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Edith Darin*, Mathias Kuépié**, Hervé Bassinga***,  
Gianluca Boo*, Andrew J. tatem*

The Population Seen from Space:  
When Satellite Images  

Come to the Rescue of the Census 

Great steps have been made in recent decades in observing the Earth 
from the sky. Landscapes and infrastructure can now be mapped 
at an extremely fine spatial scale. These data—particularly useful 
to geographers—can also benefit demographers. By combining 
observations of buildings in satellite images with complementary 
demographic data, population sizes in areas not reached by the 
census can be estimated. The authors apply this method to the case 
of Burkina Faso and explain how a hybrid population census can be 
carried out when data cannot be collected in some areas.

Today, developing public policies requires precise knowledge of the size 
and characteristics of the population. To respond to this need, national statis-
tical offices must perform counts. National censuses are the foundational data 
collection operations on the number of inhabitants in each country. The national 
population is the denominator for many development indicators (Carr-Hill, 
2014). Reliably and regularly estimating this denominator is important in all 
domains (land use planning and development, education, democratic repre-
sentation, social protection, health, etc.) and at various geographical scales 
(United Nations, 2017). While traditionally the publication of population sizes 
is organized by administrative units such as provinces or regions, this format 
leads to spatial discontinuities that can prove arbitrary and that do not reflect 
other ways of dividing a territory according to criteria such as employment 
(employment basin) or health (healthcare districts(1)). 

(1) Administrative division of a country based on the organization of the supply of healthcare services.

* WorldPop, School of Geography and Environmental Science, University of Southampton, 
 Southampton, United Kingdom; Leverhulme Centre for Demographic Science, Department of 
 Sociology, University of Oxford.

** United Nations Population Fund, Dakar, Senegal.

*** Institut national de la statistique et de la démographie, Ouagadougou, Burkina Faso.

Correspondence: e.c.darin@soton.ac.uk 

Population-E, 77 (3), 2022, 437–464   DOI: 10.3917/popu.2203.0467

©
 I.

N
.E

.D
 | 

D
ow

nl
oa

de
d 

on
 3

0/
01

/2
02

3 
fr

om
 w

w
w

.c
ai

rn
-in

t.i
nf

o 
th

ro
ug

h 
U

ni
ve

rs
ity

 o
f S

ou
th

am
pt

on
 (

IP
: 1

52
.7

8.
0.

24
)©

 I.N
.E

.D
 | D

ow
nloaded on 30/01/2023 from

 w
w

w
.cairn-int.info through U

niversity of S
outham

pton (IP
: 152.78.0.24)



To remedy this problem at least partially, some countries (including the 
United States since 1940 and the United Kingdom since 2001) have decided 
to publish population data at the level of the enumeration area, the smallest 
operational unit in the census. Others have chosen to publish data based on 
a division of the territory into grid cells, to provide a standardized unit of 
analysis that can be aggregated into an effectively unlimited number of spatial 
combinations. Due to the diversity of grid units (e.g. 200 m square in France, 
1 km square in Germany), since 2011 the European Statistical System has 
been promoting the publication of harmonized gridded data (Backer and 
Holt Bloch, 2011) to disseminate the results of the 2021 European censuses 
(INSPIRE, 2014).

Besides increased spatial resolution, gridded population data can play 
a role when security problems, natural disasters, or political conflicts make 
it impossible to map or carry out census operations in certain areas. By 
linking demographic data to their spatial distribution, gridded data allow 
spatial modelling to be used to estimate the missing population. This has 
been advocated recently by the United Nations Population Fund (UNFPA) 
through the notion of hybrid census. In a hybrid census, data from accessible 
areas are combined with high-resolution estimates for inaccessible areas 
(Jhamba et al., 2020). A pilot study was carried out in Afghanistan in 2017 
(UNFPA, 2017).

The spatially uniform units created by using a gridded structure for census 
data make it theoretically possible to statistically model the population of 
inaccessible areas. But it is the advent of very high-resolution spatial data that 
makes such modelling viable. Satellite imagery has long been used to precisely 
map land cover and night-time light. But software and artificial intelligence 
are now enabling the extraction of ever-increasing amounts of information, 
including the nearly perfect tracing of the footprint of all buildings (Ecopia.
AI and Maxar Technologies, 2019). These high-resolution footprints of the 
built environment are very information-rich, and integrating them into the 
modelling of the population represents a major scientific challenge.

The hybrid census approach is particularly well adapted to the Burkina 
Faso context. Burkina Faso’s National Institute for Statistics and Demography 
(INSD) carried out its fifth population and housing census (PHC) in late 2019, 
but security issues in the north and east of the country kept the census from 
covering nearly 5% of enumeration areas (Institut national de la statistique et 
de la démographie, 2019). This article begins by proposing a method for esti-
mating populations in these inaccessible areas. This first, ‘bottom-up’ model 
is a Bayesian hierarchical model that combines spatial variables with demo-
graphic information collected in enumeration areas where counting took place. 
This estimate is then applied to predict the population of the non-enumerated 
areas. We then show that a ‘top-down’ statistical learning model can be used 
to obtain demographic data at a high geographical resolution (at the grid-cell 
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level), disaggregating census population counts, for areas with census coverage, 
and predicted counts, for uncounted areas. The challenge is thus twofold: 
predicting the population in areas where enumeration could not take place 
and producing gridded estimates for the full country territory. The underlying 
challenge is how we can use novel data and innovative statistical methods to 
cope with recurring problems in counting the population and capturing its 
spatial distribution.

 I. Spatial modelling of the population: what is at stake 

1. The challenges of the traditional census

A PHC is a complex operation that must be meticulously organized to 
ensure the coverage of all residential structures and the entire population. 
This organization is divided into two major sequential phases: census mapping 
and enumeration.

