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Background: Pathogenic prions (PrPSc) are amyloid-rich hydrophobic proteins which bind
avidly to surgical surfaces and represent some of the most difficult targets during the
reprocessing of reusable surgical instruments. In-vitro methods to amplify and detect the
presence of otherwise undetectable prion contamination are available, but they do not
measureassociated infectivity.Mostof thesemethods rely on theuseofproteinaseK,however
this can lead to the loss of a substantial portion of PrPSc, potentially producing false negatives.
Aim: To develop a sensitive in-situ method without proteinase treatment for the dynamic
quantification of amyloid accumulation in N2a #58 cells following 22L-prion infection from
infected tissues and spiked stainless-steel surfaces.
Methods: We spiked cultures of N2a #58 cells with the 22L prion strain in solution or dried
on stainless-steel wires and directly measured the accumulation of prion amyloid aggre-
gates over several passages using highly sensitive fluorescence microscopy.
Findings:We demonstrated a 10-log dynamic range using our method to test residual prion
infectivity, that was validated to show variable decontamination efficacy against prions
from commercially available cleaning chemistries.
Conclusions: The new cell-based infectivity method presented here avoids partial or
possibly total proteinase K digestion of PrPSc in samples for greater sensitivity, in addition
to low cost, no ethical concerns, and adaptability to detect different prion strains. This
method can be used to test cleaning chemistries’ efficacy with greater sensitivity than
measuring total residual proteins, which may not correlate with residual prion infectivity.

ª 2022 The Authors. Published by Elsevier Ltd
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Introduction

Transmissible spongiform encephalopathies (TSEs) are rare,
invariably fatal neurodegenerative conditions caused by the
accumulation of an abnormally folded form of the prion protein
(PrPSc or PrPres) in the central nervous system of affected ani-
mals. These pathogenic prions are amyloid-rich, hydrophobic
proteins which resist most standard reprocessing methods [1]
and as such represent some of the most difficult targets for the
reprocessing of reusable surgical instruments.

The classical, sporadic form of CreutzfeldteJacob Disease
(CJD) in humans is caused by genetic mutations in the PRNP
gene encoding for the prion protein and appears mostly con-
fined to tissues within the central nervous system [2] with an
estimated global prevalence of 1 per million. In contrast, var-
iant CJD (vCJD) is caused by the cross-species horizontal
transmission of prions from bovine spongiform encephalopathy
(BSE)-infected cattle to humans through the food chain and has
a wider tissue distribution. Variant CJD still represents the
highest number of acquired CJD cases in the UK where it
peaked in the year 2000 [3], with 178 recorded deaths to date
since the start of surveillance in 1990 (data from the National
CreutzfeldteJacob Disease Research and Surveillance Unit;
NCJDRSU). Although the number of confirmed deaths from
acquired CJD remains low, the estimated prevalence of
asymptomatic vCJD carriers in the UK could be as high as 1/
2000 [4]. A theoretical second wave of vCJD linked to extended
incubation in genetically less susceptible patients exposed to
BSE has failed to materialize to date, nevertheless the osten-
sibly long incubation period and the potential for disease
transmission through infected blood [5e7] imply that many
surgical procedures present a risk of iatrogenic transmission of
vCJD. This has led to years of research and re-evaluation of
clinical procedures to address the risk posed by prions in clin-
ical settings.

Detection methods for biological markers associated with
prion diseases are available, and we have developed staining
methods to quantify prion amyloid aggregates on surgical sur-
faces [8]. However, no direct detection method is currently
capable of assessing both infectivity and the presence of
disease-associated PrPSc in situ. The ‘gold standard’ for prion
infectivity studies has long relied on the infected wire implant
animal bioassay. These are expensive, require ethical consid-
erations, can take hundreds of days to obtain end-point data
and are limited to using small-sized intracranial wire implants
as models for complex surgical instruments.

