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iv

This thesis investigates possible parameter values of, and optimum jet reconstruction
for the signals from, the two Higgs doublet model (2HDM). Possible parameter val-
ues are investigated by way of recasting a parameter scan published by ATLAS. The
original analysis, performed with 36.1 fb−1 of run 2 data, investigated the possibil-
ity of observing cascade decays from the 2HDM. The study considered the process
A → ZH → l+l−bb̄ (where l = e, µ) in the context of the standard four Yukawa types.
A parameter space in the physical basis of the 2HDM is explored, seeking parameter
combinations that are not forbidden by theoretical constraints or existing observations,
and to which a detector would be sensitive. The existing study is recast in two direc-
tions, firstly the possibility of exchanging A and H is investigated. Secondly, the ex-
trapolation to run 3 is calculated. Under exchange of H and A all detectable parameter
combinations are forbidden. More promisingly, however, it is seen that run 3 will offer
sensitivity to considerable areas of permissible parameter space. It is clear that these
decay channels already offer potential for finding the 2HDM at the LHC. Another line
of investigation that might compliment this, is the potential to improve sensitivity by
better signal reconstruction techniques. In particular, jet reconstruction techniques that
might expand sensitivity to cascade decays from the 2HDM ending in a four b-quark
final state are sort. Firstly, the challenges of reconstructing these states with existing
algorithms is evaluated, and the limitations posed by cuts in the trigger illustrated. A
comparison is made between the prevalent anti-kT algorithm and a somewhat unusual
algorithm termed variable-R. This finds that variable-R performs this task best, both in
terms of mass peak reconstruction, and jet multiplicity. The second investigation into
optimum jet construction aims to apply a novel method, spectral clustering, to the jet
formation problem. Again, it is driven by an interest in reconstructing cascade decays
from the 2HDM. This method proves to be insensitive to infra-red singularities in a
practical sense. It is also shown to be very flexible, capable of clustering a range of
signal types, without requiring alterations to its parameter settings.
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Chapter 1

Introduction

A quiet excitement can be felt in the hunt for an extended Higgs sector. Such a discov-
ery would be very welcome as a great number of questions remain unanswered by the
SM, and do not appear to be answerable without additional particles. Experimental
questions include the muon’s anomalous magnetic moment and the elusive interac-
tions of dark matter. On the theoretical side, there are multiple hierarchy problems, the
fermion mass spectrum and that of the Higgs field. The fermion mass spectrum ranges
over 5 orders of magnitude, an explanation for these varying scales would be desirable.
The Hierarchy problem for the Higgs is of a larger order again, there is no symmetry
that protects the Higgs from receiving corrections to its mass from energy scales all the
way up to the Plank mass. So for the Higgs to obtain a mass of 125 GeV there must be
cancellations in the radiative corrections across 17 orders of magnitude. Gravity also
has no place in the SM, and needs to be written into the interactions of massive parti-
cles. Furthermore, the universe is predominantly matter, with a surprising absence of
antimatter, and a new model is wanted that could generate this asymmetry. Additional
Higgs particles are not likely to answer all of these directly, but they would give good
indications of where next to look. There are no guarantees that there are additional
Higgs particles to be found, and it is the uncertainly of the outcome that makes the
challenge so gripping.

This thesis concerns two aspects of the search for additional Higgs particles. Firstly,
identifying parameter space that is not ruled out by existing observation, yet for which
a signal might soon be detected, and secondly identifying jet formation techniques that
would be most sensitive to signals produced by that model. It is focused on the 2HDM,
although some methods are more generally applicable.

The first aim, to find parameters of interest, looks at the influence of parameter choices
on the expected signal. To date, no such signals have been observed, so for any given
signal, either the observations match the SM predictions, or they have yet to be mea-
sured. Of those that have yet to be measured, only some are possible to measure given
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the sensitivity of the detectors we have now, or expect to create in the near future. This
is the subset of parameter choices offering the potential for a discovery. Identifying
them will guide searches, and help tailor the tools designed for this search.

Once the signals that the 2HDM might produce are described, the tools used to select
signals in data may be optimised to locate them. One step in the analysis process is the
formation of jets. A jet is group of particles, defined by some clustering mechanism,
which is thought to originate from the decay of a single object in the hard event. By
correctly gathering such groups, properties of the decayed object can be reconstructed.
The most common decay channel for a Higgs is a pair of b-quarks, which decay quickly
into a great many particles. As such, jet formation, in particular b-jet formation, is
important for finding signals in Higgs physics.

The 2HDM would produce events with different topologies and kinematics than those
of the SM Higgs. Cascade decays may produce four-jet events, and depending on the
mass difference between the Higgs particles of the model, these events may be signif-
icantly boosted. The mass of the decaying Higgs will also influence the kinematics of
any b-quarks produced, which in turn modifies the distributions for the decay prod-
ucts. So there may well be room for improving on the strategies used to define jets in
these events.

The outline of this thesis is as follows; in chapter 2, a review of the 2HDM is given as
general background. A study of the implications of the decays A → ZH and H → ZA
for the models parameter space is presented in chapter 3. Following this, chapter 4
provides an overview of jet physics, starting from the collision point, following the
journey of the particles through the collider, and then ending with the business of jet
formation itself. This gives the background for chapter 5, which presents a study ex-
ploring the application of existing methods of jet formation to this signal. In chapter 6
and chapter 7 there are reviews of machine learning in jet physics, and clustering tech-
niques in machine learning, respectively. These are presented as two complimentary
views on the possibilities for new, machine learning driven, jet formation techniques.
In the penultimate chapter, chapter 8, a machine learning technique, known as spectral
clustering, is presented as a means for jet formation. Finally, there is a conclusion.
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Chapter 2

Parameters of the Two Higgs
Doublet Model

Much of this thesis concerns the two 2HDM. In the next chapter, a scan of the parameter
space of the 2HDM is presented, and in the subsequent chapters, signals of the 2HDM
are studied. So in preparation for this, this chapter presents a review of the theory for
the 2HDM and some justification for taking an interest in it.

2.1 Review of 2HDM

Many models for additional Higgs particles exist, the 2HDM enjoys the status of being
the simplest of all of these. For that reason alone one might take a particular interest in
the 2HDM. Although this thesis focuses on phenomenology, some review of the theory,
is an important starting point. Particular attention will be paid to the motivations for
the model and production and decay modes for the particles it introduces.

A cursory description of the SM and the SM Higgs is good preparation for a summary
of the 2HDM. The SM Higgs must certainly appear in the 2HDM, and so its inter-
actions should be kept in mind. Furthermore, a review of the SM is a good way to
highlight some of the questions that motivate the development of new models, such as
the 2HDM. Once this is complete, the 2HDM will be broached.

2.1.1 Standard Model

Development towards the SM could be said to have started in 1897, with the discovery
of the electron [4]. The electron is a fundamental particle, that is to say, to the best of
our knowledge it is not composed of any smaller parts. It was the first of 18 particles
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Generation
I II III I3 Y Q

Leptons

(
νe
e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

+1/2 −1/2 0
−1/2 −1/2 −1

eR µR τR 0 −1 −1

Quarks

(
u
d

)
L

(
t
b

)
L

(
c
s

)
L

+1/2 1/6 2/3
−1/2 1/6 −1/3

uR tR cR 0 2/3 2/3
dR bR sR 0 −1/3 −1/3

TABLE 2.1: Table of electroweak quantum numbers for the fermions. I3 is the weak
isospin, Y is the weak hypercharge and Q is the electric charge. This table is inspired

by the presentation in [6], but maintains the convention Y = Q− I3, as in [5].

that are today considered to be fundamental building blocks. The interactions of these
particles are summarised in the SM Lagrangian. Terms in the Lagrangian are built up
from fields, the excitations of which are the particles, and the derivatives of those fields.
Each term of Lagrangian will be described in the following two sections, with notation
matching that of [5].

Of the 18 particles in the SM, there are the 12 fermions, often referred to as “matter
particles”. They are named for their half integer spin, which means they obey Fermi-
Dirac statistics. Particles with Fermi-Dirac statistics cannot occupy the same energy
state, and so behave in a solid, matter-like, way. The 12 fermions can be further divided
into 6 quarks and 6 leptons, each of which contains 3 generations. In the quarks these
generations are up and down, top and bottom, charm and strange. In the leptons each
generation is composed of an electron, muon or tau and its associated neutrino. Kinetic
and interactions terms of the fermion’s Lagrangian can be written as

Lfermion = ∑
quarks

iq̄γµDµq + ∑
ψL

ψ̄LγµDµψL + ∑
ψR

ψ̄RγµDµψR (2.1)

where q represents the quark fields, ψL represents the left handed lepton fields, ψR

represents the right handed lepton fields and D represents the appropriate covariant
derivative. There are no right handed neutrinos in the SM, and so the final sum over
ψR only includes electrons, muons and taus. This will be important to remember when
the mass terms are added later, as they require mixing the left and right handed com-
ponents, thus, neutrinos in the SM are massless. Electroweak quantum numbers for
the fermions are given in Table 2.1.

After the 12 fermions, there are 6 are bosons, which act as force carriers. They have
integer spin, and therefore obey Bose-Einstein statistics. Of the fundamental bosons,
all but the Higgs have spin 1. The SM Higgs has spin 0, and will be discussed in
more depth in the next section. To start off, the photon (denoted γ) is the mediator of
the electromagnetic force, and couples to all charged particles. The W± and Z bosons
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I3 Y Q

Gauge Bosons
γ 0 0 0
Z 0 0 0

W± ∓1 0 ±1

TABLE 2.2: Table of electroweak quantum numbers for the bosons, as in Table 2.1.

mediate the weak force, and couple to all left handed fermions, photons and each other.
To complete the set of gauge bosons, there are the gluons, which mediate the strong
force. Gluons couple to themselves, and to the quarks, due to their colour charge. The
self interaction and kinetic terms for these gauge bosons are

Lgauge = −1
4

BµνBµν − 1
4

W i
µνWµνi − 1

4
Ga

µνGµνa. (2.2)

The first two terms correspond to the electroweak sector, containing the photon, W±

and Z bosons. Gauge bosons have somewhat simpler quantum numbers, these are
given in Table 2.2.

At this point, there are still two significant section of the SM Lagrangian missing from
this account; the Higgs sector, LHiggs, and the Yukawa sector, LYukawa. These parts of
the SM are of most interest to this thesis. In the next section they are explored.

2.1.2 Standard Model Higgs

The Higgs field is a weak isospin doublet, that is to say, it is comprised of two fields,
which have an SU(2) symmetry giving them the same interactions with the weak force.
This can be written with four components;

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.3)

It has weak isospin I3 = −1/2 and weak hypercharge Y = 1/2. The potential energy
of the Higgs field is

V(φ) = µ2φ†φ + λ(φ†φ)2. (2.4)

Where µ2 < 0 and λ > 0. This gives the classic wine-bottle potential. The Higgs sector
of the SM Lagrangian can now be written as LHiggs = (Dµφ)†Dµφ − V(φ), with Dµ

being the covariant derivative.

Exploiting the freedom to choose the axes, the symmetry can be broken to

φ0 =
1√
2

(
0
v

)
, (2.5)
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where v is the vacuum expectation value (vev); v = |µ|√
λ

. This choice corresponds to
the unitarity gauge. With this choice fluctuations about the minimum are written as
φ(x) = φ0 + h(x), and h(x) is the scalar Higgs field. While there are 4 parameters
available in Equation 2.3, three of these give mass to W± and Z bosons, and only one
remains to form the Higgs field.

Substituting this vev back into Equation 2.4 it can be seen that the mass of the Higgs
field (coefficient of the h2 term) is M2

H = 2λv2, MH =
√

2|µ|.

Finally, the Higgs field also features in the Yukawa sector of the SM Lagrangian. With
a Higgs field it is possible to formulate mass terms for the massive gauge bosons and
fermions without violating unitarity [7]. This section provides masses for the massive
particles and also couples the Higgs to the massive particles. Being a spin 0 particle, it
must couple between fermions of opposite charity;

LYukawa = −Yl L̄LφlR −YdQ̄LφdR −YuQ̄Lφ̃uR + h.c. (2.6)

where LL and QL represent the left handed lepton and quark doublets, lR represents the
right handed lepton singlets, and dR and uR represent the right handed down, bottom,
strange and up top charm singlets respectively.

Couplings to the massive particles enable various production and decay modes for the
Higgs. As each production mode contributes to the cross section of the Higgs, they
collectively influence our ability to accurately predict the cross section of the Higgs.
The production modes of the SM Higgs are closely linked to the production modes of
the Higgs in the 2HDM, as will be seen later, in section 2.1.4.3.

The production modes are [8];

• Gluon fusion; this is the dominant process for Higgs production at the LHC. Ei-
ther a top to bottom quark loop mediates two gluons to a Higgs.

Top quark loops are the largest contribution, as the coupling of the fermion to the
Higgs scales with mass. At

√
s = 13 TeV the cross section comes to 42.9 pb [9].

• Vector-boson fusion; two W or Z bosons are emitted by quarks, they fuse to gen-
erate a Higgs.



2.1. Review of 2HDM 7

This is the next largest contribution after gluon fusion, and it grows with increas-
ing energy. While it has no loops, the coupling of the Higgs to the Z or W± is
not as strong as to the top quark. At

√
s = 13 TeV the cross section comes to

3.748 pb [9].

• Higgs-strahlung; the Higgs is emitted from a W or Z boson as a Bremsstrahlung
like emission.

Once the energy threshold of the Higgs and the vector boson have been reached,
increasing the energy will does not increase the cross section. At

√
s = 13 TeV the

cross sections are σW±H = 1.380 pb and σZH = 0.8696 pb [9].

• Associated production [10], also known as Charged Higgs production; The Higgs
boson is produced in association with top or bottom quarks, for charged Higgs’
beyond the Standard model this could produce a charged Higgs.

By this point the cross sections are around 2 orders of magnitude smaller than the
leading contribution. At

√
s = 13 TeV the cross sections are σbbH = 0.5116 pb and

σttH = 0.5085 pb [9].

• Plus further smaller contributions.

Also relevant to this thesis are the decay modes. The Higgs will always decay long
before it could reach a detector element, so the decay modes characterise the signals
with which its existence can be inferred. Even the particles to which it decays, in the
final state of these decay modes, will decay before they reach detector elements. The
reconstruction process works in stages; first common endpoints, such as b-quarks are
reconstructed, then from this intermediate stage, heavier particles, such as the Higgs
are reconstructed. Hence, the second step of the reconstruction process requires knowl-
edge of the decay modes of the particle of interest.

The decay modes are;

• Fermionic Higgs decay; the Higgs decay into a pair of fermions.
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The most common of these is Higgs to a pair of b-quarks.

• Vector-boson Higgs decay; the Higgs decay into a pair of W or Z bosons.

This is less common than fermionic decay.

• Higgs decay to gluons; mediated by a top or bottom loop the Higgs decays to
gluons. This is the reverse of gluon fusion.

• Higgs decay to photons; mediated by a quark loop, the Higgs decays to a pair of
photons. This is like the decay to gluons, with the photons taking the place of the
gluons and the loop being any quark rather than restricted to top or bottom. This
decay is not common, but it has low background due to how well photons are
reconstructed, so it is important for establishing the Higgs mass.

• Higgs decay to photon and Z boson, and Dalitz decays; these are yet further loop
mediated decays.

In 2013 observation of the 125 GeV Higgs boson was announced1 [11]. Francois En-
glert and Peter Higgs were awarded the 2013 Nobel Prize in physics for their predic-
tions, sadly, Robert Brout died in 2011, 2 years too soon. Since then new data has only
strengthened this discovery, and further refined the mass measurement [12].

2.1.3 Open Questions

Choosing the next step can be guided by the problems that might still be solved. There
isn’t a shortage of problems available. Working from the list given in [13];

1Delightfully, and for reasons best known to the presentor, the presentation accompanying this an-
nouncement was done in comic sans.
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1. The Higgs mechanism is added to the SM ad hoc, that is to say, one might accuse
the addition of being an attempt to “patch-up” a gap in theory [14]. It is the only
fundamental scalar field in the SM, all other scalars being dynamical combina-
tions of other fields. Having actually observed a Higgs somewhat ameliorates
this worry, but none the less, it has been a continued point of discussion [15, 16].

2. The so called hierarchy problem for the Higgs mass; the radiative corrections
to the mass of most particles are limited by symmetries, but those of the Higgs
are not because its mass term is invariant. Quadratically divergent contributions
come from top quark loops, self interactions and loops with gauge bosons. Can-
cellations that must occur between the tree level mass and the large loop correc-
tions eclipse the scale of the observable Higgs mass [17]. Without these quantum
corrections, the Higgs could have a mass that was larger by about 17 orders of
magnitude. Fermion masses do not suffer from this, as contributions to the mass
that do not contain the mass term itself are forbidden by chiral symmetry. Simi-
larly, gauge invariance protects the vector bosons’ mass. The Higgs benefits from
neither of these protections. Strictly speaking, there is no inconstancy between
theory and observation here, there could just be some unnervingly fine tuned
numbers2.

3. Fermion masses and mixing angles are still arbitrary, and present a similar hier-
archy problem, all be it ‘only’ over 5 orders of magnitude [18].

4. The gauge coupling in the SM, electromagnetic, weak and strong forces, do not
unify. Theories that unify these forces into a single Lie group are known as Grand
Unified Theories3.

5. Observations indicate that dark matter exists [19]. That is quite exciting, because
there is no particle in the SM that matches the properties needed for dark matter,
so there really ought to be something more to find. While neutrinos don’t interact,
and may in fact have mass, they don’t have the properties required to form large
scale structures observed in dark matter.

6. Observations also indicate that gravity exists. A model that could include this
force would also be exciting.

7. The universe appears to be mostly matter, we have not observed much anti-
matter [20]. This implies that early on in the universe some antisymmetric process
took place, which produced more baryons than antibaryons, known as baryoge-
nesis. The conditions required to produce this baryogenesis are known as the

2Many people feel that forbidding the universe from being fine tuned is almost as important as requir-
ing it to be internally consistent. Pretending that the universe is obliged to make sense at all is more or
less a requirement for doing physics.

3 Commonly abbreviated as GUT. An acronym that goes a long way to explaining why other acronyms
are often a little convoluted.
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Sakharov conditions [21]. The parameters of the SM prevent it from satisfying
these conditions, so this is also a challenge for a new model.

8. Tensions between the predictions made by the SM and the results measured in
experiments are few and far between, but have been seen. An example of this
is the muon’s anomalous magnetic moment, which has been observed by both
Fermilab and Brookhaven National Laboratory [22], to a combined significance
of 4.1 sigma. Such a tension could be resolved by further testing, but if it persists,
then in would represent both a potential guide to BSM physics, and a challenge
for new physics to explain.

2.1.4 Addition of a Second Higgs Doublet

Following on from these open questions, in the remainder of this section a possible
extension to the SM will be outlined. A basic description of the theory will be given,
sufficient for the purposes of this thesis. Finally, the potential for extracting answers
for the open questions from the 2HDM will be discussed.

In the SM we have one Higgs doublet, as described in section 2.1.2. One of the simplest
extensions possible is to add another doublet, to create a two Higgs doublet model
(2HDM). These two doublets will be referred to as Φ1 and Φ2. The most general gauge
invarient, renomalisable, scalar pottential that can be constructed is;

V(Φ1, Φ2) =m2
11Φ†

1Φ1 + m2
22Φ†

2Φ2 −m2
12

(
Φ†

1Φ2 + Φ†
2Φ1

)
+

λ1

2

(
Φ†

1Φ1

)2
+

λ2

2

(
Φ†

2Φ2

)2
+ λ3Φ†

1Φ1Φ†
2Φ2 + λ4Φ†

1Φ2Φ†
2Φ1 (2.7)

+
λ5

2

[(
Φ†

1Φ2

)2
+
(

Φ†
2Φ1

)2
]

+([
λ6(Φ†

1Φ1) + λ7(Φ†
2Φ2)

]
(Φ†

1Φ2) + h.c.
)

In this, m11, m2
22 and λ1...4 are real, whereas m2

12 and λ5,6,7 can in general be complex. All
together there are 14 input parameters available. A restriction is added, requiring that
CP is conserved in the Higgs sector. This restriction forces all the named variables to
be real, bringing the number of parameters down to 10, or 11 including the SM Higgs
vev v = 2mW/g2 [23]. Taking λ6 = λ7 = 0 is also a common choice, as these terms
are odd in the doublets and so break the discreet symmetry Φ1,2 → −Φ1,2, breaking
this symmetry causes flavour changing neutral currents. This brings the number of
parameters to 9, including the SM Higgs vev. Alternative, soft CP breaking models are
available [10], but they are not considered in this thesis.
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At the minimum of this potential both doublets must take their vevs;

〈Φa〉0 =

(
0

va/
√

2

)
(2.8)

where a = 1, 2 for either doublet. A parameter β is defined such that tan(β) = v2
v1

and

v =
√

v2
1 + v2

2. In order for the 2HDM to correctly reproduce the W± and Z masses v2

must equal 1√
2GF

[7]. With these definitions;

〈Φ1〉0 =
v√
2

(
0

cos β

)
〈Φ2〉0 =

v√
2

(
0

sin β

)
(2.9)

In full, the two doublets each have 4 free parameters;

Φa =

(
φ+

a

(va + ρa + iηa)/
√

2

)
, (2.10)

again, a = 1, 2.

As in the SM Higgs, 3 of these parameters create mass terms for the W± and Z bosons.
After this is done, we have 5 remaining parameters, which will lead to 5 particles;

1. h; a light, neutral, CP even Higgs.

2. H; a heavy, neutral, CP even Higgs.

3. A; a CP odd (pseudoscalar), neutral, Higgs.

4. H±; a pair of charged, CP even, Higgs.

The input parameters of the model will be rephrased in a more convenient manner, to
include the masses of these new particles, in what is sometimes known as the physical
mass basis [24]. The physical mass basis is a more useful parametrisation for phe-
nomenology.

Using the parameterisation given in Equation 2.10, and expanding about the minimum;

∂V
∂Φ†

a

∣∣∣∣
〈Φa〉0

= 0 (2.11)

the mass terms can be obtained [7]. Firstly, these two conditions can be used to rewrite
the parameters m11 and m22 in terms of the other parameters in the model, further
reducing the models input parameters to 7 (again, including the SM Higgs vev). These
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constraints have the form;

m2
11 = m2

12
v2

v1
− 2λ1v2

1 − λ345v2
2

m2
22 = m2

12
v1

v2
− 2λ2v2

2 − λ345v2
1 (2.12)

Making the definition λ345 = λ3 + λ4 + λ5 will also assist in writing elegant mass ma-
trices. For the neutral Higgs;

− 1
2

(ρ1, ρ2)

(
m2

12
v2
v1

+ λ1v2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v2
v1

+ λ2v2
2

)(
ρ1

ρ2

)
= −1

2
ρ†Mρ. (2.13)

WhereM has been introduced for later convenience. For the charged Higgs;

− [m2
12 − (λ4 − λ5)

v1v2

2
](φ−1 , φ−2 )

(
v2
v1
−1

−1 v1
v2

)(
φ+

1

φ+
2

)
. (2.14)

For the CP odd Higgs;

− [m2
12 − 2λ5

v1v2

2
](η1, η2)

(
v2
v1
−1

−1 v1
v2

)(
η1

η2

)
. (2.15)

The charged and CP odd mass matrices are both diagonalised by a rotation of β, and
they get masses mA = [m2

12/(v1v2) − 2λ5]v2 and mH± = [m2
12/(v1v2) − (λ4 + λ5)]v2.

The neutral mass matrix is the odd one out. The parameter α is defined as the rotation
angle required to diagonalise the neutral mass matrix Equation 2.13. There is no neat
expression for the angle α in terms of the parameters in Equation 2.7 and Equation 2.10.
A messy one would be [7];

tan 2α =
2m2

12 − λ345v2 sin 2β

( 1
tan β − tan β)m2

12 − λ1v2 cos2 β + λ2v2 sin2 β
(2.16)

Using theM defined in Equation 2.13 to keep the equation neat the masses of the two
neutral Higgs can be written

m2
H,h =

1
2

[
M11 +M±

√
(M11 −M22)2 + 4M2

12

]
(2.17)

Between all of these definitions, there is a new set of input parameters that determine
parameter values in the potential in Equation 2.7;

tan β, sin(β− α), m2
12, mh, mH, mA and mH± . (2.18)

There are seven parameters here, a number that has been arrived at through the re-
quirements set out in this section. To recap, initially there were ten real parameters
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of Equation 2.7, plus one more for the SM Higgs vev. Then two were removed by re-
quiring λ6 = λ7 = 0. In Equation 2.12 two more parameters were removed using the
minimisation conditions, bringing the total to the seven input parameters that remain.

2.1.4.1 Yukawa Types of 2HDM

The coupling of the doublets to fermions must be chosen carefully, or they will induce
FCNCs. FCNCs do exist in the SM, but they are highly suppressed [25]. The simplest
solution for the 2HDM is that fermions of the same quantum numbers couple to the
same doublet, then the doublets cannot mediate any FCNCs. There are 2HDM variants
that permit FCNCs and find ways to suppress them [26], but in this thesis, only the
variants that lack FCNCs will feature.

Given that there are two doublets, and the quarks and leptons can be assigned indi-
vidually, there are 4 possible configurations [7]. In all configurations the left handed
quarks and leptons couple to the Φ1 doublet, and the behaviour of the right handed
components determines the type;

• Type I; All right handed quarks and leptons couple to Φ2.

• Type II; Right handed quarks with Q = 2/3 couple to Φ2 right handed Q = −1/3
quarks and leptons couple to Φ1.

• Lepton specific4; All right handed quarks couple to Φ2 leptons couple to Φ1.

• Flipped5; Right handed quarks with Q = 2/3 and leptons couple to Φ2 right
handed Q = −1/3 quarks couple to Φ1.

These coupling determine the Yukawa interactions in such a way as to avoid all FCNCs.
At this point it is possible to relate back to the open questions in section 2.1.3. To begin
with, solutions to the fermion mass hierarchy may be possible with simple extensions
to 2HDMs [27]. Going further, finding a 2HDM would be a step in the right direction for
establishing the existence of a supersymmetric model. The MSSM requires two Higgs
doublets, and their Yukawa interactions must match those of the Type-II 2HDM [28].
It is not true, however that these models make all the same predictions for the Higgs
sector. MSSM imposes more restrictions that the Type-II 2HDM, so while finding some
Type-II 2HDM is a requirement for the MSSM, additional criteria would need to be met,
even within the Higgs sector.

An MSSM would be of relevance to many of the open questions. Having the Higgs
embedded in a much larger theory would certainly dispel any accusation of it being

4Also known as Type X or Type IV
5Also known as Type Y or Type III
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ad hoc. An MSSM could stabilise the Higgs mass [29], offer force unification [30], and,
even considering variations in only a few of its many parameters provide a candidate
for dark matter [31]. It could even offer mechanisms for baryogenesis [32].

This seems almost too good to be true, and unfortunately it might be. Extensive searches
for supersymmetries have yet to yield any findings [33, 34]. Variations and additions
to the MSSM can be derived that explain the lack of findings, although that involves
adding more parameters to an already considerable “minimal” model, and perhaps re-
quiring those parameters take very particular values to avoid detection. To some this
sounds like a bad idea; the parameter restrictions are considered another form of fine
tuning, and the complex models have been accused of being “baroque” [35]. Either
succeeding in, or exhausting the search for 2HDMs, would be a valuable contribution
to these broader questions of theory.

2.1.4.2 Additional Constraints on 2HDM

So far in this section a number of constraints on the 2HDM have been given; CP con-
servation, and the prevention of FCNCs. There are a number of further considera-
tions; unitarity, perturbativity, stability of the potential, EWPOs, flavour physics ob-
servables, existing Higgs measurements and 2HDM parameter choices eliminated by
existing searches. In this next section these constraints will be described.

Unitarity is a sufficient condition to guarantee that all probabilities predicted by a the-
ory will be less than 1, if the Hamiltonian is hermitian then the time evolution operator
will be unitary. The requirements this places on the 2HDM can be expressed in terms
of the λi defined in Equation 2.7. Defining a set of eigenvalues ei for i = 1, . . . 12;

e1,2 = λ3 + 2λ4 ± 3|λ5|, e3,4 = λ3 ± λ4, e5,6 = λ3 ± |λ5|

e7,8 = 3(λ1 + λ2)±
√

9(λ1 − λ2)2 + 4(2λ3 + λ4|)2,

e9,10 = λ1 + λ2 ±
√

(λ1 − λ2)2 + 4|λ5|2,

e11,12 = λ1 + λ2 ±
√

(λ1 − λ2)2 + 4|λ5|2. (2.19)

It is required that the ei’s be less than 16π for each i = 1, . . . , 12 [36, 37, 38].

Perturbativity6 is needed to obtain finite answers for properties calculated for this
model. The requirement is simply that |λi| ≤ 8π for all λi in Equation 2.7 [39, 40].

Stability of the potential simply requires that the potential does not go to −∞ in any
direction. This does not forbid the potential from having multiple minimum, just en-
forces that it is bounded from below. For the particular potential given in Equation 2.7,

6Often simply listed as another unitarity constraint [39]
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necessary and sufficient conditions for this are [41, 10]

λ1,2 > 0, λ3 > −
√

λ1λ2, λ3 + λ4 − |λ5| > −
√

λ1λ2. (2.20)

EWPOs [42], such as the oblique parameters S and T [43, 44], require a level of de-
generacy between the charged Higgs boson state and one of the heavier neutral Higgs
bosons. Using the assumption m±H = mA or mH, the T parameter exactly vanishes in
the alignment limit, creating compliance with EWPOs.

Flavour physics observables constrain the branching rates of a number of processes,
the SM replicates these values very well already, so the new 2HDM must also. These
include B(B→ Xsγ) and B(Bd,s → µ+µ−), and many others given in [42].

Existing SM Higgs signals of course have to be honoured. The simplest way to achieve
this is to chose sin(β− α) = 1, known as the alignment limit [45]. In this limit h has all
the same coupling as the SM Higgs, so it naturally reproduces the SM Higgs signals.

Eliminated 2HDM parameter choices from existing searches are the most challenging
to account for as they are being actively developed. They must be sourced in recent
publications [46].

2.1.4.3 Production and Decay of 2HDM Higgs Bosons

Production mechanisms for neutral Higgs bosons are the same as for the SM Higgs,
which are given in section 2.1.2. Again, gluon fusion is the dominant process.

Charged Higgs bosons have three key production processes [47, 48];

• A Drell-Yan process might produce a pair of charged Higgs; q+q− → Z0/γ →
H+H− [49]. This could also be started with an electron or muon annihilation in a
linear accelerator; l+l− → Z0/γ→ H+H− [50].

• Top decay can generate a charged Higgs, t → H+b. The top itself would nor-
mally be produced as part of a pair, so the full chain would become pp → tt̄ →
H+bt̄ [48].

• b associated production can produce a single charged Higgs; qb → q′H+b. This
involves a gluon exchanged between the b and the remaining quark [48].

• Direct production from quarks; cs̄ → H+ [51], sometimes referred to as resonant
charged Higgs production [48].

• At loop level, it is possible to produce a charged Higgs in association with a W±;
gg→W±H∓. The loop is a quark loop [52].
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It is also possible to create a charged and neutral Higgs together; qq → H±S, where S
is one of the neutral Higgs, h, H or A [51]. This could be mediated by W–Z fusion.

The 2HDM also allows for Higgs to be produced by the decay of other Higgses, this
is known as a Higgs cascade decay [53]. This decay mode would create a distinctive
signature and makes an excellent target for investigation.
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Chapter 3

Mapping Potential and Existing
2HDM Parameter Spaces

This section is drawn from the work published in [1]. This work was co-authored with
Souad Semlali, Rachid Benbrik and Stefano Moretti.

Decisions made about direction and content were join decisions, with Professor Ben-
brik and Professor Moretti providing up to date understanding of the parameter areas
of interest in the 2HDM. I constructed the data pipeline, which took data from multiple
existing studies, and wrote code that called the external programs MadGraph, SusHi,
2HDMC, HiggsBounds and HiggsSignals to perform the calculations required. Dr Sem-
lali performed cross checks at key points in these calculations. I constructed the plots
from the generated data and the group collectively analysed the findings. The text of
the original publication [1] was a collective effort.

3.1 Introduction

As was described in depth in chapter 2, the 2HDM is a popular extension of the SM.
While the SM Higgs fits all existing data (section 2.1.2) there are good motivations for
considering extensions to the SM (section 2.1.3), and an additional Higgs doublet is one
of the simplest extensions available.

As described in section 2.1.4, the Higgs particle spectrum of the 2HDM is as follows:
there are two CP even (h and H, with, conventionally, mh < mH), one CP odd (A) and
a pair of charged (H±) Higgs bosons. Amongst the many signals that these additional
Higgs states could produce, of particular relevance are those involving their cascade
decays, wherein a heavier Higgs state decays to a pair of lighter ones or else into a light
Higgs state and a gauge boson. This is the case as the former process gives access to
the shape of the Higgs potential of the enlarged Higgs sector while the latter channel



18 Chapter 3. Mapping Potential and Existing 2HDM Parameter Spaces

is intimately related to the underlying gauge structure, which may well be larger than
the SM one.

This chapter will focus on the second kind of processes, specifically involving only the
neutral Higgs states in addition to the discovered SM-like one, which in this 2HDM is
identified with the h state. In short, a study of A→ ZH and H → ZA decays has been
undertaken1. The pattern of Branching Ratios (BRs) of the two decays A → ZH and
H → ZA was first discussed in [55] and [56] (albeit in a Supersymmetric version of
the 2HDM) and more recently implemented in [57, 58] in the 2HDM. As for production
channels, the by far most relevant one is gluon-gluon fusion, i.e., gg→ A or H, with an
occasional competing contribution from bb̄→ A or H, respectively.

LHC searches for the complete channels gg, bb̄ → A → ZH and gg, bb̄ → H → ZA
have been carried out at both ATLAS [46] and CMS [59, 60], by exploiting leptonic de-
cays of the gauge boson, Z → l+l− (l = e, µ), and hadronic decays of the accompanying
neutral Higgs state, in particular, H or A → bb̄ or τ+τ−. Based on this approach, cur-
rent experimental data exclude heavy neutral Higgses with masses up to about 600–700
GeV, depending on the BSM Higgs spectrum and the value of tan(β), the ratio of the
Vacuum Expectation Values (VEVs) of the aforementioned two Higgs doublets. These
findings are broadly in line with previous phenomenological results obtained in [61],
which had forecast the LHC scope in accessing both A → ZH and H → ZA decays in
a variety of final states.