The role of census mapping is to survey the full territory of the country, 
identifying all inhabited places and residential structures, and producing a 
rapid estimate of the population. Based on this information, each administrative 
unit in the country is divided into enumeration areas (containing around 1,000 
inhabitants in urban areas and 800 in rural areas), finely partitioning the 
territory. The enumeration phase is kept brief (generally 2–3 weeks) to produce 
a snapshot of the population while limiting the risk of double counting due to 
population movements. However, the solutions to the many problems that 
arise in the field—underestimation of the scale of work required in some areas 
due to issues with mapping; omission of some areas from the map; multiple 
complaints and refusal to cooperate by some groups; delayed payment of field 
personnel; etc.—often come at the cost of the quality and exhaustiveness of 
the collected information. 

The new generations of the PHC use satellite imagery, a digital geographical 
information system and the administration of census questionnaires via tablet. 
These have drastically improved census mapping, the monitoring of data col-
lection, and thus data quality (Eyinga Dimi, 2019). Nonetheless, given the 
complexity of enumeration operations and the risks of omission, it is customary, 
following the enumeration phase, to carry out a representative sampling of 
enumeration areas by stratum (type of area and/or region) and submit an 
abbreviated version of the questionnaire. This procedure, known as a post-enu-
meration survey (PES), is carried out to measure rates of omissions and verify 
the quality of the collected information. But not all countries perform these 
surveys. Of the 134 countries that participated in the 2010 round of censuses, 
only 66% went on to carry out a PES, and of these only three-quarters made 
use of the results. In Africa, Asia, and South America, the proportion is only 
one-third (UNFPA, 2019). Moreover, even if the quality of the PES is acceptable, 
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the size of the population is adjusted homogeneously within strata, masking 
the dependence of omissions on the quality of the work of particular teams 
and difficulties in the field in particular areas. Finally, in some cases, significant 
areas of the country are inaccessible to census teams for physical or security 
reasons (Buettner and Garland, 2008), so the population there must be esti-
mated in some other way.

2. Spatial data and population estimation

In the context of population censuses, spatial data are mainly treated as 
an operational tool to facilitate field logistics and ensure the completeness 
of census mapping. They can also be understood as a vehicle for demographic 
information in thematic maps where geographical subdivisions are assigned 
a colour based on their population sizes (Martin, 2011). But these maps do 
not allow inhabited areas to be distinguished from uninhabited ones (such 
as lakes or deserts), and make observations strictly dependent on the chosen 
boundaries, which creates problems when those boundaries are changed. 
The concept of gridded population was developed to better capture the real 
spatial distribution of the population. This format was originally developed 
in the domain of remote sensing, i.e. of the ground level observed from the 
air or from space. Leyk et al. (2019) dated the first large-scale gridded pop-
ulation to the NASA Goddard Institute for Space Studies’ Global Distribution 
of 1984 Population Density at 1° × 1° Resolution (Fung et al., 1991). However, 
gridded demographic data first emerged out of Scandinavian statistical insti-
tutes in the 1960s (Claeson, 1963).

To understand this 3-decade delay between the Scandinavian initiatives 
and the first global gridding, it is important to note the difference between 
gridded data drawn from the aggregation of observations carried out at a finer 
level of detail than the grid cell, on the one hand, and gridded data derived 
from a statistical disaggregation model, on the other. In Scandinavian countries, 
gridded demographic statistics were produced from administrative records 
that associate individuals in the population with their postal address (Longva 
et al., 1998). Gridded data, by aggregating individual data, thus serve in this 
context to address a problem of data confidentiality. In 2010, the European 
statistical system launched the GEOSTAT project, which promoted the pro-
duction of harmonized European gridded population data at a scale of 
1 km × 1 km. Only 11 countries possess localized data requiring aggregation 
(Backer and Holt Bloch, 2011). In the other countries, disaggregation models 
must be used. The idea of refining the spatial representation of the population, 
excluding uninhabited areas, and thereby producing dasymetric maps,(2) is 
not a new one (Scrope, 1833). It was originally devised in 1911 by Semionov-
Tian-Shansky when designing an atlas of Russia. Interest in this type of 

(2) For details, see https://journal.augc.asso.fr/index.php/ajce/article/view/ajce.34.1.147
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 population map began to grow rapidly beginning in the 1990s, with the devel-
opment of increasingly high-performance geographical information systems 
(Petrov, 2012). Geographical data would now help to estimate the precise spatial 
distribution of the population. With the arrival of new spatial data, various 
methods have been developed in recent years to spatially disaggregate popu-
lation data. The increasing availability of remote sensing data on types of land 
cover (Friedl et al., 2002), night-time light (Elvidge et al., 2017), and climatic 
data (Harris et al., 2014) has expanded the range of sources that can provide 
information on local variations in population density. Furthermore, techniques 
for integrating these different types of data have evolved, from the homogeneous 
allocation of the population restricted to inhabited areas, to the estimation of 
local variations using multiple linear regression (Langford, 1991) and more 
sophisticated statistical learning methods.(3) These approaches to the statistical 
modelling of the population, which Wardrop et al. (2018) termed ‘top-down’ 
population mapping, can be used to keep total population numbers at the 
original scale of the census data. This assumes that reliable census data cov-
ering the entire country are available.

But geographical data can also be used to estimate populations, and thus 
can be considered predictors of population. In this context, gridding can be 
used to define a uniform framework for the entire country and thus a common 
system for enumerated and non-enumerated areas. In geostatistics, this ‘bot-
tom-up’ approach, which allows a set of observations to be extrapolated to a 
given area, has been widely used, in particular to estimate the distribution 
of environmental variables on the basis of surveys (Chilès and Delfiner, 2009). 
Applying methods from geostatistics to human phenomena, spatial epidemi-
ology then sought to map the incidence of diseases based on the geographical 
referencing of cases (Lawson, 2013). This approach then spread into other 
areas of the social sciences. Geolocalized surveys were used to map social 
phenomena, such as poverty (Alderman et al., 2002), vaccine coverage (Utazi 
et al., 2019), and housing conditions (Tusting et al., 2019) at the country level. 
However, these types of studies work with data on prevalence, and not on 
total population sizes. In spatial ecology, in contrast, the populations of 
observed species are estimated based on their spatial distribution (Elith and 
Leathwick, 2009). These approaches have relatively rarely been used to study 
human populations: two pilot studies have been produced, one for Nigeria 
(Weber et al., 2018) and the other for Afghanistan (UNFPA, 2017), to respond 
to the need for recent population data. Working with the Nigerian data, 
Leasure et al. (2020a) developed a Bayesian model that also allows for the 
quantification of the uncertainty associated with these estimates. This is the 
approach we adapt here for estimating the population of areas not covered by 
the 2019 census of Burkina Faso.

