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Abstract

Despite almost a century’s worth of study, it is still unclear how general relativity (GR) and quantum
theory (QT) should be unified into a consistent theory. The conventional approach is to retain the
foundational principles of QT, such as the superposition principle, and modify GR. This is referred to
as ‘quantizing gravity’, resulting in a theory of ‘quantum gravity’. The opposite approach is ‘gravitizing
QT’ where we attempt to keep the principles of GR, such as the equivalence principle, and consider
how this leads to modifications of QT. What we are most lacking in understanding which route to
take, if either, is experimental guidance. Here we consider using a Bose—Einstein condensate (BEC) to
search for clues. In particular, we study how a single BEC in a superposition of two locations could test
a gravitizing QT proposal where wavefunction collapse emerges from a unified theory as an objective
process, resolving the measurement problem of QT. Such a modification to QT due to general
relativistic principles is testable near the Planck mass scale, which is much closer to experiments than
the Planck length scale where quantum, general relativistic effects are traditionally anticipated in
quantum gravity theories. Furthermore, experimental tests of this proposal should be simpler to
perform than recently suggested experiments that would test the quantizing gravity approach in the
Newtonian gravity limit by searching for entanglement between two massive systems that are bothina
superposition of two locations.

1. Introduction

1.1. Motivation and background

At the turn of the previous century, Newtonian mechanics was advanced by two revolutionary theories,
quantum theory (QT) and general relativity (GR). Both theories have transformed our view of physical
phenomena, with QT accurately predicting the results of low-mass experiments, and GR correctly describing
observations for large masses. However, it remains unclear how QT and GR should be unified into a consistent
theory. The conventional approach, where we ‘quantize gravity’, is to try to treat gravity like any other force as
much as possible, and formulate a ‘quantum gravity’ theory, such as string theory. The opposite approach,
however, is to ‘gravitize QT’ [1-6]. The idea here is that GR not only provides a unique and universal role for
gravity among physical processes but also, given that it cannot straightforwardly be quantized as with other
physical processes, requires the current framework of QT to be modified.

An additional motivation behind this alternative approach is that it can resolve the measurement problem of
QT and, therefore, arguably make the theory consistent and provide a well-defined classical limit, which is not
possible for a conventional quantum gravity theory”. Since it is around the boundary of QT and GR (i.e. at
macroscopic mass scales) that we have not observed quantum superposition, it is possible to modify QT such

? Of course proponents of certain interpretations of QT, such as many worlds [ 18] and relational quantum mechanics [19], would argue that
there is no problem.
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that quantum state reduction (QSR) is a (non-unitary) process that objectively occurs in nature due to
gravitational influences, without impacting on the accuracy of QT in its tested domain [3, 7-17].

This predicted modification to QT also allows for tests of a unified theory of GR and QT that are far more
achievable than probing the Planck length scale where quantum, general relativistic effects are predicted to occur
in conventional quantum gravity theories. This may seem, at first, unimaginable since it is often stated that the
gravitational force is absolutely insignificant when compared with the electromagnetic force that dominates the
normal structural and dynamical behavior of material bodies. Thus, the influence that GR has on the quantum
behavior of physical systems must be of a different character from the mere incorporation of gravitational forces.
Indeed, it is argued that there is a certain profound tension between the foundational principles of QT and GR
such that we must demand a time limitation on unitary evolution, and that this is reciprocally related to the
gravitational self-energy of the difference between mass distributions of pairs of states in quantum superposition
[1-6] (compare also [11, 12]). Quantum superposition is then an approximation to a more general process of a
unified theory of GR and QT, and this approximation is very good for the low-mass systems that we study in
quantum experiments, but poor for the large-mass systems that we observe in our macroscopic world.

For example, taking a sphere of mass M and radius R in a superposition of two locations of separation b, the
average lifetime of the superposition state is estimated tobe 7 = 5AR/(6GM”) when b >> R and a free parameter
~in the theory is set to 1/(87) [6] (see also section 2.1). Quantum, general relativistic effects are often considered
to occur near the Planck length scale, which is proportional to v//G and far out of reach of current particle
accelerators. However, here we have the ratio of two small quantities, /G, coming from the square of the Planck
mass, which brings the effects of a unified theory of GR and QT much closer to current experiments.

This ratio is also found in lab-based proposals for testing whether the gravitational field obeys quantum
superposition. Such tests were first suggested by Feynman who proposed using a Stern—Gerlach experiment to
place a macroscopic ball in a quantum superposition, which, in principle, could place its gravitational field in a
quantum superposition, and then use a second ball and, possibly, an inverse Stern—Gerlach to determine
whether the field is in a superposition or not [20]. This has inspired many theoretical and experimental studies
(for areview see e.g. [21]) and would test an important prediction of the quantizing gravity approach in the
Newtonian gravity limit (the testable prediction can be derived when just considering applying QT to gravity in
its non-relativistic limit, where the theories would be expected to be compatible in the conventional approach)*.

Most recently, modern versions of Feynman’s experiment have been proposed where measuring
entanglement generated between two massive spheres, both in a superposition of two locations, would prove
that the field is also in a quantum superposition [23, 24]. Assuming the conventional quantizing gravity
approach, the state of the two-body system would be non-separable due to the relative phases ¢; = GM’tb/[hd
(d — b)]and ¢, = —GM?tb/[hd (d + b)), where dis the separation of the two systems, and it is assumed that
b>> Randd — b > R[23] .For the proposed experimental parameters M ~ 10~'4 kg, d ~ 200 um,

b ~ 250 um, R ~ 1 pm and an interaction time of t ~ 2.5 s, the sum of the phases is O(1) and the
entanglement is considered measurable [23]. This test of the quantum superposition of gravity appears far more
achievable than those based on how the position of one test mass is affected by the other due to quantum,
gravitational interactions [23]. However, for the above experimental parameters, gravitationally-induced
quantum state reduction (GQSR) is predicted to occur, on average, around 0.01 s in this experiment, and so no
entanglement would be observed if GQSR takes place.

This does not necessarily mean that entanglement cannot be generated in this two-body system with the
GQSR proposal considered here, but it would be very challenging to observe: either competing effects must be
reduced so that shorter times than 0.01 s can be probed, or the mass of each system must be increased by over an
order of magnitude®. In the GQSR proposal, there is nothing necessarily preventing a gravitational field from
being in a quantum superposition, only that there must, at least, be a time limitation for this that is dependent on
the mass distribution of the system. This is in contrast to other proposed theories, such as a fundamental semi-
classical gravity theory, where gravity is necessarily a classical effect, and no entanglement can ever be
generated [21, 26].

Although the testable prediction can be derived using gravity in its non-relativistic limit, gravity is, as far as we know, best described using
GR and so it can be enlightening to consider the experiments from a GR-like point-of-view [22].

5 Itisassumed that d — b > R so that the Casimir force can be neglected for realistic masses [23, 25]:

1/6
23/ & — 1Y
d—b> L R, 1
/[0.1 ><47rGM2(6r+2)] W

where €, is the relative permittivity of the material.

Note that 0.01 s is the average time that it will take for either of the massive superposition states to decay. Therefore, since this is an average
time, there is still a probability that entanglement could be measured after 2.5 s. In section 2, we consider that GQSR is a Poisson process, in
which case there would be an absolutely imperceptible chance of observing entanglement here.

2



10P Publishing

NewJ. Phys. 21 (2019) 043047 RHowl etal

The fact that GQSR occurs, on average, at a much earlier time scale than that required to see entanglement in
the Feynman-inspired experiments, illustrates that GQSR could be observed with much lighter systems.

Indeed, the mass could be reduced by an order of magnitude in these experiments. Furthermore, experiments
of GQSR would only require one massive system to be in a superposition of two locations rather than the two
systems for the above experiments. Effects such as the Casimir force between two systems clearly no longer have
to be considered, drastically improving the experimental feasibility. Additionally, the distance between the
superposition states can also be shorter in tests of GQSR since the average superposition lifetime has a non-
trivial dependence on b and R [6] (see (23)) such that, for example, it does not change significantly from b = 2R
to b > R, in contrast to the gravitational potential that changes as the reciprocal of the distance between two
spherical systems.

Evidence of GQSR would rule in the gravitizing QT approach and thus rule out the conventional quantizing
gravity approach (since QT must be modified). In contrast, if entanglement is observed in the Feynman-inspired
experiments then, although this would be a remarkable and significant result, this does not rule out the
gravitizing QT approach since QT could still be modified, for example via a GQSR at some other scale such as the
Planck length scale. This is because the tested effect derives in the non-relativistic limit of quantum gravity, and
so arguably the experiments cannot provide the specifics of how GR should be modified in order to be consistent
with QT in the conventional quantizing gravity approach (see [27] for a possibility of extending the experiments
with much heavier masses to achieve this). The GQSR process considered here, however, has been primarily
motivated from conflicts between GR and QT [3, 12].

If, on the other hand, entanglement were not observed in the Feynman-inspired experiments then this
would suggest that we should adopt the gravitizing QT approach. However, as illustrated above, much simpler
tests, such as those of the GQSR proposal considered here, would already be able to provide evidence of this
approach. Therefore, tests of GQSR based on the quantum superposition of a single massive system could be
performed first and, if no deviations from QT are found, we could then consider predictions of the conventional
quantizing gravity approach, such as searching for entanglement between two massive quantum systems.

1.2. Experimental approaches

In general, GQSR could be experimentally demonstrated by preparing a superposition state of a single system
that is massive enough to produce a non-negligible gravitational field while being sufficiently small enough for
control in the quantum regime. For example, an optomechanical system could be used where a tiny mirror
consisting of 10'* atoms is placed in a spatial superposition due to interactions with photons that are traveling
through an interferometer [28]. If the mirror stays coherent then there is quantum interference at the output,
whereas, if the mirror state reduces then so does the photon’s, and there is a classical output. This type of
experiment has been constructed using a Michelson interferometer with optical cavities [29—-31]. However, the
separation of the mirror superposition can reach, at most, about one picometer, which may not be enough to
observe GQSR [32].

Another possibility is to send the massive system itself through a (matter-wave) interferometer. Typically
these experiments use nano or micrometer sized spheres, rods or discs, which we will generally refer to as nano/
micro-objects, that are synthesized from metals or conducting materials and are cooled such that their center-
of-mass motion approaches its quantum ground state. For example, in [33] it is argued that a superconducting
micro-sphere of mass 10'*> a.m.u. could be prepared in a spatial superposition of the order of half-a-micrometer
in the near future.

Such matter-wave experiments could also be performed, in principle, using ultracold atoms, and recently it
has been suggested that Bose—Einstein condensates (BECs) confined to a double-well potential would be
effective systems for studying GQSR [34]. BECs are the coldest objects in the Universe that we know of, and
experiments offer high-levels of control, such as the ability to tune the effective interaction strength between the
atoms. To date, coherent superposition states of a BEC consisting of around 10> atoms over a distance of 54 cm
and with decoherence times of around 1 s have been achieved [35]. It has been argued that BECs are less
promising systems than nano/micro-object experiments for testing objective QSR since they will only
demonstrate single-particle effects. However, BECs often have non-negligible, effective interactions strengths
and thus display effects that cannot be characterized with a single-particle wavefunction. For example, when
constrained to a box trap, BECs can have an effectively constant density [36] and, to generate macroscopic
superposition states, the interactions generally play a significant role [37—40].

In all these experiments, the average lifetime of GQSR needs to be short enough to be seen above
environmental decoherence. The most mathematically straightforward approach to decreasing the lifetime is to
increase the mass of the system, which is a significant experimental challenge. However, different shapes of

7 Ultracold atoms have also been considered recently for distinguishing between the conventional quantizing gravity approach and theories
of classical gravity [41].
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Figure 1. An imagined quantum experiment for which the Earth’s gravitational field is to be taken into consideration. The Newtonian
perspective uses the laboratory coordinates (r, t), while the Einsteinian perspective uses the free-fall coordinates (R, T).

objects will also change the gravitational self-energy, suggesting an alternative approach to decreasing the
lifetime that could be simpler to implement in the laboratory. As far as we are aware, only the quantum
superposition lifetime of a uniform sphere has been considered, with the exception of a uniform cube when the
displacement is only very small [32]%. In section 2.2 we generalize the spherical case to the quantum
superposition of uniform spheroids, which can be generated in nano/micro-object experiments and
approximates rods and discs at high values of ellipticity; finding that the associated time-scale of GQSR can be
shorter for certain spheroidal configurations. Furthermore, we predict how this time-scale changes with the
ellipticity and size of the superposition, potentially allowing for distinguishably from other models of

objective QSR.

