pre-match tactics which feed into the stochastic game
defined next sub-section.

3.3.2 In-Match Stochastic Game

As a game of football progresses the game changes state in terms of the scoreline, in turn
changing the objectives for either team. If a team is winning they may make defensive
changes to ensure they win the game and if a team is losing they may make attacking
changes to get back into the game. Due to these state changes, and football being a
repeated game, we model the in-game tactical decisions as a stochastic game (Shapley
1953). A stochastic game is a tuple, in our case, this is defined in Equation 3.5.

In our stochastic game, we define the two teams as T = {Tα, Tβ} where Tα is the team
whose actions we are optimising and Tβ is the opposing team. We have a set of states
X which represent the different possible scorelines in a game starting at 0-0 (where the
left number represents the home team goals and the right number represents the away
team goal). Each team has a corresponding set of strategies σ(x) at each of the different
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Figure 3.3: An example of a state-transition diagram in a match with 2 goals being
scored and the different routes that can be taken through the states. The highlighted

route shows the transitions for a match ending 2-0 to the home team.

states x ∈ X. The strategies represent the current team formation, players and the style
of play. At the starting state, x0 (0-0) the team strategies correspond to the selected
actions from Aα and Aβ defined in the Bayesian game in the previous section.

Given the selected strategies of the two teams and the current state (x) we can calculate
the probability of a transition (π) into another state x′. This is defined as π(x′|x, σα, σβ)
where σ is the strategy of each team in state x. In the case of football, from each state,
there are only two possible states that can be moved to. These will be transitioned by
a goal for the home team or a goal for the away team. The other probability we will
have to consider is that the state will not be changed for the remainder of the match.
In this problem, the length of the game (t) is known (90 minutes + injury time) and
therefore the probability of state changes will change as the remaining time of the game
decreases. The utility function u(x, σα, σβ) for this game equates to the probability of a
transition into a more positive state (e.g., a team scoring in a 0-0 state to move into a
1-0 state or a winning team (1-0) staying in that state for the remainder of the match
time). Given these definitions, we define our stochastic game as:

GS = (X,T, σ(x), π, u) (3.5)

Each team aims to move to a more positive state than they are currently in. They
make decisions to improve the probability of moving to the more positive state based
on their strategy σ(x). The state changes based on goals in the game, Figure 3.3 shows
the possible transitions in a game with two goals.
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In the next section, we discuss how we model long-term decision making and how we can
factor in the consequences of our decisions in a wider environment and how this affects
the outcome of the league.

3.4 Modelling Long Term Team Performance

In this section, we discuss how we model the long-term performance of football teams
over a season and identify how we can use fluent objectives and learn from games to
optimise the long-term performance of a team. At the start of a season or competition,
a team will have a target. Across a full season of football in a league competition,
there are many objectives that a team can have to maximise their financial rewards and
reputation. For example, as discussed in Section 3.2.5, in the English Premier League
there is always only one winner but there are also benefits to finishing in the top 4, top 7
and avoiding finishing in the bottom 3. We therefore, model an entire season to optimise
a team’s long-term performance in any league across the world and at any level.

3.4.1 Sequence of Multi-Games Across a Season

In Figure 3.4 we show the structure of our model for an entire season in football. We
build on the multi-step (Bayesian into stochastic) games for optimising single game
tactics that we have outlined in the previous sections. These are designed to help teams
achieve their objectives in an N game season. There is a sequence of steps that we
highlight and show how each one feeds into the next. We also show how a teams’
objective can be fed into the first game which informs tactical decisions as well as what
can be learned from enacting those decisions (e.g., certain tactics that work well against
certain opponents).

Gameweek 1

Game 1

Pre-Match
Bayesian Game

In-Match Stochastic
Game

G1

G2

Gz

...

Gameweek 2

Game 2

Pre-Match
Bayesian Game

In-Match Stochastic
Game

G1

G2

Gz

...

O1

P1

O2

P2

...
ON-1

PN-1

Gameweek N

Game N

Pre-Match
Bayesian Game

In-Match Stochastic
Game

G1

G2

Gz

...

Season (N Games)

O0

Pre-Season
Objective

So

Post-Season
Outcome

Figure 3.4: Sequence of Multi-Games Across a Season
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The objective may change over time, and hence it is a fluent objective; e.g., a team
may initially intend to win the league, but poor outcomes from early games may lead
to the selection of a less ambitious objective. As we show in Figure 3.4, the pre-season
objective is set as O0, this then changes each game-week as the environment around the
team develops, changing to O1 after game-week 1, O2 after game-week 2 and so on until
the final in-season objective the week before the final game of the season N − 1. The
final fluent objective, ON , corresponds to the overall end of season outcome.

We also consider how we can learn from the games that are played as the season pro-
gresses. As we play each game we learn something new, both about what works for a
team and what works against a given opposition based on the actions/style that they
are likely to select. Therefore, we learn parameters from each game that we can carry
forward through each game week and similarly to the fluent objective we update each
week. For example, we may find that when a team uses a given formation against a
certain style of opponent we see better results. As we show in Figure 3.4, this is encap-
sulated by a prior knowledge parameter P , which is updated after each game we play
where P1 is after game-week 1, P2 after game-week 2 and so on.

Finally, we must consider other games that we observe, GN is the set of other games in
game-week N and G = {G1, G2, ..., Gz} where z is the number of other games played in
that week. Within each game week, all other teams also play one another, so that at
the end of the season, each team has played every other team twice (once at home and
once away). For example, in the EPL there are 20 teams in the league and each team
plays 38 games, meaning there are 342 games that may be observed and learned from.
The outcomes of all games affect the relative positions of each team, and hence have an
impact on a team’s fluent objective O. We can also learn what styles and formations
work well or poorly against given teams, informing our prior knowledge P for future
games.

3.4.2 Fluent Objectives in Football

At the start of each season, a team will have some objective for what they are looking
to achieve in the next season. This is decided based on several factors such as previous
season performance and money invested into the team. The goals are usually set by the
owners/directors of the team and are based on their subjective opinions of how their
team should perform and where they should place in the league against the other teams.
The opinions of what the team should achieve then changes over the season which can
drive key decisions such as a change in coach/manager for an under-performing team or
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investing more money into an over-performing team so they achieve a European place
which comes with huge financial gains.4

Our model for the fluent objective can objectively evaluate how we expect a team to
perform over a season and allow teams to change their tactical decision-making based
on this. There are two different objectives that can be set: a more granular objective
of the expected league position and an objective of what could be achieved in terms
of broader incentives in the league (e.g., avoiding relegation or qualifying for European
competitions). In this chapter, we focused on the latter and can define the set of possible
objectives as O = {o1, o2, ..., ok} where k is the number of different objectives. An
example of the set of values that an Ox objective variable can take in the EPL would
be:

• Winning the League (o1): Team who finishes top of the league.

• Qualifying for the Champions League (o2): Top 4 teams, so in this case, the
objective relates to teams finishing 2nd-4th.5

• Qualifying for the Europa League (o3): Another European competition usu-
ally awarded to teams who finish between 5th-7th.

• Top Half Finish (o4): Due to financial benefit teams often aim to finish in the
top half of the table (higher than 10th).6

• Avoiding Relegation (o5): The bottom 3 (18th-20th) teams in the EPL are
relegated into the second division of the English football leagues.

To set the objective we can simulate how we expect the season to unfold and create a
distribution D that allows us to use a Maximum a Posteriori (MAP) estimation (Gauvain
and C. Lee 1994) for the probability of the team finishing in each position. This then
allows us to calculate a set of probabilities for of a team achieving each objective P =
{p(o1), p(o2), ..., p(ok)}. We then set the Oo (for a pre-season objective) as the most
likely objective that can be achieved that season.

This process can then be re-run after each game week is completed to give the fluent
objective O1 to ON−1. Our simulation of the league will include the real results which
will get more accurate as the season progresses and we learn more about each team. At
the end of the season, we can compare O0 to ON−1 to the final outcome ON that the
team achieves. Next, we discuss how we can learn from other games we observe.

4In other settings, these type of objectives could be the defence of a given target or the rescue of a
person.

5https://www.premierleague.com/european-qualification-explained.
6https://www.goal.com/en-gb/news/how-much-money-do-premier-league-2019-20-winners-

get/19jbauady17cw1ieojo40yextz.
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3.4.3 Learning From Prior Games

As well as the fluent objective, we can also improve the tactical decision-making in our
Bayesian and stochastic games by adding prior knowledge P that we learn after each
game we play and observe. In more general terms we aim to observe and learn from
other successful agents and our own actions.7

We can learn a set of weights W that relate to how effective given style/formation pairs
(actions that are made in the multi-step games) that we select in our games are against
given oppositions style/formation pairs. These weights are initially set to 1 and are then
increased if found to be effective and decreased if found to be ineffective. These can be
updated after each game week and also updated from the other games that we observe.
Our prior knowledge parameter (P ) is defined in Equation 3.6.

P =


w11 w12 w13 . . . w1j

w21 w22 w23 . . . w2j
...

...
... . . .

...
wi1 wi2 wi3 . . . wij

 (3.6)

Where w ∈ W and i/j is the number of possible style/formation pairs. The columns
represent the style/formation pair selected by our team and the rows represent the
style/formation selected by the opposition (e.g., wij is how effective our pair i is against
an opposition using pair j).

3.5 Solving the Games and Learning the Models

In this section we discuss the approaches we use to optimise tactics and solve the models
discussed in the previous section. These can be summarised as:

• Pre-Match Bayesian Game: Predicting the actions an opponent will use and
learning the probability of winning a game based on each formation and style a
team can select to be able to optimise the decisions made.

• In-Match Stochastic Game: Learning the probabilities of moving to new states
from each state (e.g., if 0-0 probability of moving to 1-0, 0-1 or staying at 0-0).
Then assessing how each possible action affects the probability of moving to a
more positive state. Using this, the selected actions are optimised to maximise the
chances of positive outcomes of games.

7This could also be applicable in swarms of UAVs or imitating other agents trading in the financial
markets settings.
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• Long-Term Optimisation: To consider the long-term impact of decisions, we
simulate the season to set the fluent objective which is used in the optimisation of
the pre/in-match games. The effectiveness of decisions made are learned based on
other games that unfold in the wider environment.

In what follows, we expand on each game and optimisation in more detail.

3.5.1 Solving the Pre-Match Bayesian Game

For the game GB defined in the previous section, we formulate a model to solve this
and to select the optimal tactics which maximise a team chances of obtaining a positive
outcome from the game.

3.5.1.1 Predicting the Opponent Strategy

When predicting how an opponent will select their strategy, there is limited historical
data for games against them in the past. Therefore, we cluster the teams into different
playing style categories so we can look for trends in how the opposition play against
similar team styles. To cluster the teams, we use a feature set (F) containing the
number of: passes, shots, goals for, goals against and tackles that a team has made.
K-means is used to cluster for |C| clusters using Equation 3.7 which aims to choose
centroids that minimise the inertia, or within-cluster sum-of-squares criterion.

n∑
i=0

min
µj∈C

(||Fi − µj ||2) (3.7)

where, n is the number of teams and C is the set of cluster means µ.

This allows us to evaluate the style of a team and how each cluster aligns with human
expert styles. For example, a team with many passes and many shots may be seen as
a “tika-taka” style team which is an attacking team playing a passing style of football
(e.g., the World Cup winning Spain team from 2010 or Barcelona), whereas a team with
fewer passes and defensive play may have a “route one” style where they look to use
long balls over the opposition defence.

Using the clusters of team styles we can learn the strategies that an opposition uses
against similar teams to then predict what they will do against our own team. To
do this we build a model using a Support Vector Machine (SVM) with a radial basis
function kernel (Scholkopf et al. 1997), shown in Equation 3.8. The algorithm learns
using features F which are made up from the tactics from the prior N games against
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teams from the same style cluster.8

aβ =
C∑
i=1

λiφ(|F −mi|) (3.8)

where, aβ is the predicted oppostion actions, C is the clusters, m is the cluster centres
and λ is the cluster weighting.

3.5.1.2 Learning the Expected Payoffs

To learn the payoffs from historical data we develop a model that uses the team’s tactical
style, potential formation and team strength to give probabilities of a team winning the
game. The set of features that we use in our model are: home team style, away team
style, home team formation, away team formation and then team strengths are calculated
by using the outputs from the model described in (Dixon and Coles 1997) (likelihood
of a home win, draw or away win). The target class (O) is the final result of the game:
home team win, away team win or a draw.

Using these features, we train a multi-class classification deep neural network. The neural
network is trained using stochastic gradient descent using a categorical cross-entropy loss
function and a soft-max activation function (− 1

N

∑N
i=1 log p[yi ∈ Oyi ]). Where, N is the

number of games that we are using to train the model and p[yi ∈ Oyi ] is the models’
probability that yi is in the class O. This model takes the given teams, possible playing
styles and possible formations to give a probability of winning, drawing or losing the
game. Finding and selecting optimised tactics is discussed in the next subsection.

3.5.1.3 Optimising Pre-Match Tactics

Once we have a model that learns the expected payoffs from the different possible actions
(by ourselves and the opposition), we then look to find the best actions/decisions to
make, i.e., those which maximise the chances of gaining a positive outcome in the game.

We use the methods that we discussed in Section 3.5.1.1 to predict the actions and style
that an opposition is likely to select. Clustering methods are used to find their most
likely tactical style θ and then the formation prediction model to give the formation with
the highest probability of being selected. The predicted opposition style and formation,
are used to explore our possible actions and select the best tactics. Table 3.2 shows
the payoffs for the different actions that we can take (when facing a given opposition
formation and style). Here, θ corresponds to a given style we are able to play in (x

8Our testing found that N = 5 prior games was optimal for the accuracy of predicting the true
strategies used by the opposition.
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possible styles), a corresponds to a given formation (y possible) and then p(outcome|θ, a)
is the probability (output from the model discussed in Section 3.5.1.2) for the outcome
of the game given the selected style and formation. The payoff for the team is the
weighted sum of win and draw probabilities and these values are pre-computed so that
we can then use the three approaches defined in Section 3.3.1 (Best Response, Spiteful
and Expectimax) to optimise the tactical decisions that we can take depending on the
opposition. In the next sub-section, we discuss how these tactics can be taken into the
game and changed depending on how the game unfolds.

θ1 . . . θx
a1 p(outcome|θ1, a1) . . . p(outcome|θx, a1)
a2 p(outcome|θ1, a2) . . . p(outcome|θx, a2)
a3 p(outcome|θ1, a3) . . . p(outcome|θx, a3)
...

... . . .
...

ay p(outcome|θ1, ay) . . . p(outcome|θx, ay)

Table 3.2: An example payoff table for a team who can have a tactical style of θ1 to
θx and a given formation a1 to ay.

3.5.2 Solving the In-Match Stochastic Game

Optimised strategies for our in-match stochastic games GS are computed using historical
data of the team tactical setups (style and formation as discussed in the previous section).
By using our models for GS we learn the state transition probabilities (π) and evaluate
how certain tactical actions will affect this and therefore learn the action payoff values.
This allows teams to make in-match decisions that can boost their chances of staying in
a positive state or moving into a more positive state by scoring a goal. An example of
this problem is shown in Figure 3.3. This is expanded on in the following subsections.

3.5.2.1 Learning the State Transition Probabilities

Prior work by Dixon and Robinson (Dixon and Robinson 1998) models how the rate of
scoring goals changes over the course of a match. Their model incorporates parameters
for both the attacking and the defensive strength of a team, home advantage, the current
score and the time left to play. They show how the scoring rate tends to increase over the
game but is also influenced by the current score. They then use their model to find the
probability that the game will end in a given state which can be used for match outcome
prediction and goal-time prediction. We take inspiration from the model presented by
Dixon and Robinson to learn the state transition probabilities (π) that we need to use
in our stochastic game.
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To learn state transition probabilities we build a new model at each game-state that will
give the probability of each of the possible outcomes from that state (home goal, away
goal, no goals). We use a feature set made up from the team strength, the teams’
formation and style are taken from the Bayesian game (in this game we know our
oppositions tactics and style but not the in-match actions they may take). For our
model (φ) we use the SVM classification model (with an RBF kernel) described in
Section 3.5.1.1 and Equation 3.8. Also, π is the transition probability of moving from
state x to state ′x and F is the feature set. This means πx,x′ = p(x → x′) = φx(F)
giving a prediction model for each of the possible states x ∈ X the game could be in.

3.5.2.2 Learning the Action Payoffs

We build on the models discussed in the previous section to include new features into
the feature set F to model the effect of in-match decisions such as substitutes. The
first feature we use is a measure of a player’s contribution to the team, which represents
the impact of a new substitution on the pitch. This allows us to calculate the payoff
of the action (substitute) so that we can make an optimised decision at a given point
in the game. To calculate the contribution of the players on the bench we use the
centrality metric that is discussed in (Beal, Changder, et al. 2020). This metric gives
the importance of a player to the overall team network. We also use the remaining
match time as a feature so we can see how long an action has to make an impact on the
game. These features are used to update Equation 3.8. The payoff of each action is the
transition probability of moving to a more positive state (e.g., if a team is winning 1-0 it
is the probability of making it 2-0 or if a team is losing 3-0 it is the probability of making
the game 3-1). The computed payoffs are used to optimise our in-match decisions which
are discussed in the next subsection.

3.5.2.3 Optimising In-Match Tactics

Assuming the standard rules of football, each team can make up to 3 substitutions in
a game (these can be one at a time or all at once) and has 7 players to choose from,
meaning there are 64 combinations of actions (including doing nothing) that we can take
at each game-state. We pre-compute the payoffs for each of these possibilities and then
select the optimised action to take. Depending on if the team wants to remain in or
move to a better state, we can optimise the actions by using two different approaches:

• Aggressive approach: Choose the action that maximises the probability of mov-
ing to a more positive state.
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• Reserved approach: Choose the action that maximises the chances of staying
in the current state (if winning).

3.5.3 Calculating the Fluent Objective

In this section, we discuss how we simulate seasons, calculate the fluent objective, and
how this can be used to optimise game tactics.

3.5.3.1 Simulating Season Outcomes

When we simulate the season outcomes and calculate the distributions of where we
expect the team to finish we must predict all remaining games in the season for both
our team and all other teams in the league. To do this we use the match prediction
model which is defined in Section 3.5.1.2. To simulate the remaining games of the
season, we use the real-world fixture list and predict the outcome of each game. We find
the probability of a home win, away win and draw and use a Monte Carlo Markov chain
simulation (Mooney 1997) to simulate all remaining games and the total points that
each team will gain (3 points for a win, 1 for a draw and 0 for a loss). This works well
as it emulates the randomness that we see in real-world football games. We repeat this
process 100,000 times for each simulation which allows us to derive a distribution for
the probability that a team will finish in each place in the league in the final standings.
An example distribution is shown in Figure 3.5.
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Figure 3.5: Example League Outcome Probability Distribution.
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3.5.3.2 Setting the Fluent Objective

Once we have calculated the distributions of possible place outcomes from the MCMC
simulation, we use this to find the most likely objective outcome that can be used to
update our fluent objective. More specifically, we use a Maximum a Posteriori (MAP)
estimation (Gauvain and C. Lee 1994) to set the fluent objective. To do this, we can
use the posterior distribution to find interval estimates of the final position for the team
in the league. We use the position intervals for the objectives discussed in Section 3.4.2
and can find the ok ∈ O that maximises the posterior PDF. This then sets the objective
On that is used in game-week n and is updated after each game week. In the real
world, decision makers may want to set their own objective depending on their own risk
appetite.