Cell-based methods have been developed to directly detect
prion infectivity post decontamination using model surgical
surfaces (reviewed in [9,10]). The prion transmission within
neuroblastoma cell lines has been studied from the late 1980s
[11]. Amethodusinga cloneof scrapieN2acells, denoted scN2a,
showed susceptibility to infection from three different mouse-
adapted prion scrapie strains: 139a, Chandler and 22L. How-
ever, these cells were not infected by the 87V and 22A strains
[12], possibly due to differences in lineage and pathological
profiles also reported in vivo [13]. Klohn et al. developed the
standard scrapie cell assay (SSCA), further developed to form
the scrapie cell endpoint assay (SCEPA) which involves the
analysis of cells exposed to serial dilutions of prion strains
[14e16]. The SCEPA assay to detect infectivity of prions absor-
bed on stainless-steel wires (standard steel-binding assay;
Please cite this article as: Secker TJ et al., Sensitive microscopic quantific
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SSBA), which also relies on immunodetection of PrPSc, was later
used to assess the efficacy of various cleaning chemistries
against prion infectivity [17].

However, these methods still rely on multiple biochemical
techniques which may include proteinase K (PK) digestion and
ex-situ immunodetection of PrPSc using Western blot or ELISA.
There is evidence that up to 80% of PrPSc may be sensitive to PK
digestion [18e21], and infectivity has been shown without any
detectable PrPSc [22e26], suggesting that a number of insuffi-
ciently sensitive detection methods for PrPSc fail to correlate
with actual residual prion infectivity.

The present study describes a cell-based infectivity assay
that incorporates sensitive in-situ staining for the microscopy
detection of prion infectivity and has the potential to be
transposed to analyse a wide range of prion strains, using
appropriately susceptible cell lines. Furthermore, this method
can be used to assess surgical instrument decontamination
procedures in relation to remaining prion infectivity using
inoculated wires as the source of infection within the cells.

Materials and methods

Neuroblastoma cells

Neuroblastoma cell sub-clone (N2a#58), transfected with
wild-typemouse PRNPa-cDNA to increase the expression of PrPc

within the cells, was kindly supplied by Prof. Sylvain Lehmann
(Institut de Génétique Humaine, Montpellier, France) [27].
N2a#58 cells were cultured in sterile Dulbecco’s Modified Eagle
Medium (DMEM;Gibco, Invitrogen) supplementedwith 10% (v/v)
foetal bovine serum (FBS; Invitrogen), 1% (v/v) 100� penicillin/
streptomycin (pen/strep; Gibco, Invitrogen) and 1% (v/v) 100�
GlutaMAX (Gibco, Invitrogen). Cultures were incubated in a
humidified environment at 37�C and 5% CO2 and media were
replaced 24 h post seeding, then every two to three days
following.

N2a#58 cells were seeded into 90-mm tissue culture dishes
(Greiner Bio-One, UK) for experimental preparation. Cells were
passagedbydislodgingusing a cell scraper at 90%confluency and
split at a ratio of 1:50 into 35-mm dishes for infection studies.

Brain homogenates

Murine-scrapie 22L-infected brain homogenate was kindly
supplied by Dr Ayodeji Asuni (School of Biological Sciences,
University of Southampton). This was prepared from the brains
of C57BL/6J mice inoculated via bilateral intra-hippocampal
injections of 22L-infected homogenate. Animals were culled
between 19 and 21 weeks (early symptomatic stage) and
infected brains were collected and homogenized (10% w/v) in
phosphate-buffered saline (PBS).

