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Abstract—Orthogonal time frequency space (OTFS) mod-
ulation constitutes a promising technology for high-mobility
scenarios. However, the detection of OTFS systems imposes
substantial complexity. Hence, we propose a novel orthogonal
block (OB) based detection scheme for significantly reducing
the OTFS detection complexity without any performance loss
with integer Doppler shifts. This is achieved by recognizing that
the received signal can be partitioned into multiple parallel
orthogonal blocks. Therefore, the detection of data symbols
within an orthogonal block only depends on the signals received
within this orthogonal block with reduced dimension. Explicitly,
we propose a graph theory based orthogonal block identification
algorithm, which models the relationship between the received
signal and the original information symbols as a bipartite graph,
where a depth first search (DFS) algorithm is invoked for
partitioning the received signals into orthogonal blocks. For each
orthogonal block, the existing detection algorithms can be used.
Since the size of orthogonal blocks may be much lower than
that of the original received signals, the detection complexity
can be significantly reduced. For example, the complexity of the
OB based MMSE detector is approximately a factor 4096 lower
than that of the traditional MMSE detector for a channel having
two paths.

I. INTRODUCTION

High-mobility wireless communication scenarios exhibit
high Doppler spread, for example for unmanned aerial vehicle
(UAV) [1], airplanes [2], low-earth-orbit (LEO) satellites [3],
and so on. Hence traditional OFDM schemes suffer from
severe inter-carrier interference (ICI) [4]. Recently, an Orthog-
onal Time Frequency Space Modulation (OTFS) modulation
technique has been proposed as a promising solution for high-
mobility communication scenarios [5]–[7]. Explicitly, OTFS
places data symbols in the delay-Doppler (DD) domain and
converts the time-varying channel into an approximately time-
invariant channel in the DD domain, so as to outperform the
traditional OFDM in high-mobility scenarios [5].

Briefly, the detection is carried out jointly in the DD
domain, which however imposes significant computational
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burden upon using traditional detection schemes such as
minimum mean squared error (MMSE) and maximum a poste-
riori (MAP) detectors. Hence, low-complexity OTFS detection
algorithms have attracted intensive research interests. In [8],
a Markov chain Monte Carlo (MCMC) sampling based detec-
tion algorithm was proposed. In [9] a message passing (MP)
based detection algorithm was conceived, relying on the Gaus-
sian approximation of the interference term for reducing the
complexity of the algorithm. Furthermore, in [10] a variational
Bayesian detector was designed, which outperforms the MP
algorithm of [9]. Moreover, in [11], an improved approximate
message passing (AMP) detection algorithm was conceived,
which outperforms the traditional AMP algorithm. In [12],
a multi-block unitary approximate message passing (UAMP)
detection algorithm was designed by partitioning a large time-
domain channel matrix into several sub-matrices. In [13], a
maximal ratio combining receiver was proposed to block-
wisely detect symbols. In [14], a low complexity iterative
rake decision feedback equalizer was proposed. In [15], a
hybrid detection algorithm was put forward by combining
the MAP detector and parallel interference cancellation (PIC)
detector. In [16], a cross-domain iterative detection algorithm
was proposed by exchanging extrinsic information between
the time domain and DD domain. Furthermore, in [17],
low complexity MMSE and zero-forcing (ZF) detectors were
proposed by exploiting the unique characteristics of the OTFS
channel matrix for optimizing the traditional MMSE and ZF
detectors.

The above solutions mainly focus on the performance vs,
detection complexity trade-off without any dimension reduc-
tion, despite the fact that the classic sparse DD domain fading
channel only introduces interferences to specific subsets of
the received signals. Against this background, we propose a
novel optimal low-complexity orthogonal block (OB)-based
detection scheme capable of operating without any perfor-
mance loss in the OTFS system with integer Doppler shifts.
In Table I, we boldly and explicitly contrast our contributions
to the state-of-the-art. Our main contributions are detailed as
follows:

• We discover the inherent nature of orthogonal blocks in
the OTFS system with integer Doppler shifts. Specif-
ically, we demonstrate that the received signals can be
approximately partitioned into several orthogonal blocks,
each of which may be detected without any influence of
the other blocks. In other words, the detection of data
symbols contained in a specific orthogonal block only
depends on the signals received within this orthogonal
block. Hence, for each orthogonal block, any existing
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TABLE I: Our Contributions Against the State-of-Art Detection Schemes

