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Abstract

A model of financial asset price determination is proposed that incorporates flat trading

features into an efficient price process. The model involves the superposition of a Brownian

semimartingale process for the efficient price and a Bernoulli process that determines the extent

of flat price trading. The approach is related to sticky price modeling and the Calvo pricing

mechanism in macroeconomic dynamics. A limit theory for the conventional realized volatility

(RV) measure of integrated volatility is developed. The results show that RV is still consistent

but has an inflated asymptotic variance that depends on the probability of flat trading. Esti-

mated quarticity is similarly affected, so that both the feasible central limit theorem and the

inferential framework suggested in Barndorff-Nielsen and Shephard (2002) remain valid under

flat price trading even though there is information loss due to flat trading effects. The re-

sults are related to work by Jacod (2018) and Mykland and Zhang (2006) on realized volatility

measures with random and intermittent sampling, and to ACD models for irregularly spaced

transactions data. Extensions are given to include models with microstructure noise. Some

simulation results are reported. Empirical evaluations with tick-by-tick data indicate that the

effect of flat trading on the limit theory under microstructure noise is likely to be minor in most

cases, thereby affirming the relevance of existing approaches.
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1 Introduction

The expression ‘flat trading’ refers to situations in market trading where consecutively sampled

prices in calendar time take on the same value. The phenomenon of flat pricing is extremely com-

mon in stock market trading, affecting almost all traded stocks, especially (but not exclusively)

over small time intervals. Possible reasons for flat price trading in data include slow and sluggish

trading, order splitting, and price discreteness. An immediate implication of the phenomenon

is that both returns and volatility are zero over the flat price subinterval, an outcome that has

null probability of occurrence in any model where price behaves like a continuous Brownian semi-

martingale. This characteristic of the realized data inevitably has implications for the econometric

measurement of volatility.

Respect for the form of the data is a fundamental prerequisite of good modeling and the quality

of the empirical research that it can generate. The best textbooks in econometrics emphasize

the importance of this feature of modeling and applied work. A distinguishing feature of Peter

Schmidt’s career is the concern that he has placed on the nature of the data in planning and

executing his own research, his pedagogy, and his careful assessment of the research of others in

his role as a referee and editor. Peter’s extensive research on panel data and the manifold properties

of such data clearly reflect this concern, as does the large body of his work on production frontier

modeling and technical inefficiency. Peter’s textbook Econometrics, which was written early in his

career and published in 1976 (Schmidt, 1976), manifests his respect for precision and brevity in

exposition, for clarity in notation, and for the suitability of the model to the data under study.

Consonant with this thematic of Peter Schmidt’s research, the present paper seeks to explore

some of the implications of the time series property of flat trading in financial data in the context

of the use of realized variance (RV) estimates of integrated variance (IV). Part of the task is to

develop a model that compounds the presumed semimartingale behavior of underlying efficient

market prices with a mechanism that produces periods of flat prices in practical trading. Flat

trading is a regular feature of many financial markets, especially for stock price data that is sampled

at modest to high frequencies, where it may be regarded as a market microstructure phenomenon

arising from discrete trading practices, information arrival in discrete packets, and trading volume

effects. Without developing a full microstructure theory, we posit a stochastic mechanism that

accords a constant probability of the occurrence of a trading flat over each given subinterval.

The formulation leads to the compounding of the efficient price Brownian semimartingale with a

Bernoulli process that determines the timing and length of the flat trading periods. The approach

is related to sticky price modeling in macroeconomic dynamics and new Keynesian Phillips curve

models. In these models, Calvo (1983) pricing is frequently used in which only a fixed share of

firms are able to optimize price each period, leading to price stickiness and some time duration

between price changes.

Under the flat trading model in this paper, we develop a limit theory for standard econometric

estimates of volatility by nonparametric RV measures. It turns out that when we allow for flat

trading RV is still consistent, converges to IV, and follows a mixed Gaussian limit theory under

standard regularity conditions corresponding to those used in the original work of Barndorff-Nielsen

and Shephard (2002). These results generalize the standard theory on empirical quadratic variation

estimates. Notably, however, there is some information loss when using RV to do inference about

IV due to the presence of flat price effects. This loss takes the form of an increase in the asymptotic

variance. The effects are of a sufficient magnitude to be significant in practical applications. For
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example, if the RV estimate is constructed from 5-minute returns for Alcoa (AA) stock prices on

April 5, 1995, the proportion of flat pricing on this day amounts to some 60% of the sample and

our results imply that the correct variance quadruples the variance obtained from a semimartingale

process without flat pricing.

As with other research efforts on volatility, our interest in the use of RV measures is motivated

by the availability of ultra-high frequency data which has made it feasible to measure volatility

accurately in a direct nonparametric way. The idea is well explained in earlier work and simply

involves the calculation of the sum of squared intra-day returns obtained from observed intra-

day prices. The theoretical justification for measuring volatility in this way relies on standard

properties of the empirical quadratic variation process for semimartingales (e.g., Protter (2004)),

a set up which is commonly assumed for financial asset prices in the literature (see, for example,

Andersen et al. (2001b). The main object of interest in this research is the value of IV over a

specific time period such as a day. This approach to measuring volatility has attracted a great

deal of attention and has led to numerous successful applications — see, for example, Andersen

et al. (2001b, 2003, 2005b, 2001a, 2005a); Bandi and Russell (2008); Fleming et al. (2003). For

overviews of the literature, see Andersen et al. (2010); Barndorff-Nielsen et al. (2006).

Direct application of empirical quadratic variation limit theory requires that efficient or equi-

librium prices be observed. This requirement appears too strong at ultra-high frequencies, such as

the tick-by-tick frequency, because of the presence of various market microstructure effects. These

market microstructure effects may be regarded as contaminating the efficient price process and

may be, albeit somewhat crudely, modeled as noise. Ignoring these effects produces bias and in-

consistency in realized volatility estimates. Other institutional elements of importance arise from

empirical realities such as thin trading - the fact that the population of market participants is

large but nevertheless finite so that the usual (central limit theory) ingredients that underly the

determination of infinitesimal Brownian increments is typically absent. Thin trading inevitably

arises in situations where trading takes time and there are finite numbers of traders. Accordingly,

we must expect to observe some flats in the real data as we move the sampling frequency to zero.

This feature in combination with microstructure noise arising from sources such as bid/ask bounc-

ing and misrecording means that the efficient price process is a latent variable that is observed

intermittently and with some degree of error.

While maintaining the assumption of martingale-like behavior for efficient prices, the literature

has produced three different strands of research on how to deal with microstructure noise in realized

volatility calculations with intra-day data. One strand of research is to use all available tick-by-

tick data and seek to explicitly model microstructure noise in this fine-grain sampling context.

Assumptions about the properties of the microstructure noise are typically made for analytic

convenience and include both iid and stationarity conditions. Important contributions to this

literature include Zhang et al. (2005); Aı̈t-Sahalia et al. (2005); Barndorff-Nielsen et al. (2008); Da

and Xiu (2021).

A second strand of research in the literature is to sample sparsely relative to the available

sampling frequency, usually at modest frequencies, of 5 or 10 minute intervals. This approach

is motivated by the fact that many sources of microstructure noise (such as bid/ask bounce),

which occur in ultra-high frequency data, are mitigated when prices are sampled at these modest

frequencies. Correspondingly, it has been argued that these more sparsely sampled prices better

approximate the efficient price process, and therefore standard semimartingale theory can be in-

voked. Under such semimartingale conditions, the consistency of RV was used in Andersen et al.
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(2001b) and the asymptotic distribution of RV was developed in Jacod (2018)1.

In the third strand of the literature, researchers have focused on the finite sample properties

of the RV estimates. Here it is argued that the choice of sampling frequency effectively trades off

estimation variance against bias. When microstructure noise is explicitly modelled, an “optimal”

sampling frequency, which minimizes the mean squared error of the RV estimate, may be calculated.

Studies following this approach include Zhou (1996), Hansen and Lunde (2006) and Bandi and

Russell (2008).
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Figure 1: Time series plots of transaction prices for AA on April 5, 2000 at three different fre-
quencies. The horizontal axis is the time stamp (in seconds) since the market opening at 9:30am.
The first panel is based on tick-by-tick observations. The second panel is based on data that are
sampled every 1 minute. The third panel is based on data that are sampled every 15 minutes.
The prices at the 1- and 15-minute frequencies are obtained using the previous tick method. See
Hansen and Lunde (2006) for a detailed discussion of the different sampling schemes.

None of the above analyses explicitly models or allows for flat trading in observed prices even

though flat trading is a salient feature in actual stock data at most of the frequencies that have

been used in this literature, from tick-by-tick data through to 15-minute trading data. Flat trading

is a characteristic of both actively traded and inactively traded stocks. To illustrate the former,

Figure 1 plots transaction prices for the stock AA from the Dow Jones Industrial Average (DJIA)

on the New York Stock Exchange (NYSE) at three different frequencies: tick-by-tick, 1-minute,

and 15-minute frequencies on April 5, 2000. Flat trading is obvious at all three frequencies and

it becomes a dominant feature in the tick-by-tick data. Table 1 reports the proportions of flat

transaction prices for AA when sampling is performed at five different frequencies (1-, 2-, 3-, 4-,

1Jacod (2018) is a subsequently published version of a working paper that appeared much earlier and was dated
as 1993 in later citations of the paper (Delattre and Jacod, 1997; Barndorff-Nielsen and Shephard, 2002).
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5-minute intervals) on the first Wednesday in April from 1993 to 2004. Although flat pricing

effects are less pronounced after the decimalization of trading in January 2001, they remain a non-

negligible feature of these data. Flat pricing also takes place in tick sampling and in quote data;

see, for example, Table 1 in Hansen and Lunde (2006) for the percentages of flat quote prices at the

tick-by-tick level for 30 DJIA stocks. Note that AA is a DJIA stock and DJIA stocks are among

the most actively traded equities. Flat trading is naturally even more of an issue for less liquid

stocks. This feature of trading data deserves attention both in financial modeling and econometric

volatility estimation with high frequency data.

Table 1: Proportion of flat trading in AA stock prices

Date # of ticks Proportion of flat trading

1-min 2-min 3-min 4-min 5-min

April 7, 1993 213 .8793 .8000 .7615 .7041 .6282

April 6, 1994 174 .8897 .8051 .7308 .6429 .6154

April 5, 1995 171 .8872 .7949 .7154 .6633 .6026

April 3, 1996 246 .8795 .7897 .6846 .6327 .5897

April 2, 1997 243 .8179 .6923 .5923 .5612 .4872

April 1, 1998 394 .7846 .6359 .5538 .4898 .4103

April 7, 1999 794 .5513 .4154 .3538 .2245 .2692

April 5, 2000 1007 .4436 .2564 .2231 .2041 .1154

April 4, 2001 1788 .1872 .0872 .0692 .0510 .0128

April 3, 2002 1281 .3872 .2615 .1385 .1224 .0128

April 2, 2003 1986 .3795 .2923 .1769 .1939 .0897

April 7, 2004 3845 .2641 .1590 .1692 .0306 .0513

The contribution of the present paper to these issues relates to both the second strand of the

literature on modest frequency sampling and to studies on market microstructure noise. First, the

model introduced here extends the models used in Andersen et al. (2001b) and Barndorff-Nielsen

and Shephard (2002) by gaining some additional realism in its allowance for flat trading sample

paths. Second, we extend the limit theory of RV to the new model, showing that while RV still

consistently estimates IV and asymptotically follows a mixed Gaussian law in the presence of flat

trading, the asymptotic variance of the RV estimate is inflated, thereby revealing the loss of a

substantial amount of information about underlying efficient price volatility in flat trading. Third,

we show that the estimated variation of RV based on empirical quarticity is similarly affected by

the occurence of trading flats. In consequence, and importantly for empirical research, both the

feasible central limit theorem and the inferential framework developed in Barndorff-Nielsen and

Shephard (2002) remain valid under flat price trading.

