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Abstract 

The structure of pollen has evolved depending on its local environment, competition, and ecology. As pollen 

grains are generally of size 10-100 microns with nanometre-scale substructure, scanning electron microscopy is 

an important microscopy technique for imaging and analysis. Here, we use style transfer deep learning to allow 

exploration of latent w-space of scanning electron microscope images of pollen grains and show the potential for 

using this technique to understand evolutionary pathways and characteristic structural traits of pollen grains. 

1. Introduction 

Land plants have their origin in the mid-Palaeozoic era[1]. It is estimated that around 350,000 species of flowering 

plants have evolved[2], producing pollen grains with sizes ranging from approximately 10-100 microns depending 

on the species, and with substructure on the scale of nanometres[3]. Pollen takes a variety of shapes, such as trilobal, 

spherical or hexagonal, and the surface of pollen (the exine) can have features such as apertures[4] that play a role 

in mechanisms such as germination and harmomegathy[5]. Imaging of pollen grains is therefore an important 

technique, as it offers a vital indicator in the health of agriculture crop[6] and the local environmental[7]. 

Current understanding of pollen traits and evolution generally involves manual observation, with various methods 

of imaging pollen grains used to identify their external and internal structure. These include fluorescence 

microscopy[8] and electron microscopy[9], while modelling using analytical methods has been used for exploring 

the formation of pollen grain apertures[10]. However, these approaches can be time consuming and modelling 

biological systems can be challenging. In recent years, developments in graphics processing units (GPUs) and 

deep learning algorithms have unlocked a new paradigm of large-scale data driven research[11]. Relevant 

palynology, deep learning has been used for pollen identification via visible light microscopy[12] and fibre optic-

based sensing[13], for imaging of pollen grains from scattering patterns[14], and for transforming images of 

dehydrated pollen grains into images of hydrated pollen grains[15]. 

This manuscript describes the application of deep learning to artificially generate scanning electron microscope 

(SEM) images of pollen grains and then interpolate between the generated images in latent w-space to potentially 

allow the exploration of transformations from one pollen species to another, as conceptualised in figure 1. The 

latent w-space is a multi-dimensional space that enables close positional representation of data that are similar in 

the space externally to the neural network (i.e. training data). Since evolution generally results in incremental 

changes to the visual appearance of pollen grains, and that the neural network clusters pollen grain types based 

on their visual appearance in latent w-space, interpolation and extrapolation across latent w-space could be 

comparable to the evolutionary path between pollen species in a phylogenetic tree. We also show that w-space 

latent vectors can be determined that can allow characteristics, such as the pollen grain size, to be increased or 

decreased in the generated images, potentially allowing the understanding of species morphology evolution. 

 



Figure 1. Exploring pollen characteristics using image transformation in latent w-space. A neural network 

transforms a generated image of a pollen grain into another generated image of a pollen grain, via interpolation in 

latent w-space. 

2. Experimental methods 

 

2.1 Data acquisition 

All SEM images were downloaded from PalDat[16], with each image file associated with a number and the species, 

taxa, genus and imaging method stored in an array. Only rehydrated single pollen grain images were used for 

training the neural network. A total of 2775 images were used in training the neural network, which consisted of 

778 different genus of pollen. Each image was cropped and resized to 512 × 512 pixels, with the scale text removed 

but the scale bar preserved to allow for the neural network to generate images with scale bars and thus provide 

information of the pollen grain size. The scale bar in each image represents 10 µm. 

2.2 Neural network 

The style transfer deep learning neural network known as StyleGAN[17] was used to generate synthetic SEM 

images of pollen grains, where the appearance of the generated pollen grains was based on the training data. 

Specifically, we used the StyleGAN 2 neural network that is freely available on GitHub at 

https://github.com/NVlabs/stylegan2-ada-pytorch.git. The StyleGAN neural network architecture is a type of 

generative adversarial network architecture that uses a non-linear mapping network to transform a random vector 

into an intermediate latent w-space vector, where vector elements are correlated with different visual features in 

the generated image (see figure 2). This enables latent w-space to permit smooth transitions between different 

generated images. The mapping network transforms a 1 × 512 random vector into a 1 × 512 latent w-space vector, 

and the generation network transforms this vector into a 512 × 512 resolution generated image. 

