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Abstract
Given a set of sources and one-point function data for a Lorentzian holographic
QFT, does the Fefferman-Graham expansion converge? If it does, what sets
the radius of convergence, and how much of the interior of the spacetime
can be reconstructed using this expansion? As a step towards answering these
questions we consider real analytic conformal field theory data, where in the
absence of logarithms, the radius is set by singularities of the complex metric
reached by analytically continuing the Fefferman-Graham radial coordinate.
With the conformal boundary at the origin of the complex radial plane, real
Lorentzian submanifolds appear as piecewise paths built from radial rays and
arcs of circles centred on the origin. This allows singularities of Fefferman-
Graham metric functions to be identified with gauge-invariant singularities
of maximally extended black hole spacetimes, thereby clarifying the physical
cause of the limited radius of convergence in such cases. We find black holes
with spacelike singularities can give a radius of convergence equal to the hori-
zon radius, however for black holes with timelike singularities the radius is
smaller. We prove that a finite radius of convergence does not necessarily fol-
low from the existence of an event horizon, a spacetime singularity, nor from
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caustics of the Fefferman-Graham gauge, by providing explicit examples of
spacetimes with an infinite radius of convergence which contain such features.

Keywords: AdS/CFT, holography, black holes, spacetime reconstruction,
causal structure

(Some figures may appear in colour only in the online journal)
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1. Introduction

The anti-de Sitter (AdS)/conformal field theory (CFT) correspondence is a celebrated duality
between strongly coupled CFTs and asymptotically AdS gravity [1–3]. Given the one-point
functions for a Lorentzian CFT in the presence of sources, what can be determined about the
bulk geometry? Under the AdS/CFT dictionary and after appropriate renormalisation [4–9] the
one-point functions and sources appear as near-boundary data. Attempting to reconstruct the
bulk geometry by using the corresponding Cauchy problem with sources and vevs appearing
as Cauchy data is not a well-posed problem in general, highlighting the main obstruction to
answering this question. We investigate the bulk reconstruction question by asking,

Is the Fefferman-Graham near-boundary expansion convergent for smooth
Lorentzian near-boundary data (sources and vevs)? Where convergent, what
sets the radius of convergence—a physical obstruction, or an artefact of
Fefferman-Graham gauge? If factorially divergent, what non-perturbative con-
tributions complete it?

In Fefferman-Graham gauge, asymptotically locally AdSd+1 spacetimes take the form3

G= GABdX
AdXB =

du2

u2
+ γµν(u,x)dx

µdxν , (1.1)

with bulk indices A,B= 0,1, . . . ,d and boundary indices µ,ν = 1,2, . . . ,d. The metric γµν
has a double pole at u= 0, so that limu→0 u2 γµν is finite. This corresponds to a conformal
boundary of the spacetime, or at least a portion of it. In the Fefferman-Graham expansion [10],
one develops the following formal small u expansion of γµν ,

u2γµν(u,x) = hµν(x)+ . . . , (1.2)

where the ellipses denote subleading terms which vanish as u→ 0. Here hµν is a representative
boundarymetric for its conformal class, namely thosemetrics which are related up to an overall
smooth, positive factor. In the case of vacuum Einstein gravity Fefferman and Graham [10]
introduced an expansion of the form,

u2γµν(u,x) = hµν(x)+ h(2)µν (x)u
2 + . . .+ tµν(x)u

d + h(d)µν (x)u
d logu+ . . . ,

(1.3)

where all coefficients in the u expansion can determined uniquely by solving the Einstein
equations order-by-order in u, once the data hµν(x), tµν(x) are specified. The logarithms
in (1.3) are only present if d is even. The data tµν must satisfy trace and transversality
constraints [6]. In the context of AdS/CFT the data hµν(x), tµν(x) determine the CFT met-
ric and expectation value of the CFT stress-tensor obeying appropriate Ward identities, with
a precise identification made through the procedure of holographic renormalisation in which
boundary counterterms are constructed [4–9].

For the case of vacuum Einstein gravity in particular, there are several existing results con-
cerning the properties of the expansion. Given a real analytic boundary metric and real analytic
stress tensor data, the expansion (1.3) converges. This has been shown for odd d with tµν = 0
in [10] and has been extended to tµν 6= 0 for the case of d= 3 in [11] and to all d in [12]. A
discussion of these and related results can be found in [13–15]. In addition, there are various
special cases for which the expansion truncates and therefore has an infinite radius of con-
vergence. In d > 2 (1.3) truncates at order u4 provided the bulk metric has a vanishing Weyl

3 We set the AdS radius L= 1 throughout.
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tensor [16]. In d > 2 (1.3) truncates at order u4 if hµν is conformally Einstein and tµν = 0 [17].
In d= 2 (1.3) truncates at order u4 yielding locally AdS3 metrics. For real analytic pp-wave
boundary metrics with d even the (1.3) truncates at order ud−2 [18].

In the presence of matter, one may also expect that the expansion converges for real analytic
data. This is straightforwardly confirmed in the following special case. Consider a CFTd with a
∆= (d+ 1)/2 scalar operatorOϕ, with an AdSd+1 dual and a correspondingm2 = (1− d2)/4
scalar field, ϕ. Treating the scalar in a probe approximation around the planar AdSd+1 vacuum,
i.e.

γµν =
ηµν
u2

, ϕ(u,xµ) = u
d−1
2 Ψ(u,xµ), (1.4)

then the equation of motion and boundary conditions for Ψ become

∂2
u Ψ=−ηµν∂µ∂νΨ, (1.5)

Ψ(0,xµ) = s(xµ), ∂uΨ(0,xµ) = v(xµ), (1.6)

with s,v corresponding to the CFT source and vev for the operator Oϕ. Then by the
Cauchy-Kovalevskaya theorem, if both s and v are real analytic functions, then the correspond-
ing Cauchy problem (1.5) and (1.6) has a unique analytic solution near the boundary u= 0 and
thus the Fefferman-Graham expansion converges in some neighbourhood of u= 0.4 In such
analytic cases, the question of interest then becomes what physical feature of the spacetime (if
any) sets the radius of convergence5.

In this paper we take real analytic source and vev data (hµν(x), tµν(x)) for a given CFTmet-
ric and state. This is either data handed to us from the CFT, or computed holographically by
imposing regularity in the interior, or by preparing states using real-time holography [19, 20]6.
We consider cases for which the expansion of u2 γµν in (1.2) takes the form of a power series
in u.7 We do not consider cases with logarithms. Then it is a theorem that the radius of con-
vergence of (1.2) is governed by singularities of the functions γµν(u,x) analytically continued
to the complex u-plane as holomorphic functions. These are points where γµν(u,x) fail to be
holomorphic, such as poles, branch points or essential singularities. Thus, we are led to study
the class of metrics (1.1) with u ∈ C and xµ ∈ R.

We stress that from first principles it is the singularities of the metric components in
Fefferman-Graham gauge in the complex u-plane that dictate the convergence. This is a pri-
ori divorced from the usual notions of spacetime singularities in general relativity. On one
hand, it is possible that the radius is set by a mere coordinate singularity, though we have not
encountered this in our examples. On the other hand, we can have the more intriguing scenario
where the spacetime has a (gauge-invariant) curvature singularity but the metric components
are everywhere regular, and thus the Fefferman-Graham expansion converges everywhere.
This scenario we have encountered and one generic mechanism we have identified is a met-
ric which degenerates while remaining analytic. We find two explicit examples of this. First
for the black holes in section 4.1.1 near the black hole singularity the metric takes the form,
G=−dτ 2 + dt2 + τ 2d⃗x2

d−1 and thus is degenerate at τ = 0 where there is a divergent Ricci

4 This argument generalises straightforwardly to a fixed AdS-Schwarzschild background.
5 It is clear that the value of u where convergence fails is itself not especially interesting, since this can be changed
by changing the conformal class representative. For example, performing a homogeneous Weyl rescaling dilates the
entire u-plane, and one would have to form an invariant instead.
6 See [21] for an example where the real-time formalism is necessary to compute the correct CFT vevs.
7 Our analyses also apply to Puiseux series, since after removing an overall factor these series are also power series
with an appropriate change of variables.
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scalar. In this case the Fefferman-Graham expansion converges everywhere in the u-plane,
including the location of this black hole singularity. Motivated by this observation we also
analyse holographic renormalisation group (RG) flows in section 5 and consider conditions
placed on the scalar potential for the existence of an analytic degenerate point in the met-
ric. In this second class of examples we engineer the potential to produce Fefferman-Graham
expansions which truncate at arbitrarily large order.

The layout of the paper is as follows. In section 2 we analyse how real submanifolds of the
complex u-plane can be constructed and give rise to physical, Lorentzian spacetime metrics.
This gives physical meaning to portions of the complex u-plane beyond the traditionally stud-
ied case of u> 0 on the real line. We then go on to analyse black holes in vacuum in section 3,
black holes with matter in 4, and holographic RG flows in 5. We finish with a discussion and
outlook in section 6. Throughout this paper we restrict our analyses to d⩾ 2.

2. Causal structure in the complex Fefferman-Graham plane

In the absence of logarithms, singularities of γµν in the complex u-plane determine the con-
vergence radii for the Fefferman-Graham expansion. However there is a richer physical signi-
ficance to the complex u-plane as we shall now describe.

To see this, consider real Lorentzian submanifolds of (1.1) for u ∈ C and xµ ∈ R.8,9 To
determine where such submanifolds appear we take a piecewise path Γ through the complex
u-plane parameterised by λ in polar coordinates, u(λ) = r(λ)eiθ(λ) with λ ∈ R, r ∈ [0,∞) and
θ ∈ (−π,π]. Then on Γ we have the following spacetime metric,

G=

(
ṙ2

r2
+ 2i

ṙ
r
θ̇− θ̇2

)
dλ2 + γµν(u(λ),x)dx

µdxν . (2.1)

Hence for G to be real, it is necessary to set 2iṙθ̇/r= 0, which can be done in two ways,
θ̇ = 0 or ṙ= 0. We conclude that real Lorentzian submanifolds of (1.1) are constructed from
piecewise paths Γ, where the pieces necessarily consist of:

• Rays: Γ for which θ̇ = 0. The radial coordinate in the complex u-plane, r, is then a
spacelike coordinate. Then forG to be real Lorentzian, γµν must also be real Lorentzian
and hence r labels a timelike foliation of spacetime.
• Arcs of circles centred on the origin: Γ for which ṙ= 0. The angle in the complex u-

plane, θ, is then a timelike coordinate. Then for G to be real Lorentzian, γµν must be
real Euclidean. Hence θ labels a spacelike foliation of spacetime.