3.5.3.3 Optimising Tactics using the Fluent Objective

Once we have set the fluent objective we can now use this when optimising the team
tactics in the multi-step game for optimising individual game tactics in that game week.
In the pre-match Bayesian game outlined in Section 3.3, we select the optimisation
method depending on whether the team is on track for their objective or not. This is
process is outlined in Figure 3.6.

Yes

No

Achieving Objective?

Best Response

Yes

No

Over Achieving?

Spiteful

Expectimax

Figure 3.6: Selecting Bayesian Game Optimisation Method

In terms of the in-match stochastic game, two options can be selected when making
in-match decisions. The aggressive approach is used if we know that the objective is to
win, and the reserved approach is set if a team is winning/drawing and is happy with
their current state.
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3.5.4 Learning From Previous Games

In this sub-section, we discuss how we can learn from prior games that all teams in
the league play. This allows us to find formation/style combinations that work best
against a given formation/style combination that an opposing team may use. To do
this we learn a matrix of weights P that corresponds to estimated successes of the
formation/style combinations. To estimate each of the weights w ∈ P we factor in both
the games that we have played as well as the games that we have observed. Each weight
w corresponds to how effective a given formation/style combination is against a given
opposition formation/style. These are computed using a weighted average shown in
Equation 3.9 where the games won while using the formation/style (x) against the given
opposition formation/style (y), both in games played by a team (first fraction) and in
other observed games in the league (second fraction).

wxy =
(
µ1

games won
games played + µ2

observed games won
observed games

)
÷ 2 (3.9)

Where, µ ∈ R|0 < µ < 1. These weights in P are updated after each game week so
should become more accurate across the season. In game week 1 all weights can either be
set to 1 or be carried over from the previous season. In the next subsection, we outline
how P is used to optimise the pre-game tactics in the Bayesian Game and in-match
decisions in the stochastic game.

3.5.4.1 Optimising Tactics using Prior Games

The computed weights in P discussed in the previous subsection are used when making
our pre-match decisions in our Bayesian game. In the optimisation model, a payoff table
is computed for each combination of opposition actions to give the probability of the
match outcomes based on the selected style θβ and action aβ (formation). The payoff for
the team is the weighted sum of win and draw probabilities made up from the different
decisions that we can make.

We apply the computed weights in P to the payoff table to weigh each payoff depending
on how successful these have been in prior and observed games. Therefore, we can
optimise the tactical decision based on the weighted payoffs in these tables using either
the best approach, spiteful or expectimax approaches which are decided based on our
fluent objective. The same approach can be applied when changing the formation and
style in the in-match stochastic game and each change made can be weighted by the
corresponding element in P .
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In the next section, we evaluate our models and assess the performance over a whole
season of games. We assess how our models perform in individual games as well as how
the inclusion of O and P can be used to help teams improve their performance and meet
their long-term objectives.

3.6 Empirical Evaluation

We use a dataset collected from two seasons (2017/18 and 2018/19) from the English
Premier League (EPL).9 The dataset breaks down each of the games from the tourna-
ment into an event-by-event analysis where each event gives different metrics including:
event type (e.g., pass, shot, tackle etc.), the pitch coordinates of the event and the event
outcome. This type of dataset is industry-leading in football and used by top profes-
sional teams. Thus, this is a rich real-world dataset that allows us to rigorously assess
the value of our model. The experiments10 performed are as follows:

3.6.1 Experiment 1: Testing the Opposition Action Prediction

In our first test, we aim to evaluate the performance of the style clustering methods
and the team formation prediction. This allows us to accurately predict the tactics of
opposition and therefore optimise ours around this.

To select the number of clusters we use an elbow approach (shown in Figure 3.7) to find
the point where the within-cluster sum of squared errors (SSE) will decrease and find
that 4 clusters are the best to use.
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Figure 3.7: Elbow Method to Find Number of Style Clusters to Use.

9All data provided by StatsBomb - www.statsbomb.com.
10Tests have been run using Scikit-Learn and TensorFlow.
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Figure 3.8: 2017/18 EPL Team Style Clusters.

We next test our opposition formation prediction model as discussed in Section 3.5.1.1.
Using features taken from the prior 5 games against teams in the same style cluster we
predict team formation. We predict the correct formation with an accuracy of 96.21%
(tested on using a train-test split of 70% to 30% with a cross-validation approach for
10 folds). The model achieved a precision score of 0.9867, recall score of 0.9135 and an
F1 score of 0.9441. There were a total of 30 different formations used across the season
with the most popular formation being ‘4-2-3-1’ used 21% of the time. In future work,
we could use alternative clustering methods such as “Principle Component Analysis”
(PCA) to find the style clusters (Wold, Esbensen, and Geladi 1987).

3.6.2 Experiment 2: Learning the Payoffs

We build the deep learning model defined in Section 3.5.1.2, that takes the actions of
the teams and the team strengths into account, the model then assigns a probability to
the predicted outcome of the game (home win, draw, away win). We test the outcome
probability model by evaluating the accuracy in our dataset and comparing the results to
the following standard approaches: Logistic Regression classifier (Dreiseitl and Ohno-
Machado 2002), Dixon and Cole (1997) model and the bookmaker’s pre-match odds
(sourced from oddschecker.com). The results are shown in Figure 3.9 (train-test split of
70% to 30% with a cross-validation approach for 10 folds).

This shows that by having extra information regarding the team formation and style
clusters (used by the pay-off and logistic models), we can more accurately predict the
match outcomes. Therefore, the pay-off model shown in Figure 3.9 produces better
predictions which are used to optimise our actions in the Bayesian game.
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Figure 3.9: Payoff Model Performance Comparison.

3.6.3 Experiment 3: Pre-Match Optimisation

To test the pre-match Bayesian game we iterate through all games in our dataset (760
games) across the two EPL seasons and find the optimised tactics using the 3 different
optimisation approaches discussed in Section 3.3.1.

By calculating the optimised tactics we can compare our approaches and validate our
models using real-world data. Firstly, we look at how “close” our optimised tactics are
to what was selected for the real-world game. We define “closeness” as a formation that
is equal to our recommendation or is only 1 change away (e.g., 4-4-2 is close to 4-5-1 as
you can move a striker to midfield to give the “close” formation). Using this metric we
evaluate the optimisation methods for tactic recommendations and find that the best
response method has a closeness of 35.3%, the spiteful approach has a closeness of 59.7%
and the expectimax approach is at 44.6%. This shows that the spiteful approach is the
closest representation to the real-world. However, when this is split into home and away
(50% and 69%) tactics we see that this number is skewed by teams that aim to minimise
the chances of losing (using the spiteful approach) in away games.

We next look at how the team performed in the real world when the selected tactics
were “close” to our recommendation. In Figure 3.10 we show how the results of teams
who use our recommendation in terms of the win, draw and loss percentage. This shows
that when teams take the expectimax approach they are more likely to win a game
in comparison to the other approaches (0.2% more than the best response approach).
Although their results are similar, in comparison to the best response, expectimax boosts
the chance of a draw by 1.1% and reduces the chance of a loss by 1.2%.

Finally, we assess the difference between the payoff of the recommended tactics and the
actual tactics used across all 760 games. We find that taking the best response approach
boosts a teams probability of winning on average by 16.1% and the expectimax approach
boosts by 12.7%, while the spiteful approach reduces the chances of losing a game by
1.4%. This shows that, as expected, the best response gives the biggest boost to the
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Figure 3.10: Percentage of Real-World Results with Close Tactic Selection.

probability of winning a game, although the expectimax approach achieves similar results
while also reducing the chances of losing the game.

3.6.4 Experiment 4: Predicting State Transitions

To test the accuracy of the state transition models (one for each game-state) discussed
in Section 3.3.2, we compare the model output (home goal, away goal or no goals) to
the real-world outcome. We use a train-test split of 70% to 30% with a cross-validation
approach for 10 folds. We assess each of the models separately using this approach
and on average achieve an accuracy of 87.5% (with a standard deviation of 4.8%), the
detailed results for each of the different states are shown in Figure 3.11.

This shows how our models effectively learn the state transition probabilities to high
accuracy at each state. The lower scoreline states have more data points over the last
two EPL seasons which we use to train and test the models. Therefore, we have a higher
certainty over these state transition models in comparison to the ones trained for the
higher scorelines that rarely occur in the real world. Hence, we do not show beyond 4-4
in Figure 3.11, but are available to use in our next experiment.
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Figure 3.11: Heatmap of State-Transition Model Accuracy.
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3.6.5 Experiment 5: In-Game Optimisation

When testing the decisions made using the methods, we iterate through all games in our
dataset across the two seasons, calculating the payoffs of the actions that both teams can
take at each game-state. We compare how often teams took our optimised action in the
real world (based on the two different approaches suggested) and if not, evaluate how
much our action suggestion would have boosted the team’s in-game chances of moving
to a more positive state and winning the game.11

We first test the action payoff model discussed in Section 3.5.2.2 which uses the state
transition probability, substitution and the time of the game to calculate the payoff of
the given substitute. By so doing, our model predicts the next state with an average
accuracy is 95.5% (standard deviation of 4.5%), tested using a train-test split of 70% to
30% 10-fold cross-validation.

When comparing our action recommendations to those that were taken by the managers
in the real world, we find that the aggressive approach makes the same decision 14.75%
of the time and the reserved approach makes the same decision 14.11% of the time. If
we look at teams making similar player substitutions to our recommendation (selecting
a player who plays in the same position as our recommended substitution) then these
increase to 40.10% and 39.75% respectively. In Figure 3.16, we show the average payoff
for each substitute comparing the real world and our two approaches.
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Figure 3.12: Payoffs of Real-World vs. Optimised Decisions

On average our more aggressive approach boosts winning payoffs by 2.0% and the more
reserved approach reduces the opponents’ winning payoff by 3.4%. This shows that the
changes in tactics that are made in a game can have an impact on the overall outcome
and help teams to move into more positive states or stay in the current state if a team
is winning a game. By using the stochastic game we optimise the efficiency of these
decisions by 3.4% which could have a significant difference to a team across a season in
a game such as football, where every marginal gain can have a large impact on long-term
results.

11We do not have data for the players that are included as substitutes so we consider all squad players
(instead of just the 7 substitutes) which impacts our accuracy.
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3.6.6 Experiment 6: Learning the Fluent Objective

Here, we test our fluent objective model in each game week. We evaluate our season sim-
ulation prediction model using a Markov-chain Monte-Carlo (MCMC) simulation with
respect to its accuracy as the season progresses. To predict the outcome probabilities of
individual games in our simulation we use the model defined in Section 3.5.1.2.

In our MCMC simulation, We predict all remaining games 100,000 times and find the
most likely league standings after 38 game-weeks. We can compare this to the final league
ranks and compare the absolute difference in their actual finishing position and their
predicted finishing position. In Figure 3.13, we show an average of all clubs’ difference
between actual and predicted finishing position (with error shaded area representing 95%
confidence intervals). This is run after each game week so we have more information
about the games that have already been completed. Week 0 is the prediction before any
games have been played and week 37 is the final prediction after 37 out of 38 games
have been played.
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Figure 3.13: 2018/19 EPL Average Difference Between Actual and MCMC Predicted
Finishing Position.

As shown in Figure 3.13, we can see how in the first half of the season the league standings
remain fairly unpredictable due to the number of different possible combinations that we
are attempting to predict — there are a total of 2.43e18 different combinations of team
order that the league could finish in.12 We do see however that as the season unfolds
and we have a better idea of team performance the simulation accuracy improves. This
is also to be expected as we are simulating fewer games later into the season and we
have more evidence from those having taken place in the real world. This shows that

12The vast number of possible combination is why we use position differences rather than the overall
accuracy of the entire standings after each game-week.
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we have a suitable method to extract a distribution of where we expect a team to finish
and can derive the fluent objective using a MAP estimation.

3.6.7 Experiment 7: Setting the Fluent Objective

Here we test how effectively we set the fluent objective using our method defined in
Section 3.5.3.2. After each game-week simulation we set the fluent objective for all 20
EPL teams and then assess if the objective that is set for the team was achieved at the
end of the season or not. In this experiment we show the percentage of teams that met
their predicted objective in each game-week. This is shown in Figure 3.14 where the
error bounds shaded area recognises the 95% confidence interval, week 0 is the prediction
before any games and week 37 is the final prediction.
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Figure 3.14: Week by Week Fluent Objective Prediction Accuracy (2018/19 EPL
Season).

As we can see in Figure 3.14 the fluent objective accuracy rises as the season progresses
and from week 15 onwards we see the accuracy of the fluent objective setting rise more
clearly. This shows that we can set realistic to aim for as the season progresses in
relation to the actual league outcomes and what was achieved by the teams. Not every
team in the league can meet their objective as there may be more teams aiming for
something than can achieve it (e.g., 3 teams aiming to win the league). Also, 3 teams
are always, relegated meaning that even in the best case only 85% of teams will achieve
their objective. This means in weeks 36 and 37, we reach the maximum teams meeting
their objectives.
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3.6.8 Experiment 8: Learning from Observing Games

To test the impact of the addition of the weights w that we estimate in P , we evaluate
how the weights can boost our ability to predict the outcomes of games based on the
tactical decisions and therefore improve our payoff model. To evaluate our P weights,
we compare the accuracy of the predictions of the model presented in (Dixon and Coles
1997) both with and without P (this model makes up part of the feature set that is
used for calculating the payoffs). We then assess the differences in terms of the models’
ability to be able to accurately predict the outcome of the game and show the results in
Figure 3.15 (error bars showing 95% confidence intervals).13
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Figure 3.15: Payoff Model Performance Comparison.

As we can see in Figure 3.15 by using the weights in P we can boost the accuracy of
the model, and therefore the accuracy of our payoffs, achieving a boost of 1.76%. We
also see that there is an increase in the precision, recall and F1 of our model by 1.50%,
1.72% and 1.27% respectively. Even though this represents a fairly small increase to the
results of the model in Dixon and Coles, it shows that by learning from what tactics
have worked (both for your team and others), we can boost our ability to calculate the
tactical decision pay-off and therefore our ability to optimise decisions made. Over a
large scale of time such as a 38 game-week season, a 1.76% boost in performance could
be the difference between finishing a place higher in the league which can have huge
financial gain and help to achieve the fluent objective.

3.6.9 Experiment 9: Optimising Team Long-Term Performance

Here, we test how we incorporate the fluent objective O and weights in P into the tactical
decision-making optimisation model and evaluate how this improves team performance

13The precision, recall and F1 score are computed as a weighted average of the ability to predict each
outcome using SciKit Learns’ multi-class support.
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to help them meet their objective. To test this we simulate an entire season week by
week and apply our model to a single team in the simulation. After each game week,
we simulate the remaining games and recalculate O and P as outlined in Figure 3.4.
We then compare our results using the new model across a simulated season (100,000
times) against a simulation where we do not use the O and P . We show the results as
an average from each separate simulation we run for each team, with that team being
the only one using the optimisation model. We show the average difference in the mean-
expected finishing position from the distribution of each team that we run our season
simulation for, both using the new model and without.
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Figure 3.16: Payoffs of Real-World vs. Optimised Decisions

This shows how our model can improve the probability of teams’ finishing positions and
see that on average there is a 2.90 position improvement when using O and P compared
to without for our test set of teams. This is achieved as by using O and P teams can
add more context to their decisions, also by selecting the optimal tactics each week in
the simulation using the pre-game Bayesian model we would also expect to see a boost
to the performance. Below, we highlight an example of the distribution improvement of
the simulation when aiming to optimise the performance of Southampton FC.14 Figure
3.17 shows the distribution with O and P applied and not applied.

Figure 3.17 highlights how we can use the fluent objectives to boost their expected
finishing position, increasing the mean of the expected finishing distribution by up to
35.6%. We see similar improvements to this across our test set of teams.

3.6.10 Experiment 10: Evaluating Team Monetary Objectives

Up to this point in the chapter, we have focused on using goal-oriented objectives to
optimise our long-term tactical decision making regarding winning particular matches
or improving the team’s finishing position. However, professional football teams are
businesses, and one key goal for them is maximising their prize money each season.

14Selected as a random example and is the only team using the optimisation model in the simulation.
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Figure 3.17: Example League Outcome Probability Distribution for Southampton FC
in 2018/19.

Therefore, in this experiment we use monetary targets for teams to optimise their tactics
to increase the chances of maximising the return each season.15

By using the prize money data from the English Premier League (focusing on competition
prize money and not TV rights money), we can assign a value to a finishing position
so that after each simulation of a season we can give a prediction of the money won by
a team. To set the fluent objective in this experiment we start by using an increase in
the teams’ prize money won in the previous season; this is then updated as the season
goes on to set higher targets if the team is likely to over-perform. The experiment is
run using the same process as the previous experiment, with 100,000 simulations run to
test all of the models presented in this chapter across an EPL season. The results for
our example team used in the previous experiment are shown in Figure 3.18.
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Figure 3.18: Prize money distribution for Southampton FC in 2018/19 EPL Season.

This simulation shows a proof-of-concept where various objectives can be set by a team
and that by doing so a team would be able to make use of our models to be able to

15Monetary data sourced from football business expert: http://swissramble.blogspot.com.
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predict and maximise their potential prize money from their league competitions. As
Figure 3.18 demonstrates, we can see where the likely prize amounts would be and
can use this information to better set the fluent objective and select match tactics.
When we compare optimising using the prize money rather than set goal objectives as
in previous experiments we see that the expected finishing position in our simulation
drops to 10.1 from an average of 9.4 shown for Southampton FC in Figure 3.17 using
standard optimisation. However, this is still an increase on the 14.6 average with no
optimisation. The slight drop in finishing position when optimising using the monetary
values could be due to smaller jumps in prize money in the finishing positions in mid-
table. Therefore, when using prize money, it may make more sense to ensure a mid-table
finish with reserved tactical approaches rather than using riskier tactics to push higher
up the table where if this fails the team would lose more than they may gain.

