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ABSTRACT 
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Using AIS data to calculate emissions inventories for small commercial watercraft 

by Jonathan Coello 

The shipping industry is heavily reliant on the use of fossil fuel and contributes significantly 

to global emissions of carbon dioxide (CO2), nitrogen oxides (NOx), sulphur dioxide (SO2) 

and particulate matter (PM) resulting in deleterious impacts upon the climate, human 

health and the environment. A large proportion of global fishing and other small 

commercial vessels (< 100 GT) are omitted from global shipping emissions inventories, 

leading to potentially significant underestimation of emissions from the shipping sector. 

Effective quantification of shipping emissions requires quality data and sophisticated 

methods. This thesis introduces a new method for the calculation of emissions inventories 

for small commercial vessels that utilises Automatic Identification System (AIS) data, a high-

quality source of activity data for modelling atmospheric emissions from ships. The 

methodology offers a novel approach to activity sampling for modelling the emissions of 

vessels that cannot be directly matched to AIS data. A new speed calculation methodology 

based on the AIS data is also developed. An approach is also introduced for the detection of 

pushing and towing operations of vessels such as dredgers and trawlers in order that 

corrected engine load estimates can be applied for these operations. A case study 

emissions inventory for the year from May 2012 to May 2013 is calculated for UK fishing 

vessels. This is compared with the annual emissions calculated using a fuel-based 

methodology. Fuel use calculated using the activity-based methodology is 270.8 kt, which is 

slightly higher than the fuel-based methodology which yielded results of 251.8 kt. The 

activity-based method produced a CO2 emissions estimate of 864.3 kt, compared to 803.3 

kt for the fuel-based approach. An analysis of uncertainty and sensitivity shows that activity 

sampling and emission factor uncertainty produce significant but unbiased uncertainty in 

results. However, uncertainties in values used to parameterise engine load calculation are 

found to generate potentially significant bias in results, highlighting the importance of 

calibrating model input parameters to ensure that sensible results are produced. Overall 

uncertainties in fuel use and emissions calculated using the activity-based method are 

found not to exceed ±6% at the 95% confidence interval. The close alignment of the results 

of the fuel-based and activity-based methods and the relative stability of results shown by 

the uncertainty analysis indicates that an AIS-based methodology with activity sampling is a 

viable approach for the calculation of emissions from small commercial vessels. The finding 

that 43.5% of UK fishing fleet emissions are produced by small vessels (< 100 GT) supports 

the claim that omitting these vessels from emissions inventories could lead to a significant 

underestimation of shipping emissions. 
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timestamp 
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OAT One-at-a-time (sensitivity analysis) 
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PM Particulate matter 

RAM Random-access memory 
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SOLAS Safety of Life At Sea 

SO2 Sulphur dioxide 

STEAM Ship Traffic Emission Assessment Model 
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Terminology 

AIS data point The information contained within an AIS position update 

message. 

AIS track The set of AIS data points identified by a particular MMSI 

number sorted in chronological order, with information 

calculated for track segments. 

Track segment The vessel activity between two chronologically consecutive AIS 

data points in an AIS track. Track segments have a duration, 

speed and relative speed. 

Minimum moving 

speed 

The speed threshold above which a vessel is classified as 

moving. 

Instantaneous speed The average speed of a vessel during a specific track segment. 

Design speed The maximum speed that a vessel is designed to cruise at. 

Maximum speed A maximum speed derived from an AIS track that is used as a 

proxy for design speed when design speed is unavailable from 

vessel characteristic data. 

Relative speed The ratio of instantaneous speed to design speed 

Moving track 

segment 

A track segment where the instantaneous speed is greater than 

or equal to the minimum moving speed.  

Moving (%) The percentage (by duration) of an AIS track or group of AIS 

tracks made up of moving track segments. 

Mean speed The mean speed of all track segments of an AIS track or group of 

AIS tracks. 

Mean moving speed The mean speed of all moving track segments of an AIS track or 

group of AIS tracks.   

Mean relative speed The mean relative speed of all track segments of an AIS track or 

group of AIS tracks. 

Mean moving 

relative speed 

The mean relative speed of all moving track segments of an AIS 

track or group of AIS tracks. 

Mean max speed The mean maximum speed of a group of AIS tracks 
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A note on units 

Within this thesis speed is presented in either knots or km h-1. It is acknowledged that      

km h-1 is not an SI unit. For the reader’s convenience, conversion formulae are provided:  

• 1 km h-1 = 0.54 knots, 

• 1 km h-1 = 0.28 ms-1 
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1 Introduction 

An ever-growing body of scientific knowledge suggests that emissions of greenhouse gases 

(GHGs) and other climate-altering gases and particles could have catastrophic 

consequences for humanity and the global environment if they are not reduced 

dramatically in coming years. The primary cause of GHG emissions from anthropogenic 

activities is the burning of fossil fuels for energy (IPCC, 2014). 

It is thought that the most damaging effects of climate change can likely be avoided if 

global mean temperatures are prevented from rising by more than between 1.5°C and 2°C 

above preindustrial levels (IPCC, 2014; United Nations, 2016). The Paris Agreement, which 

came into force in 2016, is the first legally binding international agreement aimed at 

keeping the rise in mean global temperatures compared to preindustrial levels well below 

2°C (United Nations, 2016). In order to achieve this, global emissions of GHGs must be 

reduced by at least 40%, and possibly as much as 70%, compared to 2010 rates of 

emissions, by 2050 (IPCC, 2014). This will require reductions in GHG emissions across all 

sectors, requiring a widespread reduction in the use of fossil fuels as a source of energy 

(IPCC, 2014). In order to monitor progress and develop effective mitigation strategies, 

robust emissions accounting practices are essential (United Nations, 2016). 

In addition to the climate altering effects of GHG emissions, burning fossil fuels also 

releases air pollutants that have been associated with a number of non-communicable 

diseases such as heart disease, stroke, lung diseases and cancers. The World Health 

Organisation (WHO) estimates that approximately 13% of cardiovascular disease is caused 

by ambient air pollution and that as many as 2.8 million premature deaths occur annually 

due to poor ambient air quality. The WHO also states that reducing transport emissions is 

one of the best mitigation measures available for improving outdoor air quality (WHO, 

2017). 

Before the 1990s, shipping’s contribution to atmospheric pollution was afforded little 

attention by researchers or policy makers (Schrooten et al., 2008). However, research 

conducted over the past two decades has highlighted that shipping is a significant 

contributor to emissions of GHGs (predominantly CO2), nitrogen oxides (NOX), sulphur 

dioxide (SO2) and particulate matter (PM), all of which contribute to human perturbations 

of the Earth’s radiation budget, resulting in a complex and uncertain effect upon the 

climate (Buhaug et al., 2009; Coggon et al., 2012; Eyring et al., 2010; Lawrence & Crutzen, 
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1999; Jalkanen et al., 2014; Smith et al., 2014). In addition to the climate altering effects of 

shipping emissions, NOX, SO2 and PM have negative effects upon air quality, human health 

and aquatic and coastal environments (Bartnicki et al., 2011; Deniz & Durmuşoğlu, 2008; 

Eyring et al., 2010; Schrooten et al., 2008). Since 2005, the IMO MARPOL Annex VI 

regulations have been in force as the main international instrument for the control of 

atmospheric pollution emissions from the shipping industry (IMO, 2018). 

The most comprehensive inventory of shipping emissions compiled to date was produced 

by the International Maritime Organisation (IMO). The Third IMO GHG Study 2014 (Smith et 

al., 2014) presented estimates that, in 2012, the global international and domestic shipping 

industry emitted 949 million tonnes of CO2 and 972 million tonnes of combined CO2, 

methane (CH4) and nitrous oxide (N2O), expressed as CO2-equivalent (CO2e). Combined 

CO2e emissions are calculated using 100-year global warming potential conversion factors 

from the IPCC Fifth Assessment Report (AR5) (IPCC, 2013).  

Over the five years from 2007 to 2012 shipping’s contribution to total anthropogenic GHG 

emissions has reduced from 3.2% to 2.5% (Smith et al., 2014). This indicates a small 

reduction from the figures presented in the Second IMO GHG Study 2009 of 1046 million 

tonnes of CO2 emitted by the global shipping industry in 2007 (Buhaug et al., 2009). 

However, this reduction is attributed to a global dip in economic activity rather than a 

meaningful improvement in the environmental performance of the shipping industry (Smith 

at al., 2014). The observed reduction of shipping emissions throughout this time resulted 

from a wide-spread adoption of slow steaming, the practice of cruising at slower speeds to 

improve efficiency and reduce fuel consumption. This happened due to a combination of 

high fuel prices and overcapacity of the cargo fleet caused by reduced demand for 

international freight transport (Smith at al., 2014; Halff, 2017). 

The widespread practice of slow steaming seems to have survived a reduction in oil price. 

However, it is likely that the practice will become less popular as demand for international 

freight transport increases (Halff, 2017). Overall, the downward trend in shipping emissions 

is expected to reverse in the long-term as global economic activity increases (Smith et al., 

2014). 

The shipping industry also contributes disproportionately large fractions of global 

anthropogenic NOX, SO2 and PM emissions, with NOX and SO2 contributions by the shipping 

industry making up 15% and 13% of anthropogenic totals, respectively (Smith et al., 2014). 
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These pollutants have a complex effect upon the climatic system and can lead to both 

warming and cooling as a result of increased marine aerosol and cloud formation (Coggon 

et al., 2012). Lauer et al. (2007) postulate that these effects are likely to result in a net 

short-term cooling effect upon the climate as a result of shipping activities. In the longer-

term, however, the global warming caused by GHGs is forecast to become the shipping 

industry’s dominant effect on the climate (Eyring et al., 2010). 

International climate agreements such as the Paris Agreement have avoided setting targets 

for international shipping (United Nations, 2016). This is large due to a lack of consensus on 

a fair approach for the allocation of emissions to nations (Gilbert & Bows, 2012). Instead, 

the IMO has been tasked with agreeing and implementing a strategy for reducing GHG 

emissions from the shipping sector as a whole (United Nations, 2016).  

Some progress has been made by the IMO towards this aim through the MARPOL Annex VI 

regulations on air pollution from shipping (IMO, 2018). Since 2011, the Energy Efficiency 

Design Index (EEDI) and Ship Energy Efficiency Management Plan (SEEMP) have been in 

effect. The EEDI requires new vessels in the most energy intensive ship categories, such as 

tankers, bulk carriers and container ships to meet increasingly strict energy efficiency 

targets (gCO2 /cargo tonne-mile). Targets are made more stringent every five years, with 

plans for new vessels in 2025 to be 30% more efficient than equivalent vessels in 2010 

(IMO, 2016a). However, some vessel types, e.g. fishing vessels, are not covered by the EEDI. 

The EEDI also generally only applies to relatively large vessels, with less strict, if any, 

requirements on smaller vessels in each regulated category. 

The SEEMP targets improving energy efficiency of vessels already in operation, and applies 

to all IMO regulated vessels of 400 GT and above that operate internationally. Every 

qualifying vessel was required to have a SEEMP from the beginning of 2013. Guidance is 

offered on the measurement of vessel energy efficiency with the provision of tools such as 

the Energy Efficiency Operational Indicator (EEOI). However, there are no mandatory 

energy efficiency improvements that vessel operators must make under the SEEMP and so 

it serves only as a mechanism to encourage good practice rather than enforcing it (IMO, 

2016a).  

In 2016 the IMO also introduced a new requirement under the SEEMP, which came into 

force from the start of 2018 for all vessels over 5000 GT to report annual fuel use by main 

and auxiliary engines to their flag state. These reports are anonymised and aggregated and 
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submitted to the IMO Fuel Oil Consumption Database. These data will underpin IMO 

decision making for more effective regulation of GHG emissions from the shipping sector by 

2023 (IMO, 2016b). At present, however, widespread opinion is that too little progress is 

being made toward reducing the emission of GHGs from the shipping industry, an issue that 

has been a source of criticism for the IMO (Harvey, 2016). 

Research by the International Transport Forum (2018) shows that a reduction of between 

82% and 95% of projected fuel consumption and emissions is possible by 2035. This could 

be achieved through a switch to alternative fuels, including biofuels; use of electric and 

wind-assisted propulsion; operational measures such as slow steaming and improved port 

efficiency; and the use of efficient hull designs, air lubrication and bulbous bows. A shift 

towards larger vessels will also help to reduce the overall environmental impact of the 

sector. 

The slow progress that has been made to date has led to suggestions by the European 

Union (EU) that shipping emissions should be included in the EU Emissions Trading Scheme. 

This is a controversial suggestion than some believe may hinder efforts to agree a global 

strategy for the reduction of emissions from the shipping industry (ECSA, 2018). Underlining 

the importance of agreeing and implementing an effective global regulatory system is the 

IMO prediction that the growth in international trade over the coming decades will result in 

an increase in GHG emissions from shipping activities of between 50% and 250% by 2050 

even with an anticipated 40% improvement in energy efficiency (Smith et al., 2014). 

By comparison, more progress has been made to regulate other atmospheric pollution 

emissions from the shipping sector. Under MARPOL Annex VI, emissions of SO2 and PM 

have been reduced significantly through the introduction of fuel quality regulations. The 

current maximum sulphur content of marine bunker fuel oil is 3.5%, which is due to be 

reduced to 0.5% in 2020. There are also a number of emission control areas (ECAs) where 

fuel sulphur content is further limited to 0.1%. Technical regulations for marine diesel 

engines are also in place that control emissions of NOx, with ECAs where even stricter 

regulations are enforced (IMO, 2018).  

For all pollutants, estimates of the quantity and location of emissions are important for 

both the evaluation of impacts and when assessing different emission control options, 

creating policy and monitoring the effect of implemented mitigation measures (Endresen et 

al., 2008; Gilbert & Bows, 2012; Miola & Ciuffo, 2011; Miola et al., 2010; Tzannatos, 2010). 
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For emissions inventories to be useful, they must be repeatable and practicable so that 

they can be systematically applied and trends over time can be detected (Williams et al., 

2012). For effective policy measures to be designed and implemented, emission accounting 

and apportionment to sub-global regions must be done consistently and reliably (Gilbert & 

Bows, 2012). Disagreement about the methods used to allocate shipping emissions to 

nations is one of the major factors that has inhibited the development of effective global 

shipping emissions mitigation policy by the IMO (Gilbert & Bows, 2012).  

There are two broad approaches that have been applied to compiling inventories of 

atmospheric emissions from the shipping industry, which can be described as fuel-based 

and activity-based. Fuel-based approaches use aggregated fuel use statistics, usually 

compiled from sales and tax records, to calculate emissions using fuel-based emission 

factors (Endresen et al., 2005; 2007; Skjølsvik et al., 2000). Activity-based approaches 

calculate emissions from data on ship design characteristics, activity-profiles and activity- 

and technology-specific emission factors (Buhaug et al., 2009; Corbett & Köhler, 2003; 

Endresen et al., 2003; 2007; Eyring et al., 2005; Psaraftis & Kontovas, 2009). 

In recent years, activity-based approaches have been favoured as they are considered more 

accurate due to inconsistent reporting of fuel statistics, creating doubt over the validity of 

fuel-based methods (Buhaug et al., 2009; Corbett & Köhler, 2003; Psaraftis & Kontovas, 

2009). Fuel-based methods are also insufficient for meaningful allocation of emissions to 

nations (Gilbert & Bows, 2012). Activity-based methods also offer advantages when 

creating spatially- and temporally-resolved emissions inventories and forecasting future 

emissions trends (Buhaug et al., 2009; Eyring et al., 2005; Smith et al., 2014; Wang et al., 

2008).  

Uncertainty associated with the activity data inputs to activity-based methods has been 

considerable in the past, leading to significant differences in the results modelled (Corbett 

& Köhler, 2003, 2004; Endresen et al., 2003, 2004). More recently, the availability of high 

quality activity data that has resulted from technological advancements such as the 

introduction of the Automatic Identification System (AIS) has allowed for the development 

of new activity-based emissions modelling approaches with significantly reduced 

uncertainty and greater spatial and temporal precision (Jalkanen et al., 2009; 2012; 2014; 

MARIN, 2012; Olesen et al., 2009; Smith et al., 2014). 
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Activity-based approaches are, however, limited by the availability of vessel technical data 

as only reasonably well inventoried vessel populations can be modelled. The majority of 

activity-based emissions inventories have used the IHS-Fairplay (formerly Lloyds Register 

Fairplay) database of IMO-registered commercial vessels (Buhaug et al., 2009; Corbett & 

Kohler, 2003; Endresen et al., 2003, 2007; Eyring et al., 2005; Paxian et al., 2010; Psaraftis & 

Kontovas, 2009; Smith et al., 2014). This database contains vessels registered with the IMO. 

Significantly, IMO registered vessels are generally ocean-going commercial vessels with a 

gross tonnage (GT) of at least 100 GT (Endresen et al., 2007, 2008; Eyring et al., 2010; 

Schrooten et al., 2008). 

A thorough review of the literature has identified that very little research has been 

undertaken that satisfactorily quantifies the emissions of GHGs and other atmospheric 

pollutants caused by small commercial watercraft under 100 GT. Activity-based emissions 

inventories tend to omit emissions from recreational, small commercial (<100 GT) and 

military vessels entirely (Endresen et al., 2007). Rough estimates put the extent of this 

omission at around 5-10% of global shipping emissions (Endresen et al., 2007; Whall et al., 

2010). The fact that the EEDI and SEEMP target larger vessels (IMO, 2016a) also implies 

that, while energy efficiency of large vessels will improve, small commercial watercraft are 

unlikely to see significant energy efficiency improvements; this is likely to mean that their 

relatively contribution to the environmental impact of shipping activities will increase in the 

future. 

One reason for this is that AIS transponders are only mandatory for vessels of at least 300 

GT engaged in international voyages, cargo ships of at least 500 GT engaged in domestic 

voyages and all passenger ships under the Safety of Life At Sea (SOLAS) convention (IMO, 

2002). However, affordable AIS transponders are available for non-SOLAS vessel such as 

recreational and small commercial watercraft (e.g. ICOM, 2013), and the safety benefits 

offered are likely to result increasing voluntary uptake (Jalkanen et al., 2014). This is a 

valuable source of data for quantifying the atmospheric pollution caused by small 

commercial watercraft.  

Although AIS transponders are installed on recreational and small commercial vessels, only 

one attempt (Jalkanen at al., 2014) has so far been made to use this data for modelling 

emissions from these vessels, which had clear limitations. The inventory includes small 

vessels that have AIS transponders but does nothing to address the omissions of small 

vessels without AIS transponders. Very broad-brush assumptions about vessel technical 
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specifications are also made, with all vessels being assigned the engine characteristics of 

tugboats. Given that tugboats only make up a proportion of small vessels, and given that 

they also tend to have high-powered engines for their size, this assumption is likely to lead 

to an overestimate of emissions. 

This thesis presents the development of a new activity-based methodology for the 

calculation of atmospheric pollution emissions from small commercial vessels. The method 

uses AIS data, a high-quality source of activity data for the estimate of fuel use and 

emissions from shipping activities. It is not mandatory for all small commercial vessels to 

use AIS technology, so AIS data is only available for a subset of small commercial vessels. 

Therefore, this thesis also tackles methods for using the available AIS data as a 

representative sample of vessel activity. An inventory of emissions caused by the UK fishing 

fleet over a year is calculated as a case study of the method’s use. The sensitivity of 

emissions calculated using the methods developed in this thesis to various input data are 

quantified and the uncertainty in the final estimate is calculated. 

This thesis does not cover emissions allocation in depth. Given that the case study fleet is 

made up of UK fishing vessels, it is assumed that all emissions from the fleet can be 

attributed to the UK. Due to limited availability of AIS data free of charge, and the cost of 

obtaining more AIS data, emissions were only calculated for the case study fleet of UK 

fishing vessels for one year to showcase the methodology. This research is also limited to 

the direct emission of GHGs and atmospheric pollutants as a results of fuel combusted in 

the engines of vessels. All indirect emissions associated with the sector are outside of the 

scope of this project. 

 

1.1 Aims and objectives 

The aim of this thesis is to develop a methodology that can be used to address the omission 

of small commercial watercraft from shipping emissions inventories. 

Objectives: 

1. To review previously used methodologies for the production of atmospheric 

emissions inventories for shipping activities and assess their applicability to small 

commercial watercraft. 
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2. To create a robust, repeatable and practical methodology for the calculation of 

atmospheric pollution caused by small commercial watercraft. 

3. To identify sources of uncertainty that affect the emissions calculation 

methodology developed and undertake a rigorous sensitivity and uncertainty 

analysis. 

4. To calculate an emissions inventory for a case study fleet of small commercial 

vessels and assess the validity of results. 

 

1.2 Overview of content 

This thesis is laid out over five main chapters, excluding this introductory chapter and the 

final conclusions. Chapter 2 contains a comprehensive review of the methods published in 

the body of academic literature that have been used to quantify atmospheric pollution 

emissions from the shipping industry. The methodologies are summarised, compared and 

categorised and their relative merits and drawbacks are identified and highlighted. Their 

applicability to the production of emissions inventories for small commercial watercraft is 

also assessed. 

In Chapter 3, the methodology and software tool developed throughout this research are 

described in detail. This is a new activity-based emissions calculation methodology for the 

production of emissions inventories for small commercial watercraft from incomplete AIS 

data records. The methodology builds upon previous AIS-based emissions inventory 

methods but breaks new ground in the use of activity sampling rather than direct one-to-

one matching of AIS tracks. A novel methodology is introduced for detecting and modelling 

operating conditions such as trawling and dredging by fishing vessels. A new combined 

speed calculation methodology is also introduced and trialled for estimating vessel speed 

from both the distance travelled between consecutive AIS data points and the speed values 

recorded directly in the AIS data. 

Chapter 4 covers the refinement of the activity sampling method used to associate the AIS 

data that describe vessel activity with the modelled fleet of vessels when insufficient data 

are available to match vessels to AIS data records on a direct one-to-one basis. Fleet 

representativeness, filtering of unsuitable AIS tracks, geographic relevance and the 

introduction of undesired bias are considered in detail and sampling criteria are suggested 

for the case study fleet of UK fishing vessels. 
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In Chapter 5, sensitivity analysis is used to understand the effect that uncertainty in model 

inputs have upon the results calculated. The most significant sources of uncertainty are 

identified and potential bias in results is discussed. A Monte Carlo uncertainty analysis is 

also undertaken and the overall uncertainty in the emissions inventory is quantified. The 

results of this chapter are also used to calibrate input parameters for modelling of 

emissions for the case study fleet. 

Chapter 6 contains the results of two methods used to calculate an annual emissions 

inventory for the UK fishing fleet. The AIS-based methodology and software tool developed 

during this project are used to calculate disaggregated emissions for the different vessel 

classes that make up the UK fishing fleet and to produce geographic mappings of emissions. 

To corroborate these results, a fuel-based methodology using published fuel use rates per 

unit catch and total catch landed by the UK fishing fleet is used to produce aggregate 

emissions for comparison with the new emissions calculation methodology developed. 
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2 Methodological review 

The purpose of this chapter is to review the academic and industry literature on 

methodologies used to calculate atmospheric emissions generated by ships for the 

production of emissions inventories. The methods are categorised and assessed to 

determine their applicability to the calculation of emissions from small commercial 

watercraft. This chapter satisfies objective 1 of this project: 

“To review previously used methodologies for the production of atmospheric 

emissions inventories for shipping activities and assess their applicability to small 

commercial watercraft.” 

 

2.1 Introduction 

A range of methodologies have been used to calculate emissions of atmospheric pollutants 

and GHGs over the past two decades. These can be broadly separated into two categories:  

• Fuel-based emissions inventories, which take fuel sales statistics or surveyed fuel 

usage data as their main data input (Benkovitz et al., 1996; Corbett et al., 1999; 

Olivier et al., 1996; Skjølsvik et al., 2000), and  

• Activity-based emissions inventories, which use information about shipping 

activities and vessel characteristics to compute an estimate of fuel consumption 

and associated emissions (Buhaug et al., 2009; Fitzgerald et al., 2011; Smith et al., 

2014; Trozzi et al., 2016). 

Emissions inventories for shipping are calculated for a variety of reasons. These can be 

categorised into four main groups: 1) as inputs to radiative forcing models for determining 

climate impacts (Capaldo et al., 1999; Eyring et al., 2010; Lauer et al., 2007; Lee et al, 2006), 

2) to model impacts upon human health (Corbett et al., 2007; Dalsøren et al., 2007; 

Winebrake et al., 2009), 3) for national or regional emissions accounting (Entec, 2005; 

Wang et al., 2007; Whall et al., 2002; 2007; 2010) and 4) for the evaluation and tracking the 

progress of technological, operational and policy measures for mitigating the 

environmental impacts of shipping (Buhaug et al., 2009; Farrell et al., 2003; Jalkanen at al., 

2014; Lindstad et al., 2011, 2012; Ma et al., 2012; Smith, 2012; Smith et al., 2014; van 

Vuuren et al., 2009; Vergara et al., 2012; Wang & Corbett, 2007; Wright et al., 2011). 

Groups 1 and 2 are predominantly the concern of academic researchers, while groups 3 and 
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4 are of greater concern to national and international governing bodies due to their 

importance for emissions accounting and mitigation strategy evaluation. 

In order to be useful, emissions inventories should be as accurate as practicably possible 

given time and resource constraints, geographically and temporally resolved, and capable 

of facilitating the assessment of mitigation options by reflecting changes in vessel 

technology, fuel types and operating practices (Williams et al., 2012). A reasonable level of 

accuracy is necessary for all emissions inventory uses outlined above. Geographical and 

temporal resolution of emissions is necessary for modelling air quality, human health and 

pollution deposition impacts of shipping emissions (Bartnicki et al., 2011; Corbett et al., 

2007; Dalsøren et al., 2007; Winebrake et al., 2009), and the cloud forming climatic effects 

of shipping emissions (Coggon et al., 2012; Lawrence & Crutzen, 1999; Song et al., 2003). 

For policy and emissions accounting purposes, emissions can also be allocated to nations 

and regions in a variety of ways ranging from the flag of vessels, the location of fuel sales or 

the origin/destination of voyages or cargo. The quantity of emissions allocated to different 

nations or regions differs substantially between the different emissions allocation 

strategies, as shown by Gilbert & Bows (2012). 

Each methodological approach will be evaluated in terms of the type of emission factors 

that can be applied, the ability to create geospatially and temporally resolved emissions 

inventories, the flexibility of the approach for emissions allocation, and the usefulness in 

terms of modelling the effects of technological and operational changes. The approaches 

will also be assessed for their applicability to the calculation of emissions from small 

commercial vessels. 

 

2.2 Emission factors 

A common element of all methodologies is the need for emission factors, which are used to 

calculate a mass of emissions of a pollutant from a given mass of fuel combusted, or power 

produced by an engine (Trozzi et al, 2016). Pollutants and GHGs in ship exhaust plumes can 

be categorised into two main groups based on the type of emissions factors used to model 

them.  

All pollutants and GHG emissions rates are influenced by the chemical composition of the 

fuel being combusted. Some emissions are solely determined by fuel chemical composition, 
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such as carbon dioxide (CO2) and sulphur dioxide (SO2). These can be accurately quantified 

with no more information than the mass of fuel combusted and appropriate emission 

factors. Other pollutants, however, are emitted at rates that also depend on the conditions 

of combustion, which vary between types of engines, engine age and condition, and as the 

loading on the engine varies during use. These pollutants include oxides of nitrogen (NOX), 

carbon monoxide (CO), volatile organic compounds (VOCs) and particulate matter (PM) 

(MARIN, 2012; Trozzi et al., 2016). In addition to the mass of fuel consumed and 

appropriate emission factors, modelling these emissions accurately requires information on 

the vessel’s engine loading while the fuel was combusted. 

Emission factors that only vary depending on fuel chemistry and combustion rate will be 

referred to as fuel-specific emission factors. Those that vary also with the conditions of 

combustion will be referred to as technology-specific emission factors. 

Fuel-specific emission factors are calculated based on chemical analysis of fuels and 

fundamental chemical principles (Buhaug et al., 2009; Endresen et al., 2005; Trozzi et al., 

2016). Technology-specific emission factors are usually calculated from testing of engines in 

a manufacturer’s test-bed environments (e.g. Köhler, 2003) or by monitoring engines 

installed aboard vessels during operation (Agrawal et al., 2008a, 2008b, 2010; Cooper, 

2003a, 2003b, 2005; Jüttner et al., 1995; Kasper et al., 2007; Smith et al., 2014; Winnes & 

Fridell, 2010). 

Fuel-specific emission factors are simply multiplied by the quantity of fuel that is consumed 

by a given vessel population over a defined period of time to yield a mass of emissions. The 

way in which technology-specific emission factors are applied is more varied depending on 

the emission calculation methodology used. Three tiers of technology-specific emission 

factors can be identified (Table 2.1) (Trozzi et al., 2016). Tier 3 emission factors are true 

technology-specific emission factors. Lower tier emission factors are derived from 

technology-specific emission factors using assumptions about technologies installed within 

a vessel population and vessels’ engine load profiles. Given that lower tier emission factors 

are derived from the state of vessel engine technology at a specific time, their applicability 

will decline as they age and the vessel population is replaced. 
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Table 2.1. Types of technology-specific emission factor (after Trozzi et al., 2016; Whall et 

al., 2007). 

Tier Description 

Tier 1 Assumed or calculated percentage of different engine-types installed 

within a population of vessels and an assumed typical engine loading 

profile are used to determine a general emission factor for each pollutant 

that can be multiplied by the mass of fuel burnt to calculate emissions. 

Tier 2 A vessel population is divided into groups with similar engine 

characteristics. An assumed load profile is used to generate engine-type-

specific emission factors that are derived from assumed engine loading 

profiles for these vessel groups. 

Tier 3 Vessel activity and engine loading are modelled explicitly, which means 

an emission factor that is specific to the engine type and load can be 

used to calculate emissions. 

 

There are differences in the way Tier 3 emission factors are applied. Some guidance 

documents, such as the EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi 

et al., 2016), provide emission factors for different journey-phases, such as at-berth, 

manoeuvring and cruising, with assumed engine loads for each of these trip phases (Trozzi 

et al., 2016). Another approach is to provide a table of correction factors for a broad 

spectrum of engine loads to be applied to a single emission factor for each pollutant (De 

Meyer et al., 2008; Gommers et al., 2007; MARIN, 2012; Smith et al., 2014). 

Methods used for compiling emissions inventories can be broadly categories based on the 

approach used to quantify fuel consumption, whether the approach uses aggregated (top-

down) or vessel-level (bottom-up) data, and the tier of emission factors that can be applied. 

The tier of emission factors that can be applied depends largely upon the method used for 

modelling fuel consumption. The emissions inventory calculation techniques reviewed in 

this chapter are categorised on this basis. 

Due to the increasing uncertainty associated with lower tier emission factors, emissions 

inventory calculation methods that use higher tier emission factors are likely to be more 

accurate. However, the accuracy improvements will only apply to pollutants that use 

technology-specific emission factors and higher tier methods may require data that are 

more difficult and costly to obtain. It is also likely to be more time-consuming to develop 
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the methodologies required to apply higher tier emissions factors. Therefore, the selection 

of method should be determined based on an evaluation of the intended uses of the 

emissions inventory, the pollutants to be included, and the availability of data and 

resources for the delivery of the project. 

 

2.3 Emissions Inventory Methods 

A review of the current body of literature regarding shipping emissions inventory 

calculation has identified six distinct groups of methodologies, and a classification 

terminology has been developed to describe these. The terminology used will be explained 

here to avoid confusion given that there is some inconsistency in the use of terminology 

within the literature on the subject. For the purposes of this review, the terminology will be 

used as outlined in Table 2.2. 

Table 2.2. Terminology used to define emissions inventories. 

Term Meaning 

Top-down Based on aggregate fuel-use or activity data pertaining to an 

entire vessel population or large subgroups of a vessel 

population. 

Bottom-up Based on fuel-use or activity data modelled or sampled for 

individual vessels. 

Fuel-based An emissions inventory that uses either data on fuel sales or 

direct data on fuel consumption as the main input to emissions 

calculation. 

Activity-based An emissions inventory that uses direct activity-data such as the 

number of hours vessels operate and the speed of vessels 

during operation as the major input to fuel use and emissions 

calculation. 

Proxy-activity-based An emissions inventory based on indirect activity data such as 

cargo tonne-kilometres rather than direct vessel activity data. 

Measurement-based An emissions inventory estimated from atmospheric sampling. 

 

2.3.1 Top-down fuel-based methods 
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The earliest studies into the emissions of atmospheric pollutants from shipping activities 

used international statistics on the quantities of fuels sold to determine the total amount of 

fuel consumed by the shipping industry (Benkovitz et al., 1996; Corbett et al., 1999; Olivier 

et al., 1996; Skjølsvik et al., 2000). In more recent studies this method has been used 

alongside activity-based methods as a means of comparison and validation (Buhaug et al., 

2009; Committee on Climate Change, 2011; Smith et al., 2014). 

Theoretically, shipping emissions are calculable from maritime bunker fuel sales statistics, 

which are compiled by organisations such as the International Energy Agency (IEA), Energy 

Information Administration (EIA) and the UNFCCC (Olivier et al., 1996; Skjølsvik et al., 2000; 

Smith et al., 2014). If these figures were reliable, they would be one of the better sources of 

data available for quantifying aggregated emissions of pollutants from international and 

domestic shipping activities (Psaraftis & Kontovas, 2009).  

Unfortunately, these data are suspected to be relatively inaccurate as a result of under-

reporting and misallocation of fuel sales (Corbett & Köhler, 2003; Gilbert & Bows, 2012; 

Schrooten et al., 2008), and inconsistencies in the definition of reporting categories 

(Psaraftis & Kontovas, 2009). For example, the IEA changed their definition of international 

bunkers from including military ships and aeroplanes to excluding them in 2006 (IEA, 2011). 

Fuel consumption by fishing vessels also tends to be reported in an aggregated form with 

other agricultural activities (Endresen et al., 2007), reducing the usefulness of these 

information sources. 

Comparison of international shipping emissions inventories based on fuel-sales statistics 

with activity-based emissions inventories has led researchers to the conclusion that using 

international bunker fuel sales as a primary model input leads to significant 

underestimation of emissions (Buhaug et al., 2009). This is thought to be a result of failure 

to report all sales, misallocation of fuel sales to other sectors, and wrongly allocating 

marine fuel sales for international navigation purposes to domestic navigation (Buhaug et 

al., 2009; Corbett & Köhler, 2003, 2004). This is despite an apparent economic driver for 

companies involved in the sale of both international and domestic bunker fuels to over-

report sales of international fuels, as these sales are not subject to fuel duties (Schrooten et 

al., 2008). 

Even if fuel sales statistics were reliable, their use as the basis for emissions inventories 

presents other challenges. For pollutants for which emissions must be calculated using 
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technology-specific emission factors, only Tier 1 generalised emission factors can be applied 

without the use of additional datasets (Trozzi et al., 2016). Additional information regarding 

the engines installed across the vessel population in question could be used to estimate the 

quantity of fuels used in each type of engine in order that Tier 2 emission factors can be 

used (Corbett et al., 1999; Skjølsvik et al., 2000). Nevertheless, a degree of uncertainty in 

the emissions inventory will arise from the use of lower tier technology-specific emissions 

factors. 

Another difficulty encountered when using a fuel-based methodology is the geographical 

allocation of emissions. There is good evidence to suggest that the location where fuel is 

purchased does not reliably represent where the fuel is used. For example, allocation to 

nations based on fuel sales results in considerable discrepancies with other emissions 

allocation methodologies (Entec, 2005; Gilbert & Bows, 2012; Heitman & Khalilian, 2011). 

For this reason, top-down fuel-based emissions inventories either have to be presented in 

aggregated form (e.g. Endresen et al., 2007), or must use a proxy of vessel activity to 

estimate the geographical distribution of emissions (Corbett et al., 1999; Olivier et al., 1996; 

Skjølsvik et al., 2000).  

Two vessel activity proxies that have been used in various studies are the Automated 

Mutual-Assistance Vessel Rescue System (AMVER) dataset and the Comprehensive Ocean-

Atmosphere Data Set (COADS). The AMVER exists as a safety system to track merchant 

vessels at sea and to automatically notify nearby vessels and emergency services in case of 

disaster. Participation in the system is voluntary. The database includes daily submissions, 

including geographical location and intended course, from merchant vessels at sea. Use of 

the system is generally restricted to merchant vessels of 1000 GT or greater engaged in 

voyages of 24 hours or more (Buhaug et al., 2009; Endresen et al., 2003). The COADS is a 

scientific dataset of meteorological observations maintained by the National Centre for 

Atmospheric Research (NCAR) and National Oceanic and Atmosphere Administration 

(NOAA). The main source of data is the Voluntary Observing Ships (VOS) fleet, which are 

predominantly research vessels (Buhaug et al., 2009; Endresen et al., 2003). 

Relative reporting frequency within pre-defined grid squares is used as a basis to determine 

vessel traffic densities from these datasets (Wang et al., 2008). It has been observed that 

neither dataset gives a particularly accurate representation of world shipping activities. This 

is partially because of the bias towards certain types of vessel in each dataset. There also 

appears to be under-reporting in the AMVER system by vessels engaged in coastal shipping, 
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which is probably as a result of voyages often being under 24 hours in duration and lower 

perceived risk of incidents that would require assistance from vessels other than 

coastguards (Wang et al., 2008). Some studies have favoured the use of one of these 

datasets for various reasons (Buhaug et al., 2009; Endresen et al., 2003, Skjølsvik et al., 

2000) whereas others have concluded that using combination of both datasets yields the 

most reliable results (Dalsøren et al., 2009; Wang et al, 2008). 

 

2.3.2 Bottom-up fuel-based methods 

Another fuel-based method that has been used for producing emissions inventories is to 

sample fuel use within a population of vessels using surveys, and to scale the fuel use 

determined from the sample to represent the wider vessel population. It is debatable as to 

whether this is a fuel-based or activity-based methodology given that activity data are often 

used to scale the emissions to the entire population level. For example, Psaraftis & 

Kontovas (2009) use this approach and refer to it as activity-based. However, for the 

purposes of this review it has been categorised as a bottom-up fuel-based method given 

that the key data input is fuel consumption data, rather than fuel consumption being 

derived from activity data. 

Studies employing this method category usually focus on smaller and more specific vessel 

populations such as fishing vessels (Iribarren et al., 2010; Tyedmers, 2001) and tour boats 

(Byrnes & Warnken, 2009). A notable exception is work by Psaraftis & Kontovas (2009), who 

applied this methodology to calculating emissions from the entire commercial fleet of 

vessels of 100 GT and larger, using Lloyd’s Register data to scale 375 survey responses 

across various vessel type and size categories to produce an estimate of global atmospheric 

pollution emissions. 

Bottom-up fuel-based methods have been the primary approach used for the quantification 

of fuel consumption and atmospheric emissions from fisheries. Various studies have used 

surveys of vessel operators to determine fuel use and catch for various vessels. These 

results are then scaled up using data on total landings to determine total emissions (Curtis 

et al., 2006; Iribarren et al., 2010; Tyedmers, 2001). A similar approach used surveys of fuel 

use and activity time to estimate emissions from Australian tour boats (Byrnes & Warnken, 

2009) and tugs and dredgers (De Meyer et al., 2008). Fuel use surveying has also provided 
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useful data for the estimation of emissions from ships at berth, an area of significant 

uncertainty (Hulskotte & van der Gon, 2010). 

This type of approach has some advantages compared to top-down fuel-based methods. 

Notably, there are no economic drivers for under-reporting or misallocation of fuel use by 

survey participants, meaning that the results are less likely to be biased. These types of 

study also generate useful secondary data for use in future emissions inventory initiatives. 

These approaches do, however, have limitations in terms of applying Tier 3 emission factors 

as data on engine load profiles are not collected. 

Spatial allocation of emissions inventories generated using this type of method requires use 

of proxy data given that specific vessel routes are unlikely to be captured in surveys. 

Exploration of the effects of technological and operational changes will also be limited to 

technologies that are already installed and available for sampling. Operational changes will 

be difficult to model using survey data alone. 

 

2.3.3 Top-down activity-based methods 

Upon the realisation that fuel sales statistics are not necessarily a reliable source of data 

due to errors of reporting and misallocation, a new type of methodology evolved. This used 

data on vessel design characteristics, operating times and engines loads to calculate fuel 

consumption and emissions of atmospheric pollution. General formulae for calculating 

emission of a given pollutant from an engine are given in Equations 2.1 and 2.2 (Trozzi et 

al., 2016). 

𝐸 = 𝐹𝐶 ∗ 𝐸𝐹 = 𝑇 ∗ 𝑃 ∗ 𝐿𝐹 ∗ 𝑆𝐹𝑂𝐶 ∗ 𝐸𝐹     Eq. 2.1 

 

𝐸 = 𝐹𝐶 ∗ 𝐸𝐹 = 𝑇 ∗ 𝑃 ∗ 𝐿𝐹 ∗ 𝐸𝐹       Eq. 2.2 

where: 

𝐸 = emissions (kg), 

𝐹𝐶 = fuel consumption (kg), 

𝐸𝐹 = emission factor (g/kg fuel or g/kWh energy produced), 

𝑇 = time engine is in operation (hr), 

𝑃 = nominal power of engine at 100 % of Maximum Continuous Rating (MCR) (W), 

𝐿𝐹 = load factors, i.e. the percentage of an engine’s nominal power being utilised (% MCR), 
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𝑆𝐹𝑂𝐶 = specific fuel oil consumption, i.e. the rate at which fuel is consumed by an engine 

(g/kWh). 

When using emission factors expressed as emissions per unit of fuel consumed, Equation 

2.1 is used. For emission factors expressed per unit of power produced by the engine, 

Equation 2.2 is used. Formulae similar to these have been used in the vast majority of 

activity-based shipping emissions inventories to compute emissions for both main and 

auxiliary engines for cruising, manoeuvring, loading and unloading, and hotelling activities 

(Buhaug et al., 2009; Corbett & Köhler, 2003; Endresen et al., 2003, 2007; Eyring et al., 

2005; Whall et al., 2002, 2007, 2010). Hotelling is the term used for the running of systems 

and equipment on-board for crew and passenger living while a vessel is docked or at 

anchor. 

Top-down activity-based inventories work at an aggregated fleet level, applying common 

values for T, P, LF and SFOC to groups of vessels of similar type and size (Buhaug et al., 

2009; Corbett & Köhler, 2003; Dalsøren et al., 2009; Endresen et al., 2003). The IHS-Fairplay 

or Lloyd’s Marine Intelligence Unit (LMIU) vessel characteristics databases (previously the 

Lloyd’s Register and Lloyd’s Register-Fairplay database) are used to categorise vessels by 

type, size, age, and engine characteristics.  For each category of vessels, average or total 

engine power (P) is calculated, average or total time at sea (T) is estimated, and average 

engine load factors (LF) are estimated. Standard SFOC and EF values are chosen from the 

various sources available (e.g. Trozzi et al., 2016; Whall et al., 2002) and applied to calculate 

emissions for each category of vessels. 

The differences between the methods are in the way that figures for T and LF are 

determined. Earlier studies determined these data using the expert judgement of people 

such as vessel operators, marine engineers and engine manufacturers to produce 

assumptions (Corbett & Köhler, 2003; Endresen et al., 2003). As might be expected, this led 

to quite varied estimates of fuel consumption and emissions from shipping, resulting in 

debate as to which assumptions were most realistic (Corbett & Köhler, 2004; Endresen et 

al., 2004, 2007). Endresen et al. (2007) attempted to improve on this method by estimating 

the number of days at sea that would be required for ‘average’ cargo vessels of various 

types to meet demand for global cargo transport based on cargo movement data. 

The LMIU provides data on port arrivals of commercial vessels ≥100 GT, which have been 

used by Dalsøren et al. (2009) to estimate the number of days at sea. There is still relatively 
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high uncertainty in this estimate as port visits in the LMIU are recorded by date rather than 

time, meaning that estimating the duration of each trip is subject to significant uncertainty. 