From now on we use the terminology ‘ray’ and ‘arc’ as shorthand expressions for these
submanifolds of the u-plane, with these specific properties, instead of in the general sense of
the terms. Note that rays correspond to spacelike geodesics at fixed xµ (solving the geodesic
equation U̇2 = U2), while arcs correspond to timelike geodesics at fixed xµ (solving the
geodesic equation U̇2 =−U2). Furthermore we can conclude that,

8 We restrict our analysis to the mostly-plus signature convention, (−,+,+, . . . ,+). This means that signature
changes in the complex u-plane are not considered in our analysis, though they do occur in many of the examples we
consider.
9 For a related recent discussion of real submanifolds of complex metrics see [22] in the context of gravitational path
integrals, building on [23, 24] (see also [25–29]).
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Figure 1. Planar Schwarzschild-AdS4 at µ= 2 illustrating features that appear in the
complex plane of the Fefferman-Graham coordinate, u ∈ C. Here singularities refer to
complex singularities of the metric components in Fefferman-Graham gauge. In this
specific case these singularities are branch points which coincide with gauge-invariant
curvature singularities of the maximally extended spacetime.

• intersections of arcs and rays: correspond to bifurcation points. For example, the event
horizon of an eternal black hole.

Hence a map of the singularities, rays and arcs in the complex u-plane paints a picture of
the causal structure of the spacetime. In addition there can be further disconnected components
of the boundary metric. This can then be mapped to a corresponding Penrose diagram.

Let us illustrate the physical significance of the construction of rays and arcs with an
example, Schwarzschild-AdS4. Details of the construction of the complex u-plane are given
later in section 3, but are reproduced here in figure 1 for illustrative purposes. The radius of
convergence is (2/µ)1/3, set by branch-point singularities. These are bona fide curvature sin-
gularities of the spacetime, which can be reached by traversing physical submanifolds of the
complex u-plane; first along the ray labelled I (outside the horizon) until the arc is reached (the
horizon bifurcation point) and then along the arc II or IV to the singularity (inside the hori-
zon). Thus regions II and IV lie at the radius of convergence, while region III is beyond it.
Region III connects to u=+∞ corresponding to the second disconnected component of the
conformal boundary in this spacetime. RegionV along the u< 0 axis corresponds to a Schwar-
zschild solution of negative mass and thus a naked timelike singularity (there is no bifurcation
point on the path connecting it to the boundary). Region VI is a negative mass Schwarzschild
solution whose conformal boundary is at infinity. The situation can be illuminated further by
plotting paths taken by various geodesics in the spacetime, both on the complex u-plane and
on the corresponding Penrose diagram. This is illustrated in figure 2.

Based on these observations one should not be surprised to encounter situations where black
holes with spacelike singularities have a radius of convergence equal to the horizon radius. This
is because spacelike singularities sit on arcs, and are therefore equidistant from the origin as
any bifurcation surface on the same arc. We will see this structure in many examples however
it is not always the case as additional singularities can be present. For cases where the black
hole has a Cauchy horizon one of the timelike black hole singularities is closer to the boundary
than the bifurcation surface.

6
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Figure 2. Selected geodesics in the complex Fefferman-Graham plane for the
Schwarzschild-AdS4 black brane at µ= 2 (black lines). Top row: the complex u-plane.
For visual clarity we have added a small deviation iϵ to the geodesic initial condition,
rendering the geodesic complex. This is to be understood as visual guide to taking the
limit ϵ→ 0 where the geodesic becomes a piecewise path in the u-plane, following the
rays and arcs. The spacelike geodesic reaches u→+∞ on the real u line where it ter-
minates at another portion of the conformal boundary. Bottom row: the corresponding
ϵ→ 0 geodesics plotted on the Penrose diagram, with the same colour scheme for sin-
gularities and conformal boundaries.

3. Black holes in vacuum

3.1. Schwarzschild black brane

The Schwarzschild black brane in AdSd+1 can be written in Schwarzschild coordinates as
follows,

ds2 =
1
z2

(
−
(
1− 2µzd

)
dt2 +

dz2

(1− 2µzd)
+ dx2d−1

)
, (3.1)

where µ is a mass parameter. The Fefferman-Graham coordinate u is reached by the following
coordinate transformation,

z=
u(

1+ µ
2 u

d
) 2

d

(3.2)

bringing the metric into the form (1.1), with

γ =−f(u)dt2 + g(u)dx2d−1, (3.3)

f(u) =
1
u2

(
1− µ

2 u
d
)2(

1+ µ
2 u

d
) 2d−4

d

, g(u) =
1
u2

(
1+

µ

2
ud
) 4

d
. (3.4)

7
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Figure 3. The complex Fefferman-Graham plane for BTZ, SAdS4, SAdS5, SAdS6,
SAdS7 and SAdS8. The legend for these diagrams is given in figure 1.

Figure 4. The three sheets of the complex Fefferman-Graham plane for the
Schwarzschild-AdS4 black brane. The thin black lines label the identification of sheets
on each side of the indicated cuts.

We have performed an exhaustive analysis of singularities, rays and arcs presented in
appendix A along with a list of results. Here we have summarised these findings for the cases
d= 2,3,4,5,6,7 in the u-plane plots of figure 3.

For d⩾ 3 (AdS4 and above) there are singularities at 1+ µ
2 u

d = 0, hence d singularities

equally spaced around a circle of radius (2/µ)
1
d . In d= 4 these singularities are poles of f

while in all other cases they are branch points of both f and g. These branch points mean that
there are other sheets of the u-plane, and we have charted these in the case of d= 3 as shown
in figure 4. Note however that there is no physical path which can be used to access another
sheet of the u-plane, in contrast to other black hole spacetimes discussed later in this paper.

8
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Along arcs, the angle in the complex plane θ is the timelike coordinate. In this case, the
metric on the arcs shown is given by

ds2 =−dθ2 +(2µ)
2
d cos

4
d

(
d
2
θ

)
tan2

(
d
2
θ

)
dt2 +(2µ)

2
d cos

4
d

(
d
2
θ

)
dx2d−1.

(3.5)

Hence for an interior geodesic observer sitting at fixed t and x their proper time coordinate
is θ, the angle in the complex u-plane. As the spacelike singularity at θ = π/d is approached
with τ→ 0 where θ = π/d− τ , the metric diverges in the following power-law form,

ds2 =−dτ 2 +
(
2
d

) 4−2d
d

(2µ)
2
d τ

4−2d
d dt2 +

(
2
d

) 4
d

(2µ)
2
d τ

4
d dx2d−1 + . . . . (3.6)

In d= 3 this is a Kasner singularity with exponents p1 =−1/3,p2 = 2/3,p3 = 2/3 as dis-
cussed in [30].

For d= 2 (Bañados-Teitelboim-Zanelli black hole, BTZ) the situation is quite different.
There are no metric coefficient singularities in the complex u-plane away from u= 0 and the
radius of convergence is infinite. This is expected since it is known that the Fefferman-Graham
expansion truncates at u4 when d= 2. The u-plane arcs show that there are timelike geodesics
permitted which orbit the origin of the u-plane indefinitely. Finally note that unlike d > 2,
there is a ray along the imaginary u-axis. This is because for d= 2 the role of t and x can be
exchanged, with x serving as the timelike coordinate in the spacetime, enlarging the allowed
set of rays. Thus four copies of the BTZ exterior spacetime meet at u= 0, each physically
accessible for a bulk observer by traversing the arcs and rays shown in figure 3.

For d even, there is a u→−u symmetry, that is, extending from the conformal boundary
the ‘wrong way’ along the negative real axis, one encounters the same geometry. However
for d odd one encounters a timelike naked singularity, as indicated by the red marker on the
negative real u-axis. Because the singularity sits on a ray it is timelike, and because there is no
bifurcation point between it and u= 0 it is naked. This is to be expected as for odd d, sending
u→−u corresponds to negative mass Schwarzschild, with mass −µ. Perhaps less expected
are the additional rays extending from a singularity to infinity. These too correspond to the
Schwarzschild metric with mass −µ, but whose conformal boundary is at infinity.

Finally, another discrete symmetry to consider are u-inversions. For all d, u→ u2h/u—where
uh is the horizon radius in the u coordinate—is an isometry of the physical metric, i.e. along
rays for u> 0 and the attached arcs. Interestingly however, for d even, this isometry extends to
the full complex u-plane, while in d odd it does not. This map acts trivially in Schwarzschild
coordinates, leaving z invariant.

3.2. Hawking-Hunter-Taylor with equal angular momenta

After discussing the convergence properties of the Fefferman-Graham expansion in static black
hole spacetimes, it is natural to address this question in stationary solutions of the vacuum
Einstein equations with a negative cosmological constant. Rotating black holes belong to this
class of spacetimes, and include the Kerr-AdS solution (d= 3) [31], its generalization to d= 4
[32] and to d > 4 [32–34] (see also [35] for a review).

In d+1-dimensions, a rotating black hole has N= b d2c independent rotation planes. For
even d, and in the special case in which the associated N angular momenta are equal, the
R×U(1)N isometry group of the black hole gets enhanced to R×U(N), implying that line
element becomes cohomogeneity-one and depends nontrivially on a single radial coordinate.

9
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For this reason, even d equal angular momenta black holes correspond to the rotating black
hole spacetimes in which the analysis of the large-order behaviour of the Fefferman-Graham
expansion is the simplest from a technical standpoint.