3.7 Future Work and Wider Applications

Due to the success we have shown when using fluent objectives for an application to
football, we intend to test our approach in other domains. For example, they could
be used in security games and UAV swarms as the objective also often change over a
given time frame. This style of the model could also be applied in security games or
for emergency response where we aim to optimise the performance of teams of agents
in evolving environments with ever-changing objectives (Ramchurn, Huynh, et al. 2016;
Shieh et al. 2012). Further work into wider domains will help to further verify how the
modelling of objectives can aid long-term performance.

As well as across new domains, all of these models may be applicable across other team
sports games where tactical decisions and team selections are made. The modelling
framework we have outlined in this chapter could be refocused, it would be interesting
to see the effects of the optimisation to football/soccer in comparison to when applied
to basketball, hockey, American football or rugby.

Given better live data streams of games, we could further improve our state-based in-
match Stochastic model. This would further help serve coaches as much information in
real-time as possible so that they can focus on performance and making optimal sub-
stitutions and tactical changes. There is ever-increasing research into the prediction of
games and new models (such as (Beal, Middleton, et al. 2021) that uses NLP techniques)
which could be used to improve our payoff model. We could explore similar approaches
to the reinforcement learning methods used in AlphaGo (D. Silver et al. 2016) to gain a
deeper understanding of the in-game dynamics.

We would like to explore how the team make decisions at the board level in terms of
investment into the team and staff could help see the simulation of a season change. For
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example, if a team is likely to have high squad turnover (buying and selling of players)
we could use this information to assess each decision a club will make and how this will
optimise their performance.

3.8 Chapter Summary

This chapter presents a novel model for making both pre-match and in-match decisions
for football and shows how this modelling can be used for multi-step game optimisation
as well as optimisations across many multi-step games over a season. For the pre-match
Bayesian game setting, we find that we can effectively predict the style and actions of the
opposition and then present three models for selecting optimised actions in response. We
find that an expectimax approach is the best to take, however in the real world teams
tend to go for a spiteful approach. Overall, the Bayesian game model can help real-
world teams make effective decisions to win a game and the stochastic game can help
coaches/managers make optimised changes during a match.

We also have introduced the concept of a fluent objective that allows us to re-evaluate
team performance and base decisions based on a wider environment. We find that we can
build models that are able to predict the final outcome of the table on a regular basis,
and then using a MAP estimation to effectively set the fluent objective each week. We
also learn from other games that happen in the overall environment and find that this
can boost the performance of pay-off models in our multi-step games. We find that our
model can be used for football teams who are looking to improve their overall expected
league position (on average improves teams by 2.90 positions) and, show that the concept
of a fluent objective can help to optimise long-term performance in a competitive league
setting. Overall, this chapter presents novel models that can help teams to optimise their
decision-making by using data-driven techniques focusing on the long-term outcomes of
performance.

In the next chapter, we begin to explore how the players in the team can work together
to contribute to the overall outcome of the games. This builds on the tactical analysis
that we have discussed in this chapter by using the extracted teamwork values to help
managers/coaches to form teams by maximising teamwork.



Chapter 4

Learning The Value of Teamwork
to Form Efficient Teams

In this chapter, we describe a novel approach to team formation based on the value of
inter-agent interactions. Specifically, we propose a model of teamwork that considers
outcomes from chains of interactions between agents. Based on our model, we devise a
number of network metrics to capture the contribution of interactions between agents.
This is then used to learn the value of teamwork from historical team performance
data. We apply our model to predict team performance and validate our approach using
real-world team performance data from team sports games. We test our models for
evaluating teamwork in football (soccer) from the 2018 FIFA World Cup and English
Premier League, as well as in Basketball using data from two seasons of the National
Basketball Association (NBA) in the USA. Team sports present the perfect testing
ground for our models of teamwork for both valuing how players work together and then
forming teams to optimise this teamwork. Our model is shown to better predict the real-
world performance of teams by up to 46% compared to models that ignore inter-agent
interactions.

4.1 Introduction

Team Formation (TF) is a fundamental concept that underpins many multi-agent sys-
tems where heterogeneous agents with individual properties (e.g., roles, capabilities,
costs) come together to undertake tasks. TF involves the evaluation of different sets of
agents in order to determine how well they will, individually or collectively, perform their
tasks. By so doing, it is then possible to pick sets of agents that form the most effective
teams. For example, teams of emergency responders are formed based on individual
agents’ abilities to navigate a difficult environment or address threats (Chalkiadakis and
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Boutilier 2012). Similarly, in ride-sharing settings, groups of riders can be efficiently
formed to minimise travel time and costs (Bistaffa, Farinelli, Chalkiadakis, et al. 2017).1

Existing TF algorithms, such as (Fitzpatrick and Askin 2005), create effective human
teams in the workplace using a mathematical programming formulation and a heuristic
solution. Also, in (Scerri et al. 2005) a task allocation algorithm is discussed for extreme
teams in disaster response. The models and algorithms in these papers have been shown
to be successful in their domains. However, these models typically ignore the fact that
sets of agents interact in very specific ways. For example, agents in a team may transfer
partly finished products to each other along a production line or a firefighter may secure
a building first before sending in a medic. In this chapter, we consider how such directed
interactions between agents can be valued and considered in the prediction of team
performance.

Against this background, in this chapter, we expand on our earlier work (Beal, Changder,
et al. 2020) where we propose a novel approach to forming teams using patterns that
appear in a network of interactions between agents. We expand on this with further
empirical evaluation to validate our approach by applying our models and algorithms to
the real-world team formation problems presented by the domain of team sports and in
particular football and basketball. Team sports presents us with the perfect live-test bed
for our modelling of teamwork. In team sports teams of players work together to win
games across long periods of time. Data is collected about how successful teams are and
how players are involved which allows us to properly test our machine learning models
and optimisations in real-world datasets to solve a real-world problem of evaluating how
subsets of players within a team contribute to the overall performance.

We show that our teamwork-focused model outperforms other player-focused approaches
at predicting the teams that would be chosen by human expert managers across 64 games
from the 2018 FIFA World Cup and 760 games from 2017-2019 in the English Premier
League. We also evaluate our models across 2460 basketball games from two seasons of
the National Basketball Association (NBA) in the USA (2017/18 and 2018/19). Thus,
this chapter advances the state of the art2 in the following ways:

1. We propose a novel approach to team formation based on the value of inter-agent
interactions. Specifically, we propose a model of teamwork that considers the
outcomes of the chains of such interactions.

2. Based on our model, we propose a number of network metrics to capture the
contributions of individuals and sets of agents.

1Note that TF is different from coalition formation in terms of its focus on inter-agent interactions
and non-selfish agents.

2This chapter further validates the work presented in (Beal, Changder, et al. 2020) by widening the
sports used to model teamwork, extracting the chains of interaction and assessing the real-world impact
of humans to teamwork that we extract.
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3. We show that by using machine learning models we can extract the value of team-
work which can be learnt from data and then applied to the prediction of team
performance.

When taken together, our results establish the first benchmarks for team formation
based on the learnt value of teamwork. Furthermore, our work opens up a new area of
research into the use of teamwork-based models to understand how human teams work.

The rest of this chapter is organised as follows. In Section 4.2 we outline the back-
ground to teamwork, while Section 4.3 defines the network model and the optimisation
problem. Section 4.4 discusses the application of our model to the sports we use to
test and validate, and then in Section 4.5 provides the detail of methods that we use to
apply the model to the problems posed by football and basketball. We perform several
Experiments on our model in Section 4.6 and discuss our findings in Section 4.7. Finally,
Section 4.8 concludes.

4.2 Background

In this section, we explore the related work focused on how agents work together and
models of teamwork. We also explore the differences between football and basketball to
add further context to the findings in our chapter.

4.2.1 Related Work

There are examples in multi-agent systems literature where teams are formed using anal-
ysis of agents within a network. Gatson and DesJardins (Gaston and DesJardins 2005),
propose several strategies for agent-organised networks and evaluate their effectiveness
for increasing organisational performance. They also present an agent-based computa-
tional model of team formation and analyse the theoretical performance in two simple
classes of networks: ring and star topologies (Gaston and DesJardins 2008).

Recently, (Bistaffa, Farinelli, Chalkiadakis, et al. 2017) proposed a cooperative game-
theoretic approach to deal with the problem of social ridesharing. They first formed a
social network representation of a set of commuters, then proposed a model to form the
coalition and arrange one-time rides at short notice. The authors model their problem
as a Graph-Constrained Coalition Formation (GCCF) (Bistaffa, Farinelli, Cerquides,
et al. 2017). Their model is based on two principles, first, they solve the optimisation
problem for making coalitions while minimising the cost of the overall system. The set
of feasible coalitions in their model is restricted by a graph (i.e., the social network).
Secondly, they address the payment allocation aspect of ridesharing.
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There are also examples in the literature looking at how humans interact within social
networks. The work in (Y. Jiang, Y. Zhou, and W. Wang 2012), explores task and
resource allocation in social networks. In their model, the agent that contributes most is
rewarded and receives a preferential allocation of new tasks. There has also been work
to further explore social networks from a multi-agent perspective (Franchi and Poggi
2012; Y. Jiang and J. Jiang 2013).

Boon and Sierksma (Boon and Sierksma 2003) discuss the design of optimal teams and
calculate the value-added from new team members. Following on from this, (Vilar et
al. 2013) looks to understand how players’ and teams’ strategies result in relationships
between teammates and opponents in the area of play. There have also been applications
to form optimal teams for fantasy football using a MIP and performance predictions in
(Matthews, Ramchurn, and Chalkiadakis 2012). Our models differ from the previous
work as we model the team as a weighted-directed network of agents and value players
based on their influence on the team and the interactions that happen between players.
We then form teams using a novel algorithm with MIP techniques.

To our knowledge, none of the discussed approaches has looked at directed interactions
between team members (such as passes) and how chains of interactions lead to different
team outcome events. More importantly, these approaches have only been validated on
synthetic data. Instead, our work is validated on granular data about team performance
in real-world games involving teams of humans presented by team sports games.

4.2.2 Team Sports Background

Here, we give a background on the sports we focus on in this chapter. More specifically,
we focus our attention on the team sports of football and basketball. These games were
selected because of their similar nature, where teams of agents work together with a
common aim of outscoring their opponent whether this is goals in football or points
scored through baskets in basketball. The teams also work together to prevent their
opponent team from scoring. In these games, the way that the players/agents combine
and link up is of vital importance as they pass the ball between one another as they
progress up the pitch or court. Therefore, this chapter aims to value the importance of
this teamwork and compare how it differs between the 2 sports. We also show how this
can be used to select the best team of players.

As well as the similarities between football and basketball there are also some key dif-
ferences in the way the games work that affects the teamwork between the players. In
football 11 players are on each team and the game lasts 90 minutes in two half’s, during
the game only 3 “substitutes” are made. In basketball teams of 5 play against each other
in a game lasting 48 minutes across four quarters. There is no limit to the number of
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substitutions a team can make during a game so the turnover of players is much higher
than in football.

In Chapter 2, we present a full review of the key AI work in football and basketball.
Some notable examples in football, include the “VAEP” model to value the contribution
of individual players in a team (Decroos et al. 2019), a possession value framework is
presented in (Fernández, Bornn, and Cervone 2019) and in (Beal, Chalkiadakis, et al.
2020; Beal, Chalkiadakis, et al. 2021) the authors use game theory to optimise football
tactics. In basketball, work includes deep imitation learning to “ghost” the movement
of players (Seidl et al. 2018), a possession value framework (Cervone et al. 2014) and
player decision making is assessed in (Zheng, Yue, and Hobbs 2016b).

4.3 A Formal Model for Valuing Teamwork

Our TF model is based on our observations of many real-world team-based systems,
such as sports teams or teams of emergency responders, as follows:

• Many teams operate through directed (one-to-one, one-to-many, or many-to-many)
interactions. For example, in a sports team, a player would pass a ball to another.
However, team members will not always interact equally with every other team
member. In this chapter, as a first step, we will focus on one-to-one interactions.
Indeed, we show that such a setup gives rise to complex interactions that pose
difficult computational challenges.3

• Team members may have different roles and abilities to perform tasks. For exam-
ple, emergency response teams will have members with different skill sets, equip-
ment, and training. In a football team, each player will have a position on the
pitch and specific abilities.

• Team actions can have multiple consequences. In the simplest case, they may
have binary outcomes (succeed in achieving a mission or failing to do so). In many
cases, however, team success is more nuanced (e.g. the achievement of a sub-ideal
goal).

• Team formation typically involves picking a subset of agents that work well to-
gether, using some metric of efficiency. For example, emergency responders will
choose a subset of available partners that are most fitting to the task or have the
right skills. Similarly, a football manager will pick the best team (measured by
their likelihood to win a match) of 11 players out of a squad of 23.

3We will consider more complex forms of interactions in future work such as out of possession
defensive teamwork when the ball is not involved.
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As can be seen, choosing the optimal team can be a difficult task given the complexity of
the roles and relationships among team members as well as the environment they evolve
in. In what follows, we formally define the key constructs of our teamwork model and
devise multiple network-based metrics over which the value of teamwork can be learnt
and used to predict the performance of different teams.

4.3.1 Basic Definitions

We define the set of n agents as A = {a1, a2, . . . , an}. Agents can interact with each
other to achieve some overarching goals. We consider such interactions to be directed
(e.g., a UAV allocating a task to another UAV or a player passing a ball to another player
in a football team). We define the set of interactions I as a set of ordered pairs (ay, az),
where ay initiates the interaction towards az. The same pair of agents may engage in
such interactions multiple times, and hence I is effectively a multi-set of interactions.

Agents’ interactions are constrained by a directed graph representing potential roles
and relationships between the agents. In the general case, all nodes in the graph will
have at least two directed edges (one outgoing, and one incoming) between them and
another agent. We denote this graph as G = (A, I, w(.)) with agents A as vertices
and edges I representing relationships between pairs of agents. The weight on each
edge is the number of directed interactions from the set I between pairs of agents. For
example, for each edge i ∈ I, the weight of i, w(i) is defined as the number of times
the edge i = (ax, ay) appears in the multi-set I (the multiplicity of i in I). Formally,
w(i) = ∑

s∈I 1{i}(s). This is an iteration over all elements of I and if i = s a value of 1
is added (equivalently, if i ∈ I) and 0 otherwise. We build on these definitions to model
how interactions between agents result in specific events.

4.3.2 Modelling Chains of Interactions

In many situations, agents will interact sequentially with each other (i.e., agent ax

interacts with ay who in turn interacts with az). In this chapter, we only consider the
cases where an agent interacts with one other agent at a time.4 To this end, we define a
walk in the graph G as a sequence of interactions over the edges of the graph. Formally,
a walk P of length l in the graph G from vertex ay to vertex az (ay → az) is a sequence
[ax, ay, . . . , az] where l = |[ax, ay, . . . , az]| − 1. An example of a walk P is described for
football in Section 4.4.1 and this is shown in Figure 4.2. Another example of a walk in a
real-world application would be the movement of a data packet through a mesh network
where the packet moves from router to router until it reaches the destination.

4We will consider cases where this assumption does not apply in future work. For example, a ship
may deploy many sub-ships that have all been allocated the same task to complete.
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A walk leads to an event of a specific type. For example, a data packet being used to
complete a file download, or a football player scoring a goal at the end of a sequence of
passes. There may be many different event types. Formally, the set of possible events E
is defined as E = {e1, e2, . . . , ek} where eκ is the event and k is the number of possible
events from the walk.

Each of the possible events eκ may have a different impact on the environment, therefore
affecting the overall performance of the team. Thus, for each e ∈ E , the value function
α : E → [0, 1] determines an associated value. For example, in a game of football, if the
event eκ is a “goal” event, this has a bigger impact on the overall outcome of the game
and team performance in comparison to if eκ is a “loss of possession” event. Another
example could be walks leading to a “person saved” event, in an emergency response
setting, having a greater impact than walks not leading to such events.
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Figure 4.1: An example of 4 walks through a sample graph of 11 agents for an event
ek. The directed edge between two vertexes represents the interaction between them

and each highlighted colour represents a walk.

Note that each walk originates from one agent and involves chains of directed interactions
between pairs of agents, resulting in an event. Hence, we next propose methods to extract
the contribution of each agent as well as sets of agents to these individual events.

4.3.3 Extracting the Value of Teamwork

Walks P and associated events E can be used to infer the value of agents and sub-sets of
agents within the team. We propose three metrics to value the contribution of individual
agents and sets of agents to the given outcome event as follows:
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• Centrality: vcent : A → R refers to the sum of the weight of edges incident
(incoming and outgoing) to ai. This measures the influence of agent ai in the
network.

• Distance from event: vdist : A → R defines the average distance of agent ai for
each event. This represents the influence of agent ai on an event.

• Walk frequency: vfreq : 2A → R refers to the number of times an agent ai or a
subset of agents appears in all walks. This represents the influence of an agent in
the team.

It is important to note that these metrics attempt to summarise team performance in
different ways, each with a different degree of information loss. Using centrality results
in the most loss of information as it ignores whom the interactions are made with. Using
distance from the event (i.e., last node in a walk) better associates agents to events but
also ignores the specific interactions that result in such events. Finally, walk frequency
considers all pairwise interactions that lead to specific events, and as we show later, is
more representative of teamwork and can be used to predict the performance of teams
more effectively.

Now, for each event, we will have different values for each metric for each agent or set
of agents (as for walk frequency). However, each event has a different impact on team
performance (e.g., goals lead to a win, loss of possession likely to lead to a loss, person
saved leads to a successful rescue mission), and to determine the contribution of an agent
or subset of agents to team performance, we need to learn the impact each metric has on
the team’s performance. We assume that each event is independent5 and therefore use
a weighted sum of the values for each of the possible events. This is shown in Equation
4.1.

vm(ai) =
K∑
k=1

αkvm(ai|ek) (4.1)

where, vm(ai) is the value of ai using the metric m, K is the number of possible events,
αk is the weight of the event ek (which is learned from the data) and vm(ai|ek) is the
value of ai given the event ek. We next expand on the above metrics in the following
sub-sections.