(3) For example, using random forests (Stevens et al., 2015) or maximum entropy (Leyk et al., 2013). 
The first is the approach taken here (see below).
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 II. Producing a gridded estimate  
of the population of Burkina Faso in two steps

1. Population data in Burkina Faso

The main source of population data in Burkina Faso is the population 
census. Due to the incomplete updating of vital records, Burkina Faso’s public 
statistics use demographic projections to maintain updated population numbers 
between censuses. After the fourth population census was conducted in 2006, 
the country produced three documents presenting demographic projec-
tions (Guengant et al., 2009; INSD, 2009, 2017), which described a scenario 
where its population reached 21 million in 2020. However, when evaluating 
and using such a figure, it is important to examine the underlying hypotheses 
critically and to consider the variables used to produce it, its time horizon, 
and the sociopolitical context. In particular, the deterioration of the security 
situation since 2015 has led to significant changes in the occupation of different 
areas within the country. 

Given the urgent need for up-to-date demographic data and despite a 
challenging security situation, Burkina Faso carried out its fifth PHC in 2019. 
However, despite the use of strategies intended to ensure coverage of the entire 
country (recruitment of interviewers through local referrals, adaptation of 
communication in these areas, involvement of security authorities, etc.), some 
localities considered too dangerous were not covered. Out of the 351 munici-
palities in the country, 52 were only partially covered, and nine were not 
covered at all. Out of 25,023 enumeration areas, 1,206 (or 4.8%) could not be 
enumerated. These enumeration areas are located mainly in the north and the 
east of the country, particularly at the borders with Mali and Niger (Figure 1). 

2. Geographical indicators of population sizes

To fill in missing population information, one needs fine-grained geo-
graphical data available for the country as a whole and able to act as indicators 
of inhabitation. 

One set of variables relates to the environmental context of inhabited areas. 
For the present study, we chose gridded climate data produced by the Climatic 
Research Unit (Harris et al., 2020) and the land cover classification of the 
European Space Agency (Buchhorn et al., 2020). In addition, we also used the 
map of the hydrological network produced by the Geographical Institute of 
Burkina Faso (2015). A second set of variables seeks to describe the country’s 
infrastructure based on the geolocalization of localities grouped into three 
administrative classes (city, village, and hamlet) and the road network. These 
are drawn from the national topographical database (Institut géographique du 
Burkina Faso, 2015). The Malaria Atlas Project also modelled access to cities 
(Weiss et al., 2018), as did Tusting et al. (2019) for housing conditions. A third 
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dataset, which provides information on the current distribution of the popu-
lation, is its past distribution as modelled by the WorldPop research unit (2018). 
This spatial projection of the figures from the previous census offers a good 
reference for predicting the current population.

The final, fundamental source of data is the map of buildings. Previous attempts 
to estimate the population from survey data have been based on the manual 
delineation of rooftops (Checchi et al., 2013; Hillson et al., 2014). Today, the auto-
matic identification of building outlines through artificial-intelligence satellite-image 
analysis algorithms (Ecopia.AI and Maxar Technologies, 2019) is expanding 
potential opportunities for population estimation. Not only does this provide 
extremely fine-grained information on built areas and their surfaces (down to 50 
cm resolution), it can also be used to produce variables that characterize the 
arrangement of buildings, such as their average perimeter or the distance between 
them. For the present study, we use the following characteristics: the number, 
perimeter, and area of buildings, as well as the distance between them. 

Combining all these different information sources brings out the strengths 
of a gridded approach. By dividing the territory into cells of identical size, 
these data can be assembled at the level of a single analytical unit. For vector 
data that take the form of points, lines, or polygons, such as lines in the road 
network or points for sites, the Euclidean distance to the nearest grid cell is 
calculated. For polygons representing buildings, the characteristics of the 
buildings within a given grid cell are summarized using various statistical 
indicators (mean, standard deviation, maximum, minimum, median, and 
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Figure 1. Coverage of the 351 municipalities (communes) 
in the 2019 census of Burkina Faso

Enumeration of municipalities (%)

Densely populated
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Ghana Togo

Benin

Niger

Côte d’Ivoire

Source:  Authors’ construction based on census data collected by INSD in 2019.
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coefficient of variation). For the variables deduced from buildings, a focal mean 
is also calculated, i.e. the mean of the grid cells located within 100 m, 1 km 
and 5 km from each square, to describe its residential context.

3. First model: estimation of non- or partially enumerated 
municipalities

The first model (Figure 2) predicts the population sizes of municipalities 
not enumerated in the census, or only partially. To do this, we use the sizes 
and GPS coordinates of the enumerated households. Population sizes are cal-
culated for fully covered enumeration areas, and their relation to the geograph-
ical covariates is modelled. The complete coverage of the spatial covariates 
then enables us to predict the population for each cell in non-enumerated 
areas. By aggregating the estimates according to the geographical boundaries 
of administrative units, we obtain an estimate of the population sizes of the 
non-enumerated municipalities and the associated levels of uncertainty. 