A further contribution of the paper is to relate the specific model used here and associated

limit theory to models with sampling at random stopping times considered in Mykland and Zhang

(2006) and Jacod (2018). Some new explicit asymptotic results for cases with random sampling

are given which show the effects of random duration times between trades on the limit theory for

integrated variance and quarticity. A final contribution is to study the effects of random duration

times between trades on the limit theory in the presence of microstructure noise of the type studied

in Zhang (2006). Importantly, their two time scale estimator is shown to retain its asymptotic

properties in the presence of flat trading with only a minor scale change to the asymptotic variance.
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The market microstructure literature takes serious account of flat trading data features. For

instance, the incidence of daily zero returns has been used to measure illiquidity (Lesmond, 2005;

Bekaert et al., 2007); and based on intra-day data, Bandi et al. (2017) proposed to use idle time

(IT) and excess idle time (EXIT) to measure the extent of sluggishness in prices. IT is defined

as the fraction of a day where the absolute change in prices is smaller than a threshold while

EXIT is defined as IT in excess of the spurious sluggishness. These two concepts can therefore be

regarded extensions to flat trading. In further related work, Bandi et al. (2020) link the frequency

of flat trading to the frequency of small trading volume. Two possible channels can generate flat

trading: price discreteness and easy absorption of limited volume without price movement (order

splitting). Bandi et al. (2020) found that price discreteness only partly explains flat trading and

in consequence introduce a new concept – excess staleness – to measure the percentage of zero

returns not due to price discreteness, documenting its empirical significance in real data. While

alternative market microstructure features can cause flat trading observed in the data, we do not

take any particular stance concerning its source. Our focus instead is to explore the implications

of flat trading for statistical inference about RV.

The present work proceeds as follows. After a brief background review we introduce the new

flat trading model and develop the corresponding limit theory in Section 2. Section 3 extends the

model and relates the limit theory to the work of Jacod (2018) and Mykland and Zhang (2006)

where intermittent sampling is employed. Section 4 considers the case of microstructure noise

effects. Section 5 reports the results of some Monte Carlo experiments to assess the accuracy

of the limit theory in finite samples and some empirical evaluations with tick-by-tick data are

performed to assess the effect of flat trading on the limit theory. Section 6 concludes. Proofs are

given in the Appendix except for Theorem 3.1 whose proof is in the Online Supplement.

2. A Flat Trading Model and Limit Theory

Let p∗(t) be the logarithm of the efficient price and assume p∗(t) evolves according to a Brownian

semimartingale process on a filtered probability space (Ω,Ft, P ). This assumption is justified by

Back (1991) in a frictionless, arbitrage-free economy. As it is typical in the high frequency volatility

literature, we further assume that p∗(t) follows the (driftless) diffusion

dp∗(t) = σ(t)dB(t), (1.1)

where B(t) is a standard Brownian motion and σ(t) is an Ft- measurable càdlàg volatility process.

The quantity of interest is IV =
∫ 1
0 σ2(t)dt, the IV of p∗(t) over a certain unit time period, say a

day. The integral may be defined as the limit of the empirical quadratic variation

IV = plimh→0

m∑
i=1

[p∗i,m − p∗i−1,m]2, (1.2)

where p∗i,m = p∗(ti,m), 0 = t0,m < t1,m < · · · < tm,m = 1 is a sequence of deterministic partitions of

[0, 1], and h1,m = supi |ti,m−ti−1,m| is the grid size. Since we are interested in intermittent sampling

of the process, it is also useful to define notation for intermittent grid sizes hℓ,m = supi |ti,m−ti−ℓ,m|
for ℓ ≥ 1. Sometimes, it is convenient to assume that the partition involves a simple grid of equi-

spaced points {ti,m = i
m : i = 0, ...,m} and then h1,m = 1

m , and hℓ,m = ℓ
m . The theory of quadratic

variation allows the time spacing in (1.2) to be stochastic and depend on the filtration, thereby
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allowing the times of trade to have some dependence on equilibrium prices.

The limiting value IV in (1.2) is a (unit time period) segment of the quadratic variation process

of p∗. The sample counterpart is the empirical quadratic variation

m∑
i=1

[p∗i,m − p∗i−1,m]2 := RV (m)(p∗),

which is now commonly referred to as RV in financial economics.

Since RV (m)(p∗)
p→ IV as h1,m → 0 (e.g., Protter (2004)), RV is a natural candidate for

estimating IV, motivating the recent interest in this approach to volatility measurement. To

quantify the statistical difference between RV and IV, Barndorff-Nielsen and Shephard (2002)

used the limit theory

√
m
[
RV (m)(p∗)− IV

]
d→ MN

(
0, 2

∫ 1

0
σ4(t)dt

)
, (1.3)

where MN signifies mixed normality. A feasible version of this limit involves the estimation of the

quarticity functional
∫ 1
0 σ4(t)dt using empirical quarticity. Barndorff-Nielsen and Shephard (2002)

obtained the following result

RV (m)(p∗)− IV√
2
3

∑m
i=1[p

∗
i,m − p∗i−1,m]4

d→ N (0, 1) , (1.4)

which is convenient for use in inference.

These asymptotic results all require knowledge of the log-efficient price, p∗i,m. At ultra high

frequencies market microstructure effects challenge this requirement, contaminating observations

with microstructure noise so that the actual price data pi,m = p(ti,m) differs from p∗i,m and

RV (m)(p) ̸= RV (m)(p∗). To mitigate such market microstructure effects, Andersen et al. (2001b,a);

Barndorff-Nielsen and Shephard (2002) suggested sampling sparsely, say at five minute intervals,

so that the accumulative effects of noise are less important and pi,m is treated the same as p∗i,m.

Andersen et al. (2001b) justified the choice of five minute intervals using the signature plot, a

graphical device used to assess the degree of bias caused by market microstructure effects at differ-

ent sampling frequencies. Signature plots typically suggest that RV is more severely biased when

the sampling frequency increases but stabilizes at modest frequencies (such as 5 minutes or so).

This observation has prompted researchers to view the observed price as a good approximation to

the efficient price and has the same semimartingale characteristics at these modest frequencies.

The impact of market microstructure noise has also been examined in the more specific analytic

framework

p(t) = p∗(t) + u(t), (1.5)

where u(t) is microstructure noise. Most studies assume that the noise process u(t) and price

process p∗(t) are independent. However, there are many different proposals in the literature about

how to model the noise process and how to treat the presence of noise in the estimation of IV.

Some studies (e.g., Zhou (1996); Bandi and Russell (2008); Zhang et al. (2005)) assume a pure

noise structure for u(t). Some other studies (e.g. Hansen and Lunde (2006); Aı̈t-Sahalia et al.

(2011); Da and Xiu (2021)) assume u(t) is covariance stationary.

7



Neither pure noise nor covariance stationary microstructure effects explain flat trading. In fact,

when the efficient price follows a Brownian semimartingale as in (1.1), then during periods of flat

trading prices the microstructure noise effect completely offsets the efficient price fluctuations to

produce a sustained flat transactions price. The noise process therefore inherits the same local

martingale-like behavior of the efficient price process over this subinterval. Inspection of trading

data such as that shown in Fig. 1 shows that while sampling at modest frequencies reduces the

effects of flat trading. To assess the effects of flat pricing on RV asymptotics, we propose to build

a model that directly incorporates flat trading features.

We follow the existing literature and assume that the efficient price process p∗(t) follows (1.1).

This specification implies that, for any ti ∈ [0, 1], p∗i,m has the local martingale structure p∗i,m =∑i
j=1 εj,m, where εj,m =

∫ tj,m
tj−1,m

σ(s)dB(s).

The new model adds a simple Bernoulli process to (1.1) to determine the trading price

pi,m =

{
p∗i,m if ξi = 1

pi−1,m if ξi = 0
, (1.6)

where ξi is a Bernoulli sequence independent of p∗ with E(ξi = 1) = π, and p0,m = p∗0,m =

Op (1). Thus, while p∗i,m follows an underlying local martingale in the background, the observed

price compounds this efficient process with an independent Bernoulli sequence that determines

whether flat trading occurs in the price realization . Whenever pi,m ̸= pi−1,m, the realization

follows the efficient price and we observe p∗i,m. Otherwise, flat trading occurs. In that event, the

microstructure noise effect completely offsets the efficient price movement over the subinterval in

which flat trading occurs.

We can think of p as a time changed process arising from the equilibrium price p∗ where the

time change is random and discontinuous, depending on the realizations of the Bernoulli sequence

ξ. The model may therefore be linked to other literatures, particularly the important paper by

Jacod (2018) which allows for random stopping times, the work of Mykland and Zhang (2006)

which allows for deterministic intermittent sampling, and the work by Engle and Russell (1998) on

ACD modeling of duration. Some of the connections with this literature are explored in Section

3, where the model (1.6) is generalized to allow for random stopping times which may depend on

past prices.

In other related work, Delattre and Jacod (1997) introduced round-off to the measurement

of a stochastic process and examined the impact of this type of measurement error on the limt

theory for certain functionals of the process. In such cases, the efficient price p∗(t) is effectively

rounded off to a grid of values determined by a parameter αm, say, so that at ti we observe

p∗αm
(ti) = αm [p∗(ti)/αm] where [·] signifies the integer part of the argument. Thus, p∗αm

(ti) is

measured in increments of αm. Importantly, this model incorporates the institutional feature of

the market that trading takes place at well defined increments. In practice, of course, these

increments (like 1/8 cent or decimalization) change over time, which is a further institutional

complication. Delattre and Jacod (1997) show that the effects of this type of roundoff on the limit

theory are subtle and depend on the rate at which αm → 0 as m → ∞, inconsistencies arising in the

estimation of volatilities, for example, when the roundoff parameter αm → 0 too slowly. Round-off

effects of this type will induce some flat trading in the observed process when the efficient price

wanders around a particular level over successive observations. Duration of flats is then completely

determined by the efficient price process and the mechanics of the roundoff process.
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In the model (1.6), the duration of flat trading is determined by the number of successive

zero draws in the Bernoulli sequence ξi. In units of the sampling grid, the induced duration K

is therefore random and unbounded. In particular, it is known (e.g. Schilling (1990)) that the

maximum run time, K̄m, for a sequence of identical Bernoulli draws in a sample of size m has

mean E
(
K̄m

)
= O

(
log1/π {m (1− π)}

)
= O

(
log {m (1− π)} / log 1

π

)
and variance Var(K̄m) =

π2

6 log2( 1
π )

. It follows that K̄m = Op (logm) . So the induced duration K of trading flats in (1.6) is

unbounded but at most Op (logm) as m → ∞. In cases where the sampling grid is equispaced

with ti,m = i
m , it follows that the calendar duration time is K/m and therefore op (1) as m → ∞.

In the case of non-equispaced grid {ti,m} , the maximum calendar duration time on the grid is

hK̄m,m = supi |ti,m − ti−K̄m,m|.
The model (1.6) may be construed as producing sticky price effects analogous to those in Calvo

(1983) pricing schemes. In those schemes, monopolistic power enables some fraction (the Calvo

share) of firms to set prices, so that at any point in time there is a probability of sticky pricing

and a corresponding probability of a price change. Similar mechanisms appear in other pricing

models. For instance, information may reach only a fraction of traders as in the Mankiw and Reis

(2002) wholesale pricing model or there may be “rational inattention” in the sense that certain

traders may update their information irregularly due to various costs of information gathering or

other frictions, as in the pricing model of Reis (2006).

In a similar fashion, the present model (1.6) allows for flat trading with a constant probability

of 1 − π, so that there is a positive probability of flat trading at each point on the temporal grid

when π ∈ [0, 1). When π = 1, pi,m = p∗i,m almost surely and the model reduces to the earlier

model of Andersen et al. (2001b,a); Barndorff-Nielsen and Shephard (2002). If pi−1,m = p∗i−1,m

and pi,m = pi−1,m, then pi,m − p∗i,m = p∗i−1,m − p∗i,m = −εi,m. So the new model allows for noise

in the observed price and the noise depends on the efficient price. The noise can be interpreted

as a discrete price effect, according to which the realized price changes only when the information

content is strong enough. Eventually, of course, the observed price will change and follow the

efficient price provided π > 0. One consequence of the specification is that when noise occurs in

the model it takes the form pi,m − p∗i,m = −εi,m = −
∫ ti,m
ti−1,m

σ(s)dB(s) and is therefore negatively

correlated with the efficient price process. Negative correlation between microstructure noise and

the efficient price has been empirically documented page 132 of Hansen and Lunde (2006). However,

since pi,m = p∗i,m when pi,m ̸= pi−1,m, the present model eliminates noise effects when the price

changes. Thus, this particular model may be more appropriate at modest frequencies rather than

at ultra-high frequencies such as second-by-second frequency. The model is extended in Sections

3 and 4 to allow for more general sampling schemes and microstructure noise, making it better

suited to data at very high frequencies.

We remark that the parameter π is assumed to remain fixed as m → ∞, so that the no matter

how finely the data are observed there is always a positive probability of a flat when π < 1. This

assumption ensures that, although there is a positive probability of flat trading, the length of the

flats will inevitably shorten as m increases because the flats are measured in increments of 1/m

for an equi-spaced grid. In this respect, the model clearly differs from data such as that observed

in Figure 1 where no matter how frequently we make observations the flats remain fixed in size.