This is especially significant in the case of passenger ferries operating on short crossings, as 

only the first call at a port on any given date will be recorded (Whall et al., 2002). These 

data sources also have the disadvantage of being commercially available products and, 

therefore, have relatively high associated cost to access. 

Ferry timetables have been used by some researchers to more accurately calculated 

emissions from short-crossing ferry services (Baird, 2012; Baird & Pedersen, 203). Whilst 

representing a higher quality source of data for T than pure expert judgement, these 

methods still apply assumptions about LF for vessels during different journey phases. This is 

because arrival and departure data are generally not recorded with high enough temporal 

resolution to reliably calculate vessel speed, from which engine load during journeys can be 

estimated (e.g. using Equation 2.3).  

Other databases on vessel movements are used to determine T in the compilation of 

emissions inventories. Examples of this are information from national customs 

organisations on port callings, which can also include information on international vessels’ 

last and next ports of call (Howitt et al., 2010), and information on port callings held by port 

authorities, which have been used in the calculation of emissions within and around ports 

(Dong et al., 2002; Chang et al., 2013; Song, 2013; Trozzi et al., 1995; Tzannatos, 2010; 

Villalba & Gemechu, 2011). These data sources have the advantage of usually being 

available at no or low cost, but their availability is subject to the willingness of the 

organisation that owns the data to make them available. 

Some top-down activity-based inventories have included emissions from military watercraft 

using various sources of documented fleet statistics and assumptions about vessel activity 

(Corbett & Köhler, 2003; Endresen et al., 2003; Eyring et al., 2005). However, due to the 

absence of reliable vessel activity data sources, military vessels have been excluded from 

the majority of inventories compiled using activity-based methods (Buhaug et al., 2009; 

Paxian et al., 2010; Wang et al., 2007; Whall et al., 2002, 2007, 2010). 

A significant advance in being able to determine more realistic values for T and LF was the 

introduction of the Automatic Identification System (AIS), a safety and anti-collision system 

for ships. The AIS devices that are installed aboard ships automatically broadcast 

information including the ship’s identity, location and speed every few seconds. These 
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broadcasts are received by networks of receiver stations and other vessels (Buhaug et al., 

2009). These data were used in the Second IMO GHG Study 2009 (Buhaug et al., 2009) to 

determine the average annual days at sea and the average speed of journeys between 

ports.  

In the Second IMO GHG Study 2009 (Buhaug et al., 2009), journeys were analysed and 

categorised as either ‘normal’, for journeys with an average speed of over 80% of design 

speed, or ‘slow’, for journeys with an average speed of less than 80% of design speed. 

Design speed data contained in the IHS-Fairplay database were used as the basis for 

comparison. Slow journeys were assumed to be caused by undetected stops into ports 

while the ship is outside of the AIS receiver network range. Therefore, days at sea were 

calculated to be the time a vessel would need to travel the distances travelled at ‘normal’ 

speed. 

The average speed of ‘normal’ journeys in relation to the vessel’s design speed was then 

used to determine the average ‘at sea’ engine load based on the cubic power law. The cubic 

power law approximately relates relative speed to engine load. A sea margin of 10% was 

assumed, meaning that design speed was assumed to be reached at 90% of a vessel main 

engine’s maximum continuous rating (MCR) (Eq. 2.3). The average days at sea and engine 

load for each vessel type and size category were used to calculate emissions (Buhaug et al., 

2009). Note that alternative figures for % MCR at design speed exist in the literature, which 

are generally 80% or lower (Smith et al., 2013; Traut et al., 2013) to 95% (Lindstad et al., 

2011).   

𝐿𝐹 = 0.9 ∗ (
𝑉𝑖

𝑉𝑑
)

3
        Eq. 2.3 

where: 

𝐿𝐹 = load factor, 

𝑉𝑖 = instanteneous speed, 

𝑉𝑑 = design speed. 

 

It is worth noting that the cubic relationship between vessel relative speed and engine load 

is a relatively crude method and more accurate estimates of engine load can be made if the 

necessary information on ship characteristics are available. Molland et al. (2011) provide a 
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more detailed methodology for the calculation of engine load using more detailed vessel 

characteristics data. 

In terms of producing geographically resolved emissions inventories, because emissions are 

calculated at an aggregated fleet level, data either need to be presented as an aggregate 

(Corbett & Köhler, 2003; Endresen et al., 2007), or spatially allocated using proxy data such 

as AMVER and COADS (Buhaug et al., 2009; Dalsøren et al., 2009; Endresen et al., 2003; 

Eyring et al., 2005). The use of AIS data enables the calculation of estimates of the time 

vessels spend engaged in various operations such as cruising, manoeuvring, loading and 

unloading and hotelling. This means that Tier 3 emissions factors can be used. It is also 

possible to assess the effect of technological and operational emissions reduction 

approaches using altered values for T, SFOC, LF and EF for various vessel categories. 

 

2.3.4 Bottom-up activity-based methods 

The current state-of-the-art emissions inventory calculation methods are those that use 

activity and vessel characteristics data for individual vessels to calculate emissions. These 

fall into two main groups. Those that use known port arrival and departure times and 

locations to model shipping activities along hypothetical vessel routes (Corbett et al., 2010; 

De Meyer et al., 2008; Howitt et al., 2010; Paxian et al., 2010; Wang et al., 2007; Whall et 

al., 2002, 2007, 2010); and those that use actual vessel movements data provided by AIS 

(Coello et al., 2015; Jalkanen et al., 2009, 2012, 2014; MARIN, 2012; Olesen et al., 2009; 

Smith et al., 2013, 2014). 

Of the group of methods that use hypothetical routes, a Geographical Information System 

(GIS) model is normally used to process route distances and, based on normal ship service 

speeds, the time spent in transit. The majority of these models identify the viable sea route 

with the shortest distance between two ports, avoiding land masses (Corbett et al., 2010; 

De Meyer et al., 2008; Howitt et al., 2010; Whall et al., 2002, 2007, 2010); one example 

takes the quickest (shortest time) route between two ports avoiding land masses, taking 

into account local speed restrictions, such as when passing through canals, and areas of 

rough sea, which also slow progress (Paxian et al., 2010); another method that has been 

used is to create a network of shipping lanes using AMVER and COADS data as indicators of 

where ships tend to operate, and model emissions based on the shortest routes between 

ports travelling along this pre-constructed network of shipping lanes (Wang et al., 2007). 
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This is advantageous because empirical data are used to define ship routes and avoids the 

issues mentioned in Section 2.3.1 of relying on reporting frequency as a proxy for vessel 

traffic density. 

A common source of data for this type of methodology is LMIU data on port arrivals and 

departures, which is used to determine origin and destination ports, from which days at sea 

per journey (T) are derived. Other databases can be used for this where available, such as 

the Arctic Maritime Shipping Assessment (AMSA) database, which contains detailed data on 

all Arctic shipping activities (Corbett et al., 2010) and information from national customs 

organisations (Fitzgerald et al., 2011). These sources of data have the advantage over the 

LMIU of being free to use if agreements can be reached with the administrating 

organisations for the provision of the data. Ports also commonly gather information about 

visiting vessels, which can also be used to produce bottom-up emissions inventories of port 

shipping activity (Berechman & Tseng, 2012).  

Vessel characteristics from IHS-Fairplay, or its predecessors are used to determine vessel 

design speeds, and assumed engine loads (LF) are applied to calculate emissions (Corbett et 

al., 2010; De Meyer et al., 2008; Paxian et al., 2010; Wang et al., 2007; Whall et al., 2002, 

2005, 2010). Emissions are calculated within a geographical modelling environment, 

meaning that the production of geographically resolved emissions inventories is possible 

without the use of any additional data. As individual journeys undertaken by individual 

ships are the basis of the model, it is possible to apply Tier 3 emission factors, albeit with 

some level of assumption about the time spent engaged in various port activities such as 

manoeuvring, loading and unloading and hotelling. 

Since the availability of high quality AIS datasets, the use of activity data sources LMIU port 

arrivals and departures has largely ceased for the calculation of shipping emissions 

inventories. This is because AIS datasets give far more information about vessel location 

and speed between port visits, thus yielding higher quality results. However, alternative 

sources of vessel activity data are useful for validation of results. For example, noon reports 

containing fuel consumption data were used to validate the AIS-based fuel use and 

emissions calculation methodology used for the Third IMO GHG Study 2014 (Smith et al., 

2014). 

The most advanced emissions calculation methods (Jalkanen et al., 2009, 2012, 2014; Smith 

et al., 2014) make full use of AIS data in the quantification of emissions inventories. 
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Automatic Identification Systems (AIS) messages containing information about vessels’ 

location, speed, identity and activities are broadcast by transponders installed aboard all 

oceangoing vessels over 300 GT and a significant number of small commercial and 

recreational craft that use AIS technology voluntarily. There are two classes of AIS device. 

Class-A devices are more powerful and are reserved for use by vessels for which the use of 

AIS technology is mandatory. For voluntary AIS users there are less expensive but also less 

powerful Class-B devices available (Vesseltracker, 2014), which are aimed at smaller vessels 

such as private recreational and fishing vessels (MMO, 2013). 

The advantages of using AIS data are related to the fact that AIS transponders fitted aboard 

ships transmit a signal once every few seconds and should be in operation 24 hours a day, 

365 days a year. For this reason, times spent in operation and changes in speed can be 

detected at a high temporal resolution, meaning that engine load estimated from dynamic 

vessel speed can be used in calculations rather than applying a journey average cruising 

speed and corresponding engine load. The location of vessels is also recorded with high 

spatial resolution, meaning that empirical data can be used when producing geospatially 

resolved emissions inventories (Coello et al., 2015; Jalkanen et al., 2009, 2012, 2014; 

MARIN, 2012; Olesen et al., 2009; Smith et al, 2014). This means that there is no longer a 

need of auxiliary datasets such as LMIU, AMVER and COADS for the creation of geospatially 

resolved emissions inventories.  Tier 3 emission factors can also be applied given that actual 

speed can be used in dynamic load calculation using formulae similar to Equation 2.3. 

Assumptions are still required to determine specific port activities when stationary, such as 

loading and unloading and hotelling. Whilst still subject to some assumptions, the level of 

uncertainty considerably reduced by using AIS data. 

There are, however, some challenges in using this kind of data. One of the key issues is that 

AIS transponders transmit data very frequently, which results in such large quantities of 

data that processing emissions in such a way as not to involve excessive computation time 

becomes challenging (MARIN, 2012; Olesen et al., 2009; Smith et al., 2014). 

The study conducted by Olesen et al. (2009) to quantify emissions in Danish marine waters 

reduced processing time by sampling just 24 days throughout the year, comprising a week 

day and weekend day of every month, and scaling the results up to a full year. This was 

based on the assumption that the days sampled were representative of normal shipping 

activity. The method used by MARIN (2012) to calculate shipping emissions from the sea 
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area around the Netherlands reduced processing time by sampling activity once every two 

minutes, rather than using the entire data set. 

Jalkanen et al. (2009) developed a methodology and the Ship Traffic Emission Assessment 

Model (STEAM) modelling tool that used the entire AIS dataset with a sophisticated engine 

load calculation approach, incorporating both calm-water and wave resistance for Danish 

shipping activities in 2007. This highlights that the use of powerful computers and efficient 

algorithms can reduce processing times to acceptable levels. 

The STEAM modelling tool was subsequently extended to create STEAM2, which uses a 

more accurate resistance calculation methodology, resulting in more accurate PM and CO 

emissions estimates, and the functionality necessary to model abatement technologies 

(Jalkanen et al., 2012). The STEAM2 modelling tool was used to compute an emissions 

inventory for the period from 2006 to 2009 in the Baltic Sea area (Jalkanen et al., 2014). 

In the Third IMO GHG Study 2014 (Smith et al., 2014), raw AIS data were pre-processed to 

produce hourly average activity data for each vessel involved in the study, thus reducing 

the computational overhead such that the full global emissions inventory can be calculated 

using non-super-computer hardware. The time involved in produced emissions inventories 

even with this rationalisation of input data is reported as considerable (Smith et al., 2014). 

The Third IMO GHG Study 2014, nevertheless, represents the most advanced methodology 

for emissions inventory calculation for waterborne vessels thus far. 

One significant issue associated with the use of AIS data collected by coastal receiver 

stations is that ships must be within range of AIS receiver stations in order for the data they 

transmit to be logged. The messages sent by AIS transponders are sent over VHF radio and 

have a range that is influenced by atmospheric conditions, the curvature of the Earth, and 

the altitude of both the transmitter and receiver. The effective range can be anything 

between about 50 and 100 km (Buhaug et al., 2009; Jalkanen et al., 2009). This means that 

methods are needed to establish realistic vessel activity profiles while vessels travel 

between areas that are within range of AIS receiver stations (Miola & Ciuffo, 2011).  

Since 2010, satellites that specifically receive AIS messages have been in operation, making 

global AIS coverage a reality, which has significantly reduced the amount of time ships 

operate outside of network range (Endresen et al., 2008; Jalkanen et al., 2009; Ross et al., 

2011; Smith et al., 2014). However, data archived by AIS satellites have their own 

associated challenges. One key issue is an increased likelihood that weaker signals 
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broadcast by Class-B AIS transponders are less likely to be received due the signal 

degradation over the considerable distances to AIS satellites and over-crowding by more 

powerful Class-A AIS signals (Taylor-Branco, 2013). Nevertheless, the introduction of 

satellite-AIS (S-AIS) represents a significant improvement in the data available for the 

calculation of shipping emissions inventories. 

For the production of the Third IMO GHG Study 2014 (Smith et al., 2014), both satellite-AIS 

(S-AIS) and AIS data collected by coastal base-stations were used to create the most 

complete global AIS dataset ever utilized for emissions inventory calculation. This allowed 

emissions for the majority of commercial vessels (>100 GT and present in the IHS-Fairplay 

database) to be explicitly modelled from specific hourly activity data. This builds upon 

previous work incorporating satellite AIS data to understand shipping activity and energy 

use (Smith et al., 2013). 

 

2.3.5 Proxy-activity-based methods 

A number of studies use pre-existing or derived data on emissions per unit of an activity 

that is less directly related to vessel operation, such as emissions per tonne-kilometre or 

emissions per kilogram of fish caught. This approach has been used to determine emissions 

from cargo transport (Corbett, 2002; Corbett & Fischbeck, 2000; Georgakaki et al., 2005; 

Schrooten et al., 2009) and fishing (Tyedmers et al., 2005; Whall et al, 2002). 

When used to determine emissions from cargo transport either pre-existing data on 

emissions per tonne-kilometre or tonne-mile of different types of cargo transported are 

used (Corbett, 2002), or vessel characteristics registers such as the IHS-Fairplay database 

are used to create hypothetical ‘average’ cargo vessels for carrying different types of cargo, 

for which emissions or fuel consumption per tonne-kilometre or tonne-mile are calculated 

(Corbett & Fischbeck, 2000; Georgakaki et al., 2005; Schrooten et al., 2009). Data on cargo 

movements and distances between ports are then used to determine the number of tonne-

kilometres or tonne-miles travelled, from which fuel use and emissions are calculated. 

Emissions inventories for fishing vessels using proxy-activity-based methods use pre-

existing data on the amount of fuel used per unit of catch landed. Data on the quantity of 

catch landed from each fishing area are then used to calculate fuel use and emissions 

(Tyedmers et al., 2005; Whall et al, 2002). One advantage of this approach is that the 

activity-data used is usually geographically resolved, such as Food and Agricultural 
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Organisation (FAO) fisheries data on tonnages landed (FAO, 2018), which are presented by 

fishery area (Tyedmers et al., 2005); and Eurostat cargo movements data (Eurostat, 2018), 

which are presented as movements between a specific port and various Marine Coastal 

Areas (Georgakaki et al., 2005; Schrooten et al., 2009).  

The advantage of using these data is that geographically resolved emissions inventories can 

be created using the actual activity data used rather than an auxiliary dataset. However, the 

resolution is limited to the resolution of the input data, and does not fully represent where 

emissions occur as actual vessel routes are not taken into account (Whall et al., 2002). This 

group of methods must also apply Tier 1 or Tier 2 emission factors given that specific load 

profiles can only be assumed. 

 

2.3.6 Measurement-based inventories 

A final category of methods that have been used for estimating the increase in atmospheric 

concentrations of pollutants as a result of shipping has been the use of air quality 

monitoring equipment. Using this category of methods involves measuring atmospheric 

concentrations of pollutants at a range of locations at varying distances from sites of 

shipping emissions such as ports and inland waterways and comparing them to background 

levels using pollution dispersion models. This allows the calculation of the contribution that 

shipping emissions make to overall pollution concentrations (Isakson et al., 2001, van der 

Zee et al., 2012).  

Direct measurement within a priority area such as a port can also be used to determine 

whether air quality exceeds predefined levels such as national legal limits or World Health 

Organisation (WHO) recommended maximum pollutant concentrations (Dong et al., 2002). 

This category of methods tends only to be used in high priority locations such as close to 

ports (Dong et al., 2002; Isakson et al., 2001) and in cities where shipping activities occur in 

close proximity to residential areas (van der Zee et al., 2012). Outdoor air quality guidelines 

are published by the WHO with guidance on the maximum healthy concentrations of PM, 

ozone, NO2 and SO2 (WHO, 2005). 

Other interesting methods that fall within this category employ the use of remote sensing 

equipment to quantify the environmental impact of shipping. So far only limited research 

has been carried out in this area, but it appears that satellite-mounted remote sensing 
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equipment can be used to quantify the emissions of NOX from shipping (Beirle et al., 2004) 

as well as the albedo altering effects of ship wakes (Gatebe et al., 2010).  

Closer range methods such as Differential Optical Absorption Spectroscopy (DOAS) by 

devices mounted on airborne platforms have been pioneered by Berg et al. (2012) and have 

shown some promise in empirically measuring SO2 and NO2 emissions from ships. Beecken 

et al. (2014) have shown that airborne remote sensing measurements can reliably measure 

SO2, NOx and PM concentrations in ship exhaust plumes, which can be used to enforce 

compliance with fuel sulphur regulations. While the results from this experimental setup 

have a relatively high level of uncertainty, it has been used to calibrate the results of 

bottom-up activity-based methods (Jalkanen et al., 2014). 

 

2.4 Emissions from small commercial, inland and recreational watercraft 

Top-down fuel-based methods for the calculation of emissions inventories tend not to deal 

with emissions from small commercial, inland and recreational watercraft specifically. 

Although sales of fuel to these vessels should be included in aggregates, the data are not 

presented in such a way that they can be separated from other sectors (Buhaug et al., 

2009). They are likely to be spread between international and domestic shipping as well as 

other sectors, such as agriculture for fishing vessels (Endresen et al., 2007). Therefore, top-

down fuel-based methods are not suitable for the calculation of separate emissions 

inventories for small commercial watercraft. 

As demonstrated by the various studies that have used bottom-up fuel-based approaches 

(Byrnes & Warnken, 2009; Curtis et al., 2006; De Meyer et al., 2008; Iribarren et al., 2010; 

Tyedmers, 2001), fuel use surveying is a viable method for estimating fuel use and 

emissions from small commercial watercraft. However, data collection is likely to involve 

significant effort each time the emissions inventory is to be calculated. It is also likely that 

survey results will only be obtainable for a proportion of the vessels in the fleet. Because of 

this, the methodology also requires data on the number, type and characteristics of small 

commercial watercraft so that the results of fuel use surveys can be scaled to the entire 

fleet. This will also give rise to additional uncertainty in the emissions inventory. 

There are a handful of studies addressing fishing vessel emissions that use proxy-activity-

based methods, based on average fuel use rates per unit of catch combined with data on 

the quantity of catch landed (Tyedmers et al., 2005; Whall et al, 2002). However, these 
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methods are only applicable for vessels where some form of proxy activity data are 

available. When considering small commercial, inland and recreational vessels, it is unlikely 

that proxy activity data will be readily available for any vessel categories other than fishing.  

Global, regional and national shipping emissions inventories compiled using activity-based 

methods also tend not to include small commercial, inland and recreational vessels. These 

omissions are as a result of the datasets used for the calculation of emissions inventories. 

Notably, the IHS-Fairplay and LMIU databases, which have been used extensively in 

emissions calculation, contain only limited information for vessels other than oceangoing 

commercial vessels of 100 GT and above (Endresen et al., 2007, 2008; Eyring et al., 2010; 

Schrooten et al., 2008). This is likely one of the main reasons that little research has been 

undertaken into the emissions of commercial watercraft under 100 GT, watercraft used 

exclusively on inland waterways and recreational vessels. 

Emissions from small commercial, inland and recreational watercraft have been noted as a 

potentially significant omission from global and regional emissions inventories (Endresen et 

al., 2007, 2008), but little data exists to confirm this. The facts that have led to this 

suspicion are largely related to the number of fishing boats and workboats that are under 

100 GT. It is thought that there are some 1.3 million fishing vessels worldwide, of which the 

majority are under 100 GT, representing approximately half of the global fishing fleet’s 

installed engine power (Endresen et al., 2007, 2008). There are also around 3000 workboats 

and cargo vessels between 25 and 100 GT in size engaged in coastwise shipping around 

Denmark alone (Endresen et al., 2007, 2008).  

Endresen et al. (2007) suggest that approximately 10% of fuel use and emissions associated 

with global shipping activities could be contributed by vessels under 100 GT. Conversely, 

the NTUA (2008) estimated that only 1% of fuel consumption and emissions from global 

shipping activities are caused by vessels less than 400 GT in size. However, this estimate is 

based on Lloyd’s Register data, which is known to not contain the majority of vessels under 

100 GT. This also seems to be at odds with previous findings, which have concluded that 

vessels between 100 and 500 GT in size are responsible for around 8% of global shipping 

emissions (Endresen et al., 2003). These smaller vessels are also likely to have lower quality 

engines than larger vessels, resulting in disproportionately high rates of pollution emissions 

(Endresen et al., 2007). 
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Small commercial and recreational watercraft have either been omitted entirely from 

emission inventories (Buhaug et al., 2009; Corbett & Köhler, 2003; Dalsøren et al., 2009; 

Endresen et al, 2003; Eyring et al., 2005, Wang et al., 2007; Corbett et al., 2010; Smith et al., 

2014), or have been represented by adding an arbitrary amount to total emissions, such as 

a 10% uplift factor applied within 10 miles of coasts (Whall et al., 2007), or a 5% increase in 

emissions calculated using standard activity-based methods (Whall et al., 2010). 

Very few studies have addressed this group of vessels directly. One notable study 

attempted to quantify emissions from vessels operating on the UK’s inland waterways using 

a top-down activity-based method (Walker et al., 2011). However, many assumptions were 

made about vessel numbers, vessel characteristics and vessel activity profiles, so the results 

of this study should be viewed as highly uncertain. The study was also not conducted in 

such a way that commercial vessels under 100 GT could be distinguished from those of 100 

GT and above. There are also a number of studies using bottom-up fuel-based methods 

that target specific types small commercial watercraft (Byrnes & Warnken, 2009; Curtis et 

al., 2006; De Meyer et al., 2008; Iribarren et al., 2010; Tyedmers, 2001) (see Section 2.3.2). 

An AIS-based study that attempts to model emissions from small vessels directly is an 

emissions inventory for the Baltic Sea region produced by Jalkanen et al. (2014). In this 

work, all AIS records that cannot be associated with an IMO registered vessel are assumed 

to be produced by small vessels. These vessels are assigned engine characteristics typical of 

a tugboat and modelled accordingly.  

The approach used by Jalkanen at al. (2014) for modelling the emissions of small 

commercial watercraft has some clear weaknesses. Firstly, given that small vessels are 

solely identified from the AIS data record, the fleet of small vessels modelled is limited to 

those with AIS devices. Many small commercial watercraft do not have AIS devices 

installed, as found in this research (see Chapter 6) and published in Coello et al. (2015). 

Secondly, all small vessels are assigned engine characteristics typical of a tugboat, which is 

likely to result to an overestimate of emissions from the vessels that are modelled due to 

the disproportionately large size of tugboat engines in comparison to other small vessels. 

However, bearing in mind these limitations, the results of the emissions inventory 

produced by Jalkanen et al. (2014) for the Baltic Sea region support for the estimate of 

around 10% of CO2 emissions coming from small vessels made by Endresen et al. (2007). 
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Nevertheless, this work does highlight the potential for using AIS data for the production of 

emissions inventories for small commercial watercraft. To use AIS data effectively for this 

purpose, reasonable quality data are required on the vessel populations being modelled 

and their technical specifications. The installation of AIS devices is also only mandatory for 

ocean-going passenger vessels and other ocean-going vessels over 300 Gross Tonnes (GT). 

This means that only a subset of commercial, inland and recreational vessels use AIS 

devices voluntarily due to the safety benefits that they offer (MMO, 2013). Therefore, when 

using AIS data to produce emissions inventories for these vessels, the AIS data from vessels 

with AIS devices should be treated as a sample of vessel activity and scaled to the entire 

fleet in some way.   

There are two key technical reasons for the absence of small commercial and recreational 

vessels from the majority of emissions inventories. These are 1) the absence of vessel 

databases containing vessel characteristics data for vessels under 100 GT, and 2) a paucity 

of activity data for these vessels. As AIS technology becomes increasingly affordable, a 

greater number of small commercial and recreational watercraft will produce this type of 

data. This is a valuable source of information for the inclusion of small commercial and 

recreational watercraft in shipping emissions inventories (Jalkanen et al., 2014).  

 

2.5 Conclusions 

A variety of methods for the calculation of shipping emissions inventories have been 

identified within the academic, government and industry literature. There is a general trend 

towards the use of activity-based approaches that are thought to be more reliable and also 

enable the geographic allocation of emissions and the use of higher tier technology-specific 

emissions factors. The most recent methods have made full use of AIS data for bottom-up 

activity-based emissions calculation given the advantages it offers for the production of 

high quality, temporally and spatially resolved emissions inventories and the application of 

Tier 3 technology-specific emissions factors. 

Small commercial, inland and recreational watercraft have generally been omitted from 

major shipping emissions inventories due to a lack of vessel specification and activity data. 

This omission could be significant, with some researchers believing that this leaves around 

10% of emissions from the shipping sector unaccounted for. 
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Given that a proportion of small commercial, inland and recreational watercraft use AIS 

devices, the AIS data that they produce can be used as a high quality sample of activity for 

vessels in these fleets. Therefore, an AIS-based approach that uses the AIS data produced 

by vessels with AIS devices as a sample of fleet activity is a potential solution for the lack of 

activity data for these vessels. The remainder of this thesis regards the use of AIS data to 

calculation emissions from small commercial watercraft. An AIS-based methodology that 

uses the available AIS data as a sample of fleet activity is developed and tested for a case 

study fleet of UK fishing vessels. 

3 An AIS-based methodology to calculate emissions from small 

commercial vessels 

The purpose of this chapter is to give a detailed description of the AIS-based emissions 

calculation methodology developed during this project. The methodology enables the 

calculation of emissions for small commercial watercraft using AIS data. Because small 

commercial watercraft fleets do not generally have 100% AIS device uptake, activity data 

are sampled for vessels from the AIS data that are available. Small commercial watercraft 

such as fishing vessels and tugs often perform pushing and pulling activities, so an approach 

for detecting and correcting engine loads when vessels are engaged in these activities is 

proposed. This chapter satisfies objective 2 of this project:  

“To create a robust, repeatable and practical methodology for the calculation of 

atmospheric pollution caused by small commercial watercraft” 

 

3.1 Introduction 

The majority of researchers in the field have concluded that activity-based methods are 

more reliable than fuel-based methods for the calculation of atmospheric emissions from 

shipping activities (Buhaug et al., 2009; Corbett & Köhler, 2003; Endresen et al., 2003; 2007; 

Eyring et al., 2005; Smith et al., 2014). This is largely due to uncertainties associated with 

fuel sales data due to underreporting and misallocation (Buhaug et al., 2009; Corbett & 

Köhler, 2003; Psaraftis & Kontovas, 2009; Schrooten et al., 2008) and issues of data 

completeness in the fuel-sales statistical records (Smith et al., 2014). 
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To produce activity-based emissions inventories, both technical information and activity 

data are required for the vessels that make up the fleet being analysed. The minimum 

technical data required are engine powers, types and fuels used and vessel design speed. 

Generally, the activity data required are the number of hours of engine operation and 

engine loads during operation (Buhaug et al., 2009; Corbett & Köhler, Dalsøren et al., 2007; 

2009; Endresen et al., 2003; 2007; Eyring et al., 2005; Psaraftis & Kontovas, 2009; Smith et 

al., 2014; Whall et al., 2002, 2007, 2010).  

Various sources of activity data are available. However, in recent years a new source of 

high-quality activity data has emerged with the introduction of Automatic Identification 

Systems (AIS). The data produced allows researchers the potential to reconstruct vessel 

activity using high-resolution temporally and spatially resolved vessel movement data 

(Jalkanen et al., 2009, 2012, 2014; MARIN, 2012; Olesen et al., 2009; Perez et al., 2009; 

Smith et al., 2014). 

Given that AIS data contain highly accurate spatial and temporal information, AIS-based 

methods lend themselves to the production of detailed temporally and spatially resolved 

emissions inventories. These are preferable as they can be used as inputs to chemical 

transport models to assess the impacts of shipping upon air quality, human health and the 

environment (Corbett et al., 2007; Dalsøren et al., 2009; Jalkanen et al., 2014; Lauer et al., 

2007; Winebrake et al., 2009). 

Not all vessels transmit AIS data. Automatic Identification Systems (AIS) are a safety system 

that ocean-going passenger vessels and other ocean-going vessels over 300 Gross Tonnes 

(GT) are legally required to install and maintain. However, an increasing number of other 

vessels use AIS devices voluntarily as devices become more affordable (MMO, 2013; 

Jalkanen et al., 2014). Data broadcast by AIS devices include vessels’ location and speed 

every few seconds, as well as additional vessel and trip data every few minutes (ExactEarth, 

2014). AIS data are transmitted using very high frequency (VHF) radio and are received by 

other vessels, coastal receiver stations and an increasing number of satellites. The data 

received by coastal receiver stations and satellites are archived by government bodies such 

as the UK Maritime and Coastguard Agency (MCA) and private organisations such as 

VesselTracker.org and MarineTraffic.com (MarineTraffic.com, 2014; Vesseltracker, 2014; 

MMO, 2013). 
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Archived AIS data can be used to reconstruct vessel activity more accurately than less 

detailed activity data such as port arrivals and departures. Significantly, the use of AIS data 

allows for dynamic, rather than average, speed to be used in load calculation, reducing 

uncertainty. Recent emissions inventories, including the Third IMO GHG Study 2014 (Smith 

et al., 2014), have utilised AIS data due to the superior accuracy and high resolution of 

emissions inventory that it makes possible. However, using AIS data is associated with a 

significant technical effort in creating the software to process it (Jalkanen et al 2009; 2012; 

2014; Smith et al., 2014). 

All of the methods for using AIS data for true vessel-level emissions calculation have relied 

on directly matching each vessel to their activity track (the chronologically ordered AIS data 

generated by the vessel). Jalkanen et al. (2009; 2012; 2014), MARIN (2012) and Perez et al. 

(2009) highlight the difficulties associated with accurately matching vessels to AIS data due 

to data gaps and inconsistencies within the various datasets used. Smith et al. (2014) 

remedied this by associating any vessels for which AIS data were not identifiable to a track 

created by a similar vessel. However, the methodology relies on being able to match vessels 

one-to-one with their AIS data in the majority of cases and having one-to-one matching 

with AIS data of vessels sharing similar characteristics to those that cannot be matched to 

use as a basis for sampling.  

In the case of small commercial vessels, making a direct match becomes increasingly 

difficult because less comprehensive data records are maintained, and the data required to 

make a matching are often absent. Notably, commercial vessels under 100 GT in size are 

generally not IMO registered and, therefore, do not have IMO numbers. This is a key piece 

of data used to match vessels with AIS tracks in other AIS-based shipping emissions 

inventory research. Where very few or no vessels can be directly matched to AIS data, an 

alternative method for sampling activity information from the AIS data is required. 

An additional challenge, acknowledged by De Meyer et al. (2008) is associated with engine 

load calculation for vessels such as tugs, dredgers and trawlers, where, in certain operating 

modes such as towing and pushing operations, the engine load calculation formulae 

typically used in activity-based methods will significantly underestimate engine load due to 

the vessel running at high engine load but travelling at a slow speed. 

This chapter presents an activity-based methodology for producing spatially and temporally 

resolved emissions inventories for small commercial vessels using Automatic Identification 
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Systems (AIS) data. The methodology makes significant contributions in dealing with fleets 

where one-to-one matching of vessels and AIS data is not possible using a sampling 

approach to enable emissions calculation and mapping. A methodology has also been 

developed that enables the assignment of appropriate engine loads for vessels such as tugs, 

dredgers and trawlers when engaged in pushing or towing operations. An early version of 

the methodology was used to produce an emissions inventory for the UK fishing fleet which 

was published as an academic journal paper (Coello et al., 2015). 

The source code for the software developed to implement the methodology described in 

this chapter is provided in the accompanying material provided on the USB key submitted 

with this thesis. The case study datasets are also provided so that the model can be run and 

results can be repeated if desired. 

3.1.1 AIS devices and data 

There are two classes of AIS device. Class-A devices are more powerful and are reserved for 

use by vessels for which the use of AIS technology is mandatory. For voluntary AIS users 

there are less expensive but also less powerful Class-B devices available (Vesseltracker, 

2014), which are aimed at smaller vessels such as private recreational and fishing vessels 

(MMO, 2013). 

The messages broadcast by AIS transponders comprise two types; position reports (e.g. 

Table 3.1) and voyage data. Class-A AIS transponders broadcast position reports every 2 to 

10 seconds while a vessel is moving and every 3 minutes whilst stopped. Additional vessel 

and voyage data are broadcast every 6 minutes (ExactEarth, 2014). Class-B transponders 

transmit the same data but do so less frequently when moving, with messages broadcast 

every 30 seconds (Danish Maritime Authority, 2014). 

Each position report contains the information shown in Table 3.1. Broadcasts are identified 

by a Marine Mobile Service Identity (MMSI) number, which is a unique identifier of a vessel 

for use with marine mobile communications equipment. The Type is one of a list of 132 

identity numbers representing different types of ship, search and rescue aircraft and 

helicopters or navigational aids (e.g. buoys) that broadcast AIS messages. Speed, longitude, 

latitude, course, and heading are automatically calculated by a Global Positioning System 

(GPS) unit and gyro-compass integrated into the AIS transponder. 

The status, an ID number which relates to a vessel activity, e.g. underway (0) or moored (1), 

is manually set by the operator. The timestamp represents the time, in Coordinated 
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Universal Time (UTC), that the AIS message was received by the AIS network operator 

(MMO, 2013). Whilst AIS transponders can transmit data as frequently as once every two 

seconds, the timestamp has been expressed to the nearest minute as the network operator 

considers network latencies to render a higher level of temporal resolution redundant 

(Memos, 2013). 

In addition to these dynamic data, the vessel’s name, IMO Number (if applicable), call sign, 

length, destination and estimated time of arrival (ETA) are reported in separate messages, 

which are sent less frequently and are also identified by MMSI number (ExactEarth, 2014).  

 

 

Table 3.1. AIS data structure and example data. The data within this table is a fabrication, 

intended as an example only. 
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123456789 30 0 3 6.103367 53.45756 323 317 2012-05-14 02:16:00 

234567890 22 1 0 -1.286293 45.60667 276 106 2012-05-14 02:16:00 

345678901 57 5 0 6.045917 53.50425 263 264 2012-05-14 02:17:00 

456789012 44 7 25 4.202433 57.71735 319 308 2012-05-14 02:17:00 

a) Marine Mobile Service Identity 

b) Timestamps in Coordinates Universal Time (UTC), a time-zone independent measure of 

time.  

 

3.2 AIS data analysis 

3.2.1 Materials and methods 

This chapter concerns the development of a methodology and associated software to 

process AIS data to produce atmospheric emissions inventories for the activities of small 

commercial vessel. Fishing vessels make up an important component of the small 

commercial vessel fleet. It was also found that European Commission maintain the 

Community Fleet Register database of fishing vessels, which contains some of the 
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information required as inputs to an activity-base emissions calculation methodology (EC, 

2013a). Importantly, the power of main and auxiliary engines are listed in this register. 

A sample of AIS data was obtained for fishing vessels in the area bounded by latitudes 40˚N 

and 65˚N and longitudes 20˚W and 12˚E between 9th May 2012 and 15th May 2013 via the 

MarineTraffic.com researcher network. The combination of these datasets and data 

available in the published literature was sufficient to enable the calculation of an emissions 

inventory for the UK fishing fleet over the period of a year. Therefore, UK fishing fleet was 

taken as the case study fleet of small commercial vessels for the development of this 

methodology. 

The AIS data provided by MarineTraffic.com comprised a total of 55,465,377 rows of AIS 

position messages associated with 5187 unique MMSI numbers. One can assume that each 

of these MMSI numbers represented a unique vessel. Each row of data represents a 

timestamped geographic position and speed. Each of these will be referred to as an ‘AIS 

data point’. 

Analysis of the AIS data was performed and AIS technologies were considered to identify 

potential data quality issues that would need to be addressed during the development of a 

robust approach for processing AIS data to produce emissions inventories. Frequency 

counts of the data values associated with each AIS data point were calculated. Status IDs 

were analysed to determine whether they could be used to reliably determine a vessel’s 

activity, such as being underway or at anchor. Speed was analysed to gauge how realistic 

the speed values in the AIS data were. Time intervals between chronologically consecutive 

AIS data points associated with each individual MMSI number were analysed by sorting 

data in ascending order of timestamp and calculating the difference in timestamp between 

adjacent AIS data points. The results of these analyses are presented below. 

 

3.2.2 Results of AIS data analysis 

Analysis of the time intervals between chronologically consecutive AIS points showed 

51.26% of intervals to be less than 5 minutes long. A further 43.31% of were 5 to 30 

minutes long and 3.75% were 30 to 60 minutes long (Figure 3.1). The remaining 1.68% of 

time intervals was made up of times of 1 hour or more (Figure 3.2). 
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Figure 3.1. Frequency distribution of time intervals between chronologically 

consecutive data points in the AIS data used in model development, intervals from 

0 to 60 minutes. 

 

 

Figure 3.2. Frequency distribution of time intervals between chronologically consecutive 

data points in the AIS data used in model development, intervals from 1 hour upwards. 
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A significant proportion (26.26%) of AIS data points recorded a speed of 0 knots. Speeds 

between 0.1 and 14.9 knots were reported by a further 73.52% of AIS data points (Figure 

3). Just 0.21% of AIS data points recording values of 15.0 knots or more with 0.06% of data 

points showing a speed of 102.1 knots, the maximum AIS speed value (Figure 4). 

 

Figure 3.3. Frequency distribution of speeds reported in the AIS data used in model 

development. Speeds from 0 to 14.9 knots. 

 

 

26.26%

3
.2

1
%

3
.2

3
%

3
.1

1
%

3
.9

6
%

5
.2

2
% 8
.2

7
%

7
.2

2
%

4
.9

4
%

3
.9

1
%

1
.9

6
%

1
.3

8
%

1
.3

6
%

1
.6

3
%

1
.8

7
%

2
.3

0
%

2
.7

4
%

2
.9

9
%

%

3
.0

0
%

2
.8

0
%

2
.2

8
% 5
.2

1
%

0
.9

3
%

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0

0.
1

-0
.4

0.
5

-0
.9

1.
0

-1
.4

1.
5

-1
.9

2.
0

-2
.4

2.
5

-2
.9

3.
0

-3
.4

3.
5

-3
.9

4.
0

-4
.4

4.
5

-4
.9

5.
0

-5
.4

5.
5

-5
.9

6.
0

-6
.4

6.
5

-6
.9

7.
0

-7
.4

7.
5

-7
.9

8.
0

-8
.4

8.
5

-8
.9

9.
0

-9
.4

9.
5

-9
.9

10
.0

-1
2

.4

12
.5

-1
4

.9

A
IS

 D
at

a 
P

o
in

ts

Speed (knots)

0.10%

0
.0

3
%

0
.0

2
%

0
.0

0
%

0
.0

6
%

0

10000

20000

30000

40000

50000

60000

70000

15
.0

-1
7

.4

17
.5

-1
9

.9

20
.0

-2
9

.9

30
.0

-9
9

.9

10
2.

1

A
IS

 D
at

a 
P

o
in

ts

Speed (knots)



  

41 
 

Figure 3.4. Frequency distribution of speeds reported in the AIS data 

used in model development. Speeds from 15.0 to 102.1 knots. 

Analysis of AIS status showed that 31.0% of AIS data points were reported as ‘engaged in 

fishing’, 23.7% as ‘underway’, 22.1% had the default value set and 16.2% had values that 

are not currently supposed to be in use. Only 4.2% had statuses of ‘at anchor’ or ‘moored’. 

 

3.2.3 Discussion of AIS data analysis and AIS data quality issues 

Analysis of data and consideration of AIS technologies highlighted a number of potential 

data quality issues that must be considered when working with AIS data (Table 3.2). Failure 

to properly account for these could lead to significant errors in the resulting emissions 

inventories. 

Table 3.2. Data quality issues associated with AIS data. 

Issue Cause Impact 

Large time intervals 

between archived AIS data 

points belonging to a track 

• AIS transponder malfunction 

• Vessels operating outside of AIS 

network range 

• AIS base-station malfunction or 

overloading 

• Operators switching off AIS devices 

or cutting power supply 

Uncertainty of 

vessel’s actual 

speed 

Unrealistically high speeds 

recorded in AIS data 

• Malfunction of GPS device 

integrated with AIS transponder 

• Multiple vessels using the same 

MMSI number 

More than one AIS data 

point for a given MMSI 

number sharing a single 

timestamp 

• Some AIS network operators round 

timestamps to the nearest minute 

Uncertainty of 

route taken 

between points 

Inaccurate status data • These are user input and, therefore, 

are prone to human error, 

negligence and deceit. 

 

Uncertainty of 

vessel identity, 

characteristics 

and route 

Inaccurate static data such 

as name, IMO number, call 

sign, length, destination 
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and estimated time of 

arrival 

 

The availability of AIS data provides much more information than was previously available 

to researchers to reconstruct shipping activity profiles. However, each AIS data point only 

provides an instantaneous snapshot. A vessel’s activities between archived AIS data points 

are unknown and must be inferred from the data available. Therefore, where the AIS data 

points are infrequent or irregular, the level of uncertainty in the inferred activity profile 

increases. 

A small but not insignificant number of long time intervals were found in the AIS data, some 

of 24 hours or more (Figure 3.2). Because of their length these will make up a 

disproportionately large proportion of an AIS track’s total duration. Large time intervals 

between AIS data points are problematic when using AIS data in emissions modelling if the 

distance and time interval between points are used to calculate speed. The likelihood that a 

ship travelled the shortest distance (a great circle arc) between two points decreases as the 

time interval increases. Speed calculated in this way is, therefore, uncertain and likely to be 

an underestimate. If interpolating or averaging the speeds recorded in AIS messages, the 

likelihood that the speeds of two AIS data points are representative of the speed between 

them reduces as the time interval increases. 

There are several causes of large time-intervals in a continuous AIS data record. AIS data 

are only archived when they are received by AIS base-stations (Buhaug et al., 2009; MMO, 

2013). Base-stations are shore-, buoy- or satellite-mounted and have a range that is 

determined by signal disruption and signal strength. For terrestrial base-stations the range 

is around 90 km (Jalkanen et al., 2009). Disruption is caused by the curvature of the Earth, 

adverse atmospheric conditions and other physical obstructions (Buhaug et al., 2009; 

MMO, 2013). Signal strength varies with the power of AIS transponder used and degrades 

with distance from the source. Due to these factors, AIS messages broadcast by vessels 

operating far from base-stations are unlikely to be received and archived. This effect is 

compounded when vessels are fitted with Class-B AIS transponders that broadcast a weaker 

signal (Taylor-Branco, 2013). 

