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Abstract: The use of electric vehicles (EVs) provides a pathway to sustainable transport, reducing
emissions and contributing to net-zero carbon aspirations. However, consumer acceptance has been
limited by travel range anxiety and a lack of knowledge about EV technology and its infrastructure.
This is especially the case in hot and oil-rich areas such as Kuwait, where transport is predominantly
fossil fuel-driven. Studying the effects of high ambient temperature on EV efficiency and range is
essential to improve EV performance, increase the user base and promote early adoption to secure
more environmental benefits. The ability to determine the energy consumption of electric vehicles
(EVs) is not only vital to reduce travel range anxiety but also forms an important foundation for the
spatial siting, operation and management of EV charging points in cities and towns. This research
presents an analysis of data gathered from more than 3000 journeys of an EV in Kuwait representing
typical vehicle usage. The average energy intensity and consumption of the car/kilometre travelled
were calculated for each journey, along with ambient temperature measured by the vehicle. The
analysis indicates that energy intensity reaches a minimum at a starting temperature between 22 ◦C
and 23 ◦C. Energy intensity rises with decreasing temperature below this point and with increasing
temperature above this point. The results show that many vehicle journeys started with high
temperatures, with about half of journeys starting at 30 ◦C or above and approximately a quarter
at 40 ◦C or above. Fitting a model to the empirical data for trip starting temperature and energy
intensity, average efficiency is impacted at high car temperatures, with energy intensity modelled
at 30 ◦C and 40 ◦C to be higher by 6% and 22%, respectively. These findings have implications for
vehicle range, EV charging infrastructure and car storage and parking provision.

Keywords: EV electric consumption; ambient temperature; EV auxiliary loads; energy efficiency;
social interaction effects

1. Introduction

The Kuwaiti government plans to produce 15% of its total domestic energy demand
from renewable energy sources by the year 2030 [1]. This ambitious strategy is a response
to fears over the surge in the national energy supply from hydrocarbon sources in Kuwait
since 1990. By the end of 2019, Kuwait installed fossil power plants with a combined
capacity of 19.3 GW, of which renewable energy accounts for only 106 MW, or less than 1%
of total capacity [2]. At the same time, Kuwait is experiencing an exponential growth in
internal combustion engine vehicles as a result of the low prices of these types of vehicles
and the low cost of fuel [3]. The transport infrastructure is under stress due to high demand,
where car ownership exceeds 3.3 per capita [4]. A recent study emphasised that one of the
main causes of high pollution levels in Kuwait is vehicle traffic congestion, visualised by
an ever-increasing number of cars queuing on major highways such as the King Abdulaziz
(Fahaheel) and the 5th and 6th Ring Roads [3,4]. Previous studies have recommended the
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development of new strategies that aim to reduce and manage the pollution impact of road
traffic congestion. Unfortunately, the classic way to combat traffic congestion in Kuwait has
been to increase the road capacity by adding new roads or lanes to the transport networks
as opposed to reducing vehicle numbers [3].

To reduce the reliance on fossil fuels and mitigate greenhouse gas emissions, electric
vehicles (EVs) have gained significant attention in recent years [5]. Globally, the number of
EVs on the road exceeded more than 10 million by the middle of 2021, and this figure is
expected to reach 120 million by 2030 [6,7]. This acceleration in sales is driven by many
factors, including breakthroughs in lithium-ion battery technology, cost reductions and
increasing range, stability and lifetime. These milestones, coupled with the drive to net
zero, allowed many traditional vehicles manufacturers to enter the market, resulting in
a cheaper and wider range of EVs to be commercially available [8]. In addition, such
development reduced customers’ anxiety, resulting in a higher number of EV technology
adopters globally.

The harsh climatic conditions in Kuwait will have implications for the energy con-
sumption of EVs and therefore will affect the provision of charging infrastructure. While
a number of relevant studies were found in a review of the literature, the real-world per-
formance of EVs in harsh environmental conditions, specifically in hot countries, remains
little studied. In Liu et al. [5], for example, the maximum ambient temperature recorded
was 37 ◦C, a temperature regularly exceeded by a large margin for many months of the
year in countries such as Kuwait.