5In reality, some events may not be entirely independent and therefore, more complex summarisation
functions would need to be used. But as we show in this chapter, the assumption of independence does
hold when it comes to predicting team performance.
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4.3.3.1 Network Centrality

Here we value an agent ai based on it’s centrality in the network. This value is equal
to the sum of the weights of the edges incident to node ai (both incoming and outgoing
edges). For example, in the graph shown in Figure 4.1, vcent(a9|ek) = w8 + w9 + w10.
Equation 4.2 shows the value calculation using the centrality metric for any agent ai for
the given event eκ:

vcent(ai|eκ) =
∑

aj∈Adj (ai)
w(ai, aj) + w(aj , ai) (4.2)

4.3.3.2 Distance From Event

Given a set of events E = {e1, e2, . . . , ek} and all the possible walks in graph g ∈ G. The
value for an agent ai for any event eκ ∈ E is defined as the average of the shortest path
length of agent ai from the event ei for each walk where the agent ai is present. The
distance from the event of an agent ai is the number of agents following ai in a walk.
We can define this as [ai, gl] where ai is the occurrence of the agent in walk g and gl

is the final agent in the walk closest to the event. For example, in Figure 4.1 in the
walk [a4, a9, a5] the distance from event for a9 is 1 and in the walk [a7, a3, a7, a9, a11, a3]
this distance for a9 is 2. Hence, the average distance of agent a9 from the event is
(1 + 2)/2 = 1.5. This is formalised in Equation 4.3 where we find all the lengths from
events for ai in G and the occurrences of ai in G (sumg∈G1{g=ai}.

vdist(ai|eκ) =
∑
g∈G

(
[ai, gl]
1{g=ai}

)
(4.3)

4.3.3.3 Walk Frequency

The walk frequency of a set of agents (singleton, pairs, triplets etc.) A′ = [ax, ay, ..., az]
is the number of times the agent A′ appears in all the walks in G. This is formalised
in Equation 4.4. For example, in Figure 4.1, suppose the walk [a4, a9, a5] appears three
times, the walk [a7, a3, a7, a3, a11, a9] appears four times, the walk [a3, a10, a8] appears
twice and the walk [a1, a6, a2, a3] appears once. In this case the value of A′ = [a9] will
be vfreq(A′|ek) = 3 + 4 = 7. The same reasoning can be applied to subsets of agents.

vfreq(ai|eκ) =
∑
g∈G

1{g=ai} (4.4)
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We can compute such a metric for all individual agents as well as different sub-groups
of agents from pairs to above formed as chains of interactions (i.e., subsets of a walk).
Given a walk P of length l, the sub-groups of length j that we are able to extracted
from the walk P is calculated by picking the consecutive j + 1 vertices in the walk P.
The total number of sub-groups of agents in a walk of length l is ∑l−1

j=1(l − j + 1). In
this chapter, we mainly focus on sub-groups involving pairs of agents as combining such
pairs in a combinatorial optimisation algorithm to consider chains of interactions. We
next describe how we will learn the weights of events αk to compute Equation 4.1.

4.3.4 Learning Event Weights From Data

To learn the set of weights D, which correspond to the impact of the possible walk events
E , we use a Logistic Regression algorithm (Hosmer Jr, Lemeshow, and Sturdivant 2013).
This allows us to extract the coefficient weights of each of the input features i.e., the
weight ακ (which corresponds to an event ei) which is used to calculate the final value
vm(ai) for each agent or sub-team of agents.

Hence, for an outcome y (e.g., a team wins a match, a political party wins an election),
the probability that an agent ai contributes to this outcome is dependent on the indi-
vidual events (eκ) to which an agent contributes, as captured by the metrics computed
in the previous section.

The result of running the logistic regression algorithm to extract the event impact is the
set of weights ακ∀eκ ∈ E . Given this, we can now compute efficient teams according to
the learnt measures.

4.3.5 Forming Efficient Teams

We use two methods to form efficient teams using values calculated in the previous
section. Firstly, we form teams based on the values of singleton agents. Secondly, we
form teams based on the value of agent pairs p, so that teams are formed between agents
who communicate and work well together.

4.3.5.1 Agent-Centred Approach

To form the efficient team based on singleton agents, we use the values v(ai) for each
agent ai. Given constraints on the number of agents to be picked overall and the number
of agents per role allowed in the team (see Section 4.5), this results in a combinatorial
optimisation problem that is solved using standard mixed-integer programming (MIP)
techniques. Similar methods are also used in (Pochet and Wolsey 2006; Fitzpatrick and
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Askin 2005; Matthews, Ramchurn, and Chalkiadakis 2012). Here we can use all the
above metrics m (i.e., centrality, distance from the event, and walk frequency).

4.3.5.2 Team-Centred Approach

Here we consider how the team works effectively and hence only consider the walk
frequency metric. Specifically, we reconstruct the value of teamwork based on two core
concepts which we call the strength of teamwork and interactional alignment which we
describe as follows.

• Strength of Teamwork: This is based on the contribution of the pairwise in-
teractions, which in this case is shown by a high frequency of directed successful
interactions between the agents. This can be calculated using the 3 methods (cen-
trality, distance and frequency) that are discussed in Section 4.3.3.

• Interactional Alignment: This is the measure of the strength of teamwork
between overlapping pairs within the selected team. This values the strength of
teamwork that the selected agents in a pair will bring when paired with other
selected agents in the team. This helps us avoid selecting pairs of agents that have
a strong value between themselves but are weak when combined with the rest of
the team. We calculate this using Equation 4.6.

We combine these two measures to maximise the values of the selected pairs (pi) while
also maximising the value of the pairs that they overlap within the selected team as
a whole. Specifically, we propose a MIP defined by Equation 4.5. In more detail, the
output of the MIP is a team of N agents formed by evaluating pairs of agents from
the set O ⊂ 2A where for each p ∈ O, p ⊂ A, |p| = 2. We use two types of binary
decision variables xi, zj ∈ {0, 1} for pair i and agent j respectively. Variable xi denotes
whether a pair of agents is selected and zj whether an agent is selected. The objective
function maximises the sum of V (pi) (the value for pi using the agent pair values we have
calculated) and V ′(pi) which represents the interactional alignment (the value of pair pi
calculated by Equation 4.6). This value is weighted by β which can be learnt from the
data. The first constraint ensures that individual agents can be selected, even if they
are in pairs that are not selected. The agent decision variables zµ and zλ represent the
two agents in a given pair pi = {aµ, aλ}. The second constraint ensures that only N
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agents are selected from all agents A available.

maximise
|O|∑
i=1

(
V (pi) · xi + βV ′(pi)

)

subject to zµ ≥ xi, zλ ≥ xi, ∀pi = {aµ, aλ}
|A|∑
j=1

zj = N

(4.5)

V ′(.) is defined by Equation 4.6 as the sum of all pair values where there is an overlap
with pair pi. By maximising the interactional alignment, this allows us to increase the
strong links between pairs while decreasing the weak links.

V ′(pi) =
|O|∑
k=1

(
V (pk) · xi

)
{pi∩pk,k 6=i}

(4.6)

The generic solution presented in Equation 4.5 could also be expanded to consider the
notion of roles within the team structure. An example of this would include the formation
of a team in football where only one goalkeeper can be selected and the rest of the
players are selected with different tactical roles. Similarly, within the emergency response
domain we may need to form a team made up of specialists in different areas (e.g.,
paramedic and fire service). If roles are an important element to the team formation
problem, we add extra constraints to our MIP formulation this is shown in Section 4.5.2.

4.4 Model Application to Team Sports

To validate the models defined in Section 4.3 we apply our techniques to the problem of
team formation in football and basketball. In this section, we highlight how team sports
relate to our model and how they can be applied.

4.4.1 Football Application

In football, a manager/coach selects a team of 11 players from a squad of 23 (sometimes
more depending on the competition rules). The objective is to select a team with the
highest chance of winning a game. Against this background, we define the squad of
players as our set of agents A, the interactions I are the passes between the players
in earlier games, and the graph G represents the network of passes between all the
players in the squad. The walk P is a passage of play for the team which is made up
of several passes. In football, a passage of play is ended by some event (e.g., tackle,
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shot, goal, miss, and ball out of play). We characterise events into 4 possible outcomes,
E = {e1, e2, e3, e4}, where e1 is a Goal, e2 a shot on-target, e3 a shot off-target and e4

is a loss of possession. We then learn the weights αi for each outcome. In this case we
assume α1 > α2 > α3 > α4. Using the model discussed in the last section we calculate
the value of each player v(ai) and form an optimal team based on the values considering
the specific positional constraints of a football team. An example of a walk is shown
in Figure 4.2 where the red arrows represent the passes between players and the blue
arrow represents the outcome of the walk which in this case was a shot on target.

There are positional constraints that are specific to football, making it more complex
than the model we defined in Section 4.3. Each team in a game of football must have
1 goalkeeper and 10 outfield players which are formed from defenders, midfielders, and
strikers. In most positional formations in football, there are between 3-5 defenders, 3-5
midfielders, and 1-3 strikers. An example formation is 4-4-2 which is 4 defenders, 4
midfielders, and 2 strikers.

4.4.2 Basketball Application

In basketball, a coach selects a team of 5 players from a squad of 12 and again the
objective is to select a team with the highest chance of winning a game. Similarly to the
previous subsection for football, we define the squad of players as our set of agents A,
the interactions I are the passes between the players, and the graph G represents the
network of passes between all the players in the squad. The walk P is an attack of 5
players who are currently on the court which is made up of several passes. This play is
ended by some event (E = {e1, e2, e3, e4}) which is made up from a turnover, a 3 point
shot, a 2 point shot or a foul. We then learn the weights αi for each outcome and again
using the model discussed in the last section we calculate the value of each player v(ai)
and form an optimal team. An example of a walk in basketball is shown in Figure 4.2
where the red arrows represent the passes between players and the blue arrow represents
the outcome of the walk which in this case was a 3-pointer.

In basketball, each of the 5 players has a different position. These are shooting guard,
point guard, centre, power forward, and small forward. These present our positional
constraints when aiming to form the optimal team as we want to aim we select a team
made up of the players that can fill these positions while maximising the teamwork be-
tween the players.
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Figure 4.2: Example of a Walk in Football and Basketball

4.5 Forming Efficient Sports Teams

In this section, we describe the techniques that we use to solve our model and form
efficient teams.

4.5.1 Calculating Player Values

To calculate the values of the players in the network, we first create the weighted graph
that we need for our model. We do this using the walks (patterns of play) which happen
in a game. We can then calculate their values for each of the possible walk events using
each of the metrics defined in Section 4.3. The possible walk events we use are:

• Football: a goal, a shot on target, a shot off target and a lost possession.

• Basketball: 3 point basket, 2 point basket, foul and loss of possession/turnover.

We first do this for singleton players so that we have values based on their centrality,
walk frequency and distance from the outcome. We then value the player pairs based on
their frequency in the network. This gives us the values for both players and pairs from
each match which we can then use to learn the impact weights of the outcomes. We can
also extend this to look at longer chains of agents and evaluate their contributions as a
three or a four etc.

4.5.2 Learning The Outcome Weights

To calculate the weights of the walk events we use logistic regression as discussed in
Section 4.3.4. Using the values for the players/pairs for each walk event in each game we
use the match outcome (team win, loss or draw) as the y value in our logistic regression
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formula. This means that we train the model to calculate the weights based on what
impact it will have on the match outcome and, therefore, the overall team performance.
The final value for the players/pairs will then be a weighted sum (defined in Equation
4.1) which uses these learned weights and will inform the team formation process.

4.5.3 Team Formation

We describe the two methods we take to form teams using both the singleton player
values and the pair values.

4.5.3.1 Singleton Agents

The first method uses the values of singleton players calculated using the centrality,
walk frequency and distance from the outcome (as discussed in Section 4.3). We use
these values alongside constraints over players’ positions to form the optimal team. The
approach we use to solve this is an edited version of the MIP approach shown in Equation
4.7. Where we maximise ΣOi=1(V (ai) · zn) and do not consider the pair decision variable
xi. The other constraints remain the same. This approach will help us to form a team of
players who all contribute but may not link up well together as a team. We, therefore,
expand on this method in the next subsection to form teams using player pairs.

4.5.3.2 Agent Pairs

Using the values of the player pairs we form teams using the MIP formula presented in
Equation 4.7 (this is a refinement of Equation 4.5). When forming teams we ensure that
all the pairs of players are part of the same squad and can be selected together. We also
consider the positions of the players so that we pick a team in a reasonable positional
formation. This is represented by position range constraints.

maximise Σ|O|i=1(V (pi) · xi + βV ′(pi) · xi)

subject to Σ|A|n=1(zn) = 11

zµ ≥ xi, zλ ≥ xi, ∀pi = {aµ, aλ}

Σ|A|n=1(gkn · zn) = 1

3 ≤ Σ|A|n=1(def n · zn) ≤ 5

3 ≤ Σ|A|n=1(midn · zn) ≤ 5

1 ≤ Σ|A|n=1(strn · zn) ≤ 3

(4.7)
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where a binary decision variable xi represents the selected pairs (pi = {aµ, aλ}) and zn

represents whether a player is picked or not. There is then a number of binary sets for
each position (gk, def , mid and str) containing if a player plays in the corresponding
position or not and we aim to maximise the pair values V and V ′ in the selected team.

For basketball, this same method can be tweaked slightly. Instead of filling the con-
straints shown in Equation 4.7, in basketball, there would be custom constraints to fill
the positions: shooting guard, point guard, centre, power forward and small forward.
Other than this the technique to form the optimal team would remain the same.

4.6 Empirical Evaluation

In this section, we discuss the experiments that have been used to test and evaluate our
models. We discuss the data that we use for football and basketball which are industry-
leading datasets used by top professional teams in the games. Thus, these rich real-world
datasets allow us to rigorously assess the value of our model. It is worth noting that the
initial testing for these models can be found in (Beal, Changder, et al. 2020).

4.6.1 Data

To evaluate the models that we have discussed in this chapter, we use a dataset for
football and a dataset for basketball. The football dataset was collected from two seasons
(2017/18 and 2018/19) from the English Premier League (EPL) as well as data from
the 2018 FIFA World Cup.6 The dataset contains 784 games that we can evaluate our
football model on. The dataset breaks down each of the games from the tournament into
an event-by-event analysis where each event gives different metrics including event type
(e.g., pass, shot, tackle etc.), the pitch coordinates of the event and the event outcome.
To learn the model weights, we use a 10-fold cross-validation approach, splitting the
dataset randomly into 70% training and 30% test.

The basketball dataset is extended play by play data from two seasons of the National
Basketball Association (NBA) in the USA (2017/18 and 2018/19) containing 2460.7

There are more games here due to NBA teams playing 82 games in a regular season
compared to 38 played by EPL teams. Again, this dataset allows us to break down
basketball games by each play in the game and see what players have been involved in.

The experiments8 performed are outlined in the sub-sections to follow.
6Football data provided by StatsBomb - www.statsbomb.com.
7Basketball data provided by EightThirtyFour - https://eightthirtyfour.com/data.
8Tests have been run using Scikit-Learn and TensorFlow.
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4.6.2 Experiment 1: Comparing Teamwork Values Across Sports

In this experiment, we compare how teamwork values in the different sports correlate
to real-world performance metrics. We first look at how the sum of teamwork values
correlate to the number of games won by teams, the results from this are shown in Figure
4.3. We then look to compare the teamwork value to the number of goals scored and
for basketball comparing the values to the number of points scored. The results from
this are shown in Figure 4.4. This experiment allows us to see how the teamwork values
that we extract from the data correlate to how we expect the teams to perform in the
real world.

to the number of goals scored and for basketball comparing the values to the

number of points scored. The results from this are shown in Figure 5. This
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Figure 4.3: A comparison of teamwork values and the number of games won in a
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Figure 4.4: A comparison of teamwork values and the number of goals/points obtained
in a season.

As we can see from the figures, there is a positive correlation between the number of wins
and the number of points/goals scored in both football and basketball. The Spearman’s
rank correlation coefficient for football are 0.92 and 0.89 for games won and goals scored
respectively. For basketball, the coefficients are 0.35 and 0.15 for games won and points
scored respectively. We also see there is a stronger fit in football with r-squared values
of 0.84 and 0.87, whereas basketball is -0.12 and -0.06.
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We believe that we see a better fit and a more positive correlation in football than
basketball for these metrics due to the more consistent state of the team and players on
the pitch in football. As only 3 substitutions can be made in a game in football, players
play together for longer and build better relationships. This is especially the case due
to the formation of the 11 players in football meaning pairs of players must learn how to
play together in the team (e.g., a pair of strikers trying to score goals, a pair of centre-
backs defending or a full-back and winger dominating one side of the pitch). It could
also be to do with the high scoring nature of a game of basketball, meaning that the
teamwork values are less important for the many points scored and instead it is caused
by individuals efforts in attack. Whereas in football a goal is rare and the build-up to a
goal relies on a cohesive team working together.

Due to this, we focus our more extensive evaluation of the teamwork model on the data
presented by football in the rest of this section.

4.6.3 Experiment 2: Performance Comparison to Teams Formed by
Human-Experts

We evaluate our model to compare both the singleton approach and the pair’s approach
with the teams selected by the human-expert manager (focusing on both the starting
11 players and the 11 players who finish the game after substitutes). We form teams
based on the method in Equation 4.7 to maximise teamwork and then compare this to
the team selected in the real-world. The results are presented in Figure 4.5 (where error
bars represent a 95% confidence interval).

• Model 1: Centrality Value.

• Model 2: Walk Frequency.

• Model 3: Distance from Event.

• Model 4: Pair Values (Equation 4.7).

This shows that the pair values optimisation method gives the closest teams to the
human experts on average with a difference of 2.3 per game for the starting team. This
suggests that the human managers (either consciously or subconsciously) consider the
ability of players in the team to work together as the other methods only consider
individual player values. At an average of 2.3, this could give managers suggestions of
how changes could be made to the team that may give a better chance of winning the
game.
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Figure 4.5: Average Difference Between Model and Real-World Human Manager Se-
lections (where lower is better).

4.6.4 Experiment 3: Match Outcome Prediction

The results shown in Experiment 1 suggest that in football there is a strong positive
correlation between team performance our the teamwork metrics we present in this
chapter. Therefore, leading on from this experiment we further explore the predictive
ability of our models by using their outputs to predict the likelihood of winning games
and several given performance metrics. In Figure 4.6 we show the percentage accuracy
when we predict the winner of the game based on which team has the highest teamwork
sum. In Table 4.1 we show the RMSE results from using teamwork to train predictive
model for given performance metrics.
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Figure 4.6: Accuracy of Valuation Methods For Outcome Predictions.

Model # Individuals Pairs
Shots 4.33 3.74

Goals For 1.00 0.87
Goals Against 1.14 1.06

Passes 105.69 57.07

Table 4.1: Valuation Methods Root Mean Squared Errors for Performance Metrics
(where lower is better).
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The results in Figure 4.6 and Table 4.1 suggest that the teamwork metric is a more
accurate predictor of performance than individual player values, meaning that the teams
with higher valued pairs are more likely to win the game and have better performance
indicators. This is especially true when we predict the number of passes that a team will
make in a game as this metric shows the strongest predictor when using the teamwork
values and is a 46% increase on any other approach.

We also see that in basketball teams with higher teamwork value win in 52.9% of games,
compared to 60.2% in football.