Bayesian modelling is used to deal with the heterogeneity of population 
data, and in particular with variations unexplained by the spatial covariates 
(Appendix A). By assuming that parameters are random variables, Bayesian 
estimation can be used to quantify the uncertainty associated with the input 
data (Ferreira et al., 2020). The absence of entire municipalities from the census 
data means that spatial modelling in the strict sense, which operates on the 
basis of geographical proximity, is impossible. The spatial logic of the distri-
bution of the population is then approached in terms of a nested hierarchy of 
administrative structures at different geographical levels (municipality, prov-
ince, and region). Finer variations can finally be characterized using high- 
resolution spatial covariates (Leasure et al., 2020a). 

4. Second model: countrywide gridded estimate

The second model (Figure 3) seeks to disaggregate, at the grid-cell level, 
all municipal population sizes, i.e. census data adjusted by the PES for fully 
covered municipalities, and the estimates produced in the previous step for 
partially enumerated and totally inaccessible municipalities. We begin by 
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Figure 2. Bottom-up modelling of population sizes 
in non- or partially enumerated municipalities

Enumeration areas Geographical covariates Gridded estimates Municipal estimates

+ = 

Bayesian hierarchical model

Source:  Authors’ construction, 2022.

©
 I.

N
.E

.D
 | 

D
ow

nl
oa

de
d 

on
 3

0/
01

/2
02

3 
fr

om
 w

w
w

.c
ai

rn
-in

t.i
nf

o 
th

ro
ug

h 
U

ni
ve

rs
ity

 o
f S

ou
th

am
pt

on
 (

IP
: 1

52
.7

8.
0.

24
)©

 I.N
.E

.D
 | D

ow
nloaded on 30/01/2023 from

 w
w

w
.cairn-int.info through U

niversity of S
outham

pton (IP
: 152.78.0.24)



estimating the relationship between municipal population density and spatial 
data aggregated at the level of the administrative unit. 

Research conducted by the WorldPop research unit (Tatem, 2017) shows 
that the statistical learning approach, more specifically using the random forest 
algorithm, is the best way to produce such models, due to its predictive power, 
flexibility, and robustness to multicollinearity (Sorichetta et al., 2015; Stevens 
et al., 2015, 2020). This approach is based on the concept of a decision tree, 
which models a dependent variable by dividing the input data into subgroups 
via thresholds on the explanatory covariates and by calculating a prediction 
for each subgroup, i.e. the mean of the dependent variable. The aim of decision 
trees is to identify the partition that, for each observation, minimizes the 
difference between the observed dependent variable and the predicted value, 
while avoiding overfitting (e.g. creating a partition of one observation per 
subgroup). The random forest method extends this approach by sampling the 
input data and estimating a decision tree for each sample to make the result 
more robust to statistical noise (Breiman, 2001).

Once the model has been estimated, given the availability of fine-grained 
spatial data, it can be used to predict population density at the grid-cell level. 
This prediction is then used as a weighting in disaggregating municipal pop-
ulations drawn from the hybrid census, to capture spatial dynamics of popu-
lations at the submunicipal level.

III. Putting the models into practice

1. Bottom-up modelling and the quality of georeferencing

The complex preparation of input data

To produce a population dataset that can be used in modelling, we need 
units where population counts and their connection to the associated 
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Figure 3. Top-down modelling of the disaggregation 
of countrywide population totals at the grid-cell level

Population totals
High

Low

Municipal populations Geographical covariates Gridded estimates

+ =

Random forest model

Source:  Authors’ construction, 2022.
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 geographical area are reliable. In the absence of digitized geographical bound-
aries, the only georeferencing available is household GPS data (87% of obser-
vations). The first challenge is to reconstruct the edges of these areas and 
extract the built area to be used in estimating population density. To do this, 
circles of different radii were drawn around household GPS points, depending 
on the settlement type (see Figure 4 for an example).

The second challenge is to select reliable enumeration areas. Here we apply 
the following four criteria: (a) complete enumeration of the area; (b) reliable 
information on area size; (c) homogeneity of residential settlement type within 
the area; and (d) non-overlap between areas. Various indicators (rate of missing 
GPS points per enumeration area; distance between GPS points and the bary-
centre of the enumeration area; standard deviation of the GPS coordinates 
belonging to the same area; number of enumeration areas per 100 m by 100 m 
grid cell; number of GPS points per grid cell; number of people per building; 
and population density) were defined in order to construct the most geograph-
ically accurate possible database. In the end, 15,817 enumeration areas were 
selected, or 69% of the initial dataset. Since the selection procedures and choice 
of radius for encircling GPS points have an impact on the predicted data, a 
sensitivity analysis is presented in Table 1.

To avoid overestimating the population of areas with security problems 
due to population movements towards more secure areas with census coverage, 
migrants who reported recently moving from the missing areas were removed 
from the basis for the estimation using the question ‘What municipality did 
you live in last year?’ A post-estimate adjustment was then carried out at the 
municipal level by adding the migrants to their census municipality and sub-
tracting them from their municipality of origin.

Finally, to integrate the urban/rural distinction, whose mapping has 
not been digitized, a binary classification model of built areas at the grid-
cell level was constructed based on the typology of the enumeration areas. 
We extrapolated this urban/rural typology using a gradient boosting machine 
algorithm. This consists in the sequential estimation of a series of decision 
trees, giving greater weight at each step to observations predicted less well 
during the previous iteration (Friedman, 2001). Two basic geographical 
variables were chosen: distance to the main urban centres—the 45 provin-
cial capitals (chefs-lieux) and the four medium-sized towns of Bitou, 
Niangokolo, Garango, and Pouytenga—and the number of buildings within 
a 500 m radius, since the goal is to estimate the contours of the provincial 
capitals based on the built density observed in enumeration areas classified 
as urban. The estimates were calculated in R (R Core Team, 2020) using 
the caret package (Kuhn, 2008). The model was chosen among a set of 
possible classification algorithms—Adaboost, random forests, support 
vector machines, and generalized linear models—based on the largest area 
under the ROC curve. This measures the model’s ability to distinguish 
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between urban and rural areas (0.98 on a scale of 0 to 1 for the gradient 
boosting machine algorithm).