Thus, the model abstracts from the reality in the data, and this abstraction from the data applies

in the same way for all the other approaches discussed above because the data is typically of this

form. We further remark that if the model were to accommodate fixed periods of flat trading as the
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sampling frequency m → ∞ then it would not be possible to consistently estimate the integrated

volatility
∫ 1
0 σ2(t)dt of p∗(t) because there would be fixed subperiods of the interval [0, 1] in which

the integrated volatility is inconsistently set to zero to accord with trading flats in the observed

price p (t). Similar problems would arise with all other approaches in this case because integrated

volatility is not identified over these subperiods.

The following result confirms that the compound model preserves the martingale property for

trading prices.

Theorem 2.1 (Martingale Property): If p∗(t) follows (1.1) with E
(∫ r

0 σ2(t)dt
)
< ∞ for all

r ∈ [0,∞), and the trading price p(t) follows (1.6) with π ∈ (0, 1], then {pi,m} is a martingale with

E(pi,m|Fi−1,m) = pi−1,m and the natural filtration Fi,m = σ(pi,m, pi−1,m, · · · ).

Theorem 2.1 allows us to show that under flat trading RV consistently estimates IV, just as

in the standard limit theory for empirical quadratic variation (e.g., Jacod and Shiryaev (1987);

Andersen et al. (2001b)). In fact, the result is covered by standard limit theory because the

maximum duration of flat trading is hK̄m,m, which for an equi-spaced grid is of order Op (logm/m)

and therefore tends to zero. Theorem 2.3 derives the corresponding central limit theorem (CLT)

for RV and Theorem 2.4 provides a feasible version of the CLT for inference about IV using an

empirical quarticity estimate. For the CLT results it is convenient to assume that the discrete

sampling grid is equi-spaced, so that {ti,m = i
m : i = 0, ...,m}. This requirement fits in with earlier

conditions used in Barndorff-Nielsen and Shephard (2002) on RV limit theory without flat trading,

and is relaxed in Section 3.

Theorem 2.2 (Consistency): If π ∈ (0, 1] and if, for some δ > 0, hmδ,m → 0 as m → ∞, then

RV (m)(p)
p→ IV.

Theorem 2.3 (Infeasible CLT): Assume the observation grid is equispaced with {ti,m = i
m :

i = 0, ...,m}. If π ∈ (0, 1], then as m → ∞

√
m
[
RV (m)(p)− IV

]
d→ MN

(
0,

4− 2π

π

∫ 1

0
σ4(t)dt

)
. (1.7)

Table 2: Ratio of asymptotic variance with flats to that without flat

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2−π
π 19.00 9.00 5.67 4.00 3.00 2.33 1.86 1.50 1.22 1

When π = 0.5, some 50% of the data involves flat trading and the asymptotic variance in

(1.7) is three times as large as when π = 1. This magnitude seems to be in line with what has

been documented empirically in Hansen and Lunde (2006, p. 137). Table 2 shows the ratio of the

asymptotic variance to the case where there is no flat trading for various values of π and Figure 2

plots this nonlinear relationship. As π becomes small, the ratio blows up rapidly.

Result (1.7) holds even when flats are removed from the sample. This is because the empirical

quadratic variation is unaffected by the presence of flat trading periods. Hence removing flat

prices from data does not reduce the asymptotic variance or change the limit theory. In effect,

the limit result shows that, when trading which does not reflect the true efficient price occurs, the

asymptotic variance of the RV estimate increases proportionately. That is, when there is flat price

10



trading there is less information about the efficient price p∗(t), and the asymptotic theory reflects

this reduction in information by an inflation of the variance. In effect, there is a reduced sample

size due to flat trading.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-π

0

5

10

15

20

(2
-π

)/
π

Figure 2: Ratio of the asymptotic variance under flat trading to that with no flat trading (π = 1).

To use (1.7) in practice the asymptotic variance must be estimated, which involves estimating

the integrated quarticity functional
∫ 1
0 σ4(t)dt. Following Barndorff-Nielsen and Shephard (2002),

integrated quarticity can be estimated consistently and used in a feasible CLT that is suitable for

inference about IV.

Lemma 2.4: Under the conditions of Theorem 2.3, as m → ∞

π

6− 3π
m

m∑
i=1

[pi,m − pi−1,m]4
p→
∫ 1

0
σ4(t)dt. (1.8)

When π = 1, π
6−3π = 1

3 and result (1.8) is identical to that of Barndorff-Nielsen and Shephard

(2002), as expected.

Theorem 2.5 (Feasible CLT): Under the conditions of Theorem 2.3, as m → ∞√
3

2

(RV (m)(p)− IV )√∑m
i=1 [p(ti,m)− p(ti−1,m)]4

d→ N (0, 1) . (1.9)

Interestingly, the standardization in the feasible CLT (1.9) does not depend on π and the

feasible CLT result is therefore the same as that given in Barndorff-Nielsen and Shephard (2002)

for the case where there is no flat trading (π = 1). In effect, the quantity involving π appears as

a factor 2−π
π in the asymptotic variance and the estimated quarticity functional and is therefore

scaled out in the feasible CLT. Nonetheless, the effects of flat trading are implicitly embodied in

the feasible CLT since they are carried in the empirical measure
∑m

i=1 [p(ti,m)− p(ti−1,m)]4 , which

is correspondingly reduced by periods of flat pricing. Thus, the asymptotic inferential apparatus

of Barndorff-Nielsen and Shephard (2002) continues to hold under the present model where flat

trading is manifest.

3. Stopping Time Models

In model (1.6) it is assumed that p∗ (t) is intermittently observed according to the realizations of

a Bernoulli sequence. More generally, we may assume that p∗ is generated by (1.1) and observed

at random times {τj : j = 0, ..., Jm} determined according to a scheme in which the increments

11



take the form

τj − τj−1 =
Dj

m
, τ0 = 0, (1.10)

where Dj is a strictly stationary and ergodic sequence of nonnegative random variables for which

EDj = µD > 0 and ED2
j = ω2

D. The sequence Dj measures the duration between observations

(in units of the interval m−1) and may be (partly) dependent on past prices. In the model (1.6),

the integer process Dj = 1 + Lj ≥ 1 is determined by the outcome of a sequence of independent

Bernoulli draws ξi at each of the points ti = i
m of the original grid, those draws representing

whether the efficient price process p∗ is observed (ξi = 1) or not (ξi = 0) at this point. The integer

Lj is then the number of successive zero draws in the sequence prior to τj . The terminal quantity

Jm is such that p∗(τJm) is the last p∗ observed on the grid {p∗(ti,m) : i = 1, ...,m}.2
In order to develop an asymptotic theory for this more general case, we need more specific

conditions on the sequence Dj in (1.10). We also want to consider the more general case where

the duration sequence may form an array and depend on m, in which case we use the notation

{Dm,j} in place of {Dj} .

Assumption D1

(i) {Dj}j≥1 is a strictly stationary and ergodic sequence of nonnegative random variables with

finite mean EDj = µD > 0 and second moment ED2
j = ω2

D. Partial sums of the centred

values Dj − µD satisfy the functional law

m−1/2
∑

j≤[m·]

{Dj − µD} ⇒ V (·)

for some Brownian motion V with variance ΩD.

(ii) maxj≤mDj = op (
√
m) as m → ∞.

Assumption D2

(i) {Dm,j}j≥1 is an array of nonnegative random variables whose conditional first and second

moments satisfy

E
(
Dm,[ms]|Fτ[ms]−1

)
→p µD (s) , E

(
D2

m,[ms]|Fτ[ms]−1

)
→p ω

2
D (s) , (1.11)

as m → ∞, where µD (s) and ω2
D (s) are nonnegative càdlàg processes for s ∈ [0, 1]. Partial

sums of the centred values Dm,j − E
(
Dm,j |Fτj−1

)
satisfy the functional law

m−1/2
∑

j≤[m·]

{
Dm,j − E

(
Dm,j |Fτj−1

)}
⇒ V (·)

for some Brownian motion V with variance ΩD.

2Concerns about how to calculate RV based on business time sampling and transaction time sampling have
received a great deal of attention in the RV literature; see Hansen and Lunde (2006); Oomen (2006). In particular,
business time sampling relates to stopping time approaches and the connection is achieved via the Dubins-Schwarz
Theorem. See Yu and Phillips (2001) for an application of the Dubins-Schwarz Theorem to estimate continuous-time
models.
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(ii) maxj≤mDm,j = op (
√
m) as m → ∞.

D1(i) involves standard stationarity, moment and partial sum functional law conditions on the

sequence Dj . In D2(i) the convergence of the conditional moments in (1.11) is satisfied for certain

autoregressive conditional duration (ACD) models, as we discuss below. Condition (ii) involves

the relative stability of the maxima of a stationary sequence and is quite weak. For instance, for

Gaussian sequences when the m’th autocovariance decays according to the rate o
(
m−1

)
then it is

known (Berman (1962)) that maxj≤mDm,j = Op

(√
logm

)
. Primitive conditions for (ii) are also

available in the literature (e.g. Naveau (2003)).

Theorem 3.1 Suppose p∗ is observed at random times τj determined as in (1.10) with Dj

satisfying Assumption D1. Then as m → ∞

Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 →p

∫ 1

0
σ2(t)dt, (1.12)

and

√
m


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt

⇒ MN
(
0, 2

ω2
D

µD

∫ 1

0
σ4(t)dt

)
(1.13)

If the Dj satisfy Assumption D2, then (1.12) continues to hold as m → ∞ and (1.13) is replaced

by

√
m


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt

⇒ MN
(
0, 2

∫ 1

0
σ4(t)

ω2
D (t)

µD (t)
dt

)
(1.14)

The corresponding self normalized quantity has the following limit under D2 as m → ∞√
3

2

∑Jm
j=1[p

∗ (τj)− p∗ (τj−1)]
2 −

∫ 1
0 σ2(t)dt{∑Jm

j=1[p
∗ (τj)− p∗ (τj−1)]4

}1/2
⇒ N (0, 1) . (1.15)

Example 1: Mykland and Zhang (2006) To illustrate, suppose the sequence Dj is non

random and the increments τj − τj−1 = Dj/m are such that

m−1
m∑
j=1

D2
j → ω2

D, m−1
m∑
j=1

Dj → µD,

and

m−1
Jm∑
j=1

Dj = 1 +O

(
logm

m

)
,

so that there are Jm increments over the interval [0, 1] , as earlier. This type of intermittent

deterministic sampling is covered in recent work by Mykland and Zhang (2006)3. Set ∆τj =

3Mykland and Zhang (2006) assume the sampling points τj to be deterministic but note later in their paper that
the scheme covers the case where the sampling points are random but independent of the observed process. The
stopping time scheme (1.10) is random and allows for dependence on past prices.
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τj − τj−1 and, using the notation of Mykland and Zhang (2006) for the average interval length, we

find that

∆τ
(m)

=

∑Jm
j=1Dj

mJm
=

µD

m
+ o (1) ,

and

m−1
∑
j:τj≤t

D2
j = m−1

∑
j

D2
j1{m−1

∑j
i=1 Dj≤t}

= m−1
∑
j

D2
j1{m−1jEDi≤t} + o (1)

= m−1
∑

j≤mt/µD

D2
j + o (1)

= m−1ED2
i

mt

µD
+ o (1) →

ω2
D

µD
t.

Then, again in the notation of Mykland and Zhang (2006), we have

H(m) (t) =

∑
j:τj≤t (∆τj)

2

∆τ
(m)

=
m−2

∑
j:τj≤tD

2
j

µD
m + o (1)

→
ω2
D

µ2
D

t := H(t).

Under these conditions of deterministic sampling and noting that H ′ (t) =
ω2
D

µ2
D
, Proposition 1 of

Mykland and Zhang (2006) gives the following limit theory

(
∆τ

(m)
)−1/2


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt

⇒ MN
(
0, 2

ω2
D

µ2
D

∫ 1

0
σ4(t)dt

)
,

which, since ∆τ
(m)

= µK/m+ o (1) , conforms to result (1.13) above.

In their development Mykland and Zhang (2006) impose the following additional condition

(Assumption A(i) in their paper) on the intermittent sampling sequence

δm

∆τ
(m)

= O (1) , where δm = max
j≤m

Dj

m
. (1.16)

Allowing for random intermittent sampling with duration Dj/m between observations, condition

(1.16) is equivalent to
maxj≤mDj

EDj
= Op (1) ,

which does not hold in many interesting cases. For example, in the model (1.6) where sampling is

determined by a simple Bernoulli scheme, we have

maxj≤mDj

EDj
= Op (logm) .