Murine normal brain homogenate (NBH; The Roslin Institute,
University of Edinburgh) was prepared from brains dissected
from adult C57BL mice homogenized (10% w/v) in PBS. Prior to
inoculating the cells, the 22L-infected homogenate was parti-
ally purified to prevent brain material clumping and hindering
microscopic amyloid detection and/or reducing cell viability,
using a previously described method [28]. Briefly, brain
homogenate was treated in lysis buffer (0.5% (w/v) sodium
deoxycholate, 150 mM NaCl, 0.5% (v/v) Triton X-100 and 50 mM
Tris-HCl) for 20 min on ice, followed by 10 min centrifugation at
ation of surface-bound prion infectivity for the assessment of surgical
tps://doi.org/10.1016/j.jhin.2022.09.020
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17,000 g. The supernatant was made up to 500 ml in DMEM,
sterile filtered through a 0.22-mm filter and further diluted to
the required concentration.
Cell infection using prion-infected tissues

The N2a#58 cells from 90-mm dishes were split at a ratio of
1:50 as describedabove into four 35-mmdishes per condition. At
this stage (P1) cells were subjected to NBH or dilutions of 10%
22L-infected brain homogenate, ranging from 10�4 to 10�10 in
culture medium, to determine the sensitivity of our method for
prion propagation over several passages, directly from infected
brain material. Culture media was replaced after 24 h post-
inoculation and every 48 h until confluency. Once confluent,
the amyloid accumulation as a marker of prion propagation in
NBH
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Figure 1. Schematic diagram showing the steps involved in initiating
(NBH) or 22L inoculated wires were introduced to 35-mm tissue cultur
Wires coated in N2a cells were transferred to fresh 35-mm tissue cul
removed and discarded, and the remaining cells were passaged and gro
cells were treated as an N2a#58 passage infection study with Suda
passages.
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cell cultures was detected in three of four dishes using Sudan
black (SB)/thioflavin T (ThT) staining as described below, and
cells from the fourth dish were split 1:20 into four new 35-mm
dishes (P2). This was repeated at every subsequent passage
until a loss in cell viability was observed (between passages 6
and 8 post infection).
Cell infection using prion contaminated surfaces

Surgical-grade 316 stainless-steel wires (0.16 mm diameter;
Ormiston wire, UK) were cut to 5-mm lengths, soaked in ace-
tone to remove any organic material, and then autoclaved in
distilled water for 20 min at 121�C. Batches of 20 wires were
inoculated in 10�4 to 10�10 dilutions of 10% (w/v) 22L-infected
brain homogenate in DMEM media for infected samples or 10%
N2a cells

22L

22L-infected

N2a cells

NBH-inoculated

wires

22L-inoculated

wires

nfection

the N2a#58 wire infectivity assay. (a) Normal brain homogenate
e dishes, covered in N2a#58 cells, and cultured to confluency. (b)
ture dishes and again cultured to confluency. (c) The wires were
wn to confluency. (d) Passage 1 post wire removal: once confluent
n black (SB)/thioflavin T (ThT) microscopic analysis and further

ation of surface-bound prion infectivity for the assessment of surgical
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(w/v) NBH in DMEM media for uninfected controls. The wires
were left inoculating for 2 h at room temperature and then
removed and dried in separate filter-paper-covered Petri
dishes for 2 h at 37�C.

Inoculated wires were placed in separate 35-mm cell culture
dishes (as above), covered with 2 mL of pre-warmed DMEM
medium containing N2a#58 cells split 1:50 from 90 mm culture
dishes as described above. Cells were grown over the wires to
confluency (wseven days of culture; Figure 1(a)) with media
changes every 48e72 h. Once confluent the cell-covered, ino-
culated wires were removed and placed in 2 mL of fresh pre-
warmed DMEM media in 35-mm dishes and the cells
(a)

(b)

(c)
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Figure 2. Example micrographs of Sudan black (SB)/thioflavin T (
N2a#58 cells. These images taken from samples at the penultimate p
characteristic Stokes shift of amyloid-bound ThT fluorescence (white
nate. Scale bars ¼ 10 mm. (c) ThT-positive signal per field of view ove
error of the mean (N ¼ 30).
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transferred with the wires were cultured to confluency
(Figure 1(b) and (c)). Wires were then removed and discarded,
the cells (considered at P1 here; Figure 1(d)) were then treated
in the same way as the passage infection studies described
above.