The significance of the errors caused by large time intervals depends on the type of 

journey. Figure 3.5 helps to visualise the errors caused by vessels operating outside of AIS 



  

43 
 

network coverage.  Journey A is entirely within AIS network range and is unlikely to have 

significant data-gaps. Journey B leaves and re-enters AIS network coverage; however, 

calculating an average speed for the direct route between the points of exit and re-entry 

would result in a reasonable estimate of vessel speed with only minor errors. Journey C, 

however, is an example where leaving network coverage would lead to a significant 

underestimate of the distance travelled and, therefore, speed and emissions. 

 

Figure 3.5. Creating track segment groups of a minimum specified length from AIS 

data. Example of a minimum track segment group duration of 20 minutes. 

 

AIS transponders or receivers may malfunction, or base-stations may become overcrowded 

with AIS messages due to heavy marine traffic. In these situations, the AIS messages with 

stronger signal strength are more likely to be recorded, meaning that messages from more 

distant vessels and vessels fitted with less powerful Class-B AIS transponders are less likely 

to be archived (Taylor-Branco, 2013).  

It was also found that multiple AIS data points in a single track can share the same 

timestamp and, therefore, have a time interval of zero (Figure 3.1). MarineTraffic.com, the 

AIS data supplier, explained that this was because timestamps are recorded to the nearest 

minute. This is due to network latencies that renders the use of more accurate timestamps 

meaningless (Memos, 2013). If using time intervals between AIS data points to calculate 

speed, this needs to be addressed as dividing by zero will result in errors. For other time 

intervals the uncertainty associated with the speed should be addressed. 
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There are also issues with using AIS data for certain types of vessel. For certain fleets, such 

as small commercial and recreational vessels, AIS transponders are not mandatory and 

therefore only a proportion of these fleets have AIS transponders fitted. This means that 

one-to-one matching of vessels to the AIS data they produce is not sufficient to calculate an 

emissions inventory for the entire fleet. The AIS data that is available can, however, be used 

as a sample of fleet activity in order to estimate atmospheric pollution emissions. In order 

to do this, appropriate sampling methods must be developed. 

Activity-based emissions models rely heavily on estimates of engine load from vessel speed. 

A small proportion of the AIS data had unrealistically high speeds. The reasons for this are 

unknown but could be the result of errors produced by the GPS units integrated with AIS 

transponders. Using these speeds in engine load calculation will cause errors. 

Certain types of vessels such as tugs, dredgers, trawlers and icebreakers engage in pushing 

and towing operations where the use of speed to calculate engine load is not viable. For 

fishing activities, there is a corresponding AIS status type which could theoretically be used 

to indicate that an alternative engine load calculation method should be used if accurate. 

However, an unrealistically high proportion of the AIS data was found to be flagged as 

‘engaged in fishing’ and many data points had the default or undefined status values. This is 

probably the result of AIS device users failing to update AIS status. What defines a vessel as 

being engaged in fishing is also debatable as the operator could legitimately regard moving 

to, from and between fisheries as being engaged in fishing. Given these uncertainties and 

the apparently poor quality of the AIS status information, a decision was made not to use 

status type in emissions calculation. 

A final consideration is that AIS and other activity data are useful as a source of information 

about vessels movements and can be used to model main engine load. Information about 

the vessel’s operations and trip phase can also be estimated, which allows selection of 

appropriate auxiliary engine loads. When a vessel is stopped, however, assumptions must 

be made about their main and auxiliary engine operation as the activity data cannot 

indicate anything beyond the fact that the vessel is stationary. 

 

3.3 AIS-based emissions computation methodology 

A new methodology and software tool has been created to enable the calculation of 

emissions to the atmosphere caused by small commercial watercraft. The methodology 
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builds upon previous bottom-up activity-based approaches that make use of AIS data with 

some adaptations that were necessary to suit the specific challenges of modelling small 

commercial vessels. The software developed addresses a number of AIS data quality issues 

that are expected to occur to varying degrees for any AIS dataset (Section 3.2.3). In addition 

to this, a new activity sampling technique is presented that allows calculation of emissions 

for vessels that cannot be directly matched to AIS data provided that a reasonable sample 

of AIS data is available for some vessels within the fleet. 

The software was developed in the Java programming language. Java was chosen as the 

language for the project because it is fast, mature, actively developed and supported, well 

tested, freely available, has a large user community and many open source and freely 

available libraries and developer tools. It is a strongly typed, compiled language that 

encourages good object orientated software development practices and makes debugging 

and testing of large applications easier for the developer than some other popular 

programming languages such as Python. It also has good support for multithreaded 

computation, meaning that it could be used to create software that could perform the 

calculations rapidly enough for many model runs to be carried out. Java is also designed for 

portability, and can be run on any commonly used operating system and hardware. 

At the core of the methodology is an adaptation of the Tier 3 emissions calculation 

methodology from the EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi 

et al., 2016), described in Equations 3.1 and 3.2. The original methodology uses an estimate 

of the total time spent in different trip phases (p). Emissions are calculated for each trip 

phase and summed to give trip emissions. In the adapted version of the formula presented 

in this thesis (Eq. 3.3), emissions are calculated for the activity between each 

chronologically consecutive pair of AIS data points, with engine load estimated from speed. 

Fuel consumption rates (SFC) and emission factors (EF) from Trozzi et al. (2016) are selected 

based on engine type and trip phase. Emissions calculation is carried out using engine 

powers, types and fuels from a vessel characteristics database. The vessel characteristics 

database that serves as one of the key inputs to the modelling software requires data that 

should be readily available in any pre-existing vessel characteristics databases. Where a 

vessel’s engine and fuel type is unknown, numerous engine and fuel type combinations can 

be assigned with accompanying probabilities for use in emissions calculation (Eq. 3.4). 
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𝐸𝑇𝑟𝑖𝑝,𝑖,𝑗,𝑚 =  ∑ [𝑇𝑝 ∑ (𝑃𝑒 ∗ 𝐿𝐹𝑒 ∗ 𝐸𝐹𝑒,𝑖,𝑗,𝑚,𝑝)𝑒 ]𝑝      Eq. 3.1 

𝐸𝑇𝑟𝑖𝑝,𝑖,𝑗,𝑚 =  ∑ [𝑇𝑝 ∑ (𝑃𝑒 ∗ 𝐿𝐹𝑒 ∗ 𝑆𝐹𝐶𝑒,𝑗,𝑚,𝑝 ∗ 𝐸𝐹𝑒,𝑖,𝑗,𝑚,𝑝)𝑒 ]𝑝    Eq. 3.2 

where: 

𝐸𝑇𝑟𝑖𝑝 = emission of a pollutant over a complete trip (kg), 

𝐸𝐹 = emission factor (kg/tonne or g/kWh), e.g. from Trozzi et al. (2016), 

𝐿𝐹 = engine load factor (%), 

𝑃 = engine nominal power (kW), 

𝑆𝐹𝐶 = specific fuel consumption rate (g/kWh), 

𝑇 = time (hours), 

𝑒 = engine category (main, auxiliary), 

𝑖 = pollutant (CO2, NOX, SO2, NMVOC, CO, PM), 

𝑗 = engine type (slow-, medium-, and high-speed diesel, gas turbine and steam turbine), 

𝑚 = fuel type (bunker fuel oil, marine diesel oil/marine gas oil, gasoline), 

𝑝 = the different phase of trip (cruising, hotelling, manoeuvring). 

   

𝐸𝑒,𝑖,𝑗,𝑚 = ∑ 𝑇𝑡𝑠 ∑ (𝑃𝑒 ∗ 𝐿𝐹𝑒 ∗ 𝑆𝐹𝑂𝐶𝑒,𝑗,𝑚,𝑝 ∗ 𝐸𝐹𝑒,𝑖,𝑗,𝑚,𝑝)𝑒𝑡𝑠     Eq. 3.3 

where: 

𝑡𝑠 = track segment. 

𝐸𝑒,𝑖,𝑗,𝑚 = ∑ 𝑇𝑡𝑠 ∑ ∑ 𝐶𝑗,𝑚 ∗ (𝑃𝑒 ∗ 𝐿𝐹𝑒 ∗ 𝑆𝐹𝑂𝐶𝑒,𝑗,𝑚,𝑝 ∗ 𝐸𝐹𝑒,𝑖,𝑗,𝑚,𝑝)𝑗,𝑚𝑒𝑡𝑠    Eq. 3.4  

where: 

𝐶 = the probability that a given combination of engine type (𝑗) and fuel (𝑚) are used. 

 

3.3.1 Data requirements 
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Five datasets are required for the emissions calculation as well as three additional settings 

files. The main datasets are AIS data, vessel characteristics data, emissions factors, port 

locations and an additional vessel database containing information about each vessel in the 

AIS dataset (compiled from voyage data AIS messages, see Section 3.1.1). The settings files 

are AIS ship type profiles, vessel type profiles and engine load override rules. These contain 

settings used during data processing and emissions calculation. 

The MMSI number is used for matching vessels to AIS data. Ideally, AIS data for the entire 

fleet for which an emissions inventory is to be calculated would be used during emissions 

calculation and directly matched to vessel characteristics using MMSI number. However, if 

AIS data are only available for a sample of vessels due to lack of access, cost, or because 

some of the vessels in question do not have AIS devices installed, emissions can be 

calculated using the available AIS data as a sample of vessel activity. 

In order for AIS data to be used as a sample without producing significant errors, the AIS 

data sampling approach must be carefully considered. This is briefly addressed in Section 

3.3.2 below and given a detailed treatment in Chapter 4. Of course, activity sampling is 

inherently less accurate than directly matching vessels to their specific AIS tracks. 

Therefore, it is important that the uncertainty of the emissions inventory produced is 

calculated and that an attempt is made to quantify the impact of activity sampling. This is 

addressed in Chapter 5. 

The vessel characteristics data required includes the power of main and auxiliary engines, 

and, ideally, the engine and fuel types used. If engine and fuel type data are unavailable for 

a vessel, fleet level statistics, such those in the EMEP/EEA air pollutant emission inventory 

guidebook 2016 (Trozzi et al., 2016) (Table 3.3), can be used as probabilities that a vessel 

uses certain engine and fuel types. It is worth noting that bunker fuel oil (BFO) is a fuel used 

exclusively by larger vessels with large engines, while marine diesel oil (MDO) and marine 

gas oil (MGO) are used in all sizes of vessels. This explains why the majority of fishing 

vessels use MDO/MGO. 

Table 3.3. Percentage of installed main engine power by engine type/fuel class 

(2010 fishing fleet) (after Trozzi et al., 2016). 

SSD 
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/MGO 

SSD 
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MSD 

MDO 

/MGO 

MSD 

BFO 

HSD 
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/MGO 

HSD 

BFO 

GT 

MDO 

/MGO 

GT 

BFO 

ST 

MDO 

/MGO 

ST 

BFO 
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0.00 0.00 84.42 3.82 11.76 0.00 0.00 0.00 0.00 0.00 

SSD – Slow Speed Diesel, MSD – Medium Speed Diesel, HSD – High Speed Diesel, GT – Gas 

Turbine, ST – Steam Turbine, MDO – Marine Diesel Oil, MGO – Marine Gas Oil, BFO – 

Bunker Fuel Oil 

 

Other vessel characteristics such as MMSI number, International Maritime Organisation 

(IMO) number, Gross Tonnage (GT), length and design speed should be included where 

possible. Vessel characteristics such as GT and length, as well as engine characteristics and 

vessel type profiles can be used to categorise vessels during emissions aggregation. 

Any number of engine load override rules can be associated with a vessel type profile. 

Engine load override rules are introduced to correct engine load estimates for special types 

of vessel operation such as trawling, dredging, towing and pushing, for which the normal 

moving engine load calculation formula outlined in Section 3.3.3 does not produce a 

realistic estimate of engine load. An engine load override rule is a speed range for which a 

special engine load should be applied. A minimum and maximum duration of activities 

within the specified speed range can also be set to refine the identification of special 

operating conditions. For example, an engine load override rule for a fishing trawler may 

state that if a vessel is operating between 2.5 and 3.2 knots for at least two hours, apply an 

engine load of 75% (i.e. assume the vessel is trawling) (Table 3.4).  

The engine load override rules used for the case study fleet of UK fishing vessels are listed 

in Table 3.4. Engine load override rules for fishing vessels using trawling and dredging gear 

were kindly recommended by Seafish, the industry body representing the UK seafood 

industry, through email correspondence with the author (Montgomerie, 2013). 

A database of port location data was used to identify when vessels stop or operate in the 

area of ports. The port database contains port name, latitude, longitude and country. This 

database was compiled by overlaying the stops detected in the AIS data record onto aerial 

and satellite imagery from GoogleEarthTM and visually inspecting the groupings near shore 

to identify ports. This approach was useful as it identified all ports of relevance for the 

particular AIS dataset used. It also enabled the detection of many small ports that did not 

feature on any publicly available lists of ports found. The port dataset created for this 

research is available in the CaseStudyData directory of the accompanying electronic 

material. 
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Table 3.4. Engine load override rules developed with information provided by Seafish (after 

Montgomerie, 2013). 

Trawler type Rule Engine load 

to apply 

Trawler (<224 kW)  Classify as trawling if operating at 2.0-2.8 knots for 

at least 2 hours whilst not in port 

75% 

Trawler (224-597 

kW) 

Classify as trawling if operating at 2.5-3.2 knots for 

at least 2 hours whilst not in port 

75% 

Trawler (≥597 kW) Classify as trawling if operating at 3.5-4.2 knots for 

at least 2 hours whilst not in port 

75% 

Dredger (<224 kW) Classify as dredging if operating at 2.0-2.8 knots for 

at least 20 minutes whilst not in port 

75% 

Dredger (224-597 

kW) 

Classify as dredging if operating at 2.5-3.2 knots for 

at least 20 minutes whilst not in port 

75% 

Dredger (≥597 kW) Classify as dredging if operating at 3.5-4.2 knots for 

at least 20 minutes whilst not in port 

75% 

 

With a port database such as this, it is possible to identify when AIS tracks visit ports by 

analysing the proximity of stops to port locations. The country of ports visited is used to 

identify when vessels stop at different countries. This data could be used to allocate 

emissions to different countries when dealing with international shipping activities. For 

example, the emissions generated on a journey could be allocated entirely to the origin or 

destination country, or shared between the two. However, given that the case study fleet is 

a fishing fleet, which is considered a domestic activity, all emissions were allocated to the 

UK. The country of visited ports can also be used to identify the AIS tracks that are 

associated with a country. This is discussed in more detail in Chapter 4.  

 

3.3.2 AIS track sampling 
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MarineTraffic.com (2013), the AIS data provider for this project, maintain a publicly 

available website through which some basic vessel information broadcast in static AIS data 

messages are accessible. These data are searchable by MMSI number include vessel names. 

Initially, an attempt was made to match AIS tracks with the vessels in the vessel 

characteristics database using these names. However, it was found that only a very small 

proportion of vessels could be confidently matched by name and so the approach was 

abandoned. 

As AIS data include a ship type, sampling AIS data generated by vessels of an appropriate 

type is straightforward. The static AIS data also include vessel length. Initially it was 

considered that vessel length, taken as an indicator of vessel size, could correlate with 

vessel activity and, therefore would be useful in activity sampling. However, further 

investigation, presented in Section 4.4 found that length was not a good predictor of vessel 

activity. Further information can be determined from summary statistics produced during 

AIS pre-processing that can be used to further refine the sample selected. 

The AIS data can be analysed to show stops at ports and, on this basis, AIS tracks can be 

related to countries. Using this information, it is possible to filter for AIS tracks that are 

related to a specific countries. This is investigated thoroughly in Section 4.5. In addition, the 

number of AIS data points, percentage of a track that is in a state of error and the overall 

duration of the track (time between first and last AIS data points) can also be used to filter 

tracks during sampling. 

For each model run, the number of AIS tracks to sample for each vessel is specified. The 

sampling approach developed first filters for AIS tracks with the appropriate vessel type and 

a minimum percentage of stops at the country or countries included in the study. The 

returned tracks are then filtered to leave only tracks with a specified maximum percentage 

of error and a minimum duration. If more than the required number of tracks is found, the 

desired number of tracks is randomly selected. A thorough investigation into track sampling 

is presented in Chapter 4. 

 

3.3.3 Calculating moving engine load 

In the IMO Second GHG Study 2009, engine load is calculated as the cube of a vessel’s 

instantaneous speed (𝑉𝑖) relative to its design speed (𝑉𝑑), assuming a vessel’s design speed 
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is reached at 90% of an engine’s maximum continuous rating (MCR) (Eq. 2.3) (Buhaug et al., 

2009). 

This method of load calculation is relatively reliable for high engine loads, but does not give 

an adequate estimation of low engine loads as an engine that is running will consume fuel 

even if the vessel is stationary due to a baseline idling engine load. An approach that 

incorporates this is used by MARIN (2012) (Eq. 3.5), scaling engine load between a 

minimum value and 100%. MARIN (2012) suggest an idling engine load of 10%, yet propose 

a formula that does not allow engine loads below 16.7% (0.2/1.2). Equation 3.5 also works 

on the assumption that 100% engine load will be reached at design speed, which is contrary 

to the method proposed by Buhaug et al. (2009) and later used in Smith et al. (2014).  

What is needed is an engine load calculation formula that approximates engine load from 

vessel relative speed and correctly scales between a minimum (idling) engine load and a 

maximum engine load when the vessel reaches design speed (1 – sea margin). Equation 3.6 

was devised for use in this research to meet these requirements. Engine load is scaled 

between a specified minimum and maximum load using relative speed to approximate 

engine load using an cubic power relationship. Trozzi et al. (2016) suggest a main engine 

load of 20% while vessels are hotelling with their main engines running. This could also be 

applied as an idling engine load. A 10% sea margin is used in Buhaug et al. (2009), resulting 

in a maximum engine load of 90% at design speed. On this basis, 𝐿𝑚𝑖𝑛 could be set to 20% 

and 𝐿𝑚𝑎𝑥 could be set to 10%. An investigation of the sensitivity of model outputs to 

changes in the parameters of the engine load calculation formula is undertaken in Chapter 

5, the results of which are available in Section 5.4.1. Figure 3.6 is included to help visualize 

the differences between the three formulae for approximating engine load from vessel 

relative speed. 

Given that the cubic power law for relating engine load to vessel speed is only a rough 

approximation, engine load may be calculated more accurately through prediction of 

required power at a particular speed in calm water and in waves, provided that sufficient 

vessel parameters are known (Dedes, 2013). With sufficient data on vessel parameters and 

waves, the methodology presented in this thesis could be adapted to use an engine load 

calculation methodology such as this with a resulting reduction in error and uncertainty of 

results. 
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         Eq. 3.5 
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𝑉𝑖
𝑉𝑑

)
3

+(
𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
)

1+(
𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
)

)      Eq. 3.6 

where: 

𝐿𝐹 = Load factor, 

𝑉𝑖 = Instantaneous speed of vessel (km h-1), 

𝑉𝑑 = Design speed of vessel (km h-1), 

𝐿𝑚𝑖𝑛 = Minimum engine load while main engine in operation, 

𝐿𝑚𝑎𝑥 = Maximum engine load while main engine in operation. 
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Figure 3.6. A comparison of three engine load approximation formulae. IMO 2009 (Eq. 2.3), 

MARIN (Eq. 3.5) and the formula used in this research (COELLO) (Eq. 3.6). 

 

 

3.3.4 Process overview 

The processing of AIS data and emissions calculation is carried out in three major phases. 

These phases are outlined in Figure 3.7. During phase 1, the AIS data points associated with 

each distinct MMSI number are grouped and chronologically ordered to produce an ‘AIS 

track’. The great circle arcs, called ‘track segments’, that connect chronologically 

consecutive AIS data points within tracks are created and their distance, duration and 

speed are calculated. Indicators of poor data quality are identified and classified as errors. 

Potentially applicable engine load override rules are identified based on track segments or 

groups of track segments that meet the speed and duration criteria. Port visits are 

identified when stops are registered in the proximity of ports within the port location 

database and the track segments between port visits are grouped into journeys. Phase 1 is 

described in detail in Section 3.3.5. 

Phase 2 involves matching vessel characteristics data to AIS activity data to calculate main 

and auxiliary engine running times and load factors. If the vessel’s MMSI number is known 

and AIS data for that MMSI number are available, the vessel’s specific AIS track can be 

used. Otherwise, a group of AIS tracks are sampled to represent the vessel’s activity. Based 

on settings in the vessel type profile for each vessel, main and auxiliary engine loads are 

calculated from vessel speed when vessels are moving. When stopped, main and auxiliary 

engine running times and load factors are calculated based on assumptions. Any engine 

load override rules associated with the vessel type profile are applied to applicable sections 

of each AIS track. Mean main and auxiliary engine loads for in-port and not-in-port track 

segments are applied to track segments with errors. Phase 2 is described in Section 3.3.6. 

In Phase 3, the main and auxiliary engine running times and load factors generated during 

the previous phase are used to calculate fuel use and atmospheric emissions. Appropriate 

emission factors are selected for each vessel’s main and auxiliary engine and fuel type. 

Emissions are calculated using the main and auxiliary engine loads and duration of each 

track segment along with vessel characteristics data and emission factors. Emissions are 

allocated to time windows as well as being added to any emissions maps specified. Where a 
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sample of multiple AIS tracks is used to represent vessel activity, the mean fuel use and 

emissions within each time window are calculated. Vessel emissions data can then be 

aggregated for groups of vessels and specific time ranges. Phase 3 is described in detail in 

Section 3.3.7. To help explain the emissions calculation procedure, a narrative example is 

given of calculating emissions for a fictional vessel in Section 3.3.8. 
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Figure 3.7. AIS data processing and emissions calculation methodology overview. 
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3.3.5 Phase 1: Processing AIS data to tracks 

The raw AIS data are pre-processed. The nearest port to each AIS data point is identified by 

using the Haversine formula (Eq. 3.7) to calculate the great circle distance to each port in 

the port database (available in the CaseStudyData directory of the accompanying electronic 

material) and selecting the closest. Each AIS data point is also assigned to a geographic grid 

square, which represents an area on the globe, defined in decimal degrees to a user-

specified resolution. For example, grid squares of 0.01° x 0.01° may be defined, thus 

dividing the globe into 6.48x108
 grid squares. 

For each unique MMSI number, all of the AIS data points identified with that MMSI number 

are grouped and sorted into chronological order to form a timeseries of vessel activity data 

referred to as an AIS track. Occasionally, multiple AIS data points within an AIS track share 

the same timestamp (see Figure 3.1, time interval of zero). This can occur because some AIS 

data providers represent AIS timestamps to the nearest minute and AIS devices can send 

multiple position messages per minute. One such AIS provider is MarineTraffic.com 

(MarineTraffic.com, 2013), the provider of the AIS data used during the development of this 

methodology. In this situation, an attempt must be made to sort the AIS data points into a 

sensible order. If not, the distance travelled by the vessel could be overestimated. Figure 

3.8 illustrates this issue and the importance of sensibly ordering points sharing the same 

timestamp. 

A reasonable assumption is that the vessel would have taken the shortest route connecting 

all of the data points sharing the same timestamp with the points immediately before and 

after them. Therefore, a routing algorithm that seeks the shortest path through the points 

is employed. There are N! possible routes that visit each point exactly once in a set of N 

points. The number of possible routes becomes extremely large as N increases. For 

example, with 5 points, there are 120 possible routes, with 8 points there are 40,320. 
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Figure 3.8. The importance of correct AIS data point ordering where multiple AIS 

data points in an AIS track share the same timestamp. 

 

This is a form of a classic computer science problem referred to as the Traveling-Salesman 

Problem, for which no algorithm is knowns other than the brute-force approach of trying all 

possible routes that is guaranteed to find the shortest route (Cormen at al., 2011). It is 

known as one of the NP-complete problems in computer science. Since trying all possible 

routes becomes computationally intractable as N grows to even a relatively small number 

of points, numerous heuristic algorithms exist that find solutions that are generally close to 

optimal and can be computed efficiently even for large numbers of points. Perhaps the 

simplest and most computationally efficient is the nearest neighbour algorithm (Lin & 

Kernighan, 1973). This algorithm takes a random starting point and generates a route by 

iteratively travelling to the nearest of the remaining unvisited points until all points have 

been visited. This approach has been found to generate good, albeit not necessarily 

optimal, routes very efficiently. 
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The algorithm implemented to sort AIS data points sharing the same timestamp on an AIS 

track was almost identical to the nearest neighbour algorithm with the exception of having 

a fixed start and end point in the adjacent timestamps (as shown in Figure 3.8). Given the 

uncertainty surrounding the actual route taken and the low proportion of AIS data points 

sharing the same timestamp within AIS tracks (see Figure 3.1, time interval of zero), this 

quick approach was selected over a more complex and computationally expensive 

algorithm such as the algorithm presented by Christofides and Eilon (1972) that may, in 

some cases, generate a shorter route. 

Once the data are sorted, track segments joining consecutive pairs of AIS data points are 

created and the distance, duration and speed of each are calculated. The length, in metres, 

of each track segment is calculated using the Haversine Formula (Sinnott, 1984), 

reproduced in Equation 3.7. The Haversine Formula calculates a close approximation of the 

distance between two points, described by their latitude and longitude, on the Earth’s 

surface using spherical geometry.  

𝑎 = sin2 (
Δφ

2
) + cos φ1 ∗ cos φ2 ∗ sin2 (

Δλ

2
)      Eq. 3.7 

𝑐 = 2 ∗ atan2(√𝑎, √1 − 𝑎)   

𝑑 = 𝑅 ∗ 𝑐 

Where: 

φ = latitude 

λ = longitude 

𝑑 = is the great circle distance in metres between points φ1, λ1 and φ2, λ2  

𝑅 = Earth’s radius in metres (mean radius = 6,371,000 m) 

 

The speed of a track segment is calculated in two ways. The first uses the speed recorded in 

the AIS data. The average of the speeds of the two AIS data points describing the track 

segment is used. This is similar to the method used by Jalkanen et al. (2009; 2012), where a 

speed for each second of a track is calculated by interpolation between the speeds of the 

AIS data points. The second uses the great circle distance, calculated using the Haversine 
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formula, and duration of the track segment to calculate speed. This method was used by 

Olesen et al. (2009). The way in which these different speed calculation methods are used is 

discussed later in this section. The speed calculation methods are also compared (see 

Section 3.3.9 for method and Section 3.4.1 for results). 

Where the timestamps of the two AIS data points are different, the duration is calculated as 

the difference between the timestamps. Where AIS data points share the same timestamp, 

a minor adjustment to the timestamps is made to reflect the assumed time intervals 

between all AIS data points sharing the same timestamp.  

The interval is calculated using I =
Dmax

n
, where I is the assumed time interval between the 

AIS data points, Dmax is the maximum possible time difference between AIS data points 

sharing the same timestamp. For the data used during model development, Dmax is a 

minute and n is the number of AIS data points that share the timestamp. The altered 

timestamps are used during track segment creation and emissions calculation. 

The fact that timestamps are rounded to the nearest minute potentially creates errors in 

the duration of track segments and, therefore, also in the track segment speed calculated 

from distance and duration (Table 3.5). In the data used during model development, 

timestamps are rounded to the nearest minute. Therefore, the duration of any track 

segment has a maximum uncertainty of ±1 minute (±30 seconds for the AIS points at either 

end). 

The impact of the uncertainty decreases as the duration of track segments increases. 

Therefore, one way of decreasing uncertainty is to collect track segments into groups with a 

duration that limits uncertainty to an acceptable level and calculate an average speed for 

the group. The minimum duration of track segment groups is user-definable in the software 

produced and a default value of 20 minutes was used. Track segments are added to a track 

segment group until the minimum duration has been reached and a speed is calculated 

from the aggregate distances and durations (e.g. Figure 3.9).  
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Table 3.5. Effect of timestamp uncertainty on calculated track segment speed, assuming a 

track segment distance of 1 nautical mile. 

Recorded 

duration 

(mins) 

Min possible 

duration 

(mins) 

Max possible 

duration 

(mins) 

Speed 

(knots) 

Minimum 

possible 

speed (knots) 

Maximum 

possible speed 

(knots) 

2 1 3 30.00 20.00 (-33.3%) 60.00 (+100.0%) 

5 4 6 12.00 10.00 (-16.7%) 15.00 (+25.0%) 

10 9 11 6.00 5.45 (-9.1%) 6.67 (+11.1%) 

15 14 16 4.00 3.75(-6.3%) 4.29 (+7.1%) 

20 19 21 3.00 2.86 (-4.8%) 3.16 (+5.3%) 

25 24 26 2.40 2.31 (-3.8%) 2.50 (+4.2%) 

30 29 31 2.00 1.94 (-3.2%) 2.07 (+3.4%) 

60 59 61 1.00 0.98 (-1.6%) 1.02 (+1.7%) 

 

 

 

 

Figure 3.9. Creating track segment groups of a minimum specified length from AIS data. 

Example of a track segment group with minimum duration of 20 minutes. 

 

In addition to calculating track segment distance, duration and speed, track segments are 

also categorised based on their proximity to ports within the ports database and whether 

the track segment is deemed to be moving or not. The maximum distance from a port’s 

coordinates to consider as a port area is user-definable, and all track segments are 

classified based on whether the start and end points are within a port area. The minimum 

speed to be considered moving is also configurable. This is used to classify track segments 

as either moving or stopped (Table 3.6). 

0 20

  

40 60 80 10

0 

120 140 160 180 

Time (minutes) 

Track segment groups 

AIS data points Track segments 



  

61 
 

When using speed calculated from distance and duration, it is recommended that the 

minimum moving speed is chosen with care to avoid incorrectly calculating fuel use and 

emissions for minor movements generated by GPS noised and drifting of vessels whilst 

moored or at anchor. When using speed calculated from the speeds in the AIS data, zero 

can be taken as not moving as AIS speeds have a resolution of 0.1 knots and so vessels in 

port and at anchor would not be expected to register speeds other than zero.  

Table 3.6. Track segment classification based on proximity to ports and whether the vessel 

was moving for the track segment. 

Start AIS data 

point 

End AIS data point Moving? Track segment classification 

In port In same port No Stopped in port 

In port In same port Yes Moving in port 

In port In different port - Moving between ports 

In port Not in port - Leaving port 

Not in port In port - Entering port 

Not in port Not in port No Stopped not in port 

Not in port Not in port Yes Moving not in port 

 

Chronologically consecutive track segments that are classified as being stopped are 

grouped into ‘stops’, for which an average location is calculated. The duration of the stop is 

also calculated, which is significant when applying assumptions about main and auxiliary 

engine activity during stops (Section 3.3.6). If a stop is within a port area, the port ID is 

assigned to the stop, allowing stops to be associated with countries. 

After all track segments have been created, tracks are analysed for applicable engine load 

override rules and maximum speeds for each track are calculated. The maximum speed is 

calculated so that it can be used as a proxy for design speed during engine load calculation, 

in the absence of vessel design speed data for the vessels that created each of the AIS 

tracks.  

It was found that the absolute maximum speed of a track was often unrealistically high (e.g. 

> 100 km h-1). The reasons for this were unknown, but it was considered to be erroneous 

data, probably caused by technical malfunctions. Calculating a maximum speed that is 

registered for a minimum cumulative duration, e.g. 20 minuts, was considered a reasonable 
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way to address this issue. This approach allows the empirical data to be used to identify 

maximum speeds, but also avoids setting the maximum speeds to unrealistically high values 

registered only very briefly. 

In order to do this, track segments were bucketed into speed groups with a specified 

resolution (e.g. 0.1 km h-1) and the total duration of track segment in each group was 

calculated. Using these groups, the maximum speed that is registered for a specified 

minimum cumulative duration can be calculated by sorting the speed groups into 

descending speed order and then iteratively accumulating the durations. Once the 

cumulative duration reaches the specified minimum value, the most recently added speed 

group is taken as the maximum speed that is registered for the minimum cumulative 

duration. The vessel design speed, taken either from the vessel database, or derived from 

the AIS data, and the track segment instantaneous speed is used to calculate a relative 

speed for each track segment (
𝑉𝑖

𝑉𝑑
). 

Finally, the activities of vessels between visits to ports in the port database are processed 

as journeys with origin and destination ports. This could be used to allocate emissions 

between the countries of departure and arrival. However, emissions allocation was outside 

of the scope of this project given that the case study data were for a domestic fishing fleet. 

 

3.3.6 Phase 2: Calculating engine load 

Emissions are calculated for each vessel in the vessel characteristics database. This is done 

by matching each vessel to one or a sample of AIS data tracks depending on whether the 

vessel can be directly matched to a single AIS data track using an MMSI number. For a brief 

overview of sampling methods used when one-to-one matching of a vessel to AIS activity 

data is not possible, see Section 3.3.2. For an in-depth treatment of sampling, see Chapter 

4. 

One of the key variables in emissions calculation is the relative speed (
𝑉𝑖

𝑉𝑑
) of a vessel at any 

given time. This is used to calculate engine load factors (LF). Because two different methods 

are used to calculate speed, each track segment has a range of possible values for speed 

and, in turn, relative speed. For this reason, there are different modes that can be used 

during emissions calculation. There is a mode using each of the speed calculation methods, 

and there is a third combined method that makes use of both. The different speed 
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calculation methods are compared later in this chapter. The methodology for comparison is 

described in Section 3.3.8 and results are presented in Section 3.4.1. Various different 

speed calculation methods are also trialled in Chapter 5 to determine the sensitivity of 

model results to the speed calculation method used (see Section 5.4.1 for results). 

Vessels cannot travel less than the shortest possible distance between two consecutive AIS 

data points, although they may travel further. The shortest distance between two points on 

the surface of a globe is called the great circle distance. This is the distance that is 

calculated by using the Haversine formula (Eq. 3.7). Given that the duration of each track 

segment is known, the speed calculated from the great circle distance should be considered 

a minimum possible speed for the vessel between any two consecutive AIS data points. 

The speeds recorded in AIS data are only an instantaneous ‘snap-shot’ of a vessel’s speed. 

Therefore, the actual average speed travelled between two AIS data points is quite likely to 

differ from the average of the two AIS data point speeds, especially for track segments with 

a relatively long duration. Nevertheless, if the mean of the speeds recorded in two 

consecutive AIS data points is higher than the speed calculated from the great circle 

distance, this may suggest that the vessel travelled a longer route between the AIS data 

points and was moving at a higher speed.  

To utilise the information that both speed methods provide, a new combined method has 

been introduced as part of this project where the higher of the two speeds associated with 

each track segment is chosen and engine load is calculated from the associated speed 

relative to maximum. A comparison of these different speed calculation approaches is 

shown in Section 3.4.1. 

The AIS data track or sample of tracks provide the track segment duration (T) and the 

engine load factor (LF) used in emissions calculation (Eq. 3.4). Some of the data quality 

issues identified and discussed in Section 3.2.3 can lead to significant errors in the speed 

calculated for track segments, which also has a significant impact on the LF calculated. 

Therefore, it is necessary to identify and attempt to correct any errors in the data to avoid 

potentially significant errors in the emissions inventory produced. 

The two types of error that this methodology addresses directly are errors to do with track 

segments that have an unusually long duration (indicative of network coverage issues, as 

depicted in Figure 3.5) or an unrealistically high speed. Track segments with an unusually 

long duration can be caused by vessels operating outside of receiver network range, 
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equipment malfunction and receiver station overload. Track segments with an 

unrealistically high speed could be caused by equipment malfunction. These errors are 

identified by analysing each track segment and comparing the duration and speed to 

maximum values set in the model’s configuration files. Track segments are then flagged as 

containing duration errors, speed errors, or both. 

The engine loads of all track segments without errors are calculated. For all track segments 

for which the vessel is moving, the load factor of the main engine is calculated from vessel 

speed, as described in Section 3.3.3. When stopped, however, assumptions must be used to 

estimate the load factor of the main engine. For each vessel type profile, an engine load 

factor is specified for when the vessel is hotelling with the main engine running. The 

proportion of a stop that the main engine is assumed to be running is also specified. 

Minimum and maximum main engine running times can also be set to more realistically 

model particularly brief or prolonged stops where using a proportion of the time would be 

unrealistic. For example, if the AIS data showed a vessel to have stopped for 2 minutes, it is 

realistic to assume that the main engine was running throughout the duration of the stop. 

For longer stops, where it is reasonable to assume that the main engine was turned off 

during the stop, the time that the engine is modelled as running is split equally between the 

start and end of the stop. A stop is often made up of multiple track segments. For each 

track segment within a stop, the proportion of its duration that the main engine is assumed 

to be running is calculated based on the cumulative time since the start and before the end 

of the stop. Where the main engine is modelled as running for a proportion of the duration 

of a track segment, the engine hotelling load factor specified in the vessel type profile is 

multiplied by this proportion to give an appropriate average engine load for each track 

segment. The same method is used for calculating auxiliary engine loads and running times 

while stopped, with specific load factors and running time settings for the auxiliary engine 

also being specified in the vessel type profile. 

AIS data provides relatively little information that can be used to determine auxiliary engine 

loads while a vessel is moving. There are, however, recommendations set out in the 

EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi et al., 2016) for different 

engine load factors to apply for auxiliary engines during cruising, manoeuvring and hotelling 

operations. These are 30%, 50% and 40% respectively (except tankers, where a hotelling 

load factor of 60% is suggested). To reflect this, engine load factors can be specified for 
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auxiliary engines during manoeuvring and cruising, as well as hotelling, in each vessel type 

profile.  

In order to apply these engine loads, a moving vessel must be classified as either 

manoeuvring or cruising. This is done on the basis of the load factor calculated for the main 

engine for each track segment. A maximum manoeuvring load factor is specified for the 

main engine in each vessel type profile. When the vessel is moving with a main engine load 

below this limit, the vessel is considered to be manoeuvring. Otherwise, the vessel is 

considered to be cruising. On the basis of this classification, an auxiliary engine load is 

applied to each track segment.  

In the EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi et al., 2016) it is 

suggested that 20% is a typical main engine load factor for vessels while manoeuvring. 

Given that this is a typical manoeuvring engine load, a slightly higher value should be taken 

as the maximum. Based on this, a maximum manoeuvring main engine load factor of 30% 

was selected for the case study fleet and applied to all vessel type profiles. The sole purpose 

of this limit is for the classification of movement as either manoeuvring or cruising so that 

an appropriate auxiliary engine load factor can be selected. 

After this initial pass of engine load calculation is completed, each track segment without 

errors has an engine load for both the main and auxiliary engines. However, a second pass 

is required to handle errors and apply any engine load override rules associated with the 

vessel’s vessel type profile. 

To apply engine load override rules, groups of track segments that meet the conditions for 

any engine load override rules associated with the vessel are identified. Engine load 

override rules have both a speed and duration range. Therefore, if a track segment or series 

of consecutive track segments is identified that is within the speed range, the duration that 

the vessel was travelling within the speed range is calculated. IIf the duration criteria for 

the particular engine load override rule are met, the engine load factor of the track segment 

or group of track segments is set to the value specified in the engine load override rule. 

For track segments with errors, an average engine load is applied that is calculated from the 

track segments in the same track that do not have errors. Track segments are grouped 

based on whether the vessel is in port or not. According to the categories in Table 3.6, track 

segments that are ‘stopped in port’ and ‘moving in port’ are considered ‘in port’ track 

segments. All other track segments are considered to be ‘not in port’. Average engine loads 
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are calculated for both of these groups of track segments using only the track segments 

that do not have errors. These averages are then applied to the track segments of the same 

type that have errors. 

 

3.3.7 Phase 3: Emissions calculation 

Once engine loads have been calculated, the AIS track or tracks being used to calculate 

emissions for a given vessel are split into a series of time windows for emissions calculation. 

Using time windows makes it simpler to average emissions, because the emissions 

produced by simulating the vessel travelling along multiple AIS tracks within a single time 

window can be summed. The duration of these time windows is user-definable. In this 

project a time window duration of 1 hour was used. Where a track segment spans multiple 

time window, it is split between the time windows proportionally, based on the duration of 

the track segment within each time window. 

Emissions are then calculated for both main and auxiliary engines using the duration of 

each track segment or partial track segment within each time window (𝑇); the engine load 

factor (𝐿𝐹) for the specific engine; the nominal power (𝑃) of the specific engine from the 

vessel characteristics database; and any sets of emission factors (𝐸𝐹) associated with the 

engine multiplied by their probability (𝐶) (Eq. 3.4). When there is uncertainty over the 

specific engine used, multiple engines can be associated with each vessel, along with their 

probability. The set of probabilities associated with engines must always sum to 1.0. Where 

the specific type of engine used by the vessel is known, this engine is given a probability (𝐶) 

of 1.0. 

Specific fuel oil consumption rates and emission factors are selected from a database of 

emissions factors based on the EMEP/EEA air pollutant emission inventory guidebook 2016 

(Trozzi et al., 2016). Specific emission factors are applied based on the engine and fuel type 

of main and auxiliary engines, vessel age and the operating mode of the track segment for 

which emissions are being calculated. When a sample of AIS tracks is used, the average 

emissions within each time window are calculated and used as the emissions for the vessel 

during that time window. 

If any emissions maps have been defined, the emissions calculated for each track segment 

or partial track segment are also allocated proportionally to any grid squares intersected by 

the track segment. This results in a map of the total quantity of each pollutant emitted in 
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each grid square. It should be noted that emissions maps will have inaccuracies when using 

sampling to associate vessels with AIS data as emissions will only be allocated to grid 

squares intersected by the tracks in the AIS data. Given that all vessels are modelled as 

travelling along these tracks, the emissions maps produced will overestimate emissions in 

the grid squares intersected by these tracks and may underestimate emissions elsewhere. 

However, the maps produced can still serve as an indication of the overall pattern of vessel 

activities and their atmospheric emissions. 

 

3.3.8 An example vessel 

In this section, a simple fictional example will be given to help elucidate the fuel 

consumption and emissions calculation process described in the previous sections. A single 

vessel will be the subject of this example. Since the emissions calculation methodology was 

developed for a case study fleet of UK fishing vessels, the fictional subject of this example 

will be a fishing trawler. Let’s imagine that we want to calculate fuel consumption and 

emissions for this vessel for one year.  

Some vessel characteristic data are available for this trawler, such as main and auxiliary 

engine power and it’s age. The vessel has a main engine power of 350 kW. We also know 

that it belongs to the UK fishing fleet. However, the vessel’s design speed, an important 

piece of information required for fuel consumption and emissions calculation is not known. 

For the sake of simplifying the example, let us imagine that the vessel has a Class-B AIS 

device installed and that the vessel’s MMSI number is known. 

In this example, the operator of a terrestrial AIS receiver network has offered to provide AIS 

data for the calculation of fuel consumption and emissions for the vessel. Since the vessel’s 

MMSI number is known, the AIS position messages indexed by that specific MMSI number 

can be identified and retrieved by the AIS data provider for the year in question.  

These AIS data points (in excess of 30,000 individual messages), when sorted 

chronologically, produce an AIS track that describes the trawler’s activities for the year in 

question. Imagine this AIS track is processed as described in Phase 1 (Section 3.3.5), 

creating track segments between each consecutive pair of AIS data points. Each of these 

track segments has a distance, duration and speed. However, because the vessel’s design 

speed is unknown, a proxy is required in order that the relative speed of each track 
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segment can be calculated. It is the relative speed that is required in order to calculate 

engine load (Section 3.3.3), which in turn is used to calculate emissions (Eq. 3.3).  

It seems reasonable to assume that the vessel will travel at its design speed for at least 

some time during the year. It also seems reasonable to assume that it will rarely, if ever, 

exceed its design speed. Therefore, the maximum speed that the vessel travels over the 

course of the year is considered a reasonable proxy for design speed. The AIS track is 

scanned to find the maximum speed. However, the result is a speed of 102.1 knots, which 

doesn’t seem realistic. This is probably indicative of an error in the data. Therefore, the 

maximum speed that the vessel travelled at (or above) for at least 20 minutes is taken 

instead. This yields a more reasonable value of 12.0 knots. This is used as a proxy for design 

speed to calculate the relative speed for each track segment. 

From the speeds of the track segments we can also determine when and where the vessel 

stopped (speeds approaching 0.0 knots). From the location of these stops, it is also possible 

to determine when the vessel stopped in the proximity of ports. On this basis, the AIS track 

spanning the entire year can be split into a series of journeys, punctuated by port visits. The 

remained of this example will consider just one of these journeys. 

