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Abstract

The UK’s Living Costs and Food (LCF) Survey has a relatively small sample size, but produces

estimates which are widely used, notably as a key input to the calculation of weights for consumer

price indices (CPI). There has been a recent call for the use of additional data sources to improve the

estimates from the LCF. Since some LCF variables are shared with the much larger Labour Force

Survey (LFS), we investigate combining data from these surveys using composite calibration to

improve the precision of estimates from the LCF. We undertake model selection to choose a suitable

set of common variables for the composite calibration using the effect on the estimated variances

for national and regional totals of important LCF variables. The variances of estimates for common

variables are reduced to around 5% of their original size. Variances of national estimates are reduced

(across several quarters) by around 10% for expenditure and 25% for income; these are the variables

of primary interest in the LCF. Reductions in the variances of regional estimates vary more but are

mostly large when using common variables at the regional level in the composite calibration. The

composite calibration also makes the LCF estimates for employment status almost consistent with

the outputs of the LFS, which is an important property for users of the statistics. A novel alternative

method for variance estimation, using stored information produced by the composite calibration, is

also presented.

Keywords: household expenditure survey, composite estimation, data integration, data harmon-

isation, linearised jackknife

Significance statement: We show that integrating two data sources using composite calibra-

tion gives substantial reductions in the variances of important estimates in a household expenditure

survey, the Living Costs and Food Survey. The approach has several advantages: it makes LCF

estimates almost consistent with LFS outputs for common variables and provides weights that can

∗Dept. of Statistics, Athens University of Economics and Business, Athens, Greece, merkouris@aueb.ac.gr
†S3RI and Dept. of Social Statistics, University of Southampton, UK, p.a.smith@soton.ac.uk
‡Office for National Statistics, Newport, UK, andy.fallows@ons.gov.uk

1



be used for all variables. Variances account appropriately for the uncertainty in estimation, and are

straightforwardly calculated. Variances of LCF estimates of common variables are very substan-

tially reduced. Variance reductions for other variables depend on the correlation with the common

variables in the composite calibration. We select common variables by their impact on the esti-

mated variances of income and expenditure. Variance reductions vary between variables and across

periods.

1 Introduction

The household expenditure survey in the UK is the Living Costs and Food Survey (LCF). It is an impor-

tant survey source, providing estimates of household expenditure broken down by commodities, used

for many purposes (ONS, 2009), but notably as one of the main inputs to the calculation of weights for

consumer price indices (CPI). The weights are derived through the input-output framework of the na-

tional accounts, which integrates multiple data sources for specific commodities. Nevertheless the LCF

estimates are the main source of expenditure information for many commodities. Its achieved sample

size is approximately 5,000 households per year, which is relatively small for a household expenditure

survey, particularly relative to the UK’s population size (for example the biennial Survey of Household

Spending in Canada sampled 48,570 households in 2021 (Statistics Canada, 2021) for a population about

a third as large as the UK). The LCF sample size is, however, just above the median achieved sample

size in the 2015 round of Household Budget Surveys in Europe (Eurostat, 2020, Table 1). The small

sample size results in estimates for expenditure by commodity (particularly rarer commodities) with

relatively large variances. These contribute to larger variances for the weights in the CPI (Dawber et al.,

2022), particularly if there is a requirement to produce estimates for domains, for example by regions.

Other estimated breakdowns also have relatively large variances, and are therefore not suitable for some

detailed uses. This has been highlighted as a weakness in a recent assessment by the Office for Statistics

Regulation (2021).

The quality of the estimates from household expenditure surveys is influenced by different sources

of error. Measurement errors can result from the relatively complex data collection processes, which

require significant effort from respondents (Jäckle et al., 2021; Eckman, 2022). There is also a tendency,

across many similar household expenditure surveys, for households with very low incomes to have

relatively high expenditure (Brewer et al., 2017), from a mismatch in expenditure and income. Brewer

et al. (2017) suggest that income is underestimated, which has led to attempts to reconcile income

(Burton et al., 2020) in the data collection process.
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The Office for Statistics Regulation also suggested the use of additional data sources as a creative

approach to improving the estimates from the LCF (Office for Statistics Regulation, 2021). Jäckle et al.

(2021) review the available data sources for the measurement of household finances, including data

obtained by linkage to administrative data sources (such as credit card and loyalty card data) and data

from volunteer collections (such as receipt scanning). They also review the different types of error,

setting them within a total survey error framework.

We assume that the effects of these kinds of errors on data quality are well handled, since the

LCF is a well-designed national survey (see Ralph and Manclossi (2016) for a more comprehensive

view). Among the effects of various errors on the quality of the survey estimates, we focus on the

relatively large sampling errors resulting from the small sample size of the LCF. One consequence,

identified in the LCF Quality Review (Ralph and Manclossi, 2016) is a mismatch between the employ-

ment/unemployment/inactivity estimates from the LCF and the corresponding official figures from the

Labour Force Survey (LFS), which has a substantially larger sample size. Users identified this incon-

sistency as a challenge in using and understanding estimates from LCF and LFS, and sought greater

consistency between them. We therefore follow Office for Statistics Regulation (2021)’s suggestion to

utilise alternative data sources by seeking to use the information from the two surveys together. We want

to incorporate the information from the LFS into the estimation for the LCF for two purposes: to reduce

the variance of estimates for variables collected in the LCF, at national and regional level; and to correct

for differential representation of employment statuses in the LCF to improve consistency between LCF

and LFS estimates.

Information from two surveys may be combined for more efficient estimation and consistency of

estimates for common variables in several ways; see Yang and Kim (2020) for a review. In this paper

the proposed method is an adaptation of the regression method of Merkouris (2004, 2010) for inte-

grating independent surveys with some common variables through composite calibration, whereby two

surveys are weighted together so that they produce consistent estimates for selected common variables.

Other design-based approaches that could be considered include the regression methods of Renssen and

Nieuwenbroek (1997) and Hidiroglou (2001), the model-based method of Kim and Rao (2012) and the

empirical likelihood methods of Wu (2004), Chen and Kim (2014) and Berger and Kabzińska (2020).

The proposed method is adopted because it serves effectively all the set objectives, is also very practical

and fits readily into the system of regression estimation and variance estimation of the LFS and the LCF.

We also present a novel alternative method for variance estimation, using stored information produced

by the composite calibration.
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We use the LCF and LFS data to pursue a number of questions:

1. can we substantially reduce the variance of the LCF estimates by incorporating data from the

LFS?

2. what is the best choice of common variables to include in the composite estimation? There are

several variables common to LCF and LFS, and we seek common variables correlated with the

outcomes of interest, but which will also be useful in a general calibration approach suitable for

many variables, since only one set of weights will be used for all variables for ease of processing

and consistency.

3. what is the effect of the composite estimation on the final weights, under different calibration

models?

4. does composite estimation improve the consistency between LCF and LFS estimates, and there-

fore reduce the variability of LCF estimates across quarters to obtain a more stable time series?

The remainder of the paper is structured as follows. Section 2 contains an overview of the designs

and relevant features of the LCF and LFS. Section 3 describes the composite calibration approach, and

section 4 explains where the methodolology has been adapted to the situation of the LCF and LFS.