In this subsection, we consider the d= 4 case, the Hawking-Hunter-Taylor (HHT) black
hole [32]. The metric of the equal angular momenta HHT black hole reads

ds2 =−f(r)2dt2 + g(r)2dr2 + r2 ĝabdx
adxb + h(r)2 (dϑ3 +Aadx

a−Ω(r)dt)2 ,

(3.7)

where

ĝabdx
adxb =

1
4

(
dϑ2

1 + sin(ϑ1)
2dϑ2

2

)
, A= Aadx

a =
1
2
cos(ϑ1)dϑ2, (3.8)

with ϑ1, ϑ2, and ϑ3 angular coordinates on S3. The functions f, g, h andΩ are known in closed-
form,

g(r) =

(
1+ r2− 2M

r2
+

2Ma2

r2
+

2 Ma2

r4

)− 1
2

, h(r) = r

(
1+

2 Ma2

r4

) 1
2

(3.9a)

f(r) =
r

g(r)h(r)
, Ω(r) =

2 Ma
r2h(r)2

. (3.9b)

In equation (3.9),M and a are respectively the mass and a spin parameter of the black hole.
The outer (inner) horizon of the black hole is located at r= r+ (r−) and corresponds to the
largest (smallest) positive real root of g(r) = 0. For a given M, absence of a naked singularity
imposes the extremality bound a⩽ aext(M). When the extremality bound is saturated, the inner
and outer horizons become degenerate and the black hole temperature vanishes. On the other
hand, for a= 0 the angular momenta vanish and one recovers the global Schwarzschild-AdS5

black hole10.
The map to Fefferman-Graham coordinates is given by the function r(u) obeying the fol-

lowing ODE,

r ′(u)+
1

ug(r(u))
= 0. (3.10)

Once that r(u) is known, the metric in Fefferman-Graham coordinates is completely determ-
ined by virtue of equation (3.9). We are therefore interested in the large-order behaviour of the
series expansion of r(u) around u= 0,

r= r(u) = u−1 +
∞∑
n=0

c2n+1u
2n+1, (3.11)

which we determine numerically by plugging the ansatz (3.11) into equation (3.10) and solving
recursively for the series coefficients. Note that, since the functions (3.9) are independent of
the location on the S3, the convergence properties of the Fefferman-Graham expansion also
are, in contrast with the Kerr-AdS solution and general HHT black holes.

10 Provided the mass is positive, the complex u-plane representation of the Schwarzschild-AdS5 black hole resembles
that of the planar black hole (see figure 3). The key difference is the angle of the singularities in the complex u-plane,
and thus the proper time for a static observer to fall into that singularity. For masses M ∈ (0,∞) this angle takes
values in the range θ ∈ (0,π/4) with θ = π/4 asM→∞ corresponding to the planar limit. AtM= 0 the spacetime
is global-AdS5 and there is no singularity, but a point at finite u> 0 where the sphere shrinks to zero, and beyond this
point another copy of global-AdS5 related by inversion symmetry.

10
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Figure 5. Complex u-plane diagram for the equal angular momenta HHT black hole.
The colour coding matches the one in figure 1. Grey dots correspond to the poles of
a Padé approximant to r(u). Four lines of pole condensation are clearly visible. In the
continuum limit, the poles where these lines of pole condensation start correspond to
full-fledged branch-point singularities that agree with the innermost timelike singularit-
ies of the black hole. In this example,M= 1, a= 0.457, uh = 2.33452, |us|= 1.16828,
|ũs|= 4.66495 and θs = 0.69220.

Our main results are two-fold:

(a) Irrespective of the values of M, a and the metric component being considered, the conver-
gence radius of the Fefferman-Graham expansion, uc, is set by four equal-norm branch-
point singularities in the complex u-plane, located at us ≡ |us|eiθs , u⋆s , −us, and −u⋆s ,11

uc = |us|. (3.12)

(b) The event horizon is located at the smallest positive real root of r ′(u) = 0, which we denote
by uh. In contrast to the Schwarzschild-AdS5 black brane, we now find that

|us|< uh, (3.13)

implying that the Fefferman-Graham expansion stops converging before the event horizon
is reached.

We have cross-checked results (1) and (2) against explicit numerical solutions of
equation (3.10) as a function of complex u. As an additional benefit, this procedure also allows
us to determine the representation of the physical spacetime in the complex u-plane in terms
of rays, arcs and singularities. Let u= |u|eiθ ∈ C. Our findings are summarized in the diagram
shown in figure 5 and discussed below. We have that:

11 We take us to correspond to the singularity located in the first quadrant of the complex u-plane.

11
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• There is a ray at θ= 0 extending from the left asymptotic boundary at u= 0 to the right
asymptotic boundary at u=∞. Along this ray, r(u) decreases from +∞ at u= 0, hits a
minimum at the outer bifurcation surface located at u= uh, and then increases again to+∞
at u=+∞.
• There is an arc emanating from the outer bifurcation surface at u= uh, which extends from
θ =−θs to θ =+θs. Along this arc, r(uheiθ) decreases away from θ= 0 until attaining a
minimal value at θ =±θs. These complex-conjugated minima are new bifurcation surfaces
corresponding to the inner horizons of the equal angular momenta HHT black hole.
• There are rays emanating from the inner horizons at u= |uh|e±iθs . When moving towards

smaller values of |u| along these rays an endpoint is reached at u= |us|e±iθs , where r(u)
vanishes. Since uc = |us|, this observation demonstrates that the branch-point singularit-
ies determining the convergence radius of the Fefferman-Graham expansion are part of the
physical spacetime and correspond to actual timelike singularities of the black hole. On the
other hand, when moving towards larger values of |u| along these rays, they do not extend
indefinitely, but rather end a new branch-point singularities located at a finite value of |u|,
|ũs|= u2h|us|−1. These new timelike singularities are at the same proper distance away from
the inner bifurcation surfaces as us, u⋆s , and play a role dual to them, since they determine
the convergence radius of the 1/u-expansion of r(u) around the right asymptotic boundary
at u=∞.
• Finally, upon increasing |θ| away from θs, one goes through the branch cuts12 associated

to the us, u⋆s branch points. Along the path u= uheiθ, θ ∈ R, r(uheiθ) is a periodic function.
It turns out that every maximum of this function is associated to a new outer horizon that
separates a new pair of left/right asymptotic regions, while every minimum is associated
to a new inner horizon that separates a new pair of left/right timelike singularities. This is
the precise way in which the maximally extended black hole spacetime is encoded in the
multi-sheeted Riemann surface that emerges from our construction.

To conclude our discussion of the equal angular momenta HHT black hole we note that,
as a→ aext(M) and the extremality limit is approached, |us| tends to a finite value, while uh
and |ũs| diverge. Hence, the coordinate length of the rays emanating from the inner horizon
increases without bound.

3.3. Kerr-AdS

After discussing the simpler case of equal angular momenta HHT black holes, we consider the
Kerr-AdS solution [31]. In Boyer-Lindquist coordinates, this geometry is given by

ds2 =−∆r

Σ2

(
dt− a

Ξ
sin(ϑ)2dϕ

)2
+

Σ2

∆r
dr2 +

Σ2

∆ϑ
dϑ2

+
∆ϑ

Σ2
sin(ϑ)2

(
adt− r 2 + a2

Ξ
dφ

)2

, (3.14)

where

∆r = (r2+a2)(r2+1)−2Mr, ∆ϑ = 1−a2 cos(ϑ)2, Σ2 = r2+a2 cos(ϑ)2,Ξ = 1−a2. (3.15)

12 For a given pair of branch-point singularities joined by a ray we always take the associated branch cut as a straight
line extending from one to the other.
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The ADM mass and angular momentum of the black hole are M/Ξ2 and J=Ma/Ξ2. The
Kerr-AdS black hole outer (inner) horizon is located at the largest (smallest) positive real root
of ∆r = 0, r= r+ (r−).

The main difference between the equal angular momenta HHT black hole and the Kerr-AdS
one is that, in the latter case, the map to Fefferman-Graham coordinates involves the angular
coordinate ϑ. One has that

r= r(u,Θ), ϑ= ϑ(u,Θ), (3.16)

where r(u,Θ), ϑ(u,Θ) obey the following system of coupled partial differential equations
(PDEs),

Σ(r(u,Θ),ϑ(u,Θ))2

∆ϑ(ϑ(u,Θ))
(∂uϑ(u,Θ))2 +

Σ(r(u,Θ),ϑ(u,Θ))2

∆r(r(u,Θ))
(∂ur(u,Θ))2− u−2 = 0, (3.17a)

∆ϑ(ϑ(u,Θ))∂ur(u,Θ)∂Θr(u,Θ)+∆r(r(u,Θ))∂uϑ(u,Θ)∂Θϑ(u,Θ) = 0, (3.17b)

which correspond, respectively, to the conditions that guu = u−2 and guΘ = 0 in Fefferman-
Graham coordinates. Equation (3.17) can be solved order-by-order in a series expansion
around u= 0, with the final result that

r(u,Θ) = u−1 +
∞∑
n=1

cn(Θ)un = u−1− 1+ a2 sin(Θ)2

4
u+

M
3
u2 + . . . , (3.18a)

ϑ(u,Θ) = Θ+
∞∑
n=4

dn(Θ)un =Θ+
1
16

a2(−1+ a2 cos(Θ)2)sin(2Θ)+ . . . .

(3.18b)

One finds that dn ∝ sin(2Θ) for all n and hence always vanish for Θ= 0, π2 . At these par-
ticular values of the angular coordinate, θ(u,Θ) = Θ and r(u,Θ) decouple. We will restrict
ourselves to these values, leaving a comprehensive analysis of intermediate angles for future
work.

3.3.1. Θ= π
2 . This value ofΘ corresponds to the equatorial plane of the Kerr-AdS geometry.