Estimation of the model of population sizes 
 in non-enumerated municipalities

The final model has three hierarchical levels: the type of built area, the 
region, and the municipality. Five variables were selected because of their 
correlation with the population density of enumeration areas: the number 
of buildings within a 5 km radius; distance to rivers classified by INSD as 
temporary (i.e. which disappear during the dry period); distance to secondary 
roads; friction surface, which represents the difficulty of crossing a cell and 
depends on the presence and quality of railways, rivers, and roads, as well 
as topography; and the gridded projections of WorldPop. The model was 
estimated using Stan (Carpenter et al., 2017), whose scripts and diagnostics 
are available on GitHub.(4) The estimation was replicated 9,000 times (3,000 
iterations for three Markov chains), thus simulating the entire distribution 
of parameters and predictions. This distribution is summarized here by the 
mean prediction and the upper and lower limits of the confidence interval, 
defined to contain 95% of predictions. To evaluate the model, a cross-vali-
dation was applied, by estimating the parameters based on 70% of the selected 
enumeration areas and predicting the population counts for the remaining 
30% (test sample). Figure 4 shows the fit between the distribution of the 
mean predicted population and that of the observed population for the enu-
meration areas in the test sample. 

Limitations: difficult-to-model input data 

Despite the care taken through the procedure for selecting enumeration 
areas, the data remain very heterogeneous, as reflected by the very large con-
fidence intervals (see limits in Figure 4) and by the standard deviation of 
prediction errors at the enumeration area level of 263 individuals, representing 
a coefficient of variation of 5.8. Furthermore, the procedure for selecting and 
defining the limits of enumeration areas has an impact on the results. To 
measure that impact, we conducted a sensitivity analysis on two crucial steps: 

•  The choice of radius around the GPS points:

  –  Scenario 1: we distinguish between the highly urban municipalities 
of Ouagadougou, Saaba, and Bobo-Dioulasso and the rest, using a 
radius of 25 m and 100 m, respectively, in the two cases. 

 –  Scenario 2: we refine the discrimination between urban areas by 
separating out the capital Ouagadougou, with a radius of 20 m, the 
two densely populated urban municipalities of Bobo-Dioulasso and 
Saaba with a radius of 25 m, the other urban municipalities with a 

(4) https://github.com/wpgp/BFA_population_v1_0_methods/tree/main/supplements
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radius of 80 m, and rural areas with a radius of 120 m (see Figure 1 
for the location of the municipalities).

•  The maximum accepted residential density threshold:

 –  fixed for all enumeration areas; or

 –  proportional to the maximum residential density in each province.

To evaluate the predictions derived from the different versions of the input 
data, they can be compared with the observed populations for fully enumerated 
municipalities. Table 1 illustrates the dilemma of the choice of metric, with 
absolute error (root mean square error [RMSE]) lower for Procedures 1 and 3 
and relative error (relative RMSE) lower for Procedure 4. Relative error allows 
the size of municipalities to be factored in, keeping in mind that the areas to 
be predicted do not include highly populated municipalities. Moreover, note 
the predictions’ strong sensitivity to the required cleansing procedures given 
the quality of the collected data of the GPS points.
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Figure 4. Comparison of the distribution of mean predicted and observed 
population sizes in the test sample of enumeration areas (4,745 areas)

0 1,000 2,000 3,000 4,000
Population totals (truncated at 4,000)

Lower limit of CI (2.5%)
Upper limit of CI (97.5%)
Observations
Mean predictions

Distribution of population sizes

Note:  The distributions of the bounds of the 95% confidence interval (CI) associated with each predicted 
population are shown in grey. The mean error is 45 individuals out of a mean of 660 per enumeration area.

Source:  Authors’ calculations based on census data collected by INSD in 2019.
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Analysis of demographic estimates

Figure 5 illustrates the 2019 census of Burkina Faso, whose preliminary 
results, combining collected data and estimates resulting from the previously 
presented model, were communicated in November 2020 (Institut national de 
la statistique et de la démographie, 2019). These population estimates represent 
10.2% of the national population and include the majority of municipalities 
whose population has decreased compared to the 2006 census (in purple on 
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Table 1. Analysis of model sensitivity in relation to data cleansing procedures

Data cleansing procedure
% of data 
discarded 

RMSE Relative RMSEGPS radius 
scenario

Density threshold

1 Scenario 1 0.16 5 13,862 40%
2 Scenario 2 0.16 4 21,142 33%
3 Scenario 2 0.9 × maximum 7 18,023 27%
4 Scenario 2 0.8 × maximum 9 19,274 24%

Note:  The data cleansing procedures are the scenarios for choice of radius around GPS points and the maximum 
threshold for acceptance of population densities (number of people per m2 of built area). The quality indicator—
root mean square error (RMSE)—compares the predictions with the INSD counts for fully enumerated munici-
palities. Relative RMSE was calculated from the relation of the errors to the size of the associated municipalities. 
The selected model is shown in bold.
Source:  Authors’ calculations based on census data collected by INSD in 2019.

Figure 5. Municipal populations, estimated and enumerated in the census, 
and their population growth since 2006

Population size
Growth (%)

High

Low

< 0 > 30

Enumeration
Partial
Missing

Note:  Population growth since the 2006 census is represented by colour (purple for negative growth and green 
for growth above 30%). The coverage of the 2019 census is represented by areas with either no outline (fully 
enumerated municipalities) or a thin (partial coverage) or thick (no coverage) outline.
Source:  Authors’ mapping based on census data collected by INSD in 2019 and 2006.
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the map) due to security problems. A significant increase (> 30%) in the pop-
ulation of certain estimated municipalities (in green) can also be seen. These 
mainly consist of partially enumerated municipalities (thin outline), which 
probably received members of the population of neighbouring areas that could 
not be enumerated at all (thick outline) due to generalized insecurity.