In contrast to typical nano/micro-object experiments, BECs generally have non-uniform mass
distributions, which are set by the trapping potential that constrains the BEC system, together with the atom-
atom interactions. Often a Gaussian or quadratic density profile is assumed, which may also be applicable to
other, non-BEC systems. An harmonic trap, which is the most common type of trap, can generate spherical and
spheroidal BECs, and prolate spheroidal (cigar-shaped) BECs are often used. We calculate the rate of GQSR for
spherical and spheroidal BECs (with Gaussian and quadratic density profiles) and, conjecturing that GQSR
follows a Poisson process, we also consider what experimental parameters are required to observe GQSR over
prominent channels of environmental decoherence in BEC experiments (extending the analysis of [34]).

1.3. Outline

The rest of this paper is organized as follows: in section 2, we provide a derivation of GQSR by considering a
certain conflict between the superposition principle of QT and the equivalence principle of GR. We also review
the GQSR process for displaced, uniform spherical mass distributions (section 2.1) and generalize this to
displaced, uniform spheroidal mass distributions (section 2.2), which can be generated in nano/micro-object
experiments. In section 3, we consider testing GQSR using a BEC, calculating the rate of GQSR for displaced,
non-uniform BEC spheres and spheroids, and comparing this to prominent channels of environmental
decoherence. Finally, in section 4, we summarize our findings and consider future prospects.

2. Gravitationally-induced state reduction from conflicts between GR and QT

Here we consider how GQSR can arise due to a conflict between the superposition principle of QT and
equivalence principle of GR”. More detail can be found in [4, 6, 34]. Also, see [3, 34] for how the same proposed
state reduction can be derived using the principle of covariance rather than the principle of equivalence.

Let us first consider a simple situation of a tabletop quantum experiment where it is required that the Earth’s
gravitational field is to be taken into consideration (see figure 1). There are basically two different ways to
incorporate the Earth’s field in this experiment (which is to be considered as constant, both spatially and
temporally, and to be treated non-relativistically). The first, the Newtonian perspective, would simply be to
incorporate a term in the Hamiltonian representing the Newtonian potential (this being the normal prescription
that most physicists would adopt), and use standard Cartesian coordinates (x, y, z, ), or rather (r, t) in three-

8 Seealso [42] for an attempt of large separations of uniform cylinders and plates, but which were implicitly assumed to be of infinite extent.

? Alternative approaches for identifying conflicts between QT and GR include, for example, how principles of GR might affect the
uncertainty relation of QT (see e.g. [43, 44]) and how measuring a classical gravitational field using an apparatus obeying QT could lead to a
universal bound on the optimal precision of the measurement [12].
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vector form. The second, the Einsteinian perspective, would be to adopt a freely falling reference system (R, T'), in
accordance with which the Earth’s gravitational field vanishes. The relation between the two is:

R=r— %tza, T=t, )

where the constant three-vector a is the acceleration due to the Earth’s gravity. We denote the wavefunction in
the (r, ) system, using the Newtonian perspective, by ¢, whereas for the (R, T') system, using the Einsteinian
perspective, we use U. For a free particle of mass m, we have, according to the Newtonian perspective, the
Schrodinger equation

2
7% — g ray, 3)
ot 2m
whereas, according to the Einsteinian perspective
2
iﬁa_\ll = _ﬁ_vz\p, 4)
ot 2m

the operator V* being the same in both coordinate systems. To get consistency between the two perspectives, we
need to relate ¢ to U by a phase factor [4—6, 45-47]

U = ei%(%ﬁazftna)w. (5)

For a quantum experiment involving many particles of total mass 7 and center of mass 7 (or R in the
Einstein system), this generalizes to

U= ei%(%ﬁaz—ti'.a)w‘ (6)
Since the difference between the Newtonian and Einsteinian perspectives is merely a phase factor, one might
form the opinion that it makes no difference which perspective is adopted. Indeed, the famous experiment by
Colella, Overhauser and Werner [48] (see also [49-51]) performed originally in 1975, did provide some
impressive confirmation of the consistency (up to a certain point) of QT with Einstein’s principle of equivalence.
However, it is important to note that the phase factor that is encountered here is not at all harmless, as it
contains the time-dependence involved in the term

1
—t3a?, 7)
s (

in the exponent, which affects the splitting of field amplitudes into positive and negative frequencies. In other
words, the Einsteinian and Newtonian wavefunctions belong to different Hilbert spaces, corresponding to
different quantum field theoretic vacua. In fact, this situation is basically just a limiting case of the familiar
relativistic (Fulling-Davies-)Unruh effect [45, 46, 52—-55], where in a uniformly accelerating (Rindler) reference
frame, we get a non-trivial thermal vacuum of temperature

7a
2mke’

3

where a is the magnitude of acceleration, k being Boltzmann’s constant and ¢, the speed of light. In the current
situation, we are considering the Newtonian approximation ¢ — 00, so the temperature goes to zero.
Nevertheless, as a direct calculation shows, the Unruh vacuum actually goes over to the Einsteinian one in the
limit ¢ — oo, in agreement with what has been shown above, and is thus still different from the Newtonian one
even though the temperature difference goes to zero in this limit.

At this stage, we could still argue that it makes no difference whether the Newtonian or Einsteinian
perspective is adopted, so long as one sticks consistently to one perspective or the other overall (since the
formalism is maintained within a single Hilbert space). However, the situation becomes radically different when
one considers the gravitating body, in this example the Earth, to be in a quantum superposition between pairs of
states in which the gravitational fields differ. If we were to adopt the Newtonian perspective for our quantum
experiment then we would encounter no problem with the formalism of QT, the standard linear framework of
unitary evolution applying as well to the Newtonian gravitational field as it does to electromagnetism, or to any
other standard field theory of physics. But it is another matter altogether if we insist on adopting the Einsteinian
perspective. Our standpoint here is that, owing to the enormous support that observations have now provided
for GR in macroscopic physics, one must try to respect the Einsteinian perspective as far as possible, in quantum
systems, especially in view of the foundational role that the principle of equivalence has for GR (see [4-6]).

Let us now replace the Earth with a small rock and try to imagine the quantum description of the physics
taking place in some small region in the neighborhood of the rock, where we consider that the rock can persist
for some while in a superposition of two different locations, and we label the respective states as |[L) and |R). We
are not now trying to compare the Einsteinian perspective with a Newtonian one, since our point of view will be
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that the latter is not relevant to our current purposes, as we regard the Einsteinian perspective to be closer to
nature’s ways. Instead, we attempt to adopt an Einsteinian perspective for a quantum experiment in the
neighborhood of the rock that is in a quantum superposition of two locations, a|L) + S|R). What we now have
to contend with is a superposition of two different Einsteinian wavefunctions for the quantum experiment, each
inhabiting a Hilbert space that will turn out to be incompatible with the other.

However, the preceding discussion does not hold exactly, because for each of the two components of the
superposition of rock locations |L) and |R), the gravitational field of the rock is not completely uniform.
Nevertheless, we shall consider, first, that we are examining the nature of the wavefunction in some spatial
region that is small by comparison with the rock itself, so that we can assume that the gravitational field of each
component of the superposition can be taken to be spatially uniform to a good approximation. Adopting the
Einsteinian perspective, what we are now confronted with is the fact that the gravitational acceleration fields for
the two rock locations will be different from each other, so that the difference between these local acceleration
fields a and a’ will lead to a difference between the Einsteinian vacuum for each rock location. In the
neighborhood of each spatial point, there will be a phase difference between the two states of our quantum
experiment that are in superposition:

P ©

Although the presence of the %t3 (a — a’)? term tells us, strictly speaking, that when a = a’, the
superposition is illegal (the states belonging to different Hilbert spaces), we adopt the view that this
incompatibility takes some time to cause trouble (as would eventually become manifest in divergent scalar
products, etc). The idea is that in order to resolve this incompatibility of Hilbert spaces, the superposed state
must eventually reduce to one alternative or the other, this incompatibility taking a while to build up. We
compare the troublesome term %t3 (a — a’)* with the harmless one t#.(a — a), thelatter (x 1/ /) being linear
in tand therefore not altering the vacuum but, in effect, just corresponds to incorporating the Newtonian
gravitational potential term into the Hamiltonian. We take the view that so long as t is small enough, the trouble
arising from £’ remains insignificantly small, where the measure of this smallness comes from comparing
%t3 (a — a’)?with the harmless t#.(a — a’).Thus, we take the coefficient ét3 (a — a’)? assomekind of measure
of the propensity for the state to reduce, as a contribution to the overall reduction process. To get our measure of
total error, or ‘uncertainty’ A, we integrate this expression over the whole of (coordinate) 3-space:

A=y f (a — a')>Pr, (10)
=7 [(vo - vordr, (an
=7 [196 - )11Ve - Vo'ldr, (12)
= = [0 = (V20 - Vo) dr, (13)

(assuming appropriate falloff at spatial infinity), where 7y is some positive constant, and ¢ and ¢’ are the
respective gravitational potentials for the states of the rock, where we are adopting a Newtonian approximation
for estimating the required error (¢ = — V¢ and a’ = —V ¢'). By Poisson’s formula (G being Newton’s
gravitational constant)

V2¢ = 47Gp, (14)

we get
A= —arGy [(6 = &) — p)dr, (15)

where pand p’ are the respective mass densities of the two states, and we shall take these mass densities in the
sense of expectation values for the respective quantum states. Using the formula

— _ p(r/) 3.,/
o(r) = Gf—lr S, (16)
we obtain [3]:
a2 L) = POl = p'(D] 55 15
A-47rG7ff o Prbr, (17)

Defining E; := A/G, we have a quantity that is proportional to (depending on the value of 7) the
gravitational self-energy of the difference between the mass distributions of each of the two states

6
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B = 4my [0 = ) — p)dr (18)
4Gy f f p(r) — p (lrr)]_[pr(lrl) SAUD) FESSTIG (19)

The quantity A can be considered as a measure of a limitation to regarding the quantum superposition of the
rock a|L) 4+ B|R)as being a stationary state, in accordance with principles of GR. Thus, we may take it to be a
reasonable inference from general-relativistic principles to regard A" as providing some kind of measure of a
limit to the length of time that the superposition might persist, the shorter that this time-scale should
presumably be, the larger the value A is found to have. This conclusion comes from considerations of GR, as
applied simply to the notion of a quantum superposition of states, no consideration of quantum dynamics being
involved except for the quantum notion of stationarity. Moreover, no actual measure of a time-scale for a
‘lifetime’ of the superposition has yet been provided by these considerations.

However, a significant clue is provided by Heisenberg’s time-energy uncertainty principle, where we note
that the quantity Eg = A/Gisan energy. In QT, the lifetime of an unstable particle is reciprocally related to an
energy uncertainty, which can be regarded as a manifestation of Heisenberg’s time-energy uncertainty principle.
In a similar way, we propose that Eg should be treated as a fundamental uncertainty in the energy of the
superposition «|L) + G|R). We then take the view that the ‘energy uncertainty’ E is reciprocally related to a
lifetime of this superposition between the states |L) and |R), and we can, therefore, regard the macroscopic
superposition as having an average lifetime 7 that is roughly given by

T ~ U , (20)
Eg

upon which time (on average) the state «|L) + (|R) spontaneously ‘decays’ into one or the other of |L) or |R).
This decay process cannot be derived from considerations of QT alone, and instead we are assuming the
invocation of a higher theory from which QT and GR are limiting cases. The energy uncertainty in (20) arises due
to a conflict between the general-relativistic and quantum principles that are being appealed to in relation to the
description of stationary gravitational fields in quantum linear superposition, and there would be no need for
such an energy uncertainty if we had just assumed a Newtonian description of gravity without the philosophy of
GR. Similarly, if we had considered a contribution from the electromagnetic interaction of a (say charged) rock
in addition to its gravitational field, then there would be no conflict with QT from electromagnetic effects (there
being no equivalence principle for electromagnetism) and we would not be led to consider any energy
uncertainty from electromagnetic effects contributing to the decay of the state to either |L) or [R).