Thus, Assumption A(i) in Mykland and Zhang (2006) holds only for deterministic sequences or

bounded random sequences {Dj} and excludes the model (1.6), although as shown above in The-
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orem 3.1 the limit theory does extend to this case so condition (1.16) is, in fact, not necessary.

Observe that for the model (1.6) we have4 µD = E(1 + Li) =
1
π and ω2

D = E(1 + Li)
2 = 2−π

π2 ,

so that

2
ω2
D

µD
=

4− 2π

π
, (1.17)

corresponding to the scale factor in the asymptotic variance in (1.7).

Example 2: Jacod (2018) For a second illustration, we note that the sampling scheme (1.10)

fits into the same stopping time framework as that used in Jacod (2018). The associated empirical

measures that appear in Jacod’s paper can be worked out as follows using Jacod’ notation:

µm [0, t] : =
1

m

∑
j

1{τj<t} =
1

m

∑
j

1{m−1
∑

ℓ≤j Dℓ<t}

=
1

m

∑
j

1{m−1
∑

ℓ≤j EDℓ+Op(m−1/2)<t}

=
1

m

∑
j≤[mt]/µD

1 + op (1) →p t/µD := µ [0, t] , say; and (1.18)

µ∗
m [0, t] : =

√
µD

m

∑
j≤[mt]

1 {τj < t} →p t/
√
µD := µ∗ [0, t] , say.

Note that (µ∗ [0, t] /t)2 = (µ [0, t] /t) , thereby satisfying result (3.2) of Jacod (2018). More generally

under D2, the limit measure5 is µ [0, t] =
∫ t
0 µD (s)−1 ds, so that µ (dt) = dt/µD (t) .

The limit theory in Section 6 of Jacod (2018) applies in the current context but to standardized

price increments. In particular, equations (3.8), (6.5) and Theorem 6.1 of Jacod (2018) lead to

the following limit theory for the empirical quadratic variation of the standardized increments

{p∗ (τj)− p∗ (τj−1)} / (τj − τj−1)
1/2

1

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
→p

∫ 1

0
σ2(t)µ (dt) . (1.19)

Correspondingly,

µD

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
→p

∫ 1

0
σ2(t)dt.

In the case of D1, the limit is 1
µD

∫ 1
0 σ2(t)dt and under D2 the limit is

∫ 1
0 σ2(t) dt

µD(t) . A proof is

4Note that the values Li = 0, 1, 2, ..., correspond to realizations ξi = 1, {ξi = 1, ξi−1 = 0} ,
{ξi = 1, ξi−1 = 0, ξi−2 = 0} with respective probabilities π, π (1− π) , π (1− π)2 , .....

5In this case we have
{
m−1 ∑

ℓ≤j Dm,ℓ < t
}
, which under D2 is asymptotically equivalent to{∫ j/m

0
µD (s) ds < t

}
. The measure µ [0, t] is then given by µ [0, t] = r (t) where

∫ r

0
µD (s) ds = t so that

µD (r) dr = dt.
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given in the Online Supplement, where it is also shown that

√
m

 1

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

m (τj − τj−1)
−
∫ 1

0
σ2(t)µ (dt)

⇒ MN

(
0,

∫ 1

0
σ4(t)

ω2
D (t) + µD (t)2

µD (t)2
µ (dt)

)
,

(1.20)

which after restandardization in the case of D1 becomes

√
m

µD

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
−
∫ 1

0
σ2(t)dt

⇒ MN
(
0,

ω2
D + µD

2

µD

∫ 1

0
σ4(t)dt

)
(1.21)

Result (1.19) is compatible with (1.12). The different weight factors reflect the use of standardized

price increments in the realized variance. In this case, the empirical quadratic variation converges

to a weighted version of integrated volatility where the weight function depends on the mean

duration process of flats µD (t).

The central limit theory (1.20) is similar to (1.14) but has a different weighting function in the

conditional variance. As shown in the Appendix, the limit distribution stems from a martingale

term that involves both the numerator and the denominator of the standardized squared price in-

crements. Interestingly, because of the standardization of the price increments the weight function

in the conditional variance of (1.21) is

ω2
D (t) + µD (t)2

µD (t)
=

2ω2
D (t)

µD (t)
−

ω2
D (t)− µD (t)2

µD (t)
<

2ω2
D (t)

µD (t)
,

showing that the variance in the limit distribution (1.20) is less than that of (1.14).

In the special case where D1 applies, we may restandardize by µD, as shown in (1.21), to

produce a consistent estimator of IV. In the case of model (1.6) we have the decomposition

ω2
D + µ2

D

µD
=

4− 2π

π
− 1− π

π
=

3− π

π
, (1.22)

showing the variance inflation from flat trading on the estimation of IV using standardized squared

increments is less than it is in the case of squared increments in the model (1.6).

Of course, in (1.21) the IV estimator depends on scaling by µD. Further, since mean duration

can be consistently estimated by µ̂D = J−1
m

∑Jm
j=1Dj , we may construct the feasible estimator

µ̂D

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
→p

∫ 1

0
σ2(t)dt. (1.23)

From Assumption D2(i), we have
√
m (µ̂D − µD) ⇒ N (0,ΩD) where the variance depends on

the sampling properties of the array Dmj including autocorrelation and heterogeneity. The limit

distribution of the feasible estimator (1.23) therefore involves additional terms arising from the

use of the fitted mean µ̂D.

Finally, as shown in the Online Supplement, under Assumption D2 we have the following limit
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theory for empirical quarticity in the case of standardized increments

1

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}4

(τj − τj−1)
2 →p 3

∫ 1

0
σ4(t)

1

µD (t)
dt, (1.24)

which reduces in the case Assumption D1 to

µD

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}4

(τj − τj−1)
2 →p 3

∫ 1

0
σ4(t)dt.

Example 3: Relation to the ACD Model Engle and Russell (1998) introduced autoregressive

conditional duration (ACD) formulations to model the duration between transaction times. In such

models the conditional expectation µDm,j =E
{
(Dm,j −Dm,j−1) |Fτj−1

}
of the intra trade time is

a measurable function of past durations. In a GARCH(1,1) framework, we have

µDm,j = δm + αmDm,j−1 + βmµDm,j−1 , (1.25)

where we allow the coefficients (ωm, αm, βm) to depend onm because of the array structure ofDm,j .

Models of this type have been studied by Ghysels and Jasiak (1998) and Engle (2000) among many

others.

Nelson (1990) showed that under certain conditions on the coefficients in (1.25) GARCH models

of the form (1.25) satisfy in the limit as m → ∞ a diffusion equation

dµD (s) = (δ − θµD (s)) ds+ αdW (s) , (1.26)

where W is a standard Brownian motion. In particular, in an appropriately defined and enlarged

probability space and for the parameterization

δm =
δ

m
, αm =

α√
m
, and 1− αm − βm =

θ

m

we have the convergence µD[ms]
→p µD (s) , where the limit is a stochastic process satisfying (1.26).

This type of limit theory has also been studied by Corradi (2000) and Boswijk (2001, 2005). Thus,

the stopping time model with duration array Dm,j satisfying condition D2 subsumes certain ACD

specifications and condition (1.11) may be regarded as version of the associated convergence of the

discrete conditional expectation to a continuous process.

4. Microstructure Noise Effects

Microstructure noise in the form of additive errors may be incorporated into the framework (1.6)

by setting

pi,m =

{
p∗i,m + ui,m if ξi = 1

pi−1,m if ξi = 0
, (1.27)

so that when prices do change a noise component ui,m perturbs the observed price. Similarly,

adding noise to the more general formulation in Section 3 leads to a process p that is observed at
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stopping times τj according to the scheme

p (τj) = p∗ (τj) + uτj ,

τj − τj−1 =
Dm,j

m
, τ0 = 0,

where the durations Dm,j satisfy Assumption D2. Various assumptions about the noise process

are possible, but for the purposes here it will be sufficient to assume that uτj is iid with zero mean,

variance σ2
u and finite fourth moment.

The effects of this noise may be taken into account using methods such as the use of different

time scales (Zhang et al. (2005)) or kernel smoothing techniques (Hansen and Lunde (2006); Aı̈t-

Sahalia et al. (2011); Barndorff-Nielsen et al. (2008)). We will illustrate by considering the two

time scale approach developed in Zhang et al. (2005). Our approach differs from the existing

literature in that all flats are retained whereas flats are removed in other analysis. The motivation

arises from the desire to utilize all available high frequency data as suggested in Aı̈t-Sahalia et al.

(2005).

Let the empirical quadratic variation of a process Yt on the full grid Gm = {τj : j = 0, ...Jm}
be denoted

[Y ]Gm
t =

∑
τj∈Gm,τj≤t

(
Yτj − Yτj−1

)2
, with [Y ]Gm = [Y ]Gm

1 ,

with similar definitions for the empirical quadratic covariation between Yt and another process Xt,

i.e.,

[Y,X]Gm
t =

∑
τi∈Gm,τj≤t

(
Yτj − Yτj−1

) (
Xτj −Xτj−1

)
.

Then

[p]Gm = [p∗]Gm + 2 [p∗, u]Gm + [u]Gm = [p∗]Gm + 2Jmσ2
u +Op

(
J1/2
m

)
. (1.28)

Following Zhang et al. (2005), we construct a two time scale estimator of IV using [p]Gm and an

average estimator using K nonoverlapping grids

Gk
m = {τk−1, τk−1+K , τk−1+2K , ..., τk−1+mkK}

involving every K’th observation in Gm for k = 1, ...,K, and where mk is the integer for which

τk−1+mkK is the last element in Gk
m. The average estimator has the explicit form

[p](avg) = K−1
K∑
k=1

[p]G
k
m , (1.29)

where

[p]G
k
m =

mj∑
s=1

[p (τk−1+sK)− p
(
τk−1+(s−1)K

)
]2, k = 1, ...,K. (1.30)

Define

m̄ = K−1
K∑
k=1

mk =
Jm −K + 1

K
. (1.31)

As in Zhang et al. (2005), we require K → ∞ and m/K → ∞ as m → ∞. It follows that
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K/Jm → 0. We also need to modify D(ii) to take account of the time scale induced by the new

grids Gk
m.

Assumption D2

(ii)′ maxj≤mDm,j = op
(
m1/3

)
.

The two time scale estimator of Zhang et al. (2005) is

[̂p∗] = [p](avg) − m̄

Jm
[p]Gm (1.32)

and uses the two different time scales in computation, one based on the subgrids Gk
m and the other

on the full grid Gm. The limit theory for [̂p∗] follows.

Theorem 4.1 Suppose p∗ is observed at random times τj determined as in (1.10) with Dm,j

satisfying Assumption D2 (i) and (ii)′. Let K = cm2/3 for some constant c. Then as m → ∞

m1/6

{
[̂p∗]−

∫ 1

0
σ2(t)dt

}
⇒
{

8

c2
σ4
u + cη2

}1/2

N (0, 1) , (1.33)

where

η2 =
4
{∫ 1

0 (1− s)2 µD (1− s) ds
}

∫ 1
0 µD (s) ds

∫ 1

0
σ4 (t) dt. (1.34)

This result corresponds with the limit theory in Zhang et al. (2005) and the only difference occurs

in the definition of η2, which directly involves the mean duration effects arising from the process

µD (s) . In particular, the effect of flat trading (or random durations in intermittent sampling) on

the limit theory of the two time scale estimator of Zhang et al. (2005) arises through the conditional

mean functional of duration, µD (s) , in the limiting variance. Interestingly, as compared with

(1.14), when there is no microstructure noise, the conditional second moment of duration, ω2
D (s) ,

does not affect the limit distribution.

When µD (s) = µD a.s. so that conditional mean duration is constant throughout the period

of observation, (1.34) reduces to

η2 = 4

∫ 1

0
(1− s)2 ds

∫ 1

0
σ4 (t) dt =

4

3

∫ 1

0
σ4 (t) dt, (1.35)

corresponding to equation (50) in Zhang et al. (2005), as obtained for the case of equispaced

observations. This shows that the limit theory of Zhang et al. (2005) remains correct in the

presence of flat trading of the Bernoulli type.