4.6.5 Experiment 4: Expanding the Chains of Interaction

When teamwork valuation has been tested in prior work (Beal, Changder, et al. 2020),
the paper only assesses the value of single agents and pairs of agents and does not
consider chains of interactions longer than 2 agents when valuing the contribution of the
agents and when forming a team. Therefore, in this experiment, we assess the effects of
expanding the chains of interactions and looking at the value of triplets of players and
beyond. We aim to see how the longer chains will correlate to the real-world metrics that
are discussed in the previous experiment. We found that these values have a stronger
correlation in football (over basketball), therefore in this experiment we choose to just
focus on football. We compare how the differing lengths of chains of interactions impact
the real-world correlations, time to form teams (Section 4.5.3.2) and the closeness to
real-world selections by human expert managers/coaches.

We first focus on how the different lengths of chains affect the correlation to the number
of goals and wins a team obtains over a season. We show how the Pearson Correlation
Coefficient (PCC) changes for these metrics at different chain lengths. The results from
this are shown in Figure 4.7.
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Figure 4.7: Effects of Chain Length on Pearson Correlation Coefficient.

As we expand the chains of interactions we see the strength of correlation between the
values of the chains and the performance of the teams tail off. We see there is a 4% drop
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between a chain length of 2 to 3 and then a drop of 7% between a chain of 3 and 4 for the
numbers of goals scored. In chains of 5 players, we see the PCC drop to 0.383 and 0.353
for wins and goals respectively. This shows that after a pair of players, the more players
you include in the chain the less relevant to real-world metrics of teamwork that our
computed teamwork values represent. This could be due to there being fewer examples
of larger chains linking up in games for us to extract value from. This is also useful for
professional teams to be able to identify pairs of players that have the largest impact on
the team and then use our “Interactional Alignment” value (shown in Equation 4.6) to
find the best-overlapping pairs when forming a team to play in a game.

The teamwork between the pairs of players is the best way to represent the teamwork
in the squad which can then allow us to use the team formation techniques presented
in this chapter. As we expand the length of the chains we see the runtime of the team
formation algorithm grow due to the growing number of possible combinations of players
and overlapping chains when forming the team using the model in Section 4.5.3.2. This
runtime does drop again after chains of more than half the team at 6 players but as
we have shown this is not useful due to the drop in PCC as we add more players. We
also see that as discussed by Beal, Changder, et al. (2020), pairs of players used in the
formation algorithm will provide the closest team to what is selected by a human expert
team manager/coach.

4.6.6 Experiment 5: Coach Impact on Teamwork

Many different factors can affect how players work together on the pitch. These include
but are not limited to: the tactics used, the languages spoken by the players, the coach/-
manager and the form of the team. Therefore, in this experiment, we aim to evaluate the
long term impacts on player teamwork and how this can be affected by change events in
the wider environment. One key change event that happens over time in football teams
is the change in managers/head coaches. In the English Premier League, the average
time a manager is in charge is only 69 games (under 2 seasons) so we can model the
impact of these changes in management and leadership in our data. This means that
there are often chances to change tactics and leadership styles which in turn can affect
the teamwork on the pitch.

Below in Figures 4.8 (Chelsea) and 4.9 (Arsenal), we show real-world examples of how
these changes in manager affects the teamwork between players. We use an extended
dataset of player teamwork back to 2017. We show a 10 match rolling average of the sum
of teamwork values between the starting 11 players in each game. In these examples,
the orange dotted lines represent the manager change event and these are labelled by
the manager who took over.



102 Chapter 4 Learning The Value of Teamwork to Form Efficient Teams

Figure 4.8: Chelsea Teamwork Rolling Average

Our first example shows Chelsea, we can see there were 3 manager change events (dashed
orange line) over the period we focus on (2017-2021). Prior to each manager being
changed we can observe a drop-off in the team chemistry that would also be reflected in
a drop-off in results that lead to the laying-off of the previous manager. We can see that
the first change appointment of Maurizio Sarri failed to improve the teamwork between
the players in the team and saw a drop-off during his time in charge. The next change
event after Sarri, was when Frank Lampard took over.9 Here, we see a very large spike
in teamwork showing that his changes in style and leadership were able to help improve
the ways that players link up in the game. After the initial spike in chemistry, this
eventually plateaus. After some small drops in teamwork and poor results on the pitch,
we see the third change event where Lampard was replaced by Thomas Tuchel at the
start of 2021. At this point, it is too soon to see what his long-term effect will be. It is
worth noting that he took charge when the team was in a much better position in terms
of teamwork than any manager in the past.

In our next example we show Arsenal over the same period, we see similar results. We
see that the first change event represents Unai Emery taking over from Arsène Wenger,
where prior to the change there was a small fall in teamwork. Once Emery took over
there was a sharp rise before plateauing. Again, before our next change event which was
when Mikel Arteta took over there was a dip in teamwork - we see that he was unable
to bring a spike in teamwork but has fallen away further before starting to rise before
the end of the 2020/21 season. This suggests he took over a team he could not bring
together or the players were unable to adapt to his leadership style which meant it took
the players longer to adapt.

9An ex-Chelsea player with a very high reputation at the club and in English football.
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Figure 4.9: Arsenal Teamwork Rolling Average

These examples show how the changes in managers can have a huge impact on the
teamwork between the players on the pitch. This is likely down to their impact on
the leadership of the players and the changes in team player styles that may suit the
players more given them more enjoyment and freedom while playing. We also see how
the drop off in teamwork can often lead to the replacement of a manager and trigger the
decision-makers at clubs to want to make a change to help turn around their fortunes.

4.7 Future Work and Wider Applications

Our results also suggest that this model could be applicable across many domains and,
given a high-quality dataset, we could further validate the model performance to see
if similar results are found (e.g., in emergency response or data transfers). The notion
of teamwork would also be valuable to model and predict in many different industries
and businesses with the recruitment of new staff. Being able to assess how well staff
members in any domain work together would be extremely valuable. This would allow
the most efficient teams to be formed in any domain. For our teamwork models to apply
to new domains, we must be able to value the output of team members and their joint
contributions.

As well as expanding the applications of our models into new domains, we could also
expand our models in team sports. Building on this chapter, we could begin to predict
how well players who do not currently play together would play given a player makes a
transfer and moves team. This would allow teams to evaluate new players and transfers
to ensure that they are likely to “gel” with their new teammates. We could also further
evaluate the predictions of match-outcomes, based on our team valuations of a starting
11 team, against other match-outcome prediction approaches such as (Dixon and Coles
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1997; Constantinou, Fenton, and Neil 2012). We would also extend the models to address
how the team formation could be improved by factoring in an opposition team (in games
such as football this can have a significant difference to how a team is formed).

4.8 Chapter Summary

In this chapter, we describe a novel approach to team formation based on directed
interactions between agents. Our model of teamwork considers event outcomes of the
chains of interactions shown as walks within graphs. We defined and tested multiple
network metrics to value the contribution of agents and sets of agents and show how
the value of teamwork (including interactional alignment) can be learnt from data and
then applied to predict the performance of teams. We tested and validated our models
of valuing agents and forming teams by applying our models to problems posed by
football and basketball. In football, we showed that our model using teamwork pairs
between players can produce similar team selections to an international level human-
expert manager while also being suggesting changes to the team.

In the next chapter, we move on to look at match outcome prediction and the chal-
lenges that it presents. Specifically, we explore the use of Natural Language Processing
techniques to improve on previous models by learning from the human experts.



Chapter 5

Combining Machine Learning and
Human Experts to Predict Match
Outcomes in Football

In this chapter, we present a novel application of a combination of Natural Language
Processing and Machine Learning models which we use to predict the match outcomes
of games of football. We use articles written by domain expert human journalists from
the media and validate our approaches by applying the discussed models to predict
the outcome of games in the English Premier League. We focus on a time period over
6 seasons, using a dataset based on newspaper match previews from The Guardian.
When compared to the best statistical approaches and bookmakers’ odds, the models
presented in this chapter boost the traditional statistical methods by 6.9% in terms of
match-outcome accuracy and are able to identify a greater number of rare outcomes.

5.1 Introduction

Real-world events such as sports games or elections involve competing teams, each with
capabilities and tactics, aiming to win (e.g., seats during an election, or scoring more
goals in a football match). The performance of such teams is typically not only depen-
dent on the teams’ abilities but also on the environment within which they operate. For
example, a political party may have the best orators and policies but their opponents
may be better at getting votes in key areas. Similarly, a top football team may be
playing the worst team in a league but the fact that the latter may be facing relegation
(to a lower league) may provide them with extra motivation to win the game. Given
these circumstances, in many cases, the performance of such teams may not be easily
predictable.

105
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Traditional AI and machine learning techniques to predict the outcome of real-world
events tend to focus on the use of statistical machine learning using historical data
about the individual teams (N. Silver 2012; J. Y. Campbell and Shiller 1988; Dixon and
Coles 1997; Matthews, Ramchurn, and Chalkiadakis 2012). However, as per the exam-
ples above, historical performance may not be useful when team performance may be
dependent on dynamic factors such as human performance (morale, injuries, strategies)
or environmental variables (weather, competition context, public mood). In turn, hu-
mans can be better judges than algorithms when faced with previously unseen situations.
Journalists, online communities, and experienced analysts may be better at evaluating
human and environmental elements to forecast an outcome. For example, companies
are increasingly relying on sentiment analysis from live Twitter data and news reports
to forecast stock prices or outcomes of football matches (Schumaker, Jarmoszko, and
Labedz Jr 2016; Bollen, Mao, and Zeng 2011) (see Section 5.2 for more details). How-
ever, such approaches focus on opinion aggregation rather than trying to extract the
potential indicators of performance for individual human teams.

In particular, in sporting events, many human factors impact how a team performs in
given games. There are often situations that would be very hard to represent in numbers
and statistics alone. For example, sporting rivalries often affect human emotions and
team performance and teams fighting to avoid relegation from a league often obtain
unexpected results.

Against this background, we propose a new approach to predict real-world sporting
events involving humans based on the combination of Natural Language Processing
(NLP) and statistical machine learning techniques. In more detail, we focus specifically
on football games in the English Premier League (EPL) using match previews from the
media alongside statistical machine learning (ML) techniques. The prediction of football
match outcomes is a challenging computational problem due to the range of parameters
that can influence match results. To date, probabilistic methods devised since the semi-
nal work of Maher (Maher 1982) has generated fairly limited results and appear to have
reached a glass ceiling in terms of accuracy. By improving on the current approaches for
football match outcome prediction using our new methods we show that there is more
to team games that involve humans than just raw statistics and incorporating human
factors into a prediction model can improve accuracy.

Thus, the models in this chapter advances the previous state of the art for both NLP/ML
prediction and sports match outcome prediction in the following ways:

1. New dataset for testing NLP/ML algorithms for sports match outcome prediction
for football (soccer). Our dataset includes a previously unexplored feature set in
terms of football match outcome predictions, including human knowledge that is
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overlooked in traditional statistics. The dataset includes match data and previews
for 1770 games football games over 6 seasons.

2. We propose a novel combination of Open Information Extraction (OpenIE), Sen-
timent analysis and supervised ML methods for predicting the outcome of games
of football using human opinions from domain experts in the media.

3. We test and validate our approach by predicting the outcomes of 1770 football
games over 6 seasons and compare our performance to: sentiment analysis of
the articles, more traditional statistical approaches as well as bookmakers’ odds
(reflecting human bets).

4. We show that we can boost the accuracy of statistical approaches by 6.9% when
predicting the outcome of events and that our models perform better when pre-
dicting draws and longshot results in football which are both harder to predict
when using statistical methods.

The rest of this chapter is organised as follows. Section 5.2 covers background literature
for NLP, OpenIE and sports outcome prediction. Section 5.3 models the problem of
predicting real-world events. Section 5.4 provides the detail of how we model human
opinions and 5.5 discusses the prediction methods that we use. We perform multiple
experiments on our model in Section 5.6 and discuss our findings in Section 5.7. Finally,
Section 5.8 concludes.

5.2 Background and Related Work

In this section, we first provide a brief description of the work in NLP and explain why
these techniques are relevant. We also describe previous work in football match outcome
prediction and OpenIE methods.

5.2.1 NLP for Prediction

There are many examples in past work that have used NLP techniques to make predic-
tions on specific real-world events. Here, we define a real-world sporting event as a game
involving two agents or teams of agents where the game ends in some given class (e.g.,
a winner, tie or loser). A sentiment analysis approach has been used in (Schumaker,
Jarmoszko, and Labedz Jr 2016) to predict EPL results and turn a profit in the betting
markets. They achieved an accuracy of 50% and they found that they generate more
profits than a crowd-sourced odds approach when used with a betting strategy (we com-
pare our results to this in Section 6.3). Also, there is an example of a similar analysis



108
Chapter 5 Combining Machine Learning and Human Experts to Predict Match

Outcomes in Football

being performed for American Football results in the National Football League (NFL)
shown in (S. Sinha et al. 2013). Over a 12 week period (177 games) in the 2012 season,
they were able to correctly predict the winner 63.8% of the time.

There are further examples of work focusing on analysing and predicting the outcomes
of elections in the US. The first of these (H. Wang et al. 2012) uses sentiment analysis
on Twitter feeds to build a system that can gauge public opinion of the candidates
in an election. Their system can analyse sentiment in the entire Twitter traffic about
the election, delivering results in real-time. Furthermore, in (Tumasjan et al. 2010)
the authors again use sentiment analysis and text analysis software to conduct a content
analysis of over 100,000 tweets. Work in (Radinsky and Horvitz 2013) predicts a number
of real-world events from new articles such as identifying increases in the likelihood of
disease outbreaks, deaths, and riots. Following on from this, in (Chakraborty et al.
2016) socio-economic indicators (such as food prices) are predicted using news events,
they achieve good results reducing the root mean square error of prediction by 22%
in comparison to standard models. Also, work in (Xie et al. 2013) uses financial news
articles and semantic frames to predict stock price movements and other recent work
such as (Verma et al. 2011) has shown the success of NLP when extracting situational
awareness to aid emergency response teams.

The real-world sports event prediction model we outline in this chapter differs from
current work as we do not need to use sentiment analysis or social network data to
make our predictions. We use text extracts from human experts and journalists to find
patterns that relate to the real-world event outcomes which are more complex than
standard tweets from the general public.

5.2.2 Open Information Extraction for Sports Prediction

Open information extraction (OpenIE) approaches extract propositional tuples from
free text sentences, typically focused on verb or noun mediated phrases. Key charac-
teristics of OpenIE (Banko et al. 2007; Cui, Wei, and M. Zhou 2018; Z. Jiang, Yin,
and Neubig 2019) are domain independence, unsupervised extraction, and scalability
to large amounts of text. For example the sentence “Cristiano Ronaldo was born in
Portugal” might generate a verb-mediated propositional tuple (Cristiano Ronaldo;was
born in;Portugal), and the sentence “Manchester United ex manager, Josè Mourinho”
a noun-mediated propositional tuple (Manchester United, ex manager, Josè Mourinho).
Being unsupervised it avoids the need to compile a large training corpus for each domain.

OpenIE has been used for knowledge-based population (KBP) which includes sub-tasks
of slot filling and entity linking. Slot filling is where all known information is added
to target entities, and entity linking is where references to entities are disambiguated.
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Entity types are usually focused on people, locations and organisations, with knowledge-
base properties associated as attributes of entities or relations between entities.

Downstream applications of OpenIE (Mausam 2016) focus on web and news applications
such as identifying co-occurring news articles (Balasubramanian, Soderland, and Etzioni
2012). The focus of our work is OpenIE applied to sports prediction, which is a new
downstream application type. Our context allocation method can be seen as a type
of entity linking approach, where entity mentions in sports previews are semantically
grounded to specific entities in a sports result statistics dataset.

5.2.3 Sports Outcome Prediction

In Section 2.1 we give a full overview of work in sports outcome prediction. In this sub-
section, we highlight some of the more relevant works to the models in this chapter. The
model discussed by Dixon and Coles (Dixon and Coles 1997) is based on the different
abilities of both teams and the Poisson distribution is used to model the number of
goals scored by each team and therefore predict the outcome. Their model was found
to have a prediction accuracy of 56.65% over the past 5 seasons. This model is still one
of the most accurate and widely used.1 Following on from this, (Constantinou, Fenton,
and Neil 2012) apply Bayesian Models to football match outcomes and the website
www.fivethirtyeight.com predict football games using a power index metric that they
calculate for each team using a Poisson process.2

Many other statistical and machine learning based models have been tested for match
outcome predictions in many sports such as (Miljković et al. 2010; Haghighat, Raste-
gari, and Nourafza 2013; Leung and K. W. Joseph 2014). However, these approaches
have been used for many years without any significant improvement. We believe (as
highlighted in Section 2.5) that part of the reason for the lack of improvement to mod-
els is that only the traditional statistics are used. In sport, many uncertainties affect
the outcome of a game that can be very hard to express through statistics and num-
bers. These include: the importance of a game, team rivalries, managerial changes, new
signings and rotations to the team. A journalist can interpret this information in a
better way and make assumptions that machines are unable to. By analysing a series of
pre-match previews from the media we extrapolate features from human opinions that
may affect the outcome of a game. In our model, we apply NLP and sentiment analysis
techniques alongside machine learning to create a human-expert and machine model to
make predictions that have not been applied before in the sports domain.

1Discussed in a 2013 book “Analysis of Football Prediction Methods” by William Brojanigo.
2https://fivethirtyeight.com/methodology/how-our-club-soccer-predictions-work.
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5.3 The Model

The model outlined in this chapter provides an approach to interpret a complex text
from newspapers and online articles to predict a given match outcome in a game of
football. In this section, we describe the steps of the prediction model in a generalisable
way so that these techniques could be reapplied in domains (e.g., elections and other
sports events). We use a combination of NLP and ML techniques, which in the past
have been used for knowledge-based population (Ji and Grishman 2011) and document
classification (Manevitz and Yousef 2001).

5.3.1 Model Definitions

We define the set of upcoming events as E with a set of i possible outcomes, O =
{o1, o2, . . . , oi} where i > 1. Each e ∈ E has a set of texts written about it T =
{t1, t2, . . . , tj} where j ≥ 1. For example, in an election, the possible outcomes would be
the different political parties that could win and in a sporting event, the outcome would
be the two teams that could win (or draw). The text written about the events in these
examples are preview articles in the press discussing information regarding the event.3

Each text t ∈ T is built up from multiple sentences denoted by t = {s1, s2, . . . , sk} where
k is the number of sentences in the text article. We transform each sentence s into a
form that we can use as a feature to give f(s), where f represents the transformation
function to output a numeric vector representation of the sentence. Using a sentiment
analysis approach, the function f(s) would represent the sentiment value of the sentence,
where −1 ≤ f(s) ≤ 1.