  

Figure 2. Schematic of the StyleGAN neural network. 

StyleGAN has been used for generating and interpolating between different photographs. As an example, figure 

3 shows the interpolation between a seed image showing a field and a seed image showing a forest. The sequence 

of images demonstrates the transition from yellow grass into green trees and a red sky into blue sky. The network 

used to generate these data was a pretrained StyleGAN 2 network trained on landscape images 

(https://github.com/ThisJustin-code/pretrained-gan-landscapes-256.git). 

 

Figure 3. Sequence of images from seed 1 to seed 2 showing the interpolation from a field to a forest. 

The neural network was trained on a Windows 10 workstation, with a 64 AMD core CPU, 512 GB RAM, 4 × 

NVIDIA A5000 GPUs (24 GB memory each), using CUDA-enabled Python. The neural network was trained for 

7000 kimg (thousands of real images shown to the discriminator) at 39 sec/kimg, taking approximately 3.5 days. 

Training parameters included a learning-rate of 0.0025, a non-saturating logistic loss function, batch-size of 32 

and the ADAM optimiser[18]. 

 

 

https://github.com/NVlabs/stylegan2-ada-pytorch.git
https://github.com/ThisJustin-code/pretrained-gan-landscapes-256.git


2.3 Image generation 

W-space seeds were used as input to the generative neural network to produce 512 × 512-pixel images, which 

contain generated 10 µm scale bars. Interpolation between different w-space seeds was achieved by calculating 

the w-space vector from w-space seed 1 to w-space seed 2 and adding fractions of this vector to the coordinate of 

w-space seed 1. As the w-space seeds are random vector coordinates in 512-dimension w-space, the interpolation 

from one w-space seed to another w-space seed is unique and can be mathematically described as the position of 

w-space seed 1 added to a fraction of a vector from w-space seed 1 to w-space seed 2 (calculated as w-space seed 

2 minus w-space seed 1). Therefore, by taking the average of many w-space vectors from generated images of 

small pollen grains to generated images of large pollen grains, a w-space vector for ‘increasing size’ (size vector) 

can be determined. This vector can then be added (or subtracted) to any w-space seed to increase or decrease the 

size of the pollen in the generated image. The vector for pollen with no spikes to spikes (spike vector) was also 

determined.   

 

Figure 4. FID score vs kimg. 

The Fréchet Inception Distance (FID) score[19], which quantifies the distance between feature vectors for generated 

images and training images, was used to compare the distributions of the generated images and the training images, 

with a score of zero indicating that the two sets of data have identical distributions. The FID score was calculated 

every 200 kimg and monitored during training, reaching 250 for 11000 kimg (see figure 4), and there was visible 

overfitting since there was no variation between the generated images, unlike for 7000 kimg. 

3. Results and discussion 

Figure 5 show five pairs of generated pollen images, along with the associated generated images for ten equal 

interpolation steps, and labels that correspond to species that the pollen grains in the images resemble. The pollen 

species are identified via manual comparison with the actual pollen grain images used in training and present in 

PalDat database. In (a), no images resembling additional species appear to be generated between Ipomoea and 

Tephroseris balbisiana, which is likely due to their similar structure. In (b), two visually different pollen grains 

are used as w-space seed images (pollen resembling Thymus praecox for w-space seed 1 and pollen resembling 

Pinus strobus for w-space seed 2), and notably, an image of pollen with characteristics similar to Tillandsia hildae 

is generated during interpolation. Of note, the pollen grains increase in size from seed 1 to seed 2. Similar 

observations occur in (c) where an image with characteristics similar to an additional species (Campanula 

scheuchzeri) appears to be produced between w-space seed 1 (Daphna retusa) and w-space seed 2 (Tephroseris), 

where the interpolated pollen grain has a size mid-way between the start and end pollen grains. For figure 5(d), 

images of pollen with characteristics distinct from the w-space seeds are generated and resemble the species 

Liriope graminifolia. In (e), images of pollen grains with similar characteristics to the species namely 

Pachysandra terminalis and Crepis aurea are generated during interpolation.  