Taking the analogy with particle decay further, we could assume that the probability of, a presumed
spontaneous, state reduction is an exponential function of time #:

P(t) = e /T = engt/fz’ (21)
Pi(t)y=1—e""=1— et/ (22)

where Py(t) and P,(¢) are, respectively, the probability of survival and decay of the superposition state. Here we
are assuming, as with particle decay, that the decay is memoryless, which would seem the simplest assumption
for describing the decay process given that there is not, at present, a full theory. Equation (22) illustrates that it
should not be necessary to wait for a time 7 = Eg/hin order to observe collapse of the wavefunction, and we can
estimate how often collapse will occur at a given time # without having to appeal to a full dynamical model.

A few clarifying remarks should be made on our above derivation of Eg. We have considered arock tobeina
superposition of two locations (similar to Schrodinger’s cat being in two locations). However, rather than a rock
(which we have assumed to be a continuous mass distribution), we could have considered a point-like object in
the superposition of two locations, which, naively, would be a superposition of delta-function wavefunctions in
position space. This would lead to an infinite value for Eg. The problem is that a delta function is not a stationary
solution to the Schrodinger equation since the position wavefunction would instantly spread out (there is
infinite uncertainty in momentum). However, the stationary solution of the Schrédinger equation would be that
where the state is spread out over the Universe (there is infinite uncertainty in position), which is clearly not
satisfactory either. One might imagine that, in a full theory of GQSR, a spreading state keeps reducing by GQSR.
For now, a systematic procedure would be to modify the Schrédinger equation and use the Schrédinger—
Newton equation [56] to obtain stationary states [6, 57]. For a point-like object, the stationary solution is then a
‘smeared-out’ delta function, and the position is no longer defined at a point. To calculate E for this state, we
could think of each ‘smeared-out’ delta function as representing point-like objects in a superposition of
continuous positions with differing weights, and follow the procedure outlined with equations (10)—(19). In the
continuous limit, this results in the same expression for E as before, (19), with p(r) and p’(r) representing the
average mass density of the defined stationary states, which would be m|v)(r)|> and m|+)’(r) |? in our case, where
1 and 1)’ are the normalized wavefunctions of the stationary states, and m is the mass of the object. The
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Figure 2. On the left is the gravitational self-energy of the difference E between displaced uniform spherical mass distributions
(divided by GM’R™Y) against b/(2R), where R is the radius of the sphere, M is the mass, G is the gravitational constant, and b is the
distance between the centers of the sphere states. On the right is dE/db (divided by GM?R %) against b/(2R) for the same uniform
sphere.

superposition state should then decay into one of these stationary states as outlined in (20)—(22). For our rock,
we have assumed that the stationary states |L) and |R) should be close to the ‘classical’ rock states since we do not
see rocks spreading out across the Universe'’. The mass profile p (r) of the stationary state of the rock should
then be close to its classical mass distribution, which we have approximated as a continuous mass distribution.
The above calculation of Eg, (10)—(19), has been carried out entirely within the framework of Newtonian
mechanics since we are considering the masses involved as being rather small and moving slowly, so that
general-relativistic corrections can be ignored to a very good approximation. We can, therefore, also just use
Schrodinger’s equation rather than, for example, the full framework of quantum field theory. However, the
principles of GR still apply to gravity, such as the equivalence principle, and the fact that Eg is to be regarded as an
energy uncertainty is coming from considerations of general-relativistic principles and QT. The use of
Newtonian mechanics for calculating an expression for Eg, while nevertheless retaining much of the basic
philosophy of Einstein’s theory, is perhaps most clearly expressed with the Newton—Cartan theory of gravity [4].

2.1. Gravitationally-induced state reduction for uniform spherical mass distributions

In order to get an impression of the role of Eg, we can first think of the case of a solid spherical ball of radius R,
made from some uniform massive material of total mass M, where the ball is in a superposition of two locations,
differing by a distance b. The quantity E in this case is (see, for example [6], and appendix A):

2
(20— 20+ Le) irocasn,
E; = > 6GI?/IZ 5 ‘ =
(1__) A > 1,
5R 12\

where A := b/(2R), and we have takeny = 1/(87) in (18). See figure 2(a) for an illustration of E¢, and figure 2(b)
for the rate of change of E, with separation b. The only point of particular relevance is the fact that, for a
displacement such that the two spheres are touching, the value of E is already nearly % of the value it would
reach for a displacement all the way out to infinity. Thus, for a uniformly solid body like this, we do not gain
much by considering displacements in which the two instances of the body are moved apart by a distance of
more than roughly its own diameter.

2.2. Gravitationally-induced state reduction for uniform spheroidal mass distributions
The above case of two uniform spherical mass distributions is that which is generically considered in the
literature, apart from a study of two uniform cubes at only very small displacement b [32]"". In this section, we
generalize to uniform spheroidal mass distributions and consider whether this can lead to an increase in Eg, and
thus a faster rate of state reduction.

Now that we no longer have spherical symmetry, there are various configurations for the displacement of the
spheroids. Here we consider four possible configurations: (a) an oblate spheroid displaced along its symmetry

10 . . . . . .
Rather than using the Schrodinger—Newton equation to obtain stationary states, we could adopt the procedure of factoring out, and
ignoring, the center of mass and only considering relative distances [6].

11 . . . . . .. . .
See also [42] for an attempt of large separations of uniform cylinders and plates, but which were implicitly assumed to be of infinite extent.




10P Publishing

NewJ. Phys. 21 (2019) 043047 RHowl etal

Figure 3. The different spheroidal superposition configurations considered in sections 2.2 and 3.1: (a) oblate and (b) prolate spheroids
displaced along their symmetry axis; and (c) oblate and (d) prolate spheroids displaced along an equatorial axis.

axis, (b) a prolate spheroid also displaced along its symmetry axis, (c) an oblate spheroid displaced along an
equatorial (semi-major) axis, and (d) a prolate spheroid also displaced along an equatorial (now semi-minor)
axis. See figure 3 for a visual illustration of all these configurations. Although analytical solutions can be obtained
for a general expression of Eg for these cases (i.e. E for a general equatorial or polar displacement b between the
spheroid states), the results are rather cumbersome and here we instead provide the results for the two cases (a)
and (b) in the limit of high ellipticity e (see appendix D for more detail). Defining eas ¢ := /1 — €2, such that:

_ {c/ a for an oblate spheroid (a > ¢), (24)

a/c for a prolate spheroid (¢ > a),

where a and care the equatorial and polar radii respectively', then, when e ~ 1 we have € < 1. For the extreme
(€ < 1) prolate (spindle-like) spheroid in configuration (b), we find that, to first order in :

2
6iM (A/4 — Blne) if 0 < b < 2
Eg = ‘< (25)
oGM (C/4 —1Ine) ifb > 2,
5c
where
2
A= 201 + In(1 + M)] + 220 — 211n2) — )\3[21 - 101n%]
+ TN — 2>\5[35 +In L+ A] + 20X, (26)
B:=5) — 50 + )4 (27)
2
C:=4In2 — 11\ — 4(1 — 5X)coth '\ + 2)\3[0\2 — 5)In - A = 1] (28)

with Anow defined as \ := b/(2¢).
On the other hand, for the extreme (¢ < 1) oblate (pancake-like) spheroid in configuration (a), we find that
E can be approximated by:

6GM?
5a
6GM?

5a

A if 0 < b < 2,

(29)

(C/4 —€) ifb > 2

12 . . . .o . - . .
Note that a and c are respectively the semi-major and semi-minor axes for an oblate spheroid but semi-minor and semi-major axes for the
prolate spheroid.
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Figure 4. Both plots are of the gravitational self-energy of the difference between displaced uniform spherical and spheroidal mass
distributions, Eg, against b/(2R), where R is the radius of the sphere and b is the distance between the centers of the states. All mass
distributions have the same total mass and volume. The solid line is for the spherical case, and the various dashed and dotted lines are
for the (a)-(d) spheroidal configurations illustrated in figure 3. The left plot is for e = 0.5 (ellipticity e = 0.87), and the right plot is for
€ = 0.01 (ellipticity e = 0.999 95).

where A and Care defined as:

e 552(1 N z) _ 5_53(1 _ L) + 5_5(9_” + l), (30)
€ 2 e \32 2¢ 4¢3\ 8 13

14 3

> >

C=2m+ 118 — 23 — 4(1 + 58*)cot 13 + 23°(5 + BH)In (31)
with § == b/(2a). In figures 4(a) and (b), we provide E for the sphere and the above four spheroidal cases (a)—(d)
whene = 0.5(e = 0.87)and e = 0.01 (e = 0.999 95)"°. In all cases we take the volume and mass (and so
density) of the objects to be the same. These figures illustrate that, for configurations (a) and (d), Eg can be
greater than that of the sphere (with the same volume and density) at certain displacements, although, at infinite
displacement the sphere has the greatest E. Indeed, at b = 0o, we find

Esphere _ 6GM?

_ , 32)
¢ 5R (
. 6GM? 6GM?
EE olate _ 27 tanhle = cosh !¢, (33)
M? . M?
EQMate — 6G sin“le = 6G sec le, (34)

for the three cases of sphere, prolate and oblate, irrespective of how they are displaced with respect to each other,
and lis the focal distance of the spheroids, which is v/a? — ¢? for the oblate, and /c? — a? for the prolate
spheroid. Equations (32)—(34) are valid for any value of eand e between 0 and 1, and no constraints are placed on
the size of volume and density. However, taking all the objects to have the same volume and mass, and assuming
low ellipticity e < 1, we find

6GM? 1 64
E(;;rolate ~ (1 I S 6 _ ), (35)
5R 45 2835
2
Egblate ~ 6GM (1 _ Le4 _ ﬁeﬁ — ), (36)
5R 45 2835

such that Eg of the the prolate and oblate is always less than that of the sphere at infinite separation of the two
objects. In the same way, it is possible to also show that, for cases (b) and (¢), E¢ is less than that of the sphere for
any value of b.

However, as stated above, this is not true for the other cases—it is possible for the value of E; for the
spheroidal configurations (a) and (d) to be greater than that of the sphere. This is further illustrated in
figures 5(a) and (b), which are contour plots of Eg) / Eéphm and Eg) / E¥ here for values of e ranging from 0 to 1
(i.e. any ellipticity) and for the displacement b ranging from 0 to 12R. In particular, for small displacements it is
possible for the spheroidal E to be a factor greater than the spherical case. Taking the oblate spheroid and sphere
to have the same volume and mass, then in the limitof ¢ < land b < R, we find, using (23) and (29), that

13 Formulas (25)—(29) are less reliable in the former case for configurations (a) and (b), and so we use general expressions for the plots.
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Figure 5. On the left is a contour plot of the gravitational self-energy of the difference between displaced, uniform oblate spheroidal
mass distributions (displaced along their symmetry axes) over that of displaced, uniform spherical mass distributions i.e. E& / Egphere,
The x-axis is the distance b between the centers of the states divided by twice the radius of the sphere, and the y-axis is the value of ¢, the
ratio of the semi-major to semi-minor axes, for the spheroids. The middle plot is as the left but using the equatorial-displaced prolate
spheroidal mass distributions rather than oblate ones i.e. E® /ESPh™, and the right plot is of EQ /E2.

EY = 3 x EFPr! Such afactor would already be approximately satisfied when ¢ ~ 0.01 andd ~ 0.01R,
which could be possible in near-future experiments. For example, b < R is satisfied in the proposed nano-
sphere experiment [58], such that, taking an oblate spheroid with € & 0.01 rather than a sphere would increase
Egaccordingly.