Previous literature overlooked the parameter affecting energy consumption in EVs re-
lated to the climate [5], even though ambient temperature has a significant effect. Literature
of studied EV performance in warm to hot weather is limited [8]. In 2017, Taggart [8] used
real-world fleet dataset from Tesla, Inc. covering over 10,000 individual vehicles, with an
average trip distance of 22,000 miles per car. The study showed that energy consumption
of EV driving is at the lowest level at moderate temperatures (20–30 ◦C), with the largest
energy consumption for extreme cold (below the freezing point). The study illustrated that
the average energy consumption over trip length is inversely related to trip distance. For
instance, short trips (0–10 miles) noticeably incurred remarkably high energy comparison
compared to trips over 25 miles. Dost et al. [9] monitored the behaviour of a representative
sample of 500 people in Germany in a field test. Twenty-four electric cars were used to mea-
sure the parameters affecting energy consumption over 700,000 km. The work showed that
high energy consumption (increased by 60%) related to driving in moderate wintry weather
of 10 ◦C and highlighted the need to introduce more efficient heating air conditioning units
in vehicles.

Yuksel and Michalek [10] tested the Nissan Leaf EV to develop a general functional
relationship between ambient temperature and energy consumption efficiency. The research
concluded that this EV uses 15% energy per mile related to weather data and found that
yearly average energy consumption (per mile) for this type of EV is 15% higher in the
relatively cold states in the USA compared to warmer states on the Pacific Coast. The paper
relied on 7000 real-world trips, compared to a fixed estimation of the expected range of
the Nisan Leaf’s battery capacity of 21 kWh. This confirmed the sole relationship between
differences in climate and energy utilisation. Liu et al. [5] modelled the effect of ambient
temperature on EV energy consumption. The work emphasised the overexaggerated
common concept that energy consumption in hot weather is extremely high, and vice
versa. They considered the factors affecting energy consumption of EVs in a real-world
field study and used GPS trajectory data for 68 EVs in Japan for 2 years up to January
2013. The research concluded that the most economic temperature to drive in is around
23 ◦C and observed that in high-energy-consuming trips, the heater and air conditioner
are used simultaneously; thus, they recommended to automatically prevent the use of
the two functions at the same time to prevent wasting energy. This work aims to provide
additional empirical data on these effects by analysing real field data of an EV operating in
high-temperature Kuwait.
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Table 1 shows the average daily ambient air temperature in Kuwait, which is warm
to extremely hot all year. The maximum average daily ambient air temperature varies
between 39.5 ◦C in July and a minimum of 15 ◦C in December. The daytime temperatures
are extreme in summer months, with a maximum average of 46 ◦C in July and August,
and are mostly high at the time of coming back from work and school. During these times,
in-vehicle air conditioning loads of cars working on fossil fuel could increase the energy
consumption by up to 10% [11], especially on short trips with an average speed of less than
30 mph. Therefore, a significant concern for consumers purchasing electric cars in Kuwait
is the relationship between hot temperature, energy intensity (the energy consumption per
kilometre travelled) and the available range of an EV on a single charge.

Table 1. Average daily ambient air temperature in Kuwait, adopted from [1].

January February March April May June July August September October November December

All day (Avg. ◦C) 15 15.5 22 27 33 37.5 39.5 39 36 30 20.5 15
Night (Min. ◦C) 8 10 14 20 25 29 30 30 26 21 14 9
Day (Max. ◦C) 19 22 28 33 40 45 46 46 43 37 27 21

This study investigates the viability of utilising electrical vehicles (EVs) in the hot
climate of Kuwait. We aim to contribute to knowledge and improve the understanding
of temperature-related effects on the range of EVs under the hot and arid conditions
encountered in Kuwait, but with implications for other similar climates around the world.
The paper is organised as follows: the next section describes the methodology, followed by
the data collection, the results and discussion and then the conclusions of the study.

2. Methodology

The statistical modelling presented in this study investigated the relationship be-
tween temperature and energy intensity, defined as the energy consumption per kilometre
travelled. The modelling used ordinary least squares (OLS) regression to examine the
relationship between ambient temperature recorded by the vehicle at the start of each
journey and the energy intensity. The dependent variable, the average energy intensity for
each trip (EIi), is a measure of the electrical energy used to travel one kilometre. The metric
was calculated from data collected for energy use at the start (Estarti) and end (Eendi) of
each trip and the distance travelled (Di), represented by Equation (1).