Our OB Based
Detection Algorithm MAP Traditional

MMSE
MCMC

[8]
MP
[9]

AMP
[11]

VB
[10]

Low Complexity
MMSE [17]

UAMP
[12]

complexity
high

√ √

middle
√ √

low
√ √ √ √ √

Optimality achievable
√ √

Compatibility
√

Parallel processing
√

Dimension reduction
√

detection algorithm can be used. As an explicit benefit,
our scheme is compatible with any existing detection
scheme. Since each orthogonal block may have a much
smaller size than the original OTFS block, the complex-
ity is significantly reduced. Furthermore, our OB-based
scheme supports parallel processing for multiple orthogo-
nal blocks, which is suitable for practical implementation
for large scale systems.

• We propose a graph theory based orthogonal block
partitioning algorithm. Specifically, we model the rela-
tionship between the received signal and original sym-
bols by a bipartite graph. Based on this bipartite graph
model, the depth first search (DFS) algorithm is invoked
for delineating the orthogonal blocks. Again, once the
orthogonal blocks have been delineated, any existing
detection algorithm can be invoked for each block.

• The number of orthogonal blocks depends on the number
of paths in the channels. The lower the number of the
paths, the more orthogonal blocks we have, which results
in smaller size of blocks. Moreover, the smaller size
of each block results in a reduced complexity detection
algorithm. Hence, our OB based scheme is beneficial for
low-dispersion channels, which are routinely encountered
in the high-Doppler scenario. For example, the complex-
ity of the OB based MMSE detector is approximately
a factor 4096 lower than that of the traditional MMSE
detector for a two-path channel.
Note that the philosophy of transforming a large-scale
block into multiple parallel sub-blocks of smaller size,
where existing detection algorithms may be invoked for
each sub-block, is widely adopted in wireless communi-
cation. For example, in [18], a large-scale OFDM system
was transformed into multiple reduced-size sub-blocks,
where the maximum likelihood detector was harnessed
for each sub-block at a reduced complexity. Another
example is constituted by the multiuser MIMO downlink,
where a block-digitalization algorithm was proposed for
suppressing the multi-user interference, so that classic
single-user detection algorithms can be invoked for each
sub-block [19].

II. SYSTEM MODEL

For the OTFS system, for the maximum delay τmax
and maximum Doppler υmax, a total bandwidth of B =
M∆f and time duration Tf = NT associated with
∆f = 1/T , where ∆f is the subcarrier spacing and
T = 1/∆f is the symbol duration [10], are invoked

for transmitting NM data symbols under the constraints
τmax < 1/∆f and νmax < 1/T [9]. The NM data symbols
{x[k, l], k = 0, ..., N − 1, l = 0, ...,M − 1} are transmitted in
the DD domain where x[k, l] is drawn from the constellation
set A.

Furthermore, the channel h(τ, ν) is composed of P propa-
gation paths and can be expressed as [20]

h(τ, ν) =
P∑
i=1

hiδ (τ − τi) δ (ν − νi) , (1)

where hi, τi, and νi represent the channel gain, delay, and
Doppler shift associated with the ith path, and δ(·) denotes the
Dirac delta function. Furthermore, the delay hi and Doppler
shift νi and of the ith path can be expressed as [20]

τi =
li

M∆f
, νi =

ki
NT

, (2)

where li and ki represent the indices of delay and Doppler,
respectively, while delay and Doppler taps lτ and kν corre-
spond to the largest delay τmax and largest Doppler νmax [9],
respectively. In this paper, we only consider the case where
li and ki are integers.

Moreover, the signal y[k, l] received in the DD domain can
be written as [20]

y[k, l] =

P∑
i=1

h′ix [[k − ki]N , [l − li]M ] + z[k, l] (3)

where we have h′i = hie
−j2πνiτi [20].