The findings here suggest that, for tests of the GQSR process, it may be preferable to use spheroidal rather
than spherical mass distributions in nano/micro-object experiments. Figure 5(c) also provides a comparison of
EZ against EGd), illustrating that, although E& is generically larger than Eg), there is a certain region of parameter
space where the opposite is the case. Since a prolate and oblate spheroid can be used to approximate,
respectively, a rod or disc for high ellipticity, the self-energy of the difference of these objects could be used to
approximate that which could be observed in nano/micro-rod and -disc experiments. Note also that, ifan
experiment were able to observe state reduction in disagreement with standard QT, then comparing the results
for different spheroidal geometries could be used to distinguish the GQSR considered here from other collapse
models since we have a direct prediction for how E changes with just the ellipticity of the object (e = 0 fora
sphere).

3. Testing with a BECs

In addition to nano/micro-object experiments, it may also be possible to test the GQSR process considered here
using BECs. Advantages of these systems include the fact that they are highly controllable systems and have large
coherence times due to their extremely low temperatures and high isolation from their environments. Certain
superposition states have also already been observed for these experiments, such as a coherent state separated by
over 0.5 m, and there are several suggested techniques for creating macroscopic superposition states (see
section 3.2).

In section 3.1, we calculate the self-energy of the difference between spherical and spheroidal BEC mass
distributions, which are created using harmonic trapping potentials. We then compare, in section 3.3, the
corresponding rate of state reduction to the decoherence rate of prominent channels of environmental
decoherence in BEC experiments, providing estimates for the values of experimental parameters, such as
temperature and scattering length, that would be required to test the GQSR process.

3.1. Gravitational self-energy of the difference between BEC mass distributions

In sections 2.1 and 2.2, we calculated Eg for uniform spherical and spheroidal mass distributions. Although such
distributions can be created in nano/micro-object experiments, spherical and spheroidal BEC distributions are
generically non-uniform. This non-uniformity is due to the trapping potential that constrains the BEC. For

example, to create a spherical BEC, the potentialis V (r) = %

trapping frequency, and r = \/x? + y? + z? is the radial distance from the center of the trap.

mwé r2 where m is the atomic mass, wy is the

14 The reason that the spheroidal configurations (a) and (d) can have a value of Eg that is greater than the spherical case is because these
objects are displaced along a semi-minor axis, which will be shorter than the radius of the corresponding sphere.
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Taking the BEC to obey the time-independent Gross—Pitaevskii equation [59, 60]:
72
[—%Vz + V) + gn(r)]wo(r) = pabo(r), (37)

where 1), (r) is the BEC wavefunction, 1 is the chemical potential of the condensate, g = anhla, /mis the s-wave
interaction coupling constant with a; the s-wave scattering length, and n(r) = [y (r)|? is the condensate
number density; we can solve for the density of the BEC at zero temperature. Here we consider two analytical
limiting cases: (1) the Gaussian approximation where we assume that the wavefunction v, is Gaussian, which is
exact for an ideal Bose gas when we neglect the interaction term, and can also be used in describing repulsive
BECs with low effective interaction strength, as well as attractive (a;, < 0) BECs [61-66]; and (2) the Thomas—
Fermi (TF) approximation [67, 68], which is most appropriate for repulsive BECs (g, > 0) with large numbers of
atoms, where we neglect the kinetic term of (37) in comparison to the interaction term.

3.1.1. Density in the Gaussian approximation

In this section, we consider the Gaussian approximation for BECs, which is useful for characterizing BECs with
very low interaction strengths, as well as attractive interactions, as described above. When the interaction term is
entirely neglected in the Gross—Pitaevskii equation, we have an ideal Bose gas, and the solution for a general

harmonic trapping potential V (r) = %m(wixz + wiy? + wizd)is:

3/4
P = m(”;%) emmlusttuytwa) /A (38)

7

where N is the number of condensate atoms, wy = (wew,w,)' /3 is the geometric average of the trapping
frequencies, and the chemical potential is 1 = %ﬁ (wx + w, + w,). Takinga spherical trap
(wo = Wy = W, = w,), the mass density p,(r) := mn(r) of the condensate is then

4 P
sphere(r) — sphere e*’z/Ro’ (39)
Py 37 Py

where pgphere =M / ((4 / 3)7Ry), with M = mN the total mass, and

Ry := |7 / (mwy) (40)

is the width of the Gaussian wavefunction (38). To describe a BEC with attractive forces we can use a variational
approach with the ansatz that the ground state is of Gaussian form but we now replace Ry in (38) with

Ry = agRy, (41)

where o is a dimensionless variational parameter which fixes the width of the condensate for a given interaction
strength [61-66]. The density for such a spherical BEC will then still be approximated by (39) but with R,
replaced with R, where Rj < R, fora BEC with attractive forces.

To generate a spheroidal BEC, the harmonic trapping potential must be of the form

1 1
Vr) = Em[wfrpz + wiz? = Emwf[rpz + \2z%, (42)

where r, = \/x* + y? isthe radial cylindrical coordinate, w, is the radial trapping frequency, w, is the axial
trapping frequency, and \,, := w,/w, (which is sometimes referred to as the ‘asymmetry parameter’). For a
prolate spheroid (often called a ‘cigar’ BEC), A\, < 0, whereas, for an oblate spheroid (often called a ‘pancake’
BEC), A, > 0.Inthe Gaussian approximation, the density of the BEC is given by

p(s)phermd (r) — %p(s)phermd e*’?/ﬂézfzz/co/z’ (43)
where pgphemid = M/((4/3)7m62c’0), c'y = accpand a’y = azag, with ¢y := /72 /(mw,) and
ag = /72 /(mw;,) . Similar to the spherical case, the factors o, and « control the size of the condensate for the
given interaction strength.
For a BEC with attractive interactions, the condensate becomes unstable if the number of atoms exceeds a
critical value. For a harmonic trap at zero temperature, this critical value can be estimated as [69]

N~ k-2, (44)
la|
where s is the width of the ground state Gaussian wavefunction of an atom in a parabolic potential well
V72 / (mwp) , with wy = (wyw, w, )!/3,and k. is a constant, which is estimated as ~0.6 for a single-well spherical
trap. See [70] for values of k. for a double-well trap and, for example [71], for an analytical expression for k.. Note
that (44) is not applicable with the TF approximation since the kinetic term is required to stabilize the
system here.
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Figure 6. Three-dimensional plots of the condensate density in the Thomas—Fermi approximation. From left to right, thereisa
spherical BEC, a prolate spheroidal BEC and an oblate spheroidal BEC. Different shaded areas illustrate the fact that the density
continuously varies, being greatest in the center, and with surfaces of constant density being similar-shaped spheroidal surfaces.

3.1.2. Density in the TF approximation

In this section, we consider the TF approximation for BECs, which is useful for characterizing BECs with strong
repulsive interactions, as described in section 3.1 above. Assuming a spherical trap and that the kinetic term can

be neglected in comparison to the interaction term, the solution ), of the Gross—Pitaevskii equation can be used
to find the mass density of the BEC in this TF approximation:

p?)phere(r) — gpzphere(l _ T’Z/Rz), (45)

where R the radius of the spherical BEC (we assume p(r) is vanishing here), pgphere =M / (4 / 3)mR?), and M the
total mass of the condensate:

2T s R
M = mN = f f f p(r)r?sin fdrdfde. (46)
o Jo Jo
In terms of experimental parameters, R is given by
R = (15Na,R})/?, (47)

where Ry is defined in the previous section. The density of the BEC sphere is illustrated in figure 6(a) where
contours represent surfaces of constant density, which are spherical surfaces. In contrast to the Gaussian
approximation, the Bose gas will clearly be of a larger size in this strongly, repulsive interaction regime.

The density function for a spheroidal BEC in the TF approximation can be found by inserting the potential
(42) into the Gross—Pitaevskii equation (37), and dropping the kinetic term, to obtain:

p(s)pheroid(r) _ gpgpheroid(l _ 7‘5/(12 _ 22/62), (48)

where pf)Phe"’id =M / (4 / 3)ma’c). This density distribution is illustrated in figures 6(b) and (c) for a prolate
(a < ¢)and oblate (a > ¢) spheroid where contours are surfaces of constant density, which are similar-shaped
spheroidal surfaces. In terms of experimental parameters, the equatorial and polar radii are:

a = (15Nasag A\.)"/>, (49)
c=a/)\, (50)

where g, is defined in the previous section for the Gaussian approximation. For the TF approximation to be very
good, we require that [66]:

S
N> 2 (51)
as
Furthermore, the TF approximation is less accurate near the boundaries of the condensate. Here the density
abruptly vanishes in the TF approximation, but in reality there is a more gradual decrease such that the
condensate wavefunction will tend to, but never actually reach, zero [72].

3.1.3. Self-energy of the difference between spherical BECs

Now that we have mass distributions for BEC spheres and spheroids, we can determine the value of E; for the
different shapes and density functions using (18) or (19). An approach to this is discussed in appendices B-F
where we also calculate the gravitational potential of these objects. For the spherical BEC in the Gaussian
approximation (see appendix C), we find
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Figure 7. On the left is the gravitational self-energy of the difference between displaced spherical BECs (in the TF approximation) and
displaced uniform spheres, Eg /(GM?R™"), against b/(2R) where R is the radius of the spheres, M is their mass and b is the distance
between the centers of the sphere states. On the right is E;/(GM*R ") against b of spherical "*>Cs BECs in the TF and Gaussian
approximations with 10° atoms, the same trapping frequency wy = 100 Hz, and with the standard scattering length in the former
regime, but with zero scattering in the latter so that we have an ideal BEC in that case.

Ec = GMZ( 2 Lelrf(\ﬁ)\o)), (52)
2\

/
R, m

where we have defined )\, := b/(2R’o) with R, given by (41). In contrast, in the TF regime, we obtain (see
appendix B):

2
IOG;V[ (uz _ 2y gx” _ %X + %v) Fo< A<,
=y 10G5M2 7 " 43
(1 — —) ifA>1,
7R 20\

where A := b/(2R) and Ris given by (47).

These self-energy differences are illustrated in figure 7. For the same total mass and volume (and so average
density), E; of a spherical BEC in the TF regime is always greater than that of a uniform one. This is exemplified
by figure 7(a) and is due to the fact that the density is more constrained towards the center. The fact that Eg is
different despite the potential outside a non-uniform sphere being the same as a uniform sphere, could provide a
further possibility for distinguishing the state reduction process considered here to other models.

In figure 7(b), we plot E of a spherical BEC in the TF regime against the Gaussian regime for a '*>Cs BEC
with 10® atoms, the same trapping frequency wy = 100 Hz, and with the standard scattering length in the
former regime, but with zero scattering in the latter so that we have an ideal BEC. For all values of b, the Gaussian
Eis always greater than the TF case. This is principally due to Ry being much smaller than R in this case, with the
gap increasing as N increases. Therefore, with attractive interactions, we would expect Eg to increase further
under the condition that all other BEC parameters, apart from the scattering length, stay the same.

3.1.4. Self-energy of the difference between spheroidal BECs

The generic value of Eg for spheroidal BECs is more complicated (see appendices E and F) and here we just
provide the expression for configuration (b) in figure 3 (the symmetry-axis displaced prolate) for the TF regime
in the limit of high ellipticity (i.e. to first order in €, which is defined by (24)):

2
10GM (A/24 — Blne) ifOS AL,

7a
Ec = 5 (54)
10GM (C/1536 — Ine) if A > 1,

where \ := b/(2¢) and

A= 144)(1In2 — 1) — 168X (3In2 — 4) — 378X + 133X — 25X, (55)

B = 10(6X% — 21X 4 21X — 6N + X)), (56)
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Figure 8. Both plots are of the gravitational self-energy of the difference between displaced spherical and spheroidal BEC mass
distributions (in the TF regime), Eg, against b/(2R), where R is the radius of the spheres, M is their mass and b is the distance between
the centers of the states. All mass distributions have the same total mass and volume. The solid line is for the spherical case, and the
various dashed and dotted lines are for the (a)—(d) spheroidal configurations illustrated in figure 3. The left plotis for ¢ = 0.5
(ellipticity e = 0.87), and the right plotis for e = 0.01 and (ellipticity e = 0.999 95).