2. Top-down modelling: an opportunity for small-scale validation

Disaggregating municipal population counts involves estimating the rela-
tionship between population density and all chosen geographic variables at 
the municipal level, and applying this relationship at the grid-cell level. An 
aim of the present study was also to measure the impact on disaggregation of 
the denominator used to calculate population density. The first denominator 
chosen is the total area of the administrative units, which is identical to the 
definition used for WorldPop’s gridded populations (WorldPop Research Group 
et al., 2018). But the recent production of building footprints (Ecopia.AI and 
Maxar Technologies, 2019) has made it possible to spatially constrain human 
settlement to built areas, and thus to work with the number of people per unit 
of built area. Two methods exist for calculating the built area: either by sum-
ming the built cells, as for the constrained WorldPop estimates (Bondarenko 
et al., 2020), or by summing the area of all buildings. Using open-access scripts 
from Bondarenko et al. (2018), we assessed the impact on disaggregation of 
using the different denominators to calculate municipal population densities: 
(a) the total area of the municipality (Method 1); (b) the area of built cells 
(Method 2); and (c) the area of buildings (Method 3).

A first observation is that when density is calculated based on the area of 
buildings, calculated residential density is higher in rural areas than in urban 
areas. This effect is explained by the greater presence of non-residential build-
ings in urban areas, which decreases the ratio of population to built area. Using 
this predicted residential density at the grid-cell level as a weight to disaggregate 
population counts (WorldPop Research Group et al., 2018) would yield lower 
counts in urban areas than in rural areas. To remedy this, the predicted density 
is multiplied by the built area within the grid cell, representing a prediction 
of population size, which is then used as a weight in disaggregating municipal 
population counts.

Disaggregation is traditionally evaluated using two administrative levels of 
population data: the higher-level geographic unit is disaggregated and its pre-
dictions compared to data from the lower administrative level (Stevens et al., 
2015). However, finer-grained population data are available to us: namely, the 
counts from individual enumeration areas. Considering the problems with the 
quality of the GPS data collected (listed in Section III.1), 50 enumeration areas 
distributed across the country and the various residential contexts were selected. 

Figure 6 offers a clear demonstration of the importance of the building 
footprints for disaggregation. Unconstrained WorldPop estimates lead, on  average, 
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Figure 6. Comparison of disaggregation models across 50 test enumeration areas

Household GPS coords.

Enumeration area

Building footprint

Gridded population
(Method 2)

ESRI Imagery

10
20
30
40

Prediction for
a test enumeration area :

Method 1: 782
Method 2: 791
Method 3: 533
WorldPop constrained: 610
WorldPop unconstrained: 273

B. Prediction for a test enumeration area
854 inhabitants enumerated

A. Distributions of prediction errors (%)
Across the 50 test enumeration areas

200

100

0

–100

%

Method 1 Method 2 Method 3 WorldPop
constrained

WorldPop
unconstrained

Note:  The graph on the left shows the distribution of relative prediction errors ((prediction – observation)/
observation × 100) on a test sample with the three methods used to calculate the spatial denominator as well 
as the constrained and unconstrained WorldPop estimates. The image on the right is a visualization, at the 
enumeration area level, of the circling of GPS points to define the limits of the area, the building footprint, and 
the final gridded population (Method 2). The predicted population sizes with different methods are also 
presented. 
Source:  Authors’ calculations based on census data collected by INSD in 2019.
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to a prediction error of 90%, while Method 1 produces prediction errors of up 
to +200%. The method of calculating the built area has an impact on the disag-
gregation, with a greater dispersion of errors when the area of buildings is used 
(Method 3). Finally, applying this methodology with the municipal population 
counts from the enumeration, coupled with those estimated by the top-down 
approach for non-enumerated municipalities (Section III.1) as well as a specific 
set of geographical covariates (Method 2), produces the lowest prediction errors 
on average (–3%) and the lowest error dispersion (±27%).(5)

IV. Advantages and limitations of gridded estimates

The gridded population estimates for Burkina Faso presented in this article 
are the result of two successive modelling steps. The first (probabilistic model) 
was aimed at obtaining population sizes for areas not covered by the census. 
The second (deterministic model) aimed to break down hybrid municipal 
population estimates at the grid-cell level. This study highlights the importance 
of the gridding of demographic data. In addition to offering a precise image of 
the distribution of the population (Figure 4), it provides a coherent statistical 
basis for linking enumerated and non-enumerated areas, as well as demographic 
characteristics and geographical information.

1. An appeal at the crossroads between geography and demography

INSD’s official publication of gridded demographic estimates is a step in 
the direction of putting richer spatial analysis within the reach of all, in a 
context where it is rare for demographic or even geographical data to be freely 
available at a submunicipal level. Gridding compensates for the absence of a 
finer-grained level of administrative units. Grid cells can be used flexibly with 
any division of the territory (Thomson et al., 2020). However, to take full 
advantage of the gridded format requires the mastery of techniques specific 
to geographic information systems that are not among the traditional methods 
of demographic analysis. The mobilization of this type of resource therefore 
must be accompanied by dissemination and outreach activities. The develop-
ment of a multilingual application that facilitates the visualization and aggre-
gation of estimates is an initial step(6) (Leasure et al., 2020b).  

2. Responding to the challenges of the 2020 round of censuses

The series of censuses taking place between 2015 and 2024 has seen the 
completion of classical censuses in certain regions of the world, particularly 
sub-Saharan Africa, jeopardized by rising insecurity (Jhamba et al., 2020). 