The vessel has been stopped for several days. From its location, it appears to have been 

stopped in a port. Then, the vessel begins to move and this movement is registered by the 

AIS device onboard and broadcast in AIS messages. We deduce that the vessel’s main and 

auxiliary engines must have been running for some time before the vessel started moving. 

This is calculated as described in Section 3.3.6 and the track segments that make up the 

stop are adjusted to reflect this assumption with appropriate main and auxiliary engine 

loads. The AIS data shows the vessel moving slowly (<50% of its design speed of 12.0 knots) 

for a few minutes. The main engine load is calculated as between 20 and 30%. This is 

classified as the vessel manoeuvring out of port as it begins its journey and an appropriate 

auxiliary engine load is assigned. 

The AIS data then shows the vessel picking up speed to travel at 70-100% of its design 

speed for approximately two hours. This is classified as cruising, allowing an auxiliary engine 

load to be selected and applied. The vessel then slows and stops for 10 minutes before 

setting off again at between 2.8 and 3.0 knots, continuing for approximately 3 hours, and 

then stops for 30 minutes. This 3 hours of slow movement is identified as trawling based on 

the engine load override rule criteria for the vessel (see Table 3.4), and an engine load of 
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75% is applied. The stops either side of the trawling are also short enough that the main 

engines are modelled as running for the duration of each stop. 

The AIS data then shows the vessel starting to move again at approaching its design speed 

for a few minutes before a gap in the AIS data of 5 hours. The speed calculated using great 

circle distance for the 5 hour track segment between consecutive AIS data points is just 0.8 

knots, but the speed at either end is around 10 knots. The duration of this track segment 

indicates that the vessel travelled outside of AIS network range, so the track segment is 

classified as containing errors. Once back in range, the AIS data then shows the vessel 

returning to the same port that it left several hours before, slowly manoeuvring into port 

and then stopping. Again, the main and auxiliary engines are modelled as running for some 

time after the vessel has stopped and appropriate engine loads are applied. 

A series of similar journeys are observed throughout the year. Engine loads are calculated 

for main and auxiliary engines for all of the track segments on these journeys and the stops 

that separate them, with the exception of track segments with errors, like the 5 hour track 

segment observed in the journey described above. In order to apply a reasonable engine 

load to these track segments with errors, the mean main and auxiliary engine loads are 

calculated for all track segments when the vessel was in port as well as all track segments 

when the vessel was not in port. These mean engine loads are then applied to track 

segments where errors have been identified on the basis of whether the error track 

segments happen within or outside of the proximity of ports. 

The track segments, now all with main and auxiliary engine loads assigned, are used along 

with the technical information known about the vessel as inputs to the emissions 

calculation formula (Eq. 3.3). The main and auxiliary engines of the vessel are both High-

speed Diesel (HSD) engines that run on Marine Diesel Oil (MDO). Along with the vessel’s 

age, this information is used to select appropriate emission factors for all types of activity 

(cruising, manoeuvring and hotelling) for both main and auxiliary engines. These emission 

factors are assigned a probability of 1.0, given that there is no uncertainty about the engine 

and fuel types in use. The emissions associated with each track segment are calculated 

using the appropriate set of emission factors depending on whether the vessel was cruising, 

manoeuvring or hotelling during that track segment.  
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The track segments are then aggregated and, when necessary, split into time windows of an 

hour in length. These emissions are stored for the vessel and can later be analysed further 

such as by aggregating them with other vessels’ emissions within specific time periods. 

 

3.3.9 Comparison of speed calculation methods 

As described in Section 3.3.4, two speed calculation approaches were used to produce two 

separate values of speed and relative speed for each track segment. The concept of a 

combined speed value was also introduced, which is the higher of these two speeds (see 

Section 3.3.5).  The speed method used affects both the instantaneous speed assigned to 

each track segment and the derived design speed values (see Section 3.3.4). Both of these 

are important inputs to the engine load calculation formula. Therefore, the speed 

calculation method used will have a significant effect on results.  

By way of a simple comparison of the different methods, summary statistics were 

calculated for the entire AIS dataset containing the speeds and relative speeds (speed as a 

ratio of design speed) of all track segments. The same metrics were also calculated for just 

track segments classified as moving. The average percentage of track segments classified as 

moving and the average maximum speeds registered on tracks were also calculated. These 

statistics were calculated for the three different speed methodologies introduced in Section 

3.3.4. Tracks with fewer than 1000 AIS data points were excluded on the grounds that they 

were considered to be unrepresentative of a vessel’s annual activity. Only track segments 

without errors were included in the averages calculated. The results of this analysis are 

presented in Section 3.4. 

 

3.4 Speed calculation method comparison and error handling results 

3.4.1 Speed calculation method comparison results 

Of the AIS tracks grouped by the 5,188 unique MMSI numbers in the AIS dataset, 3,960 had 

at least 1,000 AIS data points. The metrics calculated show that the AIS-based speed 

method records more movement than the Haversine distance-based speed calculation 

method (Table 3.7). However, the Haversine speed method produced higher average 

speeds whilst moving as well as considerably higher maximum speeds. The combination of 

lower maximum speed, used as a proxy for design speed, and a higher proportion of time 
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spent moving meant the AIS speed method generated a higher mean relative speed. The 

combined method, where the higher of the Haversine and AIS speeds is used, produces a 

higher mean speed. However, due to higher maximum speed, the mean relative speed that 

it produces is between those of the Haversine and AIS methods. 

 

Table 3.7. Summary activity statistics for the different Haversine, AIS and combined speed 

calculation methods applied to all tracks with at least 1000 AIS data points. 

 AIS Haversine  

(distance / time) 

Combined 

Moving (%) 43% 36% 44% 

Mean speed (knots) 1.71 1.62 1.81 

Mean speed whilst 

moving (knots) 
3.95 4.49 4.13 

Mean track max 

speed (knots) 
13.62 18.48 20.18 

Mean relative speed 

(knots/knots) 
0.132 0.085 0.091 

Mean moving 

relative speed 

(knots 

 

/knots) 

0.305 0.234 0.208 

 

3.4.2 Error handling 

To give an indication of how error handling works, it is convenient to refer to emissions 

maps produced by the emissions modelling software. Maps that include track segments 

found to be in a state of error give a good indication of where erroneous data are being 

used in emissions calculation. Figure 3.10 shows a significant number of track segments 

that appear to cross land masses. However, the same map containing only track segments 

found not to have errors displays no track segments crossing land masses (Figure 3.11). 
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Figure 3.10. CO2 emissions from the UK fishing fleet May 2012-May 2013 mapped in 0.2ᵒ 

x 0.2ᵒ grid-squares including track segments defined as having errors. 
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Figure 3.11. CO2 emissions from the UK fishing fleet May 2012-May 2013 mapped in 

0.2ᵒ x 0.2ᵒ grid-squares excluding emissions between AIS points with a time interval of 

greater than one hour or an average speed in excess of 100 km h-1. 
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3.5 Discussion 

The methods and software introduced in this chapter offer a new activity sampling 

approach designed to overcome the challenge of using AIS data to model emissions of 

vessels that cannot be directly matched to AIS activity data either due to a lack of 

information required for matching or because AIS data for a particular vessel are 

unavailable. This approach is predominantly meant to facilitate the use of AIS data for 

modelling emissions from small commercial watercraft. The focus on error handling offers 

advantages over previous approaches that do not tackle errors so well (Jalkanen et al., 

2009; 2012; Olesen at el., 2009; MARIN, 2012). Similar error handling methods have 

subsequently been used in The IMO Third GHG Study (Smith et al., 2014). 

One of the key ways that errors are detected is through the identification of track segments 

with a duration exceeding a defined maximum value. Setting a maximum value is 

somewhat subjective. However, creation and inspection of AIS track statistics, e.g. Figures 

3.3 and 3.4, can help in selecting a reasonable value. From the analysis performed on the 

data used in this study, a value of 30 or 60 minutes seems reasonable. However, this may 

differ for other types of vessel and AIS datasets. 

An example of this is shown in Figures 3.10 and 3.11, where track segments with duration 

above 60 minutes have been classified as erroneous. It is clear from Figure 3.10 that using 

the shortest distance travelled without error detection and handling leads to the creation 

of track segments that apparently travel over land, which is clearly wrong. Calculating 

speed and engine load for these tracks would be expected to result in erroneous results 

either due to an underestimation of distance travelled or because the time interval is too 

great for AIS speeds to be taken as a reasonable indication of the entire track segment’s 

speed. Figure 3.11 shows the same map but with track segments over 60 minutes in 

duration treated as errors and removed from mapping. These segments would be assigned 

an average engine load calculated from the rest of the track. This gives a much more 

realistic map, which suggests that the use of these track segments to calculate speed and 

engine load is likely to give better quality results. 

The approach also offers a means to compare the effect of using different speed calculation 

methods. This is a subject deserving investigation given that previous studies, e.g. Jalkanen 

et al. (2009; 2012) and Olesen at el. (2009) have used different speed calculation methods 

without justifying the use of one over another. 
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Comparison of the two speed calculation methods shows that, there are significant 

differences between the speeds contained in the AIS data and the speeds calculated using 

the distance and time interval between consecutive AIS data points. Speeds calculated from 

the values contained in the AIS data tend to be lower than those calculated using track 

segment distance and duration. If using a common value for design speed with both speed 

calculation approaches, emissions results calculated from AIS speeds (e.g. Jalkanen et al., 

2009, 2012) are likely to be slightly lower than results calculated from speeds deduced from 

track segment distance and duration (e.g. Olesen et al., 2009). 

However, if using a maximum speed calculated from the data as a proxy for design speed, 

the results for relative speed tell a different story. This is because relative speed is 

calculated by dividing track segment speed by design speed. Design speeds were not known 

for the case study fleet so the maximum speed maintained for a minimum cumulative 

duration of 20 minutes is used as a proxy for design speed. In this case, the AIS speed 

calculation method produces a lower maximum speeds and, therefore, significantly higher 

relative speeds than either of the other methods. 

Overall, the relative sizes of the emissions results calculated are likely to be similar to the 

mean relative speeds calculated for the three speed calculation methods. Based on this 

assumption, the Haversine speed method is likely to produce the lowest fuel use and 

emissions estimate, the hybrid method slightly higher and the AIS speed method is likely to 

produce the largest values for results. 

One area where this methodology could be improved is in the sophistication of the main 

engine load calculation procedure. For example, Jalkanen et al. (2009; 2012) use a 

methodology that explicitly factors in added resistance in waves. This would be expected to 

yield better results than a methodology that does not, such as this, and the majority of 

other activity-based methods. However, Jalkanen et al. (2009; 2012) do not handle the data 

quality issues highlighted in this methodology. Inclusion of added resistance in waves could 

be modelled in the software developed with minor adaptations using a methodology 

similar to that developed by Dedes (2013). Using such a methodology has been shown to 

reduce uncertainty in emissions calculation significantly. 

The method used for AIS track sampling was briefly touched upon in Section 3.3.2. The 

selection of an appropriate AIS track sampling approach is one of the aspects of this 

methodology that is significantly different from AIS-based emissions calculation methods 



  

76 
 

published in the literature. For this reason, the influence of changing the criteria used for 

AIS track sampling is given an in-depth treatment in Chapter 4.  

Discussion of the various factors causing uncertainty within the fuel use and emissions 

calculated using this methodology has also been minimal within this chapter. This is a 

complex subject, which is addressed in detail within Chapter 5. 

Finally, a case study of using this method to calculate emissions from the UK fishing fleet 

over a year is presented in Chapter 6. The advantage of using the UK fishing fleet as a case 

study was that an alternative proxy-activity-based method to emissions calculation could be 

used alongside this AIS-based method. By using multiple methods, this goes some way to 

validating the result produced using the AIS-based methodology presented in this chapter. 

 

3.6 Conclusions 

The use of AIS data for the production of emissions inventories for shipping data offers 

significant advantages over other sources of activity data. The emissions inventories 

generated are more reliable and detailed and the data naturally lends itself to the 

production of high-quality temporally and geographically resolved emissions inventories. 

However, when using AIS data there are several data quality issues that should be 

considered to avoid potentially significant errors in the emissions inventories produced. 

Handling these errors is important if AIS data are to be used for the calculation of emissions 

inventories. The methods proposed in this chapter offer a solution to the most important of 

these data quality issues. Namely, the existence of prolonged gaps in the AIS data record 

and the occurrence of unrealistically high speeds.  

The speed calculation methodology to use must be chosen carefully. Analysis of the data 

made available for model development has shown that there are significant differences in 

the results of the three speed calculation methodologies examined in this chapter. Given 

the importance of a vessel’s speed during emissions calculation, this subject should be 

afforded considerable attention by researchers in order that the most robust methodology 

can be identified.  

Based on the thought and investigation undertaken in the development of this 

methodology, it is considered likely that the use of a hybrid speed calculation methodology 

yield more accurate results. Calculating speeds from distance and time provides a useful 
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minimum speed, while higher AIS speeds can serve as an indicator of when vessels not 

travelling the shortest possible path between AIS data points. 

The methodology presented in this chapter offers a flexible and robust approach for 

producing high quality spatially and temporally resolved shipping emissions inventories for 

all types of vessel for which a reasonably large proportion of the fleet broadcasts AIS 

messages. Importantly, the use of activity sampling where one-to-one matches between 

vessel data and AIS data records cannot be achieved makes this methodology applicable to 

fleets of small commercial watercraft where some vessels do not use AIS technology or 

where the data necessary to match vessels to AIS records is unavailable. Methods such as 

this are the state-of-the-art in shipping emissions inventory calculation and will be easily 

and quickly applicable as access to AIS data improves and mature software tools for the 

processing of AIS data are established. 
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4 Selecting appropriate activity sampling criteria 

The purpose of this chapter is to explore the different filtering criteria that can be used 

when sampling AIS tracks for the calculation of fuel use and atmospheric emissions from 

vessels that cannot be directly matched to specific AIS data. The effects of varying the 

different filtering criteria are investigated and a set of sampling criteria are suggested for 

the case study fleet and AIS data used in this project. This chapter helps to satisfy objective 

2 of this project: 

“To create a robust, repeatable and practical methodology for the calculation of 

atmospheric pollution caused by small commercial watercraft” 

 

4.1 Introduction 

Vessel activity is the most significant factor in the generation of atmospheric pollution 

emissions. Emissions are a function of activity, namely engine operating time and engine 

load, vessel engine type and power, and emission factors (see Eq. 3.4 and 3.6). Emission 

factors are also partially reliant on activity given that their selection is based on a 

combination of activity mode and vessel characteristics. 

When using a sampling approach to associate vessel data with activity, it is of great 

importance to ensure that the sampling approach used gives a fair representation of the 

likely activity of the vessels being modelled. It is, or course, impossible to gain certainty that 

the sampled activity data are a good representation of each individual vessel. This would 

only be possible by directly matching vessels to their individually generated AIS tracks. 

However, where one-to-one matching of vessel data to AIS tracks is not possible, care must 

be taken to ensure that an appropriate sample of activity tracks is selected. This includes 

both the size of sample (number of tracks selected per vessel) and the method by which 

that selection is made. The aim is to arrive at a sampling approach that makes good use of 

the available activity data, where no tracks are selected so frequently as to significantly 

skew the results.  

The sampling approach devised for this study uses the proportion of track segments with 

errors, overall track duration, AIS data point counts and proportion of stops at countries to 

filter tracks for sampling for vessels. For example, an approach for the UK fishing fleet could 

be to select tracks with errors in no more than 10% track segments, at least 50% of port 
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calls at UK port, a minimum of 1,000 AIS data points and a total duration (time between 

first and last AIS messages in the track) of at least half a year. 

In addition to these filtering criteria, some basic data, including length, were obtainable on 

the vessels associated with the AIS tracks by automatically extracting information from 

publicly available data accessible through the MarineTraffic website (MarineTraffic.com, 

2013). Length was trialled as a basis for stratified sampling within the wider group of viable 

AIS tracks. This was attempted on the basis of an assumption that vessels of a similar size 

are more likely to have a similar activity profile than vessels of considerably different sizes. 

The length is used to initially narrow the group of tracks from which a sample is drawn to 

only tracks created by vessels within a length range centred around the length of the vessel 

being sampled for. If insufficient tracks are available to draw the desired size of sample, the 

length search bounds are recursively expanded until a sufficient number of tracks are 

available. 

While it intuitively seems appealing to sample of tracks from the group of tracks produced 

by vessels that are most similar in length to the vessel in question, this has some potential 

issues. The data available about vessels that produced AIS tracks is entered by the user of 

the AIS device and, therefore, can be inaccurate. It may also be unreasonable to treat 

vessel length as a proxy for activity. Therefore, it could be advantageous to search more 

broadly around the vessels length so that it has a less significant influence on the sample 

selected, or to discard length entirely as a factor used when sampling. 

The number of AIS tracks used to represent the activity of each vessel is a significant 

variable. One approach is to select a single track and treat that as the activity profile for the 

vessel. Of course, there is a risk that the track selected has an unusual activity profile, 

which, in reality, would reflect the activity of few vessels well. This could result in a 

significant level of bias in results if the track happened to be selected to represent the 

activity of a large number of vessels, resulting in the unusual activity profile being 

overrepresented in results. The risk of this can be reduced by sampling multiple tracks for 

each vessel and taking an average of the emissions calculated for them. However, it is still 

possible for certain tracks will be sampled much more frequently than others, leading to 

their overrepresentation within the resulting emissions inventory. Of course, another 

option is to sample a single track for each vessel but run the model multiple times with 

different random track samples and to either average the results of the emissions inventory 
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as a whole or to use the range of results to estimate uncertainty (this approach is used in 

Chapter 5).  

It is likely that this interplay between the strictness of the initial length bounds used for 

vessel sampling and the number of tracks sampled for each vessel will have a significant 

influence on the sample selected. In particular, the risk of overrepresentation of a small 

subset of certain AIS tracks in the overall emissions inventory is something to be avoided. 

In this chapter, an in-depth analysis of the influence of using different sampling policies on 

the sample selected will be presented. Conclusions will also be drawn about the 

appropriate sampling approach for calculating the emissions caused by the case study fleet 

of UK fishing vessels. 

A number of different analyses were undertaken to understand, test and inform the 

selection of an activity sampling approach. To improve coherence of the chapter, the 

methodology, results and discussion of each different analysis are presented as one 

subsection each. 

 

4.2 Methodology overview 

A range of approaches were used to assess the properties of the samples selected when 

varying the criteria used during selection. A number of tests were also performed to test 

the assumptions used for filtering and using length for sampling. 

To assess the quality and similarity of the vessel length data contained in the European 

Commission Community Fishing Fleet Register (ECCFFR) (EC, 2013a) and the data from 

MarineTraffic.com (2013) the two datasets were compared graphically and statistically. 

These are the data that would be used for the potential stratification of sampling based on 

length so it was important to assess their quality. 

The assumption that length is a meaningful piece of information for use in sample was also 

tested. The vessel length data accessed through the MarineTraffic.com (2013) website was 

tested for correlation with a variety of performance characteristics. Correlation would 

indicate that vessels of different lengths have different activity profiles. For example, larger 

vessels may be more active than smaller vessels or vice versa. If this were the case, it would 

indicate that restricting the potential sampling pool of tracks for each vessel based on 

vessel length would increase the likelihood of matching vessels to AIS tracks that are 
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representative of their activity than purely random sampling. If no relationship between 

length and activity is found, using length as a basis for sampling would serve little purpose 

and could introduce unwanted bias to results. 

The effect of varying the filtering parameters on the number of valid tracks available for 

sampling was also assessed. Selecting the filtering criteria is a trade-off between improving 

the quality of the sampling pool and reducing the number of AIS tracks available for 

samplings and, potentially, introducing some unintended bias such as selecting tracks 

produced by more active vessels. 

A detailed assessment of the number and frequency of tracks sampled was made for a 

range of different track sample sizes between 1 and 50 tracks per vessel. The effect of 

varying the initial search bounds around the vessel’s length when using stratified sampling 

based on vessel length was also tested. Initial length bounds were varied from ±0 to ±25 

metres. An unbounded search, where vessel length was not used to stratify the sample size 

was also included for comparison. 

 

4.3 Length comparison 

Vessels were grouped into length categories, based on their length rounded to the nearest 

metre. Summary statistics were calculated for each vessel length dataset and an 

independent-sample t-test was undertaken to assess the significance of the difference 

between the datasets.  

The independent-sample t-test is used to compare two sets of numerical data to determine 

whether they are significantly different from one another. For example, the independent-

sample t-test could be used to determine whether there is a significant difference in the 

heights of people from two populations based on a random sample of heights taken from 

each. There will almost certainly be some difference in the means of the two height 

datasets but also a degree of overlap when looking at the distribution of sampled heights. 

The independent-sample t-test provides a statistical test to determine the probability (p) 

that the observed differences are an artefact of sampling given the means, variance and 

number of sampled data points. If the probability that the observed difference is an 

artefact of sampling is low, it can be inferred that there are significant differences in the 

underlying populations. The formula for the independent-sample t-test is reproduced in 

Equation 4.1, after Field et al. (2012). 
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𝑑𝑓 = 𝑛1 + 𝑛2 − 2 

Where: 

𝑡 = the t-statistic, which can be looked up in t-statistic tables using the degrees of freedom 

(df) to find the probability (p) that the observed difference is an artefact of 

sampling, e.g. t-statistic tables presented by Friend et al. (2012).  

�̅� = mean of a sample population. 

𝑠 = standard deviation of a sample population. 

𝑑𝑓 = degrees of freedom 

𝑛 = number of samples taken from a population. 

 

Figure 4.1 shows the percentage of tracks for each vessel length set within length groups. It 

is clear that the two datasets have quite a different spread of vessel lengths. The lengths 

from the ECCFFR database (EC, 2013a) have a mean of 9.53 m with a standard deviation of 

±6.96 m. The lengths obtained from the MarineTraffic.com website (MT) have a mean of 

23.92 m with a standard deviation of ±21.79 m. 

Running an independent-sample t-test reveals that there is a very significant difference 

between the two length datasets (t = 49.89, p < 0.001, df = 11,610). The MarineTraffic.com 

AIS vessel data also have a significant number of outliers, with 396 of the vessels of length  

0 m and 46 having a length greater than 100 m and 6 have a length greater than 150 m. By 

comparison, the ECCFFR dataset (EC, 2013a) contains no vessels with a length under 1 m 

and only 1 vessel with a length in excess of 100 m. 

Eq. 4.1 
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Figure 4.1. Comparison of lengths from the MarineTraffic.com AIS vessel data and the EC 

Community Fishing Fleet Register (ECCFFR) database (EC, 2013a). 

 

The results of this analysis suggest two important things. Firstly, that the AIS length data 

obtained from the MarineTraffic.com website are likely to contain a significant proportion 

of errors. For example, the 396 vessels with a length of zero are likely an indication of the 

length having not been configured on the AIS transponder. AIS transponders have defaults 

of 0 m for all vessel dimensions (U.S. Coast Guard Navigation Center, 2017). The large 

number of lengths greater than 100 m are also likely a result of user error. The overall much 

higher mean length of the AIS data could be caused by three things. It is likely that AIS 

devices are more frequently installed on larger fishing vessels. There is also a possibility 

that some users mistakenly use imperial measurements and therefore have entered their 

vessel lengths in feet rather than metres. Overall, the lengths in the AIS vessel data appear 

to be of poor quality, which brings into question whether they should be used in any way 

for modelling the case study fleet. 
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4.4 Correlation of length with activity metrics 

Length was tested for correlations with three activity statistics, calculated for each AIS 

track. The activity statistics compared were: 1) the ratio of time a vessel spent moving, 2) 

the mean relative speed of the whole AIS track, 3) the mean relative speed of the parts of 

the AIS track where the vessel is moving. 

The Spearman’s rank correlation test was used. This is a correlation test that can be applied 

to non-parametric data. Since the data do not appear to be normally distributed, this was 

selected over the Pearson’s correlation coefficient, which should only be applied to 

parametric data. The Pearson’s and Spearman’s rank correlation tests are closely related, 

given that the Spearman’s rank correlation test is simply the Pearson’s test applied to the 

ranks of the paired data, rather than the data themselves. The formula for calculating the 

Pearson’s (r) correlation coefficient is reproduced in Equation 4.2, after Field et al. (2012). 

To calculate the Spearman’s rank correlation coefficient (rs), the x any y values for each 

paired data point are replaced with their corresponding rank (in ascending order). Where 

multiple instances of the sample value appear in the ranked variables, the median rank is 

applied to each instance, using a half rank interval when necessary (Field et al., 2012). 

𝑟 =
∑(𝑥𝑖 − �̿�)(𝑦𝑖 − �̿�)

(𝑁 − 1)𝑠𝑥𝑠𝑦
 

Where: 

𝑟 = a unitless measure of the strength of correlation. 

𝑥 = the independent variable. 

�̅� = the mean of the independent variable values. 

𝑦 = the dependent variable. 

�̅� = the mean of the dependent variable values. 

𝑖 = the ith data point. 

𝑁 = the number of data points. 

𝑠 = the standard deviation of the values of a variable. 

 

Eq. 4.2 
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The Spearman’s rank correlation coefficient was calculated for length and moving ratio, 

length and average relative speed, and length and average moving relative speed. Length 

was treated as the independent variable (x) in all cases. As a general rule, the rs value can 

be interpreted as follows: 0 to ±0.1 indicates no correlation, ±0.1 to ±0.3 indicates weak 

correlation, ±0.3 to ±0.5 indicates medium correlation and ±0.5 or greater indicates strong 

correlation. The sign indicates whether variables are positively or negatively correlated 

(Field et al., 2012). 

A handful of AIS tracks were associated with vessels that had extremely large lengths in the 

MarineTraffic.com (2013) dataset. For example, the maximum vessel length recorded was 

766 m. For ease of plotting and to reduce the effect of erroneous length data, only vessels 

with lengths greater than 0 m and no greater than 150 m were included. Figures 4.2, 4.3 

and 4.4 show the results of plotting AIS vessel data length against moving percentage, track 

average relative speed and track average relative speed whilst moving. 

 

Figure 4.2. AIS vessel data length compared to percentage of the total track that the vessel 

is moving (speed > 0.05 kmh-1). Spearman’s correlation coefficient rs = -0.094 (n = 4666), 

showing negligible correlation. 
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Figure 4.3. AIS vessel data length compared to track average relative speed. Spearman’s 

correlation coefficient rs = -0.059 (n = 4666), showing negligible correlation. 

 

 

Figure 4.4. AIS vessel data length compared to track average relative speed whilst moving. 

Spearman’s correlation coefficient rs = -0.030 (n = 4666), showing negligible correlation. 
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Figures 4.2, 4.3 and 4.4 show no correlation. Length against moving percentage has an rs 

value of -0.094. Length against track relative speed has an rs value of -0.059. Length against 

track relative speed whilst moving has an rs value of -0.030. The results of these correlation 

tests suggest that vessel length is a poor predictor for vessel activity, for this dataset at 

least. This suggests that there would be little point in using vessel length as a basis for 

sampling of AIS tracks for vessels that cannot be directly linked with AIS data as there does 

not appear to be any relationship between vessel length and activity. In fact, the analysis 

shown in Section 4.6 suggests that using vessel length as a basis for targeted sampling of 

AIS tracks leads to a significant overrepresentation of certain AIS tracks, leading to biased 

results. 

 

4.5 Sampling pool sizes 

The size of the sampling pool was investigated under increasingly strict filtering criteria in 

order to find a balance between data quality, specificity to the UK, and the number of 

tracks available for sampling. This involved altering the minimum permissible number of AIS 

data points per track, the minimum track duration (elapsed time between first and last AIS 

data records), and the maximum proportion of track segments with errors (see Section 

3.3.5 for an explanation of error detection). This yielded a set of AIS tracks meeting the 

specified quality criteria. 

Tracks were further filtered by the proportion of their port visits that were at ports of a 

specific country. This yielded a set of AIS tracks that met both the quality criteria and the 

desired level of specificity to a given country, which is the pool of AIS tracks available for 

sampling for a vessel belonging to that country’s fleet. For the case study dataset, the 

vessels are all registered as belonging to the UK fishing fleet within the ECCFFR (EC, 2013a). 

Average metrics (moving percentage, mean relative speed and mean moving relative 

speed), were also calculated for the tracks associated with different countries in the study 

area. 

The AIS data used for this research comprise 5,178 unique MMSI numbers, each 

representing a unique vessel and the AIS track that they generated. Of these AIS tracks, 

5,061 had at least two AIS data points and so could be processed. A table of results showing 

the effects of applying different sample filtering criteria is provided in Appendix A. These 
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results show that the filtering constraints used have a profound effect on the number of 

tracks available for sampling.  

For example, constraining this group of AIS tracks to only those containing at least 1,000 AIS 

data points results in a sampling pool of 3,960 AIS tracks. Applying a minimum total elapsed 

time between first and last AIS data points of 6 months reduced this pool to 3,373 AIS 

tracks. Applying a maximum permissible percentage of track segments containing errors of 

10% reduced the pool to 3,274 AIS tracks. Applying a much stricter set of constraints, e.g. a 

minimum of 5,000 AIS data points, 12 months duration and permitting no more than 1% of 

track segments to have errors reduces the pool size to just 504 tracks. 

The application of these filters effectively sets the total number of tracks that are of 

sufficient quality and contain a sufficient amount of data to be used considered for 

sampling and use in emissions calculation. Interestingly, when considering the activity 

metrics calculated, the more restrictive the set of sampling filters applied, the lower the 

average moving proportion, mean relative speed and mean moving relative speed for the 

sample. One possible explanation for this could be that applying stricter filtering criteria 

removes AIS tracks that are generated by vessels that are only observed while moving. This 

would be the case if their home ports are outside of the study area for which AIS data were 

available. This would also result in AIS tracks with fewer AIS data points, a short elapsed 

duration or a high proportion of errors caused by vessels operating outside of network 

range, leading to track segments with a long duration. 

The implication is that relaxing the filtering criteria too far will have the effect of increasing 

average moving proportion, mean relative speed and mean moving relative speed. This will 

almost certainly result in an increase in the fuel use and emissions calculated for the case 

study fleet, which is likely to lead to a degree of overestimation in the resultant emissions 

inventory. A balance must be struck between gaining a sufficiently high quality set of tracks 

for emissions calculation and creating so restrictive a sampling pool as to be 

unrepresentative of the vessel population. 

The AIS data used were generated by vessels operating in the area between latitudes 40˚N 

and 65˚N and longitudes 20˚W and 12˚E between 9th May 2012 and 15th May 2013. Within 

this area there are ports belonging to twelve countries. Therefore, it is more than likely that 

only a proportion of tracks belong to the UK fishing fleet and it could lead to flawed results 

if all tracks were included in emissions calculation. In order to identify the tracks associated 
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with the UK, further refinement of sampling must be carried out by isolating only tracks 

that visit UK ports. 

The AIS tracks can be empirically associated with countries based on the ports that they 

visit. For example, a vessel that stops at UK ports the majority of the time can almost 

undoubtedly be correctly categorised as belonging to the UK fleet. In general, the tracks 

associated with a country can be identified as those that stop at the ports of that country 

some sufficient number of times or proportion of their total stops.  

It is important to note that, based on this definition, AIS tracks could be associated with 

multiple countries if a threshold of less than 50% is set for association with a country. It 

could also be the case that an AIS track has no detected port visits, and therefore is not 

associated with a country. This could occur if vessels detected within the study area belong 

to fleets of countries outside of the study area and, therefore, only appear in the record 

when in transit. The minimum proportion of port stops selected to classify a track as being 

associated with a country is a judgement call that must be made by the modeller. For the 

purposes of this study, tracks are defined as associated with a country if at least 10% of 

their port visits are at ports of that country. The value was selected as it is considered to 

show a reasonably strong association with the target country whilst also yielding a 

reasonable number of tracks for sampling for the UK fleet. The effect of varying this 

minimum proportion are presented in Table 4.3 and discussed later in this section. 

Table 4.1 shows the results of associating tracks with countries from a group of 3,274 tracks 

remaining after applying quality filtering criteria as described above. The 3,274 tracks are 

obtained by filtering for tracks with at least 1,000 AIS data points, 6 months duration and 

no more than 10% of track segments containing errors. For a track to be associated with a 

country, at least 10% of its port visits would have to be at the country’s ports. Mean activity 

metrics are also shown for the percentage of the time that the vessel tracks are recorded as 

moving (speed > 0.05 km h-1), mean relative speed and mean relative speed whilst moving. 

Table 4.1 shows that, of the 3,274 valid tracks, 2,679 stopped at ports within the study 

area. Of those, 653 were associated with the UK. Although only 10% of an AIS track’s port 

visits needed to be at UK ports for the track to be associated with the UK, the actual mean 

proportion of stops at UK ports of the tracks associated with it was much higher at 78.8%. 

This suggests that tracks tended to be strongly associated with one country. Therefore, if a 

track stops at a country at all, it is likely to stop at that country most of the time. Appendix 



  

90 
 

A contains a detailed table of results for different sampling criteria used to sample AIS 

tracks for the UK fishing fleet. 

Table 4.1. Samples with at least 10% port visits at countries presented with average activity 

metrics.  

   Mean activity metrics 

Countries Tracks Port stops at 

country (%) 

Moving (%) Relative speed Relative speed 

(moving) 

All tracks 3274 n/a 71.7% 0.184 0.247 

All tracks that 

stop at ports 

2679 100% 70.34 0.175 0.240 

Belgium 43 65.7% 70.0% 0.134 0.189 

Denmark 464 75.2% 58.3% 0.125 0.208 

France 447 89.8% 82.7% 0.189 0.224 

Germany 133 67.2% 63.7% 0.122 0.182 

Iceland 61 100.0% 70.0% 0.223 0.284 

Italy 1 70.0% 60.0% 0.053 0.093 

Netherlands 348 84.5% 63.2% 0.110 0.166 

Norway 468 88.6% 62.3% 0.225 0.344 

Republic of 

Ireland 

261 71.2% 73.2% 0.178 0.239 

Spain 329 79.6% 84.6% 0.186 0.216 

Sweden 76 72.6% 53.9% 0.085 0.152 

UK 653 78.8% 76.3% 0.197 0.253 

 

Table 4.1 also shows there are differences in average activity metrics between the groups 

of vessels associated with the different countries in the study area. Italy can be disregarded, 

since only one track is associated with it. Of the remaining countries, moving percentage 

varied between 53.9% and 84.9%, mean relative speed varied between 0.085 and 0.225 

and mean moving relative speed varied between 0.152 and 0.344. This suggests that AIS 

tracks associated with different countries have significantly different activity characteristics. 

To test the significance of these differences, the tracks associated with the UK were 

compared to those associated with other nations using an ensemble of Independent-

sample t-tests (two-tailed) (Eq. 4.1). The results of these are presented in Table 4.2.  
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Table 4.2. Comparison of activity metrics of AIS tracks associated with the UK with those of 

other countries using Independent-sample t-test (two-tailed). 

 

Moving (%) Avg. relative speed 

Avg. moving relative 

speed 

t df p t df p t df p 

Belgium 1.876 694 
0.05 < p < 

0.1 
3.137 694 

0.001 < p 

< 0.002 
3.011 694 

0.002 < p < 

0.01 

Denmark 13.465 1115 p < 0.001 10.033 1115 p < 0.001 5.686 1115 p < 0.001 

France -5.469 1098 p < 0.001 1.170 1098 p < 0.001 3.649 1098 p < 0.001 

Germany 6.312 784 p < 0.001 6.352 784 p < 0.001 5.570 784 p < 0.001 

Iceland 2.803 712 
0.002 < p 

< 0.01 
-1.339 712 

0.1 < p < 

0.2 
-1.577 712 0.1 < p < 0.2 

Netherlands 9.012 999 p < 0.001 11.304 999 p < 0.001 10.747 999 p < 0.001 

Norway 10.152 1119 p < 0.001 -3.176 1119 p < 0.001 
-

10.326 
1119 p < 0.001 

Republic of 

Ireland 
1.990 912 

0.02 < p < 

0.05 
2.155 912 

0.01 < p < 

0.02 
1.486 912 0.1 < p < 0.2 

Spain -6.528 980 p < 0.001 1.415 980 
0.1 < p < 

0.2 
4.208 980 p < 0.001 

Sweden 8.411 727 p < 0.001 7.310 727 p < 0.001 6.207 727 p < 0.001 

t = t-statistic, which can be used with df to look up p in t-statistic tables 

df = degrees of freedom,  

p = probability of samples being from populations with the same underlying activity profiles 

 

In Table 4.2, the p value can be interpreted as the probability that the difference in the 

samples observed for the two populations could be an artefact of sampling randomness 

rather than a meaningful difference in the activity profiles of the underlying populations. 

For example, p < 0.001 indicates that there is a less than 0.1% probability of the two 

populations under comparison being statistically similar with respect to the metric being 

compared. Statisticians regularly consider a value of p < 0.05 to indicate a statistically 

significant difference between two populations (Field et al., 2012). On this basis, Denmark, 

France, Germany, The Netherlands, Norway, Spain and Sweden are significantly different 

from the UK with respect to all metrics considered. Belgium, Iceland and the Republic of 

Ireland appear to be more similar, but are significantly different from the UK with respect 

to at least on activity metric. 



  

92 
 

Overall, the results of this ensemble of tests show that the activity metrics of vessels 

associated with the UK are significantly different from the activity metrics of vessels 

associated with other countries. This highlights the importance of matching AIS tracks on 

the basis of association to countries when using an activity sampling approach such as this. 

If the available sample for a given country is too small, it could be increased by including 

tracks from countries with activity profiles that are statistically more similar to it. For 

example, when sampling for a UK emissions inventory, it would be more valid to increase 

the sample size by including tracks associated with the Republic of Ireland (RoI) than 

Denmark, France or the Netherlands. 

The pool of tracks associated with the UK given the above mentioned quality filtering 

criteria and a requirement of at least 10% of port stops at UK ports is 653. They have 

average activity metrics of moving for 76.26% of the time with a mean relative speed of 

0.198 and mean moving relative speed of 0.253. However, by filtering for vessels with at 

least 10% of their port stops at ports of either the UK or the RoI, the number increases to 

857 (moving 75.22% of the time, with mean relative speed of 0.192 and mean moving 

relative speed of 0.250). This shows that, for a minor alteration of activity metrics, the 

sample pool size could be significantly increased. 

Another way of varying the sample pool size is to change the minimum proportion of port 

stops that must be at ports of the relevant countries for tracks to be included in the sample 

pool. An example of how this changes the sample pool size and average activity metrics for 

the UK is shown in Table 4.3. 

Table 4.3. Comparison of sampling pool size and activity metrics as a result of varying the 

minimum proportion of port stops at UK ports for a track to be sampled. 

Min port 

stops (%) Tracks 

Error 

segments (%) 

Moving 

proportion 

Relative 

speed 

Moving 

relative 

speed 

UK port 

stops (%) 

1% 818 2.20% 73.9% 0.191 0.254 63.8% 

5% 723 2.28% 75.1% 0.194 0.254 71.8% 

10% 653 2.28% 76.3% 0.198 0.253 78.8% 

25% 558 2.26% 77.7% 0.204 0.255 89.5% 

50% 504 2.26% 77.5% 0.206 0.257 95.2% 

100% 353 2.34% 79.4% 0.216 0.262 100.0% 
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The number of tracks available for sampling for the UK fishing fleet varies considerably as 

the minimum proportion of port visits at UK ports required for sampling is varied. The 

sample size decreases from 818 tracks to 353 tracks as the proportion of port stops at UK 

ports is increased from 1% to 100%. The risk of filtering by too low a proportion is the 

inclusion of tracks that are not representative of the target country’s fleet activity in the 

samples used for modelling. The risk of filtering by too high a minimum proportion is that 

relevant AIS data is lost from the sample pool, and the total sample pool size becomes very 

small. 

The results presented in Table 4.3 indicate that it is not uncommon for vessels to visit the 

ports of more than one country, so filtering for tracks that exclusively stop at UK ports is 

not desirable. For the case study fleet, a minimum proportion of 10% of port stops at UK 

ports was selected. This was considered a reasonable trade off because it yielded a sample 

pool of 653 AIS tracks, which is approximately a tenth of the size of the fleet being 

modelled (6434 fishing vessels registered in the UK). It also resulted in a total of almost 80% 

of ports stops at UK ports, indicating that the AIS tracks were generated by a fleet that, 

overall, had a strong level of association with the UK. 

Notably, varying the proportion of port stops required for association of AIS tracks with the 

UK had an impact on mean activity metrics. In particular, the average proportion of time 

that tracks in the sample recorded movement increased from 73.9% to 79.4%, which in turn 

increased the average relative speed of the vessels by 13%, from 0.191 to 0.216. This 

indicates that increasing the minimum proportion of port visits required for association 

with the UK will increase the modelled fuel consumption and emissions of the UK fishing 

fleet. Of course, this pattern will differ for the fleets of other countries. For example, the 

same analysis performed for tracks associated with Denmark shows the mean moving 

proportion falling from 58.3% to 52.5% as the minimum proportion of port stops is 

increased from 1% to 100%. 

 

4.6 Sampling frequency from filtered sampling pools 

The final analysis that was undertaken was to calculate the frequency of individual track 

sampling for a variety of sampling settings. As an example, the sampling frequency of tracks 

was calculated for tracks associated with the UK (at least 10% of port visits at UK ports), 
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with a no more than 10% of track segments containing errors, a minimum of 1000 AIS data 

points and 6 months duration. The number of tracks sampled per vessel was varied from 1 

to 50, and the initial length search bounds were expanded around the vessel’s length from 

0 m to an unbounded search where vessel length was ignored in sampling. Tracks were 

resampled for each vessel and each sampling approach 200 times and summary statistics 

were calculated. 

 

Figure 4.5. The maximum percentage of any track being selected as part of vessel samples 

under varying sample sizes (number of tracks sampled per vessel) and initial length search 

bounds. 

 

Figure 4.5 shows the results of this analysis. It was found that, when sampling just one track 

per vessel and focusing the initial length search criteria strictly to AIS tracks with reported 

vessel lengths similar to the length of the vessel being sampled for, the most frequently 

sampled track was sampled 26.4% of the time. This means that one AIS track, produced by 

a single vessel, was used as the activity data to calculate emissions for over a quarter of the 

6434 vessels in the UK fishing fleet. This is a huge bias that would have serious implications 

for the validity of the emissions inventory calculated as results would be strongly biased 

towards the specific activity of that one track. If the track happened to be unusual, then the 

results could be significantly skewed. Further inspection reveals that, of the 653 valid AIS 

tracks associated with the UK, an average of only 410 (62.8%) were sampled at all in this 
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scenario. This highlights the potential pitfalls of selecting poor sampling criteria when using 

an activity-sampling approach such as the one described. 

At the other end of the spectrum, ignoring vessel length entirely when sampling resulted in 

essentially no bias, with no track being sampled more than 0.21% of the time and all 653 

tracks being sampled multiple times. This held true regardless of the number of tracks 

being sampled for each vessel.  

These results also show that increasing the number of tracks sampled per vessel greatly 

reduces the extent of the possible bias towards particular tracks being overrepresented in 

the emissions inventory. However, the reduction in the extent of the bias plateaus at a 

sample size of 20 tracks (see Figure 4.5), with remaining reductions coming predominantly 

as a result of increasing the range of the initial length search bounds. 

A sample size of 30 could be legitimately selected on the basis of the Central Limit Theorem, 

which shows the likelihood of the mean of a sample falling within a certain margin of error 

of the population mean for variables that are normally distributed. A sample size of 30 gives 

a margin of error of less than ±20% with a 95% confidence level (Burt & Barber, 1996). 

 

4.7 Conclusions 

The analyses undertaken into the effect of various sampling criteria reveal a number of 

findings: 1) The lengths available from AIS data are of poor quality. 2) Length is not a good 

predictor for vessel activity. 3) The number of AIS tracks available for sampling varies 

greatly depending on the filtering criteria applied for data quality. 4) Track data quality 

filtering has a significant impact on activity metrics. 5) The AIS tracks associated with 

different countries have significantly different activity metrics. 6) Sampling an insufficient 

number of AIS tracks for each vessel or stratifying samples too strictly by vessel length can 

introduce significant bias with certain AIS tracks being hugely overrepresented in the 

emissions inventory. 