Section 5 presents the results of applying composite calibration to the LCF in 2017-18. Section 6

discusses the impacts on the LCF estimates and the effectiveness of the approach.

2 Survey descriptions

2.1 Outline description of Living Costs and Food Survey

The UK’s LCF is a nationally representative household survey, with an achieved sample size of around

5,000 households per year. Sampling follows a two-stage design (Ralph and Manclossi, 2016, section

3.1), with postcode sectors (geographic areas based on postal delivery information) forming the primary

sampling units (PSUs), which are stratified by region. Within regions, PSUs are ordered by percent-

age of households without a car, percentage of households in the National Statistics Socio-economic

Classification (NSSEC) groups 1-3, and percentage of pensioners, all derived from the previous popula-

tion census. 683 postcode sectors are selected across Great Britain (that is, the UK excluding Northern

Ireland) by systematic selection in this ordered list. Within postcode sectors, addresses are ordered ge-

ographically, and then 18 addresses in each postcode sector are selected by systematic sampling. The
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sample in Great Britain is therefore clustered by postcode sector. Northern Ireland is treated as a separate

stratum, within which there is no clustering, just a systematic random selection of addresses.

The primary outputs from LCF are annual, but there is also interest in expenditure and income by

quarter, for which the sample size does not support any detailed breakdown. The annual sample is

therefore processed in four quarterly tranches, with the annual totals derived as the average (for stock

variables) or sum (for flow variables) of the quarterly estimates.

All adults in sampled households are included, and (before COVID affected survey operations) col-

lection was in two parts, a household interview administered by an interviewer using CAPI, and an

expenditure diary covering a two-week period following the interview, to be completed by all household

members. The main interest is in household (not personal) expenditure, so clustering within households

is not important for expenditure estimates. Within-household clustering does, however, have an effect

for person level variables such as labour force status. The interview involves substantial input from the

whole household to the expenditure diary, and therefore the LCF response rate is relatively low (Office

for Statistics Regulation, 2021); it was 43% in the financial year 2017-18, covering most of the period

we investigate below (ONS, 2019).

The LCF is weighted to household population estimates (demographic projections of the numbers of

people in the non-institutional population), published regularly by the ONS, with a breakdown by age,

sex and region. All people in a household receive the same weight (integrated weighting, (Lemaı̂tre and

Dufour, 1987)), ensuring consistency when working with household-level variables. A key function of

the weighting is to adjust for differential nonresponse, and therefore we always include these variables

when exploring composite calibration.

The LCF estimates of primary interest are expenditure and its breakdown by commodities, but it

also includes a range of other variables, including labour force status, tenure and income. Some of these

were introduced when household surveys in the UK were harmonised as part of an integration project

(Smith, 2009); many are important classifiers or predictors. LCF estimates are used mainly at national

level, for example in the National Accounts, but there is also interest in breakdowns for regions (Dawber

et al., 2022), income deciles and other characteristics (ONS, 2020, 2022).

There has been concern that the LCF operation may not produce sufficiently reliable estimates and

may not have kept pace with the latest methodology and technology. This led to a National Statis-

tics Quality Review (Ralph and Manclossi, 2016) and an assessment of the LCF against the National

Statistics Code of Practice, including an appraisal of progress in implementing the quality review’s rec-

ommendations (Office for Statistics Regulation, 2021). We address this issue in this paper and explore
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the approach outlined in section 1 to improve the quality of estimates from the LCF.

2.2 Outline description of the Labour Force Survey

The UK’s LFS is also a nationally representative household survey, with an achieved sample size of

around 40,000 households per quarter (ONS, 2015, 2021). The larger sample size means that addresses

are sufficiently dense that they can be interviewed efficiently with an unclustered design, and therefore

addresses are selected as a single-stage sysematic selection. The LFS has a rotating panel design where

sampled households are interviewed five times at quarterly intervals (a 1-2-1(5) design, Steel (1997)).

Sampled households are grouped, so data collection follows a weekly pattern of defined areas; weeks are

aggregated consistently into months for the production of estimates. Therefore the sample is unclustered

for any consecutive three-month period, but clustered over shorter periods. The main estimates are

produced monthly, covering the most recent three months of data, giving ‘rolling quarterly’ outputs.

Because the rotation pattern involves repeat surveys of the same household, the annual sample size (that

is, the number of households included in the sample at any point during a year), is only c.64,000, around

1.6 times the quarterly sample size.

All members of sampled households are interviewed, but the main interest is in person-level vari-

ables, so it is less critical that all members of a household participate. The first contact and interview are

face-to-face, with follow-up interviews by telephone wherever possible. The LFS is the largest official

social survey in the UK, with substantial regional sample sizes. This makes it the best source for esti-

mates which need a regional breakdown, and has led to a relatively long questionnaire as there has been

pressure to include many topics in order to obtain regional estimates.

The weighting uses the same population totals as the LCF, broken down by age, sex and region,

but with additional breakdowns of population sizes by Local Authority. Some specific communal es-

tablishments are included in the sample and therefore in the population totals too. The weighting is

undertaken at person level (so different people in the same household in general get different weights).

This weighting produces the main headline figures, though a supplementary household-level weighting

is also produced for use with household variables. As with the LCF, a key function of weighting is

to adjust for differential nonresponse, so we always include these calibration variables when exploring

composite calibration. The LFS response rate averaged 42.7% over quarter 1 (Q1) of 2017 to quarter 2

(Q2) of 2018, the quarters we use in our application below (ONS, 2021, Fig. 5.1).

The LFS is the official source in the UK for employment, unemployment and inactivity according

to the International Labour Organisation definition. However, the dataset used here has some small
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differences from the official LFS (see section 4.1). Note therefore that the LFS estimates presented here

are different from the official estimates, and should not be treated as official.

Regional LFS estimates are improved by a supplementary survey, the annual population survey

(APS), which boosts the LFS sample to ensure a minimum sample size in each local authority, with an

annual rotation pattern. The combination of LFS and APS is therefore useful for regional variables, but

we do not consider this additional complication in the present paper.

3 Composite estimation for the LCF

3.1 Current estimation systems for the LFS and the LCF

This section describes the current estimation systems of the LFS and the LCF, in a unified manner

on account of their similarities. In particular, it explains the production of the generalized regression

estimators of totals through a procedure of calibration of the survey’s design weights, and the method of

computing the variances of these estimators.

Let U denote the sampling frame of households, and s denote a sample of households from U , with

sample size n, in which data are collected from all eligible members of each household. Let wi be the

design weight of the i-th household in the sample s, and let y be a household-level variable with value

yi for the i-th household and population total ty =
∑

U yi. The basic estimator of ty is the Horvitz-

Thompson estimator t̂y =
∑

swiyi.

The calibration procedure for both the LFS and the LCF involves three categorical auxiliary variables

defined for the survey population of persons, namely sex, age categories, and regions. Calibration

groups, i.e., subpopulations of known sizes, are defined by the various categories of particular categorical

variables, or by cross-classification of categories of different variables. Two sets of calibration groups,

called partitions, are specified so that each responding individual is in one calibration group of each

partition. One partition comprises a number of calibration groups defined by cross-classifying sex with

age groups, and a second partition includes as groups geographic regions of the country.