The equation of motion for req(u)≡ r(u, π2 ) simplifies to

r ′eq(u)+

(
a2− 2 Mreq(u)+ (1+ a2)req(u)2 + req(u)4

) 1
2

ureq(u)
= 0. (3.19)

The induced metric on the equatorial plane is given by

dh2 =−httdt2 +
du2

u2
+ htφdtdφ+ hφφdφ

2

=−
(
r2eq + a2 + 1− 2M

req

)
dt2 +

du2

u2
+

2a(−2M+ a2req + r3eq)

(1− a2)req
dtdφ

+
2a2 M+(1− a2)req(a2 + r2eq)

(1− a2)2 req
dφ2, (3.20)
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Figure 6. The Kerr-AdS solution in the complex u-plane, forM= 1 and a= 0.741. Left:
equatorial plane. The correspondence between the right half-plane of the plot and the
one of figure 5 is manifest. Here the Padé approximant to u req(u) shows three lines of
pole condensation (grey dots) associated to three branch-point singularities, us,1, us,2
and u⋆s,2 (red stars). The branch-point singularity with negative real part, us,1, corres-
ponds to a naked singularity of the Kerr-AdS solution with reversed mass and con-
trols the convergence radius of the Fefferman-Graham expansion. The two complex-
conjugated branch-point singularities with positive real part, us,2 and u⋆s,2, correspond
to timelike singularities of the Kerr-AdS black hole spacetime and are accompanied
by their images under inversion, ũs,2 and ũ⋆s,2. Each pair of timelike singularities in
the same quadrant is joined by a ray and can be associated to a branch cut running
between them. For presentational clarity, the branch cuts are represented by dashed
black lines that signal that the arc has entered a different sheet, rather than by dashed
red lines. The parameters are uh = 3.3532057, us,1 =−0.9314763, |us,2|= 1.464999,
|ũs,2|= 7.675084 and argus,2 = 0.8917267. Right: symmetry axis. The Padé approx-
imant to u ra(u) has four lines of pole condensation (grey dots) associated to two
complex-conjugated pairs of branch-poi singularities (red stars), us,1, u⋆s,1 (with pos-
itive real part) and us,2, u⋆s,2 (with negative real part). The former pair sets the conver-
gence radius of the Fefferman-Graham expansion. The branch cut associated with each
branch-point singularity is represented by a dashed red line. As explained in the main
text, to reach the inner horizons, the arc emanating from the bifurcation surface loc-
ated in the positive real axis has to go through the branch cuts associated to us,1, u⋆s,1.
The parameter values are uh = 8.0187785, |us,1|= 0.9686229, argus,1 = 1.1725280,
|us,2|= 1.1950925, argus,2 = 2.7011671.

and is completely fixed once req(u) is known.We find that the convergence radius of the small-
u expansion of req(u) is controlled by a branch-point singularity on the negative real axis, loc-
ated at u= us,1, where req(u) vanishes. Analysing the lines of pole condensation of a Padé
approximant to req(u) reveals the existence of two additional complex-conjugated singularit-
ies, us,2 and u⋆s,2, with |us,2|> |us,1| and respectively located in the first and the fourth quadrants
of the complex u-plane.

Solving equation (3.19) on the complex u-plane numerically corroborates the previous find-
ings while also providing a representation of the physical spacetime in the complex u-plane.

14
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This representation is exactly equivalent to the equal angular momentum HHT black hole one
upon replacing us→ us,2. See the left plot in figure 6 for an example. The main difference
between the equatorial plane of Kerr-AdS and the equal angular momenta HHT black hole
appears in the left half-plane, and is due to the absence of a u→−u symmetry in the former.
While in the equal angular momentum HHT solution the left half-plane is the mirror image
of the right one, in the Kerr-AdS one we find that us,1 is connected to the origin by ray. This
entails that us,1 corresponds to a naked singularity of the reversed mass Kerr-AdS geometry.

3.3.2. Θ= 0. This value of Θ corresponds to the rotation axis of the Kerr-AdS black hole.
One finds that ra(u)≡ r(u,0) is governed by

r ′a(u)+
(a2− 2 Mra(u)+ (1+ a2)ra(u)2 + ra(u)4)

1
2

u(ra(u)2 + a2)
1
2

= 0, (3.21)

while the induced metric is

dh2 =−httdt2 +
du2

u2
=−a2− 2 Mra(u)+ (1+ a2)ra(u)2 + ra(u)4

ra(u)2 + a2
dt2 +

du2

u2
.

(3.22)

Solving equation (3.21) in a small-u expansion up to a sufficiently large order and computing
the corresponding Padé approximant reveals that the convergence radius of ra(u) is set by two
complex-conjugated branch-point singularities, us,1 and u⋆s,1, respectively located in the first
and fourth quadrants of the complex u-plane. The Padé approximant also shows the existence
of another pair of complex-conjugated branch-point singularities of greater norm, us,2 and u⋆s,2,
respectively located in the second and third quadrants of the complex u-plane.

A crucial difference with respect to the Θ= π
2 case discussed previously is that these

branch-point singularities are not part of the physical spacetime. This is seen by solving numer-
ically the Einstein equations in the complex u-plane, from which we obtain the following rep-
resentation of the physical spacetime (see the right plot in figure 6):

• There is a ray extending from u= 0 to u=∞, along which htt decreases from∞, becomes
zero at the outer horizon located at u= uh, and then increases again to∞.
• There is an arc emanating from the outer horizon. Along this arc, ra(uheiθ) is a periodic func-

tion of θ, with a maximum located at θ= 0. Every new maximum (minimum) of ra(uheiθ)
corresponds to a new outer (inner) horizon.
• There is a ray with nonzero angle associated to every horizon that extends from |u|= 0 to
|u|=∞. Along this ray, htt decreases from ∞, becomes zero at the horizon location, and
then increases again to ∞. Hence, these rays are associated to new left/right asymptotic
regions.

It is important to keep in mind that, if one starts at the bifurcation surface located at u= uh
and travels along the corresponding arc, reaching the inner horizons demands going through
the branch cuts associated to the branch-point singularities us,1, u⋆s,1. Hence, the inner horizons
belong to a sheet different from the initial one.
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4. Black holes with matter

4.1. Linear-axion black brane

We consider the linear-axion model [36] which is an Einstein–Maxwell-scalar system admit-
ting a closed-form black brane solution at finite charge density which explicitly breaks trans-
lation invariance. Here we consider the electrically neutral case in Schwarzschild coordinates,

ds2 =
−F(z)dt2 +F(z)−1dz2 + d⃗x2

d−1

z2
, (4.1)

F(z) = 1− α2

2(d− 2)
z2−m0z

d, (4.2)

together with d− 1 scalar fields ϕi = αxi. Without loss of generality, using scaling symmetry
we can set the horizon radius zH = 1, then the mass parameterm0 and the temperature are given
by

m0 = 1− α2

2(d− 2)
, T=

1
4π

(
d− α2

2

)
. (4.3)

For future reference the Ricci scalar is

R=−d(d+ 1)+
1
2
(d− 1)z2 α2. (4.4)

α is the only parameter of the model. There are two interesting values,

αc =
√

2(d− 2), αmax =
√
2d, (4.5)

for which 0< αc < αmax. We take α in the range α ∈ [0,αmax]. The case α= αmax is the
extremal limit. At α= αc the temperature is positive but m0 = 0. In d= 3 at this point the
holographic stress-tensor vanishes and the system has an emergent SL(2,R)× SL(2,R) dual-
ity symmetry [37]. From our analysis in d= 3,4 below, we see that this point corresponds to
a transition in the nature of the singularities and causal structure of the spacetime.

4.1.1. α= αc for all d > 2. At the critical parameter value α= αc, where the mass parameter
m0 = 0, the map to Fefferman-Graham coordinates is given by,

z=
u

1+ 1
4u

2
. (4.6)

In these coordinates, the metric is

γ =−fdt2 + gd⃗x2d−1 (4.7)

f=
(4− u2)2

16u2
, g=

(4+ u2)2

16u2
. (4.8)

Thus we have:

• Singularities: There are no singularities (aside from the conformal boundary).
• Rays: Rays exist for all r > 0 excluding r= 2, at angles θ = 0,π.
• Arcs: Arcs exist at r= 2 for all θ excluding the points θ =−π

2 ,0,
π
2 ,π.
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Figure 7. Linear-axion black brane in d= 4. Singularities (red), rays and arcs (black
lines), conformal boundary (blue). From left to right the temperature is decreasing:
α= 1.9< αc, α= 2.1> αc, α= αmax (extremal). From panel 1 to panel 2 the sin-
gularities collide at α= αc and change from being spacelike to timelike. Because of
this, at low enough temperatures the radius of convergence is smaller than the horizon
radius.

While there are no singularities of f nor g in the complex u-plane, g does vanish at u=±2i
where there is a curvature singularity of spacetime, visible as a divergence in the Ricci scalar,

R=−d(d+ 1)+
16(d− 1)(d− 2)u2

(4+ u2)2
. (4.9)

Thus in this case, the Fefferman-Graham expansion is convergent everywhere up to, including,
and beyond the singularity itself. Indeed, in this case, the Fefferman-Graham expansion trun-
cates at order u2. This curvature singularity is accessible via an arc of the spacetime metric,

ds2 =−dθ2 + sin2 θdt2 + cos2 θd⃗x2d−1, (4.10)

and hence as this point is approached with θ = π/2− τ the metric has the following power-law
behaviour,

ds2 =−dτ 2 + dt2 + τ 2d x⃗2
d−1 + . . . , (4.11)

i.e. the metric degenerates while its components are analytic there. We note that this is not of
Kasner type in d= 3.

4.1.2. d=4. In d= 4 we can find the transformation to Fefferman-Graham coordinates
exactly,

z=
16u√

256+ 32 α2u2 +(8−α2)2u4
. (4.12)

In these coordinates, the metric is

γ =−fdt2 + gd⃗x23, (4.13)

f=
(256− u4(8−α2)2)2

256u2 gΣ
, g=

1
u2

+
α2

8
+

1
256

u2(8−α2)2. (4.14)

In this case the two parameter values of interest are

αc = 2, αmax = 2
√
2. (4.15)
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Figure 8. Sketch of the transition in the Penrose diagram for α < αc to α > αc for the
d= 4 linear-axion model corresponding to the collision of singularities in the complex
u-plane at α= αc. Compare with figure 7, which shows that for α > αc a path opens
up that allows one to orbit the origin of the u-plane indefinitely, passing through four
bifurcation points each time, and flanked by two pairs of timelike singularities. Such a
path corresponds to the existence of timelike geodesics of the sort indicated here on the
right. For α < αc the two disconnected pieces of spacetime are simply those reached by
first moving along positive u-axis or along the negative u-axis away from the conformal
boundary.

For this spacetime we perform an exhaustive analysis of singularities, rays and arcs, with res-
ults presented in appendix B. The key results are summarised in figure 7. For α < αc there
are four spacelike singularities, and for α > αc an interior Cauchy horizon develops and there
are four timelike singularities. Then, the spacetime repeats as one orbits u= 0 along the arcs,
passing through four bifurcation points per orbit. This transition is indicated in the Penrose
diagram in figure 8. In the extremal limit, the bifurcation point and outermost timelike singu-
larities recede to infinity, but the innermost timelike singularity remains and sets the radius of
convergence.