The sampling criteria selected can clearly have a considerable influence on the emissions 

inventory calculated. Therefore, careful consideration must be given to the samples 

selected when applying different criteria. The methods outlined in this chapter go some 

way toward enabling the selection of an appropriate sampling approach. 
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Given the effect of filtering based on quality criteria and by country association, it is 

recommended that the quality filtering criteria applied should be for at least 1000 AIS data 

points, ½ year duration and no more than 10% of track segments containing errors. These 

values are suggested for the particular AIS dataset under analysis for the case study as they 

strike a balance between removing tracks with extremely limited data or a high proportion 

of errors and retaining a sufficient number of tracks to represent the activity of the UK 

fishing fleet. 

The results presented in Section 4.5 imply that there are significant differences between 

the activity profiles of the fleets associated with different countries (Table 4.2). Therefore, 

tracks should be filtered for relevance to fleets of the countries being modelled. Table 4.3 

shows the effect of filtering AIS tracks based on the proportion of their port stops at UK 

ports. There is a trade-off between the strength of the association with the UK, as defined 

by the proportion of port stops on the AIS track at UK ports, and reducing sample size. It is 

also unrealistic to model UK fishing vessels as only stopping at UK ports as the results of the 

analysis presented in Table 4.3 suggest that it is not uncommon for vessels to visit the ports 

of multiple countries. Selecting the 10% limit for the minimum proportion of port stops at 

UK ports seems to strike a balance between sample pool size and association with the 

target country, with the filtered AIS tracks showing an average of almost 80% port visits to 

UK ports.  

Applying these filtering criteria reduced the sample pool size to 653 AIS tracks, which is an 

activity sample of 10.1% of the 6434 vessels in the case study vessel characteristics 

database. This provides a larger activity sample than previously published research that has 

used vessel operator surveys (e.g. Psaraftis & Kontovas, 2009), but will clearly yield results 

with a greater level of uncertainty than AIS-based approaches that rely on accurate 

matching of each vessel with its AIS track. 

The analysis undertaken in Section 4.6 and displayed graphically in Figure 4.5 suggests that 

significant sampling bias can be introduced by using strict length stratification in sampling, 

with some AIS tracks being overrepresented in results. The analysis conducted in Section 

4.3 also suggests that vessel length in AIS data is unreliable, and the lack of correlation with 

activity metrics indicates that length is a poor predictor of vessel activity (Section 4.4). For 

these reasons, it is suggested that length should not be used as a basis for stratified 

sampling of AIS tracks. 
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The variation in the degree to which tracks are represented in the activity samples selected 

also reduces as the number of tracks sampled for each vessel increases. It is suggested that 

a minimum sample size of 20 tracks is used to reduce the potential for bias in the aggregate 

sample selected for all vessels. Beyond a sample size of 20 tracks, there appear to be 

diminishing returns in terms of improving the evenness of representation of tracks 

sampled. However, increasing sample size may be desirable to improve the robustness of 

results for individual vessels. For example, a sample size of 30 tracks could be seem as 

desirable on the basis of the Central Limit Theorem. 
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5 Uncertainty and sensitivity associated with AIS-based emissions 

inventories for small commercial vessels 

The purpose of this chapter is to provide an in-depth analysis of the sources of uncertainty 

that affect the methodology for modelling fuel use and atmospheric pollution emissions 

from small commercial watercraft presented in Chapters 3 and 4. A sensitivity analysis is 

carried out using the data for the case study fleet of UK fishing vessels, which sheds light on 

the sensitivity of results to the of various input parameters that are subject to uncertainty. 

An uncertainty analysis is also undertaken, providing an estimate of the overall uncertainty 

in the results calculated. The findings of this chapter also inform the calibration of input 

parameters for the model of the case study fleet, the results of which are presented in 

Chapter 6. This chapter satisfied objective 3: 

“To identify sources of uncertainty that affect the emissions calculation 

methodology developed and undertake a rigorous sensitivity and uncertainty 

analysis.” 

 

5.1 Introduction 

Sensitivity analysis is a process of understanding the significance of uncertainty or variation 

in model input parameters to the model output. Uncertainty analysis is a related but 

different process of quantifying the range of possible model outputs, given inputs with a 

degree of uncertainty (Saltelli et al., 2008b). 

There are various techniques that can be employed when conducting a sensitivity analysis. 

Local sensitivity analysis involves changing input parameters in relation to their baseline 

values to determine the influence that this has upon the results of the model. This does not 

necessarily capture the full range of values that an input parameter can take, but does 

provide useful information about the change in results caused by the perturbation of an 

input parameter. Global sensitivity analysis involves assessing the sensitivity of results as 

input parameters are varied within a probability distribution used to represent the entire 

range of their possible values (Hamby, 1995). 

The sophistication of techniques also varies from those that consider only changes in a 

single parameter at a time to those that vary multiple parameters at once. Varying multiple 

parameters at once has the advantage of allowing modellers to identify potentially complex 
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interactions between parameters (Campolongo et al., 2007; Saltelli et al., 2008a). The 

simplest approaches are those that consider changes to input parameters one-at-a-time 

(OAT), and for models with relatively simple dynamics, this is usually sufficient to capture 

the sensitivity of the model (Saltelli et al., 2008a).  

When the probability distributions of input parameters are not known, local perturbation 

methods can be used to gain a sense of the sensitivity of model results to variation of these 

parameters. The value of these input parameters can be varied within a range, e.g. ±10% of 

the default value, to quantify the effect on results (Hamby, 1995).  

For input parameters that can be described with a probability distribution, global sensitivity 

analysis can be carried out using this distribution for a more thorough exploration of the  

parameter’s range of effects on results. One such technique is the sensitivity index, which is 

a simple measure of the variation in model outputs when an input parameter is varied 

through its full range of values (Hamby, 1995). Monte Carlo techniques involving repeated 

random sampling of input parameters can also be used, but are computationally inefficient 

and are not guaranteed to explore the full range of an input parameter represented with a 

continuous probability distribution.  

For parameters that cannot be described with a continuous probability distributions, e.g. 

parameters represented by discrete input parameters, the variance of outputs as a result of 

changes in the input sample can be quantified using Monte Carlo simulation (Sobol, 2001). 

Descriptive statistics can be calculated to quantify and compare the variation in results 

caused by different input parameters. 

Within the literature on shipping emissions inventorying methods, Jalkanen et al. (2014) 

consider the various sources of uncertainty associated with model inputs. These can be 

grouped into four categories: 1) AIS data quality issues, 2) incomplete vessel technical data, 

3) errors in engine load calculation, 4) limited data for emission factors and fuel 

characteristics. 

The most significant of the sources of uncertainty are estimated to be major temporal and 

geographic coverage gaps in the AIS data record and uncertainties arising from errors in 

engine load calculation. Uncertainty around operating conditions is also significant. One of 

the major factors involved in this is the effect of sea ice, an issue of far more relevance in 

the Baltic Sea than around the coast of the UK. The effects of wind, waves and tidal 

currents are also a notable source of uncertainty. Furthermore, the application of emission 
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factors to older vessels is identified as a potential cause of underestimates of NOx emissions 

and uncertainties surrounding fuel composition give rise to considerable uncertainty in the 

calculation of SO2 and particulate emissions. 

The IMO Third GHG Study (Smith et al., 2014) uses the uncertainty classification produced 

by Jalkanen at al. (2014) to inform their assessment of the uncertainty of the emissions 

inventory calculated. In addition, the uncertainty associated with the difference between 

speed over ground (SOG) and speed through the water (STW) is considered. This difference 

arises because AIS data contain SOG derived from GPS systems; yet a vessel may be moving 

at a different STW due to currents such as tides. A dataset for a small fleet of vessels 

containing measurements of both SOG and STW is used to calculate statistics describing the 

average difference between the two. This reveals that the mean difference is relatively 

small at -0.14 knots (SOG-STW), but that the standard deviation is relatively large at ±0.95 

knots. 

Given that fishing vessels regularly cruise at around 9 knots (Laurens et al., 2013), the mean 

difference of -0.14 knots is relative small. For example, if a vessel’s SOG was recorded as 9 

knots, the mean STW is expected to be approximately 9.14 knots (+1.6%). Assuming a 

design speed of 10 knots, sea margin of 10% and idling engine load of 20% and using 

Equation 3.6 to calculate engine load, this would result in a small but not insignificant 

increase in estimated mean engine load of 3.4%. At plus or minus one standard deviation 

the STW could range between 8.05 and 9.95 knots (±11%), in which case the impact on 

estimated engine load becomes quite significant, ranging from -20% to +25%. However, 

assuming the error is normally distributed, these errors can be expected to largely cancel 

out. The overall impact is likely to be a small underestimate of fuel use and emissions of 

around 3%.  

Smith et al. (2014) also highlight that the relationship between the uncertainties in inputs 

and results is often complex and non-linear. Therefore, Monte Carlo techniques should be 

used to compute emissions inventories with a realistic quantification of uncertainty.  

In this chapter, the results of a sensitivity analysis are presented and model parameters are 

ranked in terms of their importance. Monte Carlo simulation was also undertaken to 

quantify the uncertainty of the model. 

 



  

101 
 

5.2 Sources of uncertainty 

The results of this study were subject to uncertainty in a variety of input parameters. The 

variables that affect the model include emission factors, vessel characteristics and the 

parameters used for engine load calculation. A full list of sources of uncertainty is provided 

in Table 5.2. Incompleteness of activity recorded in the AIS dataset is another important 

source of uncertainty. In addition, the methodology used in this research also introduces 

the additional uncertainty that comes from using an activity sampling approach to match 

vessels within the modelled fleet to that AIS tracks that provide the activity data. This was a 

necessity given that the data required for directly linking vessels in the vessel database to 

AIS tracks was unavailable. Also, a large proportion of the fleet were not represented in the 

AIS data record that can still be modelled using the approach presented in this research. 

Other shipping emissions inventories have also used vessel specific information on the fuel 

and engine types used (Smith et al., 2014). In contrast, this research relies on published 

data on the proportion of fishing vessels in the global fleet using the various engine and fuel 

types used. Therefore, there is some uncertainty related to their applicability to individual 

vessels, the impact of which should also be estimated. 

The emission factors used in this research were taken from the EMEP/EEA air pollutant 

emission inventory guidebook 2016 (Trozzi et al., 2016). Uncertainty ranges are given for 

emission factors (reproduced in Table 5.1), estimated at the 95% confidence level. No 

advice is given about an appropriate probability density function with which to represent 

these range values. Given that the emission factor ranges are large, they were expected to 

be a significant contributing factor to the overall uncertainty of the results. 

Table 5.1. Estimated emission factor uncertainties at the 95% confidence interval (after 

Trozzi et al., 2016) 

Parameter At sea Manoeuvring In Port 

NOx ±20% ±40% ±30% 

SOx ±10% ±30% ±20% 

NMVOC ±25% ±50% ±40% 

PM ±25% ±50% ±40% 

Fuel consumption ±10% ±30% ±20% 
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The uncertainty associated with the incompleteness of AIS data is difficult to quantify. The 

emissions calculation methodology presented includes functionality for the detection of 

large gaps in AIS tracks and unrealistically high speeds, which are also thought to be 

indicative of errors in the data. In these cases, average activity data are applied which are 

derived from the rest of the AIS track. Tracks with a particularly high proportion of errors 

are filtered from the pool of AIS tracks that are available for sampling. In addition, AIS 

tracks are filtered to exclude tracks that contain extremely low numbers of AIS data points 

and that are only active briefly within the complete time for which emissions are modelled. 

These measures were taken to reduce the error and uncertainty caused by poor AIS data 

quality. However, quantifying the uncertainty associated with AIS data quality was not 

undertaken given the lack of data required to reliably assess its impact. 

The owners of all fishing vessels licenced to EC member states are legally required to keep 

the information about their vessel up to date in the ECCFFR (EC, 2013a). This was 

considered a high-quality source of vessel characteristics data. Inspection revealed that the 

data for each vessel in the database were complete and did not have obviously erroneous 

values. As such, the data taken from this database was assumed to be complete and 

correct. However, the database did not contain all of the information required as inputs for 

emissions calculation. Specifically, the vessel engine, fuel type and design speed were not 

included. The engine and fuel type are used to select emissions factors for emissions 

calculation. The design speed is an important piece of data used in engine load calculation. 

As such, alternative sources of these data were required. 

Given the lack of engine and fuel type in the vessel technical data available, fleet level 

averages for fishing vessels were used. These were taken from the EMEP/EEA air pollutant 

emission inventory guidebook 2016 (Trozzi et al., 2016). These data are not specific to the 

UK fishing fleet and so it is likely that there is some discrepancy between the fleet averages 

applied and the real vales for the fleet being modelled. There is also uncertainty around the 

selection of an engine and fuel type for each vessel. Either a weighted average of all 

possible engine and fuel type combinations can be used, or the fleet level data can be used 

to create a discrete probability distribution from which engine and fuel types can be 

sampled for each vessel. 

In lieu of vessel design speed data, the AIS data were used directly to estimate vessel design 

speed. This was calculated as the maximum speed maintained for some cumulative 

duration. For example, if at least X mins of a track had a speed of Y or greater, Y could be 
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taken as a proxy for design speed. The entirety of each AIS track was used to estimate 

design speed in this way. Of course, the cumulative duration used for deriving maximum 

speed influences the speed derived, with higher durations leading to lower maximum 

speeds and vice versa. Any duration greater than zero and below a relatively large value, 

e.g. an hour, could legitimately be chosen.  

Modelling main engine load from speed has a few areas of uncertainty. The method used 

for modelling engine load (Eq. 3.6) uses instantaneous speed, design speed, idling/hotelling 

load and sea margin to calculate load. There is differing advice in the literature about both 

hotelling/idling loads (MARIN, 2012; Trozzi et al., 2016) and sea margins (Buhaug et al., 

2009; Lindstad et al., 2011; Smith et al., 2013). Smith et al. (2013) highlight the importance 

of sea margin in emissions calculation. Therefore, uncertainty in the parameterisation of 

the engine calculation formula will give rise to uncertainty in model results. 

When designing ships, sea margin is an additional provision of engine power, usually of 

between 10% and 25%, intended to enable ships to overcome additional resistance from 

wind, waves, fouling, etc. in order to maintain design speed in the majority of conditions 

(Wärtsilä, 2018). In practice, this means that a ship operating at design speed in calm water 

with minimal resistance will have an engine load of 100% minus the sea margin. In 

operation, the resistance that the ship is working to overcome is usually considerably less 

than that allowed for by the sea margin, so the engine load must be adjusted downwards 

by an appropriate amount when modelling it from an approximate relationship to speed. 

Speed is calculated over ground rather than through the water. The movement of water 

due to tides and currents is not modelled. If vessels move without consideration for 

currents, the net effect should be approximately zero. However, there is an economic 

driver to move with currents where possible to reduce fuel costs. Moving with the current 

would effectively reduce speed through the water for the same speed over ground, 

resulting in lower engine load, fuel use and emissions. On the other hand, moving against 

the current and, therefore, faster through the water has a greater impact on fuel 

consumption and emissions than reducing speed, given that the relationship between 

speed and engine load is approximately cubic (Jalkanen et al., 2014). Quantifying the 

difference between SOG and STW was not possible with the available data. However, 

analysis carried out by Smith et al. (2014) suggests that the net effect is likely to be minor. 
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A number of methods were trialled for the calculation of AIS track segment instantaneous 

speeds. These were: 1) applying the average of the speeds contained in the two AIS data 

points describing a track segment; 2) using distance and duration of segments to calculate 

speed; 3) using distance and duration, but smoothing results by calculation average speed 

for groups of segments of some minimum total duration; 4) a combination of 1 and 2, 

where the distance-based speed is treated as logical lower bound and AIS average speed is 

used as an upper bound, if higher; 5) a combination of 1 and 3 calculated in the same way. 

This gives rise to some structural uncertainty about the methodology used and the speed 

calculation approach that yields the best results. 

The use of a combined speed methodology produces an upper and lower speed over 

ground for each AIS track segment. This range can be treated as a probabilistic input to 

engine load calculations. This also applies to derived maximum speed, which also has a 

lower and upper range value as a result of using a combined speed calculation approach. 

Associated to speed calculation, a minimum speed is used to determine when a vessel is 

moving. This is important in order to prevent modelling very slow movement as an 

indicator of engine activity, where it is far more likely to be a result of instrumentation 

error or vessels drifting whilst moored or at anchor. Determining a reasonable value for this 

is important to model emissions well and a poorly selected value will cause errors. 

The methodology presented also models engines running before and after journeys while 

the vessel is stopped. There is some advice on modelling this in Trozzi et al. (2016), which 

suggests main engines run for approximately 5% of the duration of stops for all vessel types 

other than tankers. However, it is not explicitly stated whether this advice is applicable to 

small commercial vessels. Therefore, this is another source of uncertainty contributing to 

the calculated of engine load.  

Engine load override rules are also used to apply a trawling or dredging engine load to 

fishing vessels when their activity data suggests that they are engaged in these activities. 

The use of engine load override rules is novel to this research. The effect of using these 

engine load override rules is quantified to determine their importance to results. 

A final source of uncertainty that is worth mentioning is the accuracy of the GPS used by 

the AIS equipment. Modern, purpose GPS devices have an accuracy of ≤ 0.715 metres at 

confidence level of 95% (GPS.gov, 2017). This means that the location of a vessel should be 

within 1 metre of the location reported in each position message for a large majority of 
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measurements. This error is likely to be symmetrical about the ‘real’ location of the vessel’s 

GPS device with a mean error for all position messages of close to zero. The effect of GPS 

errors could result in minor inaccuracies in the speeds calculated for AIS track segments. 

However, by smoothing speeds for track segment groups, the impact of these potential 

errors is reduced. Overall, the uncertainty associated with GPS inaccuracies is considered to 

be minor and is not modelled. 

Sources of uncertainty can be categorized as aleatory (intrinsic but modellable with 

available data) or epistemic (reducible by gathering additional data) (He et al., 2015). There 

are also structural uncertainties about the methods used. Table 5.2 contains a summary of 

the sources of uncertainty modelled in this analysis. Importantly, both aleatory and 

epistemic uncertainty can be modelled in uncertainty and sensitivity analysis provided that 

sufficient data are available to describe probability distributions to represent the uncertain 

inputs. Structural uncertainty can be assessed by running the model with the application of 

the different methodologies under investigation. 

Table 5.2. Sources of uncertainty, categorized as either structural, aleatory or epistemic. 

Source Type Comments 

Emission factors Aleatory Given the relatively large ranges of uncertainty 

associated with the emission factors used, these will 

contribute significantly to the uncertainty in the 

results. 

AIS data quality 

and gaps 

Epistemic The methodology used filters out low quality tracks 

and attempts to mitigate the influence of errors in the 

remaining data. However, access to additional AIS 

data, particularly satellite AIS data, would reduce the 

uncertainty considerably. 

Engine load 

estimation 

Epistemic / 

aleatory 

Obtaining data on the design speed of the vessels 

being modelled would reduce uncertainty. Without 

this data, some analysis can be performed to 

understand the sensitivity of results to the parameters 

used to convert speed to engine load. 

Track sampling Epistemic / 

aleatory 

If data were obtained that allowed vessels and AIS 

tracks to be linked, this would reduce uncertainty. 

Where vessels and tracks cannot be directly matched, 
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Source Type Comments 

this can be seen as aleatory uncertainty that can be 

quantified by running multiple runs with different 

random samples. However, it could be eliminated as a 

source of uncertainty if the data necessary to match 

vessels to AIS data were made available. 

Instantaneous 

vessel speed 

Aleatory The use of a combined instantaneous speed 

calculation methodology gives lower and upper 

bounds for the instantaneous speed of track segments. 

This can be used to construct a probability distribution 

of the speeds for each AIS track segment. 

Vessel engine 

and fuel type 

Epistemic / 

aleatory 

Given that vessel and fuel type proportions used by 

fishing vessels are available in the literature. This can 

be treated as an aleatory source of uncertainty by 

randomly selecting engine/fuel type using the 

proportions provided in the literature. However, 

gathering more information on the specific engine and 

fuel types used by individual vessels would eliminate 

this uncertainty. 

Main and 

auxiliary engine 

running times 

whilst hotelling 

Epistemic / 

aleatory 

More information on the running of engines used 

aboard fishing vessels whilst hotelling would reduce 

this uncertainty. However, this can be reasonably 

modelled as between zero and the default values 

used. 

Speed calculation 

method 

Structural Three speed calculation methods were proposed and 

trialled in this research. There is uncertainty as to 

which produces the most realistic results. 

Engine load 

override rules 

Structural A new concept of engine load override rules has been 

introduced to model trawling and dredging engine 

loads. The significance of these rules can be assessed 

by modelling emissions with and without engine load 

override rules. 
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5.3 Methodology 

Sensitivity and uncertainty analysis requires a model to be run many times to explore the 

impact that uncertain inputs have on results. The first version of the modelling software 

was computationally inefficient, with each model run taking around 3.5 days to complete 

for the UK fishing fleet dataset. This made it impractical to run meaningful uncertainty or 

sensitivity analysis given that the number of runs required would have taken years to 

complete. Therefore, for uncertainty and sensitivity analysis to be carried out, the 

modelling software needed to be optimized to significantly reduce run times. The 

optimizations made to the software are summarized in Section 5.3.1. 

With the optimized software, a sensitivity analysis was undertaken to better understand 

the influence of various methodological choices and uncertainty associated with input data. 

The specific sensitivity analyses undertaken are introduced in more detail in Section 5.3.2. 

Finally, Monte Carlo simulation was undertaken to perform an uncertainty analysis. A range 

of potential results were calculated, modelling the uncertainty of several input variables 

and their effects upon results. The methodology used is outlined in Section 5.3.3. 

 

5.3.1 Optimizing the modelling software 

In any computation, some of the most computationally expensive and slow operations are 

associated with Input-Output (reading and writing data to local or network storage). Given 

that the software created during this project runs locally, one of the major contributors to 

model run time is reading data from and writing data to the hard drive. Therefore, the 

software was engineered to minimise this type of operation. 

Additionally, in order to optimize a program written in Java, the specific operations that are 

expensive in the Java programming language must be considered. Java is an object oriented 

programming language, which means that data are stored in memory as user defined 

objects. Once in memory, accessing and manipulating objects can be done extremely 

quickly and efficiently. Two of the most expensive operations in Java are object creation, 

where a location in physical memory is assigned to the object, and ‘garbage collection’, a 

process where redundant objects are identified and deleted to make the memory that they 



  

108 
 

use available to store other data. Without garbage collection, many memory intensive Java 

programs would run out of memory and crash.  

Java programs are run by a Java Virtual Machine (JVM). The JVM carries out garbage 

collection automatically so the user does not have to manually delete objects. Generally, 

this makes it easier to develop software. However, the garbage collection process can be 

costly if new objects are created at a rapid rate, causing programs to run slowly. Therefore, 

garbage collection must be considered when optimizing a data intensive Java program. 

Generally, identifying ways to reduce the number of objects created is the best way to 

reduce the garbage collection overhead. Therefore, the software was engineered to reduce 

the number of objects created. 

A considerable effort was undertaken to optimize the modelling software tool, with 

efficiencies being gained in a number of areas. To minimise Input-Output operations, 

smaller input data files were loaded to memory at the beginning of a model run, e.g. 

emission factors, vessel databases, vessel type profiles, engine load override rules, ports 

information, etc. This differed from the original approach which selected data for each 

vessel from a MySQL database throughout each model run. 

The modelling software also does a certain amount of data pre-processing to calculate 

activity tracks from raw AIS data. This pre-processing includes the calculation of track 

segment distances, durations and speeds (see Section 3.4) and requires the creation of 

multiple objects. Once processed, this data can be used repeatedly to calculate emissions 

for multiple vessels or in multiple modelling runs by the same vessel. Therefore, caching 

tracks after pre-processing has considerable performance benefits in terms of reduced 

object instantiations and garbage collection overhead. Of course, this needs to be weighed 

against memory limitations. Therefore, a maximum cache size was set and tracks were 

discarded on a least recently used basis. The cache size is effectively limited by the random-

access memory (RAM) available on the computer being used to run the modelling software. 

By increasing the memory available, a greater number of pre-processed tracks could be 

cached, further accelerating model run time. 

The original version of the modelling software used a MySQL database to store all AIS 

position data indexed by MMSI number. When all AIS data for a particular MMSI (an AIS 

track) was required, a query was used to select the AIS data associated with that MMSI 

from the database. Although databases are designed to perform this kind of selection 
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operation quickly, it is not an insignificant computational task to select several thousand 

rows from a table of many millions. To improve AIS data selection performance, the AIS 

data were moved out of the database and instead stored in individual files for each unique 

MMSI number. These files were then loaded directly by the operating system when 

needed. This greatly optimized the AIS data lookup operations which made up a significant 

proportion of the overall model run time. 

The data processing task naturally lends itself to parallelisation given that the calculation of 

emissions for each vessel is a stand-alone computation that is not affected by the emissions 

computed for any other vessel. In computing terms, the task is embarrassingly 

parallelizable, meaning that the data processing operations can be run independently in 

separate threads of execution with essentially no interaction between the processes 

beyond the aggregation of results (Vrajitoru, 2017).  It was possible to parallelize both the 

pre-processing of track data and the emissions calculation phases of the model run.  

Process parallelization in the software generally followed a master-slave concurrency 

paradigm used extensively in big data processing (Butcher, 2014). However, the software is 

designed to run on a single machine rather than on distributed hardware so the masters 

and slaves were represented by processes running in different threads on the same 

computer. The computation tasks to be undertaken were created and issued by the master, 

with each slave processing each task before being issued the next. The master collated the 

results of all slave processes to produce aggregated results. On the computer used for this 

modelling, parallelization resulted in almost an eight-fold increase in processing speed 

given that the computer had eight logical processors. Using a computer with additional 

cores and enough memory to support the additional data needed in memory, the 

performance would improve further. 

A comprehensive refactoring of the original modelling tool was undertaken with the aim of 

minimizing computational inefficiencies throughout, eliminating redundant calculations, 

moving as much logic out of loops as possible and minimizing profligate object 

instantiations and, therefore, garbage collection overhead. After these changes, which 

amounted to almost a complete re-write of the original modelling software, a model run 

could be completed in less than 10 minutes for the UK fishing fleet (assuming a sample of 

30 tracks per vessel). The same model run would have taken approximately 3.5 days 

(~5,000 minutes) to complete with the previous version of the software. This made it 
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feasible to run the software many times, making it possible to perform uncertainty and 

sensitivity analysis. 

The source code for the optimized version of the software is provided in the accompanying 

electronic material submitted with this thesis. The case study datasets are also provided so 

that the model can be run and results can be repeated if desired. 

 

5.3.2 Sensitivity analysis methodology 

A sensitivity analysis was undertaken to assess the impact of a range of factors on the 

results calculated. In order to carry out sensitivity analysis, the modelling software was 

made to run deterministically given a particular set of input parameters. This was necessary 

so that the effects of parameter changes could be isolated from any inherent randomness 

in the parameter selection for the Monte Carlo simulation runs. The only aspect of the core 

software that did not always run deterministically was the track sampling module. This was 

made deterministic by fixing the random seed, which means that an identical stream of 

pseudo-random numbers is generated for each run started with any particular random 

seed. By fixing the seed and ensuring that tracks were sampled for vessels in a predictable 

order, a repeatable sample of tracks for a given fleet could be generated. 

Some areas of the model were subject to structural uncertainty, where different 

methodologies were trialled to calculate results. The two areas of structural uncertainty 

were the speed calculation method used and the use of engine load override rules. Results 

were compared when calculated with all of the different speed calculation methods. The 

effect of using engine load override rules was also quantified by running the model both 

with and without engine load override rules.  

The software was adapted to accept probabilistic input parameters instead of single value 

inputs. The probabilistic input parameters represent a range of possible values and are 

defined by a probability distribution. The parameters that were made probabilistic are 

listed in Table 5.3. The values of these parameters can be either explicitly set or randomly 

sampled depending on the run configurations of the modelling tool. When performing 

sensitivity analysis values are varied through their full range. When carrying out an 

uncertainty analysis using Monte Carlo simulation, the values of probabilistic parameters 

are randomly sampled for each run. 
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Table 5.3. Input parameters and their associated ranges. 

 

Two simple sensitivity analyses techniques were used. The input parameters were varied 

OAT. To test the linearity of output response to variation in input parameters, each 

parameter was run through their full range of values and Pearson’s linear correlation 

coefficient (r) was calculated. 

Pearson’s correlation coefficient (r) measures the strength of the linear correlation 

between two independent numerical variables. The formula for calculating Pearson’s 

correlation coefficient is reproduced in Equation 4.2 (after Field et al., 2012). When testing 

Parameter Range Baseline 

Emission factors Values from Table 5.1 (after Trozzi et al., 2016) Modal values 

Minimum speed 

registered as moving 

0.000001 (> 0) to 1.0 km h-1 0.05 km h-1 

Cumulative duration 

for derived maximum 

speed 

0 to 60 minutes 20 minutes 

Main engine 

hotelling/idling load 

10% to 20% (MARIN, 2012; Trozzi et al., 2016) 20% 

Sea margin 5% to 30% (Lindstad et al., 2011; Smith et al., 2012; 

Trozzi et al., 2016) 

10% 

Design speed Track derived, lower and upper bounds from 

combined speed calculation method 

Upper bound 

Instantaneous speed Track derived, lower and upper bounds from 

combined speed calculation method 

Upper bound 

Main engine running 

times when vessel is 

stopped 

Default: 5% of stop duration, min. 30 and max. 120 

minutes 

Range: 0 – 100% of default 

Default 

Auxiliary engine 

running times when 

vessel is stopped 

Default:50% of stop duration, min. 120 and max. 

1440 minutes 

Range: 0 – 100% of default 

Default 
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the significance of a linear correlation, Pearson’s correlation coefficient should only be 

applied to parametric data. However, when used simply to assess the linearity of a 

relationship this requirement can be relaxed (Field et al., 2012). The correlation coefficient 

(r) ranges between -1 and 1, with values close to 1 indicating a strong positive correlation, 

and values close to -1 indicating a strong negative correlation. Values close to 0 indicate no 

correlation in the two variables being compared (UWE, 2018). As a general rule, the r value 

can be interpreted as follows: 0 to ±0.1 indicates no correlation, ±0.1 to ±0.3 indicates weak 

correlation, ±0.3 to ±0.5 indicates medium correlation and ±0.5 or greater indicates strong 

correlation (Field et al., 2012). 

Having confirmed that all parameters have a strong linear correlation to outputs (see Table 

5.4), a local perturbation analysis was undertaken to rank the sensitivity of model results to 

variation of each input parameter. Each parameter was varied through a range from -10% 

to +10% of their baseline values (see Table 5.3). A 1% average variation was calculated to 

provide a normalised percentage variation in results for a 1% variation in each input 

parameter. 

This local perturbation technique does not take into account the full range of values that 

represent an input parameter. Therefore, the following global perturbation analysis was 

undertaken for parameters with a probability density function to determine the full range 

of possible results. The only parameter listed in Table 5.3 that was not included in the 

global perturbation sensitivity analysis was minimum speed registered as moving. This was 

excluded because this parameter is an absolute limit set by the modeller to reduce the 

impact of noisy data and, as such, cannot reasonably be represented with a range of values. 

Therefore, it was treated separately to identify a reasonable single value to use for further 

modelling. 

Some model parameters could not be described with a continuous probability density 

function and, therefore, could not be included in the perturbation analyses. Vessel engine 

and fuel type assignment and the effect of AIS track sampling both share this quality. 

However, some sense of the sensitivity of model outputs to the uncertainty associated with 

these inputs can be quantified using Monte Carlo sensitivity analysis, where repeated 

sampling of input values allows the calculation of statistics about the range of outputs 

produced.   
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Vessel engine and fuel type are modelled with proportions taken from the literature (Trozzi 

et al., 2016) (Table 3.3). The model is usually run with weighted average emission factors 

generated from these data. However, doing this hides the inherent uncertainties associated 

with the possible engine and fuel types used by the vessels in the UK fishing fleet. Without 

additional information, it is not possible to meaningfully model any systematic difference 

from these fleet level proportions. 

However, some sense of the uncertainty associated with engine and fuel type selection can 

be modelled by treating the fleet level data as a discrete distribution and sampling from it 

to assign individual vessel engine and fuel type combinations. To quantify this error, the 

model was run 250 times with engine and fuel types randomly sampled from this discrete 

distribution for each vessel and model run. This differed from the method used in 

calculating the baseline, where weighted average emission factors are generated from the 

same proportions. Using 250 runs was considered a sufficient number to capture most of 

the variability caused by engine and fuel type selection. If more parameters were being 

varied, such as for a full uncertainty analysis, a larger number of runs would be required to 

build up a reasonably accurate picture of the range of possible outputs. 

The track sampling methodology is also inherently stochastic and can be seen as sampling 

from a uniform discrete distribution. To quantify the effect of track sampling, the model 

was run 250 times with different randomly selected samples of one AIS track per vessel in 

the fleet. 

In order to provide context to these Monte Carlo sensitivity analyses, a similar analysis was 

also undertaken for emission factors. Emission factor values were sampled for each vessel 

and run from a triangular probability distribution from the minimum, modal and maximum 

values in Table 5.1. A total of 250 runs were completed. The results of this can be expected 

to show less variation than the global sensitivity analysis described above, but serves to 

provide a basis for assessing the relative sensitivity of results to uncertainty generated by 

sampling AIS tracks and engine and fuel types. 

Unless otherwise specified, the following run settings were used:  

• Combined speed calculation method (see below) 

• minimum moving speed of 0.05 km h-1, 

• 20-minute minimum cumulative time for AIS track derived maximum speed,  

• a main engine idling/hotelling load of 20% (from Trozzi et al., 2016),  
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• a sea margin of 10% (from Buhaug et al., 2009),  

• main engine running time during stops of 5% of stop duration and between 30 

and 120 minutes, 

• auxiliary engine running time during stops of 50% of stop duration and 

between 120 and 1,440 minutes, 

• engine load override rules as detailed in Table 3.4. 

The default speed calculation method used is the combined method, where the fastest of 

the speeds taken directly from the AIS data and calculated from distance (for track segment 

groups of at least 20 minutes total duration) is used. The various speed calculation methods 

are explained in Section 3.3.5. As recommended in Chapter 4, the track sampling pool was 

filtered to include only AIS tracks with: 

• no more than 10% of track segments containing errors,  

• minimum ½ year duration,  

• a minimum of 1,000 AIS data points, 

• at least 10% of port stops at UK ports 

Engine load override rules were used by default. Default error detection settings are used, 

as described in Chapter 3. Given that analyses are intended for comparison only, a single 

track sample was used per vessel to reduce model run times. 

 

5.3.3 Uncertainty analysis methodology 

An uncertainty analysis was undertaken to quantify the range of possible results output by 

the model when run with a range of parameter values represented with probability 

distributions. Monte Carlo simulation was used to sample from the input parameter 

distributions and repeatedly calculate model results with various combinations of these 

input parameter. The uncertainty analysis comprised of 2,000 runs of the model with 

different randomly sampled values for the model input parameters selected for each vessel 

and run.  

Monte Carlo simulation is a simple technique used to explore the join probability 

distribution of the results of a probabilistic model by running the model many times with 

different randomly selected values for each probabilistic input parameter. Its main 

weakness is that it is computationally expensive, since a complete model run has to be 
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computed for each data point in the resulting joint probability distribution. Its strengths are 

its relative simplicity and ability to deal with both discrete and continuous input parameters 

and models of an arbitrary level of complexity (Murphy, 2012). 

Latin Hypercube Sampling (LHS) was used to improve the results of the Monte Carlo 

simulation. Latin Hypercube Sampling uses stratification to ensure that probability 

distributions used to represent input parameters are well represented in sampling. In LHS, 

instead of fully random sampling for the values of input parameters, the cumulative density 

function of probabilistic input parameters is split into a range of strata of equal probability 

and samples are drawn from these strata. The number of strata is usually equal to the 

number of samples required. The total desired number of samples are drawn by sampling 

evenly from each of the strata, ensuring that the full range and shape of the input 

parameter is well represented.  

The LHS technique is recommended as a way of reducing the number of model runs 

required to form a reasonably accurate picture of the join probability distribution of a 

probabilistic model, using Monte Carlo techniques. It is particularly recommended when 

dealing with relatively long-running models as a way of reducing the overhead of 

uncertainty analysis by reducing the number of model runs required to produce reasonable 

results (Helton & Davis, 2003; Saltelli et al., 2008b; Wu et al, 2013). Because each model 

run for the case study fleet took a number of seconds to complete and it was impractical to 

conduct tens of thousands of model runs, LHS was used to improve the veracity of results. 

Following sensitivity analysis, the minimum moving speed was changed from the default 

value of 0.05 km h-1 to 0.1 km h-1 and was modelled as a fixed value. All other defaults such 

as for error detection, were retained other than the model parameters discussed below, 

which were sampled from the probability distributions described. 

Emission factors were sampled from a triangular distribution generated from data in the 

EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi et al., 2016). A single 

track for each modelled vessel was randomly sampled for each run with equal probability of 

sampling any track in the filtered sampling pool. Engine and fuel type were selected for 

main and auxiliary engines from a discrete probability distribution generated with the 

values in Table 3.3 (Trozzi et al., 2016).  

Main engine idling/hotelling load was sampled from a uniform distribution from 10% to 

20%. This was based on recommendations from MARIN (2012), where a 10% 
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idling/hotelling engine load is suggested and Trozzi et al. (2016), where a 20% engine load is 

suggested. Sea margin was selected from a uniform distribution from 5% to 30% based on 

data available in the literature (Buhaug et al., 2009, Lindstad et al., 2011; Smith et al., 2012; 

Trozzi et al., 2016). Main and auxiliary engine running times while hotelling were sampled 

from a uniformly distributed range from zero to the default values assumed (see Table 5.3).  

To represent the uncertainty in vessel design speed, the minimum cumulative duration 

used to derive maximum speed from the AIS data was represented as a range from 0-60 

minutes with uniform probability. The speed ranges generated by using the smoothed 

hybrid speed calculation method were also treated as uniform distributions, with a point in 

the range from the lower and upper speeds being randomly sampled for each vessel per 

run. 

The range values used for the input parameters of the uncertainty analysis are generally 

not balanced around the fixed values used for producing the baseline results. For this 

reason, systematic deviation from the baseline is to be expected. However, having changed 

the minimum moving speed from 0.05 km h-1 to 0.1 km h-1, the baseline values had to be 

recalculated. This was done to allow meaningful comparison of the results of the 

uncertainty analysis with the baseline results. The new baseline was calculated by running 

the model with 250 different random track samples so that a realistic average baseline 

value could be calculated. 

 

5.4 Results 

The results of the sensitivity and uncertainty analysis are presented below. Given the range 

of emissions calculated and the need to show results in a digestible format, emission 

comparison between runs is generally restricted to total CO2 emissions (sum of main and 

auxiliary engine emissions). Full results tables are available electronically in the 

accompanying material. 

 

5.4.1 Sensitivity analysis results 

The results of model runs for the UK fishing fleet annual emissions from May 2012 to May 

2013 with the different speed calculation methodologies trialled showed considerable 

variation (Figure 5.1). The smoothed combined speed calculation method produced a 
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baseline result of 1,094.34 kt CO2 for the UK fishing fleet for the year modelled. The results 

for the combined, AIS, Haversine and smoothed Haversine speed calculation methodologies 

were 1,016.31 (-7.9%), 1,264.49 kt CO2 (+15.5%), 929.18 kt CO2 (-15.1%) and 1,008.79 kt 

CO2 (-7.8%), respectively.  

 

Figure 5.1. Total CO2 emissions calculated with fixed model parameters other than 

instantaneous speed calculation methodology. 

 

Running the model without engine load override rules yielded a result of 1,051.52 kt CO2. 

This is a relatively minor reduction of 3.9% below the baseline result calculated with engine 

load override rules. 

Cycling through a range of values for the minimum speed to register as moving from 

0.000001 km h-1 (effectively > 0 km h-1) to 1.0 km h-1 resulted in a reducing emissions trend 

from 1,358.1 kt CO2 to 1,008.7 kt CO2 (Figure 5.2). Reducing the minimum speed registered 

as moving to 0.000001 km h-1 yielded results 24.1% higher than the baseline (0.05 km h-1). 

The difference between the 0.000001 km h-1 and 0.05 km h-1 was much greater than any of 

the other differences. Increasing the minimum speed had a smaller effect with 0.1 km h-1 

giving results that were only 3.9% lower, and 1.0 km h-1 giving results of only 7.8% lower 

than the baseline (0.05 km h-1). The rate of emissions decrease with increasing minimum 

speed shows a strong linear correlation (r = -0.79) between 0.05 and 1.0 km h-1. 
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Figure 5.2. Total CO2 emissions calculated with fixed model parameters other than 

the minimum speed registered as moving. 

 

The results calculated for the variation through the ranges for each of the other input 

parameters generally showed either very strong positive or negative correlations 

(Table 5.4). As would be expected, the results for each of the atmospheric emissions, 

fuel use and power generated generally followed the same trend. Exceptions to this 

were see when varying emissions factors, where power generated did not change, 

therefore no correlation was found between varying emissions factor value and 

generated power. Varying the instantaneous combined speed range value showed very 

strong positive correlations for power generated, fuel consumption, fuel based 

emissions (CO2, SO2 and CO) and NOx. However, a strong negative correlation was 

observed for both NMVOC and PM. These emissions are highly influenced by engine 

load, with much greater emission factors when engines are running at low loads. This is 

almost certainly what causes these trends. 
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Table 5.4. Pearson’s (r) linear correlation coefficients for changes in input parameters 

to response in output results. 

Parameter CO2 NOx SO2 NMVOC CO PM Fuel Power 

Emission 

factors 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

Main 

hotelling 

/idling load 

1.000 1.000 1.000 0.999 1.000 0.999 1.000 1.000 

Design speed -0.974 -0.976 -0.985 -0.929 -0.985 -1.000 -1.000 -0.986 

Speed 0.910 0.988 0.910 -0.628 0.910 -0.624 0.910 0.978 

Minutes for 

max. speed -0.974 -0.976 -0.985 -0.929 -0.985 -1.000 -1.000 -0.986 

Engine time 

during stops 
0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 

Sea margin -1.000 -1.000 -1.000 -0.944 -1.000 -0.943 -1.000 -1.000 

Min. moving 

speeda 
-0.789 -0.792 -0.790 -0.785 -0.790 -0.785 -0.790 -0.790 

r values can be interpreted as follows: 0 to ±0.1 indicates no correlation, ±0.1 to ±0.3 

indicates weak correlation, ±0.3 to ±0.5 indicates medium correlation and ±0.5 or greater 

indicates strong correlation (Field et al., 2012). All results have p < 0.01, suggesting a high 

level of confidence in the significance of these trends. 

a) Calculated for range 0.05 to 1.0 km h-1 as the 0.000001 km h-1 result is an outlier. 

 

The results of the local perturbation analysis indicate that the parameters that exert the 

most influence on results when varied are emission factors, main engine hotelling/idling 

load, design speed and instantaneous speed. Perturbation of other parameters appears to 

have only a minor influence on results (Table 5.5). 
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Table 5.5. The results of a local perturbation sensitivity analysis, showing the change in 

output for a 1% change in input parameters (averaged over a range from -10% to +10% 

of each input parameter’s baseline value. 