Suppose that the various categorical auxiliary variables used in calibration define a total of p distinct

calibration groups, in the two partitions. Letmi denote the size of the i-th household in the sample s, and

for each partition define the indicator variable xijk such that xijk = 1 if the j-th member of household

i belongs to group k of that partition and xijk = 0 otherwise. For each member of the household this

defines a p-dimensional vector, of which as many elements as the number of partitions are set equal to

1 and the rest are set equal to 0. Then xik =
∑mi

j=1 xijk is the number of members of the i-th household
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that belong to the calibration group k, for k = 1, . . . , p. Thus, for the i-th household, x
′
i = (xi1, . . . , xip)

is the row vector of membership counts in the p calibration groups, where (′) denotes vector transpose.

Of course, for any particular household, not all p counts are necessarily greater than 0. The associated

p × 1 vector of population totals, called calibration totals, is tx =
∑

U xi, and its Horvitz-Thompson

estimator is t̂x =
∑

swixi.

The calibrated weight, ci, of the i-th household in the sample is defined by

ci = wi

1 + x
′
i

(∑
s

wixix
′
i

)−1(
tx −

∑
s

wixi

) , (1)

where the inverted matrix
(∑

swixix
′
i

)
is of dimension p × p. For this matrix to be invertible, it

is required that one (arbitrary) group be removed from all but one of any partitions which have the

same aggregate population totals. The calibrated weights given by (1) satisfy the set of p equations∑
s cixi = tx. Equation (1) can be written in matrix form as

c = w + WX
(
X
′
WX

)−1 (
tx −X

′
w
)
, (2)

where w and c are the vectors of design and calibrated weights, respectively, and W is the n×n diagonal

matrix with diagonal elements the design weights, and

X =


x
′
1

...

x
′
n

 =


x11 · · · x1p

...
...

xn1 · · · xnp

 (3)

is the n × p ‘design matrix’. The expression (2) facilitates the computation of the calibrated weights,

and the description of the calibration setup for composite estimation.

The calibrated household weights given by (1) are used for the estimation of household-level pop-

ulation characteristics in the LFS and the LCF. As mentioned in section 2.2, calibration in the LFS is

also undertaken at person level for use with person characteristics. However, for the combination of data

from the two surveys, only calibrated household weights are needed. Then, using the calibrated weights

defined by (1), the calibration estimator of the total ty of a household-level variable y, constructed as∑
s ciyi, takes the form of (generalized) regression estimator

t̂Ry = t̂y + B̂(tx − t̂x), (4)
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where B̂ =
∑

swiyix
′
i

(∑
swixix

′
i

)−1
. The alternative form of the estimator t̂Ry , based on (2), that

will be used later is t̂Ry = Y
′
c, where Y is the n × 1 vector of the sample values of y. Obviously, by

calibration we have t̂Rx = X′c = tx. This means that the regression estimate of the population total of

any calibration group is exactly equal to that total.

Calculation of the approximate (for large samples) variance of t̂Ry uses the linearized form t̂Ry ≈

t̂y +B(tx− t̂x), where B =
∑

U yix
′
i

(∑
U xix

′
i

)−1
and U denotes the sampling frame of households.

Writing t̂Ry ≈ Btx +
∑

swi(yi − Bxi) = Btx +
∑

swiei, where ei are the regression residuals, it

follows that the variance V (t̂Ry ) is approximately the variance V (
∑

swiei). Then the estimated approx-

imate variance of t̂Ry is V̂ (
∑

swiêi), where êi = yi − B̂xi are the estimated residuals. These estimated

residuals are conveniently generated in vector form as ê = Y −XB̂
′

= [I −X(X
′
WX)−1X

′
W]Y.

For stratified multi-stage sampling, used in both LFS and LCF, the exact formula for V̂ (
∑

swiêi) is im-

practicable, and so the alternative approximate formula for the estimated variance of t̂Ry that is typically

used is

V̂ (t̂Ry ) =
H∑
h

nh
nh − 1

nh∑
l

(ehl − ēh)2, (5)

where h = 1, . . . ,H denotes stratum, nh is the number of primary sampling units (clusters) in stratum

h, ehl =
∑

iwhliêhli with êhli and whli being the estimated residual and design weight, respectively,

associated with the sample element (hli), and ēh = (1/nh)
∑

l ehl. Replacing the design weights whli

in ehl by the calibrated weights chli gives the jackknife linearization variance estimator; see Yung and

Rao (1996). This approach of jackknife linearization, involving residuals weighted by the calibrated

weights, is used in variance estimation in both the LFS and the LCF; see Holmes and Skinner (2000).

3.2 Composite estimation incorporating LFS data in LCF

Let s1 and s2 denote quarterly samples of the LFS and the LCF, respectively, with n1 and n2 denoting

their household sample sizes, and let p1 and p2 be the numbers of calibration groups (with specified

partitions) in the two surveys. Also, let w1 and w2 denote the vectors of household design weights for

the two samples. The proposed composite calibration procedure requires simultaneous calibration for

the LFS and LCF household samples. For this calibration the appropriate design matrix of household
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membership counts, having dimension (n1 + n2)× (p1 + p2), is

X =

 X1 0

0 X2

 , (6)

where X1 and X2 are the design matrices for the LFS and the LCF, respectively, and can be built using

the combined LFS and LCF data files sorted by sample, i.e., treating the samples s1 and s2 as superstrata.

With this matrix X, calibration of the household weights of both samples is carried out by applying the

generic formula (2), using w = (w
′
1,w

′
2)
′
, W = diag(W1,W2) with obvious definition of W1 and

W2, and the vector of calibration totals tx = (t
′
x1
, t
′
x2

)
′

for the LFS and the LCF. In the vector of the

resulting calibrated weights, the first n1 and the remaining n2 of them are the calibrated weights that

would be obtained from separate calibrations of the LFS and LCF vectors w1 and w2, respectively. In

particular, these calibrated weights give rise to two independent regression estimates for any variable

that is common to the LFS and the LCF.

Next, to combine data from the LFS and the LCF, we choose categorical variables (with unknown

totals) that are common to the two surveys, and (ideally) strongly correlated with main LCF variables.