Wire decontamination studies

Wires (5 mm length) were prepared as described above and
inoculated in 10% (w/v) 22L-brain homogenate for 2 h at room
temperature. Once dried, the wires were treated using one of
three commercially available cleaners according to the
–8 10–9 10–10

e number
p4 p5 p6

ThT) fluorescence taken from infected (a) and uninfected (b)
assage show intracellular prion amyloid aggregates producing the
rings) from 10�4 to 10�10 dilutions of 22L-infected brain homoge-
r six passages every 10 days. Data are shown as means � standard

ation of surface-bound prion infectivity for the assessment of surgical
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manufacturers’ recommendations; Cleaner 1 (Enzol, 20 mL/L,
room temperature, 10 min, Johnson and Johnson); Cleaner 2
(Klenzyme, 8 mL/L, 43�C, 5 min, Sterisª) and Cleaner 3 (Hamo
100, 8 mL/L, 43�C, 7 min, Sterisª). To determine infectivity of
residual prions after cleaning, decontaminated wires were
analysed using the N2a#58/22L and SB/ThT detection method
described below.

Prion amyloid staining within cells

The auto-fluorescent quenching properties of SB were
examined for its suitability to suppress the autofluorescence
associated with the cells. Prion-associated amyloid levels
were detected in the cell culture samples using the amyloid-
specific fluorophore ThT (excitation 405e450 nm and emis-
sion �475 nm) based on a protocol used on tissues described
elsewhere [8,29,30], with the following modifications.

Culture medium was removed, and the cells were washed
thoroughly in PBS (Gibco), then fixed for 6 min in 4% (v/v) par-
aformaldehyde in PBS (PFA; VWR). Cells were permeabilized in
0.1% (v/v) Triton X-100 in PBS for 10 min, followed by three PBS
washes. The cells were stained with 0.3% (w/v) SB made up in
70% ethanol for 10 min. After SB staining, cells were washed in
PBS and all cells were stained with 0.004% (w/v) ThTmade up in
0.01 M hydrochloric acid for 15min. After ThTstaining, the cells
were washed in 0.1% (v/v) acetic acid for 2 min to remove any
non-specifically bound ThT, followed by washes in PBS and
dH2O. Cells were left in the final wash of dH2O until microscopic
analysis.

ThT/SYPRO ruby dual staining of contaminated wires

ThT (Sigma; 0.2 % w/v in 0.01 M hydrochloric acid) was
applied on to samples for 10 min, followed by 0.1 % (v/v) acetic
acid for 10 min, rinsed with PBS and then deionized water prior
to adding SYPRO Ruby (SR; Invitrogen, UK) for 15 min, followed
by three final washes in deionized water [8].

Nile red/ThT dual staining of contaminated wires

Nile red (NR)/ThT staining is an adaptation of the ThT/SR
staining described above, where NR (Sigma; 5 mM w/v in DMSO)
was used instead of SR to analyse total lipid instead of total
protein. The NR staining preceded the ThT staining as the DMSO
would quench the ThT signal.

Epifluorescence microscopy and image analysis

The fluorescent signal in stained samples was directly
measured using episcopic differential interference contrast
microscopy coupled with epifluorescence (EDIC/EF; Best Sci-
entific, Swindon, UK) [31]. The ThT signal within the monolayer
cultures was observed using 1000� total magnification across
10 random areas from three stained dishes per condition
(excitation 405e450, emission >475 nm, Nikon). Images were
captured using a CCD colour camera (Roper Industries, UK) with
identical camera detection settings for all samples after the
threshold was optimized to exclude low levels of background in
the negative control samples. Images were analysed using
Image J software to quantify positive ThT signal (above neg-
ative control), expressed in pixels per field of view or mm2 for
cell cultures or wires, respectively. Based on our observations,
Please cite this article as: Secker TJ et al., Sensitive microscopic quantific
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a sustained increase beyond 1000 pixels per field of view was
considered as confirmed infection, to exclude areas of
increased background fluorescence associated with the
tumour-spheroid production of N2a cells.