Far away from the alignment limit, sin(β− α) = 1, searches have been carried out at the
LHC Run 2 looking for additional Higgs bosons decaying to A → hZ or/and H → hh
leading to l+l−bb̄ [62, 63] or/and τ+τ−bb̄ [64]. While in the exact alignment limit, A→
hZ and H → hh will be suppressed, A/H → H/AZ is unsuppressed if kinematically
open. There are additional reasons for studying A → ZH and H → ZA decays. For
a start, [65] emphasised the importance of using the pp → A → Zh process to test
the wrong-sign limit of the so-called 2HDM Type-II (see below). Furthermore, [66]
highlighted the fact that this very same process echoes the dynamics of the EW Phase
Transition (EWPT). It is the scope of this study to revisit these two decay chains, in
particular, a synergetic approach that recasts the results of experimental searches in
one mode, interpreted in terms of 2HDM constraints, into the scope of the other in the
same respect will be employed. This is possible because they end in the same final
state. This work considers the final state l+l−bb̄ and starts from the results of [46] for
the A → ZH decay in order to obtain the corresponding ones for the complementary
channel H → ZA, in the hope that this recasting can afford one with a much stronger
sensitivity that either channel alone can offer.

1The case of the corresponding charged Higgs boson decays of the type H± → W±H and W±A has
been recently reviewed in [54].
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At the time of writing, the LHC will soon enter run 3. In run 3, the integrated luminosity
will increase from 36.1 fb−1 to 300 fb−1 and the centre of mass energy will be increased
from

√
s = 13 TeV to

√
s = 14 TeV. This work also predicts the sensitivity of the LHC

to both channels, A→ ZH and H → ZA, after the upgrade.
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3.2 Methodology

This section describes the procedure for a scan of the parameter space of the 2HDM,
which aims to establish the sensitivity of LHC data analyses to such a BSM scenario
and map the findings of one channel into the other. Following this section, the results
of this scan are presented and finally, the significance of these results is explored in a
concluding section.

3.2.1 Existing Data

As mentioned in the previous section, the most significant source of observed data for
this study is [46], for which, the raw data is available at www.hepdata.net/record/
ins1665828.

For any particular cross section times branching ratio under study, in this case A →
ZH → l+l−bb̄, two probability distributions can be constructed; an observed distribu-
tion, and an expected distribution. The values of cross section times branching ratio
have dimensions of barns, normally measured in units of pb. From each distribution,
a value can be identified such that the probability of the cross section times branching
ratio being less than that value is 95%. This is the 95% confidence limit (CL). It has a
different interpretation for the observed and expected distributions;

• Observed 95% CL; There is a 95% chance that should the true cross section times
branch ratio be higher than this value it would already have been discovered in
the data that has been previously gathered. This limit can rule out parameter
combinations that create too large a signal, declaring them inconstant with cur-
rent observations.

• Expected 95% CL; There is a 95% chance that should the true cross section times
branch ratio be higher than this value it would be possible to discover with the
equipment currently possessed. This is a measure of which parameter combina-
tion the equipment would be sensitive to, it filters out parameter combinations
that produce too small a signal and are unlikely to be detectable.

All CLs discussed here are at the 95% level, this number will should be assumed from
this point on.

In the aforementioned data, expected and observed CLs are provided for a scan that
covers all four yukawa types, and picks values for the parameters mH, mA and tan (β)

www.hepdata.net/record/ins1665828
www.hepdata.net/record/ins1665828
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at regular intervals. These intervals are;

mh = 125 GeV

130GeV < mA < 700 GeV, mA ≥ mH + 100 GeV,

mA, mH chosen at 10 GeV intervals.

tan(β) ∈

{1, 2, 3}, if Lepton Specific

{1, 5, 10, 20}, otherwise

(3.1)

These choices serve to satisfy the constraints from the EWPOs [42]. The EWPOs, such
as the oblique parameters S and T [43, 44], require a level of degeneracy between the
charged Higgs boson state and one of the heavier neutral Higgs bosons. Using mH± =

mA or mH, ensures that the T parameter exactly vanishes in the alignment limit.

To actually make use of these limits, a prediction must be calculated using the theory of
the 2HDM, and this number will be compared with the CL. This requires two further
parameter choices;

sin(β− α) = 1

m2
12 =

m2
A tan β

(1 + tan2 β)

(3.2)

To calculate the production cross sections of the heavy CP-odd Higgs, A, at each point
the program SusHi is used [67, 68, 69, 70]. This program allows the calculation to be
performed at Next-to-Next-to-Leading Order (NNLO) in QCD.

SusHi is written in Fortran 77, which is capable of performing expensive calculations
quickly. In comparison to all other steps in the computation, however, the cross section
calculation requires significantly more time to complete. If the branching ratio calcu-
lations for a scan took hours, the cross section calculation would often require days.
This is not entirely unexpected, but the scale of the difference motivated some further
investigation of which aspects of the code might be optimised. Code profiling revealed
that while the majority of the program’s run time was spent performing calculations,
significant time was spent reading and writing to disk, and a smaller fraction of time
was spent printing to screen. To remedy this, some small patches were written for the
program;

• To modify the program such that it could be called as a subprocess and would
take input and return output via the pipe. Disk reading and writing becomes
operations in the RAM.

• To modify the program to suppress excessive print statements.
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With these modifications, scans in SusHi could be performed 30% faster than previ-
ously2. With this, the production cross sections for the Higgs bosons in the 2HDM can
be calculated.

In order to calculate branching ratios of each Higgs state, in particular those of A→ ZH
and H → bb̄, the program 2HDMC [24] is called. This is written and called in C++, some
modifications to this program that enable it to compile in conjunction with interfaces
to HiggsSignals and HiggsBounds, which will be needed later, were kindly shared by
Mohamed Korab34. HiggsBounds and HiggsSignals are used to apply the aforemen-
tioned exclusion limits at 95% CL from Higgs searches at LEP, Tevatron and LHC, while
2HDMC checks the theory constraints as described in section 2.1.4.2. These are; perturba-
tivity, stability of the potential, and unitarity.

FIGURE 3.1: A reproduction of Figure 6 from [46] for type-I of the 2HDM.

By generating cross sections and branching ratios at
√

s = 13 TeV and luminosity =

36 fb−1 the results presented in Figure 6 of [46] are replicated. An example of this for
yukawa type-I is presented in Figure 3.1.

2The modifications are available at hub.docker.com/repository/docker/henrydayhall/higgspheno
3Cadi Ayyad University
4These modifications are also accessible from the docker at hub.docker.com/repository/docker/

henrydayhall/higgspheno

hub.docker.com/repository/docker/henrydayhall/higgspheno
hub.docker.com/repository/docker/henrydayhall/higgspheno
hub.docker.com/repository/docker/henrydayhall/higgspheno
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3.2.1.1 Theoretical Constraints and Existing Data

Upon checking the theoretical constraints using 2HDMC it was discovered that the pa-
rameter choices in Equation 3.1 and Equation 3.2 did not pass the theory constrains
for any interval. While the masses of the particles where fixed by the observational
data available and the capacity of the detectors, the parameters in Equation 3.2 would
only influence the predictions. Changes to Equation 3.2 would require changes to the
predicted cross section times branching ratio, but not to the CLs given in [46].

Changing sin(β− α) = 1 would move the model away from the alignment limit, and
change the predicted behaviour of the SM Higgs, as such this is undesirable. However,
there is no such difficulty in changing the value of m2

12.

So the easiest resolution to this issue was to scan values of m2
12 in search of those that

permitted the remaining parameters. The challenge here was simply the size of the
parameter space available. Is not unreasonable to consider very large m2

12, the range
used here was; 0 < m2

12 < 2× 105 GeV. Values that satisfy the theory checks may differ
for every parameter combination in the intervals described in Equation 3.1. It would
be computationally wasteful to sample the whole parameter space.

Fortunately, the values of m2
12 which are permissible are correlated with the values of

the masses chosen by the interval. This can be seen in Figure 3.2. Once a handful of
valid points have been found, a quadratic surface may be fitted to these points and
further values of m2

12 chosen near this surface. Using this, theoretically permitted val-
ues of m2

12 could be found for the majority of the scan, as is seen the in the results in
Figure 3.3 to Figure 3.6.

Where no value of m2
12 could be found that satisfied all three constraints of unitarity,

stability and perturbativity, the value that satisfied as many as possible was chosen.

3.2.1.2 Flavour Physics Constraints

Flavour physics observables, namely, B → Xsγ, Bs,d → µ+µ− and ∆ms,d, also impose
constraints on this scan [42]. In order to account for these constraints, values from
Figure 9 of [42] where digitised. These eliminated some areas of the scan.

3.2.2 Recasting the Scan

Two extensions to this scan are considered. Firstly, an alternative decay chain can be
used; pp → H → ZA → l+l−bb̄. This alternative is possible because the only kine-
matic difference between these processes are different widths for the Higgs bosons,
only minimally affecting the efficiency of an experimental selection. This alternative
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FIGURE 3.2: Randomly sampled values of m2
12 that pass all theory checks for type-I,

tan β = 5, as calculated by 2HDMC are plotted against the two masses being scanned,
mA and mH . The first row shows the same data set from two angles, the view in the
top left emphasising that the values that pass the theory checks fall into a narrow but
continuous band, the view in the top right showing that there are some mass combi-
nations for which no valid m2

12 can be found. In the lower plot, a quadratic surface has
been fitted through the points found. Where valid points exist, they will be found on

this surface.

process expands the region of parameter space that can be tested to the case when
mH ≥ mA + mZ. For this extension, only additional predictions for the new production
cross sections and branching ratios must be calculated. The calculations can be done
with exactly the same programs as for the replication of the original scan.

Despite the symmetries that exist between these processes, neither the constraints af-
fecting the two processes nor their sensitivity reaches should expected to be the same.
On the one hand, the role played by the heavy CP-even and CP-odd Higgs states of
the 2HDM in both theoretical and experimental limits is different, owing to their dif-
ferent quantum numbers (and hence couplings). On the other hand, their production
and decay rates at the LHC are different despite leading to the same final states, in-
cluding residual differences due to width effects entering their normalisation (but, as
mentioned, not their kinematics), since, e.g., the A state does not decay to W+W− and
ZZ pairs while the H state does and, conversely, the A state decays to Zh while the
H state does not. However, in the alignment limit used here these decay channels are
closed.
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The second extension is to extrapolate these results to full Run 3 data samples5. To
match the conditions of Run 3, the integrated luminosity factor must be increased from
36 fb−1 to 300 fb−1 and the centre of mass energy must be increased from

√
s = 13 TeV

to
√

s = 14 TeV.

Increasing the luminosity can be simplistically modelled as increasing the rate at which
both signal and background occur. This is accounted for by calculating the so called
‘upgrade factor’ for both signals and backgrounds, while retaining the acceptance and
selection efficiencies of the analysis at the lower

√
s value.

The change in energy will naturally affect the production cross section of signals and
backgrounds differently. The signal cross sections are recalculated with SusHi. The
increase for the background is found with MadGraph 5, version 2.6.4, [71]. For com-
pleteness, the background is considered to be any reducible or irreducible SM process
that creates a pair of b-jets plus a pair of electrons or muons, as in [46].

5It is not, of course possible to predict the observed limits in Run 3. Otherwise there would be no need
to actually have a Run 3 at all.
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3.3 Results

In this study, lightest CP-even Higgs boson of the 2HDM is identified as the observed
Higgs state at the LHC, with mh = 125 GeV, and sin(β− α) = 1.

The scan includes the following parameter range:

mh = 125 GeV, sin(β− α) = 1, 0 < m2
12 < 2× 105 GeV,

130GeV < mX < 700 GeV, mX ≥ mY + 100 GeV,

mX, mY chosen at 10 GeV intervals.

tan(β) ∈

{1, 2, 3}, if Lepton Specific

{1, 5, 10, 20}, otherwise

(3.3)

The set of values chosen for tan(β), and the masses, align with the choices in [46].

• For the process mediated by A → ZH, mX = mA, mY = mH and mH± = mA is
chosen. (Note that this choice is consistent with that of [46].)

• For the process mediated by H → ZA, mX = mH, mY = mA and mH± = mH is
chosen. (Note this choice is specular to that in [46].)

After performing a scan over the parameter space delimited by Equation 3.3, the pre-
dictions of the model are compared to the observed and expected limits given in [46]. If
the prediction exceeds the observed limit, then the parameter combination is excluded.
When the prediction exceeds the expected limit, the signal is anticipated to be visible
above background given the energies and luminosities available, hence, the experiment
is sensitive to these parameters.

As described in section 3.2.1.1, the choice of m2
12 = m2

A tan(β)/(1 + tan(β))2 recon-
structs the exclusion limits at 95% CL given in [46]. However, this choice does not
actually satisfy theoretical constraints anywhere in the four types of 2HDM. Therefore,
this analysis required a different choice. The method described in section 3.2.1.1 was
used to select values of m2

12 for each interval of the scan that aimed to simultaneously
satisfy as many theoretical constraints as possible.

Figure 3.3 to Figure 3.6 illustrate the outcome the scan for each Yukawa type, tan(β),
and mass combination, (mH, mA). Each figure provides results for one choice of Yukawa
couplings and each frame in each figure provides results at one value of tan(β). In the
top left of each plot, where mA > mH + 100 GeV, the decay A → ZH is considered
while in the bottom right of each plot, where mH > mA + 100 GeV, the decay H → ZA
is considered. The corridor along the diagonal between these regions is coloured grey
to indicate that neither decay is accessible.
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FIGURE 3.3: Exclusion limits at 95% CL in Type-I. The lines denoting expected and ob-
served exclusion limits do not appear at all on some plots when the prediction never
exceeds the expected or observed limit. The asymmetry in both constraints and sen-
sitivity is expected, see the discussion in section 3.2.2 and the branching ratios in Fig-

ure 3.7.

If a combination of parameters is forbidden by theory, HiggsBounds or flavour con-
straints then the corresponding area is filled with solid colour, conversely, white areas
pass all these checks and so are of interest. The hatching over the solid colour is used
to indicate which of the checks causes the corresponding parameter combination to
fail. There are three boundary lines drawn over the plots: these are the observed and
expected 95% CLs for the ATLAS detector in its present state, 13 TeV and 36.1 fb−1,
plus the expected 95% CL for an upgraded LHC and ATLAS detector at 14 TeV and
300 fb−16. The model predictions exceed the 95% CL inside the curve.

In Figure 3.3 the parameter space with Type-I Yukawa couplings is shown. The upper
left plot shows that tan(β) = 1 is always forbidden by flavour constraints. The upper

6The case of
√

s = 13 TeV and L ≈ 140 fb−1 is neglected here, as it only improves marginally the
present situation yet it would be make the plots far too crowded.
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FIGURE 3.4: Like in Fig. 3.3 but for Type-II. The asymmetry in both constraints and
sensitivity is expected, see the discussion in section 3.2.2 and the branching ratios in

Figure 3.7.

right plot shows that there are many mass combinations that do not prevent the decay
A → ZH for tan(β) = 5, but theory constraints forbid all mass combinations relevant
to H → ZA. At tan(β) = 5 for 13 TeV (and 36.1 fb−1) the area of sensitivity (inside the
expected curve) that is not excluded by observation (inside the observed curve) is very
limited. It is also seen that the H → AZ signal has reduced sensitivity when tan(β) is
5 or more. This is due to H → AA competing with H → AZ, as shown in Figure 3.7.
The branching ratio H → AA becomes significant because of the enhancement of the
trilinear coupling λHAA at large tan(β). At 14 TeV and 300 fb−1, however, many mass
combinations are expected to be testable that have not yet been excluded. The lower
left plot shows the behaviour at tan(β) = 10 to be similar to tan(β) = 5, i.e., everything
is forbidden for H → ZA by theory while for A → ZH most combinations for which
there is sensitivity have been excluded at 13 TeV but 14 TeV offers even more possible
parameter space than seen at tan(β) = 5. Finally, in the lower right frame of Figure 3.3,
the parameter space for tan(β) = 20 is shown. The state of H → ZA is unchanged, but
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FIGURE 3.5: Like in Fig. 3.3 but for Type-Y (Flipped). The asymmetry in both con-
straints and sensitivity is expected, see the discussion in section 3.2.2 and the branch-

ing ratios in Figure 3.7.

now A → ZH has no expected or observed exclusion at 13 TeV, i.e., these parameters
are harder to probe. With the upgrade to 14 TeV and 300 fb−1 there is some sensitivity
to A→ ZH at tan(β) = 20.

As might be expected, the behaviour of Type-II, shown in Figure 3.4 and Type-Y, shown
in Figure 3.5, is remarkably similar. The upper left plot shows that tan(β) = 1 is forbid-
den by flavour constraints in all areas where there is sensitivity. At 13 TeV and 36.1 fb−1

the upper right plot shows that the same can be said for tan(β) = 5, however, after Run
3, at 14 TeV and 300 fb−1, there are many permitted mass combinations for A → ZH.
However, H → ZA is excluded by theory. The behaviour at tan(β) = 10, shown in
the lower left plot, is much the same as for tan(β) = 5, except more of the exclusion
at 13 TeV and 36.1 fb−1 is from observations provided by HiggsBounds. Finally, in the
lower right plot, tan(β) = 20 is shown to be excluded for almost all mass choices, by
multiple constraints.
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FIGURE 3.6: Like in Fig. 3.3 but for Type-X (Lepton specific). The asymmetry in
both constraints and sensitivity is expected, see the discussion in section 3.2.2 and

the branching ratios in Figure 3.7.

FIGURE 3.7: The branching ratio H → AZ is suppressed by the branching ratio H →
AA. This effect occurs for all types, but does not occur at small tan(β).
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tan(β) 1 5 10 20

Type-I Flavour
constraints

Some masses Many masses Low
sensitivity

Type-II Flavour
constraints

Some masses
after upgrade

Some masses
after upgrade

Theory
constraints

Flipped Flavour
constraints

Some masses
after upgrade

Some masses
after upgrade

Theory
constraints

tan(β) 1 2 3

Lepton
specific

Flavour
constraints

Excluded by
HiggsBounds

Excluded by
HiggsBounds

TABLE 3.1: Table summarising the findings in Figs. 3.3 to 3.6. An overview of the
possibility of each Yukawa type and value of tan(β) is given. Entries in red indicate
that the combination has little or no mass combinations that are not forbidden while
those in blue represent available parameter space accessible presently at Run 2 or after

the upgrade of Run 3.

In Figure 3.6 the behaviour of the Type-X 2HDM is shown, at a set of tan(β) values that
differs from those previously considered. The change is made because the parameter
space in Type-X shrinks more rapidly with increasing tan(β) compared to the other
Yukawa types. For these choices HiggsBounds excludes all areas inside the expected
limits. This remains true even after the end of Run 3.

Finally, Table 3.1 summarises the findings, highlighting that sensitivity only really ex-
ists for 5 < tan(β) < 10 and limitedly to the 2HDM Type-I, both at Run 2 and 3, and -II
and -Y (or Flipped), but only at Run 3. The case of Type-X (or Lepton specific) is never
accessible.
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3.4 Conclusions

In summary, this work has revisited an experimental analysis of the ATLAS Collabo-
ration of the production and decay process gg, bb̄ → A → ZH → l+l−bb̄ performed
at Run 2 with 36.1 fb−1 of luminosity, which had been interpreted in terms of exclu-
sion limits over the parameter space of the four types of the 2HDM, wherein the light-
est Higgs state is identified with the SM-like Higgs boson discovered during Run 1 at
the LHC with mass 125 GeV. Upon validating the ATLAS interpretation in this frame-
work, though, it was discovered that their (fixed) choice of m12, a mass parameter in
the 2HDM Lagrangian that softly breaks an underlying Z2 symmetry of the 2HDM to
avoid FCNCs, yields parameter space configurations which are ruled out by theoretical
requirements of model consistency. Hence, values of m2

12 have been reselected, subject
to the aforementioned theoretical constraints. Thus, redrawing the actual sensitivity of
such an experimental search to all four Yukawa types of the 2HDM, according to both
tan β and the masses, mH and mA.

In addition, this work has also forecast the potential sensitivity of this channel to the
2HDM parameter space at the end of Run 3, assuming increased energy to 14 TeV and
luminosity to 300 fb−1. This revealed some extended coverage of the 2HDM Type-I,
-II and -Y (but not -X), especially for intermediate tan(β) values (say, between 5 and
10), with mA up to 800 GeV and mH up to 700 GeV. This is somewhat beyond what is
presently covered, i.e., up to 150 GeV or so in mass of either Higgs state, so as to justify
further searches for this signature at the next stage of the LHC.

Finally, sensitivity of this analysis has been recast onto that of the channel gg, bb̄ →
H → ZA → l+l−bb̄. However, this finds that the complementary parameter space ac-
cessible this way (i.e., mH ≥ mA + mZ) is actually entirely excluded already by existing
theoretical and/or experimental constraints, so as to conclude that it is not warranted
to pursue further this channel at the LHC, at least, not with a view to interpret it in the
context of the standard four Yukawa types of the 2HDM7.

7Finally while it is true that analyses similar to [46] performed by the CMS Collaboration exist [59,
60]. These where not used here for two reasons. On the one hand, they did not convey all the infor-
mation necessary to make extrapolations to higher energies. On the other hand, they did not afford one
with significantly different sensitivity to the 2HDM at present energies than what achieved by the ATLAS
analysis [46] that was adopted here as benchmark.
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Chapter 4

Jet Physics

Jets are a pervasive and crucial signal in high energy colliders. Resolving and identi-
fying them plays a major role in the search for massive particles such as Higgses. This
chapter will review a series of concepts that illustrate the requirements for jets, then
review key aspects of jets themselves. Concepts will be discussed in a time ordered
sequence;

1. This sequence begins with a description of the hard event, collision of two protons
to form particles of interest 1.

2. The output of the hard event will then undergo showering and hadronisation.
Furthermore, there are a number of other processes are generating noise, such
as pile-up and initial state radiation (ISR). Collectively, these things present the
most significant hurdles to accessing the hard event, which jets are designed to
overcome.

3. The detection of the hadronised objects in the detector will be discussed, along
with some technical limitations on reconstructing these signals as particles.

4. Finally the process of gathering the reconstructed particles into jets, and classify-
ing these jets can be described.

Figure 4.1 offers a symbolic depiction of item 1 and item 2. Primarily, item 1 to item 3
should give background knowledge required for investigation of new jet clustering
methods. Jets simplify the initial reconstruction of the detector output, which often
contains hundreds of particles, and provide a handle to further process the data.

Beyond that, this review should also illustrate that jets are better seen as concept, rather
than a definition. For a particular hard interaction, say Higgs produced by gluon fu-
sion, there is one clean definition; jets do not have this privilege. Many algorithms for

1Interesting things happened before this point of course; “If you want to make a pie from scratch, you must
first create the universe.” –Carl Sagan. Alas, I’m no cosmologist.
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FIGURE 4.1: Symbolic depiction of the physics processes occurring in an event. The
hard event is where new physics might be found, and the end points of the shower are
the detectable remnants of this. Three types of noise are depicted; MPI, pileup, and

ISR.

jets are available, and they each lead to a subtly different end product. Indulging in a
bit of philosophy, one might say that while gluon fusion is a natural kind [72], jets are
not. Natural kinds being things that benefit from absolute definitions, such as “gold”,
a counterexample of which might be a “chair” 2.

Throughout this review, each section will also include a description of the computa-
tional tools relevant to that step. These are of great practical importance to this thesis.
Computational tools are almost all highly modular; each tool is built by combining
several more specific tools, which were written to deal with a single step of the process
being carried out. For practicality, this review limits its scope to the highest level tools,
the ones the user directly interacts with.

4.1 Hard Event

The word ‘hard’ in physics is synonymous to ‘high energy density’. At the time of
writing, the LHC collisions have center-of-mass energy 13 TeV [73]. While ‘hard’ is a
relative description, particle collisions at this energy would be consistently described
as ‘hard’.

2“Gold” is the element with 79 protons. A “chair” has a back, some legs and can be sat on; all of which
can also be said of a horse.
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The word ‘event’, in this context, refers to the happenings that take place when a partic-
ular pair of particles interact. The event includes the things those particles themselves
become, plus other things that get mixed up with them, forms of noise, or background,
such as pileup.

Taken together, the words ‘hard event’ mean only the high energy, initial, parts of the
particle interaction, a phrase that came into use sometime in the 1950’s 3. The hard
event is a very small subsection of the whole event. A hard event is typically a short
enough series of interactions that it can be described in a single feynman diagram. It
might begin with two quarks exchanging a W boson to form a Higgs, and end with the
Higgs decaying to a pair of b-quarks.

Due to asymptotic freedom of the strong force, at small distances and high energies
(or equivalently, high energy densities) particles which would usually be confined to
colour neutral systems may behave to first order as if they were free, these are referred
to as partons [74]. The behaviour of these partons at high energy densities is predicted
by QCD, and can be calculated perturbatively. This holds up to distances of approxi-
mately 10−17 m [75].

Probability of obtaining a particular final state of the hard event is found by calculat-
ing the inclusive cross section. For high energy collisions, short range behaviour can be
calculated using the asymptotic freedom in QCD, the long range behaviour can be mea-
sured experimentally and summarised as Parton Distribution Functions (PDFs). Both
the long and the short range behaviour contribute to the inclusive cross section. The
factorisation theorem gives the means to combine both factors [76]. The objective of the
whole particle collider system is to test the short range predictions by comparison with
observations. This process is referred to as unfolding.

A second reason for interest in the hard event over other potential interactions is that
the high energy densities make the production of massive particles, such as Higgses,
possible. This thesis aims to investigate the possibility of more than one type of Higgs,
and if they exist, these additional Higgses will only be produced at high energies. For
a full description of the particular extended Higgs sector of interest, see chapter 2.

4.2 Simulating the Hard Process

MadGraph [71] is the most popular Monte Carlo program for simulating high energy
interactions. Monte Carlo (MC) programs 4 are optimal for modelling systems with

3Exactly when the phrase ‘hard event’ became popular in physics is somewhat obfuscated by the poet
Horace, who liked to use it for describing battles in about 8BC.

4Monte Carlo computer programs started out somewhat ingloriously. They were first used for devel-
oping nuclear weapons, and are named after the creator’s uncle’s favourite casino [77].
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large parameter space. It may be difficult, or even impossible to simulate every possi-
ble outcome of a system. Further, the curse of dimensionality makes a sampling grid
inefficient for systems with many parameters. Randomly sampling the large number
of parameters is often sufficient to build a representative picture of the system, and is
less sensitive to the number of parameters needed.

Alternatives to MadGraph do exist, for example CompHEP [78] or ALPGEN [79] are both also
MC programs for modelling the hard event. This review will focus on MadGraph.

Using MadGraph without any extension, it is possible to generate hard events for any SM
process. The input particles and the output particles must be described. For example,
generate p p > h; this will sample from all lowest order processes where a pair of protons
generates a SM Higgs. Optionally, subsequent decays may be specified, for example it
is possible to require that the SM Higgs decays to b-quarks, generate p p > h, (h > b b~).
To simulate the 2HDM processes described in section 2.1.4 requires importing addi-
tional models.

A further refinement of MadGraph is quite important to this work; the ability to impose
kinematic cuts on all parts of the process. This is very flexible indeed, there can be cuts
on the direction, or momentum of the particles and cuts on the relative angle between
particles. It is also possible to put cuts on global properties of the event. This is primar-
ily useful for focusing the simulation on only the events with kinematics that would be
detectable, thus reducing the space that must be sampled.

4.3 Showering and Hadronisation

As the products of the hard event fly apart, they leave the region of asymptotic freedom.
Quarks will radiate gluons, mostly into a narrow cone in their direction of travel [75].
Gluons also create more gluons, quickly generating many particles. This process is
called showering. Showering explains why jets undergo transverse broadening with
increasing hard parton energy [80], as higher energies lead to more Final State Radia-
tion (FSR).

As two coloured objects are separated, a gluonic flux tube stretches between them [75].
As such, separating, colour charged, objects continuously interact. This is important,
because the eventual goal is to individually identify the products of the hard inter-
action, but their decay products will not be possible to cleanly separate. Instead, the
detectable particles include decay products from the interactions between coloured ob-
jects.

Eventually energetically favourable states will be found. The gluonic flux tubes have
such a high energy density that it becomes possible to generate more quark-antiquark
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pairs, and the tube fragments into colour neutral hadrons. Most of theses decay prod-
ucts will be pions and photons, which have sufficient stability to reach the detector.
This process is called hadronisation.

Background, or noise, is also produced alongside this process. Eight kinds of noise
are theoretically distinct, however there isn’t much consistency in the literature on the
terms used to refer to them. Here, the convention used is;

1. Out-of-time pileup; timing resolution in the detector is not always adequate to
correctly associate the tracks with the proton bunches. This leads to tracks from
previous and future bunches contaminating the event. Often the vertices for these
tracks will be displaced from the primary vertex, although the effects of timing
can still make isolating this noise challenging [81]. This is sometimes simply re-
ferred to as pileup.

2. In-time pileup; each bunch in the beam containsO(1011) protons [82], so it is not
surprising if more than one of them interacts. These also normally have displaced
vertices. This is also sometimes just called pileup.

3. Multi-Parton Interactions; within the protons that interact, only one out of three
quarks will directly interact, the remaining quarks are known as spectator quarks.
These spectator quarks produce another type of noise referred to as MPI [83].
These are likely very soft, and so may be removed by kinematic cuts.

4. Initial State Radiation (ISR); prior to actually interacting, the partons that anni-
hilate in the hard interaction may radiate. This radiation is not always soft, ISR
can take a considerable fraction of the collision energy before the hard interaction
occurs [82].

5. Final state radiation (FSR); radiation from the products of the hard interaction.
This is not clearly distinct from the process of showering, however, when radia-
tion is emitted at a wide angle it may not be included in the jet and so lower the
reconstructed mass. In this sense FSR is also noise.

6. Cavern background; particles in the cavern may create small background contri-
butions simply by merit of their own decay. These are normally small enough to
be omitted [84].

7. Beam halo events; protons may just scrape against collimators on their way into
the detector. This creates a beam halo. This signal is distinctive and easy to re-
move [84].

8. Beam gas events; protons from the beam may collide with gas in the detector.
Interactions from these collisions create another form of noise. Again, this signal
is distinctive and easy to remove [84].
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Together, all these kinds of noise may be referred to as the underlying event, or pileup.
They will act to obscure the signal event. The greatest contributions come from item 1
to item 5, so these will be subject to most investigation.

4.4 Simulating the Shower

There are many programs which can simulate the shower, known as event generators.
The most famous three are Pythia8 [85], Herwig [86] and Sherpa [87]. Calling these
event generators makes sense as they are also capable of simulating the hard process,
but the norm is to simulate the hard process in a dedicated to tool, then use an event
generator to deal with the showering and hadronisation.

Showering is simulated as a step-wise Markov chain; starting from the contents of the
hard event, an addition to the current state is selected based on probability distribu-
tions. These probability distributions are perturbative at high energies.

Details of this algorithm vary between event generators. For example, Pythia8 and
Sherpa are dipole-type showers; colour-anticolour dipoles are put between pairs of
partons, one of these partons emits a new parton and the other, the spectator, is used to
conserve momentum locally. Herwig takes a different approach, with branching gluons
off heavy quarks using angular ordering. Each approach has different benefits and
drawbacks, in terms of what aspects it is best able to model.

The underling event can also be simulated by event generators. The output of the event
generator aims to completely replicate everything that can be detected, including the
noise. This is very valuable for designing object reconstruction algorithms, such as jet
finding algorithms.

Another aspect of event generators that can be of great use is the ability to rerun only
the showing, hadronisation and underlying event while keeping the hard event fixed.
As the hard event is kept the same, any object reconstruction on these repetitions
should aim to produce as little variation as possible. This is a useful handle for in-
vestigating the behaviour of object reconstruction algorithms.

4.5 Detectors

After hadronisation the particles are stable enough to travel to the detector. A great
diversity of equipment exists for detecting particles, different devices have different
sensitivities and limitations. Some of the requirements on the detectors for a HEP col-
lider are;
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• Sensitivity to both charged and neutral particles which interact electromagneti-
cally. While it would be very exciting to also measure particles such as neutrinos
which only interact via the weak force, this is typically outside of the scope of a
standard detector. Currently it is only done at dedicated experiments, but there
are plans to add neutrino detection to the LHC; the ForwArd Search ExpeRiment
(FASER) [88] at the LHC is an example of this 5.

• Sensitivity to the momentum and direction of particles. This can often be achieved
by many layers of sensors, each with good spatial resolution, such that a path is
reconstructed.

• Sensitivity to the curvature of a charged particles path. With this, when a detector
is bathed in a magnetic field the direction of curvature will indicate the sign of a
particle’s charge.

• Short time resolution, to distinguish between events. The greater the uncertainty
on the time resolution, the more out-of-time pileup is expected, see item 1, sec-
tion 4.3.

• Short deadtime, to minimise the number of particles that are missed when two
particles hit the same sensor in quick secession.

• Radiation harness; the beam radiates lots of high energy radiation. Sensors will
eventually be damaged by this radiation, and need replacing. See, for exam-
ple [89].

In order to meet these requirements many varieties of sensors will be needed. Different
types of sensor are stacked together in shells, so that they can each provide good cover-
age of the majority of the angular area of the detector. Each shell, with a different type
of sensor, is known as a subsystem. The beam itself must enter and leave the detector
volume, this happens in what is known as the ‘forward’ area, and at the forward area
there will be some gaps in the sensors coverage.

Composition and geometry of the detectors varies between experiments. Even for one
single particle beam, often several different detector designs operate. For the LHC
there are seven detectors; ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM and MoEDAL.
Of these, ATLAS, CMS and LHCb are significantly larger. Physics goals of the detectors
vary, for example TOTEM [90] is designed to help measure the complete proton-proton
cross section by detecting particles emitted in the forward area. TOTEM requires spe-
cialist equipment to achieve this called Roman Pots.

The physics goals of ATLAS, CMS and LHCb are broad and relatively similar, however
they all have different configurations. This is a great advantage, as it allows results for

5And also, perhaps an example of the impact of GUTs, as noted in footnote 3, chapter 2.
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each detector to be cross checked with the others. Energy of the beam at the LHC is the
highest in the world; the maximum beam energy of the LHC being 6.5 TeV, with the
next most energetic being TEVATRON with 0.98 TeV [91]. As such, there is no other
place all results could be verified.

In this thesis we take a particular interest in the Compact Muon Solenoid (CMS) de-
tector on the LHC. The capacity, and physics goals, of CMS are broad, so all work
and conclusions remain very generalisable. Professor Claire Shepherd-Themistocleous,
who supervised the project, is CMSUK deputy PI, and so the choice was made to focus
on CMS in order to best utilise this in depth knowledge.

4.5.1 CMS Hardware

CMS has particular coordinate conventions. These are depicted in Figure 4.2. The z
axis goes along the beam-line, in a westward direction, anticlockwise when the LHC
ring is seen from above. The x axis points horizontally in towards the centre of the ring,
the y axis points vertically up to the sky. Two angles are also used: 0 < φ < 2π, which
goes around the roll of the barrel, starting at the x axis, and rotating in the x-y plane6;
0 < θ < π which measures the angle from the z axis [93].

Two other common coordinates in use are rapidity, often denoted y (not to be confused
with the linear y coordinate7), and pseudorapidity, often denoted η. Their definitions
are respectively;

y ≡ 1
2

ln
E + pz

E− pz
(4.1)

and

η ≡ − ln
(

tan
(

θ

2

))
. (4.2)

Both of these coordinates provide a means of measuring how much of an object’s mo-
mentum is in the z direction. As such they are often used as substitutes for a pz coordi-
nate. Pseudorapidity is the massless approximation of rapidity.