These variables define a total of q distinct categories to which each household member belongs. These

categories form the additional calibration groups in an extended calibration procedure. Now, for any

household, say i, of the LFS or the LCF let z
′
i = (zi1, . . . , ziq) be the row vector of membership counts

in the q calibration groups involved in composite estimation. The associated design submatrices Z1 and

Z2, of the form (3) and dimension n1× q and n2× q, for the LFS and the LCF, respectively, can be built

using the combined LFS and LCF data file. Composite estimation is accomplished through an extended

calibration procedure, whereby, in addition to the simultaneous calibration of the LFS and the LCF

described above, the estimated totals for all q common variables from the two surveys are calibrated to

each other, i.e., they are aligned. This involves the augmented design matrix

X =

 X1 0 −Z1

0 X2 Z2

 , (7)

whose dimension is (n1 + n2) × (p1 + p2 + q), and the associated vector of calibration totals tX =

(t
′
x1
, t
′
x2
,0
′
)
′
, where 0 is a vector of q zeros. In the matrix X , the row corresponding to the i-th

household of the LFS is of the form X i = (xi1, · · · , xip1 , 0, · · · , 0,−zi1, · · · ,−ziq), where there are

p2 zero elements. The row corresponding to the i-th household of the LCF is of the form X i =
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(0, · · · , 0, xi1, · · · , xip2 , zi1, · · · , ziq), where there are p1 zero elements. The specification of the ad-

ditional q calibration groups should satisfy the condition that (Xi,Zi) , i = 1, 2, is of full rank pi + q.

Using the design matrix X , an extension of the simultaneous calibration for LFS and LCF described

above is carried out by applying (2), using w = (w
′
1,w

′
2)
′

and the vector tX . In this case, the weighting

matrix W in (2) is the diagonal matrix (of dimension (n1 + n2) × (n1 + n2)) whose first n1 diagonal

elements are those of w1 multiplied by 1 − φ, and the remaining n2 are those of w2 multiplied by φ,

where φ = n1/(n1+n2). This adjustment of the weights of the two samples accounts for the differential

in the sample sizes n1 and n2, thus leading to more efficient estimation; see Merkouris (2004). The

described calibration procedure generates a (n1 + n2)× 1 vector c = (c
′
1, c

′
2)
′

of calibrated household

weights for both surveys given by

c = w + WX (X ′
WX )−1(tX −X ′

w). (8)

It follows immediately that X ′
c = tx, consolidating the calibration constraints X′1c1 = tx1 , X′2c2 =

tx2 and Z′1c1 = Z′2c2. The n2 × 1 sub-vector c2 is the vector of composite household weights for the

LCF, and is given by

c2 = w2 + W2X 2(X
′
WX )−1(tX −X ′

w), (9)

where W2 is the lower block diagonal submatrix of W, and X 2 = (0 X2 Z2) is the lower submatrix

of X in (7). These composite weights, which incorporate information from the LFS sample, can be

used to estimate any household characteristic of interest to LCF; there is no further need of LFS data for

parameter estimation in the LCF. Thus for any LCF variable y, the composite regression estimate of its

population total ty is obtained as t̂CR
y =

∑
s2
ciyi, and more conveniently as t̂CR

y = Y
′
2c2, where Y2

is the n2 × 1 vector of LCF sample values of y. In particular, for the vector z of common variables the

composite regression estimate of the population total tz using LCF data is t̂CR
z = Z

′
2c2. In composite

regression form, t̂CR
y is given by

t̂CR
y = t̂y + B̂

(
tX − t̂X

)
, (10)

where B̂ = Y′2W2X 2(X
′
WX )−1 is the regression coefficient, incorporating information from both

surveys, and t̂X = (̂t
′
x1
, t̂
′
x2
, t̂
′
z2 − t̂

′
z1)′. The components of t̂X are the Horvitz-Thompson estimators

of tx1 , tx2 and tz based on the indicated samples. Clearly, by the calibration property the composite

regression estimators of these totals are t̂CR
x1

= X′1c1 = tx1 and t̂CR
x2

= X′2c2 = tx2 . Also, t̂CR
z =

Z′1c1 = Z′2c2.
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Using a decomposition of c based on partitioning the matrix X by the two column submatrices

involving the auxiliary variables x and z, the estimator t̂CR
y can be expressed (Merkouris 2004) in terms

of regression estimators involving only x as

t̂CR
y = t̂Ry + B̂y

(
t̂Rz1 − t̂Rz2

)
, (11)

where B̂y = Y′2L2Z2[Z
′
1L1Z1 + Z′2L2Z2]

−1, with Li = Wi

[
I−Xi(X

′
iWiXi)

−1X′iWi

]
, is the

partial regression coefficient accounting for the additional information on z from the two surveys. The

expression of the composite regression estimator t̂CR
y in (11) allows a direct comparison with its single-

sample counterpart t̂Ry . Regarding the effect of B̂y on the efficiency of t̂CR
y , it is worth noting that in

certain sampling designs, e.g., simple random sampling without replacement, an appropriately specified

weight multiplier φ in W turns this coefficient into B̂y = ÂC(t̂Ry2 , t̂
R
z2)[ÂV (̂tRz1) + ÂV (̂tRz2)]−1, where

ÂC and ÂV denote estimated approximate (large-sample) covariance and variance. In such cases B̂y

minimizes the estimated large-sample variance of t̂CR
y ; see Merkouris (2004). For general sampling

designs, the coefficient B̂y serves as an approximation to the optimal one, much as in the case of single-

sample regression estimation.

Similarly, for the q-dimensional common variable z we obtain the composite regression estimator of

tz, using LCF data, as the weighted average of the estimators t̂Rz1 and t̂Rz2

t̂CR
z = t̂Rz2 + B̂z

(
t̂Rz1 − t̂Rz2

)
= B̂zt̂

R
z1 +

(
I− B̂z

)
t̂Rz2 ,

where B̂z = Z′2L2Z2[Z
′
1L1Z1 + Z′2L2Z2]

−1. For the mentioned designs and with the same multiplier

φ the coefficient B̂z turns into B̂z = ÂV (̂tRz2)[ÂV (̂tRz1) + ÂV (̂tRz2)]−1, giving t̂CR
z as the weighted

combination of t̂Rz1 and t̂Rz2 of minimum variance.

It is instructive to observe that (11) can be written as

t̂CR
y = t̂Ry + Y′2L2Z2

(
Z′2L2Z2

)−1 (
t̂CR
z − t̂Rz2

)
. (12)

This is the regression estimator that would be obtained through an extended calibration of the LCF

sample only, in which in addition to the calibration total tx2 the composite estimator t̂CR
z would be used

as calibration total. However, the described procedure of simultaneously calibrating the two samples is

particularly practical in producing composite estimates and their variance estimates for all variables of

LCF at national and regional level.
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The described composite calibration procedure is devised to produce composite regression estimates

for LCF national-level population totals that are more precise than the regression estimates that are

based only on LCF data, more so for the common variables because of the direct correlation of their

values from the two samples. To improve the precision of key LCF estimates at regional level, the

composite calibration should incorporate the additional constraints that estimates of totals of common

variables are aligned at regional level; see Merkouris (2010). Then for selected categories of the common

categorical variables, the corresponding columns of the matrices Zi, i = 1, 2, are replaced by matrices

with R columns, one for each of the R regions, with entries the household counts in the particular

category and region, and zero entries for the rest of the regions. The associated vector of calibration

totals contains as many additional zeros as the additional calibration constraints. Since regions constitute

already one of the partitions of the calibration scheme, one of the R columns should be dropped to

avoid collinearities in the design matrix. Then, for any of those key variables, say y, the composite

regression estimate of its regional total tyr , r = 1, · · · , R, based on the sample s2r of region r, will be

t̂CR
yr = Y′2rc2(=

∑
s2r
ciyi), where Y2r is the vector Y2 with zero entries for households not in region

r.