Parameter CO2 NOx SO2 NMVOC CO PM Fuel Power 

Emission 

factors 
0.837% 0.807% 0.837% 0.941% 0.837% 0.931% 0.837% 0.836% 

Main 

hotelling/ 

idling load 

0.528% 0.568% 0.528% 0.449% 0.528% 0.444% 0.528% 0.545% 

Design speed 0.480% 0.620% 0.480% 0.191% 0.480% 0.188% 0.480% 0.527% 

Speed 0.324% 0.468% 0.324% 0.179% 0.324% 0.177% 0.324% 0.368% 

Minutes for 

max. speed 
0.069% 0.087% 0.069% 0.024% 0.069% 0.024% 0.069% 0.075% 

Engine time 

during stops 
0.035% 0.035% 0.035% 0.034% 0.035% 0.035% 0.035% 0.035% 

Sea margin 0.023% 0.029% 0.023% 0.017% 0.023% 0.017% 0.023% 0.025% 

Min. moving 

speeda 
0.013% 0.012% 0.013% 0.013% 0.013% 0.013% 0.013% 0.013% 

 

The results of the global perturbation sensitivity analysis tell a slightly different story (Table 

5.6). Emission factors and main engine hotelling/idling load are still the dominant 

parameters in terms of their influence on model results. Design speed still appears to be 

important. However, it is the cumulative time used to derive maximum speed (used as a 

proxy for design speed) that has a more significant influence. The results suggest that the 

range between lower and upper derived design speeds when using the smoothed 

combined speed calculation method is very small as it has only a minor effect on results 

when running through the range of its possible values. 

Other parameters have a smaller but not insignificant effect. It is also worth noticing that 

most parameters have an uneven effect on the results, the majority of which have a 

stronger negative component. 
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Table 5.6. The results of a global perturbation sensitivity analysis, showing the change 

in output with respect to the baseline for the full range of values representing each 

input parameter. 

Parameter CO2 NOx SO2 NMVOC CO PM Fuel Power 

Emission 

factors 

Min -22.1% 
-

30.7% 

-

22.1% 
-45.3% 

-

22.1% 

-

45.1% 
-22.1% 0.0% 

Max 22.1% 30.7% 22.1% 45.3% 22.1% 45.1% 22.1% 0.0% 

Main 

hotelling/ 

idling 

load 

Min -26.8% 
-

27.1% 

-

26.8% 
-27.0% 

-

26.8% 

-

26.8% 
-26.8% -27.2% 

Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Minutes 

for max. 

speed 

Min -1.5% -2.2% -1.5% 0.0% -1.5% 0.0% -1.5% -1.7% 

Max 8.8% 11.4% 8.8% 2.5% 8.8% 2.5% 8.8% 9.7% 

Speed 
Min -4.6% 

-

10.2% 
-4.6% 0.0% -4.6% 0.0% -4.6% -6.2% 

Max 0.7% 0.0% 0.7% 15.1% 0.7% 14.9% 0.7% 0.0% 

Sea 

margin 

Min -4.5% -6.0% -4.5% -0.7% -4.5% -0.6% -4.5% -5.0% 

Max 1.2% 1.5% 1.2% 0.4% 1.2% 0.4% 1.2% 1.3% 

Engine 

time 

during 

stops 

Min -4.4% -4.3% -4.4% -4.3% -4.4% -4.3% -4.4% -4.3% 

Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Design 

speed 

Min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Max 0.9% 1.1% 0.9% 0.4% 0.9% 0.4% 0.9% 0.9% 

 

The results of Monte Carlo sensitivity analysis of the variation in results due to AIS track 

sampling are shown in Table 5.7. This shows that, when all other parameters are held 

constant, track sampling generates variability in the results with a standard deviation of all 

pollutants and power within the range from ±1.56% to ±1.93%. Figure 5.3 shows that these 

results are approximately evenly distributed around the mean. 
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Table 5.7. Summary statistics of 250 model runs with different single track samples to 

represent the activity of each vessel in the fleet.  
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Max +4.83% +5.07% +4.83% +3.98% +4.83% +3.98% +4.83% +4.94% 

 

 

Figure 5.3. Total CO2 emissions results frequency counts for 250 model runs with different 

single AIS tracks sampled to represent each modelled vessel’s activity. Labels on the 

horizontal axis represent range lower bounds. 

 

Table 5.8 shows the variation in CO2 emissions results caused by engine and fuel type 

sampling. Compared to track sampling, the variation is small, with a standard deviation of 
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with standard deviations of ±0.86% for NMVOC and ±1.53% for PM. Figure 5.4 shows the 

results to be slightly skewed from the mean. 

Table 5.8. Summary statistics of 250 model runs with different randomly sampled engine 

and fuel types assigned to each vessel in the fleet for each run. 
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95% c.i. ±0.13% ±0.63% ±0.11% ±1.68% ±0.11% ±3.00% ±0.11% ±0.00% 

Min -0.10% -1.14% -0.08% -2.70% -0.08% -2.52% -0.08% -0.00% 

Max +0.25% +0.65% +0.21% +1.74% +0.21% +6.24% +0.21% +0.00% 

 

 

Figure 5.4. Total CO2 emissions results frequency counts for 250 model runs with different 

engine and fuel types selected for each vessel and run. Labels on the horizontal axis 

represent range lower bounds. 
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Emissions factors, the most significant factor identified in the global perturbation sensitivity 

analysis, give rise to smaller standard deviation for all pollutants and fuel consumption 

compared to AIS track sampling. Emission factor uncertainties also cause less variation than 

engine and fuel type assignment for NMVOC and PM (Table 5.9). Figure 5.5 shows a 

balanced distribution of results around the mean caused by uncertainty in emission factors. 

Table 5.9. Summary statistics of 250 model runs with different randomly sampled emission 

factors assigned to each vessel in the fleet. 
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Figure 5.5. Total CO2 emissions results frequency counts for 250 model runs with different 

emission factors sampled for each vessel. Labels on the horizontal axis represent range 

lower bounds. 

 

5.4.2 Uncertainty analysis results 

The results of the baseline recalculation with minimum moving speed of 0.1 km h-1 are 

listed in Table 5.10. The results of the Monte Carlo uncertainty analysis are presented in 

Table 5.11. The results of the uncertainty analysis indicate that emissions of all pollutants 

are likely to fall within ±6% of the mean (at the 95% confidence interval).  

The mean values for the uncertainty analysis are systematically lower than results 

calculated using the default parameter values for all pollutants, fuel consumption and 
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values listed at the end of Section 5.3.2 are between 2.94% and 19.53% above the mean 

results of the uncertainty analysis. Figures 5.6 to 5.13 show that the results for all pollutants 

are relatively evenly distributed around the mean and are approximately normally 

distributed. 
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Table 5.10. Summary statistics of 250 model runs with different random single track 

samples to represent the activity of each vessel in the fleet using the higher minimum 

moving speed of 0.1 km h-1. 
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Table 5.11. Summary statistics of a 2000 run Monte Carlo simulation uncertainty analysis. 
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Table 5.12. Differences between the 2000 run Monte Carlo simulation uncertainty analysis 

and baseline results calculated as the average of 250 runs with independent track samples. 

Percentages represent the proportion of overestimation in the default parameter values 

compared to the mean uncertainty analysis results. 
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Figure 5.6. Total CO2 emissions results frequencies for uncertainty analysis comprising 2000 

Monte Carlo simulation runs. Labels on the horizontal axis represent range lower bounds. 
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Figure 5.7. Total NOx emissions results frequencies for uncertainty analysis comprising 2000 

Monte Carlo simulation runs. Labels on the horizontal axis represent range lower bounds. 

 

 

Figure 5.8. Total SO2 emissions results frequencies for uncertainty analysis comprising 2000 

Monte Carlo simulation runs. Labels on the horizontal axis represent range lower bounds. 
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Figure 5.9. Total NMVOC emissions results frequencies for uncertainty analysis comprising 

2000 Monte Carlo simulation runs. Labels on the horizontal axis represent range lower 

bounds. 

 

 

Figure 5.10. Total CO emissions results frequencies for uncertainty analysis comprising 2000 

Monte Carlo simulation runs. Labels on the horizontal axis represent emissions range lower 

bounds. 
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Figure 5.11. Total PM emissions results frequencies for uncertainty analysis comprising 

2000 Monte Carlo simulation runs. Labels on the horizontal axis represent range lower 

bounds. 

 

 

Figure 5.12. Total fuel consumption results frequencies for uncertainty analysis comprising 

2000 Monte Carlo simulation runs. Labels on the horizontal axis represent range lower 

bounds. 
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Figure 5.13. Total power generation results frequencies for uncertainty analysis comprising 

2000 Monte Carlo simulation runs. Labels on the horizontal axis represent range lower 

bounds. 

 

5.5 Discussion 

The results from the various speed calculation methods trialled differ significantly. 

Emissions calculated using only speeds from AIS data are significantly higher than those 

calculated using the alternative speed calculation methods. This is, in part, due to lower 

estimates of design speed deduced from AIS data and therefore higher average relative 

speeds and engine loads. These differences highlight that selecting the speed calculation 

methodology is a major decision when using AIS data to produce emissions inventories, 

especially when AIS data is the best source of information available for estimating vessel 

design speed. 

Using both the distance and duration derived from AIS data and the speeds recorded 

directly in the AIS data themselves in a combined method for speed calculation (see Section 

3.3.5) seems a good way to utilise more information than either of the methods commonly 

used in the literature. It also offers a range of speed values that can be used to contribute 

to the quantification of uncertainty in emissions inventories.  
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The results of the sensitivity analysis showed that the results were sensitivity to variation in 

all of the input parameters included in the analysis. The results are most sensitive to 

uncertainties in AIS track sampling, followed by emission factors, engine and fuel type 

sampling and the parameterization of the engine load calculation formula. The use of 

engine load override rules accounts for a relatively minor but still not insignificant increase 

in the emissions calculated. An increase is expected given that the engine load override 

rules used override the engine load calculated from relative speed with a comparatively 

high engine load. This suggests that the methodology detects vessels exhibiting trawling 

and dredging behaviours for a relatively small proportion of overall moving time. 

The sampling of AIS tracks is an inherent source of uncertainty when vessels cannot be 

directly matched to AIS records. This analysis suggests that it will be one of the most 

significant sources of uncertainty when calculating emissions for small commercial 

watercraft unless vessel databases are developed that include MMSI number identifiers for 

these fleets and the uptake of AIS technology approaches 100%. However, the results of 

this research indicate that fleet level results are relatively stable despite the use of sampled 

AIS tracks as the source of vessel activity data when modelling relatively large fleets. 

Due to the inherent stability that modelling large fleets provides to results, what is more 

significant are the sources of potential systemic uncertainty, i.e. the sources of uncertainty 

that have a biased effect. For example, the default value for main engine hotelling/idling 

load was set at 20% prior to the undertaking of uncertainty and sensitivity analysis and then 

replaced with a range value from 10% to 20%. The original value had been taken from a 

standard guidebook for modelling emissions from waterborne navigation (Trozzi et al., 

2016). The results presented in Table 5.6 indicate that this kind of systematic alteration of 

input parameters has a significant effect on the mean results calculated. Therefore, 

identifying realistic and unbiased values for these input parameters is important for the 

accuracy of results. The parameters that appear to have generated the most significant bias 

are the parameters affecting engine load calculation. Namely, main engine hotelling/idling 

load, sea margin and design speed. 

The results of the local sensitivity analysis indicated that perturbation of design speed could 

have a significant effect on model outputs. Given that design speed was derived from AIS 

track data in the case study example, it was a significant source of uncertainty for which 

bias is difficult to quantify. It is differences in track derived design speed that accounts for 

most of the variation in results between the different speed calculation methods trialled. 
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This implies that collecting data on vessel design speeds would reduce uncertainty 

significantly. 

The full uncertainty analysis was run with a slightly higher value for minimum moving speed 

of 0.1 km h-1 compared to 0.05 km h-1. This higher speed was selected as it appears to be 

the point at which the rate of change in emissions slowed when cycling through the range 

of minimum speeds tested (Figure 5.2). This was taken as an indication that selecting a 

minimum moving speed around this value reduces the potential for emissions 

overcalculation due to GPS ‘noise’ or vessels drifting whilst moored or at anchor. Using the 

higher minimum moving speed was shown to reduce emissions by 3.9% when using default 

values for all other model parameters (Figure 5.3).  

For comparison, a mean value was calculated based 250 runs with different random track 

samples. The difference in results between this and the uncertainty analysis can be viewed 

as the net effect of the biases introduced by selecting single parameter values that were 

not central to the ranges used for the uncertainty analysis. Considering total CO2 emissions, 

the mean results of track sampling sensitivity analysis carried out with the higher minimum 

moving speed were 1,038.5 kt, compared to 907.8 kt for the full uncertainty analysis, a 

difference of 14.3%. The mean fuel consumption calculated from the 2000 Monte Carlo 

simulation runs was 284.8 kt ±5% (with a 95% confidence interval). The range of fuel use at 

the 95% confidence interval is from 270.6 kt to 299.0 kt. 

 

5.6 Conclusion 

The findings of the work presented in this chapter highlight that there are many sources of 

uncertainty that affect results. There are some structural decisions that require careful 

consideration, such as the speed calculation methodology and the use of engine load 

override rules. These are both considerations that seem to be afforded little attention in 

the literature.  

Despite the apparent significance of track sampling and emissions factor ranges in 

generating uncertainty in the results, it is suggested that the areas where additional data 

and research effort is most important to reduce uncertainty are the parameters that can 

introduce the most significant bias in results. From the findings in this chapter, the factors 

affecting engine load calculation are found to be the largest contributors to potential bias. 

There is a paucity of information in the literature for both main engine hotelling/idling load 
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and sea margin, both of which have a significant effect on engine load calculation. There is 

also limited information available on the design speeds of the fishing vessels used in this 

case study. The results of this analysis indicate that errors and bias in these input 

parameters can lead to significant systematic bias in results. 

The results of the uncertainty analysis seem to indicate that the default input parameter 

values proposed early in the chapter are likely to result in an overestimation of emissions. 

By selecting values closer to the middle of the ranges used to represent input parameters, 

better quality results can be expected. This is shown to be the case in Chapter 6, where 

results are compared to those produced using an alternative methodology and comparable 

findings in the literature. Overall, the uncertainty in results appears to have a range of 

around ±5% for fuel use and all pollutant emissions at the 95% confidence interval, 

indicating good stability of results.  
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6 Case study emissions inventory for the UK fishing fleet: comparison of 

an AIS-based and a fuel-based methodology 

The purpose of this chapter is to present the results of using the bottom-up activity-based 

methodology using AIS data outlined in Chapters 3 and 4 to calculate an inventory of fuel 

use and atmospheric pollution emissions for the UK fishing fleet over the duration of a year 

from May 2012 to May 2013. The findings presented in Chapter 5 are used to calibrate 

model input parameters. An inventory is calculated using an alternative fuel-based 

methodology, which is used for comparison and validation of the activity-based 

methodology. Results are also compared to published inventories where possible. This 

chapter satisfies objective 4 of this project: 

“To calculate an emissions inventory for a case study fleet of small commercial 

vessels and assess the validity of results..” 

 

6.1 Introduction 

Throughout the 20th century fisheries became highly dependent on fossil fuels (Tyedmers et 

al., 2005), and are a major source of greenhouse gas emissions and other atmospheric 

pollutants (Driscoll & Tyedmers, 2010). In 2012, the United Kingdom (UK) fishing fleet was 

made up of 6434 vessels, comprising a significant fraction of the UK shipping fleet (EC, 

2013a). 

Previous emissions inventories for the fishing industry have been compiled based on fuel 

use data surveyed from vessel operators (Hospido & Tyedmers, 2005; Iribarren et al., 2010; 

Tyedmers, 2001; Vázquez-Rowe et al., 2010; Ziegler & Hansson, 2003). Larger fishing 

vessels have also been included in global shipping emissions inventories using activity-

based methods (Buhaug et al., 2009; Corbett & Köhler, 2003; Endresen et al., 2003; Eyring 

et al., 2005; Jalkanen et al., 2014; Smith et al., 2014). Activity-based methodologies have 

been widely accepted as more accurate than fuel-based methods for calculating shipping 

emissions inventories (Buhaug et al., 2009; Smith et al., 2014). However, complete 

emissions inventories of fishing fleets continue to rely on fuel-based methods. One possible 

reason for this is a the lack of complete activity data records. For example, AIS devices are 

not mandatory for the majority of fishing vessels and, therefore, only a fraction of the fleet 
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has them installed (Coello et al., 2015). Another issue is the requirement to detect and 

model fuel consumption of vessels engaged in trawling and dredging activities.  

This chapter presents a emissions inventory of the UK fishing fleet calculated using the 

activity-based methodology based on AIS data described in Chapters 3 and 4. Significantly, 

the methodology uses an activity-sampling approach that is necessary for fleets for which 

not all vessels have AIS technology fitted, such as the UK fishing fleet. It also introduces a 

new way to identify when vessels are engaged in trawling or dredging and adjusts the 

engine load used in emissions calculation accordingly. As a means of comparison and 

corroboration, an emissions inventory is also calculated from fuel consumption rates per 

unit of catch and total catch landed by the UK fishing fleet. 

 

6.1.1 Previous emissions inventorying methods 

Methods for the quantification of emissions from the fishing industry have generally relied 

on the use of primary or secondary data on fuel use reported by fishing vessel operators 

that are used to determine fuel consumption per unit of catch landed. These data are 

scaled-up using either fleet vessel numbers or records of total landings to produce 

emissions inventories for regional, national or international fleets (Hospido & Tyedmers, 

2005; Iribarren et al., 2010; Tyedmers, 2001; Tyedmers et al., 2005; Vázquez-Rowe et al., 

2010; Whall et al., 2002; Ziegler & Hansson, 2003). 

Such methods are useful for quantifying and comparing the carbon intensity of various 

seafood products and fishing methods (Tyedmers, 2001; Thrane, 2004a, 2004b; Ziegler & 

Hansson, 2003; Ziegler & Valentinsson, 2008); as well as changes in carbon and fuel 

intensity over time due to changes in fish stocks and fishing methods (Schau et al., 2009). 

However, they are less useful for producing the kind of spatially and temporally resolved 

emissions inventories typically used as inputs to atmospheric chemical transport and 

dispersion models. 

Fishing vessels of 100 GT and above have also been included in various activity-based 

emissions inventories. The activity data used has ranged from educated assumptions 

(Corbett & Köhler, 2003; Endresen et al., 2003; Eyring et al., 2005), port arrivals and 

departures (Dalsøren et al., 2009), AIS data used to estimate days at sea and engine loads 

(Buhaug et al., 2009) or AIS data used to produce fully vessel-specific bottom-up inventories 

(Jalkanen et al., 2014; Smith et al., 2014). However, the omission of fishing vessels under 



  

138 
 

100 GT is likely to result in considerable underestimation of emissions from the sector 

(Endresen et al., 2007). Reliable inclusion of fishing vessels in activity-based estimates 

based on empirical data, such as AIS data also requires modelling of the elevated engine 

loads of vessels engaged in trawling and dredging operations to avoid potential 

underestimates of emissions. This is an issue that previous activity-based methodologies 

have not addressed. 

 

6.2 Materials and methods 

6.2.1 Fuel-based method 

The Scientific Fishery Data portal, run by the European Commission (EC), provides data on 

total landings by country, fishing vessel size and gear type for 2008, 2009 and 2010 (EC, 

2013b). This was used to obtain information on total landings by vessels of different gear 

types for the UK (Table 6.1). It also provides fuel efficiency data for various European Union 

(EU) countries for each fishing vessel category (Tables B.1 to B.13, Appendix B). The fuel 

efficiency data give a rate of fuel use per unit of catch, expressed in litres per kilogram 

(L/kg), produced from data that vessel operators provide to the EC. 

Table 6.1. Total landings by UK fishing vessel category (EC, 2013b). 

Vessel category UK Landings 

2008 (kg) 

UK Landings 

2009 (kg) 

UK Landings 

2010 (kg) 

Beam trawlers (< 12 m) 515,564 650,206 315,638 

Beam trawlers (12-24 m) 3,267,066 3,744,021 4,249,213 

Beam trawlers (24-40 m) 8,291,496 6,316,458 7,819,519 

Beam trawlers (≥ 40 m) 5,867,651 6,684,815 7,843,600 

Demersal trawlers and/or demersal seiners 

(< 12 m) 

9,949,386 9,660,181 9,871,153 

Demersal trawlers and/or demersal seiners 

(12-24 m) 

75,604,466 77,627,917 72,400,926 

Demersal trawlers and/or demersal seiners 

(24-40 m) 

58,760,550 63,493,796 62,841,105 

Demersal trawlers and/or demersal seiners 

(≥ 40 m) 

24,472,585 21,876,081 26,656,554 
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Vessel category UK Landings 

2008 (kg) 

UK Landings 

2009 (kg) 

UK Landings 

2010 (kg) 

Dredgers (< 12 m) 5,475,504 3,983,135 4,352,353 

Dredgers (12-24 m) 18,452,518 19,528,757 24,030,115 

Dredgers (24-40 m) 77,600,95 12,420,909 0 

Dredgers (≥ 40 m) 4,424,000 0 3,380,000 

Drift and/or fixed netters (< 12 m) 6,370,474 6,436,064 6,653,501 

Drift and/or fixed netters (12-24 m) 1,925,281 1,894,493 1,869,835 

Drift and/or fixed netters (24-40 m) 2,387,361 2,662,653 2,729,474 

Pelagic trawlers (12-24 m) 0 0 56864 

Pelagic trawlers (≥ 40 m) 12,144,936 0 0 

Purse seiners (< 12 m) 10,169 192,287 145,922 

Purse seiners (12-24 m) 3,320,722 2,968,464 4,070,743 

Purse seiners (24-40 m) 0 0 0 

Purse seiners (≥ 40 m) 271,459,977 282,458,782 291,697,519 

Vessels using active and passive gears (< 12 

m) 

11,607 7,917 49,617 

Vessels using active and passive gears (12-

24 m) 

16,509 0 0 

Vessels using hooks (< 12 m) 1,728,370 2,152,001 2,619,282 

Vessels using hooks (12-24 m) 163,551 261,436 282,183 

Vessels using hooks (24-40 m) 5,300,293 5,986,799 5,482,226 

Vessels using hooks (≥ 40 m) 1,028,037 812,016 236,725 

Vessels using polyvalent active gears only 

(< 12 m) 

346,324 763,226 199,009 

Vessels using polyvalent active gears only 

(12-24 m) 

112,844 674,401 1,575,443 

Vessels using polyvalent passive gears only 

(< 12 m) 

464,099 371,356 585,400 

Vessels using pots and/or traps (< 12 m) 29,412,180 26,952,669 28,500,338 

Vessels using pots and/or traps (12-24 m) 14,417,569 14,492,785 15,460,285 

Vessels using pots and/or traps (24-40 m) 1,531,637 1,564,094 1,582,940 

 



  

140 
 

Fuel efficiency data were not available for all vessel categories for each year and country. 

Notably, UK fuel efficiency data were only available for 2008 and 2009. Where UK data 

were available, the data for both years were averaged to give the fuel efficiency figures 

used in this research. When UK data were unavailable for a vessel category, data from 

other countries were used based on a ranking of similarity to UK data using the mean 

difference between the UK and other countries’ fuel efficiencies (Table B.14, Appendix B). 

Mean differences were calculated for active gear types (e.g. trawling and dredging), passive 

gear types (e.g. nets and hooks) and all gear types (Table B.14, Appendix B) based on the 

vessel categories with data for the UK and other countries that could be compared (Tables 

B.1, B.2, B.4, B.9 and B.13 of Appendix B). For vessel categories where data were 

unavailable for the UK, fuel efficiencies from the closest matching country to the UK were 

taken. The fuel efficiency used was the mean of all years available for the selected country 

and vessel category (Table 6.2). 

For example, Table 6.1 shows landings by UK pelagic trawlers (≥ 40 m). However, no fuel 

efficiency figures are available for UK pelagic trawlers (Table B.5, Appendix B). Pelagic 

trawlers are categorised as vessels that use active gear. Using Tables B.5 and B.14 in 

Appendix B, fuel efficiency figures can be selected for the country that has the most similar 

active gear fuel efficiency rates to the UK, which is Lithuania. Taking the mean of the fuel 

efficiency figures for Lithuania (0.43 L/kg in 2009 and 0.66 L/kg in 2010) gives a fuel 

efficiency of 0.55 L/kg. 

In some vessel categories data were only available for one country, in which case those fuel 

efficiency figures were used. For example, Table 6.1 contains landings by beam trawlers      

< 12 m, a category of vessel for which only Germany has registered fuel efficiency figures 

(Table B.1, Appendix B). Certain vessel categories had no data at all. In these cases, the fuel 

efficiency from the most similar category of vessel was used as a proxy. For example, a fuel 

efficiency rate was required for dredgers > 40 m but no fuel efficiency data were available 

for this type of vessel. Therefore, the fuel efficiency data for dredgers 24 – 40 m from the 

UK were used as a proxy. 

The total landings data (Table 6.1) were multiplied by the fuel efficiency figures used (Table 

6.2) to estimate fuel consumption by the UK fishing fleet (Table 6.3). To convert fuel use 

from litres to tonnes, it was assumed that all vessels used Marine Diesel Oil, with a density 

of 1,191 litres per tonne (Defra/DECC, 2012). Tier 1 emissions factors were taken from the 
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EMEP/EEA air pollutant emission inventory guidebook 2016 (Trozzi et al., 2016) to calculate 

emissions. 

Table 6.2. Fuel efficiency figures compiled from European Scientific Fishery Data (based on 

EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per kilogram (kg) of catch 

landed. 

Vessel category Fuel 

efficiency 

used (L/kg) 

Data used Reason 

Beam trawlers (< 12 m) 0.68 Germany Only country available 

Beam trawlers (12-24 m) 1.93 UK  

Beam trawlers (24-40 m) 1.49 UK  

Beam trawlers (≥ 40 m) 2.75 Netherlands Only country available 

Demersal trawlers and/or 

demersal seiners (< 12 m) 

0.94 UK  

Demersal trawlers and/or 

demersal seiners (12-24 m) 

1.00 UK  

Demersal trawlers and/or 

demersal seiners (24-40 m) 

0.92 UK  

Demersal trawlers and/or 

demersal seiners (≥ 40 m) 

0.71 UK  

Dredgers (< 12 m) 0.61 UK  

Dredgers (12-24 m) 0.47 UK  

Dredgers (24-40 m) 0.65 UK  

Dredgers (≥ 40 m) 0.65 UK Dredgers 

(24-40 m) 

No data available so 

used as proxy 

Drift and/or fixed netters (< 12 m) 0.56 UK  

Drift and/or fixed netters (12-24 

m) 

0.58 UK  

Drift and/or fixed netters (24-40 

m) 

0.41 UK  

Pelagic trawlers (12-24 m) 0.42 Italy Active gear closest 

match 
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Vessel category Fuel 

efficiency 

used (L/kg) 

Data used Reason 

Pelagic trawlers (≥ 40 m) 0.55 Lithuania Active gear closest 

match 

Purse seiners (< 12 m) 0.16 Portugal Only country available 

Purse seiners (12-24 m) 0.12 Portugal Passive gear closest 

match 

Purse seiners (24-40 m) 0.13 Portugal Passive gear closest 

match 

Purse seiners (≥ 40 m) 0.13 Portugal 

Purse Seiners 

(24-40 m) 

No data so used as 

proxy 

Vessels using active and passive 

gears (< 12 m) 

0.29 France All gear closest 

matches 

Vessels using active and passive 

gears (12-24 m) 

0.58 Denmark All gear closest 

matches 

Vessels using hooks (< 12 m) 0.68 UK  

Vessels using hooks (12-24 m) 0.78 Portugal Passive gear closest 

match 

Vessels using hooks (24-40 m) 0.86 UK  

Vessels using hooks (≥ 40 m) 0.86 UK Vessels 

using hooks 

(24-40 m) 

No data so used as 

proxy 

Vessels using polyvalent active 

gears only (< 12 m) 

0.93 France Only country available 

Vessels using polyvalent active 

gears only (12-24 m) 

1.03 France Only country available 

Vessels using polyvalent passive 

gears only (< 12 m) 

0.03 Latvia Passive gear closest 

match 

Vessels using pots and/or traps (< 

12 m) 

0.71 UK  
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Vessel category Fuel 

efficiency 

used (L/kg) 

Data used Reason 

Vessels using pots and/or traps 

(12-24 m) 

0.73 UK  

Vessels using pots and/or traps 

(24-40 m) 

0.73 UK Vessels 

using pots 

and/or traps 

(12-24 m) 

No data so used as 

proxy 

 

 

6.2.2 Bottom-up activity-based method 

Emissions from the fishing industry were calculated using a bottom-up activity-based 

methodology and software model based on AIS data. Chapter 3 provides a detailed 

description of the methodology and software used to calculate emissions. AIS data for 

fishing vessels within the area between latitudes 40˚N and 65˚N and longitudes 20˚W and 

12˚E between 9th May 2012 and 15th May 2013 were provided by MarineTraffic.com 

(MarineTraffic.com, 2013). The data provided comprised an archive of over 55.5 million 

individual AIS messages associated with 5188 unique Marine Mobile Service Identity 

(MMSI) numbers, each of which represents a vessel broadcasting AIS data. Further analysis 

of the data showed that 653 of these tracks were of sufficiently high quality and were 

classified as belonging to the UK fleet of vessels using the filtering criteria recommended in 

Chapter 4. This was taken as the sample of activity data for the UK fleet. 

The European Commission (EC) maintains the Community Fleet Register database of fishing 

vessels that operate under the flags of EC member states (EC, 2013a). This was used to 

obtain a list of vessels licenced in the UK at the start of each month from May 2012 to May 

2013. These data were then combined into a single list of all vessels active throughout the 

study period with appropriate start and finish dates so that vessels registered or 

deregistered throughout the study could be treated appropriately. The aggregated list used 

in the study contained characteristics of 6434 vessels. The full vessel characteristics 

database is available in the accompanying electronic material. 
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In addition to these key datasets, a database containing the location of 588 ports in the 

study area was compiled. These ports were initially identified using online mapping services 

and omissions were identified by projecting the locations where vessels stopped (as shown 

by the AIS data used in the study) onto aerial photographs of the study area using publicly 

available satellite and aerial imagery tools. This helped to identify additional smaller ports 

and harbours not listed on maps. The full list of ports identified is available in 

CaseStudyData directory of the accompanying electronic material. 

Unfortunately, the ECCFFR fishing fleet database did not contain MMSI numbers and 

therefore it was not possible to reliably match vessel data to AIS tracks. For this reason, a 

sampling approach was taken, using multiple tracks as a sample of activity for each vessel 

during emissions calculation. The MarineTraffic.com website was used as a source of 

supplementary data, which are accessed using vessels’ MMSI numbers (MarineTraffic.com, 

2013). The ECCFFR database also lacks information on vessel design speeds and so these 

were estimated from the data with the assumption that the maximum speed recorded for 

at least 20 minutes for any AIS activity track was a reasonable proxy for a vessel’s design 

speed. 

The modelling approach used required the creation of vessel type profiles, which contain 

the settings used in emissions calculation for vessels of that type. The vessel database 

structure, being non-specific to fishing vessels, does not specifically enable the storage of 

the fishing gear type used. Therefore, vessel type profiles were created to allow 

differentiations between vessels using different gear types. A total of 44 vessel type profiles 

were created, including 10 polyvalent categories for vessels using more than one type of 

gear. For trawlers and dredgers, the gear types were further subdivided into different 

engine power classes so that they could be related to appropriate engine load override 

rules (Table 3.4). 

Fishing vessels such as trawlers and dredgers tow fishing gear, which results in high engine 

loads at relatively low speeds (Suuronen et al, 2012). An exchange of email correspondence 

with staff at Seafish, the industry body representing the UK seafood industry, enabled the 

generation of engine load override rules for use with trawling and dredging fishing vessels 

(Table 3.4) (Montgomerie, 2013). These rules were associated with the appropriate vessel 

type profiles and AIS activity data fitting these engine load override rules were identified 

whilst processing AIS data. 
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A database of emission factors was created based on the EMEP/EEA air pollutant emission 

inventory guidebook 2016 Tier 3 emissions factors (Trozzi et al., 2016). In order to select the 

correct emission factors, engine and fuel type are required. However, the ECCFFR database 

did not contain these data and, therefore, fleet level averages were used instead. These 

were also available for fishing vessels in Trozzi et al. (2016) (Table 3.3). For each vessel in 

the fleet, each engine type was associated with a probability equal to the percentage value 

in Table 3.3. Emissions were calculated for each engine type, multiplied by the probability 

and summed to give a total estimate of emissions for each vessel. 

It is not mandatory for fishing vessels to use AIS technology. Therefore, an activity sampling 

methodology was used to allow calculation of emissions for all vessels based on matching 

each individual vessel in the ECCFFR database to 30 AIS tracks from similar types of vessels. 

A sample size of 30 AIS tracks was selected for each vessel based on the rationale outlined 

in Chapter 4. 

Based on the sensitivity analysis described in Chapter 5 and the results of the fuel-based 

method used as a basis for comparison in this chapter, the following calibrated run settings 

values were used: 

• Combined speed calculation method (see Section 3.3.5) 

• minimum moving speed of 0.1 km h-1, 

• 20-minute minimum cumulative time for derived maximum speeds,  

• main engine idling/hotelling load of 15%,  

• sea margin of 20%,  

• main engine running time during stops of 5% of stop duration and between 15 

and 30 minutes, 

• auxiliary engine running time during stops of 25% of stop duration and 

between 60 and 720 minutes, 

• engine load override rules as detailed in Table 3.4. 

The track sampling pool was filtered in the way described in Chapter 4 to include only AIS 

tracks with: 

• no more than 10% of track segments containing errors,  

• minimum ½ year duration,  

• a minimum of 1,000 AIS data points, 

• at least 10% of port stops at UK ports 
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In terms of error handling, time intervals between two consecutive AIS points of over 60 

minutes in duration were considered too long to reliably calculate the speed of the vessel 

for the journey between them. Track segments with an average speed of over 100 km h-1 

were also identified as erroneous. In these cases, an appropriate average speed was 

assigned depending on whether the vessel was operating within a port area or not. A map 

of total annual CO2 emissions was also created with errors excluded. 

The source code for the software developed to implement the methodology described in 

Chapter 3 and 4 and used to produce the results in this chapter is provided in the 

accompanying material. The case study datasets are also provided so that the model can be 

run if desired. 

 

6.3 Results 

The fuel consumption calculated using the fuel-based method is presented by vessel 

category and year in Table 6.3. Total fuel consumption and emissions calculated from the 

quantity of fuel consumed are presented in Table 6.4. The results calculated using a 

bottom-up AIS activity-based approach are presented in Tables 6.4 and 6.5. Taking the 

average quantity of fuel consumed as the basis for comparison: the average annual fuel 

consumption for years 2008-2010, calculated using the fuel-based methodology, was 251.8 

kt. Fuel use in both main and auxiliary engines, calculated using the bottom-up AIS activity-

based approach developed, was 270.8 kt. Of this, 19% of fuel was calculated as being used 

in auxiliary engines (Table 6.5). 

Looking at fuel use and emissions aggregated by major vessel type and GT; vessels under 

100 GT consume 43.5% of all fuel used by the fishing fleet (Table 6.6). Trawlers, i.e. vessels 

using trawling gear as either their main or secondary fishing gear, consume 93.2% of the 

total fuel used by the fleet (Table 6.6). This is higher than the proportion suggested by the 

results of the alternative methodology, which suggest around 66% of emissions are 

attributed to trawlers (Table 6.3). 

Figure 3.11 shows the geographical distribution of CO2 emissions. As expected, the 

distributions of emissions of other pollutants are also very similar. Areas of high emissions 

intensity are generally clustered around ports. 
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Table 6.3. Fuel use by vessel category 2008-2010 calculated from European Commission 

fisheries statistics (kilotonnes). 

Vessel category 
Fuel use 

2008  

Fuel use 

2009  

Fuel use 

2010  

Beam trawlers 29.51 29.78 34.96 

Demersal trawlers and/or demersal seiners 131.31 134.89 133.01 

Dredgers 16.74 16.53 13.56 

Drift and/or fixed netters 4.75 4.87 4.98 

Pelagic trawlers 5.61 0.00 0.02 

Purse seiners 29.97 31.16 32.27 

Vessels using active and passive gears 0.01 0.00 0.01 

Vessels using hooks 5.66 6.31 5.81 

Vessels using polyvalent active gears 0.37 1.18 1.52 

Vessels using polyvalent passive gears 0.01 0.01 0.01 

Vessels using pots and/or traps 27.31 25.91 27.44 

Total 251.25 250.62 253.59 

 

Table 6.4. Fuel use and emissions from UK fishing activities 2008-2010 calculated from 

European Commission fisheries statistics. 

Fuel use / emissions 2008 2009 2010 Average 

Fuel use (kt) 251.25 250.62 253.58 251.82 

CO2 (kt) 801.49 799.48 808.91 803.29 

NOX (kt) 19.72 19.67 19.91 19.77 

CO (kt) 1.86 1.85 1.88 1.86 

NMVOC (kt) 0.70 0.70 0.71 0.71 

SOX (kt) 5.03 5.01 5.07 5.04 

PM (kt) 0.38 0.38 0.38 0.38 
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Table 6.5. Total fuel use and atmospheric pollution emissions from the UK fishing fleet from 

12th May 2012 – 11th May 2013 calculated using an AIS-activity-based method. 

Fuel use / emissions Total Main Auxiliary Auxiliary 

(%) 

Fuel use (kt) 270.84 218.16 52.68 19 

CO2 (kt) 864.25 696.14 168.11 19 

NOX (kt) 14.14 10.86 3.28 23 

CO (kt) 0.55 0.44 0.11 19 

NMVOC (kt) 1.31 1.21 0.10 7 

SOX (kt) 2.00 1.61 0.39 19 

PM (kt) 0.91 0.83 0.08 9 

 

Table 6.6. Atmospheric pollution emissions from the UK fishing fleet by vessel type and 

Gross Tonnage (GT) produced using combined speed calculation methodology (12 May 

2012 – 12 May 2013). 
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Seiners (<100 GT) 1.029 0.016 0.001 0.002 0.002 0.001  0.322  

Seiners (100 GT+) 12.043  0.204  0.008  0.016  0.028  0.011  3.774  

Trawlers (<100 GT) 335.140  5.238  0.210  0.581  0.777  0.399  105.026  

Trawlers (100 GT+) 470.681  7.968  0.295  0.631  1.092  0.444  147.502  

Dredgers (<100 GT) 22.050  0.342  0.014  0.039  0.051  0.027  6.910  

Dredgers (100 GT+) 5.476  0.092  0.003  0.008  0.013  0.005  1.716  

Passive gear (<100 GT) 17.827  0.277  0.011  0.031  0.041  0.021  5.587  

Passive gear (100 GT+) 0.000 0.000  0.000 0.000 0.000 0.000 0.000 
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6.4 Discussion 

Calculating emissions using a bottom-up AIS activity-based approach produced marginally 

higher estimates of fuel use and emissions than those produced using a fuel-based 

approach based on European fisheries fuel consumption statistics. The fuel use calculated 

using the calibrated activity-based model (270.8 kt) are only 7.5% higher than the results of 

the fuel-based model (251.8 kt) for the UK fishing fleet over the year modelled. Compare 

this to the uncalibrated results presented in Chapter 5 of 325.4 kt (Table 5.10), which are a 

far more significant 29.5% higher than the fuel-based method. This demonstrates the 

importance of carefully selecting model input parameter. 

The results of the fuel-based approach used in this study are close to an estimate produced 

using vessel operator surveys by Seafish, the UK fishing industry body, of 252 kt of fuel 

consumed annually by the UK fishing fleet (Curtis et al., 2006). This goes some way to 

validate the fuel-based methodology employed in this study and could suggest that the 

activity-based approach has produced a slight overestimate. However, the fact that that 

both approaches produce similar results, and that these results are close to those produced 

by Seafish, is indicative that both are capable of producing sensible results. 

Ideally, it would be possible to compare the results produced during this study with other 

activity-based emissions inventories for the UK fishing fleet. However, the only example 

(Whall et al., 2010) does not present the results in a disaggregated format, meaning that 

emissions from fishing vessels alone cannot be interpreted.  

The Third IMO GHG Study 2014 (Smith et al., 2014) only considers fishing vessels of 100 GT 

or more. The 22,130 fishing vessels included are modelled as producing 22 million tonnes of 

CO2 in 2012, equating to an average of 994 tonnes of CO2 per vessel. The average emissions 

calculated for the 427 vessels of 100 GT or more in this study were 1,143 tonnes of CO2, 

15% higher than the IMO average. This may, in part, be attributable to the detection of 

trawling and dredging activities and application of an adjusted engine load in this study. The 

results of the data analysis performed in Section 4.5 also indicated that the AIS data tracks 

associated with the UK show above average relative speed compared to the average of the 

study area as a whole (Table 4.1). This could also account for some of the variation from the 

IMO global average. 
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Another possible explanation for the discrepancy could be the use of activity sampling in 

the activity-based method. If, for example, AIS devices tend to be fitted to vessels that have 

higher than average levels of activity, then this would lead to an overestimate of emissions 

and fuel use by less active vessels in the fleet using the activity-based methodology 

presented. This is assuming that the fuel-based results are close to the real values. There is, 

however, significant variation in the fuel efficiency figures used in the fuel-based approach 

(Table 6.2), indicating that significant uncertainty exists in fuel-based approaches as well. 

Indeed, much of the research in the field of shipping emissions inventorying methodologies 

has concluded that fuel-based methods tend to underestimate atmospheric pollution 

emissions (Buhaug et al, 2009; Smith et al., 2014). 

Other potential sources of the discrepancies relate to the parameterisation of the emissions 

model. In particular, the inputs to the engine load calculation formula have a significant 

influence on results, as shown in Chapter 5. The uncalibrated model results were produced 

using assumptions about idling/hotelling main engine load, sea margin and engine use 

while hotelling that were largely taken from the EMEP/EEA air pollutant emission inventory 

guidebook 2016 (Trozzi et al., 2016) and the Second IMO GHG Study 2009 (Buhaug et al., 

2009). Alternative input values are available in the literature that were used to inform the 

selection of calibrated input parameters used in this chapter (Linstand et al., 2011; Smith et 

al., 2012), which seem to produce more realistic results. 

The fact that the results produced using independent fuel-based and activity-based 

methods are similar indicates that both methods are viable for calculating atmospheric 

pollution emissions from small commercial vessels and activity-based methods should be 

considered for the other advantages that they offer. Although significant effort is involved 

in developing the software necessary to model shipping emissions using AIS data, once the 

modelling framework is in place, the time and effort involved in producing emissions 

inventories is minimal and does not rely on expensive and time-consuming activities such as 

surveying vessel operators.  

For example, the software produced for this study could be reused to produce future 

emissions inventories for fishing vessels or other shipping sectors with minimal additional 

work as running the software with different input data would require essentially no 

additional work. The software could also be rerun periodically to produce updated 

emissions inventories as new AIS data became available. Also, unlike fuel-based estimates, 

the use of an AIS activity-based methodology enables the production of spatially and 
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temporally resolved emission inventories that can easily be aggregated for any desired sub-

group of vessels. 

For example, emissions can be aggregated for vessels falling within defined categories of 

length, GT or engine power, and for different vessel types (e.g. Table 6.5). The aggregation 

of emissions by vessel category shows some degree of disagreement between the activity-

based and fuel-based methodologies used. Both show trawlers to be responsible for the 

majority of fuel use and emissions. However, the activity-based method shows a much 

larger majority. This may, in part, be due to all vessels with secondary trawling gear being 

defined as trawlers in the activity-based methodology so that appropriate engine load 

override rules could be assigned. 

Interestingly, the results of this study indicate that including only vessels over 100 GT would 

result in the omission of around 43.5% of atmospheric pollution emissions from the UK 

fishing fleet. This supports the estimate of emissions of fishing vessels omitted from 

shipping emissions inventories by Endresen et al. (2007). 

The ability to produce temporally and spatially resolved emissions inventories is a 

significant advantage of the activity-based approach as it makes the results viable for use in 

chemical transport models to assess the impacts of pollution upon human health and the 

environment (Corbett et al., 2007; Dalsøren et al., 2009; Lauer et al., 2007; Winebrake et 

al., 2009; Jalkanen et al., 2014). The mapped results (Figure 3.11) show a plausible spatial 

distribution of emissions that would improve with any increase in the proportion of vessels 

within the fleet using AIS technology. 