Finally, we note the behaviour of the spacelike singularities for α < αc. Let θ = θ∗− τ ,
where θ∗ is the angle of the singularity, given in appendix B. A spacelike power-law singularity
is approached as τ→ 0, and governed by the following metric,

ds2 =−dτ 2 +
√
4−α2

5
τ−1dt2 +

√
4−α2τd, x⃗2

3 + . . . . (4.16)

The case α= αc is discussed in the section 4.1.1. When α > αc the proper time for a static
observer to fall between horizons is always π/2.
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Figure 9. The complex u-plane of the linear-axion black brane in d= 3 in three qualit-
atively distinct regions of parameter space. The black dashed lines indicate that the arc
continues past the bifurcation point onto another sheet. In (a) there is a black hole with
a spacelike singularity for the spacetime reached along u> 0 and a naked singularity for
u< 0, in (b) the u< 0 spacetime develops a Cauchy horizon with arcs leading to addi-
tional sheets of the u-plane, while for (c) the two sides exchange their causal structures.
The transition from (b) to (c) at the critical value of αc is described in section 4.1.1,
beyond which the radius of convergence becomes less than the horizon radius for the
u> 0 black hole. The plot is constructed numerically and the search is not exhaust-
ive, hence some features may be missing, e.g. no cuts are explicitly indicated. The
grey dots show zeros of the Padé approximant of g for the Fefferman-Graham expan-
sion, confirming the closest branch point singularities. The exact parameters shown are
(a) α= 1, (b) α= 1.3, (c) α= 1.6.

4.1.3. d=3. When d= 3 we cannot solve the map to Fefferman-Graham coordinates
exactly. Instead we numerically construct rays, arcs and singularities. This procedure is not
exhaustive. The results are shown in figure 9. The three distinct complex plane structures
observed in figure 9 can be understood as follows. Observe the similarity of the complex plane
for
√

3/2< α < αc and α > αc. This is due to the existence of a map relating distinct axion
black holes. If d is even or α= αc then in the original Schwarzschild coordinates, z→−z is
an isometry. However consider d odd and α 6= αc, then sending z→−z gives a spacetime with
the opposite mass and a different temperature. One can show that it is a valid axion black brane
with T⩾ 0 only for certain ranges of α. For example, when d= 3 one can show this range is√

3/2⩽ α⩽ αmax (d= 3). (4.17)

Thus a change in the complex plane structure is expected at α=
√

3/2, which is indeed seen
between panels the panels of figure 9. Another way to understand this transition is that for α <√

3/2 there is no second root of F(z) corresponding to an inner horizon, while for α >
√

3/2
there is.

4.2. Reissner-Nordström black brane

The d+1-dimensional Reissner-Nordström (RN) black brane is dual to a thermal equilibrium
state of a CFTd at finite chemical potential µ. This chemical potential is conjugate to a con-
servedU(1) charge density ρ. The conserved current associated to ρ is dual to an abelian gauge
field in the bulk, A= Aµdxµ.

In Schwarzschild coordinates, the RN black brane geometry is given by

G=−f(r)dt2 + f(r)−1dr2 + r2d x⃗2, (4.18a)
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f(r) = r2−
(
r2h +

d− 2
d− 1

µ2

)( rh
r

)d−2
− (d− 2)µ2

(d− 1)

( rh
r

)2d−4
, (4.18b)

A= Aµdx
µ = µ

(
1−

( rh
r

)d−2
)
dt, (4.18c)

where rh denotes the position of the event horizon. The RN black brane temperature is non-
negative provided that the extremality bound rh ⩾ rh,ext = µ(d− 2)/

√
d(d− 1) is respected.

The map between Schwarzschild coordinates and Fefferman-Graham ones is given by the
solution of the following ODE,

r ′(u)2

f(r(u))
− 1

u2
= 0. (4.19)

Note that r(u) fixes completely gtt, gxx and At by virtue of equation (4.18). We discuss the
d= 3, 4 cases below. We perform our numerical computations with µ=

√
d(d− 1)/(d− 2),

rh,ext = 1 with no loss of generality.

4.2.1. d=3. In this case, the convergence radius of the Fefferman-Graham expansion is
determined by a branch-point singularity located at u= us,1 on the negative real axis. Examin-
ing the lines of pole condensation of a Padé approximant to r(u) reveals the existence of two
additional complex-conjugated branch-point singularities located at u= us,2, u⋆s,2. Irrespective
of the value of T/µ, we always find that |us,1|⩽ |us,2|, with equality attained in the T/µ→∞
limit, in which the Schwarzschild black brane results are recovered.

The physical spacetime is represented in the complex u-plane as follows (see the left plot
in figure 10):

• There is a ray at θ= 0 starting at u= 0 and ending at u=∞. r(u) diverges at both ends
and attains a minimum at a bifurcation surface located at u= uh. This bifurcation surface
corresponds to the outer horizon of the RN black brane.
• There is an arc emanating from u= uh and ending at θ =±argus,2 on two bifurcation sur-

faces in which r(uheiθ) attains a minimum. These bifurcation surfaces correspond to the
inner horizons to the past (θ =−argus,2) and the future (θ = argus,2) of the outer horizon
located at θ= 0.
• There are two rays emanating from the inner bifurcation surfaces located at u= uhe±iargus,2 .

Along each ray, r(u) attains a maximum at |u|= uh, and then decreases with increasing
|u− uh| until it vanishes at |u|= |us,2|, |u|= |ũs,2|= u2h/|us,2|. These points of vanishing
r(u) correspond to timelike singularities of the RN black brane with distances to the origin
related by inversion. As it happened in the case of the equal angular momenta HHT black
hole, the member of this pair of timelike singularities located at the smallest value of |u| can
be accessed via Padé approximants.
• Upon increasing θ away from argus,2, we cross the branch cuts associated to the timelike

singularities. Along this arc, r(uh eiθ) is a periodic function of θ. Maxima of r(uheiθ) cor-
respond to new outer horizons separating new pairs of left/right asymptotic regions, while
minima correspond to new inner horizons separating new pairs of timelike singularities.

As a final observation, we note that |us,2| → uh as T/µ→∞, in such away that the two time-
like singularities associated to each inner horizon collide and become spacelike, thus recov-
ering the Schwarzschild black brane results. In the opposite, T/µ→ 0 extremal limit, both uh
and the location of outermost timelike singularity of each pair diverge.
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Figure 10. The RN black brane in the complex u-plane. Left: d= 3.We find five branch-
point singularities (red dots), out of which three can be accessed in terms of poles of a
Padé approximant (grey dots). The first branch-point singularity, us,1, is located on the
negative real axis and despite not being part of the physical spacetime sets the con-
vergence radius of the Fefferman-Graham expansion. The remaining four, us,2, ũs,2, u⋆s,2
and ũ⋆s,2, have positive real part and correspond to actual timelike singularities of the RN
black brane. They are grouped into two complex-conjugated pairs and related by inver-
sion. We represent the branch cut extending between each pair of timelike singularities
in the same quadrant by making the arc black line dashed. In this example, µ=

√
6,

rh = 1.5, uh = 1.341335, us,1 =−0.671371, |us,2|= 0.758480, |ũs,2|= 2.372083 and
argus,2 = 1.270263. Right: d= 4. The right half-plane is exactly equivalent to its d= 3
counterpart. On the other hand, since the d= 4 Fefferman-Graham expansion is invariant
under u→−u, the left half-plane is transformed into themirror image of the right one. In
this example, µ=

√
3, rh = 1.5, uh = 1.115394, |us,2|= 0.730004, |ũs,2|= 1.704242

and argus,2 = 0.901019.

4.2.2. d=4. Themain difference between the d= 3 and d= 4 RN black branes is that, in the
latter case, the metric is invariant under u→−u. For Re u> 0, we find the same structure as in
d= 3 while, for Re u< 0, the branch point in the negative real axis disappears and is replaced
by the mirror image of the right half-plane. See the right plot in figure 10. The representation
of the physical spacetime in the complex u-plane and the interpretation of us,2, u⋆s,2, and their
images under inversion as timelike singularities stays the same.

In the light of these observations, in the RNAdS5 black brane the convergence radius of the
Fefferman-Graham expansion is set by timelike singularities of the physical spacetime and
smaller than the location of the event horizon, with equality attained only in the T/µ→∞
limit. This puts this black hole geometry in the same universality class as the equal angular
momenta HHT solution.

4.3. The HHH holographic superconductor

For our final black hole example, we consider the bottom-up construction of a holographic
superconductor put forward in [38]. This is an Einstein–Maxwell-complex scalar system in
d= 3. In [38] it is considered in Schwarzschild radial coordinate r, with metric functions g,χ
scalar field ψ and scalar gauge potential ϕ. The bulk scalar ψ is dual to a ∆= 2 operator in
the field theory O2, while the gauge field is dual to the U(1) current Jµ. The system is placed
at finite charge density by turning on a chemical potential µ and below a critical temperature

21



Class. Quantum Grav. 39 (2022) 245010 A Serantes and B Withers

Figure 11. The HHH holographic superconductor in the broken phase in the complex
u-plane. This includes a physical extension of the spacetime into the interior and bey-
ond the bifurcation point. Comparing to the normal phase provided by RN in figure 10,
one can see that the Cauchy horizon has collapsed but a pair of former black hole sin-
gularities remain, now on a physically inaccessible portion of the u-plane. There are
additional unphysical singularities that set the radius of convergence. The plot is con-
structed numerically and the search is not exhaustive, hence some features may be miss-
ing. Overlaid are zeros and poles of the diagonal Padé approximant for ψ (in grey).

Tc the operatorO2 condenses with a definite phase, spontaneously breaking theU(1). Without
loss of generality the phase is taken to be zero so that ψ is real.

The first step is to numerically construct the hairy black brane corresponding to the U(1)-
broken phase. It is a boundary value problem governed by first order ordinary differential
equations (ODEs) for g,χ and second order ODEs for ψ and ϕ. The boundary conditions are
the conformal boundary with no sources at r=∞, and a regular Killing horizon at r= r+. We
will not present this construction here as it is well described in detail in [38]. Here our only
note is that we construct it with high-precision floating point numerics. Finally, converting to
the Fefferman-Graham gauge near the boundary we read off the (constant) one-point functions
〈Tµν〉, 〈Jµ〉, and 〈O2〉. In the notation of [38], we take q= 1, µ= 3.14, r+ = 1, ∆= 2, T/µ'
0.0193.