3.3 Variance estimation for composite estimators of the LCF

An adaptation of the method of jackknife linearization for variance estimation, outlined in Section 3.1, is

applied to the composite estimators of LCF totals described in Section 3.2. Thus, writing t̂CR
y = Y′2c2

equivalently as

t̂CR
y = Y

′
c = Y

′
w + Y

′
WX (X ′

WX )−1(tx −X ′
w),

where Y
′

= (0,Y
′
2), and following the general derivation of regression residuals in Section 3.1, it

is easily verified that the vector of residuals in the present context is ê = Y − X B̂
′
, where B̂ =

Y
′
WX (X ′

WX )−1 = Y
′
2W2X 2(X

′
WX )−1. The vector ê is partitioned by sample (LFS, LCF) as

 ê1

ê2

 =

 −X 1B̂
′

Y2 −X 2B̂
′

 , (13)
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where X 1 is the submatrix (X1 0 −Z1) of X , and the residuals at the level of sample unit (household)

are given by

êi =

 −B̂X i, i ∈ s1

yi − B̂X i, i ∈ s2
, (14)

where X i is the row vector element of X corresponding to the i-th household (the form of which

is described in the previous section following (7)). Then the estimated approximate (for large sam-

ples) variance of the composite estimator t̂CR
y is the variance of the weighted sum of residuals, i.e.,

V̂ (
∑

s1
wiêi) + V̂ (

∑
s2
wiêi), the additive variance over the two samples being due to the sampling

independence of the LFS and the LCF. These two variance components can be calculated approximately

through jackknife linearization, as outlined in Section 3.1 and following the current variance estimation

practice for the LFS and the LCF, i.e., using formula (5) with the stratification and clustering of the

particular survey. The residuals given by (14) should be weighted by the calibrated weights assembled

in vectors c1 and c2 for s1 and s2, respectively. These residuals can also be used to estimate the variance

of other estimated parameters of the LCF.

Note that unlike the estimation of the LCF parameters which requires only the vector of composite

weights c2 and data on the LCF variables, and could also be carried out after the simultaneous composite

calibration of the two samples, variance estimation for LCF involves the variable-dependent residuals

for both LFS and LCF data. It is possible to compute variance estimates associated with any variable of

the LCF later in a separate procedure if necessary, but this requires storing a large amount of information

necessary to form the residuals in (14). A computationally convenient option for variance estimation of

any LCF parameter using stored information produced by the composite calibration is explained in the

Appendix. This could also be a useful approach for a statistical office when the calibration microdata

cannot be made publicly available.

4 Methodological choices in the LCF/LFS application

4.1 Defining a common approach

In order to combine the data from the LCF and the LFS we have to make some choices. Our focus here

is on reducing the variances of the LCF estimates, so the main outputs of interest are the household-level

ones. In addition, although the LCF does in principle provide some additional information which could

support the LFS, the small size of the LCF sample and its slower (quarterly) processing means that it
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is of marginal benefit and not practical to include it in the LFS. We may therefore produce a combined

dataset with differences from the published LFS, since it will not be used for LFS outputs, and this

allows us to choose a household-level weighting in line with the LCF. Further, we can use the regional

breakdown of calibration totals from the LCF calibration, without needing the extra constraints related

to local authorities in the LFS part (see section 2.2). We additionally remove cases belonging to nurses’

accommodation and students, which are within the scope of the LFS but not in the scope of LCF. And

finally, we use a common set of quarterly age-sex and region calibration totals for both surveys, also

without nurses or students.

To investigate the questions set out in section 1 there are a number of options for which common

variables to use, and we explore combinations of the following, which we expect a priori will be related

to expenditure, the key output from the LCF:

• labour force status (employed, unemployed, inactive)

• tenure, recoded into three groups – ‘owned outright’, ‘owned with a mortgage’ and all remaining

tenure categories. This last category is principally made up of people who rent their home, but

also includes some other categories of tenure with small numbers of cases

• household size, coded to 1, 2 and 3 or more people

For each of these categorical variables we may include a single category in the calibration, or all cate-

gories simultaneously. In addition, all of these composite constraints can be applied at the national level,

or separately within regions.

4.2 Adjustments for practical application of composite estimation

Although the theory presented in section 3 is general, some adjustments are needed for its implementa-

tion in the LCF application. The vector c of calibration weights derived in section 3.2 contains negative

weights in some of the quarters (and most often for units of the LFS). These are not intrinsically a prob-

lem for calculation of estimates (except in small domains where they may cause negative estimates),

but they do not fit with the approach to variance estimation with the linearised jackknife in section 3.3.

There are several possible approaches to constrain calibration to produce positive weights, including

changing the distance function in the calibration, or bounding the weights (Deville and Särndal, 1992).

In our application we choose to handle this by repeating the calibration with the initial weights w set

equal to the final weights c except where those are negative, in which case they are set equal to the orig-

inal design weights, and then repeating the calibration. This generates a new set of calibration weights
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which meet the calibration constraints, are minimally different from the original calibration weights and

reduce the influence of observations whose auxiliary variables result in negative weights. In some cases

the procedure must be repeated before a solution with all positive weights is obtained. A procedure close

to this has been used as a practical approach to calibration with positive weights by Statistics Canada

(2017, section 6.3.3); in that case the iterative procedure takes place at most twice, with negative weights

at the last iteration being replaced by 1. In response to some comments from a reviewer we also used the

truncated weights (case 7 in Deville and Särndal, 1992) in one quarter, and found negligible differences

in the estimates and variances.

5 Results

We have implemented composite calibration as described in section 3.2 using data from the LCF and

LFS from 2017 Q1 to 2018 Q2, six quarters in total. These data have been collected with a promise of

confidentiality, and so are not publicly available, but equivalent microdata (though without the full detail

of variables needed for variance estimation) can be found in ONS and DEFRA (2020).

Table 1 shows the achieved household sample sizes for the LCF and LFS in the period under con-

sideration.

Table 1: Quarterly achieved household sample sizes of the LCF and LFS for the periods used in this
study. The LFS quarterly sample is a much larger proportion of the LFS annual sample size than the
quarterly LCF is of the annual LCF sample because of the LFS rotation pattern.

year quarter sample size
LCF LFS

2017 1 1,204 33,238
2 1,275 33,223
3 1,252 33,310
4 1,402 33,693

2018 1 1,466 33,983
2 1,240 33,898

5.1 Composite calibration for national estimates

First we explore the effect of composite calibration with a single category of the labour force status vari-

able as the common variable. Table 2 shows the estimates and corresponding standard errors for labour

force status derived from the LCF data for Q1 2017 as an example. The first row is produced with the
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standard calibration estimation in the LCF with age, sex and region constraints, and the following rows

with the same set of constraints with the addition of composite calibration using the LFS cases. The

composite estimation in turn uses only employment, then only unemployment and finally only inactiv-

ity. In each case the estimate of the variable used in the composition shows a very substantially reduced

standard error, while the other variables show little (unemployment) or a smaller but still substantial

(employment/inactivity) reduction in standard error. This shows the effectiveness of the composite cal-

ibration for the estimate of the variable used, but also indicates some correlation between employment

and inactivity leading to smaller reductions in the corresponding standard errors.