EIi =
(Estarti − Eendi)

Di
(1)

In fitting the data of energy intensity against temperature, a number of polynomial
models were used, and the model with the best balance between simplicity and explanatory
power was selected. The model optimal relationship was a third-degree polynomial of the
form (y = β0 + β1·x + β2·x2 + β3·x3), where y is the predicted energy intensity of a trip (in
Wh/km) and x is the starting ambient temperature measured by the car (in degrees Celsius,
◦C). The model fit, coefficients (β1, β2, and β3) and intercept (β0) are reported in Section 4.

3. Data Collection and Description

As driving is linked with the daily activities of the residents in the country, the data
should match various activities a typical Kuwaiti household may carry out. Considering the
parameters that impact EVs’ energy consumption, a Chevrolet Bolt EV–2019 car (Figure 1)
was driven to simulate the five main trip scenarios in Kuwait: (i) home–office (morning),
(ii) office–home (afternoon), (iii) peak hours (high traffic), (iv) short trips near home (late
evening and night) and (v) long trips (random drives). The car used in the study has a
range of 238 miles on a full charge, estimated by the Environmental Protection Agency
in the USA (EPA) [12]. The Bolt EV’s 60 kilowatt-hour (kWh) lithium-ion battery pack is
made up of 288 individual cells. An available DC (direct current) fast charging system
enables the battery to be charged to a range of up to 90 miles in 30 min. The car uses a
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200 hp/150 kW permanent magnetic drive single motor and gear set [13,14]. Table 2 shows
the specifications of the Chevrolet Bolt EV that was used in the study.
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Figure 1. (a) Photograph of the test vehicle. (b–d) Vehicle status display showing information
collected at beginning and end of each journey.

Table 2. The 2019 Chevrolet Bolt EV specifications.

Driving range efficiency: 238 miles on a full charge Motor type: Single motor and gear set.
Permanent magnetic drive motor.

Battery system type: Rechargeable energy storage system Power: 200 hp/150 kW

Battery chemistry: Lithium-ion Torque (lb-ft/Nm): 266/360

Cells number: 288 240 V charging time: 9.5 h

Energy: 60 kWh DC Fast Charging time: Up to 90 miles in 30 min

Data collection of the use of the vehicle began in July 2019 and is ongoing. This
research reports on the analysis of data collected between 1 August 2019 and 31 October
2021. It must be noted that this period included several months of government-mandated
restrictions on activities and movements (e.g., curfews of varying lengths) of the population
due the COVID-19 pandemic. Partial lockdowns, generally applied during the evening and
overnight hours, were in operation from 22 March 2020 to 9 May 2020 and 31 May 2020 to
29 August 2020. A full lockdown was in operation between 10 May and 30 May 2020 and
consisted of a 24-h curfew [15].
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The vehicle user collected details for each journey manually. The date, time, vehicle
odometer and temperature readings were recorded at the beginning and end of each jour-
ney alongside information from the vehicle status display, which contained information on
the charge status of the vehicle battery, amount of energy used and ambient temperature
measurement (Figure 1). The latter was measured using the standard measurement device
installed by the vehicle manufacturer. While the sensor does not provide a reliable measure-
ment of ambient conditions, it does provide a useful proxy measurement for the operating
conditions at the start of the journey. The limitations of this method are acknowledged in
Section 5. These details were recorded using photographs and subsequently entered into a
data spreadsheet.

The data from the vehicle status display provided the following metrics, measured
since the last time the vehicle was fully charged: energy used in kilowatt-hours, distance
travelled in kilometres, proportion (%) of energy consumption used for driving, proportion
(%) of energy consumption used for air conditioning and proportion (%) of energy con-
sumption used for battery conditioning. From these measurements, the energy used (in
kWh) and distance travelled (in km) were calculated for each trip. Disaggregating the total
energy used into components for driving, air conditioning and battery conditioning was
performed using the values for proportion of energy consumption recorded by the vehicle
status screen. Standardised energy intensity was also calculated for each by dividing the
energy used by trip distance, giving overall Watt-hours per kilometre (Wh/km) as well as
disaggregated values for driving, air conditioning and battery conditioning.