The next step is to construct the holographic superconductor in Fefferman-Graham gauge.
We take the following ansatz,

γ =−f(u)dt2 + g(u)(dx2 + dy2), ψ = ψ(u), A= ϕ(u)dt. (4.20)

This gives a set of ODEs, second order for g,ψ,ϕ and first order for f.We use the CFT data from
the first step, which gives us all the near-boundary data required to construct the solution in this
gauge. We construct the exact solution numerically. To do this, we integrate the bulk equations
of motion along arbitrary paths in the complex u-plane starting at the conformal boundary at
u= 0. This allows us to determine singularities, rays and arcs in the complex u-plane, and hence
the extension of the spacetime beyond the bifurcation point. We also construct the Fefferman-
Graham expansion to high orders, to approximately u120. This gives us a second method of
computing the radius of convergence, as well as providing additional diagnostic data using the
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Padé approximant. The results from the two approaches are consistent with each other and are
shown in figure 11.

In the broken case there is no inner horizon, consistent with recent arguments provided in
[39–41]. Comparing to the unbroken phase of section 4.2, the original pair of timelike black
hole singularities remain in the u-plane, however they are now inaccessible due to the collapse
of the Cauchy horizon.

5. RG-flows: the good, the bad and the analytic

It is possible for the Fefferman-Graham expansion to converge despite curvature singularities.
A mechanism we have identified is a metric which degenerates at some radius but whose
components remain analytic in Fefferman-Graham coordinates. This was seen to occur for the
linear-axion model in section 4.1.1. Motivated to seek further examples of this behaviour we
consider the nature of singularities appearing in holographic RG flows, and their relation to
the ‘good’ singularity criterion put forward by Gubser [42]. Consider the model,

S=
ˆ

d5x
√
−G

(
1
4
R− 1

2
(∂ϕ)

2−V(ϕ)

)
, (5.1)

where here we restricted to a single scalar field ϕ, together with a Poincaré-invariant domain
wall ansatz in Fefferman-Graham coordinates,

G=
du2

u2
+ g(u)

(
−dt2 + dx21 + dx22 + dx23

)
, ϕ= ϕ(u). (5.2)

It is convenient to take the potential V to be derived from a superpotential W(ϕ), so that V=
1
8 (W

′)2− 1
3W

2 [43]. Then there are solutions given by the first-order equations

ϕ ′ =− 1
2u

W ′(ϕ), g ′ =
2g
3u

W(ϕ). (5.3)

Now consider a superpotential such that at large ϕ one has W(ϕ)∼ w0eζϕ then the infrared
behaviour is governed by singularity at finite u= uIR, where

g= c2

(
1− u

uIR

) 4
3ζ2

+ . . . , ϕ=−1
ζ
log

(
−w0ζ

2

2

(
1− u

uIR

))
+ . . .

(5.4)

where the ellipses denote corrections in uIR− u. Hence in these examples the scalar diverges
logarithmically at uIR, where there is a curvature singularity, R(G)∼ (u− uIR)−2. This singu-
larity is naked as there is no horizon. However, if

ζ2 =
4
3n
, n ∈ Z+ (5.5)

then the metric remains analytic at uIR, despite the fact that it degenerates and has a curvature
singularity. Consequently, in the absence of other singularities, the Fefferman-Graham expan-
sion will converge up to and beyond this point for the metric. The Gubser criterion for a good
singularity in this context corresponds to ζ2 < 8/3 [42] and hence all of the analytic singular-
ities outlined in (5.5) are of the good variety.

As a concrete example consider the superpotential

W=−3+ 2(∆− 4)
ζ2

(cosh(ζϕ)− 1) , (5.6)
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where ∆> 2. The system admits the following one parameter family of solutions13,

g=
1
u2

(
1−

(
u
c1

)8−2∆
) 4

3ζ2

, ϕ=
2
ζ
arctanh

((
u
c1

)4−∆
)
, (5.7)

where c1 corresponds to a deformation parameter of the CFT. Indeed, this has a branch point
singularity in the metric at u= uIR = c1 unless the analyticity condition (5.5) holds, in which
case the Fefferman-Graham expansion for the metric truncates at order u(8−2∆)n−2. The trun-
cation order can thus be arbitrarily large depending on the model parameter in the potential,
n. The Ricci scalar diverges at u= uIR while ϕ has a logarithmic branch point regardless of ζ.
We note that the GPPZ flow [45] with vanishing gaugino condensate, corresponds to precisely
this solution with ∆= 3 and ζ2 = 4/3, and hence obeys the analyticity condition (5.5).14

6. Discussion and outlook

We have investigated the convergence properties of the Fefferman-Graham expansion, motiv-
ated by the question of how much of the bulk geometry can be constructed given a set of
smooth Lorentzian CFT sources and one-point function data. For analytic data it is expected
that the expansion converges in general, which we demonstrated with a number of well-known
black hole and RG flow spacetimes. In these cases we concerned ourselves with finding out
precisely what sets the radius of convergence through an exploration of singularities of metric
functions appearing in the complex plane of the radial coordinate.

To understand the nature of these singularities we elucidated how the causal structure of the
maximally developed spacetimes appears in the complex u-plane. For fixed boundary coordin-
ates, xµ ∈ R, real Lorentzian spacetime metrics are only allowed along piecewise paths made
of radial rays and arcs of circles centered on the origin. Each ray and arc maps to a different
portion of the associated Penrose diagram in a maximally extended spacetime. In this sense the
complex u-plane is a useful tool to rapidly analyse the global causal structure of a black hole,
where the ‘unit cell’ of a repeating Penrose diagram may be spread over multiple sheets. In
addition one may choose to take shortcuts to behind-the-horizon physics through the u-plane.

Our investigation of singularities proceeded by example on a case-by-case basis, so we may
ask if there are any general lessons, or at least lessons common to all examples that we have
considered. The first thing to note is that we have not encountered any coordinate singular-
ities; all obstructions to convergence of the small-u expansion have all been singularities in
curvature invariants, or in scalar fields. For black holes with spacelike singularities in even d
the radius of convergence is set by the singularity of the black hole itself, and this coincides
with the horizon radius of the black hole. This apparent coincidence is a natural consequence
of the way that the causal structure of the spacetime is given by rays and arcs; the spacelike
singularity sits on an arc, and the arc intersects a ray at the bifurcation point. Thus both are
equidistant from u= 0. For timelike singularities in even d, one of the pair of timelike singular-
ities in a given region of the Penrose diagram sets the radius of convergence, and this radius is
always smaller than the horizon radius. For odd d the u-plane is not symmetric under u→−u
which creates further possibilities. For example we typically find additional singularities for

13 In the special case where ζ2 =
4(4−∆)

3
such solutions have also been found in [44], together with generalisations

to all d.
14 In the original notation of [45] u= e−yGPPZ , c1 = e−C1,GPPZ .

24



Class. Quantum Grav. 39 (2022) 245010 A Serantes and B Withers

u< 0 associated to a naked singularity of the mass-reversed spacetime. Such cases should be
assessed individually15.

As we emphasised throughout, there is a crucial difference between singularities of metric
components and spacetime singularities. One difference would be a coordinate singularity.
Another difference is spacetime singularities with no corresponding singularity in the metric
functions and thus an everywhere convergent Fefferman-Graham expansion.We have seen that
this happens for a metric which degenerates in an analytic way, and provided explicit examples
for both black hole spacetimes and RG flow spacetimes. In the RG flow case we were able to
design a potential to have the Fefferman-Graham expansion truncate at an arbitrary order. It
would be interesting to see if this can be used as a practical solution generating technique: for
a given bulk system, pose an ansatz for a bulk singularity in Fefferman-Graham gauge, and
tune the model parameters such that this singularity is analytic. Then in the absence of other
singularities, the Fefferman-Graham expansion will truncate and thus the solution is easily
constructed.

We note that caustics do not imply a finite radius of convergence. This is easily
proven with the following example. Consider global AdS5 in Fefferman-Graham coordin-

ates, ds2 = u−2
(
du2−

(
1+ u2/4

)2
dt2 +

(
1− u2/4

)2
dΩ2

3

)
. The geodesic congruence gener-

ated by u∂u form a caustic at the origin, u= 2, with a divergent congruence expansion there,
θ = 6(u− 2)−1 + . . .. However the Fefferman-Graham expansion truncates so the radius of
convergence is infinite. We also note that event horizons do not imply a finite radius of con-
vergence, as BTZ or the critical axion model demonstrate.

Understanding the complex u-plane structure for black holes allows one to decode the data
appearing in the Fefferman-Graham expansion to extract information about the deep interior of
the spacetime. We have illustrated this with two examples in appendices where further details
can be found. The first, in appendix C, discusses in detail how the large-order behaviour of
the Fefferman-Graham expansion is determined by the black hole interior in the case of the
RNAdS5 black brane. The second, in appendix D, gives an explicit conformal map that—for
a generic class of black hole spacetimes—maps the exterior, a portion of the interior, and the
second asymptotic region, to a unit-disk in a new radial coordinate. This new radial coordin-
ate can therefore be used to explicitly solve the Einstein equations by using a near-boundary
expansion that converges all the way up to the event horizon as well as inside the black hole.

We have left many open directions which we hope to return to in future work. Of prin-
cipal interest is the question of smooth but non-analytic data. There are several existence res-
ults given a smooth boundary metric [46–48]. An interesting example to consider would be
a Vaidya solution where the quench is a bump function. In such examples for locations on
the boundary where the data are real analytic we expect to obtain a convergent Fefferman-
Graham expansion in the sense explored in this paper, however the spacetime that it converges
to would not be the global solution. For example in the Vaidya case we expect that it fails
to reproduce the metric beyond the characteristic surface emanating from the non-analytic
moment in time. In addition, there are CFT data for which the Fefferman-Graham expansion
contains logu and higher powers thereof, and these could be handled by developing power
series in both u and logu as discussed in [12]. Finally we wish to consider time-dependent

15 What we have observed however is that for planar black holes the u< 0 singularity is the same distance from u= 0
as the black hole singularities, while for spherical black holes it is closer and for hyperbolic black holes (c.f. the axion
model spacetime) it is further away.
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or higher cohomogeneity stationary spacetimes16. Such series resemble a gradient expansion,
and recent technical progress in analysing the large-order behaviour of both linear and nonlin-
ear gradient expansions was made in [50, 51] in the context of hydrodynamic theories, which
could be imported here to analyse such cases.