EDIC/EF microscopy was also used for the analysis of the
ThT/SR and NR/ThT staining of the inoculated wires pre- and
post-decontamination. Scans of the contaminated areas were
acquired at �100 total magnification visualizing the SR or NR
signal (excitation: 470 nm; emission: 618 nm) and ThT signal (as
above). Captured images were analysed using Image J software
and SR-positive signal was standardized to the surface areas of
the wires and reported in pg/mm2 BSA equivalent for the
quantification of residual proteinaceous contamination, as
described previously [32]. In the absence of a lipid standard
results were expressed as positive pixels/mm2.

Statistics

Statistical analysis was carried out using a one-way analysis
of variance (ANOVA) followed by the GameseHowell post-hoc
test to determine the significance between the different sam-
ples (IBM SPSS). A value of P�0.05 was considered significant.

Results

Infectivity titer from 22L-infected brain homogenate
dilutions within the N2a#58 cells

The incorporation of SB into the method efficiently
quenched lipid and lipofuscin autofluorescence background
signal. Lowering the initial 22L infectious dose led to pro-
portionately lower levels of ThT-positive signal measured in
situ within the imaged cells compared with the highest 22L
dose infections at subsequent passages (Figure 2, Table I). The
highest 10�10 dilution required four cell passages before
showing a significant increase compared with the negative
control, though this signal difference consistently increased
through subsequent passages, confirming infection.

Sensitivity of the SB/ThT staining technique to detect
amyloid accumulation in N2a #58 cells post contact
with 22L-inoculated wires

As with homogenates directly applied to cells, a dose-
dependent increase in ThT signal was measured in the N2a cells
through seven cell passages post removal of the inoculatedwires.
The cells that had been in contact with the 10�4 22L-inoculated
wires demonstrated a rapid increase in amyloid accumulation
whencomparedwith the lowerdose infections.Hereagain,when
compared with the negative control reference, the 10�10 22L-
infected cells only showed a significant increase in ThT signal
after four passages post wire removal (Table I) and a further
passage was required to exceed the 1000 pixels threshold con-
firming transmission and accumulation of PrPSc (Figure 3).

Validation of the N2a#58 wire infectivity method for
the detection of residual prion infectivity post
decontamination

All three commercially available cleaning chemistries
demonstrated significant removal of total protein, amyloid,
ation of surface-bound prion infectivity for the assessment of surgical
tps://doi.org/10.1016/j.jhin.2022.09.020
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Figure 3. Profiles showing the dynamic evolution of Sudan black (SB)/thioflavin T (ThT)-positive signal per field of view observed within
the N2a#58 cells infected using stainless-steel wires inoculated with dilutions of 22L-infected brain homogenate ranging from 10�4 to
10�10. Data shows means � standard error of the mean (N ¼ 20).

Table I

N2a#58 passage number after initial 22L infection and statistical significance of thioflavin T (ThT) signal at each passage compared with the
uninfected controls.

Experiment Sample N2a#58 passage no. after initial 22L infection and significance of ThT signal at

each passage compared with controls

P1 P2 P3 P4 P5 P6 P7

22L Brain homogenate
titre infectivity (Figure 2)

10�4 22L *** *** *** *** *** ***
10�6 22L e e *** *** *** ***
10�8 22L e e ** *** *** ***
10�9 22L e e ** *** *** ***
10�10 22L e e e * * ***

22L inoculated wire
titre infectivity (Figure 3)