The random coefficient in (1.34) depends on the average conditional mean duration which may

be estimated by

D = J−1
m

Jm∑
j=1

Dm,j = J−1
m

Jm∑
j=1

E
(
Dm,j |Fτj−1

)
+ op (1) →p

∫ 1

0
µD (s) ds.
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In view of Assumption D2 we then have the consistent estimate

ĥm =
4

DJm

Jm∑
j=1

(
1− j

Jm

)2

Dm,Jm−j →p

4
{∫ 1

0 (1− s)2 µD (1− s) ds
}

∫ 1
0 µD (s) ds

. (1.36)

Some other aspects of the estimation of η2 and the use of the result in empirical application are

discussed in Zhang et al. (2005).

In a similar way, it is possible to examine the effects of flat trading on other consistent estimators

of integrated volatility in the presence of microstructure noise. In particular, the multiple time

scale estimator of Zhang (2006) and the realized kernel method of Barndorff-Nielsen et al. (2008)

may be treated similarly and have the advantage of the faster rate of convergence m1/4.

5. Simulations and Empirical Applications

The simulation study in this section considers two models – the Brownian motion model and

Heston’s stochastic volatility model. Using the Brownian motion model we check the accuracy of

the CLT (1.7) and the CLT (1.21). Using the stochastic volatility model we check the accuracy of

the CLT (1.9). Data are simulated over a day so that t0,m = 0 and tm,m = 1. A day is assumed to

have 6.5 hours and 23,400 seconds. In the experimental design we set m ∈ {39, 78, 130, 195, 390},
which values correspond respectively to frequencies of 10, 5, 3, 2, 1 minutes. The empirical

application assesses the practical impact of flat trading on the CLT (1.33) using the two datasets

that were discussed in the Introduction and three other datasets.

5.1 The Brownian motion model

This subsection reports simulations from a simple Brownian motion model where volatility is a

known constant (σ2(t) = 1) so that

dp∗(t) = dB(t). (1.37)

This formulation allows us to assess the accuracy of CLT (1.7)
∫ 1
0 σ4(t)dt = 1 and then the

asymptotic variance in (1.7) is simply 4−2π
π .

Table 3 shows both the asymptotic and finite sample simulated variances of the statistic√
m
[
RV (m)(p)− IV

]
based on 5,000 replications for various combinations of π andm. The asymp-

totic formula is clearly very accurate except for very small values of π. The effect of flat trading

on the asymptotic variance is dramatic, producing a three fold increase in variance when π = 0.5.

Table 3: Asymptotic and finite sample variances

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Asymp. variance 4−2π
π 38 18 11.33 8 6 4.67 3.71 3 2.44 2

Asymp variance π = 1 2 2 2 2 2 2 2 2 2 2

Variance (m = 39) 24.31 14.84 10.18 7.61 5.82 4.56 3.74 3.06 2.51 2.04

Variance (m = 78) 30.38 16.56 10.88 7.71 5.79 4.61 3.70 3.02 2.49 2.02

Variance (m = 130) 33.47 17.15 11.16 7.85 5.88 4.66 3.71 3.00 2.45 2.02

Variance (m = 195) 34.39 17.06 10.87 7.74 5.95 4.69 3.74 3.04 2.45 2.02

Variance (m = 390) 36.32 17.41 11.03 7.92 6.03 4.74 3.76 3.04 2.47 2.03

20



We also examine the accuracy of the CLT (1.21) for the restandardized quantity. With the

Bernoulli process model, the asymptotic variance of the restandardized quantity is∫ 1

0
σ4(t)

ω2
D (t) + µD (t)2

µD (t)
dt =

ω2
D + µD (t)2

µD
=

3− π

µ
.

Table 4 shows both the asymptotic and finite sample simulated variances of the statistic

√
m

µD

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
−
∫ 1

0
σ2(t)dt


with µD = 1

π , based on 5,000 replications for various values of π and m = 39. The asymptotic

formula is clearly very accurate in all cases and even when m is as small as 39. Although not

reported here, we have also found smaller bias in the restandardized quantity.

Table 4: Asymptotic and finite sample variances

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Asymp. variance 3−π
π 29 14 9 6.5 5 4 3.2857 2.75 2.44 2

Variance (m = 39) 28.7 13.97 8.90 6.54 5.04 3.96 3.24 2.66 2.25 1.96

5.2 A stochastic volatility model

In this subsection, price data is simulated from Heston’s stochastic volatility model with volatility

following a square root model (Heston (1993)):{
dp∗(t) = σ(t)dB1(t),

dσ2(t) = κ(µ− σ2(t))dt+ ησ(t)dB2(t).
(1.38)

Feller (1951) showed that the density of σ2(t+h) conditional on σ2(t) is ce−u−v(v/u)q/2Iq(2(uv)
1/2)

and the marginal density of σ2(t) is ww2
1 σ2(w2−1)e−w1σ2

/Γ(w2), where c = 2κ/(η2(1 − e−κh)),

u = cσ2(t)e−κh, v = cσ2(t+h), q = 2κµ/η2−1, w1 = 2κ/η2, w2 = 2κµ/η2, and Iq(·) is the modified

Bessel function of the first kind of order q. The conditional density together with the marginal

density are used for data simulation. The parameters in the model are set at κ = 0.01, µ = 1 and

η = 0.05.

Table 5: Asymptotic and finite sample variances

π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Asymptotic variance 1 1 1 1 1 1 1 1 1

Variance (m = 39) 15.06 5.76 4.61 2.15 1.90 1.62 1.45 1.21 1.16

Variance (m = 78) 5.85 2.71 2.05 1.54 1.50 1.35 1.26 1.16 1.11

Variance (m = 130) 3.17 1.95 1.54 1.31 1.29 1.28 1.21 1.17 1.11

Variance (m = 195) 1.89 1.52 1.27 1.20 1.20 1.20 1.14 1.12 1.08

Variance (m = 390) 1.37 1.35 1.21 1.20 1.15 1.16 1.14 1.12 1.08

The aim of the experiment is to assess the accuracy of the empirical quarticity formula in

the feasible CLT (1.9). Table 5 gives the Monte Carlo results. In particular, we report the
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variance of the standardized statistic
√

3
2

(RV (m)(p)−IV )√∑m
i=1[p(ti,m)−p(ti−1,m)]4

from 1,000 replications, for various

combinations of π and m, shown against the asymptotic variance of unity.

Some conclusions can be drawn from the table. First, the asymptotic theory clearly works better

for large π and largem. This is unsurprising because larger values of π imply fewer flat price trading

periods and therefore larger effective sample sizes. Second, the asymptotic theory does eventually

work well even for small π, but needs larger values of m to provide a good approximation. The

main reason for these effects is that it is more difficult to estimate the integrated quarticity than

the integrated volatility. This corroborates existing findings in the literature on realized volatility

without flat pricing. Table 4 shows that these effects are exacerbated when there is flat trading,

especially when π is small, because of the smaller effective sample size.

5.3 Empirical Evaluation

The limit theory in Section 4 under microstructure noise can be used to evaluate the empirical

effect of flat trading in real data applications. Here we consider the empirical impact of flat trading

using the asymptotics given in Theorem 4.1 and (1.33). Using the tick-by-tick transaction data for

AA on April 2, 1997 and on April 1, 1998 that was discussed earlier, and for three other companies

traded in the NYSE (3M, GE and Boeing) on April 2, 1997, we numerically compare the coefficient

η2 given in (1.34) with that of (1.35).6 This involves a simple comparison of a consistent estimate of

4
∫ 1
0 (1− s)2 µD (1− s) ds/

∫ 1
0 µD (s) ds with the quantity 4/3 that applies in the case of equispaced

sampling and regular allocation to subgrids.

Table 6 reports the consistent estimate ĥm = 4
DJm

∑Jm
j=1

(
1− j

Jm

)2
Dm,Jm−j of the duration

parameter 4
∫ 1
0 (1− s)2 µD (1− s) ds/

∫ 1
0 µD (s) ds together with the effective sample sizes for sev-

eral stocks, including the AA data. It is interesting that while flats are a dominating feature of

the tick data, the estimates ĥm differ little from the factor 4/3 in all these cases, suggesting that

the implied variances are very close to each other and that the limit theory of Zhang et al. (2005)

should be a good approximation in practical work with similar data of this type. As observed with

these data, most ticks do not involve price changes. So if the flats are removed prior to econometric

analysis, a much smaller number of prices are retained, and the effective rate of convergence is

accordingly reduced.

Table 6: Scale Effects in the CLT (1.33) for NYSE Stocks

Date Stock ĥ Total m Effective m

April 1, 1998 AA 1.3078 394 117

April 2, 1997 AA 1.2840 243 74

April 2, 1997 3M 1.2691 328 124

April 2, 1997 General Electric 1.4251 1222 370

April 2, 1997 Boeing 1.3295 796 225

6. Conclusion

When trading does not reflect the efficient price because of flat trading effects, the variance of the

RV estimate of integrated volatility increases because we have correspondingly less information

6The datasets and dates are arbitrarily selected but are illustrative of heavily traded stocks.
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about the efficient price than the number of observations might indicate. Of course, the same con-

clusion holds when the flats in the trading price are simply ignored and the previous tick method of

constructing the RV estimate is employed. Furthermore, since fitted quarticity is similarly affected

by flat trading, the framework suggested in Barndorff-Nielsen and Shephard (2002) for inference

about RV remains valid. These conclusions are intuitively obvious in that the operationally useful

data for IV estimation are simply those observations that reflect the underlying efficient price.

Both the Bernoulli and stopping time/duration models may be interpreted as embodying some

noise effects – flat trades imply that past values are observed rather than the current efficient price,

so that the offset from the efficient price is a form of noise. When other sources of microstructure

noise are present, such as disturbances or measurement errors that occur when the observed price

changes, multiple time scale or realized kernel estimators may be used, as have been recommended

in the recent literature. The analysis of the two time scale estimator given here shows that these

approaches to remove the effects of noise remain valid after appropriate adjustment to the limiting

variance. Empirical evaluations with tick-by-tick data indicate that the effect on the limit theory

of flat trading is likely to be minor in most cases.

Appendix

Proof of Theorem 2.1: The specification of p(t) implies that

pi,m = p∗i,mξi,m + pi−1,m(1− ξi,m), (1.39)

pi,m − pi−1,m = (p∗i,m − pi−1,m)ξi,m, (1.40)

and

p∗i,m − pi,m = (p∗i,m − pi−1,m)(1− ξi,m). (1.41)

Taking conditional expectations of both sides of equation (1.39), we have

E(pi,m|Fi−1,m) = E(p∗i,m|Fi−1,m)π + pi−1,m(1− π) (1.42)

= E(p∗i−1,m|Fi−1,m)π + pi−1,m(1− π)

To compute E(p∗i−1,m|Fi−1,m), note that if pi−1,m ̸= pi−2,m, then pi−1,m = p∗i−1,m and hence

E(p∗i−1,m|Fi−1,m) = pi−1,m. If pi−1,m = pi−2,m but pi−2,m ̸= pi−3,m, then pi−2,m = p∗i−2,m, p∗i−1,m =

p∗i−2,m + εi−1,m, and Fi−1,m = Fi−2,m. Hence E(p∗i−1,m|Fi−1,m) = E(p∗i−2,m + εi−1,m|Fi−2,m) =

pi−2,m = pi−1,m. Similarly, if pi−1,m = · · · = pi−K,m but pi−K,m ̸= pi−K=1,m, then pi−K,m =

p∗i−K,m, p∗i−1,m = p∗i−K,m+εi−K+1,m+· · ·+εi−1,m and Fi−1,m = · · · = Fi−K,m. Hence E(p∗i−1,m|Fi−1,m) =

E(p∗i−K,m+εi−K+1,m+· · ·+εi−1,m|Fi−K,m) = pi−K,m = pi−1,m. In general, we have E(p∗i−1,m|Fi−1,m) =

pi−1,m,and so E(pi,m|Fi−1,m) = pi−1,m, as required.

Proof of Theorem 2.2: LetKi be the run time of flat trading prior to ti,m. As discussed in the

paper, the maximum run time, K̄m, for a sequence of identical Bernoulli draws in a sample of sizem

has mean E
(
K̄m

)
= O

(
log1/π {m (1− π)}

)
= O

(
log{m(1−π)}

log 1
π

)
and variance V ar(K̄m) = π2

6 log2( 1
π )

.

It follows that

K̄m = Op (logm) , (1.43)

and so each Ki is at most Op (logm) . It follows that in equi-spaced sampling when ti,m = i
m , we
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have a maximum grid size hK̄m,m = K̄m
m = Op

(
logm
m

)
→ 0 as m → ∞. In the case of a general

grid {ti,m} , the maximum grid size is bounded as follows for large m

hK̄m,m = sup
i

∣∣ti,m − ti−K̄m,m

∣∣ ≤ sup
i

∣∣ti,m − ti−mδ,m

∣∣ for some δ > 0.