One may also wish to make contact with other approaches to reconstructing the bulk in
AdS/CFT, especially behind the horizon. One example is the analytic continuation of CFT
correlation functions [52–55]. Another is the extrapolate dictionary in which one makes
operator-valued identifications between bulk and boundary [56, 57] through some kernel K,
so that ϕ(u,x)↔

´
K(x ′|u,x)O(x ′)dx ′. In this vein one could explore the construction of bulk

operators behind the horizon through the analytic continuation to u ∈ C that we have con-
sidered here.

Spacetimes with signatures other than the Lorentzian would also be of interest. Real sub-
manifolds of the complex u-plane with different signatures arise in many of the examples we
have considered in this paper. For clarity of presentation in the present Lorentzian context
they have not been indicated. Some of these have multiple time directions, whilst others have
mostly negative signature. Another important case is that of Euclidean AdS. For path-integral-
prepared states, it is known that it is not possible to arrange an arbitrary choice of Cauchy data
on a Z2-symmetric slice by a suitable choice of CFT sources and vevs, as shown for probe
fields in [58, 59]. It would be interesting to use the techniques we have outlined here to con-
struct a convergent nonlinear map between sources, vevs and Cauchy data in Euclidean AdS
to explore this and other aspects further.
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Appendix A. Schwarzschild black brane analysis

In this section we provide an exhaustive analysis of singularities rays and arcs for the Schwarz-
schild black brane of section 3.1. We also provide a summary list of results in each subsection.

As a reminder, r ∈ (0,∞), θ ∈ (−π,π]with µ> 0. Without loss of generality we restrict our
derivation to µ= 2 by scaling symmetry. A useful result in what follows is,

16 An appealing class of examples are Janus solutions. An analysis of the range of validity of the Fefferman-Graham
coordinate in such a case has been made in [49]. It would be interesting to check if this range of validity is related to
the radius of convergence.
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Im(gd) = 2(r2d− 1)
(
2rd +(1+ r2d)cos(dθ)

)
sin(dθ). (A.1)

A.1. Singularities

If d= 2 the metric functions f,g are regular. If d= 3 or d > 4 the metric functions f,g have
branch point singularities at 1+ ud = 0. If d= 4 there are no branch points, but the denominator
of f has a zero at 1+ u4 = 0—the numerator is 1− u4 hence these correspond to poles of f.

To summarise, the complete list of singularities are:

un =

(
2
µ

) 1
d

eiπ
1+2n

d , n= 0, . . . ,d− 1 (d⩾ 3), (A.2)

which are branch points except for d= 4.

A.2. Rays

The condition for a ray is f > 0 and g> 0. We note that Im(g) = 0 =⇒ Im(gd) = 0. Im(gd) is
given in (A.1); except for isolated values of r, this vanishes only for θ = nπ/d with n ∈ Z, i.e.
n=−d+ 1, . . . ,d. Hence on a ray we find,

g=
(1+(−1)nrd) 4

d

r2
e−

2πni
d . (A.3)

If n is even or both n is odd and r < 1 then 1+(−1)nrd > 0 and hence Img= 0,Reg> 0
dictates that the only allowed values of n are n= 0,d.

If n is odd and r > 1 we note (1+(−1)nrd) 4
d = (rd− 1)

4
d e

4πi
d . The only n that satisfies

Img= 0,Reg> 0 is n= 2− d when d is odd.
Hence if d is even we have: θ = 0,π. When d is odd we have: θ= 0, θ = π if r < 1, and

θ =−π+ 2π/d if r > 1. One can verify that at these angles we have f > 0 and g> 0 except at
r= 1.

Finally, in addition to these rays, when d= 2 a ray also occurs if f < 0 and g< 0. Repeating
the above analysis for these conditions one finds the allowed angles are θ =±π/2 for all r > 0
excluding r= 1.

The complete list of rays is summarised as follows:

θ = 0, 0< r< (2/µ)1/d, (A.4)

θ = 0, r> (2/µ)1/d, (A.5)

θ = π, 0< r< (2/µ)1/d, (A.6)

θ = π, r> (2/µ)1/d, (d even) (A.7)

θ =−π+ 2π
d
, r> (2/µ)1/d. (d odd) (A.8)

θ =±π
2
, 0< r< (2/µ)1/d, (d= 2) (A.9)
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θ =±π
2
, r> (2/µ)1/d. (d= 2) (A.10)

A.3. Arcs

The condition for an arc is f < 0 and g> 0. We note that Im(g) = 0 =⇒ Im(gd) = 0. Im(gd) is
given in (A.1); this only vanishes at isolated values of θ or at r= 1. Hence all arcs have r= 1.
Hence on an arc,

g= (1+ eidθ)
4
d e−2iθ, (A.11)

and we note that arg(1+ e2ix) = arctan(tan(x)) = x−π
⌊
x
π + 1

2

⌋
. Hence,

arg(g) =−4π
d

⌊
dθ
2π

+
1
2

⌋
, |g|= 2

2
d |1+ cos(dθ)| 2d . (A.12)

Nonzero |g| requires θ 6= (1+ 2m)π/d with m ∈ Z. Positivity requires
⌊

dθ
2π + 1

2

⌋
= nd

2 for
n ∈ Z.

For d even with θ ∈ (−π,π] we have n=−1,0,1 and taking into account |g| this corres-
ponds to the intervals −π < θ <−π+π/d, −π/d< θ < π/d and π−π/d< θ ⩽ π.

For d odd nmust be even, but considering the range of θ we can only have n= 0, and hence
−π/d< θ < π/d.

Finally we must check these intervals for f, we have

f
g
=− tan2

(
dθ
2

)
(A.13)

and hence since g> 0 this ensures that f is manifestly real and non-positive. All we need to do
is ensure that f 6= 0. Hence θ 6= q2π/d with q ∈ Z. This removes the points θ = 0,π from the
four intervals above.

Thus the complete list of arcs is as follows:

r= (2/µ)
1
d , 0< |θ|< π/d, (A.14)

r= (2/µ)
1
d , π−π/d< |θ|< π. (deven) (A.15)

Appendix B. d=4 Linear axion black brane analysis

In this section we provide a derivation of all singularities, rays and arcs for the black branes
of section 4.1.2. For convenience let us denote,

rH =
4√

8−α2
, δθ =

1
2
arccos

(
α2

8−α2

)
. (B.1)

Consider the metric in Fefferman-Graham gauge, (4.13) and (4.14). In polar coordinates,

g=
α2

8
+

(
(α2− 8)2

256
r2 +

1
r2

)
cos(2θ)+ i

(
(α2− 8)2

256
r2− 1

r2

)
sin(2θ).

(B.2)

As a reminder, r ∈ (0,∞), θ ∈ (−π,π] and α ∈ [0,2
√
2].

B.1. Singularities

The metric contains no branch points, and so the only singularities aside from u= 0 are poles
of f. These occur at g= 0 provided the numerator 256− u4(8−α2)2 6= 0 there.
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For θ 6= nπ/2 where n ∈ Z then this can only occur at r= rH. This leaves a real

g=
α2

8
+

8−α2

8
cos(2θ), (B.3)

which can only vanish if 0⩽ α < 2 (at α= 2 it vanishes at θ = nπ/2 and thus excluded here)
and

θ ∈
{
−π

2
− δθ,−π

2
+ δθ,

π

2
− δθ, π

2
+ δθ

}
. (B.4)

Finally one can verify that these are all poles of f.

For θ = nπ/2 where n= 2m is even with m ∈ Z then

g=
(α2− 8)2

256
r2 +

1
r2

+
α2

8
, (B.5)

each term is manifestly positive and thus g cannot vanish.
For θ = nπ/2 where n= 2m+ 1 is odd with m ∈ Z then

g=− (α2− 8)2

256
r2− 1

r2
+
α2

8
. (B.6)

In this case the only points for which g= 0 are then

r=
4
(
2±
√
α2− 4

)
8−α2

, (B.7)

with α⩾ 2, with the exception of the case α= 2
√
2 where there is only the (−) root giving

r= 1. Finally we verify that these are poles of f, except when α= 2. Hence a final listing of
singularities is as follows:

r= rH, |θ|= π

2
± δθ, (0 ⩽ α < 2) (B.8)

r=
4
(
2±
√
α2− 4

)
8−α2

, |θ|= π

2
, (2< α < 2

√
2) (B.9)

r= 1 |θ|= π

2
. (α= 2

√
2) (B.10)

B.2. Rays

Rays require f > 0 and g> 0. The imaginary part of g only vanishes along θ = nπ/2 with n ∈ Z
or at isolated points in r.