10�4 22L ** *** *** *** *** *** ***
10�6 22L e *** *** *** *** *** ***
10�8 22L e e ** *** ** *** ***
10�9 22L e e *** *** *** *** ***
10�10 22L e e e ** ** ** ***

22L infectivity post
cleaning (Figure 4)

þve Control *** ** *** *** *** *** ***
Cleaner 1 e e e ** *** *** ***
Cleaner 2 e e e ** *** *** ***
Cleaner 3 e e e e e e e

* P�0.05; ** P�0.01; *** P�0.001; e, no significant difference.
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and lipids from the inoculated wires, although residues were
easily measured using EDIC/EF. Cleaners 1 and 2 achieved
lower levels of residual proteins compared to Cleaner 3, how-
ever Cleaner 3 was the most efficacious against lipid con-
tamination (Figure 4(a), (b)). The levels of residual amyloid
Please cite this article as: Secker TJ et al., Sensitive microscopic quantific
instrument decontamination procedures, Journal of Hospital Infection, ht
(between 80 and 250 pg/mm2) were similar between the three
chemistries tested. From the positive control wires, an initial
decrease in intracellular ThT signal was observed after passage
1, due to the high initial infectious dose being diluted, then the
usual increase in ThT-positive signal was measured over the
ation of surface-bound prion infectivity for the assessment of surgical
tps://doi.org/10.1016/j.jhin.2022.09.020
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subsequent passages (Figure 4(c), Table I). After a lag phase
over the first two passages post wire removal, the N2a #58 cells
that had been in contact with 22L-inoculated wires decon-
taminated with Cleaner 1 and Cleaner 2 both showed similar
amyloid accumulation profiles from passages 3e7 (21e49 days)
post wire removal (Figure 4(c), Table I). Figure 4(d) and (e)
show ThT-positive plaques at the seventh passage (49 days post
wire removal) in the positive control and with Cleaner 2,
respectively. Figure 4(f) and (g) show the weak background ThT
fluorescence in uninfected control cells and levels visible at
passage 7 post Cleaner 3, respectively, which remained below
our set threshold.

Discussion

It is important to use a cell line that will amplify the prion
infection to a level at which the propagation is at a steady state
Please cite this article as: Secker TJ et al., Sensitive microscopic quantific
instrument decontamination procedures, Journal of Hospital Infection, ht
butnot engulfingor killing thecells [16,33]. Therefore,wechose
the 22L prion strain and N2a #58 cells as an established prion
infectivity model [12,27] to develop and determine the sensi-
tivity of our novel staining procedure in relation to prion
decontamination. The absence of PK digestion ensures that the
entirety of the disease-associated material remains present,
contributing to increased sensitivity. Direct observation of
amyloid aggregates using ThThas previously shownat least 2-log
greater sensitivity when compared with indirect Western Blot
detection of PK-resistant PrPSc [8,29,30,34], andThT is also used
in in-vitro amplification assays measuring amyloid aggregation
[35e37].

Our N2a#58/22L SB/ThTassaywas successfully used to detect
in-situ residual infectivity on surgical surfaces and was validated
by comparing the infectivity remaining on 22L-inoculated wires
post decontamination with three commercial cleaning chem-
istries. Accordingly, Cleaners 1 and 2 (enzymatic) both
ation of surface-bound prion infectivity for the assessment of surgical
tps://doi.org/10.1016/j.jhin.2022.09.020
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demonstrated an apparent reduction (w2.5 log) in infectivity,
whereas Cleaner 3 (alkali) produced an approximate 7.9 log
reduction in infectivity. Chemical residues potentially present on
treated wires never affected cell viability (probably due to the
relatively high dilution factor once placed within cell cultures
medium) and are unlikely to have affected the staining after
wires were removed and several medium replacements. These
results are comparable with those reported in the hamster 263K
model [38,39].Thehigher log reduction in infectivitymeasured in
the N2a#58/22L SB/THT method, compared with animal bio-
assays, is probably due to the higher sensitivity of thismethod (10
log compared with 7 log in the animal bioassays). This method
could also be applied to detect other prion strains (particularly
CJD or vCJD) from surgical surfaces or possibly blood samples
using appropriate cell lines, rather than experimental models
which may exhibit different responses to decontamination pro-
tocols [40e42]. Although not applicable as a routine surveillance
tool, the N2a#58/22L SB/THT method offers an ethical alter-
native toassess decontamination protocols in the laboratory, and
could be developed to test instruments with different surface
types and configurations suspected of harbouring prions, which is
not possible in animal bioassays. Post contamination conditions
suchasdrying timescouldalsobeanalysedwith regardto residual
infectivity, as drying conditions have been shown to vastly affect
decontamination efficacy and prion attachment [43,44]. Finally,
our method shows that decontamination efficacy, often judged
by total protein removal, does not always correlatewith residual
infectivity of prion-infected soils.