(5) The final gridded population estimate from Method 2, an overview of which can be seen in Figure 
6, is available for download at: https://data.worldpop.org/repo/wopr/BFA/population/v1.0

(6) https://apps.worldpop.org/woprVision
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Cameroon, which has been experiencing attacks from the Islamist sect Boko 
Haram since 2015, as well as secessionist pressures in its English-speaking 
areas, has not been able to complete its census mapping (Ebolé Bola, 2019). In 
this context, the UNFPA has been promoting the use of statistical methods for 
estimating the population (UNFPA, 2020). While our Bayesian estimation 
framework allows different sources of population data to be combined while 
quantifying uncertainty (Leasure et al., 2020a), it only allows for the recon-
struction of one of the variables yielded by the census: population size. It is 
more difficult to use remote sensing data to establish many other characteristics 
of the population, such as composition by sex and age, socio-economic level, 
housing conditions, and migration. Current techniques for high-resolution 
mapping of social indicators, such as access to drinking water (Local Burden 
of Disease WaSH Collaborators, 2020) and school attendance (Local Burden 
of Disease Educational Attainment Collaborators, 2020), use geostatistical 
modelling techniques that require sampling which covers the entire territory. 
The approach taken here, using a hierarchical model with nested geographic 
levels to model the spatial distribution of the population, allows for extrapo-
lation to non-covered areas. It does rely, however, on the hypothesis of similar 
building occupation in accessible and inaccessible areas, after controlling for 
the type of buildings and the administrative structure—a similarity locally 
nuanced by geographical covariates.

3. An analytical weakness: population displacements

The insecurity that prevents complete census coverage also leads to internal 
population movements on a large scale, which are difficult to quantify and map 
(Carr-Hill, 2014). Of the 414,000 migrants identified during Burkina Faso’s fifth 
PHC (i.e. who reported that they had resided in another municipality the previous 
year), 30% were from municipalities with security challenges. To take this into 
account in estimating the numbers of individuals not reached by the census, we 
use an accounting method at the municipal level (see Section III.1). This does 
not, however, take into account displacements within the same municipality – 
for example, to the municipal seat. And it only includes displacements that were 
recorded or took place in 2019, whereas insecurity began to emerge in 2015 (but 
specifically accelerated in 2019). The predicted population can be modified, 
however, by estimating a surface called the weighting layer, which redistributes 
the gridded population numbers according to internal migration. Such a model 
was recently developed to estimate the population of South Sudan, based on the 
Armed Conflict Locations and Events Database and assessments by the 
International Organization for Migration (Dooley et al., 2021).

4. A technical dependency: the building footprints

A primary assumption concerning the quality of these predictions is the 
accuracy of the building footprints, i.e. how successful is the AI’s extraction 
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of data on building outlines from satellite images. Ecopia.AI and Maxar 
Technologies (2019) guarantee less than 5% false positives and negatives in a 
randomly selected sample of sites. The dating of the images also plays a role. 
For Burkina Faso, 20% of the images date from before 2015. However, these 
images are of rural areas, where major changes in urbanization are less likely 
to have occurred. For inaccessible municipalities, this proportion is only 15%, 
whereas 50% of images were taken between 2018 and 2020. If a locality was 
recently developed, then our model will not be able to accurately predict its 
current number of inhabitants. Conversely, if a village has been emptied of its 
inhabitants while its built structures remain in place, its population will be 
overestimated. An additional model of the correspondence between observed 
buildings and detected building footprints can be developed by including the 
date of the satellite image. But this requires a dataset where buildings are 
identified, typically drawn from census mapping. Moreover, in the present 
study, any building detected through satellite imagery is considered potentially 
residential. This leads to an overestimation of the number of residents in 
institutional or industrial areas. One solution for detecting non-residential 
buildings is to define a threshold for their size, but this creates a considerable 
risk of false negatives leading to the removal of residents from the map. The 
other possibility is to refine the building typology, going beyond the urban/
rural binary to enable the model to detect differences in population density 
(Jochem et al., 2021). 

Conclusion

The hybrid census, which combines field enumeration with high-resolution 
estimates, represents an undeniable technological advance. It means that in 
contexts where security challenges entail incomplete coverage of the popula-
tion, geographical data from satellite imagery and other sources can be used 
to supplement population data. However, the objectives of a population census 
extend well beyond simply counting the population. The use of spatial mod-
elling to estimate other demographic trends, such as gender and age compo-
sition, socio-economic level, and migration, remains an open challenge.

Moreover, the theoretical consequences of the inclusion of estimates in 
the population census extend beyond the scientific production of statistical 
data. It reopens the argument of the State’s powers and responsibilities in 
carrying out an exhaustive count of its population. Regarding the 1990 census, 
the United States Supreme Court rejected the use of statistical methods to 
adjust for the undercounting of marginalized populations using a sample survey 
(Anderson and Fienberg, 1996). This highlights the difficult articulation of 
legal questions (responsibility for the production of population counts) with 
metrological questions (what is the best statistical method of estimating the 
population?) (Desrosières, 2000). In situations where data collection is 
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 complicated, as in Burkina Faso, coupled with both the production of increas-
ingly precise auxiliary data and increasingly sophisticated statistical techniques, 
scientific advances enable the production of complete and up-to-date population 
data. This opportunity should not be overlooked, particularly given the increas-
ingly degraded security context seen in the countries of the Sahel at the opening 
of the 2020 round of censuses.
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Appendix A: Bayesian hierarchical population model 

The objective is to model the population in enumeration areas Ni, a variable 
that is discrete by definition and that can thus be described by a Poisson prob-
ability distribution. Poisson’s distribution has a single parameter that governs 
both the mean and the variance of the variable. To represent the over-dispersion 
of the observations, the population is broken down using population density, 
a continuous variable, multiplied by the observed variable Ai, the built area. 
Because population density is continuous, it can be defined using a log-linear 
regression (log because it is a positive variable) integrating the predictive 
spatial variables xi,k and a y-intercept al estimated hierarchically by region l, 
i.e. with a hyperparameter anational that constrains each regional estimate to be 
consistent with the national estimate. Finally, the variance v of the density 
(which corresponds to the variance of the error term in a frequentist presen-
tation, i.e. log (Di) = a + bxi + f with f ~ Normal (0,v), and which describes the 
uncertainty around the estimated density) is also estimated hierarchically by 
region l.