C =67y coth (1 — 2)\) — 6k coth™ (1 + 2))
— 768(1 — 6X2 + 21X coth™! A
— 64(12N — 66X — 284X + 81\ — 24In2)

2 _
— 315A(16)X% — 3)In A > 1 (57)
with
yi= (1 — 20)3[128 + AQRA[207 + 4AQRAA + 3)2A — 3))] + 453)], (58)
ko= (14 20°[128 + AQ2A[207 + 4A2AN — 3)(2\ + 3))] — 453)]. (59)

Assuming the TF regime, the value of E for the four configurations (a)—(d) (see figure 3) of BEC spheroids is
plotted in figures 8(a) and (b) against the BEC sphere case for e = 0.5 and ¢ = 0.01. Asin the uniform case, the
value of E for configurations (b) and (c) is always less than that of a BEC sphere, whereas, the other spheroidal
configurations can have larger E¢ values at certain displacements and ellipticity values. However, again, the
sphere always has the greatest E at infinity—the values of E; in the BEC TF case compared to the uniform case
(32)—(34) arejust 25/21 = 1.2 larger for each object.

In figures 9(a)—(c) we compare Eg of the BEC sphere with a spheroidal BEC in configuration (a), the BEC
sphere with a spheroidal BEC in configuration (d), and the spheroidal configuration (a) with (d), for all BECs in
the TF regime and assuming the same volume and density for the different objects. These are very similar to the
uniform cases 5(a), (b) and illustrate again that it may be preferable to use spheroidal rather than spherical
objects for testing GQSR.

In figure 10, we also plot spherical and spheroidal configurations (a) and (b) for BECs in the Gaussian
approximation with € = 0.75 (e &~ 0.7) and displacement b from zero to 10R. As in the TF approximation, the
oblate case can have a value of E that is greater than the spherical case. Note that for high values of ellipticity, it is
possible to enter a quasi-one or two dimensional regime where the quantum and thermal motion can be frozen
in two or one dimensions (see e.g. [73]). This is to be distinguished from the case when the BEC looks lower
dimensional from only a geometrical point of view but locally has a three-dimensional character. In certain
configurations, it can be a good approximation to neglect the spatial dependence of the density in one or two
dimensions, potentially simplifying the calculation of E; for such BEC states.

3.1.5. Self-energy difference in BEC experiments
Now that we have calculated E for mass distributions that can be generated by BEC experiments, let us consider
what sort of experimental parameters might be required to test the gravitationally-induced state reduction
model. Taking a spherical BEC for simplicity, when the separation of the two BEC states is of the order of their
(effective) diameter, the value of Eg is of the order (assuming -y = 1/(87) in (18)):

Gm?*N?

Eg ~ . 60
G R (60)

For example, in the TF approximation, when two spherical BEC states are touching, the value of E; is found
to be:
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Figure 9. On the left is a contour plot of the gravitational self-energy of the difference between displaced oblate BECs (displaced along
the symmetry axes) over the that of displaced BEC spheres, E? /ESPh™, in the TF regime. The x-axis is the distance b between the
centers of the states divided by two times the radius R, and the y-axis is the value of ¢ for the spheroid. The middle plot is as the left but
with equatorial displaced prolate BECs rather than oblate ones i.e. E /EP'™, and the right plot s of E& /ES) for BECs in the TF

regime.

_ 13Gm*N?

E
¢ 14R

(61)

Using this expression for Eg, fora '**Cs BEC of radius 1 yzm, we would need around 4 x 10” atoms in each
state for a collapse lifetime of around 2 s. In (60), there is a stronger dependence on the number of atoms N than
ontheradiusR,andsoN = 4 x 10'°and R = 0.1 mm would also cause the same collapse rate, while
potentially being more experimentally feasible due to the reduced density (see section 3.3). On the other hand, if,
for example, v = 87 were found to be more appropriate in (18), then a collapse time of 2 s would occur when
N~ 10°and R = 0.1 mmor N ~ 10*and R = 1 um. Allowing for smaller timescales than 2 s would also
improve the required values for Nand R.

Although such numbers of atoms have not been achieved yet for a '*>Cs BEC experiment, over 10° atoms
were reported for a hydrogen BEC in 1998 [74], and over 10® atoms for a *?Na BEC in 2006 [75] (also see [76] for
a**NaBEC of over 10” atoms in 2004). These were single-well rather than double-well BECs, and so not large
macroscopic superposition states. However, in sections 3.2 and 3.3 we discuss how large macroscopic states,
such as NOON states, or approximations to these, could be generated in double-well BECs, and what sort of
experimental parameters would be required in order for GQSR to be seen in the presence of environmental
decoherence.

3.2. Generating macroscopic superposition states with double-well BECs
A double-well BEC can, in principle, be used to create a macroscopic superposition state (see, for example,
[37—40, 77-83]). The full Hamiltonian of this system is:

g f Erd (1) Aow (r) + Lg f Eri b b b, (62)
2
where
[B(r), O] = 6 — v (63)
. 72
Hpw =|——V?2 + VDW(")]§ (64)
2m

Vbw is the particular double-well potential, which we take to be symmetric; and we have assumed that the
inter-atomic interaction can be well-approximated by two-body s-wave scattering.

Assuming that the energy barrier between the two wells is large enough, we make the ansatz that the BEC can
be described as consisting of atoms that occupy a condensed state |11 ) of the left well, or a condensed state |t)g) of
the right well, which are taken to be approximately orthogonal, (1, |1z) ~ 0. Thatis, we assume that ¥ can be
approximated by:

(r, t) = p(r, HaL(t) + vr(r, Har(), (65)

where d; and dy are the annihilation operators for the states ), and |+/)g, which have localized wavefunctions
1y and 1. These obey the usual bosonic commutation rules:
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Figure 10. The gravitational self-energy of the difference between displaced spherical and spheroidal BEC mass distributions, Eg, in
the Gaussian regime, against A = b/(2R) where R is the radius of the sphere, M is the mass and b is the distance between the centers of
the states. All mass distributions have the same total mass and volume, and the spheroidal BECs have ¢ = 0.75. The solid blue line is
for the sphere, and the two dashed lines are for the spheroidal configurations (a) and (b).

wherei, j = L, R.Thewavefunctions; and ¢ are assumed to have negligible overlap such that they are
approximately orthogonal:
[arza, nusr n ~ 5, (67)

and the operator for the total number of particles, which is conserved, is given by
N = f drdd’ = ala, + ajar. (68)

In the nonlinear tight-binding approximation [84], an adiabatic approximation is applied where ¢; and ¢,
are real and their spatial profiles adapt adiabatically to the instantaneous number of particles. In this tight-
binding approximation, the wavefunctions depend implicitly on time ¢ through the number of particles in each
well N; = (4 a;),i.e. 1i(r, t) = 1;(r, Ni(t)). In our large separation approximation, and assuming
macroscopic occupation of the two states, the wavefunctions 1, and 1z (when multiplied by \/N; and JN)
obey, to a good approximation, solutions of the Gross—Pitaevskii equation (37) with potential Vyy [84] (for,
alternatively, a full variational approach, see [85])"".

Plugging our ansatz (65) into the Hamiltonian (62), we obtain

H=H+ H, (69)
where
B = &40 a; + xalar + Jr(a] dg + ajay), (70)
By = Upa?af + Urdjai + 4Urrird) a5 arag
+ 2ULLLR(dZZ&LﬁR + hC) + 2URRRL(ﬁ£2&R6AlL + hC)
+ Unrr(df%84* + h.c.), (71)
with
£ = fd3ﬂ/)LﬁDw¢L, §pi= deWRﬁDWT/JR» (72)
Jin = [ @roufpwte, U= g [drod, Ue=g [@ro, 73)
Urrir = gfd%bil/)i, ULrrr = gfd%iwﬁ, (74)
ULLir = gfdarz/}%'(/}L'(/)R» Urrre = gfd3r¢122¢R¢L) (75)

and we are taking 1/r and 1y to be real. The Hamiltonian (69) can be shown to contain an analytic solution [86].
It can also be approximated by an extended two-mode Bose—Hubbard model in the nonlinear tight-binding

13 11 section 3.1, we used single-well potentials to determine the density and shape of the two superposed states. This is a good
approximation at larger separations, but at smaller separations, as the states start to overlap further, the full character of the double-well
potential will become more important, modifying the density, and the two-mode approximation discussed here will loose its validity.
However, when comparing to environmental decoherence in section 3.3 we work with a rate of state reduction that is most appropriate when
the states are not overlapping.
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approximation [84]. In the case that the spatial profile of ¢y and ¢y is approximately independent of the number
of particles in each well (the standard tight-binding approximation), it can be further approximated with the
two-mode version of the Bose—-Hubbard model [73, 84, 87—89]:

A

At A I | A At A
H = Fip(a ag + ajar) + EU(“{Z“L2 + ag’ay), (76)

where U = Up; we have assumed U; = Upg; we have removed terms proportional to the number operator N
since this commutes with H; and we have neglected any atomic collisions in the overlapping region of the two
modes. Here the J;  terms are responsible for quantum tunneling between the two wells, and the U terms are the
atom-atom interactions within each well.

There have been several proposals for generating a macroscopic superposition state (Schrodinger cat state)
in a double-well BEC. For example, in [37, 38] it is considered that, starting from a repulsive BEC, if the
interaction strength gis varied adiabatically to a negative value (using a Feshbach resonance), then a cat state can
be prepared. This occurs because a NOON state is the ground state of the two-mode Bose-Hubbard model (76)
with strong attractive interactions. In [39], it is shown that the ground state becomes degenerate with the first
excited state in this case, such that there needs to be an exponentially long time to create an exact NOON state.
However, in [90] it was found that, for realistic parameters and time-scales, an approximate NOON state can be
generated with a smooth change in the scattering length. An alternative to this method is to use a Feshbach
resonance to make a sudden change in the scattering length [39]. For example, a repulsive BEC could be
prepared in a single-well and then the tunneling barrier is raised adiabatically to divide the well into two equal
parts (forming a so-called ‘coherent’ state [73] when neglecting interactions), then a Feshbach resonance is used
to suddenly switch g from a positive to a negative value such that the state dynamically evolves to alarge
macroscopic superposition state.

Another possibility would be to set the scattering length to zero and drive the system to an upper excited
state, then slowly increase the interactions (keeping them repulsive) while, at the same time, decreasing the inter-
well tunneling to zero [40]. This method is possible since a NOON state is the upper energy state of the repulsive
Bose—Hubbard model, and has the advantage that the BEC does not need to move to an attractive state, which
can become unstable [66]. Rather than modifying the scattering length, a cat state could also be generated by
manipulating the BEC with an external laser [77, 80, 81]. For example, in [81], it is suggested that a far oft-
resonance laser could be used to imprint a m-phase on one of the wells such that the quantum wavepacket
bifurcates. The tunneling barrier is then raised to halt the evolution and fix the cat state.

Once a macroscopic superposition state, such asa NOON state, has been prepared, we need to make sure
that we can experimentally distinguish it from a classical statistical mixture. For a double-well BEC, one
possibility is to look for a @ non-zero Nth-order correlation (a; ™ 4') [90, 91]. For an exact NOON state,
|[INOON), where we have a superposition of N particles in the left-hand state |1);) and N particles in the right-
hand state |¢/z), which we write as (|N0) + |ON)) /~/2, we have

|
(NOON|4;N 4 INOON) = % (77)

whereas, for a statistical mixture, we have zero. Experimental methods for measuring (4; ™ 45’ in double-well
BECs can be found in [90, 91].

As well as being able to distinguish a NOON state from a statistical mixture, we also need need to make sure
that we can experimentally distinguish the GQSR process from environmental decoherence. That is, we would
ideally like the objective collapse rate to be greater than the rate of environmental decoherence. Given an initial
NOON state, INOON), we can use (21), (22) to write down the density operator for the state under the process of

GQSR:
p(t) = %e,&;t/ﬁ“m + [ON)I[{NO|-+(ON]] (78)
+ %(1 — e Eat//)[INO) (NO| + [ON) (ON]]. (79)

In terms of the annihilation operators of the left and right states, d; and dg, we have
1

INOON) = o @N + aiMo), (80)
such that the N-particle correlation (4; N 4Y) evolves in time as
(@M ag') (1) = e~Fo/ 7 (a[N ag')o, (81)

where (4N aY), is given by (77). We now compare this evolution of the N-particle correlation to that imposed

by various environmental decoherence channels in double-well BECs.
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3.3. Environmental decoherence

There are several channels of environmental decoherence in BEC systems. Here we concentrate on the
prominent ones due to three-body recombination, interactions with the thermal cloud, and interactions with
foreign atoms. We also briefly discuss noise due to the trapping potential.