The major sources of uncertainty in this study, namely the lack of reliable vessel design 

speed data and the relatively small sample of activity data used are issues of data 

availability that can be expected to improve in the future. A survey of vessel manufactures 

or operators could yield the design speed data necessary. A larger proportion of fishing 

vessel operators can also be expected to voluntarily adopt AIS technology for the safety 

benefits it offers, leading to an increased sample size of activity data. Engine load may also 

be calculated using a more sophisticated and accurate methodology through prediction of 

required power at a particular speed in calm water and in waves, provided that sufficient 

vessel parameters are known (Dedes, 2013). 

The use of satellite AIS data may also improve the coverage of the data captured for vessels 

operating outside of terrestrial AIS network range. However, the lower signal strength of 
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messages broadcast by the Class-B AIS devices used by small commercial and recreational 

vessels may not be powerful enough for reliable detection by AIS satellites (Taylor-Branco, 

2013). 

Ultimately, this study builds upon previous work that has used AIS data for the calculation 

of emissions inventories and specifically addresses some of the issues that must be tackled 

when calculating emissions from small commercial vessels. The challenges of sampling 

activity for fleets with less than 100% AIS technology uptake in a way that allows emissions 

to be spatially allocated without the use of supplementary data, uncertainty of engine and 

fuel type used and the requirement to detect and correct special engine load conditions for 

vessels engaged in towing and pushing operations will also apply to other types of small 

commercial and vessel such as tugs. 

 

6.5 Conclusions 

A new bottom-up activity-based atmospheric emissions modelling approach has been 

trialled using the case study fleet of UK fishing vessels. While the efforts at validating the 

methodology against an independent fuel-based approach and comparable published 

emissions inventories indicates that the methodology produces sensible results when input 

parameters are calibrated, more effort is still needed to validate the methodology 

presented more thoroughly.  

Nevertheless, the use of a bottom-up activity-based methodology that makes use of AIS 

data offers numerous advantages over commonly used fuel-based methods. This 

methodology is the first that can accommodate special operating modes such as trawling 

and dredging, which is a necessity when modelling emissions from fishing vessels. It also 

offers a solution for modelling emissions for fleets of vessels that do not have full uptake of 

AIS devices that appears to produce reasonable results. 

Given that small commercial vessels under 100 GT tend to be omitted from shipping 

emissions inventories, the methodology outlined here could be used to complement 

existing AIS activity-based approaches for the inclusion of emissions from vessels under 100 

GT in emissions inventories. The results of this case study suggest that, for fishing vessels at 

least, upward of 40% of emissions are missed from emissions inventories if vessels under 

100 GT are excluded. 
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7 Conclusions 

Small commercial watercraft are generally omitted from inventories of atmospheric 

emissions from the shipping industry. This omission is likely to result in a significant 

underrepresentation of emissions from the shipping sector and hampering the creation of 

mitigation measures targeting this group of vessels. The aim of this project was to develop 

a methodology that can be used to address the omission of small commercial watercraft 

from shipping emissions inventories. A summary of the conclusions related to each of the 

objectives of this project is presented below. The key contributions of this work are then 

listed and areas for future work are suggested. 

 

7.1 Objective 1: To review previously used methodologies for the production 

of atmospheric emissions inventories for shipping activities and assess 

their applicability to small commercial watercraft. 

A comprehensive review of the literature was undertaken to identify and categorize the 

methodologies that have been used to create inventories of atmospheric emissions from 

ships (Chapter 2). A general trend is apparent in the literature of inventory compilers 

moving from fuel-based methods to the use of increasingly sophisticated activity-based 

approaches. The current state-of-the-art in the field is the use AIS data to produce highly 

detailed and accurate spatially- and temporally-resolved emissions inventories, where the 

fuel use and atmospheric emissions of each vessel under consideration are individually 

modelled. 

AIS data, collected and archived by the operators of coastal and satellite receivers, provides 

a wealth of information about vessel activities that can be used to produce high-quality 

emissions inventories. However, AIS datasets are extremely large and can contain 

significant errors. Using these data to calculate emissions inventories is a considerable 

software engineering challenge, especially when looking to achieve the performance 

necessary to undertake uncertainty and sensitivity analysis. 

Reviewing the literature also revealed that very little research had been undertaken to 

quantify emissions caused by small commercial vessels. It is thought that this omission 

could amount to as much as 10% of emissions from global shipping activities. These vessels 

are commonly omitted from inventories of shipping emissions due to a lack of available 
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data and methods that would make their inclusion practicable. However, an increasing 

number of small commercial vessel operators are utilizing AIS technology, creating an 

opportunity to use the data produced to model the emissions from these vessels. Doing so 

will, however, require overcoming some challenges such as dealing with fleets for which 

only a subset of vessels use AIS technology and where the necessary data to directly link 

vessels to the AIS data they produce is not readily available. 

 

7.2 Objective 2: To create a robust, repeatable and practical methodology for 

the calculation of atmospheric pollution caused by small commercial 

watercraft. 

The main outcome of this project has been the development of a methodology and 

software tool that can be used to calculate emissions inventories for small commercial 

watercraft using AIS data. The source code for this tool is available in the accompanying 

electronic materials. The results produced can be disaggregated by vessel type and size 

categories, temporally resolved to identify changing activity throughout the year and 

mapped to show the geographic distribution of emissions (Chapter 3).  

The methodology developed has a number of novel features. Previous work has either used 

the speed data stored in AIS messages broadcast by vessels or a speed based on the 

distance over ground and time between AIS data points. A combined approach is 

introduced, using the distance over ground as a lower bound and, when higher, the speeds 

reported in the AIS data as the upper bound to a range of values representing the vessel’s 

likely speed (Section 3.3.5, 3.3.4 and 5.4).  

An approach was developed for the detection of special vessel operating condition, such as 

trawling and dredging by fishing vessels, so that an appropriate engine load can be assigned 

(Section 3.3.5). An adaptation of a simple formula for estimating engine load from vessel 

speed was also developed that scales engine load between engine loads while idling and 

cruising at design speed based on the vessel’s instantaneous speed (Section 3.3.3). 

A novel AIS sampling approach was developed and refined (Chapter 4). Using this 

methodology, it is possible to calculate emissions for fleets of vessels where a one-to-one 

matching of vessel technical information with AIS data records is not practicable. This can 

be the case when the data required to match vessels to AIS records is unavailable, or 
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because some of the vessels being modelled are not fitted with AIS devices and, therefore, 

do not produce AIS data. These conditions typify fleets of small commercial vessels, so a 

robust activity sampling methodology is crucial if AIS data are to be used to produce 

emissions inventories for these vessels. 

Testing of different filtering criteria for constraining the AIS tracks available for sampling 

showed that unwanted bias could be inadvertently introduced by attempting to stratify 

sampling based on vessel length (Section 4.6). Vessel size was also shown to be a poor 

predictor of activity profile (Section 4.4). Grouping tracks by the countries that they visit 

showed that, despite being a largely domestic activity, many fishing vessels visit the ports of 

multiple countries. It also showed that the fleets associated with different countries in the 

study area had significantly different activity metrics, highlighting the importance of 

geographical relevance when sampling AIS tracks to represent vessel activity.  

For the case study fleet of UK fishing vessels, a set of sampling criteria were developed that 

balanced the need for AIS track quality, relevance to the UK and the need to retain a 

sufficient number of tracks for representation of the fleet’s activity. This resulted in a 

sampling pool of AIS tracks representing a number of vessels equivalent to 10.1% of the 

case study fleet of UK fishing vessels. It was also found that a minimum of 20, and 

preferably 30, AIS tracks should be sampled for each vessel to limit the risk of potential 

overrepresentation of certain AIS tracks in results. 

 

7.3 Objective 3: To identify sources of uncertainty that affect the emissions 

calculation methodology developed and undertake a rigorous sensitivity 

and uncertainty analysis. 

A detailed sensitivity and uncertainty analysis was undertaken, the results of which are 

presented in Chapter 5. The sources of structural, epistemic and aleatory uncertainty 

affecting the model were identified (Table 5.2). To carry out the number of model reuls 

required to conduct uncertainty and sensitivity analysis, the software used to calculate 

emissions needed to be highly optimised. This adds significantly to the software 

engineering challenge associated with calculating emissions inventories using AIS data.  

Comparison of speed calculation methods indicates that this is an important decision in AIS-

based emissions calculation methodologies and can have a significant influence on results 

(Section 5.4.1). This topic also tends to receive little attention from researchers. The 
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combined speed calculation method introduced in this project, in addition to utilising more 

of the available data in AIS messages to estimate vessel speed, generates a range of 

possible values for a vessel’s instantaneous speed for each AIS track segment. This goes 

some way towards capturing the uncertainty around vessel instantaneous speed and can 

be used in uncertainty analysis (Section 5.4.1). 

Sampling AIS tracks appears to be the dominant source of uncertainty, but still yields 

reasonably stable results that are within ±3.5% of the mean with a 95% confidence interval 

for all pollutants. Emission factors are found to be the second most significant source of 

uncertainty. However, both of these sources of uncertainty were found to add roughly 

symmetrical uncertainty around the mean. It is the sources of uncertainty that may 

introduce bias to the mean results that are of greater importance. 

It was found that the input parameters contributing to engine load calculation (main engine 

hotelling/idling load, sea margin and vessel design speed) can introduce significant 

systematic bias to results. Therefore, the selection of these parameters should be 

undertaken with care and, where possible, parameters should be calibrated using other 

sources of information on fleet fuel use and emissions to ensure that sensible results are 

produced. 

The results of a Monte Carlo uncertainty analysis shows that results are relatively stable 

with a variation from the mean of less than ±6% for all modelled emissions and fuel use at 

the 95% confidence interval. This suggests that results are reasonably stable even when 

using sampled AIS activity data and fleet level averages for the proportions of engine and 

fuel types used. This is important as it suggests that using an activity-sampling approach 

such as the one developed for this project is a viable solution for modelling emissions from 

fleets where direct one-to-one matching of vessels to AIS data is not feasible, e.g. fleets of 

small commercial vessels. 

 

7.4 Objective 4: To calculate an emissions inventory for a case study fleet of 

small commercial vessels and assess the validity of results. 

In order to develop and test the methodology and software created, a case study fleet of 

small commercial vessels was required. Analysis of available data sources revealed that the 

European Commission maintain the European Commission Community Fishing Fleet 
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Register (ECCFFR), a database of fishing vessels containing much of the vessel specification 

information required as inputs to the activity-base emissions calculation methodology. A 

case study year of AIS data for fishing vessel operating in the seas of North-Western Europe 

was obtained via the MarineTraffic.com researcher network.  

Emissions were calculated for the case study fleet of UK fishing vessels using the new AIS-

based methodology and software developed during this research. An alternative fuel-based 

methodology was also developed and used to corroborate the results of the AIS-based 

methodology. The results produced (Section 6.3) indicated that the AIS-based approach, 

when using appropriately calibrated input parameters, yields estimates of annual fuel 

consumption (270.8 kt) that are similar to the fuel-based methodology (251.8 kt). Both sets 

of results were within a reasonable margin or error compared to the few sources of 

comparable published emissions estimates to suggest that the methodology developed 

produces believable results.  

The use of an activity-based approach also enabled the comparison of emissions from 

different categories of vessel. Comparison of emissions from vessels of different sizes 

suggested that 43.5% of fuel use and CO2 emissions from the UK fishing fleet are produced 

by vessels under 100 GT in size. This supports the suggestion that the omission of small 

commercial vessels from global emissions inventories could result in a significant 

underestimation of emissions from some shipping sectors. Given the feasibility of using AIS 

data to estimate emissions from small commercial vessels using methodologies such as the 

one described in this thesis, it seems reasonable to hope that such a methodology will be 

adopted in order to include small commercial watercraft when global and national shipping 

emissions inventories are calculated in the future. 
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7.5 Contribution 

1. This is the first research that has specifically tackled the use of AIS data to produce 

emissions inventories for small commercial watercraft. 

2. The case study emissions inventory is the most complete activity-based emissions 

inventory produced for the UK fishing fleet. 

3. The sampling methodology used to associate vessels with AIS data is novel, produces 

reasonable results, and can be used to model emissions of vessels that either do not 

have AIS devices or where insufficient data are available to match vessels with AIS data. 

4. This is the first methodology to use a combination of both distance-based and AIS 

speed based methods to calculate vessel instantaneous speed from AIS data. The speed 

method used is shown to have a significant effect upon results. The combined approach 

shows promise for use in uncertainty analysis. 

5. This is the first methodology to use AIS data to detect when vessels are engaged in 

trawling and dredging activities and apply a corrected engine load. 

6. The sensitivity and uncertainty analysis undertaken as a part of this research 

contributes useful insight to the factors that affect the validity and accuracy of shipping 

emissions inventories calculated using activity-based methods. The importance of 

carefully selecting the parameters contributing to engine load calculation is highlighted 

given the bias in results that can arise due to these parameters. 

  

7.6 Publications arising from this project 

Coello, J., Williams I., Hudson, D., Kemp, S. (2015) An AIS-based approach to calculate 

atmospheric emissions from the UK fishing fleet. Atmospheric Environment, 114. 

A copy of this article is available in the accompanying electronic material. As of March 2018, 

it has been cited 7 times. 
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7.7 Future work 

The methodology and software delivered in this project open up a number of potential 

areas for future research. These can be broadly categorised as: 

• Data collection for better model parameterisation and validation, 

• Application of the methods and software to other fleets and new AIS data, 

• Investigation of emissions allocation approaches, 

• Improvements of the methodology to improve accuracy, 

• Extension of the methodology to enable the simulation of mitigation measures. 

 

7.7.1 Data collection for model parameterisation and validation 

An effort has been made to thoroughly review the literature for model input parameters 

and to validate model results against an alternative calculation methodology and 

comparable published data. However, the accuracy of the results could be improved by 

working with vessel manufacturers, maintainers and operators to gather additional vessel 

data, such as design speed and specific engine technology, and to develop input 

parameters to the model that are specifically tailored to the type of vessels being modelled. 

The parameters for engine idling load, sea margin, auxiliary engine loads throughout all 

operating modes, and engine usage while vessels are stopped all have a significant impact 

upon results and could be improved by collecting additional data. 

Working with vessel operators could also provide valuable data to further validate the 

results of the AIS-based activity model. Greater confidence in the core emissions calculation 

methodology and a better quantification of uncertainty could be achieved by obtaining 

vessel fuel consumption data from vessel operators and comparing that to fuel use 

modelled using AIS data produced by those vessels.  

 

7.7.2 Application of the methods and software to other fleets 

A natural extension of this work would be the application of the methodology and software 

to produce emissions inventories for new fleets of vessels. For example, the software could 

be used to produce an emissions inventory for the European or international fishing fleets. 

The use of satellite AIS data could also be used to improve modelling of vessel activities and 

emissions away from shores.  
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The emissions calculation methodology developed should also be well suited for use with 

other types of small commercial vessels such as tugs, workboats and small passenger 

vessels. By obtaining additional AIS data and identifying vessel characteristics datasets  for 

these other types of small commercial vessel, this methodology could be used to estimate 

the emissions that they produce. 

 

7.7.3 Emissions allocation 

This project was focused predominantly on the methodologies required for the calculation 

of emission. The allocation of those emissions to nations and regions was outside of the 

scope of work. When dealing with small commercial watercraft, emissions allocation will 

often be simpler than for vessels engaged in international shipping activities because the 

majority of small commercial vessel types are usually engaged in domestic activities. This is 

the case for fishing vessels, and so the assumption that emissions can be allocated to the 

vessel’s flag nation is considered to be more valid than for large vessels that operate 

internationally. 

However, visits to other nations do occur, as was observed in the AIS data used in this 

project. Therefore, consideration should be given to the validity of the assumption that 

emissions can be allocated to the vessel’s flag nation and, if necessary, alternative 

allocation approaches should be developed. The use of AIS data and a methodology such as 

the one developed in this project to empirically identify where vessels operate and the 

ports that they visit could provide valuable information for this debate as well as the 

mechanism to implement the emissions allocation approaches developed. 

 

7.7.4 Improvements to the methodology 

At the core of the methodology developed is a very simple formula for estimating engine 

load from vessel instantaneous speed as a ratio of design speed. This is an adaption of a 

common approach used in previous shipping emissions calculation methodologies. 

However, this engine load estimation methodology is relatively crude and does not 

effectively differentiate between calm water and rougher conditions. More accurate 

methods can be employed if sufficient vessel characteristics data can be obtained, which 

enable more accurate estimation of power requirements in calm water and waves, e.g. 

Dedes (2013). 
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Furthermore, this and the majority of other shipping emissions inventory calculation 

methodologies do not model the effect of tides and weather conditions on vessel power 

requirements, engine load and emissions. The methodology could be improved through the 

incorporation of these factors to more fully capture the operating conditions of the vessels 

being modelled and the use of a more sophisticated engine load calculation methodology 

that captures the effect of these additional factors. 

 

7.7.5 Extension of the methodology to enable the simulation of mitigation measures 

One of the advantages of bottom-up activity-based emissions calculation methodologies is 

their potential for simulating technological and operational measures that could be 

employed to reduce fuel consumption and pollution emissions. Certain measures could be 

simulated without extension of the software by changing vessel specification, e.g. engine 

type, or by changing emission factors, e.g. to reflect changes in fuel sulphur content. Other 

technical measures, such as the use of diesel-electric drive or hybrid propulsion systems 

requires more subtle modelling of vessels and their dynamic power requirements. This is 

something that can be done using a bottom-up activity-based approach and could be 

incorporated into the methodology and software produced in this project with some 

additional research effort. 

Another area where bottom-up activity-based methodologies can be used to simulate 

mitigation measures is in capturing the potential changes in vessel operating practices. For 

example, slow steaming is an effective way to make substantial reductions in fuel 

consumption and atmospheric emissions. Similarly, minimising the variation in cruising 

speed over a journey will also result in a lower average engine load. These operational 

measures could also be simulated using the software developed with some additional 

model development. 

 

 

 

 

 

 



  

164 
 

7.8 Final remarks 

This thesis has presented several novel contributions, including a methodology for the use 

of AIS data in calculating emissions inventories for fleets of small commercial vessels; the 

introduction of novel methods for sampling AIS data for vessels that cannot be directly 

associated with AIS data records; the treatment of uncertainty in the speed calculated from 

AIS data through the introduction of a new combined speed calculation method; and the 

addition of engine load override rules for detecting and modelling emissions of vessels 

engaged in towing and pushing activities. The results calculated for the case-study also 

constitute a detailed and spatially disaggregated emissions inventory of UK fishing 

activities. Finally, the treatment of sensitivity and uncertainty provides useful insight in to 

the model parameters that can produce systematic bias in results, as well as those that 

produce unbiased uncertainty in results. 

The software developed in the course of this research is a fast, powerful and flexible tool 

for the calculation of fuel use and atmospheric pollution emissions from shipping activities 

and makes significant progress in the applicability of AIS-based emissions calculation 

methods to fleets of small commercial vessels. The availability of data sources like AIS 

creates fantastic opportunities for research into shipping activities. However, the 

development of the tooling and techniques for its use present a significant overhead to the 

research community. It is hoped that the work undertaken throughout this project will 

serve to reduce that overhead for other researchers in the future. 
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Appendix A 

Table A.1. Sample pool characteristics with varying filtering criteria for all AIS tracks in the 

study area (AIS tracks defined as all AIS data points with a particular MMSI number). 

    Mean activity metrics 

Min. 

AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

2 0 1 5061 5.29% 72.70% 0.226 0.293 

2 0 0.25 4904 3.54% 72.71% 0.223 0.289 

2 0 0.1 4552 2.67% 72.18% 0.215 0.282 

2 0 0.05 3818 1.83% 70.43% 0.200 0.269 

2 0 0.01 1211 0.56% 58.57% 0.155 0.244 

2 0.25 1 4200 4.57% 73.24% 0.211 0.274 

2 0.25 0.25 4110 3.43% 73.22% 0.208 0.270 

2 0.25 0.1 3845 2.68% 72.71% 0.201 0.263 

2 0.25 0.05 3232 1.87% 70.99% 0.187 0.252 

2 0.25 0.01 966 0.61% 58.63% 0.130 0.211 

2 0.5 1 3764 4.17% 73.05% 0.204 0.265 

2 0.5 0.25 3705 3.34% 73.07% 0.201 0.262 

2 0.5 0.1 3485 2.64% 72.62% 0.195 0.256 

2 0.5 0.05 2951 1.86% 70.95% 0.182 0.245 

2 0.5 0.01 879 0.62% 59.01% 0.125 0.203 

2 0.75 1 3299 3.67% 72.79% 0.196 0.258 

2 0.75 0.25 3270 3.26% 72.77% 0.195 0.256 

2 0.75 0.1 3087 2.61% 72.28% 0.189 0.250 

2 0.75 0.05 2628 1.86% 70.57% 0.176 0.239 

2 0.75 0.01 784 0.63% 58.30% 0.118 0.197 

2 1 1 1762 2.75% 67.86% 0.157 0.224 

2 1 0.25 1755 2.56% 67.86% 0.156 0.222 

2 1 0.1 1714 2.29% 67.72% 0.155 0.221 

2 1 0.05 1527 1.73% 66.37% 0.145 0.213 

2 1 0.01 506 0.62% 53.77% 0.096 0.178 

500 0 1 4306 3.07% 71.72% 0.200 0.267 

500 0 0.25 4295 2.94% 71.74% 0.200 0.266 
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    Mean activity metrics 

Min. 

AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

500 0 0.1 4135 2.53% 71.48% 0.198 0.264 

500 0 0.05 3560 1.82% 70.09% 0.188 0.256 

500 0 0.01 1117 0.60% 58.31% 0.136 0.225 

500 0.25 1 3866 3.15% 72.35% 0.197 0.260 

500 0.25 0.25 3855 3.01% 72.37% 0.196 0.259 

500 0.25 0.1 3703 2.57% 72.10% 0.194 0.257 

500 0.25 0.05 3170 1.85% 70.61% 0.183 0.248 

500 0.25 0.01 962 0.61% 58.46% 0.128 0.210 

500 0.5 1 3537 3.15% 72.37% 0.192 0.255 

500 0.5 0.25 3526 2.99% 72.39% 0.192 0.254 

500 0.5 0.1 3388 2.56% 72.12% 0.189 0.251 

500 0.5 0.05 2908 1.84% 70.61% 0.179 0.243 

500 0.5 0.01 875 0.62% 58.82% 0.123 0.202 

500 0.75 1 3165 3.12% 72.25% 0.188 0.250 

500 0.75 0.25 3156 2.98% 72.28% 0.188 0.249 

500 0.75 0.1 3033 2.56% 71.99% 0.185 0.246 

500 0.75 0.05 2607 1.84% 70.40% 0.173 0.237 

500 0.75 0.01 783 0.63% 58.25% 0.118 0.196 

500 1 1 1753 2.69% 67.79% 0.155 0.222 

500 1 0.25 1747 2.53% 67.81% 0.155 0.221 

500 1 0.1 1711 2.29% 67.69% 0.154 0.220 

500 1 0.05 1525 1.73% 66.35% 0.145 0.213 

500 1 0.01 506 0.62% 53.77% 0.096 0.178 

1000 0 1 3960 2.79% 71.07% 0.191 0.257 

1000 0 0.25 3954 2.71% 71.08% 0.190 0.257 

1000 0 0.1 3849 2.43% 70.85% 0.189 0.256 

1000 0 0.05 3358 1.78% 69.64% 0.180 0.249 

1000 0 0.01 1086 0.59% 58.02% 0.131 0.219 

1000 0.25 1 3656 2.86% 71.67% 0.189 0.253 

1000 0.25 0.25 3650 2.77% 71.68% 0.189 0.253 

1000 0.25 0.1 3548 2.48% 71.44% 0.187 0.252 
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    Mean activity metrics 

Min. 

AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

1000 0.25 0.05 3081 1.81% 70.16% 0.179 0.244 

1000 0.25 0.01 957 0.61% 58.26% 0.126 0.209 

1000 0.5 1 3373 2.87% 71.88% 0.186 0.249 

1000 0.5 0.25 3367 2.77% 71.90% 0.186 0.249 

1000 0.5 0.1 3274 2.48% 71.65% 0.184 0.247 

1000 0.5 0.05 2847 1.82% 70.33% 0.175 0.239 

1000 0.5 0.01 872 0.62% 58.68% 0.122 0.201 

1000 0.75 1 3039 2.87% 71.81% 0.183 0.245 

1000 0.75 0.25 3033 2.77% 71.83% 0.183 0.245 

1000 0.75 0.1 2952 2.49% 71.59% 0.181 0.243 

1000 0.75 0.05 2566 1.83% 70.19% 0.171 0.234 

1000 0.75 0.01 781 0.63% 58.15% 0.117 0.196 

1000 1 1 1729 2.54% 67.73% 0.154 0.221 

1000 1 0.25 1725 2.43% 67.72% 0.154 0.220 

1000 1 0.1 1700 2.26% 67.56% 0.153 0.219 

1000 1 0.05 1521 1.72% 66.29% 0.145 0.212 

1000 1 0.01 506 0.62% 53.77% 0.096 0.178 

5000 0 1 2724 1.97% 67.20% 0.153 0.223 

5000 0 0.25 2722 1.94% 67.19% 0.153 0.222 

5000 0 0.1 2707 1.88% 67.21% 0.153 0.222 

5000 0 0.05 2544 1.58% 66.78% 0.151 0.221 

5000 0 0.01 933 0.60% 57.65% 0.117 0.198 

5000 0.25 1 2675 1.99% 67.23% 0.153 0.223 

5000 0.25 0.25 2673 1.96% 67.23% 0.153 0.222 

5000 0.25 0.1 2658 1.90% 67.24% 0.153 0.222 

5000 0.25 0.05 2495 1.60% 66.81% 0.151 0.221 

5000 0.25 0.01 905 0.61% 57.31% 0.116 0.198 

5000 0.5 1 2554 2.02% 67.65% 0.153 0.221 

5000 0.5 0.25 2552 1.99% 67.64% 0.152 0.221 

5000 0.5 0.1 2537 1.93% 67.66% 0.152 0.220 

5000 0.5 0.05 2378 1.62% 67.22% 0.150 0.219 
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    Mean activity metrics 

Min. 

AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

5000 0.5 0.01 840 0.62% 57.88% 0.115 0.193 

5000 0.75 1 2349 2.03% 67.85% 0.152 0.220 

5000 0.75 0.25 2347 2.00% 67.84% 0.152 0.219 

5000 0.75 0.1 2332 1.93% 67.86% 0.152 0.219 

5000 0.75 0.05 2192 1.64% 67.38% 0.150 0.217 

5000 0.75 0.01 760 0.63% 57.57% 0.112 0.191 

5000 1 1 1545 2.06% 65.68% 0.139 0.208 

5000 1 0.25 1543 2.01% 65.66% 0.139 0.207 

5000 1 0.1 1534 1.95% 65.66% 0.138 0.207 

5000 1 0.05 1435 1.64% 65.10% 0.135 0.205 

5000 1 0.01 504 0.62% 53.80% 0.096 0.177 

 

  



  

169 
 

Table A.2. Sample pool characteristics with varying filtering criteria for AIS tracks with at 

least 10% of port stops at UK ports (AIS tracks defined as all AIS data points with a particular 

MMSI number). 

    Mean activity metrics 

Min. AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

2 0 1 877 3.74% 74.38% 0.204 0.267 

2 0 0.25 864 2.76% 74.66% 0.204 0.267 

2 0 0.1 841 2.42% 74.66% 0.202 0.265 

2 0 0.05 746 1.87% 74.19% 0.197 0.260 

2 0 0.01 214 0.61% 64.92% 0.133 0.217 

2 0.25 1 775 3.49% 76.95% 0.210 0.265 

2 0.25 0.25 766 2.71% 77.12% 0.210 0.265 

2 0.25 0.1 747 2.42% 77.03% 0.208 0.263 

2 0.25 0.05 666 1.90% 76.40% 0.203 0.260 

2 0.25 0.01 180 0.64% 66.44% 0.131 0.206 

2 0.5 1 707 3.29% 76.92% 0.207 0.261 

2 0.5 0.25 700 2.71% 76.88% 0.206 0.260 

2 0.5 0.1 682 2.41% 76.81% 0.204 0.258 

2 0.5 0.05 610 1.91% 75.87% 0.198 0.255 

2 0.5 0.01 166 0.65% 65.99% 0.127 0.200 

2 0.75 1 610 3.19% 77.38% 0.208 0.261 

2 0.75 0.25 605 2.72% 77.36% 0.207 0.260 

2 0.75 0.1 589 2.39% 77.21% 0.204 0.257 

2 0.75 0.05 530 1.92% 76.32% 0.198 0.253 

2 0.75 0.01 136 0.66% 66.02% 0.126 0.200 

2 1 1 297 2.57% 73.78% 0.179 0.237 

2 1 0.25 296 2.24% 73.84% 0.178 0.234 

2 1 0.1 294 2.16% 73.93% 0.178 0.234 

2 1 0.05 272 1.77% 73.32% 0.175 0.234 

2 1 0.01 78 0.64% 61.82% 0.106 0.184 

500 0 1 810 2.72% 75.24% 0.200 0.260 

500 0 0.25 808 2.48% 75.28% 0.200 0.259 

500 0 0.1 797 2.33% 75.29% 0.199 0.259 
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    Mean activity metrics 

Min. AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

500 0 0.05 716 1.84% 74.81% 0.196 0.257 

500 0 0.01 206 0.61% 65.65% 0.130 0.208 

500 0.25 1 742 2.76% 76.72% 0.205 0.262 

500 0.25 0.25 740 2.51% 76.77% 0.205 0.261 

500 0.25 0.1 730 2.36% 76.72% 0.204 0.260 

500 0.25 0.05 656 1.88% 76.15% 0.201 0.259 

500 0.25 0.01 179 0.64% 66.26% 0.131 0.206 

500 0.5 1 681 2.80% 76.48% 0.202 0.257 

500 0.5 0.25 679 2.52% 76.54% 0.201 0.256 

500 0.5 0.1 669 2.36% 76.48% 0.200 0.255 

500 0.5 0.05 602 1.89% 75.63% 0.197 0.254 

500 0.5 0.01 165 0.65% 65.79% 0.127 0.200 

500 0.75 1 593 2.84% 76.97% 0.203 0.257 

500 0.75 0.25 591 2.52% 77.04% 0.202 0.256 

500 0.75 0.1 582 2.35% 77.00% 0.201 0.255 

500 0.75 0.05 527 1.91% 76.20% 0.197 0.253 

500 0.75 0.01 136 0.66% 66.02% 0.126 0.200 

500 1 1 297 2.57% 73.78% 0.179 0.237 

500 1 0.25 296 2.24% 73.84% 0.178 0.234 

500 1 0.1 294 2.16% 73.93% 0.178 0.234 

500 1 0.05 272 1.77% 73.32% 0.175 0.234 

500 1 0.01 78 0.64% 61.82% 0.106 0.184 

1000 0 1 769 2.62% 75.50% 0.197 0.256 

1000 0 0.25 767 2.37% 75.55% 0.197 0.255 

1000 0 0.1 758 2.24% 75.51% 0.196 0.255 

1000 0 0.05 691 1.82% 75.22% 0.194 0.253 

1000 0 0.01 203 0.62% 65.95% 0.129 0.203 

1000 0.25 1 719 2.69% 76.37% 0.201 0.258 

1000 0.25 0.25 717 2.42% 76.42% 0.201 0.257 

1000 0.25 0.1 708 2.28% 76.39% 0.200 0.257 

1000 0.25 0.05 645 1.86% 76.00% 0.199 0.256 

1000 0.25 0.01 179 0.64% 66.26% 0.131 0.206 
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    Mean activity metrics 

Min. AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

1000 0.5 1 664 2.72% 76.24% 0.199 0.255 

1000 0.5 0.25 662 2.44% 76.30% 0.198 0.254 

1000 0.5 0.1 653 2.28% 76.26% 0.198 0.253 

1000 0.5 0.05 595 1.87% 75.61% 0.195 0.253 

1000 0.5 0.01 165 0.65% 65.79% 0.127 0.200 

1000 0.75 1 579 2.77% 76.80% 0.200 0.254 

1000 0.75 0.25 577 2.44% 76.86% 0.199 0.253 

1000 0.75 0.1 569 2.29% 76.85% 0.199 0.253 

1000 0.75 0.05 521 1.90% 76.23% 0.196 0.252 

1000 0.75 0.01 136 0.66% 66.02% 0.126 0.200 

1000 1 1 295 2.56% 73.71% 0.177 0.234 

1000 1 0.25 294 2.23% 73.77% 0.176 0.232 

1000 1 0.1 292 2.15% 73.86% 0.176 0.232 

1000 1 0.05 270 1.75% 73.24% 0.173 0.231 

1000 1 0.01 78 0.64% 61.82% 0.106 0.184 

5000 0 1 529 1.75% 72.80% 0.169 0.231 

5000 0 0.25 529 1.75% 72.80% 0.169 0.231 

5000 0 0.1 528 1.73% 72.87% 0.169 0.231 

5000 0 0.05 503 1.51% 72.57% 0.170 0.233 

5000 0 0.01 181 0.63% 65.88% 0.125 0.198 

5000 0.25 1 518 1.77% 73.03% 0.170 0.232 

5000 0.25 0.25 518 1.77% 73.03% 0.170 0.232 

5000 0.25 0.1 517 1.75% 73.11% 0.170 0.232 

5000 0.25 0.05 492 1.53% 72.81% 0.171 0.234 

5000 0.25 0.01 174 0.64% 65.88% 0.125 0.200 

5000 0.5 1 494 1.80% 72.77% 0.168 0.230 

5000 0.5 0.25 494 1.80% 72.77% 0.168 0.230 

5000 0.5 0.1 493 1.78% 72.84% 0.168 0.230 

5000 0.5 0.05 468 1.54% 72.52% 0.169 0.232 

5000 0.5 0.01 162 0.64% 65.42% 0.123 0.197 

5000 0.75 1 439 1.82% 73.31% 0.171 0.231 

5000 0.75 0.25 439 1.82% 73.31% 0.171 0.231 
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    Mean activity metrics 

Min. AIS 

data 

points 

Min. 

duration 

(yrs) 

Max error 

segments 

(%)  

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

5000 0.75 0.1 438 1.80% 73.40% 0.171 0.231 

5000 0.75 0.05 419 1.59% 73.12% 0.172 0.234 

5000 0.75 0.01 135 0.65% 65.77% 0.123 0.198 

5000 1 1 257 1.87% 71.78% 0.157 0.216 

5000 1 0.25 257 1.87% 71.78% 0.157 0.216 

5000 1 0.1 256 1.83% 71.92% 0.157 0.216 

5000 1 0.05 243 1.59% 71.78% 0.158 0.218 

5000 1 0.01 78 0.64% 61.82% 0.106 0.184 

 

 

Table A.3. Sample pool characteristics with varying minimum proportion of track stops at 

UK ports. Tracks filtered for a minimum of 1000 AIS points, 0.5 years duration and errors in 

a maximum of 10% of track segments. (AIS tracks defined as all AIS data points with a 

particular MMSI number). 

  Mean activity metrics 

Min. proportion 

port stops at UK 

ports 

Tracks Error 

segments 

(%) 

Moving 

(%) 

Relative 

speed 

Relative 

speed 

(moving) 

Port stops 

at UK 

ports (%) 

0.01 818 2.20% 73.87% 19.07% 25.37% 63.77% 

0.05 723 2.28% 75.09% 19.42% 25.37% 71.82% 

0.1 653 2.28% 76.26% 19.78% 25.34% 78.75% 

0.25 558 2.26% 77.68% 20.37% 25.50% 89.47% 

0.5 504 2.26% 77.49% 20.58% 25.74% 95.23% 

1.0 353 2.34% 79.36% 21.61% 26.17% 100.00% 
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Appendix B 

Table B.1. Fuel efficiency figures for beam trawlers compiled from European Scientific 

Fishery Data (after EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per 

kilogram (kg) of catch landed. 

Country 

< 12 m 12 - 24 m 24 - 40 m 40+ m 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

Belgium    2.15 2.12 1.87 2.32 3.25 2.71    

diff. from UK    0.35 0.06  1.11 1.48     

Bulgaria             

Cyprus             

Denmark    0.96 0.97 0.80       

diff. from UK    0.84 1.09        

Estonia             

Finland             

France             

Germany 1.06 0.53 0.44 0.76 0.62 0.70 1.83 1.25 1.37    

diff. from UK    1.04 1.44  0.62 0.52     

Greece             

Ireland       4.62 4.55 2.15    

diff. from UK       3.41 2.78     

Italy    2.93 3.32 3.48 3.36 3.01 2.52    

diff. from UK    1.13 1.26  2.15 1.24     

Latvia             

Lithuania             

Malta             

Netherlands    1.20 1.24 1.06 3.19 2.18 2.01 3.01 2.87 2.37 

diff. from UK    0.60 0.82  1.98 0.41     

Poland             

Portugal             

Romania             

Slovenia             

Spain             

Sweden             

United 
Kingdom (UK) 

   1.80 2.06  1.21 1.77     
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Table B.2. Fuel efficiency figures for demersal trawlers and/or seiners compiled from 

European Scientific Fishery Data (after EC, 2013b). Fuel efficiency is expressed in litres of 

fuel (L) used per kilogram (kg) of catch landed. 

Country 

< 12 m 12 - 24 m 24 - 40 m 40+ m 
2

0
0

8
 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

2
0

0
8

 

2
0

0
9

 

2
0

1
0

 

Belgium      2.30  1.90 1.62    

diff. from UK        0.98     

Bulgaria             

Cyprus             

Denmark 0.17 0.15 0.07 0.29 0.22 0.21 0.18 0.18 0.19 0.08 0.07 0.07 

diff. from UK 0.77 0.79  0.73 0.75  0.74 0.74  0.60 0.67  

Estonia             

Finland             

France 0.80 1.32 1.48 1.48 1.49 1.47 1.18 1.48 1.36    

diff. from UK 0.14 0.38  0.46 0.52  0.26 0.56     

Germany 0.31 0.28 0.18 0.32 0.25 0.33 0.16 0.15 0.30 0.75 0.66 0.60 

diff. from UK 0.63 0.66  0.70 0.72  0.76 0.77  0.07 0.08  

Greece             

Ireland    1.66 1.18 0.81 1.12 0.99 0.74    

diff. from UK    0.64 0.21  0.20 0.07     

Italy 3.09 2.71 2.80 3.33 3.07 3.10 4.72 5.22 5.29    

diff. from UK 2.15 1.77  2.31 2.10  3.80 4.30     

Latvia             

Lithuania        0.90 0.42    

diff. from UK        0.02     

Malta    7.18 4.30 9.07       

diff. from UK    6.16 3.33        

Netherlands    1.33 1.35 1.31 1.45 1.30 1.14    

diff. from UK    0.31 0.38  0.53 0.38     

Poland    0.39 0.18 0.19 0.40 0.19 0.12    

diff. from UK    0.63 0.79  0.52 0.73     

Portugal 3.78 7.14 1.83 3.07 2.78 1.89 1.92 1.74 1.61 0.83 1.12 1.04 

diff. from UK 2.84 6.20  2.05 1.81  1.00 0.82  0.15 0.38  

Romania             

Slovenia   0.56   2.06       

Spain             

Sweden 0.82 0.76 1.49 0.58 0.39 0.34 0.59 0.58 0.57    

diff. from UK 0.12 0.18  0.44 0.58  0.33 0.34     

United 
Kingdom (UK) 

0.94 0.94  1.02 0.97  0.92 0.92  0.68 0.74  
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Table B.3. Fuel efficiency figures for dredgers compiled from European Scientific Fishery 

Data (after EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per kilogram (kg) 

of catch landed. 

Country 
< 12 m 12 - 24 m 24 - 40 m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium        0.77 0.80 

diff. from UK        0.22  

Bulgaria          

Cyprus          

Denmark 0.04 0.03 0.05 0.02 0.02 0.02    

diff. from UK 0.47 0.68  0.43 0.46     

Estonia          

Finland          

France 0.37 0.32 0.32 3.85 0.66 0.72    

diff. from UK 0.14 0.39  3.40 0.18     

Germany          

Greece          

Ireland  68.19 19.11       

diff. from UK  67.48        

Italy    0.66 0.71 0.66    

diff. from UK    0.21 0.23     

Latvia          

Lithuania          

Malta          

Netherlands          

Poland          

Portugal 0.90 1.43 1.65 1.00 0.97 1.31    

diff. from UK 0.39 0.72  0.55 0.49     

Romania          

Slovenia          

Spain          

Sweden          

United 
Kingdom (UK) 

0.51 0.71  0.45 0.48  0.74 0.55  
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Table B.4. Fuel efficiency figures for drift and/or fixed netters compiled from European 

Scientific Fishery Data (after EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used 

per kilogram (kg) of catch landed. 

Country 
< 12 m 12 - 24 m 24 - 40 m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium     1.24 0.63    

diff. from UK     0.68     

Bulgaria          

Cyprus          

Denmark          

Estonia          

Finland          

France 1.07 0.74 0.89 0.78 0.92 0.80    

diff. from UK 0.47 0.22  0.18 0.36     

Germany    0.15 0.08 0.09 1.25 1.91 0.82 

diff. from UK    0.45 0.48  0.90 1.45  

Greece          

Ireland    9.53 9.32 4.12    

diff. from UK    8.93 8.76     

Italy          

Latvia       0.79 0.40 0.36 

diff. from UK       0.44 0.06  

Lithuania  0.16 0.16  0.28 0.27    

diff. from UK  0.36   0.28     

Malta 9.02 46.57 3.34       

diff. from UK 8.42 46.05        

Netherlands          

Poland    0.39 0.15 0.19    

diff. from UK    0.21 0.41     

Portugal 1.47 0.99 1.60 1.35 0.88 1.07    

diff. from UK 0.87 0.47  0.75 0.32     

Romania          

Slovenia   1.26   3.41    

Spain          

Sweden    0.49 0.31 0.37    

diff. from UK    0.11 0.25     

United 
Kingdom (UK) 

0.60 0.52  0.60 0.56  0.35 0.46  
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Table B.5. Fuel efficiency figures for pelagic trawlers compiled from European Scientific 

Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per kilogram 

(kg) of catch landed. 

Country 
12 - 24 m 24 - 40 m 40+ m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium          

Bulgaria    0.16 0.11 0.08    

Cyprus          

Denmark          

Estonia 0.05 0.04 0.02 0.07 0.07 0.06    

Finland 0.02 0.03 0.02 0.06 0.08 0.08    

France          

Germany          

Greece          

Ireland    0.20 0.21 0.16 0.11 0.10 0.09 

Italy 0.50 0.46 0.31 0.59 0.70 0.64    

Latvia 0.16 0.14 0.14 0.07 0.07 0.07    

Lithuania     0.05 0.07  0.43 0.66 

Malta          

Netherlands       0.31 0.03 0.02 

Poland    0.11 0.07 0.09    

Portugal          

Romania     0.74 1.67    

Slovenia      0.65    

Spain          

Sweden    0.12 0.08 0.11 0.09 0.10 0.11 

United 
Kingdom (UK) 
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Table B.6. Fuel efficiency figures for purse seiners compiled from European Scientific 

Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per kilogram 

(kg) of catch landed. 

Country  
< 12 m 12 - 24 m 24 - 40 m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium          

Bulgaria          

Cyprus          

Denmark          

Estonia          

Finland          

France    0.05 0.06 0.07    

Germany          

Greece          

Ireland          

Italy    0.68 0.57 0.44 0.34 0.29 0.27 

Latvia          

Lithuania          

Malta          

Netherlands          

Poland          

Portugal 0.17 0.15 0.15 0.12 0.13 0.12 0.13 0.12 0.14 

Romania          

Slovenia      0.20    

Spain          

Sweden          

United 
Kingdom (UK) 
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Table B.7. Fuel efficiency figures for vessels using other active gear compiled from 

European Scientific Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) 

used per kilogram (kg) of catch landed. 