Each sentence may be related to zero or more of the outcomes in O (e.g., a sentence
may be discussing a political party or the home team in a football game). We calculate
the probability p(f(s)|oi) that each sentence relates to a team competing in the game
and then allocate that sentence to the most likely team. If there is uncertainty in
the allocation then the allocation is set to no team (equal probability for both teams
in Equation 5.1). An allocation is defined as a pair of the sentence vector and its
allocated outcome (home/away team win), a = (f(s), oi) where a ∈ A and A is the set
of allocations |A| = k.

With the allocations, we calculate the final features (X) for the outcome y where y ∈ O
so that we can use these features to train a machine learning model. When using a
text vectorization approach, the features are created by the addition of all the sentence
vectors that are allocated to a given event outcome (e.g., this would be an addition of

3For football examples see: https://www.theguardian.com/football/series/match-previews and for
election example see: https://www.bbc.co.uk/news/uk-politics-49826655.
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the vectors that relate to a given political party) this gives the final vector for each
outcome v(oi). If we are using a sentiment approach the average sentiment from all
allocated sentences will be used. We now define our feature set X for each event E as
X = [v(o1), v(o2), . . . , v(oi)] and the target y is the actual outcome o ∈ O of E which
we aim to predict using a function φ so that φ(X) = y.

5.3.2 Model Process

To solve our model we start with some set of texts T from a given source and we are
aiming to produce a prediction of the outcome from a real-world event, y. Specifically,
we apply the steps which are outlined in Figure 5.1. Here, we discuss each stage and
the methods that we use. We will discuss these in further detail in Section 5.4 and 5.5.

1. OpenIE Extraction

T

2. Context Allocation
3. Text Vectorisation/
Sentiment Analysis

4. Prediction

y

Figure 5.1: NLP Real-World Prediction Model Process Diagram

1. OpenIE Extraction: Relation tuples are extracted in the form {argument, re-
lation, argument} for each sentence in the articles text, for example {Machester
United, ex-manager, Mourinho}.

2. Allocation of Text Context: We allocate each sentence to an outcome (a =
(f(s), o)). For example, in the case of football, each sentence must be allocated to
one of the teams that are playing in the match that the article is discussing. This
is expanded on in Section 5.4.2.

3. Text Vectorisation/Sentiment Analysis: We convert the sentences into vec-
tors using a Count Vectorizer technique so we have a numerical representation of
the words in a sentence. We can use sentiment analysis (instead of vectorisation)
to give the sentiment for each of the sentences. These give the f(s) value and
the final features are computed to form X. These are discussed in more detail on
Sections 5.4.3 and 5.4.4
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4. Prediction: Once we have formed our feature set (X) for each event that we
are aiming to predict, we train a machine learning model (φ) using historic data
(with outcomes) and the features X. This is used to make the final predictions
of events based on the original articles. The outcome that we aim to predict (y)
corresponds to one of the possible outcomes in O (e.g., for football predictions
y = home, draw, away).

5.4 Modelling Human Opinion

In this section, we discuss in detail the NLP methods that we have used to formulate
our features and the methods used to calculate the sentiment. We then use the outputs
from these with machine learning algorithms in Section 5.5.

5.4.1 OpenIE Extraction

To create relation tuples from each match preview report we convert the document
corpus to a set of sentences and apply an existing OpenIE algorithm. The result of
OpenIE is a set of verb-mediated relational proposition annotations for each sentence
in the form argument, relation, argument. Each argument or relation phrase is a n-ary
phrase and is not semantically grounded. We use the next step, context allocation,
to disambiguate mentions of sports-related entities and behaviours to entities within
the sports dataset and achieve entity linking. We use OpenIE as we aim to capture
predicates as well as noun-phrase named entities. Predicates (e.g. verb action words)
provide markers for features around what players, managers and teams are doing of
feeling.

5.4.2 Context Allocation

Using the extracted text sentences from the OpenIE extraction, we allocate each sentence
to a team involved in that match that we are aiming to predict. This gives the sentence
context to what we are aiming to predict in a similar way to which word embedding is
used in an information retrieval context (D. Ganguly et al. 2015). This is an important
part of our model process as it means that we get the correct features allocated to the
corresponding teams. Our approach to the allocation problem uses key term dictionaries
for each team so that for each sentence we can calculate the probability of it being related
to one of the individual teams involved in the game. The probability that a sentence
belongs to a team is calculated using Equation 5.1.
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p(s|t) =
∑N
n=1 1{sn∈Dt}

N
(5.1)

Where p(s|t) is the probability that sentence s belongs to team t and the sentence is
allocated to the team with the highest probability. Sentence s represents a list of words
where N is the number of words and Dt is the dictionary of words belonging to team t.
The dictionary that we use is human-generated and is built up from key terms from each
team (e.g., team manager, stadium, nicknames, list of players). A shortened example
dictionary for Southampton in the 2018/19 season would be:

Southampton = {Hassenhutl, Saints, St.Marys, Bertrand, Ward-Prowse, Ings, Redmond,
Hojbjerg, Romeu, Yoshida}

5.4.3 Text Vectorisation

To create a vector from our text that we can use as features in the prediction models we
use a CountVectorizer approach.4 This allows us to tokenize our collection of articles
and build a vocabulary of known words. It also allows us to encode new articles when
predicting unseen data. This returns an encoded vector for each sentence with a length of
the entire vocabulary and an integer count for the number of times each word appeared
in the sentence. The returned vectors may contain a lot of zeros, therefore, we perform
further analysis on the vectors to extract the key features that have the highest impact
on the outcome of the event that we are aiming to predict.

5.4.3.1 Vector Output

Using each of the vectors created from the sentences (which have been allocated to a
team) we produce our final vector output which can be used with machine learning
models for prediction in Section 5.5. To formulate our final vector we combine the
sentences that are allocated to a team t for an individual game by summing the respective
elements into a single vector for each team, for each game - this is shown in Equation
5.2.

v(t) =
K∑
k=1

v(sk,t) (5.2)

Where, v(sk,t) is the vector of sentence sk that is allocated to a team t and K is the
number of sentences. We produce our final vector for game g by using both the home

4A number of techniques were tested but it is found that CountVectorizer gives the best results.
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team vector v(h) with a weighting α to represent the home team advantage (S. Clarke
and Norman 1995) and away team vector v(a) together to give the final vector v(g) =
[α · v(h), v(a)]. Each event/game will have the corresponding vector which will be used
to make the prediction. For each game g we use the vector v(g) to predict the outcome
of the game. This gives us φ(v(g)) = y where y ∈ {home, draw, away} and φ is some
machine learning algorithm applied to predict the outcome.

5.4.4 Sentiment Analysis

We also perform sentiment analysis for each team in each game which we will compare
against the text vector approach (shown in Section 5.6.4). A sentiment approach gives
us a value for the probability that each sentence in an article belongs to the positive,
neutral and negative topics. Then as we allocate each sentence to a team playing in the
game we can calculate if the sentiment for that team in the article is positive, neutral
or negative. One approach that could be used for this is training a machine learning
model to classify sentences into the sentiment. However, we do not have a labelled
dataset to be able to do this, therefore it would need to be manually labelled. Due to
this, to calculate the sentiment of our sentences we use approaches that are discussed in
(Lin and He 2009) where a Latent Dirichlet Allocation (LDA) approach is used to add
sentiment to movie reviews without labels. In what follows, the methods are outlined
in more detail.

5.4.4.1 Prior Information

We use a paradigm word list that consists of a set of positive and negative words (e.g.,
fantastic and terrible). These words can be treated to define the positive and negative
semantics of a sentence. The majority of the words were derived from the word lists
used in (B. Pang, L. Lee, and Vaithyanathan 2002).

5.4.4.2 Latent Dirichlet Allocation (LDA)

We use an LDA approach (Blei, Ng, and M. Jordan 2003) to calculate the probability
that each sentence belongs to either a positive, negative or neutral “topic”. Each sentence
is viewed as a mixture of various “topics” where each sentence is considered to have a
set of topics that are assigned to it via LDA. By using the techniques discussed by
Blei, Ng and Jordan (2003), we calculate the probability that each sentence belongs to
the positive, negative and neutral classes. In our model, the corpus D is the set of all
sentences in the media articles, the document w is the sentences from the text, we iterate
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go through all words wn and calculate a multinomial probability p(wn|zn) conditioned
on the topic zn. In this case, our topics are z = {positive, neutral, negative}.

We calculate an average probability (from all the allocated sentences) for each of the
possible outcomes from the event that we are aiming to predict. For the football match
outcome problem we create a feature set formed using an average of the positive, neutral
and negative probabilities for each team and use these as features in a machine learning
model to predict the final output.

5.5 Match Outcome Prediction

In this section, we discuss the methods that we use to make predictions using the text
vector features and sentiment analysis that are discussed in Section 5.4.

5.5.1 Feature Importance

Due to the number of features that are created when transforming text to vectors, we
perform analysis to select the most important features and pick out the words which
have the highest impact on the outcome of the event. This will help to reduce noise in
our model. To do this we apply a multi-class Logistic Regression approach (Hosmer Jr,
Lemeshow, and Sturdivant 2013) to calculate the weight of each of the features in the
model.

This could also be done by using PCA methods (Malhi and Gao 2004) or several other
feature selection approaches. We show the important feature words that we identify and
discuss the findings in Section 5.6.3.

5.5.2 Machine Learning Methods

Using the selected features discussed in the previous sub-section, we tested nine machine
learning methods and found that the Random Forest was the optimal method to use
for our dataset.5. In football matches there are three possible outcomes that we must
consider in our models, these are: a home win, a draw and an away win. These outcomes
are determined by the number of goals scored by each team.

The feature set X that is used for our model is the set of the selected features discussed
in the previous section (either using text vectorisation or sentiment analysis) and the

5It is worth noting that this may not be the case for all applications of this model. Classifica-
tion methods tested: nearest neighbours, linear SVM, RBF SVM, decision tree, random forest, neural
network, naive Bayes, QDA, logistic regression
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target set y is the corresponding outcome from the game that the feature text refers to.
This means that we use multi-class Random Forest classification method as we have 3
possible classes as the targeted outputs.

5.5.2.1 Random Forest

A random forest model (Breiman 2001) is formed with a collection of different tree
predictors where X is the feature set, h(X,Θ) is the individual tree’s output and Θ is
a random vector generated, independent of the past random vectors but with the same
distribution.

p(y|X) =
∑K
k=1 h(X,Θk)

F
(5.3)

The outcome prediction is given by taking an average of the collection of tree predictor
outputs which gives the probability that the features X belong to the outcome y and F
is the number of trees in the forest. The model hyper-parameters are fine-tuned using a
GridSearch method.

5.6 Experiments and Evaluation

This section outlines the experiments which we perform to test the NLP models discussed
in this chapter.6 Experiments are run using historic data taken from the Guardian
match previews as well as other statistics from the English Premier League (EPL) and
historical odds were taken from OddsPortal.7 All experiments are run using match
previews written before the game took place and with pre-match bookmaker odds to
ensure that each test is fair and there is no contamination of data in our experiments.

5.6.1 Text Dataset from the Media

As well as the model outlined in this chapter, we provide a novel dataset for researchers
to use and implement their own models for the challenge of predicting sports events
using human experts from the media. This dataset can be found at https://github.com/
RyanBeal7/GuardianPreviewData with all data sourced from the Guardians English
Premier League match previews over the past 6 seasons.8 The dataset does not contain

6All experiments run using the SciKit Learn Toolkit.
7Pre-match historic odds: https://www.oddsportal.com/results/soccer (taken at kick-off).
8Guardian articles are open source and can be found here:

https://www.theguardian.com/football/series/match-previews.
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an exhaustive list of all games during the seasons that we focus on, although we are
able to source data from 1770 games across 6 seasons from 2013/14 to 2018/19. The
models in this chapter shows the first analysis of a dataset of this type, combining text
and statistics to predict football matches. In this domain, 1770 games is a large dataset
for predictions of football games, other examples of papers for this problem usually only
tests on 1 or 2 seasons of data (380 games per EPL season). An example snippet from
a match preview regarding a game between Southampton and Tottenham in 2019 is as
follows:

“Which Tottenham team will show up at St Mary’s? While others were blowing first-leg leads,
Tottenham competed a clinical Champions League victory over Dortmund – but they are winless

in their last three league games. Mauricio Pochettino begins his touchline ban and will be
without Kieran Trippier, although Dele Alli and Harry Winks could feature.”

This type of dataset can be used to analyse how the wording and sentiment regarding
teams in similar reports (over the 1770 games) correlate to the match outcome. We
expect that human-related factors (e.g., team rivalries and behind the scene changes in
staff/players) will be brought through in our predictions and improve on the traditional
statistical approaches. The data for this is outlined in the next subsection.

5.6.2 Statistical Data

As will be discussed in Experiment 2, we also use statistical-based methods to compare
against our prediction models that use only the text-based features. We sourced data for
basic statistics for the 1770 games that our experiments focus on from FB-Ref.com which
provides a number of useful statistics in football, the link for the EPL data can be found
at https://fbref.com/en/comps/ 9/Premier-League-Stats. We use features outlined in
(Dixon and Coles 1997) which includes the attacking and defensive efficiencies of the
teams in the game which are calculated using goals scored and conceded before a given
game.

5.6.3 Experiment 1: Important Feature Words

Using the feature importance methods which we discussed in Section 5.3, we evaluate
and pick out the words that have been shown to have the highest impact on the outcome
of the games. This allows us to evaluate what our model is learning in terms of the words
that the human-expert journalists write. The more weight added to a word the more
impact that this would have within the model and is more likely to correlate to a match
outcome (win, draw, loss). The top 10 features and their impact values are shown in
Figure 5.2.
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Figure 5.2: Top 10 Words with Highest Ranked Feature Importance.

The words “decision”, “starting”, “lineup” and “striker” suggest that discussions in the
article text regarding teams tactical decisions and starting lineup have an impact on
the prediction of the match outcome. The other words that are shown here seem to
be related to team form and performances both in a positive way (e.g. “victory”) and
a negative way (e.g. “laboured”). The words regarding possible tactical decisions are
particularly interesting as it shows that the model can pick out some of the words relating
to human decisions that may be missed by traditional statistics.

5.6.4 Experiment 2: Accuracy of NLP Outcome Prediction

Using the methods that we have discussed throughout this chapter we test and compare
the accuracy, precision and recall against alternative methods which are outlined below.
We decided to compare our results to that of a well-known football prediction model
by Dixon and Coles (Dixon and Coles 1997). This model is still seen as one of the
leading examples of statistical modelling for football and has not been greatly improved
through the use of newer machine learning techniques (this is discussed in Section 2.1).
Therefore, we believe for our models to be successful we aim to improve on the Dixon
and Coles model, as well as the bookmakers’ accuracy.

The results from this test are shown in Figure 5.3 and Table 5.1. The test was run
taking an average of the performance across 3 seasons (2016-2019), using a training set9

of all games prior to that season and a test set of 300 games in the season.10

9Size of training set: 16/17 = 516, 17/18 = 787, 18/19 = 1033.
10It is worth noting that the class distribution of EPL games from across 25 seasons of EPL football

is 46.2% home wins, draws 27.52% and away wins 26.32%.
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• Model 1 (Text Vectors): Uses the process shown in Figure 5.1 with features
formed using text vectorisation methods.

• Model 2 (Sentiment Analysis): Uses the process shown in Figure 5.1 with
features formed using sentiment analysis methods.

• Model 3 (Dixon and Coles): Represents the outputs from the model described
by Dixon and Coles (1997).

• Model 4 (Bookmakers): Uses the pre-match bookmakers’ favourite as the pre-
dicted winner of the game.

• Model 5 (Text Vector Combination): Uses features calculated from text
vectorisation (Model 1), outputs from Dixon and Coles (Model 3) and the pre-
match bookmakers’ odds (Model 4). The features are the probability of a home
win, away win and draw from each of the three models. Therefore, we have 9
features per game and apply a Random Forest classifier.

• Model 6 (Sentiment Combination): Here we combine Model 2, 3 and 4 in a
similar fashion as above but by using sentiment features rather than text vectori-
sation. We then use a Random Forest classifier with a feature set made up of from
9 probabilities.
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Figure 5.3: Comparison of Model Accuracies.

Model # Precision Recall F1 Score
1 0.649 0.413 0.388
2 0.163 0.333 0.218
3 0.503 0.491 0.456
4 0.451 0.452 0.445
5 0.612 0.563 0.569
6 0.515 0.497 0.464

Table 5.1: Precision/Recall Results.
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These results show that using NLP methods, on their own, do not produce remarkable
results. Model 1 (using just text vector methods) produced an accuracy of 53.5% and
model 2 (using sentiment analysis) produced an accuracy of 48.7%. Neither of these can
better the Dixon and Coles predictions (6.9% boost). However, we found that when we
use the prediction probabilities output from Model 1 with the bookmakers’ probabilities
and Dixon and Coles probabilities we can improve these methods. Model 5 (using text
vector, bookmakers and Dixon and Coles probabilities) achieves an accuracy of 63.2%
which is a 10.8% increase on the bookmakers’ accuracy and 4.1% more than Dixon and
Coles (6.9% boost). We show that Model 5 has the highest F1 score of all the models,
which is 0.113 more than Dixon and Coles and 0.124 more than the bookmakers. This
shows that the text features boost traditional statistical methods to produce a higher
accuracy and F1 score.

We also test how Model 5 performs without the use of the text vector features. This
test is to show that it is the new features that cause the boost in accuracy. We find that
without the text features, the F1 score is 10% less and the accuracy 7% less than the
Model 5 results and therefore can claim that the boost is due to the text vector features.

5.6.5 Experiment 3: Longshots and Draws

The traditional statistical models and bookmakers approach to predicting football match
outcomes are typically poor at predicting draws and longshot results. A longshot result
is when the winning team has a bookmaker probability of less than 20%. Therefore, we
test the ability of our new approach to predict these events by using the same models
defined and trained in Experiment 2. To do this we split all 1770 games into training
and test sets (random 80/20 split). In the test set, there are 75 draws and 47 longshot
outcomes. The results are shown in Table 5.2.

Model # Draw (%) Longshot (%)
1 0 (±0) 38.9 (±1.91)
2 0 (±0) 25.9 (±1.34)
3 0 (±0) 0 (±0)
4 0 (±0) 0 (±0)
5 26.5 (±1.26) 22.2 (±1.09)
6 1.33 (±0.07) 3.70 (±0.19)

Table 5.2: Longshot and Draw Comparison.