III. OPTIMAL LOW-COMPLEXITY ORTHOGONAL BLOCK
DETECTOR

A. Orthogonal Block Based Nature of OTFS

The matrix formulation of received signal in the DD domain
can be expressed as [9]

y = Hx + n, (4)

where we have x,y,n ∈ CMN×1, H ∈ CMN×MN . Let us
denote the (k +Nl)-th element of x by

xk+Nl = x [k, l] (5)

and the (k +Nl)-th element of y as

yk+Nl = y [k, l] , (6)

where the elements in H are placed according to the relation-
ship between {xk+Nl} and {yk+Nl}.
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y0
y1
y2
y3
y4
y5
y6
y7
y8


=



h′1 0 0 0 0 0 0 0 h′2
0 h′1 0 0 0 0 h′2 0 0
0 0 h′1 0 0 0 0 h′2 0
0 0 h′2 h′1 0 0 0 0 0
h′2 0 0 0 h′1 0 0 0 0
0 h′2 0 0 0 h′1 0 0 0
0 0 0 0 0 h′2 h′1 0 0
0 0 0 h′2 0 0 0 h′1 0
0 0 0 0 h′2 0 0 0 h′1





x0
x1
x2
x3
x4
x5
x6
x7
x8


. (7)



y0
y4
y8
y2
y3
y7
y1
y5
y6


=



h′1 0 h′2 0 0 0 0 0 0
h′2 h′1 0 0 0 0 0 0 0
0 h′2 h′1 0 0 0 0 0 0
0 0 0 h′1 0 h′2 0 0 0
0 0 0 h′2 h′1 0 0 0 0
0 0 0 0 h′2 h′1 0 0 0
0 0 0 0 0 0 h′1 0 h′2
0 0 0 0 0 0 h′2 h′1 0
0 0 0 0 0 0 0 h′2 h′1





x0
x4
x8
x2
x3
x7
x1
x5
x6


. (8)

For a ’toy’ example, we assume that M = 3 and N = 3.
Furthermore, we assume that there are P = 2 paths in
the channel. Moreover, the corresponding delay and Doppler
indices for the first path are l1 = 0 and k1 = 0, respectively,
while the corresponding delay and Doppler indices for the
second path are l2 = 1 and k2 = 1, respectively. Then,
according to (4), we have (7), shown in the next page.

Interestingly, we can see that the received signal y0 is only
composed of the pair of data symbols x0 and x8, the received
signal y4 is only composed of the pair of data symbols x0
and x4, while the received signal y8 is only composed of pair
of data symbols x4 and x8. These three received signals can
construct a block, which are only related to three data symbols
x0, x4 and x8. Similarly, the three received signals y2, y3 and
y7 are only related to three data symbols x2, x3 and x7, while
the three received signals y1, y5 and y6 are only related to
three data symbols x1, x5 and x6.

Based on this observation, (7) can be equivalently expressed
as (8), shown in the next page.

It can then be observed from the above formula that the
received signals can be partitioned into three uncorrelated
blocks associated with the corresponding data symbols of

 y0
y4
y8


︸ ︷︷ ︸

ỹ1

=

 h′1 0 h′2
h′2 h′1 0
0 h′2 h′1


︸ ︷︷ ︸

H̃1

 x0
x4
x8


︸ ︷︷ ︸

x̃1

(9)

 y2
y3
y7


︸ ︷︷ ︸

ỹ2

=

 h′1 0 h′2
h′2 h′1 0
0 h′2 h′1


︸ ︷︷ ︸

H̃2

 x2
x3
x7


︸ ︷︷ ︸

x̃2

(10)

 y1
y5
y6


︸ ︷︷ ︸

ỹ3

=

 h′1 0 h′2
h′2 h′1 0
0 h′2 h′1


︸ ︷︷ ︸

H̃3

 x1
x5
x6


︸ ︷︷ ︸

x̃3

. (11)

These three orthogonal blocks can be unified as

ỹi = H̃ix̃i + ñi, 1 ≤ i ≤ 3, (12)

where we have x̃, ỹ, ñ ∈ C3×1, H̃i ∈ C3×3. For different
orthogonal blocks, the received signals are composed of com-
pletely disjoint transmission symbol sets. Hence, the detection
of the corresponding data symbols in the different blocks has
no influence on each other. Consequently, we can separately
detect the related data symbols by only using the received
signal directly related to these orthogonal blocks.

Let us assume that that there exist L orthogonal blocks. For
the ith orthogonal blocks, we have

ỹi = H̃ix̃i + ñi, 1 ≤ i ≤ L, (13)

where x̃, ỹ, ñ ∈ CNM/L×1, H̃i ∈ CNM/L×NM/L. Any ex-
isting detection algorithm can be invoked for each orthogonal
block. For a given OTFS bolck, the number of orthogonal
blocks, L, depends both on the delay and Doppler shift, as
we can see from the simulations.