The detector itself is shaped as a thick cylindrical shell. The flat, circular disks on each
end are referred to as endcaps, while the curved walls are referred to as the barrel.

When the shower is complete and the products have left the interaction region, they
will encounter a series of detector systems depicted in Figure 4.3. The first sensor they
encounter is a pixel detector. The distance that they cross to reach the pixel detector is

6This use of φ as the azimuth angle is a popular convention in physics; it has been suggested that
mathematicians should try it too [92].

7This rarely causes issue in practice because it is unusual to need the linear x and y coordinates in
particle physics, due to the symmetry of rotation in φ.
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FIGURE 4.2: Coordinate system used to specify locations with respect to the CMS
detector.

about 5.3 cm [94]. Although the deadtime for a silicon pixel is short, . 50 ns [93], each
pixel can only register one binary hit per collision. As the flux on this pixel detector
is very high, the pixels must be small, each pixel is 150× 150 µm2. Outside the silicon
pixel detector, the flux is lower, and so a silicon strip detector with larger areas can be
used. Together, the pixels and the strip make up the inner tracker.

Silicon pixels or strips have low stopping power, so they do not significantly reduce
the momentum of the particles passing through them. They can only detect charged
particles, such as leptons and protons. Neutral particles can only be detect by stopping
them, causing a messy shower, and given the tracker is designed for precision it is not
desirable to capture photons 8.
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FIGURE 4.3: Depiction of the various subsystems of CMS [95].

8This might seem a little surprising, since a standard phone camera is also made of silicon pixels, and
if the pictures it takes are a mess, that has more to do with the photographer than the silicon. However,
a phone camera is detecting photons with about a billionth of the energy, so perhaps it’s reasonable that
those photons are somewhat neater.
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At a radius of 1.29 m the electromagnetic calorimeter (ECAL) begins [96]. This is made
of lead tungstate (PbWO4), which has a large electromagnetic cross section, while hav-
ing sufficiently low density, 8.28 g cm−3, to present a small hadronic cross section. Most
things that interact electromagnetically will shower here, in a Molière cone. One of the
desirable properties of lead tungstate is that the Molière radius is only 2.2 cm. This
gives the detector a fine granularity. Once a particle has showered on the lead tungstate,
the resulting photons are detected and used to measure the energy that the particle had.

Particles that do not have a significant electromagnetic cross section may pass straight
through the 23 cm of the ECAL. After that there is a hadronic calorimeter (HCAL),
which is designed to capture and measure as much of the energy as possible from the
remaining particles. The HCAL is composed of alternating layers of brass absorber and
plastic scintillator [97]. The brass absorber is not magnetic and has a short interaction
length [93].

Beyond the hadronic calorimeter is the solenoid magnet. This superconducting magnet
creates a 4 T magnetic field [93], causing the path of charged particles in the detector
to curve. A strong magnetic field is needed because many charged particles have very
high momentum, so their path in the detector might appear straight in a moderate
magnetic field. The fidelity of the detector puts a limit of how shallow a curve can
be detected. A strong magnetic field creates deeper curves, improving the accuracy of
charge reconstruction.

Outside the magnet’s solenoid coil is another scintillator, the outer hadron calorimeter,
which uses the coil of the magnet itself as an absorber [98]. This improves the energy
containment a little further.

Finally, at ≈ 6.5 m, the muon system begins. A combination of three complimentary
detector technologies track the muons which escape the solenoid [99]. These are; drift
tube chambers (in the barrel), cathode strip chambers (in the endcaps) and resistive
plate chambers. Differing conditions on the barrel and endcaps necessitate different
sensor choices. This system aims to reconstruct the energy and charge of muons from
their curvature in the magnetic field.

All together, the varying response of different varieties of particle to each subsystem
enables them to be clearly identified. A summary of this is presented in Figure 4.4. The
direction of the particle, and its energy, are also often possible to reconstruct. In the
case of charged particles, the sign of the particle is identifiable from the direction of its
curvature in the magnetic field.
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FIGURE 4.4: An illustration of the subsystems in which various types of particle may
be detected [100].

4.5.2 CMS Trigger

The current luminosity of the LHC is 2.1 × 1034 cm−2 s−1 [91], that is, every second
2.1 × 1034 protons pass through a window of a centimetre squared. Not all of these
will result in collisions, but many will. They are delivered in bunches, each bunch
containing 11 × 1010 particles, the bunches pass through every 24.95 ns [91]. This is
roughly equivalent to 1 GHz of information, a phenomenal rate of data, more than
could be stored, or even transmitted away from the detector. Only the most useful
parts can be kept, and those useful parts need to be selected in real time by the detector
itself. This is the role of the trigger.

For CMS, the trigger is composed of two parts: the Level 1 (L1) trigger, which acts first
from the hardware; the High Level Trigger, which is implemented in software and uses
more complex decision making algorithms [101].

The decisions made by these trigger systems define the data that is preserved. This is
the only data that object reconstruction algorithms can access, as such, the specifics of
the triggers are of interest.

The L1 trigger selects based on detecting the presence of simple objects. Many smaller
sections can be identified, each with separate tasks, which report up to other sections.
On the lowest levels, there are trigger primitives, then many segments have their own
track finders, finally, gathered information is combined in the global trigger system.

Together the L1 trigger reduces the 1 GHz of data to about 100 kHz.
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If an event is accepted by the L1 trigger then it will be passed to the high level trigger.
The high level trigger is composed of filter-builder units, where events are pieced to-
gether and reconstructed, before being filtered by various cuts. The reconstruction here
is very similar to the offline reconstruction.

For the most part, only promising events, with clear tracks, are retained by this system.

4.5.3 Simulating the Detector

Naturally the detector does not perfectly reconstruct particles that enter it. Energy is
smeared out, particles may enter regions with no sensors, sensors have deadtime and
error rates. Simulating these inaccuracies is key to understand their impact on object
reconstruction, and planing around this. The most prevalent simulation program is
called Delphes [102]. Other simulations exist, PGS [103], short for Pretty Good Simu-
lation, is a much older simulation written in FORTRAN77 without any use of the library
GEANT [104]9. Some experiments have their own internal simulations, CMS has a simu-
lation package known as OSCAR, which stands for Object oriented Simulation for CMS
Analysis and Reconstruction. However access to OSCAR [93] is limited to CMS collabo-
ration members10.

Delphes is attractive because it is open source and well integrated with MadGraph. It
can take files in the .hepmc format as input, for example, the .hepmc files produced by
Pythia8. Delphes is not designed to be as accurate as the full detector simulations pro-
duced by the experiments themselves, however it is flexible and carries configuration
files to mimic all the detectors at the LHC. Newer versions of Delphes also include
some particle reconstruction algorithms that mimic the ‘particle flow’ algorithm used
in CMS [102]. Further, Delphes is also capable of handling pileup subtraction, provided
data representing pileup is supplied [102].

The complexity of the detector is such that its simulation can require more time than
the simulation of both the hard event and the shower. Hence, there is good incentive to
use a simple approximation for the detector simulation.

Particles with higher momentum are more likely to be reconstructed, as are particles
that enter the silicon tracker. The silicon tracker has coverage of pseudorapidities −2.5
to 2.5, where pseudorapidity is as defined in Equation 4.2. Given this, it would be
sensible to use particles with pT > 0.5 and |η| < 2.5 as a very rough approximation of
what can be reconstructed in the detector, given the selections made in the trigger.

9The website for PGS includes various enticing claims including “For many analyses you will find (we
hope!) that the answer from PGS agrees within a factor of two of the answer you might obtain with a
full-fleged [sic] detector simulation.”

10With approximately 4000 CMS members, and 3400 seats in The Dolby Theatre where the Oscars are
hosted, the two varieties of oscar are approximately equally exclusive.
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4.6 Jets

After the detector has reconstructed what it can, each event may haveO(100) particles.
Those particles have come from a chain of events described in the flow chart depicted
in Figure 4.1. The hard scattering contains the information of interest, it is likely to
involve O(10) partons. The reconstructed particles are the only information we have
experimental access too. This is quite a shift from O(100) reconstructed particles. This
increase in multiplicity comes from both the backgrounds and from the showering and
hadronisation. Jet clustering is designed to bridge the gap between these two multi-
plicities; firstly by gathering together particles that carry information about the same
parton in the hard event, and secondly by separating particles with information about
the hard event from particles that are mostly influenced by the background11. As such,
each signal jet attempts to represent part of the hard event, sometimes referred to as the
jet’s parent object [105].

Hard scattering (section 4.1)

Backgrounds (section 4.3)

Particle
colour
con-
fined?

Shower (section 4.3)

Hadronisation (section 4.3)

Detector (section 4.5)

Reconstructed particles

yes

no

FIGURE 4.5: Overview of the sequence that relates the hard scattering to the recon-
structed particles. Each iteration of this sequence constitutes one event.

A good jet algorithm should create a representation the parent object while fulfilling
the criteria set out in the Snowmass accords [106];

1. It is simple to implement in experimental analysis.

11It has been said that “this is an art that is similar to reading tea leaves.” –quantumdiaries.org

https://www.quantumdiaries.org/2011/04/22/when-youre-a-jet-youre-a-jet-all-the-way/
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2. It is simple to implement in theoretical calculation.

3. It is defined at any order of perturbation theory.

4. It yields a finite cross sections at any order of perturbation theory.

5. It yields a cross section that is insensitive to hadronisation.

A jet is a purely conceptual construct, it is composed of a group of physical objects
gathered by an algorithm, rather than being an innate physical phenomenon. Despite
this, it is possible make inferences about particle models from jets and predict jet be-
haviour from models. Often the analysis done on jets is to view a spectrum of their
masses, which can be calculated as the invariant mass of all the constituents of the jet.
Resonances in the spectrum of jet masses give evidence of the existence of particles
with a corresponding mass. Measurements of the number of jets in a mass range can
be compared to predicted results, and provide strong constraints on models [107].

4.6.1 Infra-Red Safety

Insensitivity to soft or collinear emissions is an important attribute for jets to possess;
this is referred to as IR safety. Formally, a soft emission is the emission of a massless
particle with very low energy. Tending to the limit of 0 energy, there is a divergence in
the probability calculation, which means that is it not possible to perform a perturbative
calculation. This is not a problem, as a massless 0 energy particle is not observable.
In a similar manner, there is a singularity associated with a particle generating two
particles with the same momentum direction, a collinear splitting. Again, this decay
is not detectable, as two particle in exactly the same place with the same combined
momentum will be measured as identical to the original particle [108].

There are three key reasons for wanting an algorithm that will not allow the measurable
quantities of the jets to change in response to IR radiation [105].

1. If the algorithm to form a jet was, in principle, sensitive to soft or collinear split-
tings it would not be possible to make predictions about jet quantities from QCD.
Without these predictions many interesting comparisons to theory are spoilt. This
is means IR safety is important to item 4 of the Snowmass accords.

2. The Monte Carlo simulations are also based on probabilities calculated from QCD,
and they can only be tuned and compared to experimental data using measur-
able quantities. It cannot be determined if these simulations are accurate in the
IR limit. As the IR limit is approached, the accuracy of the simulation will suf-
fer [109]. Hence, jets designed using MC data cannot depend on the IR behaviour
of the simulation.
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3. The exact energy at which a soft particle becomes invisible, or a collinear split-
ting becomes indistinguishable depends on the detector being used. This makes
predictions of behaviour of an IR unsafe algorithm unique to the detector, further
complicating matters.

The comparison between safe and unsafe behaviour is illustrated in Figure 4.6 and
Figure 4.7.
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FIGURE 4.6: This is a comparison of an algorithm with collinear safety to one without.
On the left the allocation of non-soft particles to jets is not influenced by the presence
of a collinear splitting, this is collinear safe. On the right the allocation of non-soft

particles to jets changes after the collinear splitting, this is not collinear safe. [105]
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FIGURE 4.7: This is a comparison of an algorithm with infra-red safety to one without.
On the left the allocation of non-soft particles to jets is not influenced by the presence
of a soft emission, this is infra-red safe. On the right the allocation of non-soft particles

to jets changes after the soft emission, this is not infra-red safe. [105]

As will be seen in section 4.6.3, there are jet definitions that are not IR safe, however
most modern jet formation algorithms are IR safe, and this is strongly preferred.

4.6.2 Shape Variables

It was alluded to in the previous section, section 4.6.1, that there are predictions that
can be made for the distributions of jets from QCD. Event shape variables are an exam-
ple of this. Comparisons between various MC event generation algorithms show the
shape variables measured on jets to be relatively insensitive to the details of the MC
simulation used [110]. Thus, these variables are good comparisons, even including the
uncertainties of simulation.
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Here, 5 common shape variables are described;

1. Jet mass; a jet’s momentum is the combined 4-momentum of all reconstructed
particles assigned to the jet. The invariant jet mass spectrum is simply the invari-
ant mass of the momentum of one or more of the jets. It can be calculated for
more than one jet in each event, or just of the highest pT jet of each event.

2. Thrust; is a description of how much of the jet momentum goes along the domi-
nant axis. It is calculated as

T = min
n̂t

2 ∑i pi · n̂t

∑i |pi|
, (4.3)

where i sums over all jets, or sometimes only a subset of the jets, in the event. The
factor of 2 being customary, but sometimes omitted.

3. Thrust major and minor; these measure thrust in other directions. Thrust major
is defined as

TM = min
n̂M3n̂t·n̂M=0

2 ∑i pi · n̂M

∑i |pi|
, (4.4)

so it is the same as thrust, only its axis, n̂M, is required to be perpendicular to the
thrust axis, n̂t. Thrust minor has its axis, n̂m perpendicular to both n̂t and n̂M. Its
axis is n̂m = n̂t× n̂M, thus no minimisation is needed. It is calculated as;

Tm =
2 ∑i pi · n̂m

∑i |pi|
. (4.5)

4. Oblateness; this is a property also used in earth science to describe the shape of
the earth12. It is calculated from the thrust major and the thrust minor as [112]

Ob = TM − Tm. (4.6)

Conceptually, this measures how squished the event is.

5. Sphericity; heuristically this can be seen as a measure of how far the event de-
viates from a spherical configuration. It is calculated by first constructing the
momentum tensor;

Sαβ =
∑i pα

i pβ
i

∑i |~pi|2
(4.7)

where α, β are x, y or z, thus Sαβ is a 3 by 3 tensor, and the sum over i sums over all
the momentum vectors of the jets (or some subset). By calculating the eigenvalues
of the momentum tensor, λ1 ≥ λ2 ≥ λ3, the event sphericity can be written as

12The earth is currently an oblate sphere, however, a number of other possibilities have been studied.
Figure 1 of [111], the shape the earth might take if it had a lot more water, is a striking example.



4.6. Jets 49

S = 3
2 (λ2 + λ3) [113]. This is equivalent to calculating

S = min
n̂s

3 ∑i(pi − pi · n̂s)2

2 ∑i(pi)2 . (4.8)

The vector n̂s is referred to as the sphericity axis [114].

6. Spherocity; this has a definition that at first glance appears similar to spheric-
ity [114];

S′ = min
n̂s′

(
4 ∑i(pi − pi · n̂s′)

π ∑i(pi)

)2

. (4.9)

However, on closer inspection, it become clear that taking the square out of the
sum means that jet momentum vectors going in opposite directions will cancel.
This is now measuring how spherical and how well balanced the event is.

In some ways thrust, sphericity and spherocity describe a similar property, but the
actual values obtained differ. Some cartoons illustrating this conceptually are given in
Figure 4.8, and plots of a particular jet configuration are shown in Figure 4.9. Transverse
variants of these shape variables exist; those are not the same quantities.

FIGURE 4.8: Conceptual illustration of various shape variables.

These quantities are sensitive to IR behaviour, and so having IR safe jets is required to
make predictions about their distributions.

4.6.3 Existing Definitions

Now that the intention of, and the requirements for, jets have been established, the
chapter is completed by presenting some common jet algorithms. This collection is
guided by the collection of common algorithms described in [105].
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FIGURE 4.9: A plot of the magnitude of various shape axis with changing angles, pub-
lished in [114]. The momentum vectors of 8 jets are given in (a), then the magnitude
of various shape variable axis are calculated as the direction of the axis is changed.

Thrust axis (b), sphericity axis (c) and spherocity axis (d).

4.6.3.1 First Cone Algorithm

The first jet algorithm [115] was used in a low background, electron positron collision.
This algorithm attempts to creates exactly 2 jets, with a radius specified by the param-
eter δ. The jets are optimised to contain as much energy as possible. If it is possible to
chose these jets such that they contain at least 1− ε of the events energy, then the jets
are declared successful.

This algorithm is mostly only suitable for events with no boost factor, because it as-
sumes that almost all the energy of the event is captured. This is not the case in hadron
colliders.
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4.6.3.2 Iterative Cone Algorithms

In many events more than two jets are expected. An advancement from the first cone
algorithm is the concept of a iterative cone algorithm [116]. To form a jet using an
iterative cone algorithm;

1. A seed particle is chosen. The momentum vector of the seed is the initial jet
direction.

2. All particles within a radius δ of the jet direction are selected. Distances are usu-
ally measured using the metric

√
δy2 + δφ2, where δy is the difference in rapidity

and δφ is the difference in angle.

3. The combined momentum of the selected particles is the new jet direction.

4. If the jet direction has changed, return to item 2. Otherwise, this jet is now a stable
cone, all currently selected particles are the final jet constituents.

This algorithm requires two more details to be complete; a procedure to select the seed
particle and a procedure to handle overlapping jets. Overlapping jets are usually pre-
vented by removing the particles assigned to each complete jet when it is formed. Seed
particles may be chosen randomly, or may be the highest pT particles. Either choice has
problems: if the seed particles are chosen randomly then a soft emission is capable of
being a seed, and potentially changing the final jet configuration; if seed particles are
those with highest pT then a collinear splitting could change the seeds, and potentially
the final configuration. Thus, this form of iterative cone is not IR safe.

There are different cone algorithms that do have the property of IR safety. SISCone [117]
is an example of this, it achieves IR safety by avoiding seed particles all together, and
finding every possible stable cone.

4.6.3.3 Agglomerative Algorithms

Agglomerative clustering algorithms are algorithms that repeatedly join single units or
clusters to other single units or clusters until desired clusters are obtained. This results
in a hierarchy of elements. The inverse of an agglomerative clustering algorithm is a
divisive clustering algorithm.

In the context of jet formation, this proceeds as follows [118];

1. At the start, declare all particles to be pseudojets. A pseudojet being an incom-
plete jet. Each pseudojet has the same momentum as the particle.
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2. Calculate the pairwise distance between all pseudojets, di,j. Also calculate the
beam distance of each pseudojet, diB.

3. Find the smallest distance from both the di,j or the diB;

(a) If the smallest distance is a pairwise distance, join those two closest pseu-
dojets to form a new pseudojet, so that there is now one less pseudojet in
the event. The momentum vector of the new pseudojet is determined by the
recombination scheme.

(b) If the smallest distance is a beam distance, promote the corresponding pseu-
dojet to a jet and remove it from consideration.

4. If any pseudojets remain, return to step item 2.

Two things have been left unspecified here; the nature of the distance metrics, di,j and
diB, and the nature of the recombination scheme. The most common recombination
scheme is exactly what one might expect; the 4-momentum of the two pseudojets are
simply added together. This is called E-scheme recombination [105]. Other schemes
are possible.

Distance metrics are far more varied. A common choice is a distance metric from the
generalised kT scheme where;

di,j = min(pT
2q
i , pT

2q
i )(δy2

i,j + δφ2
i,j) (4.10)

and
diB = pT

2q
i · R

2 (4.11)

where R and q are constants.

The value of R influences the size of the jet, the larger R is the wider the jets can become.
Values of R between 0.4 and 0.8 are common.

The maximum possible width of a jet with q = 0 is 3R. This can occur like so;

• Place particles a, b, c and d on a straight line at φ = 0, with rapidities 0, R− 2ε,
2R− 3ε and 3R− 5ε, where ε is a small number. Let particles a and d have mo-
mentum proportional to ε/4, and particles b and c have momentum proportional
to 1.

• Initially, the closest parings are a, b and c, d, both being R− 2ε apart. These will
merge first, call the new particles created b′ and c′.

• As a and d have small momentum ε/4, b′ and c′ will each be shifted for the origi-
nal locations of b and c by less than ε/4; thus they are guaranteed to still be within
R of each other.
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• b′ and c′ merge, so that all four original particles are in one jet.

• This jet has a width 3R− 5ε, so as ε tends to zero, the width of the jet tends to 3R.

Should there be any particle before a or after d, merging that particle with a or d respec-
tively would move the result out of range of b or c. Thus, the jet can get no wider.

In general, let the jet width be the maximum value of
√

δy2
i,j + δφi,j for any i and j

corresponding to particles in the jet, where δyi,j = (yi − yj) and δφi,j is the distance
between φi and φj, taking into account the cyclic properties of the coordinate. It is also
true that the mean jet width will be greater that R. This can be seen in Figure 4.10. So
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FIGURE 4.10: A small sample of 24987 Cambridge-Aachen jets (q = 0), formed on
MC data, are plotted against their stopping parameter, R. This demonstrated that the
stopping parameter is proportionate to the width, but that it is not equal to the average

or maximum width.

while R is often referred to as a jet width, or jet opening angle, it is not strictly either of
these things. There is a strong, linear, correlation between the jet width and R.

The value of q determines how the algorithm treats hard emissions. When q = 0 the al-
gorithm treats all emissions the same, this algorithm is known as a Cambridge-Aachen
algorithm [119, 120]. When q = 1 the algorithm tends to gather soft particles first, this
algorithm is known as a kT algorithm [121, 122]. When q = −1 the algorithm tends
to gather about hard centres, and produces particularly round jets, this algorithm is
known as an anti-kT algorithm [123, 124, 125].

When q 6= 0 then the radius of the jets has a more complex relationship to R. It remains
true that the greatest distance over which two pseudojets can merge is R. If q < 0, the
‘min’ in Equation 4.10 picks out the larger pT pseudojet. Taking i as the higher pT object,
then, di,j = pT

2q
i (δy2

i,j + δφ2
i,j), diB = pT

2q
i R2 and djB = pT

2q
j R2. It is clear that diB < djB,
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FIGURE 4.11: A sample of 123507 generalised kT jets, with−1 < q < 1, formed on MC
data, are plotted against their stopping parameter, R. Again, the stopping parameter
is proportionate to the width, but is not equal to the average or maximum width. Also,

note that 3R is no longer a hard limit on jet width.

so the next step will not be to remove j. Provided δy2
i,j + δφ2

i,j < R then i and j will
merge, otherwise, if no other measure is smaller i will be removed. On the other hand,
if q > 0, the ‘min’ in Equation 4.10 picks out the lower pT pseudojet. Keeping the same
convention, j will be the lower pT object, then, di,j = pT

2q
j (δy2

i,j + δφ2
i,j), diB = pT

2q
i R2

and djB = pT
2q
j R2. Provided δy2

i,j + δφ2
i,j < R then i and j will merge.

What changes, in the case of q 6= 0, is that pseudojets may not merge with the next
closest pseudojet in terms of δy2

i,j + δφ2
i,j. This is an important requirement for the hard

limit of 3R. Now the maximum possible jet radius is at least 3R. Finding this maximum
is non trivial, but that it may be greater than 3R can be seen in Figure 4.11.

Generalised-kT algorithms are all IR safe. All collinear splitting will result in pseudojets
with di,j = 0, and so they will be merged immediately. Any pseudojet that merges with
a soft pseudojet will result in a new pseudojet in exactly the same location. As the
clustering has no memory of previous steps, it will then proceed as if the soft particle
or collinear splitting had never existed.
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Chapter 5

Revisiting Jet Clustering Algorithms
For 2HDM Signals

This section is drawn from the work published in [3]. This work was co-authored
with Amit Chakraborty, Srinandan Dasmahapatra, Billy G. Ford, Shubhani Jain, Ste-
fano Moretti, Emmanuel Olaiya and Claire H. Shepherd-Themistocleous.

Decisions made about direction and content were primarily driven by Professor Amit
Chakraborty, Professor Stefano Moretti and Billy Ford, with Professor Claire H. Shepherd-
Themistocleous and Dr Emmanuel Olaiya offering guidance from a up to date exper-
imental understanding. Billy Ford and Shubhani Jain ran the primary data pipeline,
which used MadGraph, Pythia8, Delphes, FASTJET and Madanalysis, to perform the
calculations required. I constructed a complementary pipeline, using the same data
drawn from MadGraph and Pythia8 but then processing and forming jets with custom
built python3 programs. This custom pipeline could not process the same volume of
data processed by the primary pipeline, but it served two supplementary purposes.
Firstly, as the secondary pipeline was all handwritten, it facilitated obtaining infor-
mation about individual events or intermediate points of the process. So it served to
verify the source of imperfections in the data, such as edge effects, missing b-jets, and
incorrect mass reconstructions. Some of these could be remedied with adjusted pa-
rameters, others only accounted for. Secondly, having a point of comparison, even one
with somewhat limited statistics, allowed us to replicated the distributions created by
the primary pipeline, aiding debugging, and increasing confidence in the results. Billy
Ford and Shubhani Jain constructed the plots from the data generated by the primary
data pipeline. The group collectively analysed the findings, and the text of the original
publication [3] was a collective effort.
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5.1 Introduction

Continuing on the theme that was opened in chapter 2, this study explores the means
of resolving signals from the 2HDM. In particular, the question of whether different jet
clustering techniques might be more or less suited to resolving topologies involving
Higgs particles from the 2HDM. In such scenarios, as will be explained in more detail,
high b-jet multiplicity final states are expected and a point worth addressing is which
current experimental jet reconstruction is in fact optimal for these types of searches.

As covered in section 2.1.4, the 2HDM introduces 5 new Higgs states, labelled as h,
H (which are CP even with, conventionally, mh < mH), A (which is CP-odd) and a
pair of charged states with mixed CP properties, H±. In section 3.2, the SM Higgs was
associated with the lighter, CP even Higgs, h. This section will consider one example
of each case, that of mh = 125 GeV and mH > 125 GeV and it’s inverse mh < 125 GeV
and mH = 125 GeV.

In a study that investigates limits due to statistics and collision energy, such as that
presented in chapter 3, heavy particles are the greater challenge. They require more
energy to produce and are produced less frequently. In a study that is focused on mass
peak identification, such as the one presented in this chapter, a lighter particle poses a
greater challenge. The lighter particle’s mass peak is more likely to be lost in pileup,
or hidden by the numerous backgrounds. Hence, this chapter offers two points for
comparison. These chosen benchmark points will be described in section 5.2.1.

When mh < mH/2 or mA < mH/2, the decays H → hh and/or H → AA (respectively)
may occur. These processes are often referred to as Higgs cascade decays, see sec-
tion 2.1.4.3. Then, taking H as the SM-like 125 GeV Higgs boson, for a h state with
a mass of order 60 GeV or less, the dominant decay mode in a 2HDM is bottom-
antibottom quark pairs [55, 56], i.e., h → bb̄. In which case, the final state emerging
from the hard scattering pp → H → hh is made up, at the partonic level, of four
(anti)quarks1, see Figure 5.1. However, due to the confinement properties of Quan-
tum Chromo-Dynamics (QCD), the partonic stage is not accessible by experiment, only
the stable particles the end of the parton shower and hadronisation phase are seen.
Jet clustering algorithms gather these stable particles into exclusive sets known as jets,
and these exclusive sets aim to represent partons emerging from the hard interaction; a
review of this is given in chapter 4.

Alongside the most common jet clustering algorithms described in section 4.6.3, there
are a number of lesser known alternatives. The purpose of this study is to deter-
mine whether alternative jet reconstruction tools, in particular a modification to tradi-
tional sequential combinations algorithms employing a variable inter-jet distance mea-
sure [126] (so-called ‘variable-R’ algorithms, where R represents a typical cone size

1Notice that the same argument can be made for the case of pp→ H → AA→ bb̄bb̄ when mA < mH/2.
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FIGURE 5.1: The 2HDM process of interest, where the SM-like Higgs state (mH =
12 GeV) produced from gluon-gluon fusion decays into a pair of lighter scalar Higgs

states, hh, each in turn decaying into bb̄ pairs giving a four-b final state.

characterising the jet), might be better suited to the four-b final states coming from
2HDMs. Furthermore, the four-b final state that is invoked here is an ubiquitous sig-
nal of BSM Higgs boson pairs which are lighter than the SM one so that they can be
produced from it2. Crucially, such states give access (through the extraction of the h
state properties) to key features of the underlying BSM scenario, e.g., in the form of the
shape of the Higgs potential, hence, of the vacuum stability and perturbative phases of
it.

While the above outlines that the problem of optimal jet reconstruction is clearly an
experimental endeavour, it is stressed that this study is undertaken at a theoretical
level. It aims are to employ a simplified analysis in order to compare the relative per-
formance of traditional fixed-R jet clustering, as described in section 4.6.3, against a
variable-R method, which will be described here. A comprehensive, more realistic, ex-
perimental investigation is left to a future study. For example, another key feature of
the hadronic final state initiated by b-quarks that will be studied is that the emerging
jets can be “tagged” as such, unlike the case of lighter (anti)quarks and gluons, which
are largely indistinguishable from each other. Here, a simplified method of tagging is
implemented using Monte Carlo (MC) truth information on the b-partons, along with
a probabilistic implementation of inefficiencies. For a more detailed discussion on b-
tagging at detectors, please refer to [127]. A short replication study of some taggers
used by CMS can be seen in Appendix A.

2Here, ubiquitous refers to the fact that this signal is very typical of a variety of BSM scenarios, so that
in effect the 2HDM can be used for illustration purposes. These results can therefore be applied to the case
of other new physics models.
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Label mh ( GeV) mH ( GeV) mA ( GeV) mH±

( GeV)
tan β sin(β− α) m2

12

BP1 125 700 847.2 744.2 2.355 −0.999 1.46× 105

BP2 60 125 620 400 1.6 0.1 4× 103

TABLE 5.1: The 2HDM, Yukawa type II, parameters for the benchmark points used
here. Note that, in both cases, λ6 = λ7 = 0 is chosen.

Label mH (GeV) BR(H → hh) mh (GeV) BR(h→ bb) σ ( pb)

BP1 700 6.128× 10−1 125 6.164× 10−1 1.870× 10−1

BP2 125 6.764× 10−1 60 8.610× 10−1 6.688

TABLE 5.2: The 2HDM, Yukawa type II, branching ratios and cross sections for the
process in Figure 5.1. Masses are repeated in grey, to clarify the source of the differ-

ences between the rows.

5.2 Methodology

This section begins by defining the 2HDM parameter values that are used, two bench-
mark points. It then introduces the variable-R jet clustering method, and offers some
justification for the unusual choice. Following that, it describes the data and analysis
pipeline used to create the results in the next section.

5.2.1 2HDM Benchmarks

Two parameter value sets from the 2HDM are used in this study. The lighter cascade
has mh = 60 GeV and mH = 125 GeV, so mH plays the role of the SM Higgs. The
heavier cascade has mh = 125 GeV and mH = 700.668 GeV, this time mh plays the role
of the SM Higgs.

These two choices have been tested (and pass as not currently excluded) against theo-
retical and experimental constraints by using 2HDMC [24], HiggsBounds [128] and HiggsSignals [129],
as described in section 3.2. Flavour constraints were checked with SuperISO [130]. Us-
ing SuperISO, the following flavour constraints on b-meson decay Branching Ratios
(BRs) and mixings are tested to a 2σ level: BR(b → sγ), BR(Bs → µµ), BR(Ds → τν),
BR(Ds → µν), BR(Bu → τν), BR(K→µν)

BR(π→µν)
, BR(B→ D0τν) and ∆0(B→ K∗γ).

The production and decay rates for the subprocesses gg, qq̄ → H → hh → bb̄bb̄ are
presented in Table 5.1, alongside the 2HDM-II input parameters. Notice that the H and
h decay widths are of order MeV, hence much smaller than the detector resolutions in
two- and four-jet invariant masses, respectively, so that the Higgs states can essentially
be treated as on-shell. In the calculation of the overall cross section, the renormali-
sation and factorisation scales were both set to be HT/2, where HT is the sum of the
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FIGURE 5.2: A sketch of the behaviour of a highly idealised, MC based, clustering
algorithm on the 40 GeV Higgs cascade decay. On the left, the multiplicity of b-jets in
each event is shown, on the right, the pT of those b-jets is shown. Percentages given
are percentages of the total b-quarks produced, which are represented as jets, both in
total, and after various cut possibilities. Cuts have been applied to the input particles.

transverse energy of each parton. The Parton Distribution Function (PDF) set used was
NNPDF23 lo as 0130 qed [131].

In the development of this study a third point was considered, with mh = 40 GeV and
mH = 125 GeV. It was not retained because this configuration will be hidden from
almost any plausible analysis, no matter how well the clustering algorithm performs.
To illustrate this, an idealised clustering algorithm can be used.

Say, using information from a MC simulation, particles were allocated to jets based on
which particle in the hard event had started the chain of decays that created them. The
parton at the top of that decay chain is referred to here as the ancestor of the particle.
There would be a little ambiguity in such a scheme, because in the hadronisation step
particles created by one parton will interact with particles created by another. This re-
sults in an end state particle that is related to more than one parton, this particle might
be said to have multiple parton ancestors. In order to turn this information into a jet,
a somewhat subjective decision must be made to allocate that particle to a parton. A
reasonable criteria for this might be to assign particles with multiple ancestor partons
to the parton with the closest direction of travel, which again, appeals to information
only known in MC simulation. Applying this criteria for dealing with these multiple
parton ancestor particles, and then assigning the particles to jet according to their an-
cestors, gives an unrealistically good jet clustering algorithm. Using such an unrealistic
algorithm allows us to put limits on the potential of any realistic algorithm.

Using the smaller secondary data pipeline, such an jet formation algorithm was de-
signed. Basic cuts were applied to the particles, requiring each particle have pT >

0.5 GeV and |η| < 2.5. Even this algorithm, with unrealistic access to MC information,
cannot perfectly locate all the b-quarks. This can be seen in Figure 5.2. There are many
events whose multiplicity is less than 4, because one or more of the b-quarks left no
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trace that passed the aforementioned cuts. As seen in the right hand plot, 71% of the
b-quarks could be identified as a jet, but, if that jet must have at least pT > 30 GeV then
only 20% of the b-quarks are represented by a jet. Given this clustering was performed
with the aid of MC truth, any real clustering algorithm can be expected to fair worse.
A 30 GeV cut should be expected to eliminate a sizeable majority of the signal.

While this may not be a perfect analysis, the data set used is only O(103), the picture it
paints is very decisive. Reconstructing such a benchmark is certainly implausible.

5.2.2 Jet Clustering Algorithms

While jet clustering algorithms have included a great diversity of designs, the ones of
interest are agglomerative algorithms, briefly reviewed in section 4.6.3.3.