These results show that by using our new models we can more accurately identify when
draws and longshot results are likely to happen. This may be because there are some
more subjective factors and knowledge that affects games that cannot be considered in
more statistical approaches. Some examples of this may be when the text articles discuss
the possible line-up of the team and if a manager may rotate. Another may be that
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if a team signs a new manager or player, articles discuss the possible impacts of this,
which would be hard to quantify by just using stats. As we will see in later experiments,
these human factors play a bigger part later in the season. For example, a team that
has been poor all year but is fighting relegation (and therefore is a longshot) may have
a better chance than the stats suggest when games start to make a big difference. This
is especially the case in the EPL where relegation can cost a team over £50,000,000 in
lost revenues.11

5.6.6 Experiment 4: Season Performance

In this experiment, we assess how the top model from the past experiments (Model 5)
performs over an entire EPL season in comparison to Dixon and Coles and the book-
makers. To do this, we train our model using all data from the seasons before the 18/19
season (all articles and statistics) and then run our model for each game-week to show
how many matches would be predicted correctly across the season. This is shown below
in Figure 5.4 where we show the accumulation of correct results across the season.12

0 5 10 15 20 25 30 350

50

100

150

Gameweek

#
C

or
re

ct
Pr

ed
ic

tio
ns

Model 5
Model 4
Model 3

Figure 5.4: 2018/19 EPL Week by Week Analysis

This shows that Model 5 can continually perform well and predict correct results across
a given EPL season when set up in a real-world scenario. We also find that there is a
2.23% increase in accuracy between week 1 and week 38 for model 5, showing that as the
season progresses our model improves. It also shows how the articles can better model

11https://bleacherreport.com/articles/1591059-the-cost-of-relegation-5-reasons-to-stay-in-the-
eplslide0

12In this test there are a total of 280 games which we could obtain data for out of the total 380
possible games.
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the different scenarios that teams may be in later on in the season which numbers do
not represent as well. For example, if a team has played poorly all season but is now
in a relegation battle they may have more to play for than a mid-table team with no
chances of winning the league or relegation. The same goes when teams are fighting
to win the league or qualify for European competitions. Injuries and rotation also play
a big part later in the season as teams who have progressed into the later rounds of
the FA Cup and European competitions have many more games.13 This shows the key
contribution of the media preview analysis and how by taking into the human factors
that are written about by the domain-expert journalists we are able to better predict
the outcome of football matches.

5.7 Future Work and Wider Applications

In this chapter, we have focused on using football outcome prediction to validate the
models that we discuss as there is a high volume of data available and there are several
other approaches in the literature that we are able to compare our results to. This allows
us to see the improvements that are made by our new models. Our models could also be
applied across a number of sports and it would be interesting to see how these methods
improve the predictions in different sports. This could be used as a comparison to which
sports have the most human factors that impact the match outcomes and allow us to
see which sports are the most predictable using statistics alone.

We also believe that our models can be generalised further and if they were to be applied
to other domains we would see similar results. For example, our model could be used to
predict which political party would win an election, as similarly there are many articles
available which preview the election and historic statistics that can be used to make
predictions. This could have been used recently to help predict the outcome of the
Brexit referendum. Another possible application for our model could be the prediction
of which new policies and laws will be passed by Parliament/Congress as there would
be prior data and media discussion.

We could also build on the ensemble learning that we have shown would work in this
chapter (as the text-based methods boost the performance of statistical-based methods).
Further testing could be performed looking at a number of existing football match
outcome prediction approaches (many of these are discussed in 2.5) using statistical
approaches and find which methods see the largest boost in performance when using
our text-based methods. We could also devise and test our own feature set with the
statistic and text features combined.

13Discussed in injury reports by JLT and in Section 2.4 of this thesis.
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Finally, we would like to explore a wider variety of data sources for the preview articles.
By doing this another application for the models in this chapter would be to assess
the reliability of different newspapers, news outlets and journalists. This would help to
analyse who is writing the best material which best correlates to the outcome of real-
world events. This could again be explored using datasets in football as there is clearly
defined event outcomes and many different data sources that discuss the same event.

5.8 Chapter Summary

In conclusion, this chapter has presented a new model for interpreting articles from the
media in order to make predictions of match outcomes in football. We believe these
models are generalizable and could be used across a number of domains in sport and
beyond. We have explored how our models can improve on the leading traditional
statistical approaches for football match outcome prediction. We show that we boost
these methods by 6.9% in terms of outcome accuracy and we also show that our new
text-based models identify rarer events such as draws and longshot results. We find
that the model accuracy increases as the season progresses and human factors/emotions
begin to play a bigger part in the game. Overall, our results suggest that our models
have been successful and could be applied to the prediction of other real-world events
outside of sports prediction.

In the next chapter, we discuss the results from the previous three chapters and discuss
the future uses for AI in team sports and how this can change the industry.





Chapter 6

Discussion

In this chapter, we summarise the key contributions and we discuss the impact the
research is expected to have in the AI and sports analytics communities. We will also
discuss avenues for future work.

6.1 Game Theory for Football Tactics

In Chapter 3 we presented models for optimising both the short-term (single game)
tactics for football teams as well as longer-term tactical optimisation across an entire
season to help teams reach their long-term objectives. One key observation from our
testing of our Bayesian/stochastic models for individual matches is how attitude differs
between home and away teams. In terms of “closeness” (fully defined in Section 3.6),
which identifies the model which produces the most similar actions to those selected
in the real-world. We find that for away team tactics, those are output by the spiteful
approach are “close” in 69% of cases in comparison to 33% and 32% for the best response
and expectimax respectively. This shows that away teams are more likely to select tactics
that minimise the chances of the opposition winning rather than trying to maximise
their chances of winning. By comparison, when we assess the “closeness” of our model
outputs for home teams, we find results of 38% for best response, 50% for spiteful and
53% expectimax, showing an increase in the number of teams that aim to win a game.
This is expected because there is an advantage of playing at home.

Turning to our model for optimising the long-term performance of teams, in our exper-
iments, we focused on the outcome where our models are used only by an individual
team. However, when we run our experiments with all teams optimising their tactics
using our model, we find that the models are not effective and the final standings are
very similar to what we see when we simulate without the new fluent objective and
prior game weights. This is to be expected due to the optimisations being cancelled out
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by opposing teams using the same approach. We see that there is a boost of under 1
position on average per team when every team uses the model in the same season. This
shows that teams can boost their performance over the season but only if they utilise
the game-theoretic approaches while others do not.

When taken together our models can provide several benefits to football teams and
organisations. It is unlikely that any football manager/coach will blindly follow the
recommendations from our model, but they do allow coaches to gain assurance/extra
information against their own assumptions and expert knowledge of the game. Our pre-
game Bayesian model can also help game analysts employed by leading clubs to learn
more about their oppositions using AI to identify where an opponent may be weak and
what tactics to use to exploit this. Again, the in-match model may help coaches identify
the right times to make changes in a game to boost their chances of winning or drawing,
particularly at times of high stress/pressure during a game.

Across longer periods, by allowing teams to simulate seasons and extrapolate the distri-
bution of the likely outcomes of decisions, they can gain more information about how
the decision will affect performance and financial targets. In turn, this can improve
their decision-making and identify if wholesale changes need to be made. For example,
if a team is under-performing and it seems likely that objectives will be missed then
the directors at the club may want to make changes to coaches or staff. On the other
hand, if a team is over-performing and are likely to exceed their goals then the directors
may want to invest more money into player transfers to ensure that the team keeps
performing well as they know that they have assurances against future income. These
types of decisions could be added into the model to help decision-makers subjectively
decide when to invest or make changes.

6.2 Sports Teamwork

In Chapter 4, we propose a model to extract and optimise the value of teamwork between
players within team sports. Although football and basketball may seem to be fairly
similar (two teams of players competing against each other to score goals/points), we
find that there are key differences in the way that teamwork affects on-field performance.
In football, there is a stronger correlation between teamwork value to both goals scored
and games won across a season. This may be due to the time that players play together
in football where (a 90-minute game) only 3 substitutions can be made, whereas in
basketball unlimited changes can be made. There may also be a higher correlation to
success metrics in football due to the lower scoring nature of the game, meaning that
we are able to more effectively learn the impact of the possession outcome events in
football.
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We also explored the optimal number of agents to use when valuing teamwork and form-
ing efficient teams. We found that the model was most accurate (in terms of correlating
to real-world performance metrics of teams) when using a pair of players in our chains
and assessing their interactional alignment when forming the teams. As we add more
agents into the chains, we find that the correlation to the success metrics drops. This
suggests that the way agents work together as pairs is more important than identifying
longer chains of 2+ players within the wider overall team that work well together.

This also helps to validate our use of interactional alignment where we form teams using
overlapping pairs rather than expanding the length of chains and find this correlates
most to how human managers make decisions. We tested our team formation methods
by comparing the outputs to that of a human expert team manager. Our results show
that our model can form teams that are similar to the selections of human experts and
that we can suggest a small number of changes that could improve the team. This
comparison also suggests that human experts consider the teamwork between players
during team selection.

As well as assessing how human managers select their teams, we also tested how they
can affect teamwork. We saw that often a change in the manager who changes lead-
ership/playing styles can help improve the teamwork and on-pitch performance. This
type of analysis could help team decision-makers (e.g., team owner or chairman) decide
when they need to make changes.

6.3 NLP to Predict Football Games

The results of our experiments presented in Chapter 5 highlight many interesting points.
Firstly, we analysed the words that have the highest correlation to the outcome of the
event. As we discussed in Experiment 1 in Section 5.6, we found that words that related
to human decision making (e.g. a manager picking players) had a higher weighting.
This may be because these are the types of variables that are missed by statistics and it
can be hard to use numbers to predict how a human will make decisions. On the other
hand, a human expert writing a match preview can infer more about how managers and
players may act and would know more about the individual’s personalities and moods
within the team. Therefore, this gives us a method to encode human expert knowledge
from their writing. We also found that by using count vectorization approaches from
the main articles also significantly outperformed those using the sentiment analysis on
the same text corpus.

By using the media previews we identify more longshot results and more draws which
are traditionally hard to predict in statistical models due to them being anomalies in the
dataset. This may be because these types of results rely on small changes which again
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traditional statistical methods overlook. For example, if a manager is likely to make a
lot of changes due to upcoming important fixtures then it may make it more likely for
the underdog team to get a draw or beat the better team. As shown in the experiment,
the current statistical methods rarely predict a draw even though they occur in 27.52%
of games.

The results we show in Figure 5.4 highlight how our models perform better when com-
pared to traditional statistical models later on in a football season. We believe that is
due to the greater number of human factors that play an increasing role in the latter
part of an EPL football season. For context, in the EPL the top 4 teams qualify for
the UEFA Champions League and the next two teams qualify for the UEFA Europa
League; competitions that are worth a lot of money and prestige. At the other end,
the bottom 3 teams are relegated to the Championship which is a large drop in income.
Therefore, the closer we get to the end of the season the closer these outcomes become
and teams start to fight harder to get into European competitions and avoid relegation.
In particular, a team that has played poorly all season may be more likely to beat a
team with nothing to play for because they are motivated to avoid relegation.

Overall, our experiments found that we achieve the most accurate results when we do
not just use the predictions from text or just from the statistics, but when we combine
the two as features in an ensemble ML model. We believe this to be the case as the
model then incorporates all the important stats (e.g., form, league position, goals scored
etc.) as well as the new features from the media previews that incorporate more of the
more subjective features which the statistics are unable to consider. A 6.9% boost in
accuracy shows that this has a significant impact on the results.

6.4 The Future of AI in Team Sports

Our research has begun to explore how AI can effectively be used in team sports. Al-
though we have made several contributions in this area, open challenges remain. The
first of these could be to further explore the defensive side of team sports. The majority
of the work presented in this thesis has focused on the attacking side of the games when
the teams are in possession of the ball. When a team is attacking there are opposition
defenders aiming to prevent the attacking from team scoring points, work focused on
the defending team is yet to be fully explored. Defensive contributions are often hard
to quantify due to them preventing things from happening rather than creating goals or
points. Work presented in (Merhej et al. 2021) begins to explore this problem in football
by predicting what would have happened if not for a defensive action.

With the models we have presented, the next step would be to ensure that these could
be applied and used in the real-world by teams, leagues and governing bodies in the
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sporting world. A key area where these could be used would be to add assurance to
subjective decision-making that sports teams make. The decisions that are made in
sports are highlighted in Figure 1.1. By using AI we can help sports teams to predict
what the impact of certain decisions will be. For example, using our teamwork model
from Chapter 4, we could use this to predict how well a player is likely to work with
players in a new team if he/she was to make a transfer. We could also use the long-term
decision making processes in Chapter 3 to help teams predict the long-term impact of
the decisions they make on the league and financial performances.

A key barrier to entry for the models described in this thesis being used in the real world
is the trust in the models. Therefore, a future research area for sports analytics should
be Explainable AI (XAI). This would help to serve more information to users so they can
see how the AI is generating predictions and therefore build trust in its outputs rather
than just serving a black-box model. Another challenge is how to present the uncertainty
of a prediction because the prediction of human performance cannot be exact.

The type of data that is being collected in sports is also changing drastically. Instead of
the “event-based” data that we have used for a lot of the research in this thesis, there
has now been the introduction of tracking data. Tracking data collects the location of
all players and the ball up to 20 times a second throughout the game. For example in
a game of football with 22 players and a ball, this would be 2,484,000 data points per
game. This presents an extremely rich dataset of human teams working together over
long periods, that can be learnt from for performance purposes. This new data also
allows more physical metrics to be collected on players around their sprint speeds and
work rate throughout the game. Another example of how this can be used is shown in
Figure 6.1 which shows a pitch control model1 showing the areas of the pitch a team is
deemed to be in control of at any given moment which can help coaches to improve the
movement of players when not in possession of the ball.

There is scope for future work by applying the research in sports analytics in other
domains which share similar problems to sports (e.g., security, politics and emergency
response). Sports offer rich datasets over long periods of time which can be utilised to
test many different theoretical AI models on real-world data. For example, the models
we have presented in each chapter of this thesis could have wider applications in new
domains. The tactical optimisation models in Chapter 3 could be used as a framework
to evaluate decisions in the business world as a way of evaluating the objectives and
decisions made and their potential impact on given performance indicators in that com-
pany. The teamwork model discussed in Chapter 4 could be applied to teams in other
settings such as emergency response, both to value the contribution of agents as well
as forming effective teams. The NLP model in Chapter 5 could be applied to predict

1Quantifying pitch control by William Spearman in 2016: https://www.researchgate.net/publication/334849056QuantifyingP itchControl.
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Figure 6.1: Example of Pitch Control in Football.

elections based on sentiment in the media and social media channels combined with
statistical models such as those used on fivethirtyeight.com.2

Our work also exposes a number of wider questions that could be explored. Many of the
model outputs in this space to help aid humans make decisions rather than fully optimise
decision making. Therefore, this poses the question of what is the best way to combine
AI and human decision making? The AI models can learn from the way humans make
decisions and sports so a feedback loop for the modelling would be important. Also, how
would the landscape of team sports change if every team deployed AI systems; would
this improve the standard of the players/teams? Finally, much of the work discussed in
this thesis is mainly focused on the top-end of professional team sports, but how can
new AI and datasets be used to help at the grassroots level? It would be beneficial to
the sports to help bring in more players and to promote healthier lifestyles.

2https://fivethirtyeight.com/features/how-fivethirtyeights-2020-presidential-forecast-works-and-
whats-different-because-of-covid-19.
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Conclusions

In this thesis, we have explored how AI can be used in team sports and how the wealth
of data in sports can benefit AI by providing a testbed for new models and algorithms.
Specifically, we have covered three main topics. We have shown how game theoretic
techniques can be used to improve tactical decision making in football both for individual
games and in the long term over a whole season. We have shown how we can extract the
value of teamwork and form efficient teams to maximise the teamwork between agents
based on interactions they make in a game. Finally, we showed how NLP can be used
to improve the accuracy of traditional statistical methods for match prediction.

Our research has shown a number of key findings. In Chapter 3, we have shown that
by using a Bayesian game to model pre-game tactics in football and a stochastic game
to model in-game tactics, we can increase the chances of a team winning an individual
game by up to 16.1%. When we begin to consider the long-term impacts of decisions
by simulating full seasons to add more context, we can increase a team’s mean expected
finishing distribution in the league by up to 35.6%. Next in Chapter 4, we have described
a novel approach to team formation based on the value of inter-agent interactions and
the notion of teamwork between agents in a team. When evaluated with real-world data
from teams of football players, our model is shown to predict the performance of teams
by up to 46% more accurately than models that ignore inter-agent interactions. Finally,
in Chapter 5, we have shown that when we learn from human experts in the media we
are able to boost the traditional statistical methods by 6.9% in terms of match-outcome
accuracy and can identify a greater number of rare outcomes.

This thesis, as well as similar work in (Decroos 2020), has begun to fully explore the
ways that AI can be used to fully utilise the data that is now being collected across team
sports. Practically, we have made contributions by showing that by using event-based
data in team sports we can create new insights and learn more about the ways players
and tactics contribute to the overall match outcomes. We can also use AI to use new
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datasets that previously could not add value such as text data in the media and on social
network sites. Theoretically, we have made contributions by presenting new methods to
form teams based on inter-agent interactions. We have also shown how real-world games
can be modelled using multi-step game theoretic techniques by feeding the outputs from
a Bayesian game into a stochastic game. The growing availability and innovations in
data collection in team sports will continue to generate interesting problems that will
benefit both the AI and sports analytics communities.

In conclusion, the work presented in this thesis has exposed a number of novel models
to benefit the AI and sports analytics communities. We have shown how we can support
and optimise the tactical decision making processes made in team sports by predicting
both short and long-term impacts. We have shown how we can extract the value of
teamwork and how well agents work together. By so doing, we present a novel team
formation method that considers interactional alignment to maximise the teamwork
value of agent pairs. Also, we have shown that by using contextual text information
from the media (both traditional and social) we can boost the prediction accuracy of
standard match outcome prediction models in team sport. Finally, we have exposed
future research areas for the continued study of applied AI in team sports.
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Coulom, Rémi (2007). “Computing Elo Ratings of Move Patterns in the Game of Go”.
In: ICGA Journal 30.4.

Crowder, M., M. Dixon, A. Ledford, and M. Robinson (2002). “Dynamic Modelling and
Prediction of English Football League Matches for Betting”. In: Journal of the Royal
Statistical Society. Series D (The Statistician) 51.2, pp. 157–168.

Cui, L., F. Wei, and M. Zhou (2018). “Neural Open Information Extraction”. In: Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 407–413.

Cust, E., A. Sweeting, K. Ball, and S. Robertson (2018). “Machine and deep learning for
sport-specific movement recognition: a systematic review of model development and
performance”. In: Journal of Sports Sciences 37.5, pp. 568–600.

Dang, V.D., R.K. Dash, A. Rogers, and N.R. Jennings (2006). “Overlapping coalition
formation for efficient data fusion in multi-sensor networks”. In: Proceedings of the
21st National Conference on Artificial Intelligence. Vol. 1, pp. 635–640.

Decroos, T. (2020). “Soccer Analytics Meets Artificial Intelligence: Learning Value and
Style from Soccer Event Stream Data”. In: https://lirias.kuleuven.be/retrieve/587585/.