Data Cleaning and Validation Checks

Any trip with missing odometer reading(s) (from either the start or end of the journey)
was removed prior to analysis, leaving data from 2024 trips made on 577 days within the
study period. The dataset contained two separate measurements for trip distance: (a) col-
lected via the car’s odometer reading, accurate to 1 km, and (b) collected via the distance
shown on the vehicle status display, accurate to 0.1 km. Using these two measurements, it
was straightforward to run a check for data entry errors. To check the quality of the data
recorded, we inspected the correlation between the two measures of trip distance recorded
in the dataset. The resulting scatter plot is shown in Figure 2.

We observe that, generally, the two measures are very closely correlated; data points
appearing on the black line represent trips where the distance obtained from the odometer
reading matches the distance obtained from the charging readings. The scatter plot shows
several points plotted away from the line, indicating errors in data collection. We exclude
data points that diverge from this line, using a tolerance of odometer distance ± 1% and
±1 km (shown as red lines), as we have lower confidence that these data points are valid.
This check removed 53 observations from the dataset.

Other validation checks were also performed to exclude observations with clear data
entry errors. First, trips recorded with zero and negative distances were removed. Trips
with erroneously long distances were also removed with a filter applied to exclude any
trip recorded over 200 km. Trips with missing or erroneous start or finish times were
also excluded. Finally, the energy use and calculated values for energy intensity were
examined. Trips with negative values for energy use were excluded (six observations),
along with trips with average energy intensity of greater than 500 Watt-hours per kilometre
(eight observations). The remaining data contained 1822 trips recorded from 530 days.
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4. Results and Discussion
4.1. Descriptive Statistics

Table 3 shows a summary of the trips recorded by month following the initial cleaning
of the data. The fewest trips were recorded in May and June 2020 (11–12 trips per month),
a time when government COVID-19 restrictions and curfews were in place. The most trips
during a single month were recorded in October 2020 (216 trips). Inspection of the average
energy intensity shows that the highest values occur in the months of July and August,
with average energy intensity of 165 Watt-hours per kilometre (Wh/km) or greater.

4.2. Temperature Measurement

Included in the data collected at the start and end of each journey was the ambient
temperature measured by the car. While these measurements may not accurately reflect
the ambient conditions, these measurements provide useful data about the operating
temperature of the vehicle at the beginning and end of the journey. Figure 3 shows a scatter
plot of recorded temperature at the start of each journey plotted against the time that the
journey began. The vast majority of trips in the journey data (greater than 99%) started
between 06:00 and 00:00. To provide greater clarity in the plot, nine observations (less than
0.5% of the trips) were removed from the plotted data, corresponding to trips with start
times between 00:00 and 06:00 h. Furthermore, 12 observations were also removed due to
missing temperature measurement. General trends in the data can be observed, showing
that trips starting between 14:00 and 16:00 h show the highest recorded temperatures. The
observations are grouped by month, with each month shown as a different colour on the
chart, allowing the seasonal trend in recorded temperature to be identified. Inspection
of the figure shows that the lowest starting temperatures are recorded in the months of
December, January and February. The highest starting temperatures are recorded in the
months of June, July and August.
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Table 3. Summary of recorded car journeys by month. Figures in bold indicate data collected during
periods when government-mandated restrictions (full or partial lockdown/curfew) were in place.

Month Year Trips
(Number)

Total Distance
(km)

Average Distance
(km)

Energy Used
(kWh)

Average Energy
Intensity

(kWh/km)

October 2019 45 1545 34.3 228.5 148
November 2019 24 876 36.5 120.0 137
December 2019 29 995 34.3 132.4 133

January 2020 57 1865 32.7 281.7 151
February 2020 39 1651 42.3 237.5 144

March 2020 37 1051 28.4 143.0 136
April 2020 15 759 50.6 100.5 132
May 2020 12 433 36.1 58.9 136
June 2020 11 511 46.5 79.7 156
July 2020 23 1442 62.7 267.7 186