The first algorithm that is used here is the generalised kT algorithm. Repeating the
relevant points from section 4.6.3.3; this algorithm has a distance metric of

di,j = min(pT
2q
i , pT

2q
i )(δy2

i,j + δφ2
i,j) = min(pT

2q
i , pT

2q
i )∆R2 (5.1)

where δyi,j = (yi − yj) and δφi,j is the distance between φi and φj, taking into account
the cyclic properties of the coordinate. This algorithm also makes use of the ‘beam
distance’, which is the separation between object i and the beam B,

diB = pT
2q
i · R

2 (5.2)

where R and q are constants. Note that this notation mimics that of [126], where R2

is included in the definition of dBi. (An alternative convention is to embed R2 into the

definition of dij such that dij = min(p2q
Ti , p2q

Tj)
∆R2

ij

R2 , leaving dBi = p2q
Ti , like in [123].) For

a set of particles, all possible dij’s and dBi’s are calculated and the minimum is taken.
If the minimum is a dij, objects i and j are combined and the process is repeated. If,
instead, a dBi is the minimum, then i is declared a jet and removed form the sample.
This procedure is then repeated until all objects are classified into jets.

In dBi, R is a fixed input variable which dictates the size of the jet, and acts as the cut-off
for any particle pairing. Considering some pair of particles i and j, with i having lower
pT (and hence being selected in dij), then for q ≥ 0

dij = ∆R2
ij p

2q
Ti =

∆R2
ij

R2 dBi. (5.3)
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So long as, for some j, the ratio
∆R2

ij

R2 < 1 then i will undergo further merges, rather
than forming a new jet. If q = 0, then the maximum jet radius becomes 3R, as demon-
strated in section 4.6.3.33. From this general formulation, the main two jet clustering
algorithms currently in use at the LHC are the Cambridge-Aachen (CA) [120, 119] one
and the anti-kT [123] one, which use the above expressions with q = 0 and −1, respec-
tively [105].

5.2.3 Jet Clustering with Variable-R

There has, in fact, been a more recent development to these techniques. One notices that
the above algorithms require as input a fixed parameter, R, which in the case of the anti-
kT algorithm is correlated with jet radius, as discussed and illustrated in section 4.6.3.3.
Recall this acts as a cut off for combining hadrons and can therefore guides the size of
the jets.

From the point of view of the shower, the angular spread of the final constituents has
a dependence on the initial partons pT. For higher pT objects the decay products will
be more tightly packed into a more collimated cone, whereas for low pT objects one
would expect the resulting shower constituents to be spread over some wider angle.
One can therefore see a potential advantage in selecting the R value used for clustering
depending on the pT of the final state jets. It is this advantage the variable-R [126] seeks
to obtain.

A modification to the distance measure, dij, is made, by replacing the fixed input pa-
rameter R with a pT dependent Reff(pT) = ρ

pT
, where ρ is a chosen dimensionful con-

stant (taken to be) O(jet pT). With this replacement, the beam distance measure be-
comes

dBi = p2q
Ti Reff(pTi)

2. (5.4)

When the distance measures are calculated, dBi will therefore be suppressed for objects
with larger pT and hence these objects become more likely to be classified as jets. For
low pT objects, dBi is enhanced and so these are more likely to be combined with a near
neighbour, thus increasing the spread of constituents in the eventual jet.

This work hypothesises that, in multijet signal events where one might expect signal
b-showers with a wide spread of different pT’s, a variable-R reconstruction procedure
could improve upon the performance of traditional fixed-R routines. In particular, us-
ing a variable-R alleviates the balancing act of finding a single fixed cone size that
suitably engulfs all of the radiation inside a jet, without sweeping up too much outside
‘junk’.

3For q 6= 0 this maximum no longer strictly holds, although it does still tend to be true.
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FIGURE 5.3: The same MC event in (η, φ) space. Tracks have been clustered with
(left) a fixed R = 0.4 and (right) variable-R algorithm. The coloured points are the
constituents of the corresponding b-jet in the legend and black outlined diamonds are
at the overall (η, φ) coordinates of the formed b-jet. The anti-kT algorithm is used in

both cases.

FIGURE 5.4: Same plot as in Figure 5.3, however, here, the given event is clustered
into three b-jets when a fixed R = 0.8 is used (left) and four b-jets when a variable-R

approach is used (right).

As a brief visualisation, the constituents of b-tagged jets (herafter, b-jets for short) in the
same event can be displayed, which have been clustered using both a variable-R and
fixed R = 0.4 scheme, as seen in Figure 5.3. Notice that, for the leading and sub-leading
b-jets, the jet content is roughly the same. For the lower pT jets, however, the variable-R
jets gather a wider cone of constituents. Provided all jets are resolved, a wider cone
increases the chances that all decay products of the signal are captured, improving the
ability to accurately reconstruct Higgs masses when analysing b-jets. Figure 5.4 shows
a case where using a larger fixed cone (R = 0.8), to try and gather all of the constituents,
only resolves three b-jets. Variable-R however ‘finds’ all four b-jets expected from the
signal. It can be seen that fixed-R sweeps radiation from a nearby jet into the leading
b-jets, whereas variable-R is able to resolve both due to the larger pT (and hence smaller
Reff) of the leading b-jet, while also having a large enough cone to suitably reconstruct
the lower pT jets.
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Generate signal events of gg→ H → hh→ bbb̄b̄ using
MadGraph5@NLO v2.6.3.2

Shower and hadronise parton level events using
Pythia8 v8.243

Apply detector simulation via Delphes v3.4.2 with CMS card

Perform jet reconstruction, apply cuts and
carry out analysis using MadAnalysis5 v1.8.5

FIGURE 5.5: Description of the procedure used to generate and analyse MC events.

5.2.4 Implementation of b-Tagging

For this study, a simplified MC informed b-tagger is implemented. For events clus-
tered using a fixed-R cone size, jets within angular distance R from each parton level
b-(anti)quark are searched for and tagged as appropriate. For scenarios where multiple
jets are found, the closest is taken as the assignee for the b-tag. When the variable-R
approach is used, the size of the tagging cone is taken as the effective size of the jet,
Reff, defined above.

In addition, when the signal and background rates are considered, the finite efficiency
of identifying a b-jet as well as the non-zero probability that c-jets and light-flavour
plus gluon jets are mistagged as b-jets is accounted for. After the jets are run through
the MC b-tagger described above, the mistag rates found in the Delphes CMS card are
applied.

5.2.5 Data Generation

In order to carry out a realistic MC simulation, the toolbox described in Figure 5.5 is
used to generate and analyse events [71, 85, 132, 133]4. This is used to create simulation
of observations for both BP1 and BP2, as described in section 5.2.1. Samples of O(105)

events are generated, with
√

s = 13 TeV. The Parton Distribution Function (PDF) set
used was NNPDF23 lo as 0130 qed [131].

4Note that the Leading Order (LO) normalisation for the signal cross sections is used here, for con-
sistency with the fact that most of the backgrounds in the forthcoming analysis are only implemented at
LO. While this affects the final results on event rates and significances, the results are sufficient for the
purposes of this study; to assess the jet clustering performance, rather then the exact values of signal and
backgrounds rates.
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Apply detector simulation using Delphes to output eflow objects

Perform jet reconstruction and b-tagging
in FASTJET [123], with specified clustering algorithm and R

Remove b-jets with pT < 50 GeV (BP1)
or pT < 20 GeV (BP2)

Where at least three b-jets remain
find the pair that reconstructs a mass clossest to mh, and save as a dijet

If four b-jets are found, save the remaining pair as a second dijet

FIGURE 5.6: Description of our initial procedure for jet clustering, b-tagging and se-
lection of jets.

5.2.6 Cutflow

Before introducing the full sequences of cuts adopted here, some discussions on their
possible choice are needed. In existing four b-jet analyses by the ATLAS and CMS col-
laborations, seeking to extract chain decays of Higgs bosons like the ones considered
here from the background, comparatively restrictive cuts have been used for the ensu-
ing fully hadronic signature. Taking CMS as an example, upon enforcing the same pT

cuts on b-jets as in [134] on BP2, the signal selection efficiency was too low. It would not
be possible for any jet clustering algorithm to create high enough multiplicities to yield
a useful sample, assuming luminosities of run 2 and 3. This issue was already touched
on in section 5.2.1.

For BP1, the cuts used in [135] are suitable. These require b-jets in the event have a pT

of at least 50 GeV. For BP2, all jets are required to have at least 20 GeV. It remains to
be seen if this is viable at the LHC, but for the purposes of comparing the behaviour of
different jet clustering algorithms it yields samples of a useful size.

Then, having removed jets with insufficient pT, those events that are left with at least 3
jets, are used to reconstruct at least one mh. Events that have kept 4 jets can reconstruct
both mh, and therefore mH as well.

As the h decays into two b-quarks, two b-jets are selected, and the energy and momen-
tum of these two b-jets is added. The mass of this dijet object, mbb is considered to be the
reconstructed estimate of mh. When all 4 b-quarks are identified with separate jets in an
event, there are 6 possible pairings. Using information in the MC, it is possible to iden-
tify which of these pairings is the correct choice; the two b-jets which have been tagged
by b-quarks which decayed from the same h should be matched. This MC pairing
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would not be possible in an experimental setup, so it might be seen as a somewhat ide-
alised method. It is also not readily attainable information when suing Madanalysis.
For these reasons, the primary pipeline did not seek to implement a matching based
on MC pairings, that is, information about which b-quarks had decayed form which
light Higgs. Instead, an estimate based on information that would be experimentally
available is used.

Many different approaches have been taken in other work. When an experimental
tagger is used, there will be varying confidence in each jet’s classification, and this
maybe used to form dijet pairs [136, 137]. That isn’t possible when using an MC tagger.
Sometimes the highest pT pair is considered a dijet [138, 139]. This study did attempt
this method, but it was not very successful.

Alternatively, many studies involving four jets in the final state select dijet pairs that
minimise the mass difference between the dijet pairs [140, 141, 142]. This study chose to
include events containing only 3 b-tagged jets, and so this method was not applicable.

Another common method, is to select the dijet pair who mass best matches the target
mass, that is, minimise the difference between the mass of the dijet and the mass of the
particle being reconstructed [143, 144, 145]. This method is followed in this study. It
could be seen as an optimistic choice, so its accuracy is evaluated here, by comparison
to MC ground truth.

Only events with at least 3 b-jets are used, so unless one b-jet is in fact the merging of
two b-quarks, it is guaranteed that there is at least one correct (as in, representing two
b-quarks from the same light Higgs) pairing available. In cases where two b-quarks
have merged in to one jet they are quite likely to be from the same h, particularly in
the mh = 60 GeV case, as seen in Figure 5.8. In that case, the remaining two b-jets are
still a correct pairing. However, occasionally, two b-quarks from different Higgs, may
by chance merge. This would be more likely for mh = 125 GeV, where the separation
between the light Higgs is on average smaller, and the separation between the b-quarks
is on average larger (again, see Figure 5.8). In this case there would not be any correct
pairing available. This is only a small minority of events.

Having established that at least one correct pairing should be available in events with
three or four b-jets, a decision must be made based on experimentally accessible infor-
mation; the pair minimising |mbb − mh| is chosen. In the case where all four b-jets are
reconstructed, the left-over bb̄ pair is also included so as to account for the presence of
the second light Higgs state.

Using the secondary data pipeline, where MC variables are more readily available, the
accuracy of this scheme is then evaluated. This is shown in Figure 5.7. It can be seen
that while minimising |mbb −mh| frequently does not find the same pairings as would
be found by MC, the masses produced are not much changed. There is a slight trend to
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FIGURE 5.7: Evaluation of the performance of allocating b-jets to dijet pairs, such that
|mbb −mh| is minimised. Left panel; the comparison between the mass peak obtained
with MC matching, and minimisation matching. Centre panel; dijets sorted according
to matching outcome. A dijet pairing is counted as correct when it is joined by both
MC and mass minimisation. Pairings made by mass minimisation that do not match
the MC pairing are labelled as incorrect, and pairings made by MC information that
are not found by mass minimisation are labelled as missed. Right panel; the combined
mass of all particles created by the h, which can be reconstructed. This shows the mass
loss expected due to detector sensitivities. The clustering algorithm used is the anti-kT

algorithm, with R = 0.4, the data used is generated according to BP2.

create higher masses by minimising |mbb−mh|. Overall, this could be seen as a realistic
source of error.

It would be possible to reduce this error, by matching to a slightly lower mass than
the target mass, thus accounting for particles lost due to detector limitations. There is
some precedent for this [146], but the more conventional method is retained here, to
aid comparisons with other work.



5.3. Results 67

5.3 Results

This section presents the results for the signal at both the parton and detector level. In
the latter case, it also discusses the dominant backgrounds, due to QCD 4b production,
gg, qq̄→ Zbb̄ and gg, qq̄→ tt̄5.

5.3.1 Parton Level Analysis

At the Matrix Element (ME) level, all the events have four b-quarks originating from
the decay of the two light Higgs bosons (h). In the upper panel of Figure 5.8, the R
separation between the b-quarks coming from the same light Higgs state is plotted.
The two distributions corresponding to BP1 (mh = 125 GeV) and BP2 (mh = 60 GeV)
are markedly different. This can be understood as follows. In general, the angular
separation between the decay products a and b in the resonant process X → ab can be
approximated as ∆R(a, b) ∼ 2mX

pX
T

. Hence, the in the lower left panel of Figure 5.8 the
transverse momentum of each of the h bosons is plotted.

For mh = 60 GeV, in BP2, the light Higgs boson has less pT than in BP1, owing to the
smaller mH − mh mass difference. Therefore, the b-quarks are more widely separated
in this case, compared to mh = 125 GeV. In the light of this, it is concluded that there is
a strong correlation between the lightest Higgs boson mass and the cone size of the jet
clustering algorithm that might be used without risking merging jets. Two key ways to
improve multiplicities are preventing pairs of quarks being merged into the same jet,
and ensuring each individual jet gains enough pT to pass kinematic cuts. In order to
maximise the number of jets for different choices of the light Higgs boson mass, the jet
radius parameter ought to be varied. That is, a fixed jet radius parameter may not be
suitable here for all mh choices.

Finally, in the lower right panel of Figure 5.8, the ∆R separation between the two light
Higgs states is plotted. For BP1, with mh = 125 GeV, it is clear (since ∆R ≈ π) that
the H → hh decay is dominantly back-to-back (in the laboratory frame). However, for
BP2, with mh = 60 GeV, there is a double peak structure. This occurs due to a recoil
effect from ISR, which only becomes apparent at the mass boundary where mH ' 2mh.
The inability of the two emerging h states to fly apart implies some overlapping of the
b-quark momenta. This overlapping momentum increases the risk that the b-jets are
merged if the jets become too large, lowering the b-jet multiplicity. Low mass is also
expected for b-jets in BP2, potentially reducing the number of jets that pass kinematic
cuts.

5For this study it was also verified that the additional noise due to tt̄bb̄ events as well as hadronic final
states emerging from W+W−, W±Z and ZZ production and decay are negligible, once mass reconstruc-
tion around mh and mH is enforced.
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FIGURE 5.8: Upper panel: the ∆R distribution between the two b-partons originating
from the same h. Lower left panel: the pT distribution of the light Higgs boson h
originating from H decay. Lower right panel: the ∆R distribution between the two h
states originating from the H decay. No (parton level) cuts have been enforced here.

As a final study, in fact, the pT of the b-quarks is plotted. This is done in Figure 5.9.
From the top histogram it can be seen that in both mass configurations the b-quarks
have a wide range of pT’s and hence one would expect the resulting jets to have a
similar spread of pT’s. In particular, there are plots of the highest and lowest pT’s
amongst the b-quarks in a given event (lower frames). Further to the discussion in
section 5.2.3, one would therefore expect the resulting spread of radiation from each
signal b-quark to vary in solid angle and hence the resulting jets to be of differing sizes.
This thus motivates the need for a jet reconstruction sequence that behaves sensibly for
jets of various cone sizes. Therefore, the next section firstly tests how jet clustering with
fixed-R input behaves and then introduces the variable-R algorithm.

5.3.2 Jet Level Analysis

After establishing some expectations from the behaviour of the partons, the various jet
formation algorithms can be compared. MC events that have been showered, hadro-
nised, passed through detector simulation and then undergone particle reconstruction
are used as the input to various jet clustering algorithms. This is done twice, for both
BP1 and BP2, to provide examples of behaviour in different scenarios.
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FIGURE 5.9: Upper panel: the pT distribution for all b-quarks. Lower left panel: high-
est pT amongst the b-quarks. Lower right panel: lowest pT amongst the b-quarks. No

(parton level) cuts have been enforced here.

FIGURE 5.10: Left panel: the b-jet multiplicities for BP1. Right panel: the b-jet multi-
plicities for BP2. All cuts are enforced.

With the jets that are formed, two key indicators of success will be considered; the jet
multiplicity, and the reconstructed mass spectrum. Higher jet multiplicities improve
the statistics that are gained from any analysis. Also requiring an accurate jet mass
spectrum prevents arbitrary manipulations that might improve multiplicity at the cost
of allocating junk to the jet, or being overcautious to limit jet merging. Both of these
must be avoided to gain a clear signal reconstruction.

For both the anti-kT and variable-R algorithms, some parameter choices are needed. A
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FIGURE 5.11: Left panel: the b-dijet invariant masses for BP1. Right panel: the b-dijet
invariant masses for BP2. All cuts are enforced.

value of R = 0.4 is always used for the anti-kT algorithm. The CA algorithm was also
investigated, but the results are very similar, so it is not presented to avoid cluttering
the plots. For variable-R, different parameter values are used for each of the bench-
marks; for BP1, ρ = 100 GeV, for BP2, ρ = 20 GeV. These values are inferred from the
pT scale of the fixed cone b-jets. Finally, Rmin = 0.4 and Rmax = 2.0 are used throughout
wherever variable-R is used.

To begin with, the b-jet multiplicities can be seen in Figure 5.10.

The stark difference between the two plots is due to the relative kinematics of the final
state b-jets. Due to the different mass configurations, b-jets from BP2 have significantly
lower pT than those from BP1, and so significantly more are lost to the trigger, as well as
from the (pT dependent) b-tagging efficiencies. This is in line with the expectations in
section 5.3.1. As for the effect of variable-R, in the BP1 case there is very small increase
toward events with higher b-jet multiplicities. This shift becomes more significant in
BP2, as BP2 benefits more from increased jets radius at small pT, when this helps jets
pass the kinematic cuts.

Having seen good results in multiplicity, another central objective of jet clustering
should be examined; the capacity to reconstruct mass peaks.

In Figure 5.11 the advantage of the variable-R becomes more apparent. For both BP1
and BP2, the variable-R algorithm is able to get closer to the mass of the parton than the
anti-kT algorithm, and creates a better representation of the light Higgs mass. The same
behaviour is seen in the four b-jet masses in Figure 5.12. The capacity of reconstruct a
wider range of jet widths results in less signal loss.
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FIGURE 5.12: Left panel: the four b-jet invariant masses for BP1. Right panel: the four
b-jet invariant masses for BP2. All cuts are enforced.

5.3.3 Signal-to-Background Analysis

It is also important that any jet algorithm proposed does not sculpt the backgrounds.
To check this, a calculation of the signal-to-background rates is given. This is needed to
properly compare the various jet reconstruction procedures described in this study, in
connection with their performance in dealing with events not coming from the target
BSM process. In order to do so, the selection procedure described in Figure 5.16 are
applied, which bolts on the discussed reduced pT cuts. Again, anti-kT has been used
throughout but conclusions would not change if CA was used instead. One more cut
will be used for this analysis, detailed below.

5.3.3.1 Jet Quality Cuts

As per the process in the original variable-R paper [126], jet quality cuts are used to
remove weak reconstructions. These are of course applied to all jet construction algo-
rithms. They are well motivated, the concept is that a well constructed jet will have the
same direction of flow in energy and transverse momentum. Jets that do not have this
quality are likely not symmetric, and so ill formed.

This requires the following definitions;

PE = ∑
i

Ei p̂i, PpT = ∑
i

pTi p̂i (5.5)

where i labels the jet constituents of the jet being assessed, p̂i is the four-momentum
of the ith constituent, normalised to unity and Ei and pTi are its energy and transverse
momentum respectively. The quality cut applied then reads;

∆R(PE, PpT ) < δ (5.6)
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FIGURE 5.13: Left panel: the b-dijet invariant masses for BP1, with and without quality
cuts. Right panel: the four b-jet invariant masses for BP1, with and without quality

cuts. Here a value of δ = 0.05 is used.

FIGURE 5.14: Left panel: the b-dijet invariant masses for BP2, with and without quality
cuts. Right panel: the four b-jet invariant masses for BP2, with and without quality

cuts. Here a value of δ = 0.1 is used.

where δ is a user defined cut-off. To demonstrate the usefulness of these cuts, the b-dijet
mass, and the four jet invariant mass, are plotted with and without these quality cuts.
This can be seen in Figure 5.13 and Figure 5.14.

These cuts have improved the height of the signal peaks a little. This is particularly
apparent for the heavier shower, for BP1, in Figure 5.13.

This is not the intended benefit of these quality cuts, however, the intention of the
quality cuts is to reduce the impact of backgrounds.

5.3.3.2 Signal Selection

To carry out this exercise, pp→ bb̄bb̄ and pp→ Zbb̄ and pp→ tt̄ background processes
are generated using the toolbox described in Figure 5.15[71, 85, 132, 133]. Table 5.3
contains the cross sections in pb for signal and the various background processes upon
applying the aforementioned cuts and mass selections.
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Generate events for background processes
using MadGraph5@NLO v2.7.2

Shower and hadronise parton level
events using Pythia8 v8.243

Perform jet reconstruction, apply reduced cuts
and carry out analysis using MadAnalysis5 v1.8.45

FIGURE 5.15: Description of the procedure used to generate and analyse MC events
for background processes.

Select events that contain exactly four b-jets

Remove event if |mbbbb −mH | > 50 GeV

Using dijet pairings chosen in above analysis

Remove event if |mbb −mh| > 20 GeV

FIGURE 5.16: Event selection used to compute the signal-to-background rates.

It is clear from the data obtained that the QCD-induced pp→ bb̄bb̄ process is the domi-
nant background channel6, followed by pp→ Zbb̄ and pp→ tt̄. The next step is then to
calculate the event rates in order to get the significances for two values of (integrated)
luminosity, e.g., L = 140 and 300 fb−1, corresponding to full Run 2 and 3 data samples,
respectively. The event rate (N) for the various processes is given by:

N = σ×L. (5.7)

After the event rates have been calculated, the significance can be evaluated, Σ, which
is given by (as a function of signal S and respective background B rates)

Σ =
N(S)√

N(Bbb̄bb̄) + N(BZbb̄) + N(Btt̄)
. (5.8)

It is then clear from Table 5.4 to Table 5.5 that the variable-R approach works better
than fixed-R one also in providing the best significances, no matter the choices of R for
the latter. The improvement in the final significances is indeed very significant. This
should not be surprising, given the ability of the former in outperforming the latter

6In fact, this study computed the full four-jet sample produced by QCD, i.e., including all four-body
partonic final states, yet, in presence of the described kinematical selections and b-tagging performances,
the number of non-bb̄bb̄ events surviving is negligible [147, 142, 148].
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Process
variable-R R = 0.4

BP1 BP2 BP1 BP2

pp→ H → hh→ bb̄bb̄ 2.077× 10−4 8.962× 10−3 1.254× 10−4 3.210× 10−3

pp→ tt̄ 3.798× 10−3 2.131 1.651× 10−3 9.470× 10−1

pp→ bb̄bb̄ 7.973× 10−4 2.850× 10−2 1.595× 10−3 2.217× 10−2

pp→ Zbb̄ 9.689× 10−6 2.627× 10−2 3.876× 10−6 9.695× 10−3

TABLE 5.3: Cross sections (in pb) of signal and background processes upon enforcing
the reduced cuts plus the mass selection criteria |mbbbb − mH | < 20 GeV and |mbb −

mh| < 15 GeV for the various jet reconstruction procedures.

variable-R R = 0.4

BP1 1.145 0.823

BP2 2.268 1.214

TABLE 5.4: Final Σ values calculated for signal and backgrounds for L = 140 fb−1

upon enforcing the reduced cuts plus the mass selection criteria |mbbbb − mH | <
20 GeV and |mbb −mh| < 15 GeV for the various jet reconstruction procedures.

variable-R R = 0.4

BP1 1.676 1.205

BP2 3.320 1.777

TABLE 5.5: Final Σ values calculated for signal and backgrounds for L = 300 fb−1

upon enforcing the reduced cuts plus the mass selection criteria |mbbbb − mH | <
20 GeV and |mbb −mh| < 15 GeV for the various jet reconstruction procedures.

from the point of view of kinematics. Again, while the signal-to-background analysis
has been performed for the anti-kT algorithm, the same conclusions are reached for the
CA case.

FIGURE 5.17: Mass peaks comparing variable-R and fixed R clustering, acting on sim-
ulation that includes MPI and pileup. Using the parameters of BP1. Left panel: b-dijet

mass peak. Right panel: four b-jet mass peak.
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FIGURE 5.18: Mass peaks comparing variable-R and fixed R clustering, acting on sim-
ulation that includes MPI and pileup. Using the parameters of BP2. Left panel: b-dijet

mass peak. Right panel: four b-jet mass peak.

5.3.4 Variable-R and Pile-Up

It has been noted that the nature of variable-R, combined with reduced pT restric-
tions, allow for wider cone signal b-jets. A quick study of the impact of pile-up and
multiple parton interactions (MPI), using variable-R, is offered next. As briefly men-
tioned, in order to perform such a study a more sophisticated detector simulation is
required. Delphes is employed for this. The hadronised events (and pile-up, simulated
in Pythia8) are passed through the CMS card (with the same b-tagging efficiencies and
c/light-jet mistag rates as before). The same exercise is conducted with a fixed cone of
R = 0.4 to compare.

In Figure 5.17 and Figure 5.18 the mbb and mbbbb spectra, as described earlier, are pre-
sented with pileup and MPI. This compares R = 0.4 and variable-R jet clustering. With
the addition of pileup, in BP1, a different value of the ρ parameter are used; ρ = 50 GeV.
Furthermore, no jet quality cuts are used here. The primary purpose of the jet quality
cuts is to mitigate background, and as background is not considered here, the quality
cuts are omitted in case the obscure the comparison. It is clear that, with pileup added,
a variable-R algorithm retains significantly more events in its selection procedure.

As a final point, note that a further pile-up mitigation technique is possible in variable-
R. This is in the values chosen for the Rmin/max variables. Clearly if, for some particular
process, one discovers that using a variable-R sweeps in too much extra ‘junk’ into the
jets, a simple reduction of Rmax is always possible.

5.3.5 Other Variable-R Studies

Before concluding, a short review of other literature utilising a variable-R reconstruc-
tion procedure is offered.
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While the leading b-jet has an Reff roughly in line with expected values (Reff ' 0.5),
the lowest pT b-jets have large cone sizes (Reff > 1.0). These wide low pT jets risk
potential contamination from additional radiation. This effect is discussed in [149]. This
study does not implement any vetoes to remedy this effect, yet, despite this, the results
still suggest that the variable-R approach displays an improvement over traditional
methods.

There have been other studies utilising variable-R methods for physics searches. For
example, in highly boosted object tagging of hh → bbb̄b̄ decays in [150]. Furthermore,
in [149] mentioned above, a variable-R algorithm is deployed in the context of heavy
particle decays. In both examples, an improvement over current fixed-R methods is
present when using variable-R, which is in line with the findings of this study.

Finally, the relation of variable-R jet reconstruction in experiments to b-tagging perfor-
mance has been considered. In particular, the studies of [151, 152] explore the possibil-
ity of Higgs to b-jet tagging at ATLAS using variable-R techniques. Specifically, these
studies deal with boosted topologies, focusing on fat b-jet substructure, so the validity
of applying these techniques in a non-boosted regime is to be determined.
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5.4 Conclusions

This study has assessed the potential scope of the LHC experiments (from mainly a
theoretical perspective) in accessing BSM Higgs signals induced by cascade decays of
the 125 GeV SM-like Higgs state discovered in July 2012. It considers the following
prototypical production and decay channel: gg, qq̄ → H → hh. Two benchmarks are
considered, in BP1 H is a heavy BSM Higgs state and h is the SM-like Higgs state,
while in BP2 H is the SM-like Higgs state and h is a lighter BSM Higgs state, with mass
less than mH/2. These mass choices induce resonant production and decay, thereby
enhancing the overall rate. Any such Higgs boson, largely independently of the BSM
construct hosting it, would decay to bb̄ pairs, eventually leading to a four b-jet signa-
ture. The latter is extremely difficult to establish at the LHC, owing to the substantial
hadronic background. Therefore, b-tagging techniques are to be exploited in order to
make such a signal visible. However, this poses the problem that the latter are most
efficient at large transverse momentum of the b-jets, say at least 20 GeV, which in turn
corresponds to a significant loss of signal events if the BSM Higgs mass is in the sub-
60 GeV range. Hence, if one intends to maximise sensitivity to this benchmark sig-
nature of BSM physics, a thorough reassessment of the current Run 2 approaches is
mandated for and especially so in view of the upcoming Run 3.

With current pT cuts on final state b-jets, using a fixed-R jet reconstruction and tagging
procedure, will lead to a poor signal visibility. A majority of signal b-jets would be lost.

A variable-R approach shows a significant improvement in signal yield as well as
signal-to-background rates. In final states of this kind, the signal b-jets have a wide
range of pT and hence varied spread of constituents. Using a fixed cone of a standard
size (R = 0.4) constructs well higher pT jets in an event but does not capture much
of the wider angle radiation from lower pT jets. This leads to two issues. Firstly, it
will prove difficult to accurately construct mh and mH in the two- and four-jet invariant
masses. Secondly, these jets will more often be lost due to kinematic cuts. A larger cone
(R = 0.8), conversely, will gather up too much ‘junk’ in the higher pT jets, which again
will contaminate the signal. Hence a variable-R jet reconstruction algorithm offers a
significant improvement for this search.

All of the above has been obtained in presence of a sophisticated MC event simulation.
This employs exact scattering MEs, state-of-the-art parton shower, hadronisation and
B-hadron decays as well as a simplified detector simulation. Given the results of this
analysis, undertaking a more thorough detector level analysis is recommended. This
ought to be done for a variety of different high b-jet multiplicity scenarios, to explore
whether a shift to variable-R jet clustering, on the one hand, could be implemented
and, on the other hand, would improve upon current signal significance limitations
using fixed-R jet reconstruction. In fact, although this study is quantitatively based
on the example of the 2HDM-II, this procedure can identically be used in other BSM
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constructs featuring a range of (pseudo)scalar states emerging from decays of the SM-
like Higgs state and in turn decaying into bb̄ pairs.
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Chapter 6

Existing Machine Learning in Jet
Physics

ML emerges smoothly out of other disciplines, primarily statistics, and so there is not a
strict boundary on what should be considered as ML [153]. Textbooks will frequently
begin by looking at linear regression problems [153, 154], which would be well under-
stood as a traditional statistics approach, before moving out of the domain of problems
that could ever plausibly be tackled with a pen and paper. In this light, it is hard to say
when ML was first used in particle physics, or even jet physics in particular.

Perhaps there is a strong claim for the iterative cone algorithm [116] to be the first
example of ML for jet physics (see section 4.6.3.2 for a short description). It utilises
a form of gradient decent, which is a common feature in ML algorithms. It was not
referred to as ML by its creators, but the phrase ML was not in common use at that
time. Subsequent sources have made the link between clustering algorithms and ML
explicitly; “A jet is defined by a clustering algorithm, which is an example of an unsupervised
machine learning technique” – [155].

For the rest of this chapter, that sticky question is put aside, and the focus is instead
on ML in jet physics today. Here, a narrative review, covering only the most popular
applications of ML, will be presented1. For a much more substantial review, see the
living review of ML for particle physics [156].

6.1 Specific Challenges for ML

In order to properly discuss modern ML in jet physics, a couple of challenges that are
particular to ML need to be outlined. These are the issue of overfitting, and working

1A full review of such a broad topic would be as long as a book, and that particular book would be out
of date almost as soon at it had been written.
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with “black box” analysis techniques.

Historically, vanishing gradient problems would also have appeared on this list, at least
for Deep Neural Networks (DNNs), but these problems have been largely solved. The
gradient descent used to train a DNN involves taking many partial derivatives in a row,
and limits of precision would sometimes cause this gradient to appear exactly equal to
zero, and hence vanish. With zero gradient, there was no way to progress the training
of the DNN. Certain activation functions (such as leaky ReLU [157]), along with more
modern compute power, have alleviated issues with vanishing gradients. A longer
discussion of this challenge is offered in section 6.2.2.4.

Overfitting is a challenge that is not strictly limited to ML. When an algorithm is trained,
it is normal to reserve a limited amount of data, perhaps 20%, to investigate its be-
haviour on data that has not been seen in training. The terminology for this is training
data, and test data. If the algorithm performs significantly better on the training data
compared to the test data, then the algorithm is described as overfitting the training
data.

Essentially, this occurs because the data will contain information about the signal dis-
tribution, and also statistical noise. The information about the signal distribution is
what the user hopes the algorithm will learn, and map to the correct outputs. This
signal distribution will be common to both the test and train data. With enough pa-
rameters, however, the algorithm may become capable of identifying individual items
in the training dataset, using unique variations that amount to noise. Being able to
identify individual items in the training set allows the algorithm to classify them per-
fectly, however it is not generalisable. The noise characteristics that are used to identify
each item have no pattern, and the same items will not be found in the test set, and so
these associations only serve to confuse the algorithm when it encounters new data.

A common solution to this is to limit the complexity of the fit to align with the com-
plexity of the signal. The details of this process are specific to the model being trained.
To take the example of a Neural Network (NN), this can be done with weight decay,
early stopping, or adding noise [158].

The second issue raised here is working with black-box tools. This is more subjective,
and perhaps situational. The nature of the issue is that understanding the reasons for
a decision made by an ML algorithm can be difficult. Standard algorithms normally
take steps that are inspired by a human understanding of the problem. For example,
a classical decision tree makes binary partitions of the data according to the scientist’s
understanding of what features best indicate the data’s true classification. An example
of this construction is given in Figure 6.1. This won’t always give the right classification,
but understanding the original intentions behind the decisions the algorithm makes
may help predict problems, or resolve them when they arise.
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By contrast, many machine learning algorithms operate on much looser assumptions.
The algorithm is capable of recreating a great variety of functions, often referred to as
the function space. It is assumed that there will be at least one close approximation to
the signal function in that function space, and also, that the training process can locate
one of these close approximations. If there is to be any understanding of why a partic-
ular function was selected from this function space, it must be found retrospectively.
This is often complicated by how complex the chosen function may be; it will often
contain literally thousands of parameters. There has been some success in unpacking
meaning from such functions, this can be done by highlighting which parts of the in-
put were most relevant to the decision [159], or by converting to a more comprehensible
model [160].

Why though, should the user care why the training process picked a particular func-
tion? Is it enough to find a function that performs well on the test data? In physics, one
might be interested in why a decision was made in the hope that understanding will
provide physical intuition. In any field, there is the danger that occasionally, this ML
tool may come unstuck2. A classic example of this, is that an image classifier may make
classification decisions based on the image background rather than the subject of the
image [161, 162]. Physicists might find this especially worrying, as given the complex-
ity of the data, and the extensive modelling with complicated uncertainties, an error
like this might not be obvious. It should be noted that not all ML tools are black-box
processes.