Hence, hK̄m,m → 0 if hmδ,m → 0 as m → ∞ for some δ > 0. In both cases, therefore, the grid size

tends to zero and standard quadratic variation theory ensures that

m∑
i=1

[pi,m − pi−1,m]2 →p

∫ 1

0
σ2 (t) dt. (1.44)

The result may be proved directly by writing the left side of (1.44) in terms of the empirical

quadratic variation of the efficient price RV (m)(p∗) =
∑m

i=1(p
∗
i,m − p∗i−1,m)2 and showing that the

error converges in probability to zero. The derivation is useful in later arguments so it is given

here. In particular, from equation (1.40), we have

m∑
i=1

[pi,m − pi−1,m]2 =
m∑
i=1

(p∗i,m − pi−1,m)2ξ2i,m (1.45)

=
m∑
i=1

(p∗i,m − pi−1,m)2E[ξ2i,m] +
m∑
i=1

(p∗i,m − pi−1,m)2
(
ξ2i,m − E[ξ2i,m]

)
= π

m∑
i=1

(p∗i,m − pi−1,m)2 +
m∑
i=1

(p∗i,m − pi−1,m)2
(
ξ2i,m − E[ξ2i,m]

)
.

Write the sum
∑m

i=1(p
∗
i,m − pi−1,m)2 in the first term above as follows

m∑
i=1

(p∗i,m − pi−1,m)2 =

m∑
i=1

(p∗i,m − p∗i−1,m + p∗i−1,m − pi−1,m)2

= RV (m)(p∗) + 2

m∑
i=1

(p∗i,m − p∗i−1,m)
(
p∗i−1,m − pi−1,m

)
+

m∑
i=1

(p∗i−1,m − pi−1,m)2

= RV (m)(p∗) + 2
m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
+

m∑
i=1

(p∗i−1,m − pi−2,m)2(1− ξi−1,m)2

= RV (m)(p∗) + 2
m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
+

m∑
i=1

(p∗i−1,m − pi−2,m)2(1− π)(1.46)

+
m∑
i=1

(p∗i−1,m − pi−2,m)2
{
(1− ξi−1,m)2 − (1− π)

}
.

Set Am =
∑m

i=1(p
∗
i,m − pi−1,m)2. So Am−1 = Am − (p∗m,m − pm−1,m)2. Substituting out Am−1 in

equation (1.46) gives

Am = RV (m)(p∗) + 2
m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
+Am(1− π)
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−(1− π)(p∗m,m − pm−1,m)2 +
m∑
i=1

(p∗i−1,m − pi−2,m)2
{
(1− ξi−1,m)2 − (1− π)

}
.

Hence

Am =
1

π
RV (m)(p∗) +

2

π

m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
(1.47)

−1− π

π
(p∗m,m − pm−1,m)2 +

1

π

m∑
i=1

(p∗i−1,m − pi−2,m)2
{
(1− ξi−1,m)2 − (1− π)

}
.

Substituting (1.47) into (1.45) we have

m∑
i=1

[pi,m − pi−1,m]2 = RV (m)(p∗) + 2
m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
− (1− π)(p∗m,m − pm−1,m)2

+
m∑
i=1

(p∗i−1,m − pi−2,m)2
{
(1− ξi−1,m)2 − (1− π)

}
+

m∑
i=1

(p∗i,m − pi−1,m)2
(
ξ2i,m − π

)
= RV (m)(p∗) + 2

m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
︸ ︷︷ ︸

A

−(1− π)(p∗m,m − pm−1,m)2︸ ︷︷ ︸
B

−2

m∑
i=1

(p∗i,m − pi−1,m)2ξi,m(1− ξi,m)︸ ︷︷ ︸
C

= RV (m)(p∗) +A+B + C. (1.48)

Since ξi,m is a Bernoulli variable, ξi,m (1− ξi,m) = 0 a.s., and so C = 0. Consider term B. Note

that for some duration Km ≥ 1 and for which at most Km = Op(logm) we have

p∗m,m − pm−1,m = p∗m,m − p∗m−Km,m =

∫ 1

tm−Km,m

σ(s)dB(s) = Op

(√
hK̄m,m

)
,

so that

B = −(1− π)(p∗m,m − pm−1,m)2 = −(1− π)Op

(
hK̄m,m

)
= op(1), (1.49)

For term A, note that εi,m =
∫ ti,m
ti−1,m

σ(s)dB(s) and

p∗i−1,m − pi−1,m = (p∗i−1,m − pi−2,m)(1− ξi−1,m) = (p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m), (1.50)

for some Ki−1 ≥ 2 and where Ki−1 is at most of Op(logm). Then

m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
=

m∑
i=1

εi,m(p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m).
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Now εi,m is independent of ξi−1,m, and E(εi,m) = 0 and V ar(εi,m) → 0, as m → ∞, because

hK̄m,m = o (1) , while
∑m

i=1(p
∗
i−1,m − p∗i−Ki−1,m

)2(1 − ξi−1,m)2 is bounded as m → ∞. It follows

that A = op(1). Thus,
∑m

i=1[pi,m − pi−1,m]2 = RV (m)(p∗) + op(1), as required.

Proof Theorem 2.3: From (1.48) we have

√
m

{
m∑
i=1

[pi,m − pi−1,m]2 − IV

}
=

√
m
{
RV (m)(p∗)− IV

}
+
√
m2

m∑
i=1

εi,m
(
p∗i−1,m − pi−1,m

)
−
√
m(1− π)(p∗m,m − pm−1,m)2

+
√
m

m∑
i=1

(p∗i−1,m − pi−2,m)2
{
(1− ξi−1,m)2 − (1− π)

}
+
√
m

m∑
i=1

(p∗i,m − pi−1,m)2
(
ξ2i,m − π

)
=

√
m
{
RV (m)(p∗)− IV

}
+
√
mA+

√
mB +

√
mC

=
√
m
{
RV (m)(p∗)− IV

}
+
√
mA+

√
mB, (1.51)

since C = 0, a.s. . Standard theory (Jacod (2018); Barndorff-Nielsen and Shephard (2002);

Barndorff-Nielsen et al. (2006)) gives the CLT

√
m
{
RV (m)(p∗)− IV

}
d→ N

(
0, 2

∫ 1

0
σ4(t)dt

)
, (1.52)

stably as m → ∞. We now study the asymptotic behavior of
√
mA, and

√
mB.

For term
√
mA, from (1.50) we get

√
mA =

√
m2

m∑
i=1

εi,m(p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m)

= 2
√
m

m∑
i=1

∫ ti,m

ti−1,m

σ(s)dB(s)(p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m)

= 2
√
m

m∑
i=1

νi,m(p∗i−1,m − p∗i−Ki−1,m),

where νi,m =
∫ ti,m
ti−1,m

σ(s)dB(s)(1−ξi−1,m) is uncorrelated with (p∗i−1,m−p∗i−Ki−1,m
), because of the

martingale property, and has mean 0 and conditional variance (1− π)m
∫ ti,m
ti−1,m

σ(s)2ds. So
√
mA

is a martingale with conditional variance

m (1− π)
m∑
i=1

(p∗i−1,m − p∗i−Ki−1,m)2
∫ ti,m

ti−1,m

σ(s)2ds.

By stochastic Taylor series expansion we have

p∗i−1,m − p∗i−Ki−1,m =

∫ ti−1,m

ti−Ki−1,m

σ(s)dB(s)
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=
{
σ
(
ti−Ki−1,m

)
+Op

(√
Ki−1h

)} (
B (ti−1,m)−B

(
ti−Ki−1,m

))
= σ

(
ti−Ki−1,m

) (
B (ti−1,m)−B

(
ti−Ki−1,m

))
+Op (Ki−1h)

= σ

(
i− 1

m

)(
B

(
i− 1

m

)
−B

(
i−Ki−1

m

))
+Op

(
Ki−1

m

)
(1.53)

on the equispaced grid {ti,m = i
m : i = 0, ...,m} with h = 1

m . Then

m
m∑
i=1

(p∗i−1,m − p∗i−Ki−1,m)2
∫ ti,m

ti−1,m

σ(s)2ds

= m
m∑
i=1

{
σ

(
i− 1

m

)(
B

(
i− 1

m

)
−B

(
i−Ki−1

m

))
+Op

(
Ki−1

m

)}2

×

{
σ

(
i− 1

m

)2

+Op

(
1√
m

)}
1

m

=
m∑
i=1

{
σ

(
i− 1

m

)4(
B

(
i− 1

m

)
−B

(
i−Ki−1

m

))2 [
1 +Op

(
Ki−1

m

)]}

=
m∑
i=1

{
σ

(
i− 1

m

)4 Ki−1 − 1

m

[
1 +Op

(
Ki−1

m

)]}

→ p

(∫ 1

0
σ4(t)dt

)
E(Ki−1 − 1).

It follows by the martingale central limit theorem (Hall and Heyde, 1980, Theorem 3.2) that

√
mA

d→ A∞ =d 2×MN
(
0, (1− π)

(∫ 1

0
σ4(t)dt

)
E(Ki−1 − 1)

)
,

stably in the sense that {Z,
√
mA} d→ {Z,A∞} for Z =

∫ 1
0 σ4(t)dt. Observe that

Ki−1 − 2 =


0 with probability π

1 with probability π(1− π)

2 with probability π(1− π)2

...

,

so that E(Ki−1 − 2) = π(1 − π) + 2π(1 − π)2 + · · · = 1−π
π , which implies that E(Ki−1 − 1) = 1

π .

Thus
√
mA

d→ MN
(
0, 4

1− π

π

∫ 1

0
σ4(t)dt

)
, (1.54)

stably.

Next consider term
√
mB. From (1.49) we have

√
mB = −

√
mOp

(
logm

m

)
(1− π) = op(1). (1.55)

Observe that the components of
√
mA involve the product εi,m(p∗i−1,m − p∗i−Ki−1,m

)(1 − ξi−1,m)
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whereas
√
m
{
RV (m)(p∗)− IV

}
is a centred quadratic in the increments εi,m = p∗i,m − p∗i−1,m, so

that
√
mA and

√
m
{
RV (m)(p∗)− IV

}
are asymptotically uncorrelated. By combining (1.54) and

(1.52), it follows that

√
m
{
RV (m)(p)− IV

}
d→ MN

(
0,

4− 2π

π

∫ 1

0
σ4(t)dt

)
,

giving the required result.

Proof of Lemma 2.4: From equation (1.40), we have

m
m∑
i=1

[pi,m − pi−1,m]4 = πm
m∑
i=1

(p∗i,m − pi−1,m)4 +m
m∑
i=1

(p∗i,m − pi−1,m)4
(
ξ4i,m − E[ξ4i,m]

)
. (1.56)

Consider
∑m

i=1(p
∗
i,m − pi−1,m)4 in the first term, giving

m∑
i=1

(p∗i,m − pi−1,m)4 =
∑

(p∗i,m − p∗i−1,m + p∗i−1,m − pi−1,m)4

=

m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+ 4

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
+6

m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
+4

m∑
i=1

(
p∗i,m − p∗i−1,m

) (
p∗i−1,m − pi−1,m

)3
+

m∑
i=1

(
p∗i−1,m − pi−1,m

)4

=

m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+ 4

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
+6

m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
+4

m∑
i=1

(
p∗i,m − p∗i−1,m

) (
p∗i−1,m − pi−1,m

)3
+m

m∑
i=1

(
p∗i−1,m − pi−2,m

)4
(1− π)

+

m∑
i=1

(
p∗i−1,m − pi−2,m

)4
((1− ξi−1,m)4 − (1− π)). (1.57)

Set Bm =
∑m

i=1(p
∗
i,m − pi−1,m)4. So Bm−1 = Bm − (p∗m,m − pm−1,m)4. Substituting out Bm−1 in

equation (1.57) and solving for Bm, we get

Bm =
1

π

m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+

4

π

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
(1.58)

+
6

π

m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
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+
4

π

m∑
i=1

(
p∗i,m − p∗i−1,m

) (
p∗i−1,m − pi−1,m

)3
−1− π

π
(p∗m,m − pm−1,m)2 +

1

π

m∑
i=1

(p∗i−1,m − pi−2,m)4
{
(1− ξi−1,m)4 − (1− π)

}
.