3.3.1. Three-body recombination

Three-body recombination is the process where three atoms in the condensate collide to form a molecule (atom-
atom bound state) and a single atom, which can both then escape the trap. This process often limits the lifetime
and size of condensates. In [92], a master equation was derived for three-body loss in the Born—-Markov
approximation and for a BEC with repulsive interactions. Since this is a three-body problem, this master
equation is of the following form for a double-well BEC in the two-mode approximation [93]:

dp(t N N A3 A N 1 At3 A3 A

DO _ Ly a1+ X @07 — Lalad pion, (82)
dt 72 KZLR 2
where
Ko 6
o= =2 [l (o) (83)
K3 2

K, 84
72n (84)

with 7 the condensate number density and K; the recombination event rate, which can be approximated as [94]:
2
K; = 23—al. (85)
m
The N-particle correlation for a NOON state under this master equation is then [93]:
(@™ agy (0 = e N[N ago. (86)

Comparing to the gravitationally-induced collapse rate for a NOON state (81), we require that

EG /ﬁ > ’}/3N. (87)
Taking E to be of the form (60) for simplicity, we need
2
GmN > ﬁafﬁznz. (88)
R 72m

Assuming, for example, a '>>Cs BECwith N ~ 4 x 10°and R ~ 10 um (such that 7 ~ 10 s), then to obtain
athree-body recombination rate that is ten times slower in the TF regime, we would need to utilize a Feshbach
resonance in order to reduce the scattering length by approximately four orders of magnitude (and we take the
trapping frequency to be around 300 Hz). Increasing the number of atoms to 4 x 10'° instead, then a radius
R ~ 0.1 mm (trap frequency 10 Hz) and a reduction in the scattering length by three orders of magnitude
would be enough. Assuming instead a Gaussian approximation, then in order to operate in this regime, the
trapping frequency and/or scattering length need to be reduced further, which only lowers the decoherence rate.
Note that, if it were found to be more appropriate to take v = 8w rather thany = 1/(8~) in (18), then this would
increase E; by almost three orders of magnitude, significantly improving the experimental feasibility. For
example, in this case we could have around 6 x 10®atomsand R = 0.1 mm, with the interaction strength
reduced by two orders of magnitude.

In several of the proposals to create a NOON state that were discussed in section 3.2, the (attractive or
repulsive) interaction strength is modified. For example, in [40], the repulsive interaction strength is increased
while the inter-well tunneling is reduced to zero. In this case, once the NOON state is prepared (or a good
approximation to one) the interaction strength would then likely have to be reduced in order to prolong the
coherence of, at least an approximation to, the state in light of three-body interactions. Alternatively, other
methods could be employed to inhibit three-body decay, such as using an external laser [95, 96] or lowering the
effective dimensionality of the BEC [97-99]. Here we have assumed a three dimensional BEC throughout.
However, although condensation cannot occur in one or two dimensional uniform systems, with a harmonic
trap it is possible to have condensation in an ideal Bose gas in two dimensions, and macroscopic occupation of
the lowest energy state in one dimension at finite temperatures [66]. These lower dimensional systems can be
achieved when one or two of the harmonic trapping frequencies are much higher than the others, i.e. in the limit
of avery flat oblate spheroid or thin prolate spheroid. Unlike in three dimensions, in a Bose gas of one or two
dimensions, the three-body decay can become temperature dependent and vanishing at absolute zero.
Therefore, reducing the effective dimensionality of the trap, and operating at low temperatures may be another
possibility for inhibiting decoherence due to three-body decay.
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As stated in section 3.1.1, for a BEC with attractive interactions, the condensate becomes unstable if the
number of atoms exceeds a critical value N, which for a spherical trap at zero temperature is given by (44).
Therefore, ifa NOON state is formed with an attractive BEC, the number of atoms N needs to be lower than N,
[73]. One possibility is to increase N, by lowering the scattering length. However, an exact NOON state from this
method is only obtained in the limit of infinite attractive interactions [90]. Therefore, a lower a, would likely lead
to an approximation to a NOON state, for which we would have to calculate the rate of GQSR, and will be the
concern of future work. It may instead be preferable to utilize one of the methods outlined in section 3.3 that
generates a NOON state with a repulsive BEC.

3.3.2. Thermal cloud interactions

Interactions between the condensate atoms and atoms in the thermal cloud (the noncondensed atoms due to a
finite temperature) will also lead to decoherence of a NOON state [79, 100]. These interactions can be of three
types: single particleloss C + NC — NC + NC, two particleloss C + C — NC + NC, and scattering

C + NC — C + NC (together with the opposite processes) [101]. In [100], assuming a Born—-Markov and
standard tight-binding approximation, a quantum master equation was derived for the scattering process, where
the thermal cloud environment can learn the quantum state of the condensate system. This is of the form:

dp(t i o L L
Zi ) = —E[H) P(t)] - ’%[QLQL - a;{aR) [QZQL - aI;[lR, p(t)]]’ (89)

where
’Yt = 647r4a52nthvt> (90)

with v, := /2kg T /m being the thermal velocity of the atoms in the thermal cloud; T the temperature; and ny,
the thermal cloud number density, which can be approximated by:

—u/kgT T 3
iy = (kB—) , ©1)
Vin \ Zw
Vi 1= %wRSh, 92)
2kg T
Ry, = Lz > (93)
mw

where w = (wyw, w,)! /3andw,, y, zare the various harmonic trapping frequencies. In [102, 103], a master
equation was derived for the scattering of thermal particles off a single condensate within the TF regime. The rate
7, in this case becomes [103]:

94/ wAN?

where 4 is the chemical potential of the non-condensed cloud, we have assume a spherical trapping potential, and

Y e/"/kBT, (94)

1
Mg = 5/3«0(151\70/130)2/5 (95)
is the chemical potential of a spherical BEC in the TF regime.
The N-particle correlation for a NOON state under the master equation (89) is:
(a/Nafy(r) = e Nt (afNal),. (96)
Taking E to be of the form (60), we require

Gm?
R7

Assuming a Gaussian '>>Cs BEC with the interaction strength reduced by six orders of magnitude and
4 x 10° atoms, as considered as a possibility in the previous section, we would need to increase the trapping
potential so that the radius is of order 1 pm, and operate at a temperature T < 1 nK. A temperature of 0.5 nK
has been achieved for a low-density >’Na BEC in a single-well potential [104]. If, on the other hand, we want to
work in the TF regime, then more challenging experimental parameters appear to be necessary. For example,
environmental decoherence would be five times slower than collapse when thereisaround 4 x 10'' atomsina
condensate of radius of 0.1 mm, the interaction strength is reduced by a further two orders of magnitude as
compared to the TF regime considered in the previous section, and the temperatureis T < 0.1 nK. Therefore, as
suggested in the previous section, if a NOON state is prepared by changing the interaction strength then, to
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prolong the lifetime of the state, it would be preferable to subsequently significantly reduce the interaction
strength so that we are working with an approximately ideal gas.

The temperature bound and/or the condensate radius can be increased in the Gaussian approximation by
further lowering the interaction strength and, at the same time, either keeping the total atom number the same
or increasing it. Also, trap engineering and symmetrization of the environment would help [100]. However, it is
possible that a Born—Markov approximation is not appropriate for the description of thermal cloud
decoherence in this case, such that the estimates provided here would be inaccurate [39]. Furthermore, as
discussed in the previous section, it is possible that these values could be improved if we took v = 8x rather than
~v = 1/(87)in (18). For example, in this case it would be possible to lower the total atom number to 10® while
keeping the rest of the parameters the same.

3.3.3. Foreign atom interactions

Decoherence can also occur due to interactions with background gas particles at room temperature'°. These
foreign particles collide with the condensate atoms and can either cause them to leave the trap entirely or heat up
[105]. Assuming that all collisions cause atoms to leave the condensate, a master equation for this process was
derived in [106] assuming a Born—Markov approximation. Since this is a one-body process, this master equation
is of the form:

dp@® _

. . o R 1 e .
- —%[H, PO+ 32 [@p0a] — —{afan pO}. 8)

k=L,R

A rough estimate of the rate -y, can be calculated assuming only s-wave scattering [106]:
1
~ —o(uf)nruy, (99)

where n¢is the number density of foreign atoms, uyis their average velocity, and o (uy) is the cross-section for the
process. Using kinetic theory, we can approximate these quantities by [105]:

2/5
C
ur = [2kgT/ms, np=P/(kgT), of =7.57(1.033)2| =] , 100
f T /ms, nf /(kgT), of ( )(ﬁuf] (100)
where Pis the pressure of the vacuum chamber and Cy is the Van der Waals constants from the Van der Waals
potential V (r) = —Cg4/r®. Various interaction cross-sections have been calculated for these processes in [105]

assuming 7'is room temperature.
The N-particle correlation for a NOON state under the master equation (98) is then:

(afNag) (1) = e Nt (afNag')o, (101)
so that we require
Gm?N
Zﬁ > 7. (102)

Note that the environmental decoherence rate here is equal to the atomic loss rate. This is because, for
an exact NOON state, the loss of one atom means that the density operator is now a mixture of the states
[(N — 1)0)and |0(N — 1)), neither of which is itselfa NOON state [39]. Therefore, one scattering event is
enough to collapse the NOON state into all-left or all-right states. However, in practice it is unlikely that an
exact NOON state will be formed, and instead a more general macroscopic superposition state, such as
[¥) = (IN/10, 9N/10) + |[9N /10, N/10)) /~/2, would be more probable. Indeed, these type of states would
be formed in the process where the scattering length is suddenly changed to a negative value [39]. Single-atom
losses for these states would still result in similarly ‘good’ macroscopic superposition states, such that the effect
of scattering a foreign atom may not have a significant detrimental effect [39]. Of course we also need to
determine how the GQSR rate might change for the approximate NOON states, and this will be the concern
of future work.

3.3.4. Decoherence from the trapping potential

Optical, magnetic or opto-magnetic traps can be used for the implementation of the double-well potential.
These electromagnetic traps can also cause decoherence of a NOON state. For example, in an optical trap,
decoherence of NOON states can come from spontaneously scattered/diffracted photons [39, 107], and phase
noise of the laser beam [108]. However, to generate the required large numbers of atoms, it is likely that a pure
magnetic trap should be used, such as that in [109, 110]. Surprisingly, decoherence of macroscopic

16 . . .
Here we assume the background gases operate at room temperature, but it is also possible that the vacuum chamber could be cryogenically
cooled.
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superposition states due to fluctuations of a magnetic field has been found to be independent of the total particle
number [111], improving the feasibility of generating such states.

4. Conclusions

We have investigated testing a unified theory of GR and QT with a BEC. In particular, we have considered testing
aproposal for a unified theory that is based on the ‘gravitizing QT” approach rather than the conventional
‘quantizing gravity’ approach. In section 2, we examined how, if we attempt to make QT consistent with the
equivalence principle of GR, then a possible resolution is to consider making modifications to QT that would
lead to a violation of the superposition principle of QT where the degree of violation is dependent on the
gravitational interaction and configuration of the system. Since this increases for more massive systems, the
proposal can provide an objective state reduction that is consistent with current experiments, thus resolving the
measurement problem of QT, which would, on other hand, be expected to persist for the ‘quantizing gravity’
approach and conventional quantum gravity theories. QT is predicted to breakdown when the mass of a
quantum system is near the Planck mass scale, allowing for experimental tests that are far more achievable than
those generally required for distinguishing conventional quantum gravity theories, where the relevant effects are
anticipated near the Planck length scale.

In the proposal considered here for a unified theory of GR and QT, quantum superposition states are
expected to decay to localized states with an average lifetime that is (in the Newtonian limit) reciprocally related
to the self-energy of the difference between the mass distributions of the localized states, E; [3], which is
dependent on the mass and configuration of the system. This has been generically considered for displaced,
uniform, spherical mass distributions. However, BECs tend to have non-uniform mass distributions, and so we
have extended this to the quadratic and Gaussian density distributions that are usually found in BEC
experiments, but which may also be applicable to other systems. Since they are often generated in BEC
experiments, we have also considered non-uniform spheroidal mass distributions, as well as uniform ones that
would be approximated in nano/micro-object experiments, finding that the average lifetime of state reduction
can be reduced compared to the spherical case. Due to the particular dependence that the GQSR considered here
has on the geometry of the superposed objects, this analysis could also be used to distinguish the GQSR from
other, and potentially non-gravitational, collapse models, such as the continuous spontaneous localization
(CSL) model [112].