For θ = nπ/2 where n= 2m is even with m ∈ Z one has

f =
(256− r4(8−α2)2)2

256r2(256+ 32 α2r2 +(8−α2)2r4)
,

g=
256+ 32 α2r2 +(8−α2)2r4

256r2
, (B.11)
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and hence f > 0 and g> 0 for all r ∈ (0,∞) \ {rH}.
For θ = nπ/2 where n= 2m+ 1 is odd with m ∈ Z one has

f =
(256− r4(8−α2)2)2

256r2(−256+ 32 α2r2− (8−α2)2r4)
,

g=
−256+ 32 α2r2− (8−α2)2r4

256r2
, (B.12)

for f > 0 and g> 0 we therefore require

−256+ 32 α2r2− (8−α2)2r4 > 0, and r 6= rH. (B.13)

Condition (B.13) is only satisfied if α= 2
√
2 and r ∈ (0,∞) \ {rH}, or if 2< α < 2

√
2 and

r ∈

(
4(2−

√
α2− 4)

8−α2
,
4(2+

√
α2− 4)

8−α2

)
\ {rH} . (B.14)

A final listing of rays is as follows:

θ = 0, 0< r< rH, (0⩽ α⩽ 2
√
2) (B.15)

θ = 0, r> rH, (0⩽ α⩽ 2
√
2) (B.16)

θ = π, 0< r< rH, (0⩽ α⩽ 2
√
2) (B.17)

θ = π, r> rH, (0⩽ α⩽ 2
√
2) (B.18)

|θ|= π

2
,

4(2−
√
α2− 4)

8−α2
< r< rH, (2< α < 2

√
2) (B.19)

|θ|= π

2
, rH < r<

4(2+
√
α2− 4)

8−α2
, (2< α < 2

√
2) (B.20)

|θ|= π

2
, r> 1. (α= 2

√
2) (B.21)

B.3. Arcs

Along arcs we must have f < 0 and g> 0. The reality condition for g is r= rH up to isolated
points in θ, then on this circle,

f=− (8−α2)2 sin2(2θ)
8(α2 +(8−α2)cos(2θ))

, g=
1
8

(
α2 +(8−α2)cos(2θ)

)
. (B.22)

Hence the condition for an arc is

α2 +(8−α2)cos(2θ)> 0, and θ 6= nπ
2

n ∈ Z. (B.23)

When 2< α⩽ 2
√
2 the first condition is always satisfied, and hence in this case we have arcs

for θ ∈ (−π,π] \ {−π/2,0,π/2,π}. For the remaining parameter range, 0⩽ α⩽ 2 we note
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that the intervals in θ for which (B.23) hold are delineated by the values of θ given in (B.4).
We just need to check the signs on each side of these points to identify the admissible regions.
These are, {

0< θ <
π

2
− δθ,

π

2
+ δθ < θ < π, −π

2
+ δθ < θ < 0, −π < θ <−π

2
− δθ

}
.

(B.24)

A final listing of arcs is as follows:

r= rH, 0< |θ|< π

2
− δθ, (0⩽ α⩽ 2) (B.25)

r= rH,
π

2
+ δθ < |θ|< π, (0⩽ α⩽ 2) (B.26)

r= rH, 0< |θ|< π

2
, (2< α < 2

√
2) (B.27)

r= rH,
π

2
< |θ|< π. (2< α < 2

√
2) (B.28)

Appendix C. Behind-the-horizon physics from asymptotic behaviour

In the main body of the paper, we have studied several examples of black hole spacetimes
in which the convergence radius of the Fefferman-Graham expansion was determined by the
location of the black hole singularities in the complex u-plane. This is a particular instance of
a general relationship between the asymptotic behaviour of the Fefferman-Graham expansion
and the behaviour of the metric components in the vicinity of the singularities,

Near-singularity behaviour←→ Large-order behaviour. (C.1)

In this appendix, we explore the general relationship (C.1) in detail, focusing on the left-to-
right arrow. The mathematical tools we will utilize are Darboux theorem and generalizations
thereof [60, 61]. Our analysis will demonstrate that, while the Fefferman-Graham expansion is
constructed solely from boundary CFT sources and one-point functions, its large-order beha-
viour alone can provide a window into behind-the-horizon physics17.

Let us assume that the black hole spacetime we are interested in is endowed with p equal-
norm, closest-to-the-origin branch-point singularities in the complex u-plane located at u=
u(k)s , k ∈ {1, . . . ,p}. Szegö theorem [60, 61] states that any function f (u) analytic in |u|< |u(k)s |
with this singularity structure is such that

[un]( f)∼
∞∑
ν=0

p∑
k=1

c(k)ν (−1)n
(
α(k) + νβ(k)

n

)(
u(k)s

)−n
, (C.2)

where c(k)ν , α(k) and β(k) > 0 are defined in terms of the Puiseux series of f (u) around u= u(k)s ,

f(u) =
∞∑
ν=0

c(k)ν

(
1− u

u(k)s

)α(k)+νβ(k)

, (C.3)

and [un]( f) is the nth order coefficient of the series expansion of f (u) around u= 0.

17 By this, we mean that behind-the-horizon physics can be accessed without having to analytically continue the
Fefferman-Graham expansion or finite-order truncations thereof, for instance by utilizing Padé approximants.
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In the case that the black hole singularities determining the convergence radius of the
Fefferman-Graham expansion were poles (as in the Schwarzschild-AdS5 or the d= 4 linear-
axion black branes) there are analogous theorems one can resort to (see e.g. theorem 5.5
in [61]).

As an example of application of Szegö theorem, we focus on the RNAdS5 black brane.
Furthermore, we restrict ourselves to the leading-order ν= 0 contribution to (C.2), and hence
drop the subscript in c(k)0 to avoid clutter. As we demonstrated in section 4.2, the RNAdS5

black brane is endowed with four branch-point singularities located at u(1)s = us, u
(2)
s =−u⋆s ,

u(3)s =−us, u(4)s = u⋆s that set the convergence radius of the Fefferman-Graham expansion.
These singularities are part of the physical spacetime and timelike. The function we focus on
is B= u2 gxx(u).

At u= u(k)s , gxx and B vanish. Solving the Einstein equations around this point, one finds
that α= 2

3 and that c(k) is a root of the following cubic equation,

(c(k))3 = 6 r4h µ
2(u(k)s )6. (C.4)

The branch c(k) belongs to has be chosen carefully. It is selected by the following reality con-
ditions,

• For k= 1, gxx(us(1+ ϵei0
−
)) is real for ϵ⩾ 0, implying that c(1) = 6

1
3 e−

2πi
3 (u(1)s )2 r

4
3
h µ

2
3 .

• For k= 2, gxx(−u⋆s (1+ ϵei0
+

)) is real for ϵ⩾ 0, implying that c(2) = 6
1
3 e

2πi
3 (u(2)s )2 r

4
3
h µ

2
3 .

• For k= 3, gxx(−us(1+ ϵei0
−
)) is real for ϵ⩾ 0, implying that c(3) = 6

1
3 e−

2πi
3 (u(3)s )2 r

4
3
h µ

2
3 .

• For k= 4, gxx(u⋆s (1+ ϵei0
+

)) is real for ϵ⩾ 0, implying that c(4) = 6
1
3 e

2πi
3 (u(4)s )2 r

4
3
h µ

2
3 .

Taking stock, we finally find that

[un](B)∼−2 4
3 3

1
3 r

4
3
h µ

2
3

( 2
3

n

)
|us|2−n (1+(−1)n)cos

(
θsn− 2 θs−

π

3

)
. (C.5)

The asymptotic prediction (C.5) is consistent with the fact that B is real and even. For this
reason, in the following we work with k≡ n

2 , bk ≡ [u2k][B]. The bk coefficients are determined
by a numerical computation.

In figure 12, we plot

bk

−2 7
3 3

1
3 r

4
3
h µ

2
3
( 2

3
2k

)
|us|2−2k

(C.6)

and compare it with asymptotic prediction cos
(
2θsk− 2 θs− π

3

)
. |us| and θs are obtained from

a numerical solution of the Einstein equations in the complex u-plane. As the figure illus-
trates, for sufficiently large k we get an excellent agreement between the exact result and the
asymptotic prediction (C.5). This demonstrates that the leading large-order behaviour of the
Fefferman-Graham expansion is completely determined by the near-singularity behaviour of
the metric in the complex u-plane. In particular, note that the ratio (C.6) at large k provides
direct access to θs, which corresponds to the proper time taken by a static observer to fall from
the outer to the inner horizon.
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Figure 12. For RNAdS5 black branes, the large-order behaviour of bk = [u2k](u2 gxx) is
governed by the black brane interior. In the plot, open black circles correspond to the
ratio (C.6) between the exact bk and the amplitude of the asymptotic prediction (C.5). As
discussed in detail in the text, at large k this ratio has to tend to cos

(
2θsk− 2 θs − π

3

)
(red crosses). The plot clearly shows that both quantities are in very good agreement
at sufficiently large k. |us| and θs have been determined by a numerical solution of the
Einstein equations in the complex u-plane. The parameter values we have considered
are rh = 1.5 and µ=

√
3, resulting in |us| ≈ 0.730 and θs ≈ 0.901.

Appendix D. Conformal maps and convergent expansions for black holes

Consider the conformal map u 7→ w(u), where

w(u) =
(β−1u+ 1)

π
2α − 1

(β−1u+ 1)
π
2α + 1

, (D.1)

with parameters α,β > 0. It maps a wedge in the u-plane whose tip is at u=−β and opening
angle 2α to the unit disk in the w-plane, with the origin of the disk w= 0 identified with
u= 0, and u→+∞ with w= 1. We have therefore constructed a disk in the w-plane, inside
which the small w expansion converges and includes the second asymptotic region as well as
a portion of the interior of the black hole. This map is illustrated in figure 13. Since the w-
expansion converges for at least some classes of black hole spacetimes it can be exploited as
an alternative method to solve the Einstein equations. In practice, begin in radial gauge with
radial coordinate w, and construct a near boundary expansion for small w. This converges
in the unit w-disk provided the chosen α,β are not too large. Use this perturbative solution
to impose the existence of a regular Killing horizon somewhere inside this disk by adjusting
near-boundary data. The approximate solution in the Fefferman-Graham gauge can then be
obtained by applying (D.1) exactly (that is, without expanding in u). We have verified that
this procedure works for the model of section 4.3 by explicitly constructing the broken phase
holographic superconductor with this method.Whether thew-expansion converges fast enough
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Figure 13. Conformal map from Fefferman-Graham radial coordinate u to a new radial
coordinate w defined by (D.1). The wedge with opening angle 2α and tip at u=−β
(blue region in the u-plane) is conformally mapped to the unit disk (blue region in the
w-plane) with the conformal boundary at the origin. As such, a near-boundary expansion
in the radial coordinate w will converge up to and including a portion of the interior of
the black hole, as well as the second asymptotic region. For illustrative purposes we
have also plotted the rays, arcs and singularities for the holographic superconductor
from section 4.3 on top of these regions with conformal map parameters α= π/4.3 and
α= 0.7, and singularities (A) and (B) identified in both plots. The grey dots on the left
are poles of the Padé approximant of the u-expansion of ψ (Fefferman-Graham), while
the grey dots on the right are the same but for the w-expansion of ψ, further illustrating
the absence of singularities inside the disk. There is a branch point at w=−1.

to be a practical approach compared to other techniques, remains to be seen18. It would also
be interesting to understand whether this approach can be used to solve the Einstein equation
PDEs for higher cohomogeneity examples.
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