Composite calibration with two of the labour force statuses (which effectively includes all three

statuses in the calibration, because the total population size is included through the age-sex categories

and the final category is implicit by differencing) achieves these reductions in the standard error on all

three of the labour force status variables simultaneously. So including all levels of labour force status

(and by deduction the same for any categorical variable) is a good strategy.

Table 2: Estimates of labour force status and their standard errors (in 000s) when weighting with com-
posite estimation with a single category of the labour force status variable in addition to the standard
LCF calibration.

employment unemployment inactivity
est s.e. est s.e. est s.e.

Base weighting:
age, sex and region 32,128 562 1,470 243 18,744 489

Composite weighting additionally using:
employment 31,796 117 1,517 221 19,029 238
unemployment 32,009 487 1,502 42 18,741 485
inactivity 31,834 268 1,465 243 19,044 111

We therefore undertake model selection on the variables to use as composite variables (always in

addition to the standard age-sex and region calibration as used in the LCF and LFS) according to their

effect on the variance estimates from the LCF, particularly the effect on expenditure, which is the key

variable, although we also examine income. The best model using national level variables in the com-

posite calibration is one with labour force status (all levels), household size (1, 2, 3+) and tenure (owned

outright, owned with a mortgage coded together, the residual category (all other tenure types) obtained

implicitly because the total number of households is provided by the household size variable).

Table 3 shows the reduction in variance for the national estimates from the LCF resulting from the

composite calibration with this model (negative figures in the tables show a reduction in variance and

are good outcomes). The full effect of the much larger quarterly sample size of the LFS is seen in the
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very large reductions in the variances of estimates of labour force status and tenure, both to around 5%

of their original size (with some variation from quarter to quarter). This is because these variables are

used explicitly in the composite calibration model. The effects on the variances of estimates of income

and expenditure, however, are determined by the correlations between these variables and the variables

used in the composite calibration (on top of the correlations with the base age, sex and region variables).

The reduction in the variance of income is around 20% in most quarters (lower in Q2 2018), and the

reduction in variance for expenditure, the LCF variable of key interest, is around 10-15% except in Q2

2017. These are all substantial reductions in the variances, which make an important contribution to the

quality of the LCF outputs.

Table 3: Relative change in estimates and change in variance for national estimates from the LCF using
composite calibration with labour force status, tenure and household size in addition to the base weight-
ing by age, sex and region. Changes are relative to estimates from the base calibration of the LCF by
age, sex and region.

year quarter Emp’t Unemp’t Inactivity Owned Owned with Income Expenditure
outright mortgage

change in estimates (%)
2017 1 -1.03 2.13 1.60 -1.69 -4.06 -0.93 -0.29

2 -3.15 -14.76 7.16 0.34 1.20 -0.61 -0.15
3 -3.22 -2.02 6.11 -0.79 1.04 -1.49 -0.48
4 -0.26 -12.36 1.52 -4.70 7.52 0.11 -0.02

2018 1 0.80 -14.86 -0.06 -4.43 9.24 0.98 0.49
2 -1.76 -18.38 4.76 -9.13 -0.35 -1.01 -1.32

change in variances (%)
2017 1 -95.69 -96.97 -94.87 -96.61 -95.76 -26.05 -17.01

2 -94.99 -95.42 -94.27 -96.17 -93.80 -19.25 -5.65
3 -93.99 -95.54 -93.77 -94.77 -94.12 -21.18 -10.98
4 -93.83 -96.18 -93.30 -93.55 -94.87 -24.18 -9.80

2018 1 -94.66 -94.73 -94.93 -93.95 -93.29 -24.34 -13.46
2 -93.66 -96.57 -93.14 -95.10 -96.34 -10.98 -14.76

We can also examine the effects on the short time series of quarterly estimates. The largest pro-

portional differences are seen in the smallest category, unemployment, and in Fig. 1b the time series

of quarterly estimates from the LCF and the composite estimates are both quite volatile, but the trends

are quite different. The trend of the composite estimates is much closer to the estimates from the LFS,

making the two series approximately consistent. For employment in Fig. 1a the same consistency is

introduced but the time series of quarterly changes in the composite calibration estimates are also much

smoother because of the influence of the LFS data.

Fig. 2 shows the same kind of plot for expenditure (now with no LFS estimate since this variable is
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Figure 1: Time series of (a) employment and (b) unemployment estimates from LCF (dashed), LFS
(solid) and from composite calibration (dash-and-dot). Normal approximation confidence intervals for
the LCF and composite estimates are shown with dotted lines.

not collected on the LFS), which shows that the composite calibration has a relatively small effect on

these estimates. Although the variances of the quarterly estimates are reduced, there is no noticeable

impact on the changes between quarters, and the main effect of composite calibration is to improve

inferences about quarterly changes rather than to generate a different pattern of expenditure in this case

study.

5.2 Effect of composite calibration on the weights

We are also interested in the effect of the composite calibration on the LCF weights. The base age–sex–

region calibration in the LCF involves 32 marginal constraints (some additional constraints have been

used to compensate for changes in interviewing during COVID, but they do not affect the example period

used here). We then add seven more constraints (two for labour force status, three for household size,

and two for tenure; the third labour force status and third tenure category are implied by differencing

from the population totals of people and households respectively) across the three composite variables

in our preferred model. This is not a specially large number of calibration constraints considering the

size of the combined LCF/LFS data, or even for the size of the LCF only. Fig 3 shows the adjustments

made to the final weights. There are a very small number of weights with larger changes, but almost all

changes are between 0.5 and 2 with mean very close to 1, the theoretically desirable value. Comparison

of the weights without and with composition (not shown) demonstrates that there is a small increase

in the variability of the weights under the composite calibration, but this is clearly not large enough to
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Figure 2: Time series of expenditure estimates (expressed as total weekly household expenditure in £m)
from LCF (dashed) and from composite calibration (dash-and-dot). Normal approximation confidence
intervals for the estimates are shown with dotted lines.

increase the variance of the estimates.

It is interesting that the extent of the variance reduction seen in table 3 is variable between quarters

for income and expenditure. The larger reduction in variance for the expenditure estimate in Q1 2017

reflects that the composite calibration does not have to perturb the weights much to meet the additional

composite constraints. This is shown in the leftmost boxplot in Fig. 3, which has a narrower range

than those for other quarters. Two households in quarter 1 have very small but positive g-weights with

the standard calibration, giving small final weights. In the first iteration of composite calibration the

g-weights are negative, so the calibration is rerun starting from the final weights, which are replaced by

the design weights for these (and other negative weight) cases only. The process completes at the next

iteration and, as expected, the final weight is near to the design weight. The difference between the final

weights from composite calibration and from the standard LCF calibration is large (≈ 13), because of

the small weight of these cases under the standard calibration. These two observations are omitted from

the leftmost boxplot in Figure 3.