To probe the GQSR, we have considered a BEC in a double-well trap that is placed in a macroscopic
superposition state of two locations. Assuming that the state reduction is a Poisson process similar to particle
decay, we have compared the rate of wavefunction collapse against prominent channels of environmental
decoherence in BEC systems. For the rate of decoherence to be significantly less than the rate of collapse, we
estimate that the BEC should have greater than 10% or 10” atoms, depending on the choice of a free parameter in
the GQSR proposal, and that the scattering length is reduced using an external magnetic field while maintaining
amacroscopic superposition state. Being able to control the atom-atom interactions provides a unique asset to
BEC tests.

We have concentrated on exact NOON states for estimating collapse and decoherence rates. However, as
with experimental proposals based on nano/micro-objects, these states would be challenging to create and
approximations to these states are more likely to be generated in experiments. Although estimating
environmental decoherence for approximate NOON states is a relatively simple task, the GQSR needs to be
extended to be able to handle these states. One possibility is to follow the approach of Diési [15], but there may
be other, more general, alternatives, which will be the concern of future work. We have also concentrated on
only three-dimensional BECs, but prolate and oblate BECs with high ellipticity could move into a quasi-one and
-two dimensional regime, potentially reducing environmental decoherence processes such as that from three-
body recombination [97-99]. In this case, environmental decoherence could be reduced relative to spherical
BECs, whereas the collapse rate would be increased, improving the feasibility of experimental tests.

If signals of this proposal were not observed in experiments, then, depending on the achievable experimental
parameters, this could place severe constraints on the model (for example, the value of ), and potentially rule it
out. [t would also likely place constraints on other models of objective state reduction, such as CSL[112].
However, if signals were observed, then we would have the first evidence of how GR and QT must combine to
form a consistent, unified theory. Furthermore, it would explain the mysterious measurement process in QT
and provide it with a well-defined classical limit.
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Appendix A. E for uniform, spherical mass distributions

Here we calculate the self-energy of the difference between uniform, displaced spherical mass distributions.
Taking the radius of the sphere states to be R and their mass M, then their density functions are defined by

_ 4 N
Po = M/(ETFR ) if ris inside sphere, (A1)

0 otherwise.

p(r) =

In terms of the step function 6(x), we can write the density functions as
p(r) = ped (R — 1,)0(R* — 1) — 27, (A.2)
p'(r) = pof(R — 1,)0(R* — ;) — (z — b)), (A.3)

where r, is the cylindrical radial coordinate, and we have taken the sphere states to be displaced along the z
coordinate by a distance b, with the p () sphere state being at the origin of our coordinate system.

These density functions can be plugged into (19). However, we find it simpler to work with (18) to calculate
E for this situation. In this case we need the gravitational potential inside and outside a sphere:

(A.4)
(bout = ifr 2 R)

where now we are working in spherical coordinates (r, 6, ¥). Taking v = 1/(87) then, due to the symmetry of the
problem, we can use

1 !/ /
B == [©& = 6" — par (A5)
[0’ — par. (A.6)

We first consider the term ¢p’, which is related to the gravitational interaction energy [3]. When b > 2R
then, following Gauss’s law, the gravitational interaction energy is simply — GM?/b. We can calculate this by
choosing the origin of our coordinate system to be at the center of the p () sphere and integrate its potential over
the density of the other sphere using surfaces of constant radial coordinate r:

21 pcos Mz, /r) pb+R GM?
! Py — 2 &1 —
f(;ﬁp &Ir= pofo fo fbe oy 77 sin OdrdOdep > (A7)
Using the same method for R < b < 2R, we find:
2T cos Nz, /1) R b+R
R , 2
f op'dr = —p, fo j; [ fb Ot fR gbom]r sin fdrdddy (A8)
2
_ GM (_9 YRS lAS). (A.9)
R 5 2 5

Finally, for b < R, we have:

f¢p’d3r =—p j:ﬂ [(foﬂ fORib +f()cwl(zr/r) j;R_h )(lﬁm

cos Yz,/r) pR .
n j; j; y ¢Out]rzsm9drd9d¢ (A.10)
2
_ M (_E 42X — 2/\3 + l/\5), (A.11)
R 5 2 5
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which, as expected is the same as the previous result. Now we consider the term ¢ pin (A.6). We can simply
extract this from the above result when b = 0 such that:

. 6GM?
f¢pd r= S (A.12)
which is simply twice the gravitational self-energy of a sphere. Putting this altogether, we then obtain:
GM” (2/\2 S lAS) ifo< A<,
Eo=4 R our? 62 1 > (A.13)
(E-5) =
R \5 2

Appendix B. E; for BEC, spherical mass distributions in the TF approximation

Here we calculate the self-energy of the difference between displaced spherical BEC mass distributions in the TF
approximation. Taking the radius of the sphere states to be R and their total mass M, then their density functions
are defined by

p(r) = py(NOR — 1)0(R? — 1) — 2?), (B.1)
p'(r) = plo(OR — 1,)0(R* — 1} — (z — b)?), (B.2)
where
po(r) 3= 2py(1 = (2 + 2 /) = Zp,(1 = /R, (B.3)
plo(r) = gpo(l —(r}+ [z bP) /R = g/’o(l — r2/R?), (B.4)

with 2 = 2 + b* — 2rb cosf and p,, := M /((4/3)7R?) as before. We again use (18) to calculate E for this
situation. In this case we need the gravitational potential inside and outside the sphere. From Gauss’s law, the
outside potential is of course the same as in the uniform situation. To find the inner potential, we can also apply
Gauss’s law:

yf ¢.dS = —47GM,, (B.5)

where we choose a spherical surface of constant radius r within the sphere such that M, is the total mass within
this spherical surface and is given by

M, = 4 j; p(r)r2dr, (B.6)
_ M s 5
= o (5R*r* — 3r°), (B.7)
where M is the total mass of the spherical BEC. Therefore, the field inside the sphere is given by:
GM
=— 5R?%r® — 3r9), B.8
g= s ) (B.8)
and the potential then can be found through:
R —GM " —-GM
L) =— dr — f 5R%r® — 3r° B.9
o =—[ = e ) (B.9)
GM
=———(15R* — 10R*r? + 3r%). B.10
el ) (B.10)

The gravitational potential of a spherical BEC in the TF approximation is then
M .
by, = — GM (15 — 10r72/R?* + 3r*/R%) if r <R,
8R
= oM (B.11)
Pour = ——— if r > R
r
The rest of the calculation now proceeds similar to the uniform case. We first consider the term ¢p’ in (A.6).
When b > 2R we find, due to Gauss’s law again, that this is simply —GM?/basbefore. For 0 < b < 2R we
choose the origin of our coordinate system to be at the center of the p (r) sphere state and again integrate its
potential over the density of the other sphere state using surfaces of constant radial coordinate r:
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f¢p/d3f — fh fcos e [f o f Out],o’o(r)r2 sin @drdfdy (B.12)

M? 1 2 1 1
-G (——0 + D0 gxysp - Ly —>\9). (B.13)
R 7 7 14 7
For the term ¢ pin (A.6) we can again simply extract this from the above result when b = 0:
10GM?
= - . B.14
Joo=——4 (B.14)
Putting this altogether, we obtain:
M2 (2 1 1 .
GT(7OA2 —6X 58— 2N 4 ;)P) ifo< A<,
B Vom0 19
(_ - _) A1
R 7 2

Appendix C. E; for BEC, spherical mass distributions in the Gaussian approximation

Here we calculate the self-energy of the difference between displaced spherical BEC mass distributions in the
Gaussian approximation. Taking the sphere to have total mass M, then the density functions are defined by

4 2o

r) — ——— e*’ /Ro 5 C.l

p(r) 3 Po (C.D
4 /2/ 12

"(r) = - /Ry C.2

p'(r) 3ﬁpoe (C.2)

where p, := M/((4/3)7R’) and Ry is given by (41) and can be taken as a measure for the size of the condensate
[66]. However, we do not take this as a discontinuous cut in the density and instead keep the the wavefunction of
the condensate has having infinite extent. Following the procedure outlined in the previous section using Gauss’s
law (or using the method outlined in appendix F), the potential of a Gaussian sphere is found to be

6 = = erf(r/Ry), (€3)

where erf(x) is the error function. This tends to —2GM / (/7 R;) in the limit that r — 0. The ¢ p term of (A.6) is

then found to be
Erop = "o = - 2, (C4)
T

and the ¢p’ termis

fd%p-f f f P o) =S b (J_Z’R) (C.5)

where we have used the identity [113]:
f > [e =4 — et erf(x)dx = /7 erf(A/V2). (C.6)
0

Putting this altogether, we obtain:

GM?
Eg = R [\/; - 2—erf(\/—)\)) (C.7)

where we have defined \ := b/(2R).

Appendix D. E for uniform, spheroidal mass distributions

Here we consider the self-energy of the difference between uniform, displaced spheroidal mass distributions.
Following the previous sections, we work with (18) to calculate Eg. In this case we need the gravitational
potential inside and outside the spheroid. This is simplest in spheroidal coordinates: in prolate spheroidal
coordinates, the gravitational potential of prolate spheroid is [114, 115]:
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Prolate = _% G + 5(52 - 1) G + gé - 52 G if <
_ Pin | QEGiIE M e 26 m) e (Em | ifE< o
i . (®.1)
OB = — Q) — QaOP() ife > &,
where

Gi(&, ) =1 — P2(§)P2(n), (D.2)
Ga6 1) = 2P0, (D3)
Ga(6 ) =  + PO P20, (D4)

P,(x) and Q,,(x) are Legendre polynomials of the first and second kind'”:
Pa(x) = 203+ = 1), (D.6)
Qo(x) = (1/2)ln(i j i) =tan 'x + %iw, (D.7)
Q) = P2(0)Qo(x) — 2 (D)

I = \c* — a? is the focal distance with a and ¢ the equatorial and polar radii respectively (which are respectively
the semi-minor and semi-major axes for the prolate but semi-major and semi-minor for the oblate case); (£, 7,
1)) are prolate spheroidal coordinates with

x/l = & — 1sinv cos), (D.9)

y/l =& — 1sinvsin, (D.10)
z/l = £ cosv, (D.11)

using 7 = cosv;and &, = ¢/l is the value of £ at the surface of the prolate spheroid. For the potential of the
oblate spheroid, just replace £ with i€, by —iland & withi&, [114, 115].
We first consider the term ¢p in (18) for a prolate spheroid:

. 2w 1 &
Jrop =gt [ [ [T P@ — wopdeanay (D.12)
2
_SGME e, (D.13)
2
:6(;5—];/1 tanh e, (D.14)

where eis the ellipticity (e := ¢/Ifor the prolate case) and péphemid = M/((4/3)ma’c) is the density of a uniform

spheroid. For an oblate spheroid, we just need to replace &, with i&, to obtain
6GM? 6GM?* . |
sin
51
where e := a/lis now the ellipticity of an oblate spheroid with | = v/a*> — ¢? its focal distance.
We now consider the term ¢p’ in (18). For the prolate spheroid in configuration (b) in figure 3, we choose to
integrate over surfaces of constant & When b > 2¢, we use

. 2 pl (b+c)/1
Jordr =gt [ [T R@ — ot dedndy, (D.16)
e

b—c)/l

cot ¢, =

e, (D.15)

where 7 is the 77-coordinate where the -surface meets with the surface of the p’ spheroid. When 0 < b < 2c,

weuse
. 2w 1 c/l
f¢p’d3r= pBPhermdf f |:f d)&rolate (D.17)
0 ne [Y=0)/1

7 Often Qy(x) is alternatively defined as

1 1
Qolx) = Eln(l X

) = tan " lx. (D.5)
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(b+c)/1
[ qsg;ila“]P(gZ—n2>dsdndw. (D.18)

The result for Eg to first order in €, where a = ec, for a prolate spheroid is provided in section 2.2.