Country  
< 12 m 12 - 24 m 

2008 2009 2010 2008 2009 2010 

Belgium       

Bulgaria       

Cyprus       

Denmark       

Estonia       

Finland       

France  3.65 2.45    

Germany       

Greece       

Ireland       

Italy       

Latvia       

Lithuania       

Malta 0.14 2.38 1.87 2.00 0.79 0.97 

Netherlands       

Poland       

Portugal       

Romania       

Slovenia       

Spain       

Sweden       

United 
Kingdom (UK) 

      

 

 

 

 

 

 

 

 



  

180 
 

Table B.8. Fuel efficiency figures for vessels using active and passive gear compiled from 

European Scientific Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) 

used per kilogram (kg) of catch landed. 

Country  
< 12 m 12 - 24 m 24 - 40 m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium          

Bulgaria     0.75 0.26    

Cyprus          

Denmark 0.47 0.61 0.49 0.63 0.56 0.54    

Estonia          

Finland          

France  0.26 0.31       

Germany          

Greece          

Ireland 4.78         

Italy          

Latvia          

Lithuania          

Malta 0.33 2.01 2.01 2.28 0.78     

Netherlands          

Poland          

Portugal 0.84 1.02 0.81 0.73 0.85 0.68 0.78 1.52 0.74 

Romania   0.05 0.32   0.19 0.20  

Slovenia   1.02       

Spain          

Sweden          

United 
Kingdom (UK) 
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Table B.9. Fuel efficiency figures for vessels using hooks compiled from European Scientific 

Fishery Data (after EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) used per 

kilogram (kg) of catch landed. 

Country 
< 12 m 12 - 24 m 24 - 40 m 

2008 2009 2010 2008 2009 2010 2008 2009 2010 

Belgium          

Bulgaria          

Cyprus          

Denmark          

Estonia          

Finland          

France 1.40 1.11 1.01       

diff. from UK 0.81 0.34        

Germany          

Greece          

Ireland          

Italy    2.15 1.95 1.67    

diff. from UK          

Latvia          

Lithuania          

Malta 3.81 4.13 2.64 1.73 2.32 2.55    

diff. from UK 3.22 3.36        

Netherlands          

Poland     1.00 0.65    

Portugal 0.63 0.88 1.79 0.67 0.88 0.78 0.88  1.12 

diff. from UK 0.04 0.11     0.05   

Romania          

Slovenia   7.23       

Spain          

Sweden          

United 
Kingdom (UK) 

0.59 0.77     0.83 0.89  
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Table B.10. Fuel efficiency figures for vessels using other passive gear compiled from 

European Scientific Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) 

used per kilogram (kg) of catch landed. 

Country 
< 12 m 

2008 2009 2010 

Belgium    

Bulgaria    

Cyprus    

Denmark    

Estonia    

Finland    

France  0.75 0.19 

Germany    

Greece    

Ireland    

Italy    

Latvia    

Lithuania    

Malta    

Netherlands    

Poland    

Portugal    

Romania    

Slovenia    

Spain       

Sweden       

United 
Kingdom (UK) 
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Table B.11. Fuel efficiency figures for vessels using passive gears only compiled from 

European Scientific Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of fuel (L) 

used per kilogram (kg) of catch landed. 

Country 
< 12 m 12 - 24 m 

2008 2009 2010 2008 2009 2010 

Belgium       

Bulgaria       

Cyprus       

Denmark       

Estonia       

Finland       

France  1.14 0.71  1.00 1.05 

Germany       

Greece       

Ireland       

Italy       

Latvia       

Lithuania       

Malta       

Netherlands       

Poland       

Portugal       

Romania       

Slovenia       

Spain       

Sweden       

United 
Kingdom (UK) 
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Table B.12. Fuel efficiency figures for vessels using polyvalent passive gears only compiled 

from European Scientific Fishery Data (EC, 2013b). Fuel efficiency is expressed in litres of 

fuel (L) used per kilogram (kg) of catch landed. 

Country 
< 12 m 12 - 24 m 

2008 2009 2010 2008 2009 2010 

Belgium       

Bulgaria       

Cyprus    1.10 2.48 1.32 

Denmark 0.23 0.23 0.24 0.17 0.27 0.17 

Estonia       

Finland       

France  0.62 0.66    

Germany       

Greece       

Ireland       

Italy 1.73 1.66 1.75 1.54 1.46 1.85 

Latvia 0.04 0.02 0.02    

Lithuania       

Malta 11.95  2.10    

Netherlands       

Poland       

Portugal 1.00 1.84 1.06    

Romania       

Slovenia       

Spain       

Sweden       

United 
Kingdom 
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Table B.13. Fuel efficiency figures for vessels using pots and/or traps compiled from 

European Scientific Fishery Data (after EC, 2013b). Fuel efficiency is expressed in litres of 

fuel (L) used per kilogram (kg) of catch landed. 

Country 
< 12 m 12 - 24 m 

2008 2009 2010 2008 2009 2010 

Belgium       

Bulgaria       

Cyprus       

Denmark       

Estonia       

Finland       

France 0.44 0.49 0.50 0.21 0.56 0.50 

diff. from UK 0.20 0.29  0.66 0.03  

Germany       

Greece       

Ireland 2.13 2.73 1.61 2.57 1.38 0.43 

diff. from UK 1.49 1.95  1.70 0.79  

Italy       

Latvia       

Lithuania       

Malta       

Netherlands       

Poland       

Portugal 0.60 0.36 1.05 0.99 1.23 0.88 

diff. from UK 0.04 0.42  0.12 0.64  

Romania       

Slovenia   2.67   22.65 

Spain       

Sweden       

United 
Kingdom 

0.64 0.78  0.87 0.59  
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Table B.14. Mean difference between the UK and other country fishing fleet fuel efficiency 

figures across all gear types, active gear types and passive gear types. Created using 

difference figures from Tables B.1 to B.13. 

Country 

Mean difference from the UK Ranked similarity to UK 

All gear 
Active 
geara 

Passive 
gearb 

All gear 
Active 
geara 

Passive 
gearb 

Belgium 0.70 0.70 0.68 7 8 7 

Bulgaria       

Cyprus       

Denmark 0.70 0.70  8 7  

Estonia       

Finland       

France 0.50 0.64 0.36 4 3 6 

Germany 0.71 0.67 0.82 9 4 8 

Greece       

Ireland 7.57 10.68 3.94 12 12 9 

Italy 1.89 1.89  11 10  

Latvia 0.25  0.25 2  2 

Lithuania 0.22 0.02 0.32 1 1 4 

Malta 11.76 4.75 15.26 13 11 10 

Netherlands 0.68 0.68  6 6  

Poland 0.55 0.67 0.31 5 5 3 

Portugal 0.92 1.45 0.35 10 9 5 

Romania       

Slovenia       

Spain       

Sweden 0.29 0.33 0.18 3 2 1 

a) Beam trawlers, demersal trawlers and/or seiners, dredgers, pelagic trawlers, vessels 

using other active gears, vessels using active and passive gear, vessels using polyvalent 

active gears only. 

b) Drift/fixed netters, purse seiners, vessels using hooks, vessels using other passive gears, 

vessels using passive gears only, vessels using polyvalent passive gears only, vessels 

using pots and/or traps. 

  



  

187 
 

References  

Agrawal, H., Malloy, G.J., Welch, W.A., Millar, J.W., and Cocker, D.R. III (2008a). In-use 

gaseous and particulate matter emissions from a modern ocean going container vessel. 

Atmospheric Environment, 42: 5504-5510. 

Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D.R. III (2008b). Emission 

measurements from a crude oil tanker at sea. Environmental Science & Technology. 42: 

7098–7103, doi:10.1021/es703102y. 

Agrawal, H., Welch, W. A., Henningsen, S., Miller, J. W., and Cocker, D. R. III (2010). 

Emissions from main propulsion engine on container ship at sea. Journal of Geophysical 

Research. 115: D23205, doi:10.1029/2009jd013346. 

Baird, A.J. (2012). Comparing the efficiency of public and private ferry services on the 

Pentland Firth between mainland Scotland and the Orkney Islands. Research in 

Transportation Business & Management, 4: 79-89. 

Baird, A.J., and Pedersen, R.N. (2013). Analysis of CO2 emissions for island ferry services. 

Journal of Transport Geography, 32: 77-85. 

Bartnicki, J., Semeena, V.S., and Fagerli, H. (2011). Atmospheric deposition of nitrogen to 

the Baltic Sea in the period 1995-2006. Atmospheric Chemistry and Physics, 11: 10057-

10069. 

Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P. (2014). Airborne emission 

measurements of SO2, NOx and particles from individual ships using a sniffer technique. 

Atmospheric Measurement Techniques, 7: 1957-1968. 

Beirle S., Platt U., Glasow R. von, Wenig M., and Wagner T. (2004). Estimation of nitrogen 

oxide emissions from shipping by satellite remote sensing. Geophysical Research Letters, 

31, L18102. 

Benkovitz, C.M., Scholtz, M.T., Pacyna, J., Tarrasón, L., Dignon, J., Voldner, P.A., Spiro, P.A., 

Logan, J.A., and Graedel, T.E. (1996). Global gridded inventories of anthropogenic emissions 

of sulphur and nitrogen. Journal of Geophysical Research, 101 (D22): 29,239-29,253. 

Berechman, J., and Tseng, P.-H. (2012). Estimating the environmental costs of port related 

emissions: The case of Kaohsiung. Transportation Research Part D, 17: 35-38. 



  

188 
 

Berg, N., Mellqvist, J., Jalkanen J.-P. and Balzani, J. (2012). Ship emissions of SO2 and NO2: 

DOAS measurements from airborne platforms. Atmospheric Measurement Techniques 5: 

1085-1098. 

Buhaug, Ø., Corbett, J.J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., 

Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, 

J.J., Wu, W.–Q., and Yoshida, K. (2009). Second IMO GHG Study 2009. London, UK: 

International Maritime Organization (IMO). 

Burt, J.E., and Barber, G.M. (1996). Elementary Statistics for Geographers (2nd ed.). New 

York, USA: The Guildford Press. 

Butcher, P. (2014). Seven concurrency models in seven weeks. Dallas, Texas, USA: The 

Pragmatic Programmers. 

Byrnes, T.A., and Warnken, J. (2009). Greenhouse Gas Emissions from Marine Tours: A Case 

Study of Australian Tour Boat Operators. Journal of Sustainable Tourism, 14 (3): 255-270. 

Campolongo, F., Cariboni, J. and Saltelli, A. (2007). An effective screening design for 

sensitivity analysis of large models. Environmental Modelling & Software. 22: 1509-1518. 

Capaldo, K., Corbett, J.J., Kasibhatla, P., Fischbeck, L., and Pandis, S.N. (1999), Effects of ship 

emissions on sulphur cycling and radiative forcing over the ocean. Nature, 400: 743-746. 

Chang, Y.-T., Song Y., and Roh Y. (2013). Assessing greenhouse gas emissions from port 

vessel operations at the Port of Incheon. Transportation Research Part D, 25: 1-4. 

Christofides, N., and Eilon, S. (1972). Algorithms for largescale travelling salesman 

problems. Operational Research Quarterly 23: 511-518. 

Coello, J., Williams, I., Hudson, D.A., and Kemp, S. (2015). An AIS-based approach to 

calculate atmospheric emissions from the UK fishing fleet. Atmospheric Environment, 114: 

1-7. 

Coggon, M.M., Sorooshian, A., Wang, Z., Metcalf, A.R., Frossard, A.A., Lin, J.J., Craven, J.S., 

Nenes, A., Jonsson, H.H., Russel, L.M., Flagan, R.C. and Seinfeld, J.H. (2012). Ship impacts on 

the marine atmosphere: insights into the contribution of shipping emissions to the 

properties of marine aerosol and clouds. Atmospheric Chemistry and Physics, 12: 8439-

8458. 



  

189 
 

Committee on Climate Change (2011). Review of UK Shipping Emissions. London, UK: 

Committee on Climate Change (CCC). 

Cooper, D.A. (2003a). Exhaust emissions from high speed passenger ferries. Atmospheric 

Environment, 35: 4189-4200. 

Cooper, D.A. (2003b). Exhaust emission from ship at berth. Atmospheric Environment, 37: 

3817-3830. 

Cooper, D.A. (2005). HCB, PCB, PCDD and PCDF emissions from ships. Atmospheric 

Environment, 39: 4901-4912. 

Corbett, J.J. (2002). Emissions from Ships in the Northwestern United States. Environmental 

Science & Technology, 36: 1299-1306. 

Corbett, J.J., and Fischbeck, P.S. (2000). Emissions from Waterborne Commerce Vessels in 

United States Continental and Inland Waterways. Environmental Science & Technology, 34: 

3254-3260. 

Corbett, J.J., Fischbeck, P.S., and Pandis, S.N. (1999). Global nitrogen and sulphur 

inventories for oceangoing ships. Journal of Geophysical Research, 104 (D3): 3457-3470. 

Corbett, J.J., Lack, D.A., Winebrake, J.J., Harder, S., Silberman, J.A., and Gold, M. (2010). 

Arctic shipping emissions inventories and future scenarios. Atmospheric Chemistry & 

Physics, 10: 9689-9704. 

Corbett, J.J., and Köhler, H.W. (2003). Updated emissions from ocean shipping. Journal of 

Geophysical Research, 108 (D20): 4650. 

Corbett, J.J., and Köhler, H.W. (2004). Considering alternative input parameters in an 

activity-based ship fuel consumption and emissions model: Reply to comment by Øyvind 

Endresen et al., on "Updated emissions from ocean shipping". Journal of Geophysical 

Research, 109 (D23393). 

Corbett, J.J., Lack, D.A., Winebrake, J.J., Harder, S., Silberman, J.A., and Gold, M. (2010). 

Arctic shipping emissions inventories and future scenarios. Atmospheric Chemistry & 

Physics, 10: 9689-9704. 

Corbett, J.J., Winebrake, J.J., Green, E.H., Kasibhatla, P., Eyring, V., and Lauer, A. (2007). 

Mortality from Ship Emissions: A Global Assessment. Environmental Science & Technology, 

41: 8512-8518. 



  

190 
 

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to Algorithms. 

Third Edition. Cambridge, Massachusetts, USA : The MIT Press. ISBN 978-0-262-53305-8. 

Curtis, H.C., Graham, K. and Rossiter, T. (2006) Options for Improving Fuel Efficiency in the 

UK Fishing Fleet. Edinburgh: SeaFish Industry Authority, UK. ISBN 0903941597 

Dalsøren, S.B., Eide, M.S., Endresen, Ø., Mjelde, A., Gravir, G., and Isaksen, S.A. (2009). 

Update on emissions and environmental impacts from the international fleet of ships: the 

contribution from major ship types and ports. Atmospheric Chemistry & Physics, 9: 2171-

2194. 

Dalsøren, S.B., Endresen, Ø., Isaksen, S.A., Gravir, G., and Sørgård E. (2007). Environmental 

impacts of the expected increase in sea transportation with a particular focus on oil and gas 

scenarios for Norway and northwest Russia. Journal of Geophysical Research, 112, D02310, 

doi:10.1029/2005JD0066927. 

Danish Maritime Authority (2014). Worth Knowing About AIS – AIS of classes A and B 

[online]. Available from: 

http://www.dma.dk/AIS/WORTHKNOWINGABOUTAIS/Sider/AISclassAandB.aspx [Accessed 

10th June 2014]. 

De Meyer, P., Maes, F., and Volckaert, A. (2008). Emissions from international shipping in 

the Belgian part of the North Sea and the Belgian seaports. Atmospheric Environment, 42: 

196-206.  

Dedes, E.K. (2013). Investigation of hybrid systems for diesel powered ships. Doctoral Thesis. 

University of Southampton. Southampton, UK. 

Defra/DECC (2012). 2012 greenhouse gas conversion factors for company reporting. 

Department for Environment, Food and Rural Affairs (Defra) and Department for Energy 

and Climate Change (DECC): London. Available from: 

https://www.gov.uk/government/publications/2012-greenhouse-gas-conversion-factors-

for-company-reporting [Accessed 1st Nov 2013]. 

Deniz, C., and Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea 

of Marmara, Turkey. Science of the Total Environment, 390: 255-261. 



  

191 
 

Dong, C., Huang, K.-L., Chen, C.-W., Lee, C.-W., Lin, H.-Y., and Chen, C.-F. (2002). Estimation 

of air pollutants emission from ships in the Kaohsiung Harbour area. Aerosol and Air Quality 

Research, 2 (1): 31-40. 

Driscoll, J., and Tyedmers, P. (2010). Fuel use and greenhouse gas emission implications of 

fisheries management: the case of the New England Atlantic herring fishery. Marine Policy, 

34: 353-359. 

EC (2013a). Fleet Register on the Net [online]. European Commission (EC). Available from: 

http://ec.europa.eu/fisheries/fleet/ [Accessed 4th Aug 2013]. 

EC (2013b). Scientific Fishery Data [online]. European Commission (EC). Available from: 

https://fishreg.jrc.ec.europa.eu/web/datadissemination [Accessed 29th Sep 2013]. 

ECSA (2018). Shipowners encourage EU-China leadership in shaping IMO CO2 strategy 

[online]. European Community Shipowners’ Association (ECSA). Available from: 

http://www.ecsa.eu/news/shipowners-encourage-eu-china-leadership-shaping-imo-co2-

strategy [Accessed 15th Mar 2018]. 

Endresen, Ø., Bakke, J., Sørgård, Berglen, T.F., and Holmvang, P. (2005). Improved 

modelling of ship SO2 emissions - a fuel-based approach. Atmospheric Environment, 39: 

3621-3628. 

Endresen, Ø., Eide, M., Dalsøren, S., Isaksen, S., and Sørgård, E. (2008). The Environmental 

Impacts of Increased International Maritime Shipping - Past trends and future perspectives. 

Global Forum on Transport and Environment in a Globalising World, 10-12 November 2008. 

Guadalajara, Mexico. OECD & International Transport Forum: Paris, France. 

Endresen, Ø., Sørgård, E., Behrens, H.L., Brett, P.O., and Isaksen, I.S.A. (2007). A historical 

reconstruction of ship's fuel consumption and emissions. Journal of Geophysical Research, 

112, D12301, doi:10.1029/2006JD007630. 

Endresen, Ø., Sørgård, E., Sundet, J.K., Dalsøren, S.B., Isaksen, I.S.A., Berglen, T.F., and 

Gravir, G. (2003). Emission from international sea transportation and environmental 

impact. Journal of Geophysical Research, 108 (D17), 4560. 

Endresen, Ø., Sørgård, E., Bakke, J., and Isaksen, I. S. A. (2004). Substantiation of a lower 

estimate for the bunker inventory: Comment on ‘‘Updated emissions from ocean shipping’’ 



  

192 
 

by James J. Corbett and Horst W. Koehler, Journal of Geophysical Research, 109, D23302, 

doi:10.1029/2004JD004853. 

Entec (2005). Service contract on ship emissions: assignment, abatement and market-based 

instruments. Task 1e Preliminary assignment of ship emissions to European Countries. Final 

Report. European Commission Directorate General Environment. Contract n. 

070501/2004/383959/MAR/C1. 

Eurostat (2018). Maritime ports freight and passenger statistics [online]. Available from: 

http://ec.europa.eu/eurostat/statistics-

explained/index.php/Maritime_ports_freight_and_passenger_statistics [Accessed 13th Mar 

2018] 

ExactEarth (2014). ExactAIS delivery [online]. Available from: 

http://www.exactearth.com/products/exactais/exactais-delivery [Accessed 22nd May 2014]. 

Eyring, V., Köhler H. W., van Aardenne J., and Lauer A. (2005). Emissions from international 

shipping: 1. The last 50 years, Journal of Geophysical Research, 110, D17305, 

doi:10.1029/2004JD005619. 

Eyring, V., Isaksen, I.S.A., Berntsen, T., Collins, W.J., Corbett, J.J., Endresen, Ø., Grainger, 

R.G., Moldanova, J., Schlanger, H., and Stevenson, D.S. (2010). Transport impacts on 

atmosphere and climate: Shipping. Atmospheric Environment, 44: 4735-4771. 

FAO (2018). Statistics – Introduction [online]. Rome: Fisheries and Aquaculture Department, 

Food and Agricultural Organisation of the United Nations (FAO). Available from: 

http://www.fao.org/fishery/statistics/en [Accessed 13th Mar 2018] 

Farrell, A.E., Redman, D.H., Corbett, J.J., and Winebrake, J.J. (2003). Comparing air pollution 

from ferry and landside commuting. Transportation Research Part D, 8: 343-360. 

Field, A., Miles, J., and Field, Z. (2012). Discovering Statistics Using R. SAGE Publications Ltd: 

London, UK. ISBN 978-1-4462-0045-9. 

Fitzgerald, W.B., Oliver, J.A., Smith, I.J. (2011). Greenhouse gas emissions from the 

international maritime transport of New Zealand's imports and exports. Energy Policy, 39: 

1521-1531. 



  

193 
 

Gatebe C.K., Poudyal R., Wilcox E., and Wang J. (2010). Effects of ship wakes on ocean 

brightness and radiative forcing over ocean. Atmospheric Chemistry and Physics 

Discussions, 10: 21683-21696. 

Georgakaki, A., Coffey, R.A., Lock, G., and Sorenson, S.C. (2005). Transport and Environment 

Database System (TRENDS): Maritime air pollutant emission modelling. Atmospheric 

Environment, 39: 2257-2365. 

Gilbert, P. and Bows, A. (2012). Exploring the scope for complementary sub-global policy to 

mitigate CO2 from shipping. Energy Policy, 50: 613-622. 

Gommers, A., Verbeeck, L., Van Cleemput, E., Schrooten, L. and De Vlieger, I. (2007). 

MOPSEA. MOnitoring Programme on air pollution from SEA-going vessels. Report No. 

D/2007/1191/30. Brussels, Belgium: Belgian Science Policy. 

GPS.gov (2017). GPS Accuracy [online]. Available from: 

https://www.gps.gov/systems/gps/performance/accuracy/ [Accessed 30th Mar 2018]. 

Halff, A. (2017). Slow Steaming to 2020: Innovation and Inertial in Marine Transport and 

Fuels. Center on Global Energy Policy: Columbia | SIPA. Available from: 

http://energypolicy.columbia.edu/sites/default/files/SlowSteamingto2020InnovationandIn

ertiainMarineTransportandFuels817.pdf [Accessed 16th Jan 2018]. 

Hamby, D.M. (1995). A comparison of sensitivity analysis techniques. Health Physics. 68 (2): 

195-204. 

Hamer, G.P. (2012). Trip Out 2011/12 – A guide to the passenger boat services of the British 

Isles. Southall, UK: G P Hamer.  ISBN 978-1-871908-27-2. 

Harvey, F. (2016). Shipping industry criticised for failure to reach carbon emissions deal. The 

Guardian. Available from: 

https://www.theguardian.com/environment/2016/oct/28/shipping-industry-fails-

agreement-cap-carbon-emissions [Accessed 24th March 2016].  

He, Y, Mirzargar, M, Kirby, RM (2015). Mixed aleatory and epistemic uncertainty 

quantification using fuzzy set theory. International Journal of Approximate Reasoning 66: 1–

15. 



  

194 
 

Helton, J.C. and Davis, F.J. (2003). Latin hypercube sampling and the propagation of 

uncertainty in analysis of complex systems. Reliability Engineering & System Safety, 81: 23-

69. 

Heitman, N., and Khalilian, S. (2011). Accounting for carbon dioxide emissions from 

international shipping: Burden sharing under different UNFCCC allocation options and 

regime scenarios. Marine Policy, 35: 682-691. 

Hospido, A., and Tyedmers, P. (2005). Life cycle environmental impacts of Spanish tuna 

fisheries. Fisheries Research, 76: 174-186. 

Howitt, O.J.A., Revol, V.G.N., Smith, I.J., and Rodger, C.J. (2010). Carbon emissions from 

international cruise ship passengers' travel to and from New Zealand. Energy Policy, 38: 

2552-2560. 

Hulskotte, J.H.J., and van der Gon, H.A.C.D. (2010). Fuel consumption and associated 

emissions from seagoing ships at berth derived from an on-board survey. Atmospheric 

Environment, 44: 1229-1236. 

ICOM (2013). MA-500 TR [online]. Available from: http://www.icomuk.co.uk/MA-

500TR/AIS_Products [Accessed 1st Nov 2013]. 

IEA (2011). CO2 emissions from fuel combustion - Highlights. Paris, France: OECD / 

International Energy Agency. 

IMO (2002). SN/Circ.227. Amendment to the International Convention for the Safety of Life 

at Sea (SOLAS), 1974. Chapter V –Safety of navigation, Regulation 19. London, UK: 

International Maritime Organisation (IMO). 

IMO (2016a). IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation. Module 

2 – Ship Energy Efficiency Regulations and Related Guidelines. London, UK: International 

Maritime Organisation (IMO). Available from: 

http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Docume

nts/Air%20pollution/M2%20EE%20regulations%20and%20guidelines%20final.pdf 

[Accessed 15th Mar 2018]. 

 

 



  

195 
 

IMO (2016b). New requirements for international shipping as UN body continues to address 

greenhouse gas emissions [online]. London, UK: International Maritime Organisation (IMO). 

Available from: http://www.imo.org/en/MediaCentre/PressBriefings/Pages/28-MEPC-data-

collection--.aspx [Accessed 15th Mar 2018]. 

IMO (2018). Prevention of Air Pollution from Ships [online]. London, UK: International 

Maritime Organisation (IMO). Available from: 

http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/air

-pollution.aspx [Accessed 15th Mar 2018]. 

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. 

Bex and P.M. Midgley (eds.)]. Geneva, Switzerland: Intergovernmental Panel on Climate 

Change (IPCC). 

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 

and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: 

Intergovernmental Panel on Climate Change (IPCC). 

Iribarren, D., Vázquez-Rowe, I., Hospido, A., Moreira, M.T., and Feijoo, G. (2010). Estimation 

of the carbon footprint of the Galacian fishing activity (NW Spain). Science of the Total 

Environment, 408: 5284-5294. 

Isakson, J., Persson, T.A., Lindgren, E.S. (2001). Identification and assessment of ship 

emissions and their effects in the harbour of Göteborg, Sweden. Atmospheric Environment, 

35: 3659-3666. 

International Transport Forum (2018). Decarbonising Maritime Transport. Pathways to 

zero-carbon shipping by 2035. Paris, France: International Transport Forum. Available from: 

https://www.itf-oecd.org/decarbonising-maritime-transport [Accessed 8th April 2015]. 

Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T. (2009). A 

modelling system for the exhaust emissions of marine traffic and its application in the Baltic 

Sea area. Atmospheric Chemistry and Physics, 9: 9209-9223. 



  

196 
 

Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink A., Kalli, J. and Stipa, T. (2012). Extension 

of an assessment model of ship traffic exhaust emissions for particulate matter and carbon 

monoxide. Atmospheric Chemistry and Physics 12: 2641-2659. 

Jalkanen, J.-P., Johansson, L. and Kukkonen. J. (2014). A comprehensive inventory of ship 

traffic exhaust emissions in the Baltic Sea from 2006 to 2009. Ambio 43: 311-324. 

Jüttner, F., Backhaus, D., Matthias, U., Essers, U., Greiner, R., and Mahr, B. (1995). 

Emissions of two- and four-stroke outboard engines - I. Quantification of gases and VOC. 

Water Resources, 29 (8): 1976-1982. 

Kasper, A., Aufdenblatten, S., Forss, A., Mohr, M. and Burtscher, H. (2007). Particulate 

emissions from a low-speed marine diesel engine. Aerosol Science & Technology, 41: 24– 

32. 

Köhler, H.W. (2003). NOX emissions from civilian shipping. MTZ Worldwide, 64 (12): 19-23. 

Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., and Lohmann, U. (2007). Global model 

simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation 

budget. Atmospheric Chemistry and Physics, 7: 5061-5079. 

Laurens, J.-M., Leroux, J.-B., and Coache, S. (2013). Design and retrofit of the propulsion of 

trawlers to improve their efficiency. In: Soares, C.G. and Peña, F.L. (eds.). Developments in 

Maritime Transportation and Exploitation of Sea Resources Volume 2: 1075 – 1084. London, 

UK: CRC Press. ISBN: 978-1-4822-3300. 

Lawrence, M.G., and Crutzen, P.J. (1999). Influence of NOX emissions from ships on 

tropospheric photochemistry and climate. Nature, 402: 167-170. 

Lee, D.S., Lim, L., Eyring, V., Sausen, R., Endresen, Ø., and Behrens, H.-L. (2006). Radiative 

forcing and temperature response from shipping. Proceedings of the TAC-Conference, June 

26 to 29, 2006, Oxford, UK. 

Lin, S., and Kernighan, B.W. (1973). An effective heuristic algorithm for the Traveling-

Salesman Problem. Operations Research, 21(2): 498-516.  

Lindstad, H., Asbjørnslett, B., and Strømman A.H. (2011). Reductions in greenhouse gas 

emissions and cost by shipping at lower speeds. Energy Policy, 39: 3456-3464. 

Lindstad, H., Asbjørnslett, B., and Strømman A.H. (2012). The importance of economies of 

scale for reductions in greenhouse gas emission from shipping. Energy Policy, 46: 386-398. 



  

197 
 

Ma, H., Steernberg, K., Riera-Palou, X., and Tait, N. (2012). Well-to-wake greenhouse gas 

analysis of SOX abatement options for the marine industry. Transportation Research Part D, 

17: 301-308. 

MARIN (2012). Sea shipping emissions 2010: Netherlands continental shelf, port areas and 

Ospar Region II. Final Report. Report No. 25185-1-MSCN-rev.4. Report to 

RIVM/Emissieregistratie: Biltoven, Netherlands. 

MarineTraffic.com (2013). Vessels [online]. MarineTraffic.com. Available at: 

http://www.marinetraffic.com/ais/datasheet.aspx?datasource=V_SHIP&level1=220 

[Accessed 8th Nov 2013]. 

MarineTraffic.com (2014). Frequently Asked Questions [online]. Available from: 

http://www.marinetraffic.com/en/p/faq [Accessed 20th May 2014]. 

Memos, D. (2013). Response to question about AIS data [email]. MarineTraffic.com. 

(Personal Communication on 17th May 2013). 

Miola A., Marra M., and Ciuffo B. (2010). Designing a climate change policy for the 

international maritime transport sector: Market-based measures and technological options 

for global and regional policy actions. Energy Policy, 39: 5490-5498. 

Miola, A., and Ciuffo, B. (2011). Estimating air emissions from ships: Meta-analysis of 

modelling approaches and available data sources. Atmospheric Environment, 45: 2242-

2251. 

MMO (2013). Spatial trends in shipping activity (AIS derived shipping activity – data 

standards). A report produced for the Marine Management Organisation (MMO). MMO 

Project No: 1042. ISBN: 978-1-909452-12-1. 

Molland, A.F., Turnock, S.R., and Hudson, D.A. (2011). Ship resistance and propulsion: 

practical estimation of ship propulsive power. Cambridge, UK: Cambridge University Press. 

ISBN: 978-0-521760-52-2. 

Montgomerie, M. (2013). Re: A question about engine loads [email]. Grimsby, UK: Seafish. 

(Personal communication, 6th Nov 2013). 

Murphy, K. P. (2012). Machine Learning, A probabilistic Perspective. Cambridge, 

Massachusetts, USA: The MIT Press. ISBN 978-0-262-01802-9. 



  

198 
 

NTUA (2008). Ship Emissions Study. Report to the Hellenic Chamber of Shipping. Athens, 

Greece: National Technical University of Athens (NTUA) Laboratory for Maritime Transport. 

Olesen, H.R., Winther, M., Ellermann, T., Christensen, J., and Plejdrup, M., (2009). Ship 

Emissions and air pollution in Denmark. Present situation and future scenarios. Report to 

the Danish Ministry of the Environment. Environmental project number 1307 2009. Aarhus, 

Denmark: National Environmental Research Institute, Aarhus University. 

Olivier, J. G., Bouwman, A.F., van der Maas, C.W.M., Berdowski, J.J.M., Veldt, C., Bloos, 

J.P.J., Visschedijk, A.J.H., Zandveld, P.Y.J., and Haverlag, J.L. (1996). Description of EDGAR 

Version 2.0. A Set of Global Emission Inventories of Greenhouse Gases and Ozone-depleting 

Substances for all Anthropogenic and Most Natural Sources on a Per Country Basis and on 

1˚ x 1˚ Grid. Report no. 771060 002 RIVM. Bilthoven, The Netherlands: National Institute of 

Public Health and the Environment. 

Paxian, A., Eyring, V., Beer, W., Sausen, R., and Wright, C. (2010). Present-Day and Future 

Global Bottom-Up Ship Emission Inventories Including Polar Routes. Environmental Science 

& Technology, 44: 1333-1339. 

Perez, H.M., Chang, R., Billings, R., and Kosub, T.L. (2009). ‘Automatic Identification Systems 

(AIS) Data Use in Marine Vessel Emissions Estimate’, paper presented at 18th Annual 

International Emissions Inventory Conference “Comprehensive Inventories – Leveraging 

Technology and Resources”, Baltimore, Maryland, 14-17 April. 

Psaraftis, H.N., and Kontovas, C.A. (2009). CO2 Emission Statistics for the World Commercial 

Fleet. WMU Journal of Maritime Affairs, 8 (1): 1-25. 

Ross, E., Arifin, B., Brodsky, Y. (2011). An information system for ship detection and 

identification, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE 

International: 2081-2084. 

Saltelli, A., Chan, K. and Scott, E.M. (2008a). Sensitivity Analysis. Chichester, England: John 

Wiley & Sons Ltd. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and 

Tarantola, M. (2008b). Global sensitivity analysis. The primer. Chichester, England: John 

Wiley & Sons Ltd. 



  

199 
 

Schau, E.M., Ellingsen, H., Endal, A., and Aanondsen, S.A. (2009). Energy consumption in the 

Norwegian fisheries. Journal of Cleaner Production, 17: 325-334. 

Schrooten, L., de Vlieger, I., Panis, L.I., Styns, K., and Torfs, R. (2008). Inventory and 

forecasting of maritime emissions of the Belgian sea territory, an activity-based emission 

model. Atmospheric Environment, 42: 667-676. 

Schrooten, L., de Vlieger, I., Panis, L.I., Chiffi, C., Pastori, E. (2009). Emissions of maritime 

transport: A European reference system. Science of the Total Environment, 408: 318-323. 

Sinnott, R.W. (1984). Virtues of the Haversine. Sky and Telescope, 68 (2): 159. 

Skjølsvik, K.O., Andersen, A.B., Corbett, J.J., and Skjelvik, J.M. (2000). Study of greenhouse 

gas emissions from ships. MEPC 45/8: Report to International Maritime Organization on the 

outcome of the IMO Study on Greenhouse Gas Emissions from Ships. MARINTEK Sintef 

Group, Carnegie Mellon University, Center for Economic Analysis, and Det Norske Veritas: 

Trondheim, Norway. 

Smith, T.W.P. (2012). Technical energy efficiency, its interaction with optimal operating 

speeds and the implications for the management of shipping's carbon emissions. Carbon 

Management, 3 (6): 589-600. 

Smith, T.W.P., O’Keefe, E., Aldous, L. and Agnolucci, P. (2013). Assessment of shipping’s 

efficiency using satellite AIS data. Prepared for the International Council on Clean 

Transport. 

Smith, T.W.P., Jalkanen, J.P., Anderson, B.A., Corbett, J.J., Faber, J., Hanayama, S., O’Keefe, 

E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, 

D.S., Ng, S., Agrawal, A., Winebrake, J.J., Hoen, M., Chesworth, S., and Pandey, A. (2014) 

Third IMO GHG Study 2014. London, UK: International Maritime Organization. 

Sobol, I.M. (2001). Global sensitivity indices for nonlinear mathematical models and their 

Monte Carlo estimates. Mathematics and Computers in Simulation. 55: 271-280. 

Song C.H., Chen G., Hanna S.R., Crawford J., and Davis D.D. (2003). Dispersion and chemical 

evolution of ship plumes in the marine boundary layer: Investigation of O3/NOX/HOX 

chemistry. Journal of Geophysical Research, 108, D4, 4143, doi:10.1029/2002JD002216 

Song, S. (2013). Ship Emissions Inventory, Social Cost and Eco-Efficiency of Shanghai 

Yangshan Port. Atmospheric Environment, accepted manuscript. 



  

200 
 

Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., Rihan, D. 

(2012), Low impact and fuel efficient fishing - Looking beyond the horizon. Fisheries 

Research, 119-120: 135-146. 

Taylor-Branco, R. (2013).  ExactAIS data provision quote [email]. Hamburg, Germany: 

VesselTracker. (Personal communication 11th July 2013). 

Thrane, M. (2004a). Energy Consumption in the Danish Fishery - Identification of Key 

Factors. Journal of Industrial Ecology, 8 (1-2): 223-239. 

Thrane, M. (2004b). Environmental impacts from Danish fish products - Hotspots and 

environmental policies. Ph.D. Thesis. Aalborg: Denmark: Aalborg University. 

Traut, M., Bows, A., Walsh, C. and Wood, R. (2013). Monitoring shipping emissions via AIS 

data? Certainly. Low Carbon Shipping Conference, 2013. London, UK. 

Trozzi, C., De Laurentis, R., Rypdal, K., Webster, A., Fridell, E., Reynolds, G., Fontelle, J.-P., 

Lavender, K., Kilde, N., Hill, N., Thomas, R. and Winther, M. (2016). International maritime 

navigation, national navigation (shipping), national fishing and military (shipping) and 

recreational boats. EMEP/EEA air pollutant emission inventory guidebook 2016 - Technical 

guidance to prepare national emission inventories. Copenhagen, Luxembourg: European 

Environment Agency. 

Trozzi, C., Vaccaro, R., Nicolo, L. (1995). Air pollutants emissions estimate from maritime 

traffic in the Italian harbours of Venice and Piombino. Science of the Total Environment, 

169: 257-263. 

Tyedmers, P. (2001). Energy consumed by North Atlantic fisheries. In: Fisheries’ Impacts on 

North Atlantic Ecosystems: Catch, Effort and National/Regional Datasets. Zeller, D., Watson, 

R. and Pauly, D. (eds.). Fisheries Centre, University of British Columbia, Vancouver, pp. 12–

34. Available from http://www.seaaroundus.org/report/method/tyedmers10.pdf 

Tyedmers, P.H., Watson, R., and Pauly, D. (2005). Fuelling Global Fishing Fleets. Ambio, 34 

(8): 635-638. 

Tzannatos, E. (2010). Ship emissions and their externalities for Greece. Atmospheric 

Environment, 44: 400-407. 

United Nations (2016). Paris Agreement. Paris, France: United Nations. 



  

201 
 

U.S. Coast Guard Navigation Center (2017). AIS Class A static and voyage related data 

(Message 5) [online]. Available from: 

https://www.navcen.uscg.gov/?pageName=AISMessagesAStatic [Accessed 7th Feb 2018]. 

UWE (2018). Pearson’s Correlation Coefficient. Data Analysis [online]. University of West 

England (UWE). Available from: http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1442 

[Accessed 10th Feb 2018]. 

van der Zee, S.C., Dijkerma, M.B.A., van der Laan, J., and Hoek, G. (2012). The impact of 

inland ships and recreational boats on measured NOX and ultrafine particle concentrations 

along the waterways. Atmospheric Environment, 55: 368-376. 

van Vuuren, D.P., Hoogwijk, M., Barker, T., Riahi, K., Boeters, S., Chateau, J., Scrieciu, S., van 

Vliet, J., Toshihiko, M., Blok, K., Blomen, E., and Kram, T. (2009). Comparison of top-down 

and bottom-up estimates of sectoral and regional greenhouse gas emission reduction 

potentials. Energy Policy, 37: 5125-5139. 

Vázquez-Rowe, I., Moeira, M.T., and Feijoo, G. (2010). Life cycle assessment of horse 

mackerel fisheries in Galicia (NW Spain): Comparative analysis of two major fishing method. 

Fisheries Research, 106: 517-527. 

Vergara, J., McKesson, C., and Walczak, M. (2012). Sustainable energy for the marine 

sector. Energy Policy, 49: 333-345. 

Vesseltracker (2014). Hardware – AIS Devices [online]. Available from: 

https://www.vesseltracker.com/en/static/Hardware.html [Accessed 3rd May 2014]. 

Villalba, G., and Gemechu, E.D. (2011). Estimating GHG emissions of marine ports - the case 

of Barcelona. Energy Policy, 39: 1363-1368. 

Vrajitoru, D. (2017). Embarrassingly Parallel Algorithms [online]. Available from: 

http://www.cs.iusb.edu/~danav/teach/b424/b424_23_embpar.html [Accessed 15th March 

2017]. 

Walker, H., Conolly, C., Norris, J., and Murrells, T. (2011). Greenhouse Gas Emissions from 

Inland Waterways and Recreational Craft in the UK - Task 25 of the 2010 DA/UK GHG 

Inventory Improvement Programme. Report to the Department of Energy & Climate Change 

(DECC). AEA Technology plc.: Didcot, UK. 



  

202 
 

Wang, C., and Corbett, J.J. (2007). The costs and benefits of reducing SO2 emissions from 

ships in the US West Coastal waters. Transportation Research Part D, 12: 577-588. 

Wang, C., Corbett, J.J., Firestone, J. (2007), Modeling Energy Use and Emissions from North 

American Shipping: Application of the Ship Traffic, Energy, and Environmental Model. 

Environmental Science & Technology, 41: 3226-3232. 

Wang, C., Corbett, J.J., and Firestone, J. (2008). Improving Spatial Representation of Global 

Ship Emissions Inventories. Environmental Science & Technology, 42: 193-199. 

Wärtsilä (2018). Sea Margin. Wartsila Encyclopedia of Marine Technology [online]. Available 

from: https://www.wartsila.com/encyclopedia/term/sea-margin [Accessed 9th Feb 2018] 

Whall, C., Cooper, D., Archer, K., Twigger, L., Thurston, N., Ockwell, D., McIntyre, A., and 

Ritchie, A. (2002). Quantification of emissions from ships associated with ship movements 

between ports in the European Community - Final Report. Report to the European 

Commission. Northwick, United Kingdom: Entec UK Limited. 

Whall, C., Stavrakaki, A., Ritchie, A., Green, C., Shialis, T., Minchin, W., Cohen, A., and 

Stokes, R. (2007). Ship Emissions Inventory - Mediterranean Sea. Report to CONCAWE. 

London, UK: Entec UK Limited. 

Whall, C., Scarbrough, T., Stavrakaki, A., Green, C., Squire, J., and Noden, R. (2010). UK Ship 

Emissions Inventory - Final Report. Report to the Department for Food and Rural Affairs. 

London, UK: Entec UK Limited. 

WHO (2005). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and 

sulfur dioxide. Global update 2005. Summary of risk assessment. Geneva, Switzerland: 

World Health Organization (WHO). 

WHO (2017). Preventing noncommunicable diseases (NCDs) by reducing environmental risk 

factors. Geneva, Switzerland: World Health Organization (WHO). 

Williams, I., Kemp, S., Coello, J., Turner, D.A. and Wright, L.A. (2012). A beginner’s guide to 

carbon footprinting. Carbon Management, 3 (1): 55-67. 

Winebrake, J.J., Corbett, J.J., Green, E.H., Lauer, A., and Eyring, V. (2009). Mitigating the 

Health Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulphur Fuel 

Mandates. Environmental Science & Technology, 43 (13): 4776-4782. 



  

203 
 

Winnes, H., and Fridell, E. (2010). Emissions of NOX and particles from manoeuvring ships. 

Transportation Research Part D, 15: 204-211. 

Wright, L.A., Coello, J., Kemp, S. and Williams, I. (2011). Carbon footprinting for climate 

change management in cities. Carbon Management, 2 (1): 49-60. 

Wu, J., Dhingra, R., Gambhir, M. and Remais, J.V. (2013). Sensitivity analysis of infection 

disease models: methods, advances and their application. Journal of the Royal Society 

Interface. 10 (86): 20121018. 

Ziegler, F., and Hansson, P.-A (2003). Emissions from fuel combustion in Swedish cod 

fishery. Journal of Cleaner Production, 11: 303-314. 

Ziegler, F., and Valentinsson, D. (2008), Environmental life cycle assessment of Norway 

lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and 

conventional trawls - LCA methodology with case study. International Journal of Life Cycle 

Assessment, 13: 487-497. 