5.3 Regional composite calibration and regional estimates

The larger sample size of the the LFS gives subnational estimates with much lower variances than

the LCF, so we can also borrow strength from the LFS cases to improve the precision of the regional

estimates from the LCF, by setting up the composite calibration to use the common variables at regional

level, following the approach of Merkouris (2010). In the same way as before we undertake a model
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Figure 3: Boxplots of the ratio of the final weight of LCF cases after composite calibration to the final
weight from the base LCF weighting for the six quarters investigated. Two extreme outlier observations
of ≈ 13 have been omitted from the leftmost boxplot – see the text for an explanation of these weights.

selection process by comparing the estimated variances from the corresponding composite calibration

using different combinations of regional and national constraints. This leads us to a model where the

common variables used in the composite calibration are employment × region, unemployment, tenure,

and household size (1, 2, 3+) × region.

Table 4 shows the effect on the relative change in variance for national estimates of income and

expenditure. The gains in precision are slightly smaller in some cases and slightly larger in others when

using the composite calibration with regional constraints compared with the composite calibration with

national constraints. The variance under the regional model is larger than the variance before composite

calibration in one quarter for each of income and expenditure.

Table 5 shows the impact on the variance of regional estimates of expenditure, which are of interest

since there is a programme to assess the feasibility of developing regional consumer price indices. These

indices rely on regional expenditure estimates for weighting information (Dawber et al., 2022).

In general, adding regional constraints in the composite calibration reduces the estimated variance

of the regional estimates of expenditure from the LCF, and in many cases the reduction is substantial.
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Table 4: Relative change (%) in variance for national estimates from national composite calibration
(using labour force status, tenure and household size, taken from Table 3) and from regional composite
calibration (using employment × region, unemployment, tenure, household size (1, 2, 3+) × region).

year quarter composite calibration
national regional

income expenditure income expenditure
2017 1 -26.05 -17.01 -19.47 -12.93

2 -19.25 -5.65 -36.60 -8.83
3 -21.18 -10.98 -24.46 -11.55
4 -24.18 -9.80 -22.87 8.81

2018 1 -24.34 -13.46 -27.82 -14.05
2 -10.98 -14.76 6.67 -9.22

2017 annual -22.47 -11.42 -26.10 -5.70

Table 5: Relative change in variance for regional estimates of expenditure from national composite
calibration (“n”, using labour force status, tenure and household size) and from regional composite
calibration (“r”, using employment× region, unemployment, tenure, household size (1, 2, 3+)× region).

year quarter region
1 2 3 4

n r n r n r n r
2017 1 26.59 -52.19 -2.55 -36.25 1.24 -20.17 -0.14 -5.92

2 7.53 -23.86 0.14 -40.26 1.86 -61.77 1.63 -41.67
3 -11.04 -29.76 -0.87 -7.21 5.46 -16.62 -1.36 -28.71
4 -22.28 -64.92 1.65 26.35 -2.78 1.46 -7.82 -31.53

2018 1 -1.02 -5.99 -16.05 -23.28 -9.64 43.25 7.18 -50.23
2 11.64 71.27 -7.89 -48.50 5.20 -14.45 -20.63 33.56

year quarter region
5 6 7 8

n r n r n r n r
2017 1 -7.02 -24.31 2.37 -36.31 -4.00 6.08 1.23 -18.21

2 0.48 -2.98 -4.80 -39.02 3.97 15.40 14.18 -7.23
3 -0.29 -41.70 -4.14 -6.36 -7.98 -22.14 10.66 -2.36
4 -5.73 -42.77 -10.28 3.52 -3.15 -1.44 -0.19 41.89

2018 1 -0.83 -40.18 -8.06 -24.13 -10.15 -29.61 7.31 8.29
2 -3.38 -33.44 3.91 -16.92 -20.22 -20.47 -2.33 -1.51

year quarter region
9 10 11 12

n r n r n r n r
2017 1 -2.14 -14.77 -1.23 -8.90 -10.42 -24.39 7.59 -31.67

2 17.96 79.99 -0.71 -6.60 1.85 10.35 -1.44 -2.92
3 8.00 -3.51 3.26 -18.25 -1.77 -1.21 0.25 19.77
4 -11.81 18.26 -11.77 34.11 4.33 -28.47 -0.69 -29.86

2018 1 2.03 7.83 -9.60 -10.31 7.21 -15.70 -3.53 8.91
2 -9.86 33.36 0.71 -64.90 -2.06 -35.21 5.39 -7.16
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But there are regions and quarters where there is not much effect, or where the variance is larger under

this more complex model. This is particularly so in 2017 Q4, where five of the twelve regional estimates

have larger variances, leading to the larger variance of the national estimate of expenditure seen in Table

4.

The change in the weights from introducing composite calibration with common variables at regional

level is larger than at national level, as greater adjustments are needed to meet the regional constraints.

5.4 LCF annual estimates

We can construct annual estimates by averaging (for stock variables) or summing (for flow variables) the

quarterly estimates. The reductions in the variances of estimates of annual total income and expenditure

are shown in the last row of Table 4. Although the annual variance estimates are smaller than the

quarterly variances, the reduction is in line with the reductions seen for the individual quarters. The

same pattern of variance reductions and consistency with LFS estimates that has already been described

is also seen for the common variables included in the composite calibration, and also in the regional

results (results not shown).

The LCF data have been processed a quarter at a time, using the cases from the LFS in the same

quarter. This means that some LFS households have been used in more than one quarter, because they

were interviewed in different waves in the different quarters. If we had actually processed a complete

annual dataset, we would include almost all the available information by including only the wave 1 and

wave 5 cases, and this is the method used in production of annual estimates from the LFS. The estimated

annual variances may therefore be slightly too large because they do not account for the rotating panel

design of the LFS, but we leave this detail for further investigation.

6 Discussion

There is a need to utilise the information from the much larger sample of the LFS to improve the es-

timates originating from the LCF; the described composite calibration methodology (Merkouris, 2004)

is an effective approach to integrate these two sources. Using the composite calibration weights gives

estimates for variables from the LCF with reduced variances. Estimates for the common variables in

the composite calibration, calculated using the LCF cases and the composite calibration weights, show

very substantial reductions in variance compared with estimates using the LCF-only weights, because

they take direct advantage of the much larger sample size of the LFS. Furthermore, estimates for these
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variables derived from the LCF with composite estimation are very close to those from the LFS, and

this consistency and stability over time is already valuable for users. However, the real benefits we seek

are for variables which are collected only in the LCF, and in particular the expenditure variables which

are widely used (ONS, 2009). Variance reductions for these variables rely on their correlation with the

variables included in the calibration, and for expenditure we see smaller, but still important reductions

in the variances of estimates derived from the LCF.