Another option, which is more suited to an oblate spheroidal coordinate system, is to integrate over surfaces
of constant 7. Choosing now to work instead with an oblate spheroid coordinate system then, when b > 2c,
we use

. 2w 1 1
Joorer=gprms [T [ pe@ s oiagana, (D.19)
Tmax 1

where £, and &, are the two values of £ where the constant 7-surface crosses the p’ spheroid state, and 7)., is the
value of ywhere there is only one  solutioni.e. £, = &. When 0 < b < 2¢, we use

f Gp/dPr = prphercid j; o [ f ! ( f govle j; & Eﬁltate) (D.20)
v f ¢3E{“]z3<52 + 7)dédndy, (B:21

where 7, = b/(21&,) is the n-coordinate where the two spheroids meet. Once the result for Eg is obtained, the
prolate spheroid case can be found via §;, — i, asabove. When ¢ < 1, where now ¢ = ea, E¢ for an oblate
spheroid displaced along its symmetry axis can be approximated by (25) in section 2.2.

Unlike in the spherical case, equipotential surfaces are not similar-shaped spheroids (or confocal spheroids),
emphasizing that Gauss’s law is not as useful for these objects. Therefore, integrating over constant £ or n
surfaces is not as simple. An alternative is to use cylindrical coordinates where the prolate spheroid potential
inside and outside the spheroid is given by:

2.2 _ 52,2
¢Prolate = 3GM (212 + D)CSCh (a) — l(cr—2az) R (DZZ)
in 4 1 azc
21(A,D + I’)C
¢g;(tﬂate = 3GM [(212 + D) sinh™ [\/_l] — f(p—j)]’ (D.23)
4ar By EyB,
and the oblate potential is found by taking I — —il, to obtain:
2.2 _ 52,2
¢9blate — 3GM QP — D)Cscfl(g) + l(cr—2az) , (D.24)
in 4 1 QZC
oblate __3GM| o [(V21) |, V2I(A,D — I0)
= 218 = D)sin™!| — | + ————=|; D.25
out e | ) X E,B; (02
where
Ap=r2 4+ 2+ 42207 - 2D + (22 + D)2, (D.26)
Ao =1+ 22+ 2 + 2227 + ) + (P — 12?2, (D.27)
/pf p—JA+f (D.28)
(A, +1 A, (D.29)
C:=r2+ 222 (D.30)
D:=r?— 272 (D.31)
To second order in ellipticity, the potentials, in spherical coordinates, become:
by, 1= qﬁfﬁhere + %Pz(cos e? ifr < r(d),
= 5R? (D.32)

2
Bou = T £ Gf;VIR Py(cosf)e? if r = r(6),
r

out

where + is for the prolate case, — is for the oblate case, qbfg}/‘f)ft is given by (A.4), r(0) = c[1 — e?cos? ] /2
(with the respective definitions of ellipticity for the two spheroidal cases), and we have taken both spheroids to
have the same volume as a sphere with radius R.

Using the full potentials in cylindrical coordinates, for the spheroidal cases in configuration (a) and (b) in

figure 3, the ¢ p term is then:
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. 27 c aJ1—2z%/c? X
f ppd’r = pf)Phem'd f f f q’)?}ﬁ’hem‘d rdrdzdi). (D.33)
0 —cJ0
where gbfﬁhem"d is given by either (D.22) or (D.24). For b > 2c, the ¢p’ term s:
X 2w b+c a\J1—(z—b)*/c? i
f¢ﬂ/d3r — p(s)phermd fo j; j(; ¢Zli}:emld rdrdzd¢, (D.34)
—C

where ¢f}f§er°id is given by either (D.23) or (D.25); and for 0 < b < 2¢, we can use

b/2 a\1—(z— b) /c? a1—z%/c? .
heroid heroid
sP erol f [[f f f f Jd);}: eroi (DSS)
b—c b/2

a1-(z=by*/c? btc pafl—@—b)?/c? )
[L/;/zj;\/—l e . j; ]‘f’iﬂlem‘d]fdfdzdw (D.36)

For the oblate and prolate configurations (c) and (d) in figure 3, the above procedure is just slightly modified.

Appendix E. E; for BEC, spheroidal mass distributions in the TF limit

Within the TF approximation, the density of spheroidal BECs is given by (see (48)):

p(o)blate(r) _ gpzpheroid(l _ 1’5/02 _ ZZ/CZ) (El)
5 spheroi 52 52
TR .
0 0
562 heroid
:szp erol (1 _ 612[62 + 772(1 _ 6/252)]), (E3)
prolate _ 5 spheroid 212 2 2¢2

Po ()—2—62% (1 —e*[&+ (1 — e*H))) (E-4)

for the respective coordinate systems, where ¢’ := [/c is the second ellipticity for an oblate spheroid.

We now find the gravitational potential of these spheroidal BECs by summing the individual potentials from
point-like sources of mass dm = p(r’)d’r’ where d°’ is the volume element of the spheroid, and p(r) isits
density function, i.e. we use (16):

b(x) = —G f %’/)dw, (E.5)

with r := |r — r/| the distance from the point source to the point of interest. Working in prolate spheroidal
coordinates we then have

6= =G [2p(€ IPIE” — n1dgdd. (E6)
Following [114, 115], in prolate spheroidal coordinates, the ratio of I to r can be expressed as:

l o0

- = Z(Zn + DBRMB M) Qu(&) B(EN (E.7)
(n — m)!
+ 2 2n + 1 H” E.8
R o e ] ©8)
X Pl (P () Q" (S)Pﬁ"(f’)cos [m(y — P, (E.9)
for £ > ¢’,and
= Z(Zn + DB(m)EB.(n)B(§)Qu(§") + f(cos[m(yp — N)]), (E.10)
n=0

for £ < &', where P)"(x) and Q," (x) are the associated Legendre polynomials of the first and second kind and fis
an unimportant function of cos[m(¢) — 1')] since, when inserting (E.10) into (E.6), this term, and the second
termin (E.10), vanish once we integrate over ¢ [114, 115]. For the prolate spheroid, we then end up with:

Goue = —271PG D (2n + 1)Qu(&)Pi(n) (E.11)
n=0
1 50
<[ 7 e nBE@ROIE — n1d (E.12)
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00 1 13
b = —27PG Y (20 + 1>[Qn(£)Pn(n) [ [ e mn@rm) (E13)
n=0 =11
1 g
+R©Rm [ [0, n')@(é')&(n’)][ﬁ” — n1dg'dn. (E14)
—1J¢
Using (E.4) for p(&’, n’), we then find that:
rolate GM 62 — 52
¢§ut“ = —Tzl[on(fo)Fl(@ n + W_i]zﬂ(f, )] (E.15)
e -1
+ =—— ~F(&, N E.16
TN 5(& 77)) (E.16)
rolate GM
¢£m = *7(7(20(5) — 10Q2(§) P2(n) + 3Q4() Ps(n)), (E.17)
where
F(& n) =7 — 10P,(§)PL(n) + 3P(E)Pi(n), (E.18)
Fy(& ) = 14[5& — 765 + £(3¢ — D] (E.19)
+ 40Py (OPr()[26] — 4¢3 + £(3E — 4) + 3¢1] (E.20)
— 8P (OPy([10& — 665 — £2(13 + 6&) + 15¢1], (E.21)
Ey(&, m) = 60P,(n)[€; — 68 + 262 — 3¢% (B.22)
+ 5P (2162 — 11)[3&] — £(1 + 78) + 584, (E.23)
Py(x) = é(?) — 30x2 + 35x%), (E.24)
Q) = ﬁs(uo 21080 + Pi(6)Qol©), (E.25)
and we have used the orthogonality relationship of Legendre polynomials of the first kind:
[ Rer@ds= —2—s,, (E.26)
-1 2n + 1

In contrast to the uniform case, we now have Legendre polynomials of the fourth degree. Also note that,
unlike in the spherical case, the potential outside the BEC spheroid is different to the uniform spheroid. To
obtain the oblate potentials in oblate coordinates, we just make the changes £ — i€, {; — i{,and [ — —il.

Itis also possible to find the potentials in cylindrical coordinates by taking the inverse transformations:

€= %[\/rz—i— (z+ D + Jr2 4+ (z — D?], (E.27)
n= %[Jﬂ + @+ D> = P+ (@ — D?] (E.28)

for prolate spheroidal coordinates, and (taking I — —il):

1. 5 . . 1
=— +(z—i)* + Jr* + z +i)*] = —E,, E.29
=W+ @ -l + {7+ @+l = —=F, (E.29)

i, = 3 ., _ 1
L r =i - P+ z+i)] = —E, E.30
n= WP+ G- -t e ir] = o (E.30)

for oblate spheroidal coordinates, where E, is defined in the previous section, and

E := \/lz —r2—z2 4 \/(l2 — D2+ 2(P 4+ rHz? + . (E.31)

In the appropriate limit, i.e.a — ¢ — R (andso ! — 0), itis possible to show that these potentials become
the spherical BEC potentials provided in appendix B. To calculate Eg for the different spheroidal configurations,
the procedure in the previous section can be followed with the uniform potentials and density functions replaced

with those above. Alternatively, it is possible to integrate over spheroidal surfaces of constant density using the
areaelement I2[(£2 — ()2 (A — n(€)* + (€2 — 1)n/(€)M)]/? for prolate coordinates where ’ == dn(€) /d€.
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Appendix F. BEC spheroidal mass distributions in the Gaussian limit

Here we calculate the gravitational potential due to a spheroidal BEC in the Gaussian limit for small ellipticity
values. We work in spherical coordinates to easily compare to the spherical BEC case. In general, the potential
can be calculated from (E.6), which, in spherical coordinates is

6(r, 0, 1) = —G f " f f P 05U oG grdrd0r . (F.1)

|[r — /|

Since the spheroidal density does not depend on 1), we can set ¢ = 0 such that

r — 7| = \/rz + 12 — 2rr'(sin O sin @’ cos )’ + cos cosh’). (F.2)

We can then expand the above in terms of Legendre polynomials of the first kind:

7\
1 Z (r_) P,(cos@)P,(cosO) ifr>r/,
1 2m 1 r n=0,00 r

z_fo lr — r’Idw/: 1 ) rY 3

g = ; (7) P,(cos0)B,(cos ) ifr </,

so that (E.6) becomes

o(r, ) = —27wGRB,(cos 0) f [ — fo pInt2 (F.4)
+ r"foo r”*"]p(r’, 0"YP,(cos 0")sin 0'dr’d6’. (F.5)

The density of the spheroidal BEC in the Gaussian limit is given by (43). Assuming the spheroid to have the
same volume as a sphere with radius R, then in the limit of small ellipticity, the density function becomes

0y — o [ 4 27 ) cos F.6
P(rs 0) = Phere e 2(cos 6) (F.6)
r2et 1412
— 35 — —— — 10(£7 —|——P cos 0 F.7
1 35R2( o 1073+ 2 Pa(eosd) (E7)
3612
— P4(c059))], (E.8)
where pg)"‘hu;:e is given by (C.1); 4 is for the prolate case, which has 3 = 1;and — is for the oblate case, which has
0 = 2.1Inserting the density expression into (F.4), and using the orthogonality relationship (E.26), we find
o1, 0) = g + C;fe Pz(COSG)[e(r)Xz(r) Q1R erf( )] (F.9)
GMe*
+ e(r)(r* + R? F.10
o ( e+ R) (E.10)
1 r
T——|e()Xy(r) — 21Rserf(—) P,(cosf F.11
63&3[()4() R]z( ) (F.11)
+ 1 [e(r)Y4(r) — 105K’ erf(L)]R;(cos@) , (F.12)
1401 R
where
e(r) = e TR, (F.13)
JT
X,(r) = 2r® 4+ 3rR?, (F.14)
X4(r) == £26r° + 14r°R? + 21rR%, (F.15)
Y, (r) == r(8r° + 28r*R? + 70r2R* + 105R°), (F.16)
gr::e is given by (C.3); and, again, + is for the prolate case, which has 3 = 1; and — is for the oblate case, which
has 3 = 2.
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