Current methodology of classifying pollen is generally via structural examination. As such, if the generated pollen 

grains match an evolutionary path in a phylogenetic tree, then the neural network could assist in classifying the 

taxa or family of pollen. For example, in figure 5(a), no additional species appear to be generated when 

interpolating between Ipomoea and Tephroseris balbisiana, which is likely due to their similar structure. Based 

on comparison with a phylogenetic tree, these two species are relatively close in evolutionary terms, being part of 

the Asterids clade. 

Since interpolation takes place in latent w-space, the seed images must also be generated in latent w-space, 

meaning the initial seeds images may not always resemble any actual species due to accuracy of generation. Since 

evolutionary changes to morphology can be incremental[20], it is worth considering that the images between two 



species could infer ancestral characteristics, and transitions between the species could aid in understanding 

characteristic development. However, owing to convergent evolution, pollen images may be visually similar to 

other species but aligned on a different evolutionary pathway. 

  

 

Figure 5. Generated SEM images corresponding to interpolation in latent w-space between five pairs of w-space 

seed 1 to w-space seed 2. The coloured boxes are the identified resembled species of pollen grains. Scale bars are 

10 µm. 

We carried out vector arithmetic on different w-space seeds to see how the generated images change. This could 

be used to understand how certain characteristics could evolve in certain environments, such as increasing 

humidity, which could change the pollen grain size. As shown in figure 6(a), we add −100%, −50%, 0%, +50% 

and +100% of the spike vector onto the vector w-space seed images of (i) Stevia lucida and (ii) Lithops 

gracilidelineata, where the w-space seed is labelled as 0%. When the spike vector is subtracted from the w-space 

seeds, the spikes on the generated pollen grains get smaller and eventually disappear, and conversely as the spike 

vector is added to the w-space seeds, the spikes become more prominent. The resultant images appear to resemble 

species of pollen different from the input seeds. In figure 6(b), percentages of the size vector were added onto the 

w-space seeds of (i) Stevia lucida and (ii) Fritillaria raddeana. As the Stevia lucida gets larger, the apertures 

become less visible, and the spikes change in appearance. As the Fritillaria raddeana becomes smaller, the grain 

becomes more circular and resembles a different species, potentially indicating a relationship in latent w-space 

between size and shape. This could perhaps be used to infer properties of the internal structure or morphology 

adaptations associated with increasing size. It has been shown that the water availability of pollen during 

germination can affect the size of pollen[21], and so by determining the relationship between size and hydration, 

one could predict how the morphology of a pollen grain may change under different conditions (which could aid 

in classification and predicting viability). In practice, vectors for any type of visual transformation could be 

explored. 



   

Figure 6. Vector manipulation in latent w-space. Showing (a) no spike-to-spike vector added to w-space seeds 

corresponding to (i) Stevia lucida and (ii) Lithops gracilidelineata, and (b) small-to-large vector added to w-space 

seeds corresponding to (i) Stevia lucida and (ii) Fritillaria raddeana. The scale bars are 10 µm. 

4. Conclusion 

In summary, interpolation and extrapolation in latent w-space of a style transfer generative neural network enabled 

generation of images of pollen grains of species different to the w-space seed images. The incremental 

interpolation pathways hint that the clustering of pollen grain characteristics in multidimensional latent w-space 

could be correlated with evolutionary pathways and hence this technique could be applied to evolutionary 

research. Since the internal structure of a pollen grain can impact on the external morphology, imaging modalities 

such as transmission electron microscopy could also be useful to explore. This technique could also be used to 

simulate the visual appearance of pollen grains based on potential climate changes (i.e., increased humidity 

leading to changes in pollen grain size). This methodology could be applied to photographs of animals or X-ray 

scattering patterns of viruses.  
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