Decroos, T., L. Bransen, J. Van Haaren, and J. Davis (2019). “Actions speak louder than
goals: Valuing player actions in soccer”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1851–1861.

Dixon, M. and S. Coles (1997). “Modelling association football scores and inefficiencies
in the football betting market”. In: Journal of the Royal Statistical Society: Series C
(Applied Statistics) 46.2, pp. 265–280.

Dixon, M. and P. Pope (2004). “The value of statistical forecasts in the UK association
football betting market”. In: International Journal of Forecasting 20.4, pp. 697–711.

Dixon, M. and M. Robinson (1998). “A birth process model for association football
matches”. In: Journal of the Royal Statistical Society: Series D (The Statistician).
Vol. 47, pp. 523–538.

Dobson, S. and B. Gerrard (1999). “The Determination of Player Transfer Fees in English
Professional Soccer”. In: Journal of Sports Management 13.4, pp. 259–279.



BIBLIOGRAPHY 137

Drawer, S. and C.W. Fuller (2002a). “An economic framework for assessing the impact
of injuries in professional football.” In: Safety Science 40.6, pp. 537–556.

– (2002b). “Evaluating the level of injury in English professional football using a risk
based assessment approach”. In: British Journal of Sports Medicine 36.6, pp. 446–451.

Dreiseitl, S. and L. Ohno-Machado (2002). “Logistic regression and artificial neural
network classification models: a methodology review”. In: Journal of biomedical in-
formatics. Vol. 35, pp. 352–359.

Dunis, C., P. Middleton, A. Karathanasopolous, and K. Theofilatos (2016). Artificial
intelligence in financial markets. Springer.

Ermoliev, Y.M. and R.B. Wets (1988). Numerical techniques for stochastic optimization.
Springer-Verlag.

Fang, F., P. Stone, and M. Tambe (2015). “When Security Games Go Green: Designing
Defender Strategies to Prevent Poaching and Illegal Fishing”. In: Proceedings of the
24th International Conference on Artificial Intelligence, pp. 2589–2595.

Farzindar, A. and D. Inkpen (2015). “Natural language processing for social media”. In:
Synthesis Lectures on Human Language Technologies 8.2, pp. 1–166.

Felsen, P. and P. Lucey (2017). “Body Shots: Analyzing Shooting Styles in the NBA
using Body Pose”. In: MIT Sloan Sports Analytics Conference.

Fernández, J., L. Bornn, and D. Cervone (2019). “Decomposing the Immeasurable Sport:
A deep learning expected possession value framework for soccer”. In: MIT Sloan Sports
Analytics Conference.

Fister, I. Jr, K. Ljubic, P.N. Suganthan, M. Perc, and I. Fister (2015). “Computational
intelligence in sports: Challenges and opportunities within a new research domain”.
In: Applied Mathematics and Computation 262, pp. 178–186.

Fitzpatrick, Erin L and Ronald G Askin (2005). “Forming effective worker teams with
multi-functional skill requirements”. In: Computers & Industrial Engineering 48.3,
pp. 593–608.

Franchi, E. and A. Poggi (2012). “Multi-agent systems and social networks”. In: Hand-
book of Research on Business Social Networking: Organizational, Managerial, and
Technological Dimensions, pp. 84–97.

Fuller, C.W. (2018). “Modeling the impact of players’ workload on the injury-burden
of English Premier League football clubs.” In: Scandinavian Journal of Medicine and
Science in Sports 28.6, pp. 1715–1721.

Gall, F. le, C. Carling, M. Williams, and T. Reilly (2010). “Anthropometric and fitness
characteristics of international, professional and amateur male graduate soccer players
from an elite youth academy.” In: Journal of science and medicine in sport 13.1,
pp. 90–95.

Ganguly, D., D. Roy, M. Mitra, and G. Jones (2015). “Word embedding based generalized
language model for information retrieval”. In: Proceedings of the 38th international



138 BIBLIOGRAPHY

ACM SIGIR conference on research and development in information retrieval. ACM,
pp. 795–798.

Ganguly, S. and N. Frank (2018). “The Problem with Win Probability”. In: MIT Sloan
Sports Analytics Conference.

Gardiner, C. (2009). Stochastic Methods. Springer.
Gaston, M.E. and M. DesJardins (2005). “Agent-organized networks for dynamic team

formation”. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 230–237.

– (2008). “The effect of network structure on dynamic team formation in multi-agent
systems”. In: Computational Intelligence 24.2, pp. 122–157.

Gauvain, J.L. and C.H. Lee (1994). “Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains”. In: IEEE transactions on speech
and audio processing. Vol. 2, pp. 291–298.

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin (2004). Bayesian
Data Analysis. New York: Chapman and Hall.

Glickman, M.E. and H.S. Stern (1996). “A State-Space Model for National Football
League Scores”. In: Journal of the American Statistical Association 93, pp. 25–35.

Goel, S., D.M. Pennock, D.M. Reeves, and C. Yu (2008). “Yoopick: A Combinatorial
Sports Prediction Market”. In: Twenty-Third AAAI Conference on Artificial Intelli-
gence.

Graham, I. and H. Stott (2008). “Predicting bookmaker odds and efficiency for UK
football”. In: Applied Economics 40.1, pp. 99–109.
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Stöckl, M., T. Seidl, D. Marley, and P. Power (2021). “Making Offensive Play Predictable-
Using a Graph Convolutional Network to Understand Defensive Performance in Soc-
cer”. In: MIT Sloan Sports Analytics Conference.

Stone, P. and R.S. Sutton (2001). “Scaling reinforcement learning toward RoboCup
soccer”. In: ICML, pp. 537–544.

Stone, P., R.S. Sutton, and G. Kuhlmann (2005). “Reinforcement learning for robocup
soccer keepaway”. In: Adaptive Behavior. Vol. 13, pp. 165–188.

Sugar, G. and T. Swenson (2015). “Predicting Optimal Game Day Fantasy Football
Teams”. In: url: http://cs229.stanford.edu/proj2015/115%5C_report.pdf.

Suziki, A. K., L. E. B. Salasar, J. G. Leite, and F. Louzada-Neto (2009). “A Bayesian ap-
proach for predicting match outcomes: The 2006 (Association) Football World Cup”.
In: Journal of the Operational Research Society 61.10, pp. 1530–1539.

Synnaeve, G. and P. Bessiere (2011). “A Bayesian model for opening prediction in RTS
games with application to StarCraft”. In: IEEE Conference on Computational Intel-
ligence and Games, pp. 281–288.

Tumasjan, A., T.O. Sprenger, P.G. Sandner, and I.M. Welpe (2010). “Predicting elec-
tions with twitter: What 140 characters reveal about political sentiment”. In: Fourth
international AAAI Conference on Weblogs and Social media.

Tuyls, K., S. Omidshafiei, P. Muller, Z. Wang, J. Connor, D. Hennes, I. Graham, W.
Spearman, T. Waskett, and D. Steel (2021). “Game Plan: What AI can do for Football,
and What Football can do for AI”. In: Journal of Artificial Intelligence Research 71,
pp. 41–88.

Valckenaers, P., J. Sauter, C. Sierra, and J.A. Rodriguez-Aguilar (2007). “Applications
and environments for multi-agent systems”. In: Autonomous Agents and Multi-Agent
Systems 14.1, pp. 61–85.

Van Roy, M., P. Robberechts, W.C. Yang, L. De Raedt, and J. Davis (2021). “Leav-
ing Goals on the Pitch: Evaluating Decision Making in Soccer”. In: arXiv preprint
arXiv:2104.03252.

Verma, S., S. Vieweg, W.J. Corvey, L. Palen, J.H. Martin, M. Palmer, A. Schram,
and K.M. Anderson (2011). “Natural language processing to the rescue? extracting
situational awareness tweets during mass emergency”. In: Fifth International AAAI
Conference on Weblogs and Social Media, pp. 385–392.
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A.1 Published Papers

Below is a list of the publications from AI in team sports research:

• Artificial Intelligence in Team Sports: A Survey; Knowledge Engineering Review
2019

• Learning the Value of Teamwork to Form Efficient Teams; AAAI-20

• Optimising Game Tactics for Football; AAMAS-20

• Optimising Daily Fantasy Sports Teams with AI; International Journal of Com-
puter Science in Sport 2020

• A Critical Comparison of Machine Learning Classifiers to Predict Match Outcomes
in the NFL; International Journal of Computer Science in Sport 2020

• Combining Machine Learning and Human Experts to Predict Match Outcomes in
Football: A Baseline Model; IAAI-21

• Optimising Long-Term Outcomes using Real-World Fluent Objectives: An Appli-
cation to Football; AAMAS-21

• What Happened Next? Using Deep Learning to Value Defensive Actions in Foot-
ball Event-Data; KDD-21

A.2 Papers In Submission

Below is a list of publications currently awaiting review of the Artificial Intelligence
Journal (AIJ):
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• Optimising Short-Term and Long-Term Team Strategy in Football

• Learning The Value of Teamwork to Form Efficient Teams: An Application to
Team Sports

A.3 Team Sports Background

In this section, we detail the key features of various team sports that present opportuni-
ties for AI research and impact. Table 1 shows the key aspects of the game that can be
used for comparison.1 In the sections that follow, we give a more detailed background of
the six sports that we focus on and the different challenges that each of these presents.2

Table A.1: Team Sports Features.
Sport Game Duration # Score Frequency
Association Football 90 minutes (2 halves) 11 69 minutes
American Football 60 minutes (4 quarters) 11 9 minutes
Rugby Union 80 minutes (2 halves) 15 12.5 minutes
Basketball 48 minutes (4 quarters) 5 30 seconds

ODI Cricket 50 overs per team
(300 balls) 11 n/a

Baseball 9 innings
(Each team bats and fields) 9 n/a

A.3.1 Association Football

In a game of Association Football, or football for short, each team aims to score goals (1
point) against the opposition (by getting the ball into an 24ft x 8ft goal) and the team
with the most goals after the game duration wins. Football is the biggest sport in the
world, making up 43% of the sports industry. There are hundreds of professional leagues
across the world (e.g., the English Premier League (EPL) and Spanish La Liga are two
of the worlds most popular leagues). In a classic football league each team plays every
other team twice, once at home and once away. This means that the typical season
consists of (2N)− 2 games, where N is the number of teams in the league (e.g., in the
EPL there are 20 teams meaning each team plays 38 games). There are also a number
of cup competitions that run alongside the main leagues (e.g., The Champions League
and The FA Cup).

A number of factors can affect a game of football such as weather, the quality of pitch,
and injuries. There are also a number of tactical decisions (e.g., team formation and
style of play) that can increase a team’s chances of winning a game. The 11 players are

1Score Frequency data sourced from (Anderson and Sally 2014).
2Market data sourced from - https://www.atkearney.com/ communications-media-

technology/article?/a/the-sports-market.
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set up in a formation with 1 goalkeeper and 10 outfield players. An example formation
for the outfield players is 4-4-2 which commonly denotes 4 defenders, 4 midfielders and
2 strikers. The team formation is a key decision in football tactics to which effects team
performance. Teams can also make in-game player substitutions (up to 3 in a game)
which can help change the team’s current in-game performance. Injuries happen across
the football season, and this can have significant impact on the teams - in the 2016/17
EPL season there were a total of 735 injuries, which are often preventable muscular
injuries.3

Increasingly, player recruitment plays a big part in modern day football. Players are
bought and sold between teams across the world. Youth players are developed through
clubs academies until they are ready to play in the first team. They can also be loaned
out to other clubs to gain more experience. What makes football different in comparison
to the other sports in this thesis is the rarity of goals. This is highlighted in Table 1
where (Anderson and Sally 2014) show that over the 2010/11 season there is a goal
scored on average every 69 minutes. Due to this, a draw/tie is much more common in
football than in other sports.

A.3.2 American Football

In a game of American Football3 teams aim to score touchdowns while attacking (worth
6 points), which is followed by a kick (1 point if scored). Teams can also score field
goals (3 points) or a safety (2 points). A game-day squad is made up of 45 players split
into the offence, defence and special4 teams. The coach makes a decision on how these
players are positioned when on the field of play and usually also makes decisions on what
plays to run during the game (where a play is a tactic used to move the ball down the
field). Many factors affect teams’ performances in American Football such as weather
and even the air pressure of the ball.5

American Football makes up an estimated 13% of the global sports market. However,
it is mainly played in North America where the main professional league is the National
Football League (NFL). There are 32 teams that make up the NFL, each team plays 16
games in the regular-season. The teams that do well in the regular-season make it into
the playoffs where teams play up to 4 more games to determine the winner of the league.
In the NFL, players are traded rather than bought or sold as in football and, instead
of having youth teams to develop younger players, players are drafted from the college
leagues. Much of the team and player performances in American Football are easier to
quantify than other sports in this thesis. This is due to the nature of the game as the

3Referred to as American Football throughout, not to be confused with Association Football.
4Special teams are units that are on the field during kicking plays.
5https://www.vox.com/2015/1/21/7866121/deflated-football-patriots-cheating.
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yards that teams gain (which lead to points being scored) or prevent are measured and
attributed to each player that contributes.

A.3.3 Rugby Union

In Rugby Union each team aims to score tries6 half) against the opposition, these are
worth 5 points and are followed by a conversion - a kick at between the posts, worth
2 points. Teams can also score points through penalties and drop-goals7, both worth
3 points. The team with the most points after 80 minutes, wins. Teams are split into
forwards and backs where the forwards are the 8 players that make up the scrum.8

Unlike football, there is a standard way to set up players on a rugby field so there is not
a formation decision for the coach to make.9 There are still many other tactical decisions
for the coach to make such as: (e.g., player selection, line-out formation, style of play).
Usually club rugby is played in a league format similar to football where each team
plays against every other teams both home and away (e.g., in the Aviva Premiership
(England) there are 12 teams, each play 22 games in a season). Rugby Union has been
the fastest growing sport since it became professional in 1995. It is popular in countries
such as Britain, Australia, New Zealand, South Africa. Due to Rugby being a high
impact sport, it presents many injury related challenges. In particular, how can the
medical teams be assisted and how can players be further monitored.

A.3.4 Basketball

In Basketball, teams aim to score a point by getting the ball in the basket. When scored
within a given zone it is worth 2 points, outside of this zone it is worth 3 points. A free
throw is worth 1 point. The winning team is the team who accumulate the most points.
The main league is the National Basketball Association (NBA) in the US and it makes
up about 6% of the global sports market. In the NBA there are 30 teams, all teams
play 82 games in the regular season and the top teams make the post-season playoffs (a
knockout style competition to decide the overall NBA winner).

Basketball is the only team sport that we consider in this thesis, which is played indoors
at the professional level. Thus, weather related factors do not have an affect on the game.
Basketball is very high scoring in comparison to the others (as highlighted in Table 1).
It is also much more fluid and faster flowing in comparison to the other American sports
which similarly to football makes quantifying an individuals impact on a game outcome

6Try - placing the ball down in a given zone at the end of the oppositions.
7A drop-goal is scored when a player kicks the ball from hand through the opposition’s posts.
8Scrum - a method of restarting play that involves players packing closely together with their heads

down and attempting to gain possession of the ball.
9https://www.ruck.co.uk/rugby-positions-roles-beginners/.
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more challenging. In the NBA, there are on average 296 passes per team per game,
this compares to 453 per team per game in the EPL, although in football there are
more players on the pitch over a bigger playing area. If we look at this per player each
basketball player makes 59 passes per game, whereas each football player completes on
average 41 passes per game.

A.3.5 Cricket

Cricket is played in a number of forms (e.g., Test and Twenty20), in this thesis we focus
on One Day International games (ODIs) due to existing literature also being focused on
ODI games. In an ODI, there is 1 innings per team made up of 50 overs each (1 over =
6 balls), which can end earlier if all batsmen are out. In each innings, the batting team
aims to score runs and bowling team aims to take wickets and prevent runs being scored.
The winning team is the team with the most runs scored in their innings. Cricket is
hugely popular in countries such as India, England and Australia. The Indian market
in particular makes up the majority of the market and is reportedly worth $5.3 billion.

Hitting runs and taking wickets are the main metrics used to measure player perfor-
mances. Cricket, like Baseball, relies on a number of individual performances by players
which make up the team performance whereas other sports rely more on the team per-
formance as a whole. Due to both cricket and baseball being bat-and-ball games rather
than invasion games like the rest of the sports in this thesis, means that they present
different challenges and factors for us to consider. At the core of this is that, even
though they are team games, the performance of players is mainly based on a 1v1 sce-
nario (batsman vs bowler). This means that when we evaluate or predict performance
we can focus on how an individual batsman performs against an individual bowler or
vice-versa.

A.3.6 Baseball

Baseball is a game made up of 9 innings, where an innings is made up of both teams
batting (while the other team fields) until they receive three outs. The batting team
aims to score runs (a batsman gets round all bases), the fielding team aims to strike
batsman out (3 swing and misses) and stop runs being scored. If the score remains tied
at the end of the regulated number of innings, then an extra innings is played. The team
with the most runs at the end of 9 innings is the winning team. Baseball makes up 12%
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of the global sports market. The performances of the Baseball teams/players are often
measured by key statistics based on their abilities to hit runs or get outs.10

Baseball is mainly an American sport and the main league is Major League Baseball
(MLB). In the MLB there are 30 teams where every team plays a 162 games in the
regular season with the best teams making the playoffs. The playoffs is a knockout style
competition formed of 12 teams, where each round is a “best out of 7 games”, to decide
the “World Series” winner. Teams play games much more frequently in a Baseball season
than in other sports’ which may mean players have to be rotated more and monitored
closely for injury.

A.4 Chapter 3 List of Symbols

Symbol Description
T Team competing in game (α = home, β = away).
A Actions that a team can make (tactical decisions e.g., formation).
θ ∈ Θ Set of styles that a team can be (e.g., Tiki-Taka).
u Payoff (e.g., probability of team winning or moving to a more positive state).
p Prior belief of the actions and styles used by the opposition team.
x ∈ X Set of possible game states in football these are scorelines.
σ(x) Team strategy at state x.
π Model to calculate the probability of transition into a new state/scoreline.
t time played in a game.
o ∈ O Set of possible fluent objective a team can have.
p(o) ∈ P probability of achieving objective o.
D Distribution of possible season outcomes.
P Prior knowledge parameter learned from games.
G Individual game.
N Number of games played in a season.
w ∈ W Weight of how effective a style/formation is against a team.

10Baseball was the first sport to really see the power of data. In the 1970s, Bill James began writing
an annual “Baseball Abstract”, containing statistics he collected by hand. This inspired the Oakland
A’s and Billy Beane (their General Manager) to change the way they operate by using data to make key
decisions. This is documented in the book “Moneyball” by Micheal Lewis. There are many statistics
collected in Baseball and the professional teams are much more advanced at using data in comparison
to other sports.
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