6.2 Mini Review of Contemporary ML in Jet Physics

As mentioned above, [156] is a living review of ML in all particle physics. One point
that is made clear by the contents of that review is that the bulk of ML applications
relating to jets aim to classify. At the time of writing the review containsO(100) articles
relating to classifying jets or events, as compared to 3 articles relating to jet formation.
Track construction, which is closely tied to jet construction, is a popular ML topic, with
O(50) entries.

The same focus on classification can be seen in [163, 164]. The series of publications [163,
164] discuss ML challenges, or bounties, on particle physics data. Those discussions
emphasise the importance of open data, to provide ‘standard candles’ for comparing
algorithms, which becomes increasingly more important with the complexity of the al-
gorithms involved. Defining such challenges also illustrates the nuance of the questions
being asked3. The methods to evaluating the proposed solutions needed to be highly
detailed. The challenges often elicited solutions that were both ingenuous and simple.

2Occasionally, in a very amusing way; https://youtu.be/vppFvq2quQ0?t=280.
3In many ways getting results from ML is like asking a genie for wishes; often, you will get exactly

what you asked for, and sometimes, learn that wasn’t what you wanted.

https://youtu.be/vppFvq2quQ0?t=280
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The solutions proposed also reflects the more general shift from boosted decision trees
(BTDs) to NNs.

The rise of machine learning techniques for classification in particular has opened some
questions about the correct statistical treatment of the predictions. How can the statis-
tical and systematic uncertainties of (an often unknown) function be estimated? These
questions are addressed in [165]. That paper covers both the source and the means of
determining uncertainties, along with a description of the best treatment of nuisance
features.

6.2.1 Jet Formation

Agglomerative algorithms, such as generalised kT (for a description see section 4.6.3.3),
are now such a ubiquitous default that jet formation is often discussed as if there was
no other possibility; “As jets are constructed from 2→ 1 clustering algorithms” – [155]. As
seen in section 4.6 other established options do exist, and indeed recent examples of
their use can be found [166], but the quote still illustrates the prevalence of agglomera-
tive methods.

While there is not a great focus on jet formation using ML, some ideas have been put
forward.

In the paper [167], the idea of an agglomerative clustering, where the order of merges
has some probabilistic element was explored. These are dubbed Q-Jets. The study
assumes that this probabilistic element is small enough that it normally results in ap-
proximately the same jets. Rather that focusing on which particle a jet belongs to, the
objective is to create many alternative clustering orders4. The same jet with an altered
clustering order will have the same ‘raw’ kinematics; however, as the study points out,
jet pruning may have different outcomes. This allows a distribution to be generated
for the jet’s pruned mass, for example. The authors observe that this distribution gives
them a means to estimate the true uncertainty. They also explore the idea of variables
that could be constructed by comparing variations in the clustering order, to give an
idea of the variability of the jet.

A different approach would be to focus on the uncertainly associated with assigning a
particle to a jet. As mentioned in section 7.1, there are some fundamental reasons for
feeling that jets might be more naturally described as fuzzy sets rather than discrete
sets. In [168], this idea is properly developed and dubbed fuzzy jets. These are inspired

4The justification given for this is that a jet’s clustering order is intended to be a reflection of the splitting
order in the shower, which is perhaps a slightly dubious assertion. The splitting of the shower was the
inspiration for the initial agglomerative kT algorithms, but the extension to the full class of generalised kT
algorithms has a different motivation. An anti-kT jet’s clustering order does not, in practice, look much
like a refection of the shower.
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by Gaussian mixture models (see section 7.1.1.9). The approach used assumes a Eu-
clidean metric between all particles; each particle contributes its rapidity linearly to the
location of the Gaussian. This scheme proves to be good at recreating kinematic vari-
ables, and may also supply extra information in the form of the relationship between
the learned standard deviation, σ, of the Gaussian and the jet mass.

An earlier exploration of the maximum likelihood principle to define jets can be found
in [169]. Although this takes a somewhat different approach, there is overlap in the
central premise, however, it does not offer any numeric analysis of the method.

A common point to all these suggestions is an interest in acknowledging the probabilis-
tic nature of jets.

Arguably, some convolutional neural networks (CNNs) also create jets, but without a
clustering process. By binning the hits in 2 or more dimensions, a whole event can be
treated as a image to be processed. In particular, some CNNs will identify which pixels
are considered Higgs signal [170]. This is closer to a classification activity on the pixels
than a clustering actively on reconstructed particles. This is discussed in more depth in
section 6.2.2.5.

6.2.2 Jet Classification

As mentioned in earlier sections, much of the focus on machine learning in jet physics
has been on classification. Various assignments are made. A jet might be classified
simply as signal or background. The quark that created the particles in the jet might be
guessed, this is known as tagging, the jet is said to be tagged by the quark. The hard
event (see section 4.1) itself might be directly classified. There are a myriad of excellent
classification tools available from ML.

When considering ML classifiers [171] and [172] both emphasise the importance of sim-
plicity, that is, reducing the number of free parameters in the model, particularly if there
is to be training on simulated data. Despite the great accuracy with which events are
simulated, simulation is complex and requires some approximation and tuning. Given
these conditions, it’s difficult to know how faithfully the finer details of the simulation
will reproduce the physics. While many features are certainly well matched between
simulated and observed data, it’s not possible to be sure that every feature that could
be extracted will be accurate in simulation, because the number of features that could
be extracted is not finite. The more parameters a model has the greater the concern
that it may use some obscure artefact of the simulation to improve its performance, this
problem is similar to overfitting, as described in section 6.1. In particular, [172] makes
the point that given sufficient data and parameters most machine learning models can
achieve the same benchmarks on particle data, so the objective becomes the capacity to
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meet the benchmark with the simplest model. Furthermore, semi-supervised or unsu-
pervised training on real data is very advantageous where possible.

6.2.2.1 Features

Many approaches to classification use some so-called ‘expert features’5. These fre-
quently include kinematic features of tracks, jets and jet-vertices [174, 175, 176, 147].
A simple example would be the mass of a jet,

mjet =
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where i is a sum over the particles contained in the jet. A slightly more nuanced ex-
ample might be the angle between the jet axis, defined by the direction of the sum of
the momentum of all jet constituents, and the highest pT track in the jet. The secondary
vertex of a jet, where a particle inside the jet underwent further decay, is expected to
be a particularly good discriminator because it gives a measure of the lifetime of the
particle that created the jet.

Jet substructure variables, such as n-subjettiness and energy correlation functions, are
more complex examples of expert features [177, 178]. They are also often used as inputs
for clustering functions, although that is not their only application. It is possible to
ascribe them with a clear physical interpretation, and so like the event shape variables
discussed in section 4.6.2, they provide a higher level description of the events.

A comprehensive collection of jet substructure variables was constructed in [179], dubbed
energy flow polynomials. They are a linear basis containing all IR-safe jet substructure
variables. Some very successful classifiers have been built with these inputs [180].

Related to this is the Lund plane [181]. As the name suggests, the Lund plane is not a
single variable, but a diagram that captures key information about jets. This diagram is
a heatmap, populated by the series of merges from the root of the jet, to a particle, each
time following the highest pT subjet. That is, starting with the split at the root of the jet,
the split is added to the heatmap, then following the highest pT subjet (or pseudojet)
find another split to add, and repeat until a single particle is reached. The variable on
the x axis of this heatmap is ln(1/∆), where ∆ is the angle between the subjets in the
split, the variable on the y axis is ln(kT), where kT is the transverse momentum of the
lower pT subjet, relative to the higher pT subjet. The colour of the heatmap indicates
the local density. This heatmap offers a terse and interpretable description of a single
jet, or a collection of jets. It is a popular input for classification tasks [182, 183].

Three arguments might be given in favour of using expert features;

5Sometimes also referred to as high-level features [173].
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1. Physical intuition may be easier to obtain when designing a system based on
variables with clear interpretation. This is sometimes cited as a motive for using
expert features [180, 184].

2. Expert features typically have a higher information density when compared to
other data representations [147]. Dense information allows the classifier to func-
tion with fewer parameters, which improves interpretation and reduces room for
overfitting.

3. The accuracy of simulations, in particular parton showers, is checked for spe-
cific variables. This is done via ‘tunes’, which adjust various parameters of the
simulation. Often these include jet shape variables [185]. So there are stronger
guarantees on the accuracy of these variables, at least in the energy ranges used
to create the tunes.

And perhaps two clear counter arguments;

1. Evidently any choice of expert feature will exclude some information. It is pos-
sible that the excluded information could improve performance. There are no
guarantees however, as expert features are engineered to minimise noise, and
anything using the data ‘raw’ must be able to exclude this noise by other means.
Comparative analysis of methods that do and do not use expert features have
been done on the same dataset [147], and the results are mixed.

2. Different features may be optimal for different signals. Devising features that
carry the right information, and are not highly correlated is a challenging task,
which may not be transferable to other problems [173, 184].

These advantages and disadvantages are to some extent common to other classifica-
tion tasks. Both approaches are still taken, although there is currently a trend to move
away from expert features. This can be seen in the differing approaches taken in an
open kaggle contest in 2014 [186], which primarily involved using expert features for
classification, to the more recent kaggle contest in [164], where classifiers were typically
trained on lower level data.

6.2.2.2 Established Techniques

Prior to the meteoric rise of DNNs, the favourite technique for jet classification was
Boosted Decision Trees (BDTs). They didn’t actually come first, DNNs emerged first [186],
but took longer to be favoured in particle physics. In part, they where originally
favoured because BDTs offer much more transparency than NNs or DNNs.
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The BDT is really the conjunction of two algorithms, one algorithm to construct trees,
and a second ‘boosting’ algorithm which can improve any model. The first algorithm,
to construct the decision tree, aims to construct a single decision tree, which could be
used to classify a chosen data point. A illustration of this idea is shown in Figure 6.1.
Various algorithms exist for constructing these trees. To name a few; the ID3 algo-

FIGURE 6.1: A short mock-up of what a decision tree for classifying jets as signal or
pileup jets might look like.

rithm [187], the successor of the ID3 algorithm, the C4.5 algorithm [188]6, and Classi-
fication and Regression Trees (CART) [189, 190]. These algorithms can construct deep
trees with many decisions. However, for the purposes of a BDT, only shallow trees are
formed, also known as ‘stumps’.

CART makes a good general example of this construction process; it is essentially a
class of divisive recursive splitting algorithms. Steps to create the tree using a simple
version of CART are as follows;

1. Start with a root node that contains all points.

2. While there is at least one node containing both a minimum number of points,
and points from more than one category, split that node;

(a) For each possible split, j, calculate the Gini impurity;

Gini(j) = 1−∑
i

P(i|j)2 (6.2)

where i is a class, and P(i|j) is the relative frequency of i in j.

(b) Chose the split with the lowest Gini impurity, use it to create two new nodes,
each containing the points assigned by this split.

This creates a single decision tree, as in Figure 6.1. Then the boosting algorithm is
used to improve the tree. Again, various boosting algorithms are available, but this

6Which itself has a successor, C5.0, however, that one is proprietary.
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time there is one that is by far the most prevalent, AdaBoost [191]. AdaBoost works
by repeating the creation of the classification tree, and assigning weights to the points
that are proportional to how frequently the last tree misclassified that class. This very
simple process focuses the next tree on the points that are hardest to classify.

BDTs have been used for a variety of classification tasks. During the open Higgs Ma-
chine Learning Challenge many contestants attempted BDTs [186]. The performance
of BDTs and NNs in top-tagging has been compared, and found to be similar [192], a
further study from the same authors repeated the comparison for a convolutional neu-
ral networks (CNNs), again, finding that the performance of the CNN and the BDT
was similar [173]. Still hunting for Higgs particles, the study [193] used BDTs to iden-
tify whole events, when Higgs decays are accompanied by tt̄ pairs. The study trained
two BDTs, one for identifying events where both tops decay hadronically, the other for
the semileptonic top decay. Using these BDTs, the total number of observed counts in
various bins was calculated. Comparison with expectations confirmed the agreement
with standard model predictions. A variation on BDTs, with a focus on systematic un-
certainty, is presented in [194]7. This is proposed as a method designed specifically for
particle physics problems. In [170], a combination of a CNN and a BDT is used to locate
and identify Higgs jets. The CNN is used to locate areas that appear to be candidate
Higgs jets, the BDT is then used to discriminate between actual Higgs jets, and similar
background jets. Despite the complexity of the CNN used, the BDT still improves the
discrimination between the signal and the background.

When advocating NNs, a feature that is often emphasised is that they are universal
approximators [195]8. It is not quite so well known that BDTs are also universal ap-
proximators, for more or less the same reasons as NNs are [196], so in that respect they
are on equal footing.

Despite having the same theoretical limits9 , the actual performance of a BTD and a
NN on the same dataset will not be equal. There is no universal trend as to which is
the better choice, the performance is depended on the dataset [197, 198].

6.2.2.3 Neural Networks

Neural networks (NNs) are machine learning algorithms capable of classification or
regression. These are not a recent conception, they were first written about in 1943, and

7The author of [194] also echos the observation that NNs and BDTs are the two favourite methods of
classification in jet physics.

8Actually, the claim is that any Borel measurable function can be approximated by a NN with one
hidden layer, so long as the hidden layer uses a squashing function as an activation function. This caveat
explains why a NN cannot be expected to, say, predict digits of π, or predict prime numbers. Those things
are not Borel measurable.

9These limits could be reached with an infinite computer, a device that has similar uses and limitations
to a spherical cow.
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have been rediscovered many times since [199]. There are a great variety of structures
that go under the name NN, the common feature is that they are built of components
known as neurons. These neurons take a vector of values as input and deterministically
produce an output value. These neurons are inspired by the neurons found in the
animal brain, and the NN is sometimes described as resembling the brain [200]10.

Neural networks (NNs), gained popularity once progress was made on the practical
issues of training deeper networks. This issue is known as the vanishing gradient prob-
lem, and explaining it requires a brief overview of what a NN is, and how it is trained.
The remainder of this chapter will explore NNs of increasing complexity. Starting with
a basic linear feed forward network, and then looking at other popular architectures.
At each stage, some notes on the applications in physics are given.

This will include a minimum of technical explanation. An excellent pedagogical intro-
duction to NNs can be found in [154].

6.2.2.4 Linear Feed Forward Networks

The basic unit of a neural network is a neuron. A neuron is a function that takes mul-
tiple input values, makes a linear combination, applies a function known as the activa-
tion function, and outputs one value. In symbols this is

f (~x) = g

(
(∑

i
wixi) + b

)
(6.3)

where ~x is a vector if input values, xi, wi is the weight associated with the ith input, b
is a constant known as the bias of the neuron11, and g is the activation function. The
popular visualisation of this is shown in Figure 6.2.

FIGURE 6.2: To the left; a single neuron, with activation function g, and inputs 1 to n.
This visual representation of Equation 6.3 emphasises the inspiration of the biological

neuron, which are shown in two photographs to the right. Photographs from [201].

10Or alternatively, they are described as the “subject of exaggerated claims regarding their biological plausi-
bility” – [199].

11No relation to statistical bias.
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Often the activation function will be chosen to be a leaky ReLU, function;

ReLUε(y) =

εy, if y < 0

y otherwise,
(6.4)

where ε is a small constant. ‘ReLU’ is an abbreviation of Rectified Linear Unit. The
reasons for this choice will be easier to cover when discussing training the NN.

For now, it is enough to notice that by subtracting the output of one neuron from an-
other it is possible to create a step like function. To take a one dimensional example; let
the neurons be labelled a and b. Chose their weights to be, wa = +1 and wb = +1, and
their bias’ be ba = 0 and bb = −1. The difference of fa and fb is then

fa(x)− fb(x) = ReLUε(x)− ReLUε(x− 1) =


ε x < 0

ε + (1− ε)x 0 ≤ x < 1

1 otherwise

(6.5)

This is a step like function, which meets the requirements for a squashing function,
as set out in [195]. Therefore, a linear superposition of these neurons is a universal
approximator. A single linear superposition of neurons is often referred to as a layer,
this is depicted in Figure 6.3.

FIGURE 6.3: A layer of neurons linked together, with a single neuron creating a linear
superposition of their outputs.

This layer is the most basic form of NN, and with sufficient neurons it can behave as
any function. The trick is to find the best parameter values (the parameters being the
weights, wi and biases, bi), to approximate the function needed. A loss function is
needed, which measures the distance between the NN’s current output and the ideal
output. Once the loss function is defined, the NN can be ‘trained’ to better mimic the
ideal output.
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A simplistic version of training might proceed as follows;

1. The input data is normalised.

2. Make two sections of the data, a larger segment for training on, and a smaller
section for testing against.

3. All weights and bias’ are initialised from a random uniform distribution between
0 and 1.

4. It is now time to train the parameters. While the performance on the test data set
tends to improve;

(a) Take a random example from the training dataset, use the NN to get an out-
put value.

(b) Obtain the partial derivative of each parameter (weights and biases) with
respect to the loss function. This is known as back propagation.

(c) Using the partial derivates as guidance, make a small alteration to each pa-
rameter in the direction of reduced loss.

In the beginning, the performance on the test data should improve, despite it not being
directly used in the training process. This occurs as the NN learns the signal function
shape, which is common to the test and the train data. Often there is some averaging in
evaluating the stopping condition. After some training, the performance on the test set
will actually start to degrade. This is because the NN is now learning to replicate noise
in the training data, and the shape of the noise differers between the test and the train
data. The performance on the test set may randomly degrade on occasion, and this is
not sufficient to stop training. If the performance on the test set gets worse on average
over 10 steps, then the training should be abandoned. Other methods are possible.

There are many variations and improvements taken on this process. Most NNs contain
more than one layer of neurons, this makes it possible to better approximate a func-
tion with fewer parameters. NNs with multiple layers are often described as deep (and
therefore named Deep Neural Networks, DNNs). It is here that the problem of vanish-
ing gradient can arise. With many layers of activation function, the gradients calculated
in item 4b can become very small, even to the point of being obscured by computation-
ally indistinguishable from zero. If a non-zero gradient cannot be found then the NN
cannot be improved. The leaky ReLU activation function is less susceptible to this than
the previously preferred sigmoid function, as the gradient of a single function never
tends to zero. Using modern computational power also allows better precisions, and
so smaller numbers remain distinct from zero.

For a more complete, practical approach to training NNs, see [154]. However, these
steps capture the essence of training an NN.



6.2. Mini Review of Contemporary ML in Jet Physics 91

In [202], comparisons are made between a fully connected, feed forward, NN, and more
complex architectures. The aim is to differentiate between b, c and light jets. Chang-
ing the architecture does not lead to significantly different accuracies. The same study
also looks at the impact of changing the input features. They try expert features, vertex
features and track features. This does have an impact on accuracy, with expert fea-
tures preforming best when considering only one category. However, supplying all 3
categories at once improves the performance still further.

A pair of NNs designed to distinguish b, c and light jets, named CSVv2 and DeepCSV [203].
Both were used at different points by the CMS experiment. The classifiers take expert
features as input. It was found that increasing the number of layers, from CSVv2 with 1
hidden layer, to DeepCSV with 4 hidden layers, improved performance, although this
was done alongside increasing the features available, so the conclusion is not straight-
forward. A replication study is available in Appendix A.

Some classifiers have more complex tasks; in [204] the same classifier is used to dis-
tinguish signal jets from background, and to identify which part of the signal process
each jet corresponds to. The process considered is tt̄ → W+bW−b̄, for which may be
as many as 180 permutations of the signal to consider. Various training schemes are
compared, along with variations in the size of the NN. These are also compared to a
maximum likelihood approach, and found to be a consistent improvement.

6.2.2.5 Convolutional Neural Networks

The principle behind Convolutional Neural Networks (CNNs) is that images contain
patterns that should be recognised as the same at any location in the image. These
patterns may exist on many levels. For example, at lower levels one might expect edges
at different angles, above that, corners and curves, and above that eyes and faces12. At
each level the features are identified if they activate the corresponding kernel matrix
when that kernel matrix is applied to the pixels containing the feature; an image of
this can be seen in Figure 6.4. Each kernel is applied to all points of the image, and
so the pattern that the kernel is designed to identify will be recognised in any part of
the image. Moving the kernel across the image is called convolving the kernel with
the image. This process may happen several times with different kernels, generating
multiple output features from the same image. Often this is accompanied with pooling
the output features of nearby pixels.

Eventually, the final image should contain a very regular representation of the image.
The pixels of this become inputs for a regular NN. This last stage converts the reduced
feature map into a classification or regression.

12This visual hierarchy is the inspiration for the layers in a CNN. It has often been noted that the actual
layers of a CNN do not always see anything that is possible to interpret [205].
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FIGURE 6.4: A CNN kernel acting on pixels in an image [206], The kernel is aligned
with a set of pixels of the same size, and the corresponding entries are multiplied

together and then the values are summed. This may happen many times over.

Preprocessing is important for good CNN performance. Image data is sparse, and often
obeys many trivial symmetries. If preprocessing can remove the obvious symmetries,
the CNN will not waste parameters learning these symmetries.

In the case of jet physics, data will take the form of a image with coordinates in rapidity
(or possibly pseudorapidity) and φ, (see Figure 4.2 in section 4.5). The pixels of the
image are often coloured according to energy deposits, possibly with a distinct colour
for each subsystem of the detector. CNNs for this task can be split into two common
categories: the first kind skips the jet clustering step, classifying with a whole event at
a time; the second kind act after the jets have been formed, classifying one jet at a time.
In both these challenges there are some key symmetries and some transformations that
are not as safe as they might appear:

• Almost all detectors are symmetric in the φ coordinate (see Figure 4.2 in sec-
tion 4.5). So events should be rotated in φ to line up at least one key feature
(for example, the direction of greatest energy flow).

• Equally, the event should be symmetric in the x and y axes, so if a flip in a plane
perpendicular to the beam can align a second moment of the energy, that should
also be applied.

• For CMS, the positive and negative z axes (or rapidity directions) are identical. So
events should be flipped in z axes such that all events have the majority of their
energy flow in the same z direction.

• Often events are normalised in energy, or transverse momentum. Clearly these
aspects will carry real information about the event, but it is actually not desirable
to classify based on these criteria. This is because the results of the classification
produced by the CNN will often be used to analyse a mass spectrum13, and so

13“Bump hunting”.
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it is very important that the performance of the CNN is not correlated with the
mass of the event or jet being classified. Both transverse momentum and energy
are strongly correlated with mass.

• One imperfect symmetry is a rotation in the rapidity – φ plane. This is not a
proper symmetry because it is not possible to rotate a jet in a way that preserves
both the n-subjettiness and jet mass [155, p. 92]. So one or the other must be
altered.

Early attempts to apply a CNN to the problem of jet tagging include ANN [207], a
top tagger, an general flavour tagger [208], and two classifiers that identify boosted
W bosons [209, 210]. All 3 attempts note an improved performance in comparison
to expert feature techniques. Only the last one, [210], takes note of the complications
involving rotations in rapidity – φ space. In some respects, [209] goes rather further
than the others; that work investigates the influence that the MC showering algorithm
responsible for generating the training samples has on the classifier, which is of par-
ticular interest when working with MC data. It is difficult to determine how accurate
the representation of the MC data is, so by obtaining similar performance on different
showering simulations, the confidence in the classifications of the tagger is increased.
The CNN of [211] addressed the simulator dependence of previous studies and showed
invariance between Pythia8 and Herwig.

A different approach to this concern would be to train, in part or in full, on unlabelled,
real data. This tactic has only been more recently explored for architectures as complex
as CNNs; in [212] it was applied to distinguish Z + jet and dijet events. The study [213]
also explores classifying on unlabelled data, but attempts to find examples of currently
unknown particles. Both works demonstrate that classification on data is possible, even
for models as complex as a CNN.

6.2.2.6 Recurrent Neural Networks

Recurrent Neural Networks (RNNs)14 are a modification of the NN concept designed
to take an input in the form of an ordered sequence of indeterminate length. They are
popular for text processing because sentences, paragraphs and corpora normally do
have a strict order and variable lengths.

In the most general sense, a RNN is any NN which is designed to be applied once to
each step of a sequence, and takes both values from the data at the current step and the
output of the NN from the previous step as an input. In practice, the most common
configuration for an RNNs is the Long Short Term Memory (LSTM) network [215].

14RNNs are related to, but not the same as Recursive Neural Networks (RecNNs, or sometimes RvNNs),
see [214, 184].
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FIGURE 6.5: The internal structure of a LSTM [215]. Black lines represent a vector of
data. When two lines come together, two vectors have been concatenated, when two
lines diverge, the vectors have been copied. Red rectangles represent NN units, with
the activation function named in the rectangle. The half moon out to the left of the
NN units represents their bias. These NN units will transform the vector of data. The
yellow circles represent point-wise operations, to add or multiply all elements of the

incoming vectors.

The core concept of an LSTM is that there should be three inputs to each step, the first
is from the new data in that step, the second is the output from the previous step (short
term memory), and the third represents information distilled over many previous steps
(long term memory). Three components of this algorithm can be identified [215];

1. A forget gate, to erase some of the long term memory;

(a) Concatenate a vector of input from data at step t, x(t), with output from the
last step h(t− 1).

(b) Pass this through a NN with a sigmoid activation function, which will gener-
ate a vector f (t) which indicates how much of the long term memory should
be removed.

2. An input gate, to update the long term memory;

(a) Concatenate a vector of input from data at step t, x(t), with output from the
last step h(t− 1).

(b) Pass this through two parallel NNs; one with a tanh activation function,
which will generate new information, c̃(t), to be stored in long term mem-
ory, and the other with a sigmoid activation function, which will generate
a vector i(t) which indicates what parts of the new information should be
retained.

(c) Using f (t), c̃(t) and i(t), the previous long term memory c(t − 1) can be
updated;

c(t) = f (t)c(t− 1) + i(t)c̃(t) (6.6)
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3. An output gate, to generate a classification or regression for this step, and the
short term memory for the next step, h(t);

(a) Concatenate a vector of input from data at step t, x(t), with output from the
last step h(t− 1).

(b) Pass this through a NN with a sigmoid activation function, which will gen-
erate a vector o(t) which represents the information of this step.

(c) Generate the output, h(t) using o(t) and c(t);

h(t) = o(t)tanh(c(t)) (6.7)

The LSTM can either be used generatively, by looking at h(t) for each step, or one value
can be ascribed to the whole sequence by looking at c(t) at the end of the sequence. An
alternative depiction of this can be seen in Figure 6.5. While many other varieties of
RNN exist, the LSTM is generally very successful.

LSTMs have been applied as taggers; in [216] an LSTM as used for top tagging. Each
track creates three numerical inputs; (pT, η, φ). Finding a natural order in which to
parse the tracks in the RNN can be challenging. In [216], the tracks are ordered using
the anti-kT clustering order. If the clustering order is considered as a binary tree, the
leaves of the tree would be the inputs that need to be ordered for the RNN. Each node of
that tree has a join distance, which is the separation between the two nodes that were
merged to form it. The leaves are sorted by performing a depth first search, which
prioritises nodes with smaller join distances. In the preprocessing steps, care is taken
to preserve jet mass using rotation, in line with the challenges discussed with respect
to CNNs. The study found that LSTMs operating in this way could outperform NN’s
working on expert features.

The more challenging task of tagging jets from strange quarks has also been considered
as an LSTM task in [217]. The tracks are ordered by simple kinematic variables, such as
energy, or distance from the jet axis. This is attempted with data that contains different
levels of realism, and the impact of considering the challenges of the real experimental
environment is illustrated.

6.2.2.7 More Complex Network Structures

There are many other possible ways to connect together neurons, or whole NNs, train
them, and extract estimates from them. In [184] and [218], a variant of an RNN, known
as a Recursive Neural Network was chosen for its tree like structure that mimics that
of jet clustering.

A great deal of work has also been carried out on NNs in the form of sets or graphs,
for example [219] and [220]. As the field is explored, more specialised configurations,
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which reflect the underlying physical structures seem likely to gain popularity. At
present, there is no clear winner, and more work will be required for any one method
to see wide adoption.
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Chapter 7

Clustering Methods and Spectral
Clustering

An elegant and fascinating method of clustering points is known as spectral cluster-
ing. The word ‘spectral’ is in reference to the eigenspectrum, as spectral clustering’s
key component is an eigenvalue calculation. This chapter will set the scene by explor-
ing the wider world of clustering algorithms before providing an in-depth review of
the Machine Learning (ML) technique of spectral clustering. Following this, subse-
quent chapters will draw on this chapter to describe the specialised algorithm that was
adopted for jet physics, and the results this algorithm can generate.

7.1 Clustering in ML

Clustering can be seen as an unsupervised form of classification [221]. In most cases,
clustering is performed based on the assumption that the data is drawn from an un-
known set of groups, and these groups are the ground truth. The role of the clustering
algorithm is to recreate these unknown, ground truth groups. In other cases, the ob-
jects are grouped based on a subjective measure of similarity, with the aim of creating
“interesting” clusters1. Arguably, jet formation walks the line between these two sit-
uations; on the one hand, there is a ground truth objective to create jets that match
the momentum of the partons. On the other hand objects (particles in this case) may
not originate from one parton exclusively, rather, they have often been generated by
interactions between the output of the partons. Finally, there is some irreducible un-
certainty in the momentum of the partons being reproduced. This materialises in the
width of the Breit-Wigner distribution. So while the problem does possess a ground
truth, it may only have imperfect answers, and while one complete solution can be

1One might claim that is isn’t necessary for a clustering to be subjective to be interesting, but that would
be subjective.
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declared as better or worse than another, it is not possible to give the best allocation
for a single particle. Given this, fuzzy set theory might arguably be a better fit for jet
formation [222], however, a hard partition, also known as crisp clustering [223], is nor-
mally demanded for jets. The reasoning for this may in part be that old habits die hard;
the first jet formation algorithms considered only 2 back to back jets [115], and in that
setup, two exclusive jets is natural. Jets as fuzzy sets might also mean reconsidering
many other factors, from background subtraction to comparison to predictions. There
are a few studies that break this trend, in [168], a method of constructing jets using
maximum likelihood is applied, which is dubbed fuzzy jets. This thesis will retain the
concept of a jet being a discrete set.

There is no one agreed upon taxonomy of clustering algorithms, but a distinction that
is normally considered of great importance is the difference between a partition based
or a hierarchical clustering algorithm [221, 224, 225]. A partition based algorithm finds
some means to allocate points to clusters, which does not depend on forming internal
sub-clusters. By contrast, a hierarchical algorithm places the points at the leaves of a
hierarchy which takes the form of a simple graph (that is, it has no loops), known as a
dendrogram. Each level of the hierarchy dictates a set of clusters, each of which may
contain smaller clusters. There are two ways to generate this hierarchy: the hierarchy
can be generated divisively, beginning with all points in one cluster and repeatedly
splitting; alternatively, the clustering may proceed agglomeratively, each point starting
in a separate cluster, the clusters being progressively joined.

If this taxonomy was represented in a list it would have the form;

• Partition based.

• Hierarchy based.

– Divisive.

– Agglomerative.

While various other taxonomies exist [223], this one is most relevant to the work of this
thesis, so no others will be considered2.

Within the hierarchical clustering methods, the way in which similarity is measured is
also key to the algorithm’s behaviour. There are three fundamental categories [226];

1. Single-linkage clustering; also known as the connectedness, the minimum method
or the nearest neighbour method. The distance between two clusters is consid-
ered to be the distance between the pair of elements, one from each cluster, which
are closest.

2And besides, this direction has a real danger of leading to a taxonomy of taxonomies.
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2. Complete-linkage clustering; also known as the diameter, the maximum method
or the furthest neighbour method. The distance between two clusters is consid-
ered to be the distance between the pair of elements, one from each cluster, which
are furthest apart.

3. Average-linkage clustering; also known as minimum variance method. The dis-
tance between two clusters is considered to be the average distance between each
pair of elements, one from each cluster.

These three categories may all be applied with either divisive or agglomerative hi-
erarchical methods. There are two common further options. The first is known as
exponential-linkage [227], in which all three linkage options are available, and weighted
against each other using a learned parameter. The second is known as Ward hierarchi-
cal clustering, and will be described further in section 7.1.1.4.

7.1.1 Algorithms and Characteristics of Common Clustering Methods

In Figure 7.1 the grouping formed by 10 common clustering procedures are displayed.
A brief description of each of these methods, besides spectral clustering, will now be
given, along with their place in the taxonomy. This provides an overview of the alter-
natives that might be considered for this task, and gives a stronger context in which to
justify the choice of spectral clustering. Spectral clustering is then discussed in depth,
starting from section 7.2.

7.1.1.1 Minibatch KMeans

This algorithm is a speed optimisation of the traditional K-Means algorithm. In the
K-Means algorithm the objective is to minimise the cost function [226]

J = ∑
j

∑
i

∥∥∥x(j)
i − cj

∥∥∥2
(7.1)

where cj is the centre of the jth cluster, x(j)
i is the location of the ith element in the

jth cluster and ‖•‖ indicates the distance measure of choice. The convention is to use
‖•‖ = ‖•‖2, in which case the cost function is proportional to the variance of the cluster.

Normally K-Means is achieved by the following steps:

1. Chose locations for the cj at random. This is often done by selecting a random set
of k points, known as seeds, and setting the cj to their location.

2. Assign each element to the closest cj.
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FIGURE 7.1: Comparison between 10 common cluster formation methods. Calculated
and plotted by scikit-learn [228]. Each of these algorithms uses input parameters,
which may not be optimised for the data given, results are only illustrative of potential

behaviour.

3. Recalculate cj to be the average location of all points assigned.

4. If any of the cj have moved return to item 2.

This cost function is not convex, and may produce a slightly different result each time
the algorithm is carried out, due to the random initial placement of cj in item 1. Some-
times it is run multiple times with different seeds to increase the odds of locating the
global minimum.

Conceptually, the update step is very similar to the iterative cone algorithms described
in section 4.6.3.2. The distinction being that iterative cone algorithms assign particles
to clusters in a greedy manner, and use a fixed cluster area.

Minibatch KMeans is a modification to optimise this algorithm for large datasets [229].
It batches the data, and converts the update step to a gradient descent step

1. Chose locations for the cj at random. Often done by selecting a random set of k
points, known as seeds, and setting the cj to their location.

2. Create a vector, vj to keep track of how many points have been used to move each
cj. Initially all vj = 0

3. Chose a batch of b points, xi, from the full dataset.
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4. For each xi;

(a) Find the nearest centroid, cj.

(b) Update the number of moves for that centroid; vj ← vj + 1

(c) Calculate the learning rate for this move; η = 1
vj

(d) Move the centroid; cj ← (1− η)cj + ηxj

5. Return to item 3 for another batch, until sufficient batches have been processed,
or another stopping condition is reached.

Both variants of the KMeans algorithm are examples of partition based clustering. The
iterative cone algorithm (section 4.6.3.2) is also a partition based clustering. While
KMeans creates a predetermined number of clusters, the iterative cone algorithm does
not.