August 2020 25 1871 74.8 326.0 174
October 2020 216 5174 24.0 763.4 148

November 2020 111 2141 19.3 279.9 131
December 2020 159 2863 18.0 377.0 132

January 2021 131 2620 20.0 339.7 130
February 2021 128 2791 21.8 350.9 126

March 2021 122 2919 23.9 363.5 125
April 2021 114 2458 21.6 322.2 131
May 2021 84 2166 25.8 308.1 142
June 2021 104 2485 23.9 394.0 159
July 2021 73 1830 25.1 308.7 169

August 2021 118 2527 21.4 415.7 165
October 2021 145 3139 21.6 461.1 147
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The distribution of temperature recorded by the vehicle shown in Figure 4 reveals that
for the use of the study vehicle, a large number of journeys begin with high car temperatures
that are likely to affect the energy intensity. Approximately half of the recorded journeys in
the dataset started with the car temperature at 30 ◦C or above and approximately a quarter
at 40 ◦C or above. It is noted that the data collection period included dates where restrictions
on movement were in place due to COVID-19, resulting in lower vehicle usage during
summer months. As this may have had the effect of skewing the data, the distribution was
examined for a period of one year, excluding the time when restrictions were in place.

Energies 2022, 15, x 9 of 14 
 

 

 
Figure 4. Cumulative distribution of trips by temperature, November 2020 to October 2021 only 
(avoiding period of COVID-19 restrictions). 

4.3. Energy Use 
As expected, energy use shows a strong positive correlation with distance travelled 

for each trip (Spearman correlation coefficient = 0.954, p < 0.01). This relationship is illus-
trated in Figure 5, showing a scatter plot of trip distance (in km) against energy used 
(kWh). The simple relationship described by the regression line gives an energy intensity 
of 150 Wh/km. 

 
Figure 5. Electrical energy used against trip distance for each trip recorded. 

Figure 4. Cumulative distribution of trips by temperature, November 2020 to October 2021 only
(avoiding period of COVID-19 restrictions).

4.3. Energy Use

As expected, energy use shows a strong positive correlation with distance travelled
for each trip (Spearman correlation coefficient = 0.954, p < 0.01). This relationship is
illustrated in Figure 5, showing a scatter plot of trip distance (in km) against energy used
(kWh). The simple relationship described by the regression line gives an energy intensity
of 150 Wh/km.

Turning to the relationship between energy consumption and temperature, energy con-
sumption by trip is first normalised for distance, using the calculated standardised energy
intensity measured in Watt-hours per kilometre (Wh/km). Figure 6 shows a scatterplot of
car temperature at trip start, measured in degrees centigrade (◦C) versus energy intensity.
We observe a wider distribution of energy intensity as temperature increases. From the
polynomial model fitted to the data, the relationship between (starting) temperature and
energy intensity reaches a minimum of 130 Wh/km at 22.8 ◦C and supports the conclusion
of the study by Liu et al. [5] in Japan finding the most economical temperature of 23 ◦C.
Below 20 ◦C, we observe that energy intensity rises slightly with decreasing temperature,
and above 25 ◦C, we observe that energy intensity rises with increasing temperature.
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As mentioned earlier, the data were fitted to a linear regression model using a third-
degree polynomial. The model coefficients are shown in Table 4, showing that all terms
are statistically significant. This model was chosen over other polynomial models tested
as it optimised model fit against model complexity. The third-degree polynomial model
achieved an improved model fit compared to the second-degree model with an adjusted R2

value of 0.149 (versus 0.141). The model fit was not significantly improved by using fourth-
or fifth-degree polynomial models (adjusted R2 = 0.149 and 0.150, respectively). The lower
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number of journeys recorded at the limits of the temperature distribution, below 15 ◦C and
above 45 ◦C, reduce model performance.

Table 4. Model coefficients (and confidence intervals).