In conclusion, the present study demonstrates a highly
sensitive, cost-efficient alternative to animal bioassays, uti-
lizing prion-associated amyloid specific fluorescent staining as
opposed to immuno-labelling, without the need to PK digest
the sample and which also permits the observation of prion
propagation in situ within the culture system.
Acknowledgements

Special thanks are given to Prof. Sylvain Lehman for sup-
plying us with the N2a #58 cell stocks and to Dr Ayodeji Asuni
for supplying us with the 22L-infected brain homogenate.
Thanks also go to Dr Neil Smyth of the University of South-
ampton for his cell culture knowledge and to Dr Gerry McDon-
nel, formally from Sterisª for his knowledge regarding surgical
decontamination from a commercial perspective.

Author contributions
T.J.S. carried out laboratory experimentation, data analysis
and interpretation, participated in the design of the study,
and drafted the manuscript; R.C.H. helped with exper-
imental design, development, data analysis and inter-
pretation, and finalizing the manuscript; C.W.K. conceived
of the work, obtained the funding, coordinated the study,
and helped with drafting the manuscript. All authors gave
final approval for publication.

Conflict of interest statement
The authors have no conflicts of interest to declare.

Funding sources
This work was funded by a BBSRC Industrial CASE student-
ship BB/F018215/1 with Sterisª . The work and conclusions
Please cite this article as: Secker TJ et al., Sensitive microscopic quantific
instrument decontamination procedures, Journal of Hospital Infection, ht
drawn within this study are entirely the views of the authors
and may not represent the opinions of the BBSRC or Sterisª .
References

[1] Fernie K, Hamilton S, Somerville RA. Limited efficacy of steam
sterilization to inactivate vCJD infectivity. J Hosp Infect
2012;80(1):46e51.

[2] Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M,
Luthert PJ, et al. Tissue distribution of protease resistant prion
protein in variant CreutzfeldteJakob disease using a highly sen-
sitive immunoblotting assay. Lancet 2001;358(9277):171e80.

[3] Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J,
et al. The same prion strain causes vCJD and BSE. Nature
1997;389(6650):448e50.

[4] Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R,
Boyes L, et al. Prevalent abnormal prion protein in human
appendixes after bovine spongiform encephalopathy epizootic:
large scale survey. BMJ 2013;347.

[5] Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T,
et al. Detection of prion infection in variant CreutzfeldteJakob
disease: a blood-based assay. Lancet 2011;377(9764):487e93.

[6] Hewitt PE, Llewelyn CA, Mackenzie J, Will RG. CreutzfeldteJakob
disease and blood transfusion: results of the UK Transfusion
Medicine Epidemiological Review study. Vox Sang
2006;91(3):221e30.

[7] Wroe SJ, Pal S, Siddique D, Hyare H, Macfarlane R, Joiner S, et al.
Clinical presentation and pre-mortem diagnosis of variant
CreutzfeldteJakob disease associated with blood transfusion: a
case report. Lancet 2006;368(9552):2061e7.
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