7.1.1.2 Affinity Propagation

A means of clustering that aims to chose a small number of ‘exemplar’ points, then as-
sociate all remaining points to exactly one exemplar point [230]. This views the points
as nodes of a graph, which must pass messages to each other with magnitude propor-
tionate to their similarity. Between each two nodes a similarity is defined;

si,k = −‖xi − xk‖2, (7.2)

where ‖•‖ is the distance measure of choice. The similarity of a particle to itself, sk,k,
should reflect the initial degree of belief that particle k should be an exemplar. This can
be set to a constant if this prior knowledge is not available.

The messages that are passed fall into two categories: responsibility of i to k, ri,k, indi-
cates how well suited k is to serve as exemplar to i, taking into account other potential
exemplars for i; availability of i to k, ai,k, indicates how well suited k is to serve as exem-
plar to i, taking into account the support from other points for using k as and exemplar.

An algorithm for this might go like;

1. All availabilities start as zero; ai,k = 0.

2. Responsibilities are computed from ri,k ← si,k − maxk′ 6=k (ai,k′ , +si,k′). Following
this, rk,k is called the self responsibility of the point and its magnitude contributes
to the belief that this point should be an exemplar at this stage of the algorithm.

3. Availabilities are now updates using ai,k ← min
(
0, r(k, k) + ∑i′/∈i,k max [0, r(i′k)]

)
.

Likewise, ak,k is called the self availability of the point and its magnitude con-
tributes to the belief that this point should be an exemplar at this stage of the
algorithm.
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4. Unless a stopping condition has been reached, return to item 2. Stopping condi-
tions might be change falling below a chosen threshold, no alteration of the indi-
cated exemplars for a determined number of iterations, or simply a fixed number
of iterations.

Despite the special status of the exemplar, this algorithm is still divisive rather than
hierarchical. It does not scale well with number of points.

7.1.1.3 Mean Shift

If the distribution of points is viewed as a landscape of variable density, there will be
a finite number of peaks in density. The objective of mean shift clustering is to assign
each point to the peak that its local gradient vector converges towards [231]. Such a
landscape is depicted in Figure 7.2. This goal can be accomplished without directly
computing the density.

FIGURE 7.2: On the left is a set of points, and to the right is the height map for the
density of those points [231]. Black lines on the height map indicate local gradient
vectors, and the red dots indicate the points at which the gradient vectors converge.

A general, multivariate, kernel density estimator can be written;

f̂H̃,K(~x) =
1
n

n

∑
i=1

KH̃(~x− ~xi) (7.3)

where ~x is a d dimensional vector representing the location of evaluation of the kernel,
~H is a d× d bandwidth parameter matrix and ~xi is the location of the ith data point. If
the kernel is restricted to being spherically symmetric, and the bandwidth is restricted
to a single parameter, h, this can be rewritten as

f̂H̃,K(~x) =
ck,d

nhd

n

∑
i=1

k

(∥∥∥∥~x− ~xi

h

∥∥∥∥2
)

. (7.4)



7.1. Clustering in ML 103

The clustering will depend not in the density of the kernel itself, but on the gradient of
that density. Provided k is differentiable, this may be computed directly [231];

∇ f̂H̃,K(~x) =
2ck,d

nhd+2

n

∑
i=1

(~x− ~xi)k′
(∥∥∥∥~x− ~xi

h

∥∥∥∥2
)

. (7.5)

Now for notational simplicity, let g(x) = −k′(x). This gives a new kernel which can be
used to find the local gradient;

G(~x) = cg,d(− f ′(‖~x‖2)) = cg,dg(‖~x‖2) (7.6)

Now what is desired is to know which direction this gradient tends in, from the current
location of the kernel, ~x. This direction is the equivalent to the average value of g on the
local points. It is desirable to normalised this with the magnitude of the local gradient,
such that larger steps are taken in areas with low gradient (far from a peak), and smaller
steps are taken in areas of high gradient (near a peak). So the iterative step becomes;

~ys+1 =
∑i ~xig

(∥∥∥ ~ys−~xi
h

∥∥∥)
∑i g

(∥∥∥ ~ys−~xi
h

∥∥∥) . (7.7)

From this, a clustering procedure may be written;

1. For each point ~xi, find a peak location by;

(a) Start with ~ys=0 = ~xi.

(b) Iterate with Equation 7.7, until ‖~ys −~ys+1‖ < ε, where ε is some tolerance.

(c) Return a peak location of ~ys+1.

2. Identify all peaks within 2ε as being the same peak, and put the corresponding
points into the same cluster.

In some cases, for example, if K is the Epanechnikov kernel, Equation 7.7 converges in
a finite number of steps. In that case ε may be infinitely small.

This is another divisive clustering algorithm.

7.1.1.4 Ward Hierarchical Clustering

It has been highlighted in [232] that the “Ward hierarchical clustering” method has ac-
quired several inequivalent meanings. In all common interpretations, the morphology
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of the dendrogram produced is the same, so with an appropriate stopping criteria, all
variations are equal.

The objective of the original version of the algorithm was to minimise the error of the
sum of the squares [233];

ESSgroup =
n

∑
i=1

x2
i −

1
n

(
n

∑
i=1

xi

)2

. (7.8)

This error represents some loss of information that arises from combining points into
clusters.

Ward is an agglomerative algorithm, which greedily combines clusters to minimise the
ESS. An algorithm for this would be;

1. Begin by placing each point in its own cluster.

2. For each pair of clusters, calculate the EES that would be the result of combining
that pair, according to Equation 7.8.

3. Combine the two clusters that result in the smallest EES.

4. Check the stopping condition, if the stopping condition is not reached, return to
item 2.

Ward hierarchical clustering differs from single, complete and average linking in that is
tends to produce the most even cluster sizes. However, a strong drawback, particularly
for physics, is that ward clustering cannot operate with non-Euclidean metrics.

7.1.1.5 Agglomerative Clustering

As has already been alluded too, agglomerative clustering is actually a relatively broad
category. The particular form of agglomerative clustering used in Figure 7.1 is average
linkage, with a city-block distance. The stopping condition was the number of clusters.

For completeness the algorithm for this is given here;

1. Begin by placing each point in its own cluster.

2. For each pair of clusters, ci, cj, calculate the mean city-block distance between all
possible pairs of points;

d(ci, cj) =
1

ninj
∑

i
∑

j

∥∥~xi − ~xj
∥∥

1, (7.9)
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where ‖•‖1 is the l1 norm, or the city-block distance and ni (nj) is the number of
particles in ci (cj).

3. Combine the two clusters that result in the smallest d(ci, cj).

4. Check the stopping condition, if the stopping condition is not reached, return to
item 2.

This algorithm does work with non-Euclidean distances. It is not quite equivalent to the
generalised kT algorithm, section 4.6.3.3, due to the recombination step in generalised
kT algorithms, but there are distinct similarities.

7.1.1.6 DBSCAN

The premise of DBSCAN is that clusters have a minimum density, and should the den-
sity of points drop below this level, the edge of the cluster has been reached [234, 235].

Some definitions will make the algorithm neater. Let Nε(xi) be the list of all the points
within range ε of xi and |Nε(xi)| be the number of points within range ε of xi.

Algorithmically, this can be written as;

1. Chose a minimum cluster density, dmin. For a given number of points this defines
a minimum number of points in a circle radius ε; nmin.

2. Chose a point that has not been labelled noise, or assigned to a cluster, xi.

3. If the point does not meet density criteria, |Nε(xi)| ≥ nmin, label the xi noise and
return to item 2.

4. Start a new empty cluster, cj.

5. Find Nε(xi) (all points within distance ε of xi, including xi itself), and start a stack
from these points.

6. While there are still points in the stack;

(a) Remove a point from the stack, call it xs.

(b) If xs is already in a cluster return to item 6a.

(c) Add xs to the cluster created in item 4, cj.

(d) If xs passes the density criteria, |Nε(xs)| ≥ nmin, add all points within ε to
the stack.

7. If points outside clusters, which are not noise remain, return to item 2.

This algorithm is fully deterministic, provided the clusters are unordered. It is a divi-
sive algorithm and it has the unusual property of labelling noise as a separate category.
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7.1.1.7 OPTICS

OPTICS bares many similarities to DBSCAN (section 7.1.1.6), but rather than having a
fixed minimum density, it orders points by the density they require to be captured by
a previous point [225]. Each item in the list defined by this ordering is associated with
the minimum density required to make it reachable from another point in a DBSCAN
algorithm. This ordered list contains sufficient information to reproduce the clusterings
of DBSCAN, but also can be used to identify and produce clusters of varying minimum
density, while still discarding noise.

Before defining the algorithm, defining the rules determining the core distance of a
point will keep the algorithm legible. As previously, let Nε(xi) be the list of all the
points within range ε of xi and |Nε(xi)| be the number of points within range ε of xi.
Given a minimum number of points, nmin, and a maximum core distance εmax, the core
distance for point xi is;

C(xi, nmin, εmax) = minε(|Nε(xi)| ≥ nmin)

ε ≤ εmax ε

ε > εmax undefined
(7.10)

So either the core distance is the minimum ε containing nmin points, or if that ε would
be greater than εmax the core distance is undefined. One further idea needed is a reach-
ability distance of xi form xj; this is the minimum ε needed from any other point for
that point to capture this point, and that point to meet the nmin requirement;

R(xi, xj, nmin, εmax) = max
(
C(xj, nmin, εmax),

∥∥xi − xj
∥∥) (7.11)

This is only defined if C(xj, nmin, εmax) is not undefined.

The first part of the algorithm is to construct a list of points, which will later inform
clustering;

1. Chose a minimum number of points for an object’s core distance nmin.

2. Optionally, chose a maximum core distance εmax; if not desired, this can simply
be considered εmax = ∞, this will increase the run time needed.

3. Create an empty ordered list; this will eventually contain all points and be used
to identify clusters.

4. Chose a point that has not yet been added to the list, xi.

5. Create a temporary stack, which will is used to sort more points, so they can be
added to the list. This stack will be ordered by the smallest reachability distance,
R found for each point in the stack.
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6. Find C(xi, nmin, εmax) according to Equation 7.10.

7. Place xi in the ordered list. Its reachability will be calculated later.

8. If its core distance C(xi, nmin, εmax) is undefined return to item 4.

9. For each xn in Nε(xi);

(a) If xn is already in the list go on to the next xn.

(b) Add xn to the stack if it is not already there.

(c) Find the reachability distance with respect to xi, R(xn, xi, nmin, εmax) as in
Equation 7.11. If this is less than the previous reachability distance update
xn’s smallest reachability distance in the stack (and the list) and resort the
stack.

10. Take the first item from the stack, xs.

11. Add xs to the list, along with its smallest reachability so far.

12. If the core distance of xs, C(xs, nmin, εmax) is not undefined then find its neigh-
bours Nε(xs), and for each xn in Nε(xs);

(a) If xn is already in the list go on to the next xn.

(b) Add xn to the stack if it is not already there.

(c) Find the reachability distance with respect to xs, R(xn, xs, nmin, εmax) as in
Equation 7.11. If this is less than the previous reachability distance update
xn’s smallest reachability distance in the stack (and the list) and resort the
stack.

13. If the stack is not empty return to item 10, else return to item 4.

This should yield a list of all points that are reachable from any other point, along with
their smallest reachability distance from any other object. This list plots as a series of
troughs as can be seen in Figure 7.3.

Now the challenge is to use this list to form clusters. If all the clusters can be restricted
to the same density it sufficient to simply cut the list of points into segments every time
the value of the reachability distance rises above a chosen constant. This is equivalent
to DBSCAN. However OPTICS offers the possibility of variable sized clusters by con-
sidering any trough in the list which contains at least nmin point. Both alternatives are
depicted in Figure 7.3.

OPTICS is a complex algorithm, but is is only mildly more computationally expensive
than DBSCAN [225]. It is essentially a divisive algorithm, although as troughs may be
found within troughs, it has the capacity to produce some hierarchical structure.
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FIGURE 7.3: At the top is the list created by the OPTICS, showing troughs for each
cluster. Below the various clusters that can be formed from this plot using the OPTICS

algorithm or DBSCAN are shown. Plot created by scikit-learn [228].

7.1.1.8 BIRCH

The Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is an algo-
rithm that boasts excellent use of both compute time and memory for large datasets [236].
This algorithm uses an initial pass over the data to form an acceptable clustering, re-
ferred to as a CF tree, which can be further refined with additional passes if time allows.
At no point do all the data points need to be loaded into memory, and the algorithm is
reported to scale well compared to its competitors.

The comparisons to competitor algorithms in the original paper are based on somewhat
pessimistic assumptions about the performance of the competitors. Such as the claim
that “the best time complexity of a practical HC [hierarcical clustering] algorithm is O(N2)”
–[236], where as the generalised kT algorithm is now famously N log N [237]3.

In this context, the abbreviation ‘CF’ stands for Clustering Feature. These CF are prop-
erties which can be used to describe any group of two or more points. Every node of
the dendrogram will be described by the CF properties of all points beneath that node.
The CF properties chosen by the original authors of the algorithm are [236];

3In defence of the authors of [236] the very title of [237] makes it clear that the efficiency of generalised
kT was not widely understood.



7.1. Clustering in ML 109

• The number of points beneath the node.

• The linear sum of the vectors representing points beneath the node.

• The sum of the squares of the vectors representing the points beneath the node.

Whatever set of features are chosen as the CF, two attributes are important: they must
be cumulative, when nodes combine, the new nodes CF should be a simple sum of
the combining nodes’ CF; and they must be all the information needed to calculate the
distance between two nodes. So there would be many possibilities for the CF, and the
best choice would depend on the distance metric used.

The CF tree itself has three parameters;

• A branching factor, B; each non-leaf node of the tree can have between 1 and B
children. This factor should be set such that all the immediate children of a node
can be loaded into memory.

• A leaf branching factor, L; each leaf node of the tree can have between 1 and L
points assigned to it. This factor should be set such that all the points of a leaf
node can be loaded into memory.

• A threshold, T; the maximum distance between a point and its assigned leaf-
node. The larger T the smaller the tree is, as each leaf node represents a subcluster,
and the size of T dictates the size of the subcluster.

The tree is depicted in Figure 7.4. Each node of the tree has CF properties which can
be calculated using only the CF properties of its direct children. This is due to the
cumulative nature of CF properties.

The steps to create this tree are as follows.

1. The tree begins by creating one root node which has one leaf node containing the
first point in the data set.

2. Chose a point that has not yet been added to the tree.

3. Starting from the root node, recursively descend the tree, at each step choosing
the closest node, using a distance between the node and the point defined on the
CF properties.

4. When a leaf node is reached check if it is possible to place this point in that leaf.
That is, does this point increase the radius of the leaf beyond T, or increase the
number of particles in the leaf beyond L? If not, place the particle in the leaf, and
return to item 2.
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Root node

Node

Leaf node

Point

FIGURE 7.4: Depiction of the CF tree. This is a dendrogram where nodes represent po-
tentials clusters. Non-leaf nodes (including the root node) may have up to B children.
The leaf nodes may contain up to L points, but those points must not span a radius

greater than T.

5. If the point does not fit in the leaf, then the leaf must be split. Chose the farthest
pair of points in the leaf as seeds for new leaves, assign all remaining points ac-
cording to which leaf seed they are closest to. The new leaf nodes need their CF
properties recalculating from their points. Should this split cause the node above
the leaf to have more than B children that node must also be split.

(a) Splitting a node proceeds in the same manner as splitting the leaf; chose
the farthest pair of children in the node as seeds for new nodes, assign all
remaining children according to which node seed they are closest to.

(b) The new nodes need their CF properties recalculating from their child nodes.

(c) This split then propagates up the tree until either a node does not need to be
split, because after splitting, its child it still has less than B children, or the
root node is reached. If the root node is reached, it too is split, moving the
root up another level.

(d) In the final node that does not need to be split, check if the two closes chil-
dren correspond to the new split. If not merge those children, and resplit if
this generates a node with more than B children.

6. Once the splitting has finished, return to item 2.

These steps constitute the initial pass of the data, and create the CF tree. It is possible
to stop here, defining the nodes separated by some suitable distance as the clusters, or
treating the nodes as input points to another clustering algorithm.

A second optional step is to make the tree a little more compact by increasing T and
reallocating the points to this new tree. The objective being to obtain a tree with fewer
leaves. This can be done by considering each leaf to be the destination at the end of a
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unique path from the root. For each node the children are assigned a number between
1 and L. Then the path from the root to the leaf can be described as a sequence of
numbers, each number being the number assigned to the child that must be followed
to find the leaf.

While there are still particles left in the old tree;

1. Chose a path to a leaf in the old tree, call this path pold.

2. Create a path in the new tree with all the same node numbers as pold, and call this
pnew.

3. For each point in the leaf of pold try to place it in the leaf that is closest to it in the
new tree, if that is not possible because that leaf is full, or the closes leaf is at pnew

place it in pnew.

4. The leaf at pold should now be empty and can be deleted. Some nodes in the old
tree now may also have no children and can be deleted. This prevents to memory
requirements from expanding too far.

5. Depending on where leaves have been placed in the new tree there may also be
some empty leaves and unneeded nodes in the new tree. Remove these too.

These steps can make the CF tree smaller.

Optionally some steps to remove outliers may be employed at this point. However,
if more time is available, improving the quality of the clusters is also possible. There
are a variety of optional steps for this. These include reducing the size of the tree by
increasing T and clustering points within the leaves.

Finally, global clustering completes the algorithm. The leaf nodes are each treated as a
single data point, and their group allocation defines the allocation of the points within
them 4.

The algorithm is hierarchical and agglomerative. This algorithm is a powerful scal-
able algorithm. From the description given here it is clear that is it very complicated,
more complicated that anything else considered in this chapter so far. Whether this is
a drawback is very much a matter of perspective.

A further limitation of BIRCH is that it performs poorly when the points exist in high
dimensions [228].

4Interestingly, this is only implied in the original definition of the BIRCH algorithm [236], but it is
explicitly stated in later works [238].
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7.1.1.9 Gaussian Mixture

This algorithm attempts to find a good fit for the data points, by treating them as sam-
ples drawn from a number of Gaussian distributions [239]. The most basic version
specifies a number of clusters, and which parameters of the Gaussian distributions
chosen to represent those clusters may vary. Initially the Gaussian are randomly gen-
erated. They are then tuned to maximise the expectation of the points with an iterative
algorithm.

This is a partition based algorithm. It has the advantage of simplicity, and the capacity
to generate fuzzy sets.

7.1.2 Comparative Conclusions on Algorithms Described

In this section, 9 out of the 10 algorithms depicted in Figure 7.1, have been described in
depth and placed in the basic taxonomy of partition based or hierarchical. These are all
implemented in the popular and widely available python3 package scikit-learn [228].
So they constitute a range of algorithms that see wide practical use.

It has been seen that 6 out of 9 algorithms are partition based algorithms. Of the 3 a
that were hierarchical, all of them were agglomerative rather than divisive. This may
be the result of the computational challenge of considering splits on a large dataset,
as opposed to considering the combination of a single point with another, as much
as anything else. Partitional algorithms typically require the number of clusters to be
specified. There are ways round this, such as trying the algorithm multiple times and
varying the number of clusters required.

A number of the algorithms involved assume the particles exist in a Euclidean space;

• The KMeans algorithm is arguably intrinsically defined in Euclidean space, be-
cause it relies on minimising the variance of the data points about each mean,
which so happens to correspond to a sum of the Euclidean distances from the
centroid. This process is guaranteed to converge. Adapting this for other metrics
is possible, with convergence still guaranteed. The most general form would be
clustering with Bregman divergences [240].

• Ward clustering is specific to points that can be mapped into Euclidean space.

• Gaussian mixture models do assume a Euclidean metric, there has been some
work to generalise this [241], but it is not often done.

• Mean shift uses a kernel to assess density, which is normally defined in Euclidean
space. Here there is a slight additional complication, because while a different
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kernel could be defined, mean shift may not converge in a finite number of steps
for any kernel, but provided a cut off can be chosen, this is not a deal breaker.

This assumption of Euclidean space forms part of the objective of those clustering func-
tions. The remaining algorithms rely on some distance, but do not require a specific
metric. For a physical application, where points may be relativistic particles, algorithms
that assume a Euclidean metric may require some adaptation. Particles are often repre-
sented as points in rapidity (or pseudorapidity) – φ space. Pairwise distance between
these particles would often be expressed as Euclidean. However, when two (or more)
particles merge, the resulting particle would not naturally be at the Euclidean geomet-
ric mean, because the rapidity (or pseudorapidity) coordinate is not cumulative. So,
if an algorithm requires a centroid for a set of particles, the centroid cannot be found
with a Euclidean geometric mean if it is to have a physical interpretation. This is not an
insurmountable problem, in many cases it would be as simple as locating the centroid
using the particle’s four-momentum, rather that rapidity. Even if an algorithm ignored
this non-euclidean distance behaviour, it might well still find sensible results.

Conceptual complexity of the algorithms varies greatly as well. A more complex algo-
rithm may obscure the physical interpretation of the clusters formed. This is a signifi-
cant loss; as clustering is frequently done without a ground truth, defining an optimal
solution requires some, context specific, interpretation. This is broadly the case in jet
formation. A clear interpretation of the relationship between the physics and the clus-
tering criteria offers greater insight into the cluster algorithms suitability.

This is not to be confused with computational cost, which also varies, but has different
implications. The events we deal with are likely to have O(100) particles; 100 points
is not an excessive number for a clustering algorithm. Computational time is still of
major interest, because of the sheer number of events, but loading a whole event, or set
of points to be clustered, into memory is not the difficulty. The points themselves do
not have a great number of dimensions either.

From this discussion, it can be seen that some clustering methods will be unsuitable
because they are designed for a Euclidean metric, which doesn’t apply to out data.
Other clustering algorithms are designed for a fixed number of clusters, which would
need to be remedied. Some algorithms are designed to mitigate issues we do not expect
to encounter, such as having so many points to cluster that memory became restricted.

From what we have seen so far agglomerative clustering passes all these checks, and
this is the principle of the excellent generalised kT algorithm, that is already used for jet
formation with great success. OPTICS might also be a promising choice, although it is
a complex algorithm, which would need careful physical interpretation.
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7.2 Objective of Spectral Clustering

All clustering algorithms have some function of the clusters that they seek to optimise.
This can be explicit, as in K-Means, where we are minimising variance in the cluster, or
implicit, such as affinity propagation, which seeks to minimise distances of all points
and a common central point. If the objective of the clustering function does not align
with the motivation for clustering the data, then no matter how well the algorithm
performs, the output will be undesirable.

Spectral clustering is a class of clustering algorithms, all of which have an explicit ob-
jective function with a common format, and all of which use the same mechanism, the
eigenspectrum, to optimise their objective function [242]. This is known as the Lapla-
cian eigenmap [243]. Originally, this construction was conceived as a means to set a
lower bound on the number of edges that would cross between groups when partition-
ing an unweighted graph [244]. It is a procedure often employed in applications such
as image segmentation [245]. There are now a great wealth of variations of algorithms
which use this technique, on various types of graphs, and various objective functions.

To give a concrete example, a valid objective function for spectral clustering could be
defined as follows. Define an affinity measure between all pairs of points. This affin-
ity5, ai,j, should be positive and reflect the degree of belief that point i and point j belong
in the same cluster. This way, our set of points becomes a graph, with each point being
a vertex, and the edges of the graph being weighted by the affinities between the cor-
responding vertices. The affinities are not distances, and as such they do not represent
any assumption about the space that the points occupy.

A naı̈ve objective would be to be minimise

∑
K

(
∑

i∈K,j/∈K
ai,j

)
(7.12)

where the first sum is a sum over all chosen clusters; K = 1 . . . n. This makes sense,
a clustering that minimises this avoids placing particles with high affinity in separate
groups, which follows perfectly from the definition of affinity. Unfortunately, this nor-
mally results in the majority of clusters only containing a single point. A denominator
is needed to require some balance in the cluster sizes. The simplest choice is the num-
ber of points in the cluster, so let |K| = ∑i∈K 1 be the number of points assigned to
cluster K. Then a suitable objective function, called RatioCut, can be written as [246];

RatioCut = ∑
K

(
∑i∈K,j/∈K ai,j

|K|

)
(7.13)

5Sometimes also referred to as similarity [244].
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It penalises clusters with varied numbers of points in them, thus disfavouring solutions
that have isolated points.

Unfortunately, minimising ratio cut is NP hard [246], so it is not normally done directly.
In section 7.3 remedies for this hurdle will be described.

There are many variants on the objective function in Equation 7.13 used for spectral
clustering. The most common of these is the normalised cut [245];

NCut = ∑
K

(
∑i∈K,j/∈K ai,j

∑i∈K ∑j ai,j

)
. (7.14)

Rather than judging a group’s size to be the number of points in the group this variant
considers a group’s size to be the sum of degree of the vertices in the group. The degree
of a node is the sum of all affinities associated with the edges that connect to that node.

A general expression can be written that captures any idea of any desired point size.
This was first considered in [244] where it was named penalised cut. The objective
function of penalised cut is;

PCut = ∑
K

(
∑i∈K,j/∈K ai,j

∑i∈K πi

)
, (7.15)

where πi is any size that has been assigned to point i, which would be contributed to
whichever group point i is placed in. This formulation allows great freedom to define
a clustering function that suits the problem at hand.

7.3 Relaxation to Solve Spectral Clustering

These objective functions are no use without a tractable means to minimise them. To
this end, a simple relationship to the eigenvectors of a matrix known as the graph
Laplacian can be shown.

An excellent starting point is too look at minimising the RatioCut criteria for a set of
N clusters. So to begin with, the Laplacian should again be taken to be L = D −
A. This will be done using some number of indicator vectors, each of which have as
many entries as there are points to be clustered. The entries of the indicator vectors
are piecewise constant, having the same value for all points to be allocated to the same
group. The case of N = 1 is trivial, and doesn’t need any indicator vectors. The case of
N = 2 turns out to be a special case, needing only one indicator vector, this was shown
in [247] and it is given in detail in Appendix B.

Here, the general case for ratio cut is presented, as indicated in [247]. Let the clusters be
Kn, where n = 1 . . . N. Let Kn be everything not in cluster Kn; Kn = K1 ∪ · · · ∪ Kn−1 ∪
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Kn+1 ∪ · · · ∪ KN . Also let |Kn| be equal to the number of points in Kn. In order to record
the allocation of points to the clusters Kn, a set of indicator vectors, f (n), can be defined
such that

f (n)i =

1/
√
|Kn|, if i ∈ Kn

0, if i /∈ Kn.
(7.16)

So each indicator vector indicates membership of one group by its positive members,
and all indicator vectors are perpendicular.

The target is to find an equation that constructs the f (n)i such that the ratio cut, Equa-
tion 7.13, is minimised. The keystone to this will be the unnormalised graph Laplacian;
let the unnormalised graph Laplacian be

L = D− A (7.17)

where A is a matrix of affinities, such that Ai,j = ai,j and Ai,i = 0, and D is a diagonal
matrix with Di,i = ∑j ai,j.

Now a link can be drawn by taking the product of these things;

f (n)′L f (n) = ∑
i,j

f (n)iLi,j f (n)j

= ∑
i,j

f (n)i

(
δi,j ∑

p
ai,p − ai,j

)
f (n)j

= ∑
i

(
f (n)2

i ∑
p

ai,p −∑
j

f (n)i f (n)jai,j

)
(7.18)

= ∑
i,j

ai,j

(
f (n)2

i − f (n)i f (n)j

)
=

1
2 ∑

i,j
ai,j

(
f (n)i − f (n)j

)2

which uses ai,i = 0 and Equation 7.17 between lines one and two. Then using Equa-
tion 7.16, substitutions can be made for f (n)i and f (n)j. If i and j are both in cluster
Kn, or both not in Kn, then this leads to f (n)i − f (n)j = 0, so we only need to consider
i ∈ Kn, j ∈ Kn or i ∈ Kn, j ∈ Kn.

f (n)′L f (n) =
1
2 ∑

i∈Kn,j∈Kn

ai,j

(
1√
|Kn|

)2

+
1
2 ∑

i∈Kn,j∈Kn

ai,j

(
− 1√
|Kn|

)2

= ∑
i∈Kn,j∈Kn

ai,j

|Kn|
(7.19)

Now notice that this is a single term from the RatioCut objective, Equation 7.13.
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To obtain all the terms, let F be the matrix that is constructed by stacking f (1) . . . f (N).
This matrix will have dimensions (N, N). Now, if L is pre and post multiplied by this
matrix, a matrix with every possible product of f (n1)′L f (n2) is produced. The only
ones of relevance are when n1 = n2, which are found in the trace of this matrix. So
taking this trace;

Tr(F′LF) = ∑
n

∑i∈Kn,j∈Kn
ai,j

|Kn|
(7.20)

gives exactly the right objective.

There is another use that can be made of Equation 7.16; ∑i f (n)2
i = |Kn| 1√

|Kn|
2

= 1.

As the indicator vectors are perpendicular, this leads to f (m1)′ f (m2) = δm1,m2 , and
therefore F′F = 1. So the cost function can be expressed neatly in terms of the indicator
vectors, F, and the Laplacian, L.

RatioCut =
Tr(F′LF)

F′F
(7.21)

The aim is to minimise this. This is still not directly solvable, not with the requirements
of Equation 7.17. But if those requirements are relaxed, and f (n)i is allowed to take any
value, provided that f (n) remain perpendicular to each other and 1, then the right hand
side becomes the Rayleigh-Ritz quotient. Minimising this is done by finding eigenvec-
tor associated with the smallest eigenvalue. After the relaxation, these vectors are no
longer called indicator vectors, they are now simply the eigenvectors of the Laplacian.

Given the form of this Laplacian, the very smallest eigenvalue will be 0, and the corre-
sponding eigenvector will be a constant vector. This could be seen as representing the
trivial solution of all points in the same cluster. The following eigenvectors, in order
of accenting eigenvalue, should be closely related to the indicator vectors that would
optimally partition this graph.

So with a small relaxation, a solution to Equation 7.13 has been found. Following on
from that, solutions to the alternative objectives are wanted. A solution for the pe-
nalised cut objective, Equation 7.15, is sufficient to cover any other case.

PCut = ∑
K

(
∑i∈K,j/∈K ai,j

∑i∈K πi

)
, (7.22)
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This solution follows the method described in [242]. The indicator vectors should be
initially imagined as;

f (n)i =

1/
√

∑p∈Kn
πp, if i ∈ Kn

0, if i /∈ Kn.
(7.23)

Then Equation 7.17 and Equation 7.18 remain as before. The next change arrives at
Equation 7.19;

f (n)′L f (n) =
1
2 ∑

i∈Kn,j∈Kn

ai,j

 1√
∑p∈Kn

πp

2

+
1
2 ∑

i∈Kn,j∈Kn

ai,j

 1√
∑p∈Kn

πp

2

=
∑i∈Kn,j∈Kn

ai,j

∑i∈Kn
πi

(7.24)

This looks like the corresponding element of the penalised cut objective. So then the
whole objective can be recreated by stacking this new f (n) into a F and applying the
same trace trick, Tr(F′LF). Unfortunately, F′F 6= 1, so a further step is needed to use
the Rayleigh-Ritz theorem. Instead, f (n)′ f (n) = ∑i∈Kn

πi, and so let us define an N by
N diagonal matrix, Z, with Zm,n = δm,n ∑i∈Kn

πi. Notice that;

F′ZF =



∑i∈K0
πi√

∑i∈K0
πi

2 0 . . . 0

0
∑i∈K1

πi√
∑i∈K1

πi
2

...
. . .

0
∑i∈KN

πi√
∑i∈KN

πi
2


= 1 (7.25)

Then let T = Z
1
2 F, which makes a matrix T such that T′T = 1. Effectively this is just a

rescaling of each of the f (n). Then;

PCut =
Tr(T′Z−

1
2 LZ−

1
2 T)

T′T
(7.26)

Allowing for the same relaxation as before, this yields a form which can be minimised
according to the Rayleigh-Ritz theorem. Instead of solving the eigenvalue equation for
L = D− A, the eigenvalue equation of LPCut = Z−1/2(D− A)Z−1/2 must be solved.

This time the smallest eigenvalue is again 0, and the corresponding eigenvector simply
reflects the πi. The following eigenvectors, in order of accenting eigenvalue, should be
closely related to the indicator vectors that would optimally partition this graph.
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7.4 After the Relaxation

Of course, this is not yet a clustering algorithm. The relaxation prevents the eigenvec-
tors from providing clean separations. Instead, the eigenvectors are used to form what
is known as an embedding space [242]. Each point in the original problem is allocated
a set of coordinates in the embedding space by taking one coordinate value from each
eigenvector.

To put this in more concrete terms, say that the N eigenvalue equations, corresponding
to the 2 . . . N + 1 smallest eigenvalues have the form;

Lx(n) = λnx(n), (7.27)

with n = 1 . . . N

Then the coordinates for the ith point in the embedding space will be;

yi = (x(0)i, x(1)i, . . . x(N)i) (7.28)

There are a variety of methods for resolving points in this embedding space into clus-
ters. A common first step is to normalised the lengths of the embedding space vectors,
yi, so that they are placed on the surface of a unit hypersphere [248, 249, 250]. The
reasons for this are best explained in [248]; clusters in the embedding space are ex-
pected to be orthogonal to one another, thus absolute distance from the centre should
not separate points.

Following the normalisation of yi, they should be subjected to a clustering algorithm,
such as k-means. The cluster allocation of the points in the embedding space deter-
mines their allocation in the real space.

7.5 Spectral Clustering Algorithms in Other Works

Although there are no previous attempts to apply spectral clustering for jet formation,
Spectral clustering has also had success in other physics contexts. One such example is
in identifying the motion of vortices [251] in fluid dynamics, to determine the correct
number of clusters to contain the vortices.

Furthermore, another successful application was found in organising power grids. To
reduce the risk of blackouts, power grids may be subdivided into ‘islands’, which are
electromechanically stable regions with minimum load shedding. The ideal location
of such islands is found by minimising the power flow between them using spectral
clustering as shown in [252].
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7.6 Potential for Spectral Clustering in Jet Formation

Having seem many clustering methods and considered spectral clustering in depth, all
that remains is to synthesise this information to motivate the choice of spectral clus-
tering for jet formation. There are a number of quality of spectral clustering that are
desirable in a candidate for jet formation;

• The explicit objective function makes it easier to relate the clustering goals to the
physics goals. In addition, the algorithm itself is not excessively complex. These
are not uncommon traits for clustering algorithms, none the less they are very
important in this application.

• Flexibility of the affinity measure; the affinity measure, which indicates how likely
two points are to belong to the same group, has few constraints on it. This could
be inspired by existing successful jet clustering algorithms. This is somewhat un-
usual, most algorithms put some constrain on the relationship between points.

• Flexibility of the sizes of the points, πi, a physically inspired choice is possible.
Some form of weighting is possible with many algorithms.

• The final step, where the points are clustered in the embedding space, is not de-
termined by the main mechanism in spectral clustering. This is another point
of flexibility, which may be used to form a variable number of clusters. Most
algorithms would not permit this without fundamentally altering the objective
function.

While each point individually can be fulfilled with a different choice of algorithm, the
combination is somewhat unusual. However, there are some not insignificant hurdles
to this application;

• Eigenvalue equations are expensive operations. There are ways to mitigate this,
particularly if only a limited subset of eigenvectors are needed.