B. Graph Theory Based Orthogonal Block Identification Al-
gorithm

As described above, we can design an orthogonal block
identification algorithm, which can delineate the orthogonal
blocks of OTFS and facilitate the subsequent data symbol
detection.

The main idea is to partition the received signal vector of
(4) into orthogonal blocks.
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Fig. 1: Bipartite graph model of the relationship between the
data symbols and received signals.

To this end, according to (4), we can use an undirected bi-
partite graph G = (V, E), where V and E represent the sets of
nodes and links in the bipartite graph G, respectively, for mod-
eling the relationship between the data symbol xi and the re-
ceived signal yj , as shown in Fig. 1. Specifically, we have V =
Vx ∪ Vy , where Vx = {xi, i = 0, 1, · · · , NM − 1} is the set
of all data symbols, while Vy = {yi, i = 0, 1, · · · , NM − 1}
is the set of all received signals. Furthermore, if we have
hij 6= 0, there is a link eyi,xj

between node yi and node xj .
Hence, we have E =

{
eyi,xj |hij 6= 0

}
. Moreover, Vx and Vy

constitute a pair of disjoint node sets.
Based on the bipartite graph G, we can use the classical

DFS algorithm [21] to determine the relationship of nodes,
hence also that of the orthogonal received signal blocks.
Specifically, the algorithm consists of the following steps:

Step 1: Initialization. Label the vertices representing the
received signals by odd numbers, while the vertices repre-
senting data symbols by even numbers. Furthermore, for each
node i, construct its adjacent vertex set Si.

Step 2: Start the DFS algorithm [21] from the specific ver-
tex having the smallest odd number. When the DFS algorithm
stops, denote the set of vertices found by the DFS algorithm
as

R = {j|vertexi is found by the DFS algorithm}. (14)

Naturally, the vertices associated with odd numbers in R
composed a specific orthogonal block.

Step 3: Remove R from the current vertex set E and denote
the set of the remaining vertices as C = V/R. If C = φ,
terminate the algorithm; Otherwise, return to Step 2.

Upon assuming that there are L blocks to be found, the
complexity of the DFS algorithm in each iteration is on the
order of O(|V|/L+ |E|/L) [21].

C. Low-Complexity Detection

Once L orthogonal blocks have been identified, the data
symbol can be detected block by block. Specifically, any ex-

isting detection algorithm can be invoked for each orthogonal
block.

According to (14), since the size of the channel matrix
H̃i, i = 1, . . . , L is much lower than that of the original
channel matrix H ∈ CNM×NM , the detection complexity
may be significantly reduced. Furthermore, since the blocks
are orthogonal to each other, there is no performance loss.

The total complexity of DFS imposed by determining these
L orthogonal blocks is O(MN(P+2)). Furthermore, for each
orthogonal block, the size of the channel matrix for each
orthogonal block is (MN/L × MN/L). When an MMSE
dector is used, for each orthogonal block, the complexity order
is O(

(
MN
L

)3
), and the total detection complexity order of L

blocks is O( (MN)3

L2 ). Hence, the total complexity of the OB
based MMSE detection scheme including the DFS and MMSE
detectors is O(MN(P + 2)) + O( (MN)3

L2 ) ≈ O( (MN)3

L2 ).
By contrast, for the traditional MMSE detector operating
without our partitioning algorithm, as the size of the whole
block is (MN ×MN), the complexity order is O((NM)3)
. Hence, the complexity of our OB-based MMSE detector is
approximately a fraction 1

L2 of the traditional MMSE detector.
Furthermore, when the MP detector is used, assuming that

the number of iterations for each OB is n1, the complexity or-
der of the MP detector is O((n1(NM/L)P |A|)), and the total
detection complexity order of L blocks is O(n1MNP |A|).
Hence, the total complexity of our OB based MP detection
scheme including the DFS and MP detection is O(MN(P +
2)) + O (n1NMP |A|) ≈ O (NM(n1P |A|+ P + 2)). By
contrast, for the traditional MP detector, assuming that
the number of iterations is n2, the complexity order is
O (n2NMP |A|). As the size of each OB is much lower than
the original block, the number of iterations for each OB may
be less than that for the original block, i.e. n1 < n2. Hence,
the OB based MP detection scheme still has a lower complex-
ity than the traditional MP detection scheme. Furthermore, if
the delay and Doppler spread remains unchanged, the OB
block is the same for each OTFS block. Hence, the DFS
algorithm is only needed for the first OTFS block and the
complexity of the DFS is only counted once.