More precisely, for each enumeration area i belonging to region l:

Base model:

Ni ~ Poisson(Di Ai) (1)

Log (Di) ~ Normal (Di, vl)  (2)

Di = al + ∑k = 1 bk xi,k
K   (3)

Prior distributions :

bk ~ Normal(0,1)  (4)

al ~ Normal(anational, snational) (5)

anational ~ TruncNormal(11,3) 

snational ~ TruncNormal(0,1) 

vl ~ Normal(bnational, vnational) (6)

bnational ~ TruncNormal(0,1) 

vnational ~ TruncNormal(0,1) 

where: 

 (1) models the population size Ni of the enumeration area as a Poisson 
distribution because a population size is a positive discrete event, with the 
population density Di as a parameter, multiplied by the built area within 
the enumeration area Ai

 (2) models the log population density according to a normal distribution 
because density is a positive event, with mean  and variance vl, estimated 
hierarchically
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 (3) estimates  as a linear regression on K spatial variables xk with 
 coefficients bk and intercept al, estimated hierarchically

 (4) indicates the prior distributions of the bk, which are assumed to be 
independent and centred at 0 so as not to assume an impact of the spatial 
variables

 (1) and (6) hierarchically structure the prior distributions of al and vl by 
making them each depend on two parameters estimated at the national 
level: for the first, anational and vnational, and for the second, bnational and vnational. 
To restrict these two hyperparameters to positive values, the prior distri-
butions that govern them are truncated normal distributions. While overall 
the prior distributions are not very informative, the mean of anational is 11, 
as suggested by the sample of population densities, to speed up the esti-
mation procedure, while its variance is 3 to relax the associated 
constraint.

In using hierarchical estimation, we assume that the variance and popu-
lation density at the origin differ by geography. It can be assumed, for example, 
that variance will be comparatively lower in rural areas than in urban areas, 
which contain highly contrasting residential environments. The model pre-
sented here has a single geographical level l, but it has been extended in practice 
to multiple nested geographical levels.
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Edith Darin, Mathias Kuépié, Hervé Bassinga, Gianluca Boo, Andrew J. tatem •  thE 
PoPulation sEEn From sPaCE: whEn satEllitE imagEs ComE to thE rEsCuE oF thE 
CEnsus

The size of the population, the denominator of many statistical indicators, is crucial for public policy. National 
statistical offices organize the collection of this information, most often through a census. But what happens 
when parts of a country are not accessible to census enumerators? Today, spatial data extracted from satellite 
imagery offer high-resolution geographical information with complete coverage. When combined with a 
partial population count, they offer an unprecedented opportunity to estimate the size of the population in 
inaccessible areas. The spatial precision of these data also makes possible the production of a high-resolution 
gridded population estimate, an innovative data format at the intersection of geography and demography. 
Based on the case of Burkina Faso, this article analyses how, by dividing a country into 100 m by 100 m cells, 
a Bayesian hierarchical model can be used to estimate the population of areas with security challenges which 
could not be enumerated during the 2019 census. This gridding allows the resulting counts to be disaggregated 
using a statistical learning model, yielding unparalleled spatial precision in population estimates.
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PoPulation vuE Du CiEl : quanD l’imagEriE satEllitE viEnt au sECours Du 
rECEnsEmEnt

Le dénombrement de la population, dénominateur de nombreux indicateurs statistiques, est crucial pour les 
politiques publiques d’un pays. Il est du ressort des instituts nationaux de statistique d’en organiser la collecte, 
le plus souvent par le biais d’un recensement. Que se passe-t-il lorsqu’une partie du territoire n’est pas accessible 
aux agents recenseurs ? Actuellement, les données spatiales, telles qu’extraites de l’imagerie satellite, offrent 
une information géographique complète et de haute résolution, qui représente, lorsque combinée à un 
dénombrement partiel de la population, une opportunité sans précédent pour estimer les effectifs des terri-
toires manquants. Leur précision spatiale rend également possible une estimation carroyée de la population 
en haute résolution, un format de données innovant à la croisée de la géographie et de la démographie. À 
partir du cas du Burkina Faso, cet article analyse comment le découpage du pays en carreaux de 100m sur 100m 
permet dans un premier temps de développer un modèle pour estimer, par le biais d’une approche hiérarchique 
bayésienne, la population des zones caractérisées par des problèmes sécuritaires n’ayant pas pu être dénom-
brées lors du dernier recensement de 2019. Ce découpage permet dans un second temps de désagréger les 
effectifs obtenus, par le biais d’un modèle d’apprentissage statistique pour obtenir une précision spatiale 
d’estimation de la population inégalée.
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El recuento de la población, denominador de numerosos indicadores estadísticos, es crucial para las políticas 
públicas de un país. Corresponde a los institutos nacionales de estadística el organizar la recogida de datos, 
la mayoría de las veces a través de un censo. ¿Qué ocurre cuando una parte del territorio no es accesible para 
los agentes encargados de elaborar el censo? Hoy día, los datos espaciales, tal y como se extraen de las imágenes 
satélite, proporcionan una información geográfica completa y de alta resolución que, al ser combinada con 
un recuento parcial de la población, representa una oportunidad sin precedentes para estimar los efectivos 
de los territorios inaccesibles. La precisión espacial hace igualmente posible una estimación por cuadrantes de 
la población en alta resolución, un formato de datos innovador a caballo entre la geografía y la demografía. 
A partir del estudio de Burkina Faso, este artículo analiza cómo la división del país en cuadrantes de 100 m por 
100 m permite desarrollar en una primera fase un modelo para estimar, mediante una aproximación jerárquica 
bayesiana, la población de las zonas con problemas de seguridad de las que no pudo hacerse el recuento en 
el último censo de 2019. En una segunda fase, el recuento permite desagregar los efectivos obtenidos, mediante 
un modelo de aprendizaje estadístico, para obtener una precisión espacial de estimación de la población 
inigualable.

Keywords:  gridded population, geospatial data, census, hierarchical model, Bayesian 
statistics, building footprint, remote sensing, Burkina Faso

Translated by Paul Reeve
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