Dependent Variable:

Y
β1 −16.025 ***

(−21.833, −10.217)
β2 0.502 ***

(0.313, 0.691)
β3 −0.004 ***

(−0.006, −0.002)
Constant (β0) 287.313 ***

(231.328, 343.298)
Observations 1809

R2 0.151
Adjusted R2 0.149

Residual Std. Error 44.100 (DF = 1805)
F Statistic 106.733 *** (DF = 3; 1805)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

The model was used to estimate the range reduction, in percent, at car temperatures
between 10 ◦C and 50 ◦C. Range reduction was calculated by dividing the minimum
modelled energy intensity by the energy intensity at given car temperatures. The modelled
in-use energy intensities (in Wh/km) are shown in Table 5 and Figure 7 alongside estimated
range reductions (expressed as a percentage) for car temperatures at five-degree intervals
(Figure 7, right-hand axis).
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Using the assumption that the range of the vehicle is directly proportional to the in-use
energy intensity, when the starting temperature of the car is below 20 ◦C and above 25 ◦C,
the model results show that energy intensity increases, and estimated vehicle range reduces
accordingly. The selected model shows (Table 5 and Figure 7) that at a starting temperature
of 30 ◦C, the vehicle range would be decreased by 6%. The reduction in range increases
with increasing starting temperature, with a 22% reduction at 40 ◦C and a 32% reduction at
50 ◦C. Similarly, range decreases at starting temperatures below 20 ◦C, resulting in a 10%
reduction at 15 ◦C, rising to a 25% reduction at 10 ◦C. These findings of increased energy
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use in moderately cold driving conditions are not as sizable as those found by Dost et al. [9]
in their German study and are comparable to those found in the United States by Yuksel
and Michalek [10].

Table 5. Modelled in-use energy intensity and range reduction by car temperature at start of journey.

Car Temperature at Start of Journey (◦C) Energy Intensity (Wh/km) Estimated Range Reduction (%)

10 174 25
15 145 10
20 132 1
25 131 1
30 139 6
35 153 15
40 168 22
45 182 28
50 191 32

5. Conclusions, Limitations and Future Work

This research investigated the impact of high ambient temperatures on vehicle effi-
ciency from journeys made in a region with higher ambient temperatures (>50 ◦C) com-
pared to those recorded by Liu et al. [5] (<35 ◦C). It presents empirical data collected through
real-world usage of a single electric vehicle in Kuwait under environmental conditions
that would be expected under typical use in the country. As would be expected, the data
show a strong correlation between journey distance and energy use. Modelling of the data
also shows a significant relationship between the car temperatures recorded at the start of
journeys with the measured average energy intensity for journeys.

The results gained in this real-world vehicle in use case study (in contrast to lab
conditions) indicate that there is a significant efficiency penalty when driving the EV in the
hot conditions experienced in Kuwait and that hot conditions are common for journeys
encountered. This has implications for EV range in such climates and is important in
relation to customer perception—more specifically, travel range anxiety. The reduction
in range resulting from increased energy intensity of use in higher temperatures also has
implications for charging infrastructure.

Due to the unreliability of the disaggregated energy use of different systems within the
vehicle, it was not possible to directly investigate the contribution of air conditioning or bat-
tery conditioning to the increase in energy intensity at higher temperatures. Nevertheless,
the results show that energy intensity increases with temperature measured by the EV at
the start of journeys. However, how much of the increased energy intensity is attributable
to driver and passenger comfort preferences and to the response of vehicle performance
to operating temperature cannot be ascertained from this study. Directly monitoring the
energy consumption of these systems in the future would provide valuable data with
which to further investigate the components of the temperature effect found in this case
study. Combined with further instrumentation of the cabin (e.g., temperature and humidity
measurement) and more detailed measurements of ambient environmental conditions,
such data would allow some disentanglement of the cause of temperature effects on vehicle
energy intensity due to vehicle performance and/or passenger comfort preferences.

While the ambient temperature measured by the car provides an indication of the oper-
ating conditions of the vehicle during each journey, it does not provide detailed information
on the ambient conditions both prior to, and during, operation. Further investigation is
required to understand the effect of different vehicle storage and parking arrangements
on the relationship between ambient temperature, car operating temperatures and cabin
conditions, and by extension, energy intensity and vehicle range. For example, carpark
shading and/or cabin pre-cooling while charging would decrease cabin temperatures
at journey start, reducing the energy demand for air conditioning and thereby improv-
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ing energy intensity and increasing range. Such measures may also improve driver and
occupant comfort.

Providing further measurements of vehicle driving parameters (such as speed, acceler-
ation) and route information (such as road type, gradient [16]) would allow future work to
investigate and control for variables related to road conditions, traffic and driving style.
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