• It is not immediately obvious that the resulting clusters will be IR safe6. This
is a very important property, and the algorithm must be engineered carefully to
obtain it.

These challenges do not seem insurmountable. Spectral clustering is a choice worth
exploring. If its behaviour was favourable, one might hope to obtain additional infor-
mation, useful for classifying jets and events from the embedding space created in the
clustering.

6See section 4.6.1.



121

Chapter 8

Spectral Clustering for Jet Physics

This section is drawn from the work published in [2]. This work was co-authored
with Srinandan Dasmahapatra, Billy G. Ford, Stefano Moretti, and Claire H. Shepherd-
Themistocleous.

Decisions made about the direction and content were primary driven by Srinandan
Dasmahapatra, Stefano Moretti and myself, with Professor Claire Shepherd offering
guidance from an up to date experimental understanding. I combined existing tools,
such as MadGraph, Pythia8 and FASTJET, with a considerable repository of custom
python3 code. Stefano Moretti also provided some Fortran77 scripts for the calcu-
lation of jet shape variables. Together, I used these tools to generate and pre-process
data, cluster the data with existing and new clustering algorithms, evaluate the per-
formance and behaviour of many potential choices. For much of the preprocessing,
and some of the existing clustering algorithms, Billy Ford provided validation, by un-
dertaking the same operations without using any of my custom python code. This
validation was done using MadGraph, Pythia8, FASTJET and MadAnalysis. The group
collectively analysed the findings, and the text of the original publication, [2], was a
collective effort.

8.1 Introduction

As discussed in section 4.6.3.3, the preferred choice for jet clustering in the context of
hadron collider physics tends to be a simple agglomerative algorithm. There are three
common choices, the anti-kT [123, 124, 125], the Cambridge-Aachen [119, 120] or the
kT one [122]. They have been the default choice for some time because they have a
number of desirable properties. They are IR safe, excellent implementations of them
are publicly available (see FASTJET [253]) and they are flexible enough to capture many
different jet signals with minimal parameter changes. These algorithms are recursive
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(or iterative) and agglomerative. A recursive algorithm is well suited to clustering
objects when the number of groups is not known from the outset. Agglomerative al-
gorithms create jets by grouping objects, starting from individual particles, and contin-
uing to combine the groups of particles into larger groups, until the desired jet size is
reached. Creating jets that are IR safe can be achieved by ensuring that pairs of particles
emerging from collinear emissions, combine at the start of this process. Once these IR
splittings have been recombined they cannot influence the rest of the clustering process.

Jet definition precedes further algorithmic methods to extract useful physical quanti-
ties. Finding an alternative clustering method that compares favourably to these popu-
lar jet algorithms, and which offers additional features for further analysis, is the objec-
tive of this work. Success in obtaining clusters based on informative transformations
of the data offers the possibility of exploiting such representations. This work uses
spectral clustering, as described in section 7.2, to allocate reconstructed particles to jets.
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FIGURE 8.1: Two events and their embedding space, as created by spectral clustering.
To the left the grey plot shows the particles in the event as points on the unrolled
detector barrel. The colour of each point indicates the shower it came from. On the
right, two plots show the first 4 dimensions of the embedding space and the location
of the points within the embedding space. The event in the first row is cleaner than the

one in the second row, the second row will be more challenging to correctly cluster.

8.2 Method

In this section the methodology is covered in five parts. First, some general principles
of working with a spectral embedding are discussed. Second, the algorithm chosen in
this work for applying spectral clustering is given. Third, choices and interpretations
for the variable parameters in this algorithm are given. Fourth, the datasets against
which this method will be measured are specified. Fifth, the procedure for checking IR
sensitivity is described.

8.2.1 Working in the Embedding Space

An example of an embedding space constructed from eigenvectors is shown in Fig-
ure 8.1. It is formed following the logic set out in section 7.3. The precise details of the
algorithm used will be given in section 8.2.2 The image illustrates how the embedding
space highlights the clusters, with which some key aspects of the embedding space can
be better visualised.
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8.2.1.1 Distance in the Embedding Space

When the spectral clustering algorithm is used to create an embedding space from a
set of points, the points are distributed in the embedding space according to their ideal
group. Each point can be seen as a vector, its direction indicating the group to which
this point should be assigned. Changes in magnitude of the vectors cause the Euclidean
distance between the corresponding points to grow, however, this is not an indicator
of the correct grouping. An angular distance is invariant to changes in magnitude,
therefore it is a suitable measure to use.

8.2.1.2 Information in the Eigenvalues

When the clusters in the data are well separated, the affinities between groups are close
to 0 and the eigenvalues will also be closer to 0. Should a group exist which has exactly
0 affinity with the rest of the graph, then the Laplacian would be possible to put in
block diagonal form, and the corresponding eigenvalue would be exactly zero. So a
small eigenvalue means that the corresponding eigenvector is separating the particles
cleanly according to the affinities. It is possible to make use of this information.

In a traditional application of spectral clustering, the number of clusters desired, s, is
predetermined. If an embedding space is created by taking c eigenvectors, correspond-
ing to the smallest eigenvalues, excluding the trivial eigenvector. Then the usual choice
is c = s. The embedding space then has c = s dimensions.

When forming jets we do not know from the outset how many clusters to expect in the
dataset, so the number of eigenvectors to keep is not clear. In this case, it’s not possible
to set c = s. While one could choose a fixed, arbitrary number of eigenvectors, this
is suboptimal. A better approach is to take all non-trivial eigenvectors corresponding
to eigenvalues smaller than some limiting number, λlimit. For a symmetric Laplacian
the eigenvalues are 0 ≤ λ1 ≤ λ2 ≤ · · · λn ≤ 2, and λk is related to the quality of
forming k clusters [254]. Removing eigenvectors with eigenvalues close to 0 would re-
sult in discarding useful information, while retaining eigenvectors whose eigenvalues
are close to 2 would increase the noise. Values of 0 < λlimit < 1 are sensible choices,
and within this range the choice is not critical. Then, the number of dimensions in the
embedding space will vary, according to the number of non-trivial eigenvectors with
corresponding λ < λlimit.

There is one more manipulation from the information in the eigenvalues. The dimen-
sions of this embedding space are not of equal importance. This can be accounted for
by dividing the eigenvector by some power, β, of the eigenvalue.
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Let the eigenvectors for which λ < λlimit be

∑
j

Li,jxn j = λnxn i. (8.1)

Then, the coordinates of the jth point in the c dimensional embedding space become
mj =

(
λ
−β
1 h1 j, . . . λ

−β
c hc j,

)
. In effect, the magnitude of the vectors, mj, in the nth di-

mension are compressed by a factor λ
β
n, so the larger λn the greater the compression.

8.2.1.3 Stopping Conditions

If a recursive algorithm is to be chosen, like the generalised kT algorithm, a stopping
condition is needed. A stopping condition based on smallest distance between points
in the embedding space was attempted in this study but this was not found to be stable.
Choosing an acceptable value for all events was not possible.

Distance between the last two points to be joined before the desired jets have been
formed varies significantly between events, so minimum separation is not a good stop-
ping condition. The average distance between points before this last joining is more sta-
ble because it is balanced by two opposing influences. When points are joined together
in a fixed number of dimensions the average distance between points rises. If this were
used in physical space it would be roughly proportional to the number of points re-
maining. So, in physical space, if clustering stopped when average distance exceeded
some cut-off, it would produce roughly the same number of jets in each event. How-
ever, the embedding space has a variable number of dimensions. When lots of cluster-
ing still remains to be done the lower eigenvalues mean that the embedding space has
more dimensions, as described in section 8.2.1.2. When the number of dimensions in
the embedding space falls, the mean distance between points will also fall.

As points combine the mean distance will rise, but when fewer combinations with
higher affinity remain the number of dimensions in the embedding space falls, coun-
teracting the rise in mean distance. In short, the mean distance in the embedding space
makes a natural cut-off. The assertions made here are evidenced in Appendix C.

8.2.2 Spectral Clustering Algorithm

For every simulated event, the following process is used to identify the jets. To begin
with, relevant cuts are applied to the particles to simulate the detector reconstruction
capability. (These are described in detail in section 8.2.4.) Then all particles are declared
pseudojets and given an index, j = 1 . . . n, with no particular order. The algorithm
is agglomerative, recursively selecting pairs of pseudojets to merge, hence, the first
iteration step is labelled t = 1.
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When the two pseudojets to be merged, i and j, have been identified, they are combined
using the E-scheme. The E-scheme forms a new pseudojet by summing the 4-momenta
of the two joined pseudojets, p(t + 1)l = p(t)i + p(t)j. The steps used to select two
pseudojets to merge proceed as follows.

1. The pseudojets are used to form the nodes of a graph, the edges of which will be
weighted by some measure of proximity between the particles called affinity. To
obtain an affinity, first a distance is obtained. Between pseudojets i and j this is

d(t)i,j =
√

(y(t)i − y(t)j)2 + (φ(t)i − φ(t)j)2, (8.2)

where y(t)j is the rapidity of pseudojet j at step t and φ(t)j is the angle in the
transverse plane, likewise for i. No pT (transverse momentum) dependence is
used, unlike in many traditional jet clustering methods.

2. The affinity must increase as pseudojets become more similar, whereas the dis-
tance, d(t)i,j, will shrink. Affinity is defined as

a(t)i,j = exp(−d(t)α
i,j/σv), (8.3)

where α = 2 is the standard Gaussian kernel as used in [243]. Distances much
larger than σv are only allowed very small affinities, thus less influence over the
clustering.

3. Pseudojets that are far apart have low affinity, hence are unlikely to be good can-
didates for combination. Removing these affinities reduces noise. A fixed num-
ber, kNN, of neighbours of each pseudojet is preserved while all other affinities
are set to zero. Thus, when there are more than kNN pseudojets, each pseudojet
has at least kNN non-zero affinities with other pseudojets.

4. These affinities allow the construction of the Laplacian, which is proportional to
−a(t)i,j in the ith row and jth column. For ease of notation, let z(t)j be the sum of
all affinity connected to particle j at step t; z(t)j = ∑i a(t)i,j. Also, let w(t)j be a
measure of the size a pseudojet j contributes to a cluster, beginning with the same
value as z(1)j; w(1)j = ∑k aj,k. Define square matrices A(t)i,j = (1− δi,j)a(t)i,j,
Z(t)i,j = δi,jz(t)i and W(t)i,j = δi,jw(t)i.

Then, the Laplacian used is written

L(t) = W(t)−
1
2 (Z(t)− A(t))W(t)−

1
2 . (8.4)

After each step this Laplacian shrinks by one row and column. When two pseu-
dojets have been combined, instead of calculating wj as the sum of the affinities of
the combined pseudojet, the new wj is the sum of the two previous wj’s. And so,
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if pseudojets i and i from step t are to be combined to make pseudojet i at t + 1,
then w(t + 1)i = w(t)i + w(t)j rather than w(t + 1)1 = ∑k a(t + 1)i,k.

5. The eigenvectors of L(t) (q being the eigenvalue index)

L(t)h(t)q = λ(t)qh(t)q, q = 1, . . . c (8.5)

are used to create the embedding of the pseudojets. The eigenvector correspond-
ing to the smallest eigenvalue represents the trivial solution, which places all
points in the same cluster (see section 7.3). All non-trivial eigenvectors, corre-
sponding to eigenvalues less than an eigenvalue limit, λ(t)c < λlimit < λ(t)c+1,
are retained (see section 8.2.1.2). If no eigenvectors are retained by this, the clus-
tering ends here.

6. An eigenvector is divided by the corresponding eigenvalue raised to β. To pre-
vent zero division errors, the smallest eigenvalues are clipped to 0.001, such that
λ′q = min(λq, 0.001). This acts to compress the dimensions that hold less infor-
mation, again, see section 8.2.1.2. The embedding space can now be formed. The
eigenvectors have as many elements as there are pseudojets and the coordinates
of the jth pseudojet at step t are defined to be m(t)j =

(
λ′1(t)−βh1(t)j, . . . λ′c(t)−βhc(t)j

)
.

7. A measure of distance between all pseudojets in the embedding space is calcu-
lated. In the embedding space angular distances are most appropriate (see sec-
tion 8.2.1.1):

d′(t)i,j = arccos
(

m(t)i ·m(t)j

‖m(t)i‖‖m(t)j‖

)
. (8.6)

where ‖m‖ is the (Euclidean) length of m.

8. A stopping condition, based on the parameter R, is now checked. Provided the
mean of the distances d′(t)i,j is less than the value of R, that is,

2
c(c− 1) ∑

i 6=j

√
d′(t)i,j < R, (8.7)

then the two pseudojets that have the smallest embedding distance are combined.
(Reasons for this stopping condition are given in section 8.2.1.3.)

When the mean of the distances in the embedding space rises above R, then all re-
maining pseudojets are promoted to jets. Jets with less than 2 tracks are removed and
their contents considered noise. Further cuts may then be applied as described in sec-
tion 8.2.4.

These steps will form a variable number of jets from a variable number of particles.
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8.2.3 Tunable Parameters

Unlike most deep learning methods currently used in particle physics, spectral cluster-
ing does not have large arrays of learnt parameters. The parameters for the clustering
are a small, interpretable set. Appropriate values were chosen by performing scans and
observing the influence of changes to the parameters on jets formed.

In section 8.2.2, 6 parameters are named: σv, α, kNN, λlimit, β and R. While these are
more parameters than in generalised kT, for example, we find that the parameters do
not need to take precise values to obtain good performance.

The interpretation of these parameters is as follows.

• σv: introduced in step 2, this is a scale parameter in physical space. The value
indicates an approximate average distance for particles in the same shower, or
alternatively, the size of the neighbourhood of each particle. It is closely tied
to the stopping parameter for the generalised kT algorithm, RkT , and they both
relate to the width of the jets formed. It should take values on the same order of
magnitude as RkT .

• α: also introduced in step 2, this changes the shape of the distribution used to
describe the neighbourhood of a particle. Higher values reduces the probability
of joining particles outside σv. α = 2 defines a Gaussian kernel.

• kNN: introduced in step 3, it dictates the minimum number of non-zero affinities
around each point. Lower values create a sparser affinity matrix, reducing noise
at the potential cost of lost signal. Values above 7 are seen to have little impact.

• λlimit: introduced in step 5, it is a means of limiting the number of eigenvec-
tors used to create dimensions in the embedding space. Only eigenvectors cor-
responding to eigenvalues less than λlimit are used. Thus, the number of dimen-
sions in the embedding space can be increased with a larger λlimit. However, as
the eigenvalues will be influenced by the number of clear clusters available, there
will not be the same number of dimensions in each event. Values of 0 < λlimit < 1
are sensible choices, see discussion in section 8.2.1.2.

• β: introduced in step 6, it accounts for variable quality of information in the eigen-
vectors, as given by their eigenvalues, in such a way that the dimensions of the
embedding spaces corresponding to higher eigenvalues are compressed, as they
contain lower quality information. (This is discussed in section 8.2.1.2.)

• R: introduced in step 8, it determines the expected spacing between jets in the
embedding space. As the number of dimensions in the embedding space grows
with increasing number of clear clusters, it will not result in the same or similar
number of clusters each time.
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nent of the pT factor.
When the exponent of
the pT factor is −1
the algorithm becomes
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tions.

To investigate the behaviour of the clustering when the parameters change, scans where
performed. On a small sample of 2000 events the clustering is performed with many
different parameter choices.

With the aid of MC truth information a metric of success can be created. For each
object that must be reconstructed (e.g., a b-quark) the MC truth can reveal which of
the particles that are visible to the detector have been created by that object. In many
cases, a particle seen in the detector will have been created by two objects, such as a
particle coming from an interaction between a bb̄ pair, in these cases both objects are
considered together. The complete set of visible particles that came from these objects
could be referred to as their descendants. The aim in jet clustering is to capture only
all of the descendants in the same number of jets as there were objects that created
them. So the descendants of a bb̄ pair should be captured in exactly 2 jets. The use
of MC information has also been pursued in [255], for a jet originating from a colour
singlet hard particle, namely a W boson. In contrast, this study seeks to find quark
jets. Allowing the descendants of groups of interacting showers to be clustered in any
configuration that results in the correct number of jets avoids the need to associate each
descendant to one object (e.g. b-quark) uniquely, which is not possible when the objects
in question are colour charged [255].

There are two ways a jet finding algorithm can make mistakes in this task: the first
is to omit some of the descendants of the objects being reconstructed, causing the jet
to have less mass than it should; the second is to include particles that are not in the
descendants of the objects being reconstructed, such as initial state radiation or particles
from other objects, causing the jet to have more mass than it should. The effects of these
mistakes might cancel in the jet mass, but they are both still individually undesirable,
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so separate metrics are made for each of them. The first is “Signal mass lost”, the
difference between the mass of the jets that were formed, and the mass they would have
had if they had successfully captured all descendants of the object being reconstructed.
The second is “Background contamination”, the difference between the mass of jets
that were formed, and the mass they would have if they did not contain anything but
descendants they captured from the objects being reconstructed. A “Loss” function is
then constructed as a weighted Euclidean combination of these two,

Loss =
√

w (Background contamination)2 + (Signal mass lost)2, (8.8)

where w is a weight used to alter the preference for suppressing “Signal mass lost”
versus reducing “Background contamination”. When applying an anti-kT algorithm,
increasing RkT will result in lower “Signal mass lost”, in exchange for a higher “Back-
ground contamination”. This has been chosen to make a comparison to RkT = 0.8
as our sample dataset has well separated jets and low background. This value of RkT

slightly prefers suppressing “Signal mass lost” over “Background contamination”, to
create the clearest mass peaks. To make the “Loss” reflect this we choose w = 0.73.

An example of this scan for the generalised kT algorithm is given in Figure 8.2. It can
be seen that, while good results are possible with many values of the pT exponent, RkT

must fall in a narrow range. We thus deem this choice of stopping condition, RkT = 0.8,
to be rather fine-tuned.

For spectral clustering there are more than 2 variables to deal with, so a set of two
dimensional slices are extracted. These slices have been chosen to include the best
performing combination. As can be seen in Figure 8.3, the parameters choices are not
fine-tuned, as many values can be chosen to achieve good results. For example, it can
be seen that some parameters, such as α, kNN, β and λlimit, are relatively unconstrained,
yielding good results for a wide range of numerical choices. Even when R and, es-
pecially, σv yield some large signal “Loss”, say, for R = 1.22 or 1.3 and σv = 0.05, this
happens in very narrow ranges. For definiteness, the parameters used in the remainder
of this work are α = 2., kNN = 5, R = 1.26, β = 1.4, σv = 0.15 and λlimit = 0.4.

8.2.4 Particle Data

To evaluate the behaviour of the spectral clustering method four datasets are used,1 all
produced for the Large Hadron Collider (LHC).

1The first two uses a 2-Higgs Doublet Model (2HDM) setup as described in chapter 2 while the last two
are purely Standard Model (SM) processes. Notice that all unstable objects are rather narrow, including
the Beyond the SM (BSM) Higgs states [55, 56], so interference effects with their irreducible backgrounds
have been neglected.
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FIGURE 8.3: The spectral clustering algorithm has 6 parameters that can be varied
(described in the text). Here, the “Loss”, as described in eq. (8.8), is shown as a colour
gauge for reasonable parameter ranges chosen either by convention (e.g., α is typically

1 or 2) or according to physical scales (e.g., σv is of order 0.1).

1. Light Higgs: A SM-like Higgs boson with a mass 125 GeV decays into two light
Higgs states with mass 40 GeV, which in turn decay into bb̄ quark pairs. That
is, the process is pp → H125 GeV → h40 GeVh40 GeV → bb̄bb̄, simulated at Leading
Order (LO).

2. Heavy Higgs: A heavy Higgs boson with a mass 500 GeV decays into two SM-
like Higgs states with mass 125 GeV, which in turn decay into bb̄ quark pairs.
That is, the process is pp→ H500 GeV → h125 GeVh125 GeV → bb̄bb̄, simulated at LO.

3. Top: A tt̄ pair decays semileptonically, i.e., one W± decays into a pair of quark
jets jj and the other into a lepton-neutrino pair `ν` (` = e, µ). That is, the process
is pp → tt̄ → bb̄W+W− → bb̄jj`ν`, simulated at LO. (Note that, here, mt =

172.6 GeV and mW = 80.4 GeV.)

4. 3-jets: For the purpose of checking IR sensitivity, we have used 3-jet events, this
being a rather simple configuration where IR singularities could be observed.
That is, the process is pp→ jjj, simulated at both LO and Next-to-LO (NLO).
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Using MadGraph [71] to generate the partonic process and Pythia8 [85] to shower,
O(105) events for each of these processes are generated. A full detector simulation is
not used, instead, cuts on the particles are imposed to approximate detector resolution,
as detailed below.

The Center-of-Mass (CM) energy used is
√

s = 13 TeV.

Each event also contains (hard) Initial State Radiation (ISR) and soft QCD dynamics
from beam remnants, i.e., the Soft Underlying Event (SUE). There is no pileup nor
multiparton interactions in the datasets.

Each of these datasets requires different cuts, both at the particle level, to simulate
detector coverage, and at the jet level, to select the best reconstructed events. The cuts
on each dataset are as follows.

1. The reconstructed particles are required to have pseudorapidity |η| < 2.5 and
transverse momentum pT > 0.5 GeV. These cuts are likely to remove the majority
of the radiation from beam remnants and reduce the radiation from ISR. The b-jets
are required to have pT > 15 GeV, which is possibly lower than is realistic [3],
but it leaves a larger number of events to compare the behaviour of jet clustering
algorithms.

2. The reconstructed particles are required to have |η| < 2.5 and pT > 0.5 GeV. The
b-jets are required to have pT > 30 GeV, which is realistic for efficient b-tagging
performance and further reduces ISR and the SUE. As the average jet pT is higher
we can afford this higher pT cut.

3. The reconstructed particles are required to have |η| < 2.5 and pT > 0.5 GeV. The
event is required to have pmiss

T > 50 GeV, where pmiss
T is the missing transverse

momentum due to the neutrino. The lepton in the event must have |η| < 2.4. If
the lepton is a muon then its pT must be > 55 GeV. If the lepton is an electron
and it is isolated (as defined in [256]) then its pT must be > 55 GeV, if it is not
isolated then pT > 120 GeV. The reconstructed jets must have pT > 30 GeV and
|η| < 2.4. Finally, the lepton must be separated from the closest jet by at least√

∆η2 + ∆φ2 > 0.4 or prelative
T > 40 GeV. These cuts are copied from [166].

4. The only restriction on the particles is that the pseudorapidity must be < 2.5.
There are no cuts on the jets. While unrealistic, since issues of IR sensitivity are
emphasised at low pT, to highlight this, all pT cuts are abandoned.

The Higgs boson cascade datasets have the desirable property of creating b-jets with
different kinematics: while in case 1 some slim jets may be expected (as on average
they are rather stationary, because of the small mass difference between H125 GeV and
h40 GeV), in case 2 the jets are mainly fat jets (owing to the boost provided by the large
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mass difference between H500 GeV and h125 GeV). Mass reconstruction requirements for
the Light Higgs and Heavy Higgs follow the same logic. In order to reconstruct a Higgs
boson decaying directly to a pair of b-quarks, a separate jet tagged by each b-quark is
required. In other words, the mass reconstruction of a Higgs is only attempted when
there are two jets that were tagged by the b-quarks from that Higgs state. To reconstruct
a Higgs boson that decays into a pair of (child) Higgs particles, requires both child
Higgs boson to have been reconstructed, that is, all four b-jets are found.

In the case of the Top events three masses can be reconstructed from jets, the hadronic
W, the hadronic top and the leptonic top. The hadronic W is reconstructed if both
of the quarks it decayed to have tagged jets: they are permitted to tag the same jet,
so the hadronic W can be reconstructed from one or two jets. The hadronic top is
reconstructed if the b-quark from it has tagged a jet, so the correct b-jet is required in
addition to the requirements on the W. The leptonic top is reconstructed if the b-quark
from the top decay tags a jet and the missing momentum calculation which reconstructs
the leptonic W yields a real mass. If the mass calculation for the leptonic W yields two
real masses, the one closest to the true W mass is selected.

Now, spectral is compared to anti-kT clustering to test IR sensitivity of the former, while
this is a well-known feature of the latter. Following that, Higgs boson and top quark
events can be studied.

8.2.5 Determining IR Sensitivity

It would be optimal to demonstrate IR safety analytically, however, that is beyond the
scope of the current work. As the environment required for clustering on MC data is
already set up, it is rather efficient for this study to prove that in practice the algorithm
is not sensitive to IR considerations in simulated data. This can be done by showing
that an IR sensitive variable, for example, the jet mass spectrum, is stable between
a LO dataset with no IR singularities and a NLO one which will instead contain IR
singularities.

This is a very important property, as the algorithm must not be modified by any ap-
proximation used for the IR limit in MC simulation.

Showing the jet mass spectrum at LO and NLO for a particular configuration, that is,
a particular selection of clustering parameters, would allow a comparison that would
highlight any differences caused by IR sensitivity. This will be done for illustrative pur-
poses, however, since even an IR unsafe algorithm, such as the iterative cone one [123],
has some configurations for which these singularities are avoided.

To provide a more global view, a scan of parameter configurations must be compared.
Thus, for an unsafe algorithm (such as the iterative cone) the unsafe configuration will
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be found. It would be cumbersome to compare all these jet mass spectra by eye, how-
ever. Instead, a summary statistic representing the divergence between two distribu-
tions is introduced; the Jensen-Shannon score [257].

The Jensen-Shannon score is a value computed between two distributions that increases
in magnitude the more these distributions differ. It is a symmetrised variant of the
Kullback-Leibler divergence [257]. The Kullback-Leibler divergence between probabil-
ity densities p and q can be written as

DKL(p|q) =
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx, (8.9)

from which the Jensen-Shannon divergence can be written as

DJS(p, q) =
1
2

D
(

p|1
2

(p + q)

)
+

1
2

D
(

q|1
2

(p + q)

)
. (8.10)

Here, DJS treats p and q symmetrically and will grow as they become more different.
The spectrum of Jensen-Shannon scores will be plotted for a known IR safe clustering
algorithm, generalised kT, a known unsafe clustering algorithm, iterative cone, and the
spectral algorithm. If the Jensen-Shannon scores for spectral are consistently small,
then it is not sensitive to IR.
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8.3 Results

Before the behaviour of the algorithms is analysed, some plots of kinematic variables
are shown in Figure 8.5. It can be seen that the algorithms do not greatly differ on the
kinematics of the events. In particular, spectral clustering does not appear to sculpt any
distributions in any of the datasets involving Higgs bosons and top (anti)quarks. Some
edge effects can be seen in the rapidity plots on the central column. When a particle
shower is spread over the boundary of the calorimetric at |rapidity| = ±2.5 then with a
wider jet radius the detectable particles (|rapidity| ≤ 2.5) may be merged into another
jet sitting at a more central rapidity, or if the jet cone is too narrow for that, they will
form a “half jet” on their own. These half jets only contain the parts of the shower that
have |rapidity| ≤ 2.5, and so the rapidity of the jet is offset towards lower rapidity than
those of the shower. This creates the edge effect.
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FIGURE 8.4: Images comparing the shape of jets produced by generalised kT to spec-
tral. The filled area represents all locations at which an additional particle would be
included into the jet, if it were present. For discussion of edge effects in rapidity, see

section 8.3.

8.3.1 IR Sensitivity

Shape variables (see section 4.6.2) such as jet mass, thrust, sphericity, spherocity and
oblateness, are sensitive to IR divergences. For each configuration of the clustering al-
gorithm we expect an IR safe algorithm to present a stable transition in a shape variable
from the LO to NLO datasets, as significant changes in the spectra would indicate sen-
sitivity to soft and collinear radiation. The clustering and evaluation here is done using
the 3-jets dataset, as described in section 8.2.4. Shape variables are calculated from the
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total momentum of the 4 jets with highest pT in each event. This comparison is made in
Figure 8.6. It can be seen in this figure that little difference exists between generalised
kT and spectral clustering, so as to reinforce that they are both insensitive to IR.
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sensible results on this dataset, therefore distributions may not represent worst case

scenarios.

However, this method of establishing IR sensitivity only looks at one parameter con-
figuration and could be accused of cherry-picking. As described in section 8.2.5, this
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can be systematically compared for many parameter configurations by calculating a
Jensen-Shannon score for each LO and NLO pair of jet mass spectra. If the Jensen-
Shannon metric is low, then the two distributions are similar and appear IR safe. To
further clarify the result an algorithm known to be IR unsafe, the iterative cone algo-
rithm, is included. The spectral method produces Jensen-Shannon scores very similar
to generalised kT methods. Only the iterative cone algorithm produces high Jensen-
Shannon scores thus indicating significant changes between the LO and NLO spectra.
This can be seen in Figure 8.7.
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FIGURE 8.7: Histograms evaluating IR
sensitivity from each jet shape vari-
able. Each count is a Jensen-Shannon
score between a probability density of
the jet shape variable from LO and
NLO data. Counts at low values indi-
cate insensitivity to IR differences be-
tween the LO and NLO data, thus in-

sensitivity to IR effects.

From these figures it is clear that spectral clustering is insensitive to IR effects in MC
data, at least, as much as generalised kT algorithms are. This contrasts with the iterative
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cone algorithm, for which the jet mass spectra at LO and NLO differ significantly for
many configurations. This is not unexpected, as the inputs to the spectral clustering
algorithm are the same as for the Cambridge-Aachen one, which is itself IR safe, and
the iterative cone has been proved to produce kinematic configurations which are IR
unsafe [117]. However, it is crucial to have such a verification in data, as has been done.

8.3.2 Mass Peak Reconstruction

In this section, the anti-kT algorithm setups with jet radius RkT = 0.4 and RkT = 0.8 are
compared to the spectral algorithm specified in section 8.2.3. The jets are tagged using
MC truth. Each of the b-quarks created by a signal particle (either a Higgs boson or a
top (anti)quark) tag the closest jet (by using the distance metric

√
(yquark tag − yjet)2 + (φquark tag − φjet)2),

provided that the separation between the jet and the quark is no greater than 0.8 accord-
ing to the distance metric. In the case of a W decay, the procedure is the same applied
to light quark states. From this point on, only jets tagged this way are considered.

Firstly, jet multiplicities, that is, the number of reconstructed jets found per event, are
given for both the anti-kT and spectral clustering algorithms. These can be seen for the
first three datasets described in section 8.2.4 in Figure 8.8. Herein, it is seen that spectral
clustering produces the best multiplicity (i.e., most events where 4 jets are found) for
Light Higgs events while for the Heavy Higgs and Top MC samples it creates a multi-
plicity closer to that of anti-kT with RkT = 0.4 than RkT = 0.8, the first of these being the
best performer of the two. As a result of this study, we remark upon the adaptability
of spectral clustering to the different final states without requiring adjusting its param-
eters, unlike the anti-kT one. The latter may seem to indicate that 0.4 is the best choice
for all datasets, but this is in tension with the fact that different masses from different
datasets do require the anti-kT algorithm to be adjusted, as will be seen in the mass
peaks.

Mass peaks are constructed from the reconstructed jets as well as, for the top sample
only, from the lepton and neutrino. Again, the anti-kT results with RkT = 0.4 and 0.8
are given for comparison.

In Figure 8.9 three selections are plotted for the Light Higgs MC sample. Firstly, events
here all four b-jets were found are combined for total invariant mass of the event, thus
reconstructing the mass of the SM Higgs boson. Each event also contains two light
Higgs states, though. These are differentiated by the mass of the particles (generated
by them) that pass the particle cuts, as follows. The light Higgs boson reconstructed
from the 2b-jet system with more mass visible to the detector is called the “Light Higgs
with stronger signal” while the one reconstructed with less mass visible in the detector
is called the “Light Higgs with weaker signal”. The correct jets for each Higgs mass re-
construction are identified using MC truth, so the correct pairings are always made. (If
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FIGURE 8.8: Jet multiplicities for the anti-kT (for two jet radius choices) and spectral
clustering algorithms on the Light Higgs, Heavy Higgs and Top MC samples. For all
such datasets, the hard scattering produces 4 partons in the final state, so maximising

a multiplicity of 4 jets indicates good performance.

two such dijet systems are not found the event is not included in the plots). Altogether,
it can be seen that spectral clustering forms the sharpest peaks and such peaks are all
very close to the correct mass. All peaks are shifted down (to the left) of the mass of
the object reconstructed, this is because of the particle cuts described in section 8.2.4.
These particle cuts replicate the way that some particles created by the decay in the
hard event would never be detectable, and thus the reconstructed objects are missing a
little mass. In fact, the performance of spectral is comparable to that of anti-kT with jet
radius 0.8 and is clearly better than the 0.4 option.

In Figure 8.10 the exercise is repeated for the Heavy Higgs MC dataset. All the parame-
ters of spectral clustering are the same as in the Light Higgs MC sample yet we note that
its performance is still excellent, with very sharp peaks at the correct masses, although
the three clustering algorithms are overall much closer in performance. However, recall
that, in Figure 8.8, it was seen that spectral clustering achieved better multiplicity than
anti-kT with RkT = 0.8 on this dataset. Furthermore, while the multiplicity of anti-kT

with RkT = 0.4 is a little better, the location of all Higgs mass peaks for anti-kT with
RkT = 0.4 is slightly worse. So, again it is concluded that spectral clustering is probably
the best performer overall with the added benefit of not requiring any adjustment of its
parameters to achieve this.

Finally, in Figure 8.11, the W and t mass peaks for semileptonic tt̄ decays are shown.
Three mass reconstructions are given. Firstly, the hadronic W is reconstructed from the
jets that come from the quarks it decayed to. Correct decisions about which quarks
correspond to which particle in the hard process are made by using information in the
MC, this is to prevent any mismatching from causing additional complication in eval-
uating the performance of the clustering. To tag a jet with a quark a distance measure
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FIGURE 8.9: Three mass selections are plotted for the Light Higgs dataset. From left to
right: the invariant mass of the 4b-jet system, of the 2b-jet system with heaviest invari-
ant mass and of the 2b-jet system with lightest invariant mass (as defined in the text).
Three jet clustering combinations are plotted as detailed in the legend. The spectral
clustering algorithm is consistently the best performer in terms of the narrowest peaks
being reconstructed and comparable to anti-kT with RkT = 0.8 in terms of their shift
from the true Higgs mass values, with anti-kT with RkT = 0.4 always being the outlier.

For further discussion see section 8.3.2.
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FIGURE 8.10: Same as Figure 8.9 for the Heavy Higgs dataset. Here, the performance
of the spectral clustering and anti-kT (with both 0.4 and 0.8 as jet radii) clustering
algorithms is much closer to each other. For further discussion see section 8.3.2. Note
that the scale here is significantly larger than in Figure 8.9, and so the mass lost due to

particle cuts is too small to be visible.