Substituting (1.58) into (1.56) we have

m
∑

[pi,m − pi−1,m]4 = m

m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+ 4m

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
+6m

m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
+4m

m∑
i=1

(
p∗i,m − p∗i−1,m

) (
p∗i−1,m − pi−1,m

)3 − (1− π)(p∗m,m − pm−1,m)2

+m
∑

(p∗i−1,m − pi−2,m)4
{
(1− ξi−1,m)4 − (1− π)

}
+m

m∑
i=1

(p∗i,m − pi−1,m)4
(
ξ4i,m − π

)
= m

m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+ 4m

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
︸ ︷︷ ︸

A

+6m
m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
︸ ︷︷ ︸

B

+4m

m∑
i=1

(
p∗i,m − p∗i−1,m

) (
p∗i−1,m − pi−1,m

)3
︸ ︷︷ ︸

C

−(1− π)m(p∗m,m − pm−1,m)4︸ ︷︷ ︸
D

+m
∑

(p∗i,m − pi−1,m)4(1− ξi,m)2ξ2i,m︸ ︷︷ ︸
E

= m
m∑
i=1

(
p∗i,m − p∗i−1,m

)4
+A+B + C +D + E. (1.59)

As in (1.53) we have

p∗i,m − p∗i−1,m = σ (ti−1,m) (B (ti,m)−B (ti,m)) +Op

(
1

m

)
= σ (ti−1,m)

ϵi,m√
m

+Op

(
1

m

)
, (1.60)
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where ϵi,m is iid N (0, 1) . Hence

m
m∑
i=1

(
p∗i,m − p∗i−1,m

)4
=

m∑
i=1

σ (ti−1,m)4
ϵ4i,m
m

+Op

(
1

m1/2

)

=

m∑
i=1

σ (ti−1,m)4
E
(
ϵ4i,m

)
m

+Op

(
1

m1/2

)
→ p 3

∫ 1

0
σ4(t)dt. (1.61)

Hence
2

3
m

m∑
i=1

(
p∗i,m − p∗i−1,m

)4 →p 2

∫ 1

0
σ4(t)dt. (1.62)

This corresponds with the result obtained in Barndorff-Nielsen and Shephard (2002).

We now consider the limit behavior of terms A,B,C,D, and E. First, for term E, since

(1− ξi,m)2 ξ2i,m = 0 almost surely, E = 0. Second, for term D, note that

D = −(1− π)m(p∗m,m − pm−1,m)4 = −(1− π)m×Op

(
log2m

m2

)
= op(1).

Next, consider term A, viz.,

m

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−1,m

)
= m

m∑
i=1

(
p∗i,m − p∗i−1,m

)3 (
p∗i−1,m − pi−2,m

)
(1− ξi−1,m)

= m

m∑
i=1

{
σ (ti−1,m)

ϵi,m√
m

+Op

(
1

m

)}3 (
p∗i−1,m − p∗i−Ki−1,m

)
(1− ξi−1,m)

for some Ki−1 = Op(logm)

=
1√
m

m∑
i=1

σ3 (ti−1,m) ϵ3i,m

(
p∗i−1,m − p∗i−Ki−1,m

)
(1− ξi−1,m) + op (1) . (1.63)

The component σ3 (ti−1,m) ϵ3i,m

(
p∗i−1,m − p∗i−Ki−1,m

)
(1− ξi−1,m) in the sum (1.63) has mean zero

and conditional variance E
[
ϵ6i,m

]
(1− π)σ6 (ti−1,m)

(
p∗i−1,m − p∗i−Ki−1,m

)2
= Op

(
logm
m

)
since from

(1.53)

p∗i−1,m − p∗i−Ki−1,m = σ

(
i− 1

m

)(
B

(
i− 1

m

)
−B

(
i−Ki−1

m

))
+Op

(
Ki−1

m

)
= σ

(
i− 1

m

)
ηKi−1√

m
+Op

(
Ki−1

m

)
= Op

(√
logm

m

)
, (1.64)
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where

ηKi−1 := B

(
i− 1

m

)
−B

(
i−Ki−1

m

)
= Op

(√
logm

)
.

It follows that

E

{
1√
m

m∑
i=1

σ3 (ti−1,m) ϵ3i,m

(
p∗i−1,m − p∗i−Ki−1,m

)
(1− ξi−1,m)

}2

= Op

(
logm

m

)
,

and so A = op(1). Similarly, for term C, 4m
∑(

p∗i,m − p∗i−1,m

)(
p∗i−1,m − pi−1,m

)3
is op(1).

Next, consider term B. Using (1.40) and (1.64), we have

m
m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−1,m

)2
= m

m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − pi−2,m

)2
(1− ξi−1,m)2

= m
m∑
i=1

(
p∗i,m − p∗i−1,m

)2 (
p∗i−1,m − p∗i−Ki−1,m

)2
(1− ξi−1,m)2 for some Ki−1 = Op(logm)

= m
m∑
i=1

{
σ (ti−1,m)

ϵi,m√
m

+Op

(
1

m

)}2(
σ (ti−1,m)

ηKi−1√
m

+Op

(
logm

m

))2

(1− ξi,m)2

=
1

m

m∑
i=1

σ2(ti,m)ϵ2i,mσ (ti−1,m)2 η2Ki−1
(1− ξi−1,m)2 +Op

(√
logm

m

)

=
1

m

m∑
i=1

σ4(ti,m)E
[
ϵ2i,mη2Ki−1

(1− ξi−1,m)2
]

+
1

m

m∑
i=1

σ4(ti,m)
{
ϵ2i,mη2Ki−1

(1− ξi−1,m)2 − E
[
ϵ2i,mη2Ki−1

(1− ξi−1,m)2
]}

+Op

(√
logm

m

)

=
1

m

m∑
i=1

σ4 (ti,m) (1− π)E(Ki−1 − 1) +Op

(
logm√

m

)
→ p

(∫ 1

0
σ4(t)dt

)
(1− π)E(Ki−1 − 1) =

(1− π)

π

∫ 1

0
σ4(t)dt, (1.65)

since ϵi,m, ηKi−1 , and ξi−1,m are independent. Therefore,

m
∑

[pi,m − pi−1,m]4 = 3

∫ 1

0
σ4(t)dt+ 6

(1− π)

π

∫ 1

0
σ4(t)dt+ op(1)

=
6− 3π

π

∫ 1

0
σ4(t)dt+ op(1),

leading to the required result.
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Proof Theorem 2.5: This follows directly from Lemma 2.4 and Theorem 2.3.

Proof Theorem 3.1: This proof is given in the Online Supplement to the paper.

Proof Theorem 4.1: As in Zhang et al. (2005) we set K = cm2/3 for some constant c > 0.

Then
K

m̄
=

K2

m
= c2m1/3.

The two time scale measures involving the efficient price series are denoted by [p∗](avg) and [p∗]Gm ,

and the corresponding measures using the actual price series are denoted by [p](avg) and [p]Gm .

The two time scale estimator is [̂p∗] = [p](avg) − m̄
Jm

[p]Gm . Decompose the estimation error as

[̂p∗]−
∫ 1

0
σ2(t)dt =

(
[̂p∗]− [p∗](avg)

)
+

(
[p∗](avg) −

∫ 1

0
σ2(t)dt

)
. (1.66)

From the proof of Theorem A.1 and equation (56) in Zhang et al. (2005), we have√
K

m̄

{
[̂p∗]− [p∗](avg)

}
⇒ N

(
0, 8σ4

u

)
, (1.67)

and their proof applies in the present case with only minor notational changes to account for

random τj sampling under Assumption D2 (ii).

The second component of (1.66) is the discretization effect and is the same as that in Zhang et al.

(2005), after allowing for the fact that we have random stopping times and adjusting accordingly,

as we do below. Theorems 2 and 3 of Zhang et al. (2005) give the following limit theory(m
K

)1/2(
[p∗](avg) −

∫ 1

0
σ2(t)dt

)
⇒ MN

(
0, η2

)
, (1.68)

where η2 is the probability limit of the quantity

η2m =

Jm∑
j=1

σ4 (τj)hj (τj − τj−1) , (1.69)

where

hj =
4

K∆τ

(K−1)∧j∑
i=1

(
1− i

K

)2

(τj−i − τj−i−1) , (1.70)

and in the present casem∆τ = J−1
m

∑Jm
j=1Dm,j . The limiting forms of hj and the random (variance)

quantity η2 are evaluated below.

We first observe that result (1.68) relies on the following representation, given in the proof of

Theorem 2 of Zhang et al. (2005),

[p∗](avg)−[p∗]Gm = 2

Jm−1∑
j=1

(p∗ (τj)− p∗ (τj−1))

(K−1)∧j∑
i=1

(
1− i

K

)
(p∗ (τj−i)− p∗ (τj−i−1))+Op

(
K

m

)
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whose leading term is

2

Jm−1∑
j=1

σ (τj−1) (B (τj)−B (τj−1))

(K−1)∧j∑
i=1

(
1− i

K

)
σ (τj−i) (B (τj−i)−B (τj−i−1))×{

1 +Op

(
maxj≤mDm,j

m

)}
.

Now

2

Jm−1∑
j=1

σ (τj−1) (B (τj)−B (τj−1))

(K−1)∧j∑
i=1

(
1− i

K

)
σ (τj−i) (B (τj−i)−B (τj−i−1))

is a local martingale with conditional variance whose leading term, as in the proof of Theorem 2

of Zhang et al. (2005), is

4

Jm−1∑
j=1

σ (τj−1)
2 (τj − τj−1)χ

2
1j

(K−1)∧j∑
i=1

(
1− i

K

)2

σ (τj−i)
2 (τj−i − τj−i−1)χ

2
1j−i

= 4

Jm−1∑
j=1

σ (τj−1)
2 (τj − τj−1)

(K−1)∧j∑
i=1

(
1− i

K

)2

σ (τj−i)
2 (τj−i − τj−i−1) E

(
χ2
1j

)
E
(
χ2
1j−1

)
+ op (1)

= 4

Jm−1∑
j=1

σ (τj−1)
4 (τj − τj−1)

(K−1)∧j∑
i=1

(
1− i

K

)2

(τj−i − τj−i−1)

{
1 +Op

(
Kmaxj≤mDm,j

m

)}
+ op (1)

= K∆τ

Jm∑
j=1

σ4 (τj)hj (τj − τj−1) {1 + op (1)} = K∆τ
{
η2m + op (1)

}
,

thereby giving (1.69) by martingale central limit theory since, under D2(ii)′ and K = cm2/3,

Kmaxj≤mDm,j

m
= op (1) .

To find an explicit expression for the limit quantity η2 in (1.68) we proceed as follows. First

observe that for the present model

m∆τ = J−1
m

Jm∑
j=1

Dm,j = J−1
m

Jm∑
j=1

E
(
Dm,j |Fτj−1

)
+ op (1) →p

∫ 1

0
µD (s) ds,

so that for r ≥ 0

hj=[Kr] =
4m

K
∫ 1
0 µD (s) ds

(K−1)∧[Kr]∑
i=1

(
1− i

K

)2 (
τ[Kr]−i − τ[Kr]−i−1

)
{1 + op (1)}

=
4

K
∫ 1
0 µD (s) ds

(K−1)∧[Kr]∑
i=1

(
1− i

K

)2

Dm,[Kr]−i {1 + op (1)}
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=
4

K
∫ 1
0 µD (s) ds

(K−1)∧[Kr]∑
i=1

(
1− i

K

)2

E
(
Dm,[Kr]−i|Fτ[Kr]−i

)
{1 + op (1)}

→ p

4
{∫ 1∧r

0 (1− s)2 µD (1 ∧ r − s) ds
}

∫ 1
0 µD (s) ds

.

Since K/Jm → 0, it follows that [Jmt] > K as m → ∞ for all t ∈ (0, 1]. Hence, for all t ∈ (0, 1],

hj=[Jmt] =
4

K∆τ

(K−1)∧[Jmt]∑
i=1

(
1− i

K

)2 (
τ[Jmt]−i − τ[Jmt]−i−1

)
→p

4
{∫ 1

0 (1− s)2 µD (1− s) ds
}

∫ 1
0 µD (s) ds

,

and then

η2m =

Jm∑
j=1

σ4 (τj)hj (τj − τj−1) →p

4
{∫ 1

0 (1− s)2 µD (1− s) ds
}

∫ 1
0 µD (s) ds

∫ 1

0
σ4 (t) dt.