Remark 1: Indeed, there may exist fractional Doppler shifts
in OTFS. In this case, a single data symbol may traverse more
than just a few paths and affects more received signals as
explained in [9]. Consequently, the orthogonal block nature
would not hold any more. Hence, our orthogonal block (OB)
based low-complexity optimal detection scheme would no
longer be beneficial. However, channel estimation is also
needed for our OTFS system. One of the popular channel
estimation schemes relies on embedded pilots, where guard
intervals are also required [22]. In this case, the pilot and
guard intervals can be carefully designed to separate the
different blocks. Hence, orthogonal blocks can be created
and our OB-based scheme can be extended to the scenario
of fractional Doppler shifts.

IV. SIMULATION RESULTS

In this section, we characterize the performance of the
proposed OB based detector of the OTFS system. Specifically,
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the total number of subcarriers is set to M = 64 and the total
number of carriers is set to N = 32. Furthermore, QPSK
modulation is used. Moreover, the complex Gaussian channel
is assumed, which models an uncorrelated Rayleigh-fading
channel.

In Fig. 2, the number of orthogonal blocks versus the num-
ber of paths is plotted, for P = 2, 3, 4 and 5, respectively by
using the proposed orthogonal block identification algorithm.
The indices of the channel delay and Doppler are listed in
Table II. Observe from Fig.2 that number of orthogonal blocks
is reduced upon increasing the number of paths. Specifically,
the number of orthogonal blocks is L = 64, 8, 1 and 1
for P = 2, 3, 4 and 5, respectively. Explicitly, when the
number of paths increases, the received signal consists of more
transmitted symbols, and hence a block contains more signals,
which results in fewer orthogonal blocks. Furthermore, there
are certain high-mobility scenarios having only a few paths
in UAV communication, where typically a two-Ray channel
model is assumed as the air-to-ground propagation channel
model [23].
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Fig. 2: The number of orthogonal blocks versus the number
of paths, when the number of paths in the channel is P = 2,
3, 4 and 5, respectively.
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Fig. 3: The number of orthogonal blocks versus the delay of
paths, when the number of paths in the channel is P = 2.

In Fig.3, the number of orthogonal blocks versus the delay
of paths is plotted when the number of paths in the channel
is P = 2 for k2 = 1 and k2 = 2, respectively. As we can see
from Fig.3, that the number of orthogonal blocks varies for
different delay.
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Fig. 4: The number of orthogonal blocks versus the doppler
of paths, when the number of paths in the channel is P = 2.

In Fig.4, the number of orthogonal blocks versus the
Doppler shift is plotted when the number of paths in the
channel is P = 2 for l2 = 3 and l2 = 4, respectively. As
we can see from Fig.4, that the number of orthogonal blocks
varies for different Doppler shift.
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Fig. 5: The BER performance versus the SNR for both the
OB based MMSE detector and the traditional MMSE OTFS
detector.

In Fig. 5, the BER versus SNR performance is shown for
both our OB based MMSE detector and the traditional MMSE
detector for P = 2 and 3 paths, respectively. The indices of
channel delay and Doppler bins are listed in Table II for P = 2
and P = 3. Consequently, the number of orthogonal blocks
is L = 64 and 8 for P = 2 and P = 3, respectively. As seen
from Fig. 5, the OB based MMSE detector achieves the same
performance as the traditional MMSE detector. However, the
complexity is only a fraction of 1

4096 and 1
64 of the traditional

MMSE detector for P = 2 and P = 3, respectively.

V. CONCLUSION

In this treatise, an optimal low-complexity OB based de-
tector was designed for OTFS systems associated with integer
Doppler shifts and low-dispersion channels. This was achieved
without any performance loss as a benefit of partitioning the
received signals into orthogonal blocks. For each orthogonal
block, any of the existing detection scheme can be used.
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TABLE II: Simulation Parameters

Number of paths Indices of delay and Doppler
2 l1 = 0, k1 = 0; l2 = 2, k2 = 1
3 l1 = 0, k1 = 0; l2 = 2, k2 = 1; l3 = 4, k3 = −2
4 l1 = 0, k1 = 0; l2 = 2, k2 = 1; l3 = 4, k3 = −2; l4 = 5, k4 = −4
5 l1 = 0, k1 = 0; l2 = 2, k2 = 1; l3 = 4, k3 = −2; l4 = 5, k4 = −4; l5 = 6, k5 = −2
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