√
(yquark tag − yjet)2 + (φquark tag − φjet)2 is used and, if the distance from the quark to

the closest jet is less than 0.8, that jet is tagged by that quark. The W will always de-
cay to a pair of quarks, but both these quarks may be captured in one jet or separate
jets. If either of the these quarks are too far away from the closest jet to tag it, that is√

(yquark tag − yjet)2 + (φquark tag − φjet)2 > 0.8, then it is not associated with any jet and
the hadronic W is not reconstructed. The mass of the hadronic top is then reconstructed
in events where the hadronic W could be reconstructed and the b-jet from the hadronic
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FIGURE 8.11: Three mass selections are plotted for the Top dataset. From left to right:
the invariant mass of the light jet system, of the reconstructed leptonic W (as described
in the text) combined with a b-jet and of the hadronic W combined with the other b-jet.
Three jet clustering combinations are plotted as detailed in the legend. The spectral
clustering algorithm consistently outperforms the anti-kT one with jet radius 0.8 and
is slightly worse than the anti-kT one with jet radius 0.4, but only in terms of sharpness,

not location. For further discussion see section 8.3.2.

top is also found. The leptonic top is then reconstructed in events where a b-jet from
the top is combined with the reconstructed W that decayed leptonically. The leptonic
reconstruction of the W uses the momentum of the electron p`, the missing transverse
momentum pmiss

T (identified with that of the neutrino) and the longitudinal neutrino
momentum (pν

L, which is unknown) in a quadratic equation, (p` + pmiss
T + pν

L)2 = m2
W ,

of which only the real solutions are plotted. In this case, it can be seen that spectral
clustering is adapting to jets of a different radius. In fact, while before its behaviour
had mostly resembled anti-kT with RkT = 0.8, it has now moved closer to the case with
RkT = 0.4. (Semileptonic top events would typically be processed using anti-kT with
RkT = 0.4.) The peaks of spectral clustering are not quite as narrow as those from anti-
kT with RkT = 0.4, but they improve on RkT = 0.8 and their location is substantially
correct.

8.3.3 Run Time

Given the requirement for an eigenvalue calculation, an O(n2) operation, it’s clear that
this algorithm will have longer run-times than the generalised kT algorithm, which
boasts O(n log(n)) [237]. The initial steps of the spectral algorithm require similar
calculations to generalised kT, so would be expected to have the same runtime. The
implementation used in this work actually neglects the improvements that took gen-
eralised kT from O(n2) to O(n log(n)), so initial steps should run in O(n2). Then the
eigenvector calculation would add a further O(n2). So with a naı̈ve implementation,
one would expect the spectral algorithm to require O(n4).
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FIGURE 8.12: The run time of spectral, compared to a naı̈ve implementation of gener-
alised kT (without the performance refinements in [237]), on datasets of varying size.
Cubic and quadratic fits are shown for each dataset respectively. This shows that spec-

tral runs in O(n3).

This reasoning makes the results in Figure 8.12 a little surprising. In Figure 8.12, it is
seen that spectral in fact runs in O(n3), not O(n4). No particular optimisations were
used to achieve this, the implementation of spectral is a basic pythonic implementation
of the algorithm set out in section 8.2.2. Specifically, no effort was made to take advan-
tage of the sparse Laplacian matrix when performing the eigenvector calculation. In
fact, if anything the implementation contains more branches than required, because it
was designed to facilitate investigating variations, such as those shown in Figure 8.3.

So the improvements that render the algorithm O(n3) rather than O(n4) must be at-
tributed to intelligently designed libraries. The eigenvector calculation was performed
by scipy’s [258], function; scipy.linalg.eigh. This function optimises the calculation by
using two criteria. Firstly, it requires the input be a Hermitian matrix, this holds for the
Laplacian. Secondly, it allows the desired range of eigenvalues to be specified. Step 5,
in section 8.2.2, determines that this spectral algorithm requires only the eigenvectors
corresponding to a pre-specified range of eigenvalues. These two optimisations appear
to buy an O(n) runtime improvement.

None the less, further improvements to the run time would be needed to render this a
practical algorithm. That is outside the scope of this study.
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8.4 Conclusions

Spectral clustering is a popular ML algorithm, wherein complex datasets are trans-
formed to clarify groupings in a new space. In performing this transformation, it
makes use of the spectrum (eigenvalues/eigenvectors) of the Laplacian matrix, which
is constructed from localised information. At no point in the process are large matrices
of learnt parameters, common to deep learning methods, needed. As such, spectral
clustering is a transparent, simple to implement, algorithm using standard linear alge-
bra methods. Owing to these features, this study has found it to be a promising new
method for jet formation in high energy particle physics events.

For a start, it is robust to the IR distinctions between LO and NLO simulation and
creates jets with the expected kinematics, as dictated by QCD dynamics. Furthermore,
while it has many parameters, they do not appear to be as finely tuned as those of more
standard tools, such as sequential (or iterative) generalised kT algorithms. This can
be seen in both parameter scan stability and its adaptability to various datasets, each
capturing physics signals embedding heavy objects decaying into lighter ones in very
different patterns, all yielding complicated hadronic signatures at the LHC.

The adaptability between datasets is remarkable as a spectral clustering parameter
choice tuned on a light Higgs boson cascade gave excellent performance on both a
heavy Higgs boson cascade and that of top-antitop pairs decaying semileptonically. In
the case of the Light Higgs dataset, spectral clustering gave the correct mass peak po-
sitions, the narrowest resonant distributions and a jet multiplicity mapping well the
partonic one. This would not be surprising as it was tuned for that dataset in the first
place. In the case of the Heavy Higgs dataset only anti-kT with RkT = 0.8 and the
spectral algorithm gave correct mass peaks but spectral clustering offers considerably
better multiplicity rates. This demonstrates that its performance is not dependent on
fine tuning its parameters and hence that the algorithm is adaptable to the same final
state with different masses involved. Finally, spectral clustering was applied to a Top
dataset with a different final state and for which the ideal jet radius differed, semilep-
tonic decays of top-antitop pairs. Its equivalent parameter σv was not allowed to vary
to account for this, instead it was applied again with no parameter changes. The algo-
rithm again proved to be adaptable and modified its behaviour to follow that of anti-kT

with RkT = 0.4, the standard choice for this kind of analyses.

In short, spectral clustering is a novel and promising approach to jet formation, which
initial development already demonstrates flexibility and excellent performance for nu-
merical analyses at the forefront of collider physics.
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Chapter 9

Conclusions

Three studies are combined in this work. The first being a study that aimed to locate
the available parameter space of the 2HDM where the signals of the cascade decays
A → HZ and H → AZ would be detectable. The second was a comparative inves-
tigation, considering the relative merits of two jet formation algorithms, anti-kT and
variable-R, for finding jets produced in Higgs cascades. The third study experimented
with the adoption of a novel jet formation algorithm, the spectral algorithm, with a
particular interest in finding the jets produced in Higgs cascade decays. Together, they
each contribute to an aspect of the search for 2HDM signals.

Chapter 3 contains the first study. It began with the results of ATLAS experimental
analysis of the production and decay process gg, bb̄ → A → ZH → l+l−bb̄ performed
at run 2. The data from this study was combined with predictions, and additional
checks for exclusions, to establish the parameters that are not excluded, but for which
there is experimental sensitivity. This process was extended in two ways, firstly, an
alternative decay chain was considered; gg, bb̄ → H → ZA → l+l−bb̄. This additional
decay chain did not yield any additional parameter space, as all mass combinations that
would have left it kinematically open were excluded by either theoretical constraints,
or flavour physics constraints. The second extension was a projection of the detector
sensitivity to the conditions of run 3. This yielded more exciting results; for Yukawa
types I, II and Y, and for moderate tan(β) values, those around 5 - 10, parameter space
will be available. This is a promising window of opportunity for run 3 at the LHC.

The second study is in chapter 5. This study considered jet formation on another Higgs
cascade decay; H → hh → bb̄bb̄. The four jet final state provides particular challenges
for jet reconstruction, and would be common to many other 2HDM signal processes.
Two variations of this decay were considered, one in which the H has a mass of 500 GeV
and the h corresponded to the observed standard model Higgs. The other assigned H
to be the standard model Higgs at 125 GeV and selected h to be a light Higgs at 60 GeV.
The study illustrated that this second configuration would be challenging to spot, as
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the light Higgs would not create a large shower, and typically have low transverse
momentum. A significant fraction of this signal will be lost to kinematic cuts, even
with excellent jet reconstruction. The reconstruction of both signals was considerably
enhanced by choosing the unusual variable-R method, rather than the prevalent anti-kT

algorithm. Variable-R clustering was able to improve jet multiplicities, and mass peak
locations, by use of its adaptability to differing jet pT.

Finally, the study in chapter 8 investigated the use of spectral clustering for jet forma-
tion. This is a novel approach, which treats the particles to be clustered as nodes of a
graph, then uses the simple and powerful features of the Laplacian eigenmap of the
graph. This work demonstrates that a spectral algorithm accurately forms jets on a
range of events, without requiring parameter adjustment. This was investigated using
both Higgs cascade decays, and semileptonic tt̄ decays. It is insensitive to the influence
of differing IR effects between LO and NLO simulation. Furthermore, the algorithm
has a limited number of parameters, each of which have clear intuitive meaning, some-
thing of a rarity in a ML technique. Overall, this algorithm shows great promise, and
facilitates better jet formation techniques.
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Appendix A

Replication Study of CSVv2 and
DeepCSV

In order to investigate the practicalities of using ML in jet physics some replication
studies were performed. The subject chosen was CVSv2 and DeepCSV, both of which
are jet taggers which have been used in practice by the CMS collaboration [176]. Recre-
ating the taggers using a different set of libraries offers verification of their expected
behaviour, and explores the challenges of training ML tools in a realistic setting.

Finding the best configuration to address a specified problem may require training and
evaluating many versions of a tool, particularly so for NNs like CSVv2 and DeepCSV.
Therefore factors influencing the speed of training are of particular interest.

To begin with the origin and nature of the data used will be described. The preprocess-
ing of the data, in particular the reweighting, will be discussed. The two NNs, CSVv2
and DeepCSV, are geometrically distinct. Both of them are described. The framework
in which the NNs are trained is described, as this study is interested in factors that
influence the speed with which they are trained. The training of NNs required var-
ious hyperparameters, the way in which these were selected is described, and some
indication of the effects of varying them is given.

All of the code used to read and process the data, and perform and evaluate the training
is available at https://bitbucket.org/tidefall/jettagging.

A.1 Input Data

The input data is MC simulated data designed to emulate possible observations at the
LHC from the CMS detector. To be as realistic as possible, this data includes noise from
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MPI, ISR and pileup. Detector precision is also simulated. For a more general overview
of these processes, see section 4.5.

In order to train a NN labelled data is needed. As the data is generated in MC, the
ground truth is known, and can be used for these labels.

The MC pipeline is as follows; GEANT 4 [104] is used to simulate interactions between
particles and the detector material. POWHEG 2.0 [259] and MadGraph5_aMC@NLO 2.2.2 [71] are
used to generate signal events. PYTHIA 8.2 [85] is used to simulate the background, parton
showering and hadronizsation. Data produced in this way has been kindly provided
by Dr Emmanuel Olaiya.

In this data sample the signal event used is a tt̄ fully leptonic decay as depicted in
Figure A.1.

FIGURE A.1: The signal event found in the Monte Carlo data used. This is a decay
of top quarks into bottom quarks and other products. The bottom quarks will then
hadronize to form distinctive b jets. The other products are two neutrinos, which
will appear as missing momentum in the event, and two leptons. If there is sufficient
energy the leptons may be muons. Muons produce particularly distinctive tracks, and

so are a great advantage in reconstructing events.

The input vector for both NNs is a set of high level variables. To obtain these high
level variables the output of the simulation requires preprocessing. A global event
reconstruction is performed to identify the particle tracks. Various cuts are applied to
concentrate the data on the area of interest. These are as detailed in reference [176].
Then the anti-kT jet clustering algorithm [237] with distance parameter ∆R = 0.4 is
applied to select the jets.

The reconstruction of jets has varying levels of success. On this bases the jets can be
divided into 3 categories; [176, p. 15]

• RecoVertex: The jet contains one or more Secondary Vertices (SVs).

• PseudoVertex: No SVs, but the tracks fit these conditions;

1. At least 2 tracks with a 2D Impact Parameter (IP) significance above 2. ‘2D’
refers to the IP in the transverse plane.
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2. The combined invariant mass of the tracks selected by the first condition is
at least 50 MeV away from the K0

S mass.

• NoVertex: All jets that don’t meet the requirements for either of the first two
categories.

For the NN called CSVv2 only the best reconstructions (RecoVertex) were used in this
study. Partial reconstructions are discarded. The NN called DeepCSV uses all recon-
structions. As they are using different selections of the data the classification results of
the two NNs are not directly comparable. DeepCSV is at a disadvantage because it will
be used to classify all events, including those whose reconstruction did not meet the
RecoVertex level. 19 high level variables are used, which can also be found here [176,
p. 15]. They are listed here, following the target variable.

1. The target variable parton flavour. Partons generated by the simulation that are
within ∆R < 0.3 of the jet axis may give the jet flavour. If there is more than one
candidate then the order of preference is b, c then light partons (‘udsg’) [260, p.
3].

2. SV 2D flight distance significance: The SV flight distance is the distance between
the primary and secondary vertices. ‘2D’ refers to movement in the transverse
plane. This variable is recorded per jet and if there are multiple SVs in the jet then
the one with the smallest uncertainty in flight distance is used.

3. Number of SVs: The number of SVs found in the jet.

4. Track ηrel: This is the pseudorapidity (see section 4.5) of the track relative to the
jet axis. It is recorded per track and the track with the smallest uncertainty in
flight distance is used.

5. Corrected SV mass: This variable is defined per jet and its definition depends on
the jet category.

In the RecoVertex category it is the corrected mass of the secondary vertex with

the smallest uncertainty in flight distance. The correction is “
√

M2
SV + p2 sin2 θ +

p sin θ, where M2
SV is the invariant mass of the tracks associated with the SV, p

is the SV momentum obtained from the tracks associated with it and θ is the
angle between the secondary vertex momentum and the vector pointing from the
primary vertex to the secondary vertex.” [176, p. 10]

In the PseudoVertex category this variable is the invariant mass obtained from
the total summed four momentum vector of all the tracks in the jet.

In the NoVertex category this variable is not used.
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6. Number of tracks from the SV: This variable is defined per jet and its definition
depends on the jet category.

In the RecoVertex category it is the number of tracks associated with with the
smallest uncertainty in flight distance.

In the PseudoVertex category it is the total number of tracks in the jet.

In the NoVertex category this variable is not used.

7. SV energy ratio: this is the energy of the SV with the smallest uncertainty on its
flight distance divided by the combined energy of all the tracks in the jet.

8. ∆R(SV, jet): This is a measure of angular separation in η-φ space. It is defined
per jet and its definition depends on the jet category.

In the RecoVertex category it is the angular distance between the jet axis and the
SV with with the smallest uncertainty in flight distance.

In the PseudoVertex category it is the angular distance between the jet axis and
the summed four momentum of all the tracks in the jet.

In the NoVertex category this variable is not used.

9. Track 3D IP significance: This variable is defined per track. The values of the
four tracks with the highest 2D IP significance are used, so this variable provides
4 values as input data.

10. Track pT, rel: This is the track momentum perpendicular to the jet axis, pT relative
to the jet axis. The variable is defined per track and the track with the highest 2D
IP significance will be chosen as an input value.

11. ∆R(track, jet): This is a measure of angular separation in η-φ space (see sec-
tion 4.5). It is the angular separation between the track and the jet axis. The
variable is defined per track and the track with the highest 2D IP significance will
be chosen as an input value.

12. Track pT, rel ratio: This is the track momentum perpendicular to the jet axis di-
vided by the magnitude of the track momentum. The variable is defined per
track and the track with the highest 2D IP significance will be chosen as an input
value.

13. Track distance: This variable is defined per track, it is the minimal distance be-
tween the track and the jet axis. The track with the highest 2D IP significance will
be chosen as an input value.

14. Track decay length: This variable is defined per track, it is the distance between
the primary vertex and the point of closest approach between the track and the
jet axis. Note the somewhat unusual definition. The track with the highest 2D IP
significance will be chosen as an input value.
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15. Summed tracks ET ratio: This variable is defined per jet. It is the summed trans-
verse energy of all tracks in the jet divided by the transverse energy of the jet.

16. ∆R(summed tracks, jet): This is a measure of angular separation in η-φ space. It
is defined per jet and it is the angular separation between the summed for mo-
mentum of the tracks and the jet axis.

17. First track 2D IP significance above c threshold: This variable is defined per jet.
It is the 2D IP significance of a chosen track. The track is chosen by adding the
four momenta of the tracks in order of least uncertainty in flight distance until the
combined four momentum vector has a mass greater than 1.5 GeV. The last track
added, the one that pushed the sum over this threshold, is chosen. The value of
1.5 GeV comes from the mass of the c quark.

18. Number of selected tracks: This is the number of tracks in the jet.

19. Jet pT

20. Jet η

21. The discriminating variable track 2D IP significance: This variable is defined per
track. It is used to sort the tracks and in deciding the jet category.

The distributions of these variables are shifted to centre about 0 and rescaled so that
the standard deviation is 1. Then all unreconstructed values are set to 0.

Some of the variables that are used are likely to exhibit a strong dependence on the jet
mass. After the classification is complete, the identified signal is often used to study a
mass spectrum, and so it is very important that the performance of the classifier is not
correlated with jet mass.

On a practical level this means reweighting the samples produced from Monte Carlo
to ensure that signal dependent variables have the same distribution between flavours.
That is, when the NN is being trained variables will be selected at random from the
training data (Monte Carlo labelled data). The distribution of a variable is then the dis-
tribution of the values that belong to all the randomly selected jets. So if the random
distribution from which the jets are drawn is not confined to be uniform it can be used
to shape the distribution of variables seen in the selected jets. Changes to this distribu-
tion are parametrised by ‘weights’ on each jet. The higher the weight of a given jet the
more likely it is to be selected. The aim is then to find a set of weights such that when
jets are drawn at random and then split by flavour the distribution of signal depen-
dent variables looks identical for each flavour. This prevents the classifier from directly
discriminating on those variables, which would result in a decision correlated with jet
mass and the signal process.
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FIGURE A.2: The distribution of variables jet pT, jet η, number of selected tracks, num-
ber of SVs and number of tracks from secondary vertices. They have been normalised

and are plotted before and after reweighting.

The correlations between variables are not lost in the reweighting, and a NN is able
to use these in its classification. However, the reweighting may warp useful physical
properties of the training sample. All distributions will be effected by the reweighting,
not just those signal dependant variables for which it is needed. This changes may
make it more difficult for the NN to identify flavours.

Two variables that are known to depend on the signal event, and not the jet flavour,
are the jet pT and the jet η. This is because their energy scale corresponds to that of the
signal event and not that of a quark mass. Simultaneous reweighting of two variables
presents a challenge. This is because changes in weight that correct the distribution of
one variable will alter the distributions of all other variables. An iterative algorithm
can be used to improve the distributions each in turn, until they are within a suitable
margin of each other. Here, the algorithm described in [261]1 has been used to match
the distributions.

The results of the preprocessing and reweighting can been seen in Figure A.2 to Fig-
ure A.4. In figure A.2 it can be seen that although the reweighted distributions of jet pT

and jet η are not quite identical they are close enough to be within the level of the nat-
ural variations in the data. For the most part this reweighting has had only a marginal

1Available at [262].
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FIGURE A.3: The distribution of jet variables secondary vertex 2D flight distance sig-
nificance, corrected SV mass SV energy ratio, ∆R(SV, jet), track 3D IP significance and
track ηrel. They have been normalised and are plotted before and after reweighting.

impact on the other distributions, however in figures A.3 and A.4 it can bee seen that
the SV energy ratio and the summed tracks ET ratio are both somewhat affected. This
could reduce the efficiency of the jet tagger.

A.2 NN Architectures

There are two NNs considered in this study. The first is called CSVv2, and the second
is called DeepCSV. They were both designed by the CMS collaboration to tag b and c
jets during the second (13 TeV) run of the LHC [176].

CSVv2 is the smaller of the two NNs. It is shown graphically in Figure A.5. It was
superseded by DeepCSV. DeepCSV is a larger NN that is shown in Figure A.6. This
NN is the larger of the two, its size will increase the compute time required to train it.

Both of the networks are fully connected, feed forward, neural networks. The training
process itself has a number of hyperparameters. These do not appear in the finalised
network, but will change the time required to train the network, and the maximum
performance achieved. Three key hyperparameters are batch size, learning rate and
weight decay.
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FIGURE A.4: The distribution of jet variables first track 2D IP significance above c
threshold, summed tracks ET ratio, track pT,rel, ∆R(track, jet), track distance and track
decay length. They have been normalised and are plotted before and after reweight-

ing.

To begin with, the batch size; when adjusting the parameters of the NNs, back propaga-
tion can be used to find a direction that would improve the output for each individual
event. This is a generic optimisation problem. It is also possible to consider and aver-
age distance that would improve the performance on a batch of events. Larger batches
enable more vectorisation in the process, and often speed up the process. However,
smaller batches introduce a stochastic element to the process, which can help the train-
ing process escape local minima, therefore avoid getting stuck. Batch sizes between 400
and 20000 where tested; for both CSVv2 and DeepCSV a batch size around 5000 was
found to be optimal.

Moving on, the learning rate; when the optimiser is working on the NN the magnitude
of the changes made with each batch is adjusted by the learning rate. When the NN is
far from the minima a high learning rate will improve the speed of the training. When
the NN gets close to the minima, if the learning rate is too high then the optimiser may
over adjust the NN and miss the minima. The batch size also has an influence on the
rate at which the NN is changing, and so influences the ideal learning rate.

Unlike the other hyperparameters, learning rate will correct itself to some degree; as
the NN trains it uses an adaptive learning rate scheduler to chose an optimum learning
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Number of hidden nodes
(=44)

Number of
Input variables

(= 22) 
Output node

FIGURE A.5: The topology of CSVv2. There are 22 input nodes, one hidden layer with
44 hidden nodes and one output node. The activation function of the nodes in the
hidden layer is ReLU, and the activation function of the output node is a sigmoid. The

output node indicates a degree of belief that the input jet is a b jet.

rate. At the end of each epoch the scheduler is called, if the loss over time of the NN
appears to have plateaued then the scheduler will reduce the learning rate.

For this reason it is only necessary to pick acceptable starting values of the learning
rate, if they are poor choices they will be fixed soon after the start of the training. A
good initial learning rate for CSVv2 is 0.1. A good initial learning rate for DeepCSV is
0.01.

Finally, the weight decay; Overfitting is a problem that is encountered when the NN
has become too complex for the problem, and is fitting noise instead of the signal dis-
tribution. As the noise is different in the test and the train datasets, the effect is that
although the performance of the NN appears to be improving in the training dataset,
the performance in the test dataset will degrade. To prevent this, measures are taken to
limit the complexity of the NN. There are a number of ways to achieve this; reducing
the number of nodes in the hidden layers will reduce the complexity, however, this is
only well correlated to the complexity of the NN when few neurons are used [200]. The
overall complexity of a NN remains proportionate to the magnitude of the weights of
the NN, no matter how many hidden nodes it has. Weight decay utilises this by adding
an L2 penalty to the optimiser that increases with the magnitude of the weights. The op-
timiser will be penalised for making the weights larger as this increases the complexity
of the NN and therefore its opportunities to overfit.

It has also been observed that NNs with some weight decay train faster, even if the
problem does not require it.
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Number of
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(= 56) 
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FIGURE A.6: The topology of DeepCSV. There are 56 input nodes, 4 hidden layers
with 100 hidden nodes and one output node. The activation function of the nodes in
the hidden layers is ReLU, and the activation function of the output node is a sigmoid.
The first output node indicates the degree of belief that the output is a b jet, the second
corresponds to c jets and the third to light jets (udsg). Note that in the original version
of DeepCSV there were 5 output nodes, the two additional nodes indicated fat jets, or
collimated jets. There are none of these jets in the data sample used in this paper, so

those outputs were removed.

The weight decay has one parameter, this scales the penalty from weight decay relative
to the loss as seen by the optimiser. A range of values from 2× 10−7 to 0.0005 were tried,
and for CSVv2 a value of 0.0002 achieved the right complexity, while for DeepCSV a
value of 10−6 performed best.

Using these training hyperparameters, both NNs were trained on the same MC data
sample.

A.3 Results

The output of the trained networks is compared to those trained by CMS in Figure A.7.
While the general distribution of the response is similar, the performance of the replicas
in this study falls short of those trained by CMS. The relative rate of error between jets
with different ground truth flavours matches well between versions, c-jets are more
likely than light jets to be mistaken for b-jets.

There are more factors that influence training progress than the three hyperparameters
discussed in section A.2. Other factors include;
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FIGURE A.7: The behaviour of the trained CSVv2 and DeepCSV replicas, as compared
to the originals trained by the CMS collaboration. The author’s NN produces a similar
output, but does not perform as well as the NN trained by the CMS collaboration. For

discussion of this see section A.3.

• The exact loss function used by CMS in training is not noted in the publication. A
better choice of loss function might be less susceptible to false plateaus in training.
This includes the shape of the weight penalty term.

• In a similar vein, the distribution from which the events where drawn, or the
weights of the events, in other words, might have been better chosen in the CMS
study. This study simply sought to prevent the NNs from becoming correlated
with jet mass; more advances techniques such as bootstrapping might have been
used to improve the performance of the NNs on the hardest events.

• The optimiser chosen to control the updates will have an impact.

Further investigation would be needed to uncover the exact process used be CMS to
achieve their performance.

A.3.1 Time Required to Train

It is also interesting to know the total time required to train a NN using different com-
putational resources. Training time is compared on three different cards2;

• Nvidia Tesla V100 enterprise graphics cards, released June 21st, 2017. These are
currently retailing for approximately £8000.

• Nvidia GTX 1080Ti consumer graphics cards, released March 10th 2017. These are
currently retailing for approximately £600.

• Intel Xeon Gold 6138 CPU card, July 11th, 2017. These are currently retailing for
approximately £2000.

2All recent cards at the time of testing; September 2018
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Prices will only be accurate to about ±20% as they fluctuate and can be altered by
purchasing at different points in the supply chain. For example the Nvidia Tesla v100
used in this study was recently acquired by the University of Southampton for £7580
and the GeForce GTX 1080Ti was acquired for £679.

This test requires identifying the time for completion of training. Several candidates
were tested for this. The most successful was a ratio of standard deviation of the loss
function, comparing the points before each time step to the points after that time step.
This quantity is referred to as the standard deviation ratio;

Rσ(t) =
σ(l(t′|t′ > t))
σ(l(t′′|t′′ < t))

. (A.1)

This was chosen based on the principle that while the NN is training the output of
the loss function will be varying rapidly, and so its standard deviation will be high.
When training finishes the loss function will not be static, some stochastic movement is
expected, but it will not move far from its minimum and it will obtain a low standard
deviation. This minimum is described as the plateau. Thus if the graph of the loss is
split in two at some epoch, and the standard deviation of all epochs ahead is divided by
the standard deviation of all epoch behind, this ratio will reach a minima at the epoch
when loss reaches a plateau. The minima of Rσ(t) is then selected as the epoch when
the training was completed.

This is plotted for CSVv2 in Figure A.8. It can be seen that the NN is reliably trained
within 300 seconds regardless of the card used. The same plot for DeepCSV is presented
in Figure A.9. Here the considerable advantage of GPU cards can be seen. When the
NN is trained on the GPU card it is completed on a similar time scale as for CSVv2,
however, training on the CPU takes about 7 times as long.

These numbers highlight something else quite unexpected; the considerably more ex-
pensive Tesla v100 (retailing at around £8000) is outperformed by the GTX 1080 Ti
(£600) in this task.

The GTX 1080 Ti benefits from having good serial and parallel capacity. If larger NNs
such as deep flavour had been included in this study it is possible that the Tesla v100
would have been able to better display its capacity for vectorised computation, how-
ever there are other aspects at play. The speed of the two cards is informally compared
in [263, 264], and in both cases the Tesla v100 is found to be only marginally faster of
the two. It is also speculated that the underperformance of the Tesla v100 is in part due
to the relative immaturity of the software tailoring for the Tesla v100. The Tesla v100
was released in June, 2017 and while the GeForce GTX 1080 Ti was released March 2017
it has much in common with the GeForce GTX 1080, released May 2016. Furthermore,
due to their more attainable price-point, it would be understandable if the GTX 1080 Ti
had benefited from more development attention.
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FIGURE A.8: The time for CSVv2 to reach a plateau. The upper plot is the training loss
against time in seconds for the training of many NNs. When the loss stops descending
and plateaus the NN is no longer learning. The colours are split by the card that the
NN was trained on. The lower plot is the ratio of training loss standard deviation
before and after each point. This ratio reaches a minimum when the NN first plateaus,
see section A.3.1 for an explanation. The plateau time, and standard error are marked
on the lower plot as vertical bars. It can be seen that the time to plateau is close for all

3 cards when training CSVv2.

FIGURE A.9: The time for DeepCSV to reach a plateau. The plots are as in Figure A.8.
It can be seen here that the GPUs confer a significant advantage, reaching plateau

approximately 7 times faster than the CPU.
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Comparing between Figure A.8 and Figure A.9, it is clear that the more parameters the
network has to train, the greater the advantage gained by the graphics cards over the
CPU.

A.4 Conclusions

From this replication study, two points should be noted. Firstly, the performance of
a NN may be quite sensitive to its training conditions. Achieving the same results
requires replicating not just the architecture, but also the training input distribution,
optimiser and loss function.

Secondly, although it is no surprise that a GPU can train the network faster than a CPU,
it is surprising that the cheaper of the two GPUs tested proved to be the fastest option.
This highlights the importance of the software maturity in achieving the best speeds.
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Appendix B

Two Cluster Spectral Clustering

Spectral clustering allows a slight optimisation when minimising the ratio cut crite-
ria for the simplest, non-trivial, case of two clusters. Only a single indicator vector is
needed; this is given in [247], and will be shown in detail here.

Let the first chosen cluster be K, and the second be K̄, which is naturally equivalent to
all points not in K. In order to record the allocation of points to K or K̄, an indicator
vector can be defined such that

fi =


√
|K̄|/|K|, if i ∈ K

−
√
|K|/|K̄|, if i ∈ K̄.

(B.1)

The target is to find an equation that constructs fi such that the ratio cut, Equation 7.13,
is minimised. The keystone to this will be the unnormalised graph Laplacian; let the
unnormalised graph Laplacian be

L = D− A (B.2)

where A is a matrix of affinities, such that Ai,j = ai,j and Ai,i = 0, and D is a diagonal
matrix with Di,i = ∑j ai,j.
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Now a link can be drawn by taking the product of these things;

f ′L f = ∑
i,j

fiLi,j f j

= ∑
i,j

fi

(
δi,j ∑

p
ai,p − ai,j

)
f j

= ∑
i

(
f 2
i ∑

p
ai,p −∑

j
fi f jai,j

)
(B.3)

= ∑
i,j

ai,j
(

f 2
i − fi f j

)
=

1
2 ∑

i,j
ai,j
(

fi − f j
)2

which uses ai,i = 0 and Equation B.2 between lines one and two. Then using Equa-
tion B.1, substitutions can be made for fi and f j. If i and j are both in the same cluster
then this leads to fi − f j = 0, so we only need to consider i ∈ K, j ∈ K̄ or i ∈ K̄, j ∈ K.

f ′L f =
1
2 ∑

i∈K,j∈K̄

ai,j

(√
|K̄|
|K| +

√
|K|
|K̄|

)2

+
1
2 ∑

i∈K̄,j∈K

ai,j

(
−

√
|K|
|K̄| −

√
|K̄|
|K|

)2

= ∑
i∈K,j∈K̄

ai,j

(
|K̄|
|K| +

|K|
|K̄| + 2

)
(B.4)

Now notice that the first term of this sum is the numerator from Equation 7.13. The
remaining terms do not depend on the index.

f ′L f = (|K̄|+ |K|)
(

∑i∈K,j∈K̄ ai,j

|K| +
∑i∈K,j∈K̄ ai,j

|K̄|

)
= (|K̄|+ |K|) RatioCut (B.5)

There is another use that can be made of Equation B.2; ∑i f 2
i = |K|

√
|K̄|/|K|2 + |K̄|

(
−
√
|K|/|K̄|

)2
=

|K̄|+ |K|. Which takes the equation to;

RatioCut =
f ′L f
f ′ f

(B.6)

So the cost function can be expressed neatly in terms of the indicator vectors, f , and the
Laplacian, L. The aim is to minimise this. This is still not directly solvable, not with the
requirements of Equation B.2. But if those requirements are relaxed, and fi can take any
values, provided that they are perpendicular to 1. then the right hand side becomes the
Rayleigh-Ritz quotient. Minimising this is done by finding eigenvector associated with
the smallest eigenvalue.
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Appendix C

Stopping Condition

To offer some evidence for the assertions made in section 8.2.1.3, the behaviour of the
mean distance during clustering is shown in Figure C.1.

Clustering is performed on the dataset described in section 8.2.4 called Light Higgs.
The parameters used for the spectral algorithm are the ones given at the end of sec-
tion 8.2.3. First, the upper panel of Figure C.1 shows the mean distance between pseu-
dojets for 2000 events, plotted against the number of pseudojets remaining. Each line
is shown in yellow until its value first exceeds R = 1.26, the stopping condition, after
which the line becomes green. When finding jets with spectral clustering, the algorithm
would normally be stopped at the end of the yellow section, as the stopping condition
has been reached, the green section is shown here to illustrate what happens beyond
this point. It can be seen that the transition from yellow to green happens with approx-
imately 3 to 13 pseudojets remaining. This supports the assertion that a mean distance
stopping condition will not force the same number of jets in each event. It can also
be seen that the mean distance does rise smoothly for most of the clustering sequence,
becoming erratic only when less than 5 pseudojets remain.

Second, in the lower panel, the factors that alter the mean distance are plotted. Again,
each of the 2000 events is represented as a single solid line. In blue, change of mean
distance due to merging pseudojets is shown. Normally merging two pseudojets causes
the mean distance to rise, as the embedding space is becoming sparser, however, there
are some configurations in which this does not hold. Occasionally, two points that
merge will lower the mean distance, and the blue line will dip below zero. It can be
seen from the plot that such configurations are less common than those that increase
mean distance.

The second panel also shows change of mean distance due to a reduction in the num-
ber of dimensions in the embedding space in red. This universally decreases mean
distance, the red lines remain below or at zero. Not every step of the algorithm will
reduce the number of dimensions, and so the red line for an event is frequently zero.
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FIGURE C.1: In the upper panel, the mean distance between pseudojets for 2000 events
is plotted against the number of pseudojets remaining. Each line is shown in yellow
until its value first exceeds R = 1.26, the stopping condition, after which the line
becomes green. A dotted line shows the average mean distance across all 2000 events.
In the lower panel, the factors that alter the mean distance are plotted. Again, each of
the 2000 events is represented as a single line, and the average is given as a dotted line.
In blue, change of mean distance due to merging pseudojets is shown. In red, change
of mean distance due to a reduction in the number of dimensions in the embedding

space is shown.

It can be seen that these two factors balance each other to produce a steady trend in
mean distance.

There is a third possibility, very rarely the number of dimensions in the embedding
space will increase. This is not pictured, as it is not possible to visually distinguish the
line from y = 0 and it would clutter the plot.
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