Observe that when µD (s) = µD a.s., the right side of the last expression simplifies to

4

{∫ 1

0
(1− s)2 ds

}∫ 1

0
σ4 (t) dt =

4

3

∫ 1

0
σ4 (t) dt,

as given in Zhang et al. (2005) equation (5). It therefore follows that

(m
K

)1/2(
[p∗](avg) −

∫ 1

0
σ2(t)dt

)
⇒ MN

0,
4
{∫ 1

0 (1− s)2 µD (1− s) ds
}

∫ 1
0 µD (s) ds

∫ 1

0
σ4 (t) dt

 .

(1.71)

Next, consider (1.67). Since [̂p∗] = [p](avg) − m̄
Jm

[p]Gm , we have√
K

m̄

{
[̂p∗]− [p∗](avg)

}
=

√
K

m̄

{
[p](avg) − [p∗](avg) − m̄

Jm
[p]Gm

}
=

√
K

m̄

{
[p](avg) − [p∗](avg) − 2m̄σ2

u

}
−2

√
Km̄

{
J−1
m [p]Gm − σ2

u

}
⇒ N

(
0, 8σ4

u

)
, (1.72)

as in Theorem A.1 and equation (56) of Zhang et al. (2005). Combining (1.71) and (1.72) as

in Theorem 4 of Zhang et al. (2005) and using K = cm2/3 for some constant c > 0, so that√
K/m̄ = K/m1/2 = cm1/6 and

√
m/K = m1/6/c1/2, we then have the limit theory

m1/6

{
[̂p∗]−

∫ 1

0
σ2(t)dt

}
⇒
{

8

c2
σ4
u + cη2

}1/2

N (0, 1) ,
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as required.
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Statistics, 34, 1931–1963.

Naveau, P. (2003): “Almost sure relative stability of the maximum of a stationary sequence,”

Advances in Applied Probability, 35, 721–736.

Nelson, D. B. (1990): “ARCH models as diffusion approximations,” Journal of Econometrics,

45, 7–38.

Oomen, R. C. A. (2006): “Properties of Realized Variance under Alternative Sampling Schemes,”

Journal of Business & Economic Statistics, 24, 219–237.

Phillips, P. C. B. and J. Yu (2007): “Information loss in volatility measurement with flat price

trading,” Cowles Foundation Discussion Paper No. 1598, Yale University.

Protter, P. (2004): Stochastic Integration and Differential Equations, Springer-Verlag, New

York.

Reis, R. (2006): “Inattentive Producers,” The Review of Economic Studies, 73, 793–821.

Schilling, M. F. (1990): “The longest run of heads,” College Math. Journal, 21, 196–207.

Schmidt, P. (1976): Econometrics, Marcel Dekker, New York.

Yu, J. and P. C. B. Phillips (2001): “A Gaussian approach for continuous time models of the

short-term interest rate,” The Econometrics Journal, 4, 210–224.

Zhang, L. (2006): “Efficient estimation of stochastic volatility using noisy observations: A multi-

scale approach,” Bernoulli, 12, 1019 – 1043.
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This Online Supplement provides proofs of some of the results in the main paper. These

include the proof of Theorem 3.1 and additional results given in equations (1.19), (1.20)

and (1.24) of the paper.

Proof Theorem 3.1: We prove the results under Assumption D2 and deduce those under D1.

Since p∗ is generated by (1.1), σ (t) is càdlàg, and τj − τj−1 = Dm,j/m, we have for large enough

m under D2(ii)

p∗ (τj)− p∗ (τj−1) =

∫ τj

τj−1

σ (t) dB (t) = σ(τj−1)[B (τj)−B (τj−1)]

{
1 +Op

(
maxj≤mDm,j

m

)}
= σ(τj−1)[B (τj)−B (τj−1)]

{
1 + op

(
1√
m

)}
, (1.73)

uniformly in j ≤ m. Then

Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 =

Jm∑
j=1

σ2(τj−1)[B (τj)−B (τj−1)]
2

{
1 + op

(
1√
m

)}

=

Jm∑
j=1

σ2(τj−1)[τj − τj−1]χ
2
1j

{
1 + op

(
1√
m

)}

=

Jm∑
j=1

σ2(τj−1)[τj − τj−1]E
(
χ2
1j

)
+

Jm∑
j=1

σ2(τj−1)[τj − τj−1]
{
χ2
1j − 1

}
+ op

(
1√
m

)
(1.74)

→ p

∫ 1

0
σ2(t)dt,

where
{
χ2
1j

}
is an independent sequence of chi squared variates with unit degrees of freedom and

where the second term of (1.74) is Op

(
m−1/2

)
, as shown below, thereby giving (1.12).
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To prove (1.14), start by noting that∣∣∣∣∣
∫ 1

τJm

σ2(t)dt

∣∣∣∣∣ ≤ (1− τJm) max
t∈[τJm ,1]

σ2(t) ≤ maxj≤m+1Dm,j

m
max

t∈[τJm ,1]
σ2(t) = op

(
1√
m

)
.

Then

Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt

=

Jm∑
j=1

{
[p∗ (τj)− p∗ (τj−1)]

2 −
∫ τj

τj−1

σ2(t)dt

}
−
∫ 1

τJm

σ2(t)dt

=

Jm∑
j=1

σ2(τj−1)[τj − τj−1]
(
χ2
1j − 1

)
+ op

(
1√
m

)

=

Jm∑
j=1

σ2(τj−1)
Dm,j

m

(
χ2
1j − 1

)
+ op

(
1√
m

)
, (1.75)

and so

√
m


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt


=

Jm∑
j=1

σ2(τj−1)
Dm,j√

m

(
χ2
1j − 1

)
+ op (1) . (1.76)

The first term of (1.76) is a martingale with conditional variance

2

Jm∑
j=1

σ4(τj−1)
E
(
D2

m,j |Fτj−1

)
m

= 2

Jm∑
j=1

σ4(τj−1)
E
(
Dm,j |Fτj−1

)
m

E
(
D2

m,j |Fτj−1

)
E
(
Dm,j |Fτj−1

) (1.77)

= 2

Jm∑
j=1

σ4(τj−1)
Dm,j

m

E
(
D2

m,j |Fτj−1

)
E
(
Dm,j |Fτj−1

)
−2

Jm∑
j=1

σ4(τj−1)
Dm,j − E

(
Dm,j |Fτj−1

)
m

E
(
D2

m,j |Fτj−1

)
E
(
Dm,j |Fτj−1

)
= 2

Jm∑
j=1

σ4(τj−1)[τj − τj−1]
E
(
D2

m,j |Fτj−1

)
E
(
Dm,j |Fτj−1

) + op (1) , (1.78)

since Dm,j − E
(
Dm,j |Fτj−1

)
is a martingale difference array and the second term of (1.78) is

therefore op (1) by the martingale central limit theorem. By Assumption D2 we have

E
(
Dm,[ms]|Fτ[ms]−1

)
→p µD (s) , E

(
D2

m,[ms]|Fτ[ms]−1

)
→p ω

2
D (s) ,
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so that
Jm∑
j=1

σ4(τj−1)[τj − τj−1]
E
(
D2

m,j |Fτj−1

)
E
(
Dm,j |Fτj−1

) →p

∫ 1

0
σ4(t)

ω2
D (t)

µD (t)
dt,

giving the limit theory

√
m


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
2 −

∫ 1

0
σ2(t)dt

⇒ MN
(
0, 2

∫ 1

0
σ4(t)

ω2
D (t)

µD (t)
dt

)
,

in (1.14) as stated. The result under Assumption D1 follows when ω2
D (t) = ω2

D, µD (t) = µD a.s.

for all t.

To prove (1.15), we have the following decomposition of the estimated quarticity using (1.73)

m

Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]
4 = m

Jm∑
j=1

σ4(τj−1)[B (τj)−B (τj−1)]
4

{
1 + op

(
1√
m

)}

= m

Jm∑
j=1

σ4(τj−1)[τj − τj−1]
2χ4

1j

{
1 + op

(
1√
m

)}

=

Jm∑
j=1

σ4(τj−1)
D2

m,j

m
χ4
1j

{
1 + op

(
1√
m

)}

=

Jm∑
j=1

σ4(τj−1)
D2

m,j

m
E
(
χ4
1j

)
+

Jm∑
j=1

σ4(τj−1)
D2

m,j

m

{
χ4
1j − E

(
χ4
1j

)}
+ op (1) . (1.79)

The second term of (1.79) is a martingale and of order op (1) , and since D2
m,j − E

{
D2

m,j |Fτj−1

}
and Dm,j − E

{
Dm,j |Fτj−1

}
are both martingale differences we have

E
(
χ4
1j

) Jm∑
j=1

σ4(τj−1)
D2

m,j

m
= 3

Jm∑
j=1

σ4(τj−1)
E
{
D2

m,j |Fτj−1

}
m

+ 2

Jm∑
j=1

σ4(τj−1)
D2

m,j − E
{
D2

m,j |Fτj−1

}
m

= 3

Jm∑
j=1

σ4(τj−1)
E
{
Dm,j |Fτj−1

}
m

E
{
D2

m,j |Fτj−1

}
E
{
Dm,j |Fτj−1

} + op (1)

= 3

Jm∑
j=1

σ4(τj−1)
Dm,j

m

E
{
D2

m,j |Fτj−1

}
E
{
Dm,j |Fτj−1

}
−3

Jm∑
j=1

σ4(τj−1)
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Dm,j |Fτj−1

}
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E
{
D2
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= 3

Jm∑
j=1

σ4(τj−1)[τj − τj−1]
E
{
D2

m,j |Fτj−1

}
E
{
Dm,j |Fτj−1

} + op (1)

→ p 3

∫ 1

0
σ4(t)

ω2
D (t)

µD (t)
dt.

Hence, 2m
3

∑Jm
j=1[p

∗ (τj)− p∗ (τj−1)]
4 is a consistent estimate of the weighted quarticity functional

2
∫ 1
0 σ4(t)

ω2
D(t)

µD(t)dt, and it follows by joint convergence that

√
3

2

∑Jm
j=1[p

∗ (τj)− p∗ (τj−1)]
2 −

∫ 1
0 σ2(t)dt{∑Jm

j=1[p
∗ (τj)− p∗ (τj−1)]4

}1/2
⇒ N (0, 1) ,

as required.

Proof of (1.19) Using (1.73), write

1

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1

=
1

m

Jm∑
j=1

σ(τj−1)
2[B (τj)−B (τj−1)]

2
{
1 + op

(
1√
m

)}
τj − τj−1

=
1

m

Jm∑
j=1

σ2(τj−1)χ
2
1j

{
1 + op

(
1√
m

)}

= E
(
χ2
1j

) Jm∑
j=1

σ2(τj−1)
E
(
Dm,j |Fτj−1

)
m

1

E
(
Dm,j |Fτj−1

) {1 + op

(
1√
m

)}

=

Jm∑
j=1

σ2(τj−1)
Dm,j

m

1

E
(
Dm,j |Fτj−1

) {1 + op

(
1√
m

)}

+

Jm∑
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E
(
Dm,j |Fτj−1

)
−Dm,j

m

1

E
(
Dm,j |Fτj−1

) {1 + op

(
1√
m

)}

=

Jm∑
j=1

σ2(τj−1) (τj − τj−1)
1

E
(
Dm,j |Fτj−1

) + op (1)

→p

∫ 1

0
σ2(t)µ (dt) =

∫ 1

0
σ2(t)

1

µD (t)
dt.

Proof of (1.20)

Proceeding as in (1.75) we find

1

m

Jm∑
j=1

{p∗ (τj)− p∗ (τj−1)}2

τj − τj−1
−
∫ 1

0
σ2(t)µ (dt)
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=

Jm∑
j=1

{
{p∗ (τj)− p∗ (τj−1)}2

(τj − τj−1)m
−
∫ τj

τj−1

σ2(t)
dt

µD (t)

}
−
∫ 1

τJm

σ2(t)
dt

µD (t)

=

Jm∑
j=1

σ2(τj−1)

{
χ2
1j

m
− τj − τj−1

µD (τj−1)

}
+ op

(
1√
m

)
. (1.80)

In (1.80), note that the component in braces is a martingale difference because χ2
1j is independent

of Fτj−1 and

E

{(
χ2
1j

m
− τj − τj−1

µD (τj−1)

)
|Fτj−1

}
= 0.

The conditional variance is

E
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(
χ2
1j

m
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2
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2
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2 .

It follows that
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m
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σ2(t)µ (dt)
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is a local martingale with conditional variance
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By the martingale central limit theorem we deduce that

√
m

 1

m

Jm∑
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τj − τj−1
−
∫ 1

0
σ2(t)µ (dt)


⇒ MN

(
0,

∫ 1
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)
,

as required.

Proof of (1.24): The empirical standardized quarticity is

1
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→ p 3
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as stated.
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