Most of the information on the level of the expenditure estimates, and therefore on the evolution of

their time series, is derived from the data collected in the LCF. This means that the composite calibration

has a limited effect on the smoothness of the time series, as seen in Fig. 2, which makes sense because the

LFS contributes relatively little information about expenditure, only through the correlation between the

composite calibration variables and expenditure. The main effect therefore is on the estimated variances

themselves, and the main benefit is to inferences about the estimates of income and expenditure. A

further possible approach to combining these series would be at an aggregate level through a multivariate

state space model (Durbin and Koopman, 2012, section 3.3), but this would be practical only for one or

a very small number of variables, and does not give the multipurpose solution available with a single set

of weights. We note that the consistency between analyses involving multiple variables is very important

to users, so this multipurpose solution is beneficial.

Introducing the composite calibration variables makes only small adjustments to the calibrated

weights compared with the original survey calibration in this example. No large changes are needed

in order to meet the additional constraints, and adding them has only a small effect on variance through

the variability of the weights.

The reductions in the variances of the expenditure and income estimates are significant, and worth

the additional complexity of processing (for which the biggest challenge is just to bring the data from the

two surveys together). However, the improvements are quite variable from quarter to quarter as the LCF

dataset changes, which suggests that the correlations between the expenditure and income variables

and the variables used in composite calibration fluctuate too, possibly as part of the randomness due

to sampling, but also possibly in a way related to the pattern of expenditure and income themselves.

For example, differences between spending patterns may be different in Q4, which is influenced by

Christmas spending. The improvements in the estimates of income are somewhat larger, and generally

more stable, than those for expenditure.

The differences from quarter to quarter in the reduction in variances is also related to the differences

in the adjustments from the base weights to the composite weights (Fig. 3). The largest reduction in
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variance is associated with the smallest range of the changes in weights, in the first of the quarters in our

example.

The differences between the pre- and post-composite calibration variances for estimates of expendi-

ture at the regional level seem to be much greater, and correspondingly more variable. In several cases

there are large reductions in the variances for regional estimates, but these are not observed consistently

across quarters, and there are examples where the variance after composite calibration is larger. Further

research is needed to understand how the characteristics of the survey responses influence the variance

gains from using composite calibration.

The effect on the key annual estimates is essentially the same as observed for the quarterly estimates,

with reductions in variance of similar magnitude, at both national and regional level. Overall the regional

estimates are substantially improved by the inclusion of a regional breakdown of the common variables

in the composite calibration. There are, however, some instances where the estimated variance of the

regional estimates is increased somewhat with composite calibration, and this effect is also seen in the

annual estimates.

We have shown that integrating two data sources using composite calibration can result in a sub-

stantial reduction in the size of the variances of important estimates in a household expenditure survey.

This approach has a number of advantages, including that it improves the consistency of outputs of

the two surveys on the common variables used in the composite calibration (in principle they could be

made completely consistent, but timing and other issues make improved consistency a more practical

objective), it accounts straightforwardly and appropriately for the uncertainty in estimation and variance

estimation, and it provides a general solution with weights that can be used for all variables. The extent

of the reduction in the variances of estimates depends on the correlation between the variable of interest

and the common variables in the composite calibration. The results here illustrate that this effect varies

between variables and across periods.

In this study we have demonstrated that data integration involving large-scale national surveys,

through composite calibration, is a valuable tool to use existing survey information as efficiently as

possible. It improves the quality of the outputs through a reduction of the variance estimates. It has

wider potential for use in other similar situations, and we encourage other applications of this approach

to integrate survey sources with common variables.
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Appendix

A computationally convenient option for variance estimation of any LCF parameter using stored in-

formation produced by the composite calibration is based on the representation of the composite esti-

mator t̂CR
y = t̂Ry + B̂y

(
t̂Rz1 − t̂Rz2

)
in (11), where t̂Ry = t̂y + B̂y/x(tx2 − t̂x2) is the LCF regression

(calibration) estimator of ty, using LCF data and the vector of the LCF auxiliary variables x2, and

B̂y/x =
∑

s2
wiyix

′
i(
∑

s2
wixix

′
i)
−1. Also, t̂Rz2 = t̂z2 + B̂

(2)
z/x(tx2 − t̂x2) is the LCF regression es-

timator of the total tz, where t̂z2 and t̂x2 are the Horvitz-Thompson estimators defined before, and

B̂
(2)
z/x =

∑
s2
wizix

′
i(
∑

s2
wixix

′
i)
−1, and t̂Rz1 = t̂z1 + B̂

(1)
z/x(tx1 − t̂x1) is the LFS counterpart of t̂Rz ,

with B̂
(1)
z/x =

∑
s1
wizix

′
i(
∑

s1
wixix

′
i)
−1. The expression of the vector B̂y is given following (11).

Now, collecting terms of t̂CR
y from the two independent samples s1 and s2, and using their expanded

form given above, we obtain for the estimated variance of t̂CR
y

V̂ (t̂CR
y ) = V̂

(
t̂Ry − B̂y t̂

R
z2

)
+ V̂

(
B̂y t̂

R
z1

)
= V̂

(
t̂y + B̂y/x(tx2 − t̂x2)− B̂y

(
t̂z2 + B̂

(2)
z/x(tx2 − t̂x2)

))
+ V̂

(
B̂y

(
t̂z1 + B̂

(1)
z/x(tx1 − t̂x1)

))
.

Next, retaining the necessary terms for linearized variance estimation we obtain the approximate esti-

mated variance

V̂ (t̂cy) ≈ V̂
(
t̂y − B̂y/xt̂x2 − B̂y

(
t̂z2 − B̂

(2)
z/xt̂x2

))
+ V̂

(
B̂y

(
t̂z1 − B̂

(1)
z/xt̂x1

))
= V̂

(∑
s2

wi

(
yi − B̂y/xxi − B̂y

(
zi − B̂

(2)
z/xxi

)))

+ V̂

(∑
s1

wiB̂y

(
zi − B̂

(1)
z/xxi

))

= V̂

(∑
s2

wiêi

)
+ V̂

(∑
s1

wiêi

)
,
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where the “composite” residuals êi are the linear transformations of the elementary residuals êyi and êzi

êi =

 B̂y êzi , i ∈ s1

êyi − B̂y êzi , i ∈ s2
(15)

=

 B̂y

(
zi − B̂

(1)
z/xxi

)
, i ∈ s1

yi − B̂y/xxi − B̂y

(
zi − B̂

(2)
z/xxi

)
, i ∈ s2

.

The vector of these composite residuals, partitioned by sample, is expressed as

 ê1

ê2

 =


(
Z1 −X1B̂

(1)′

z/x

)
B̂
′

y

Y2 −X2B̂
′

y/x −
(
Z2 −X2B̂

(2)′

z/x

)
B̂
′

y

 , (16)

using the vector expressions B̂y/x = Y
′
2W2X2(X

′
2W2X2)

−1, B̂(1)
z/x = Z

′
1W1X1(X

′
1W1X1)

−1 and

B̂
(2)
z/x = Z

′
2W2X2(X

′
2W2X2)

−1. It may be computationally easier to generate the residuals in the

vector form of (16).

Note that the LCF variable of interest y enters the calculation of the residuals through the vector of

coefficients B̂y and B̂y/x. Then variance estimation for the LCF as a procedure following the composite

calibration can be carried out as follows. First, the n1 × q matrix
(
Z1 −X1B̂

(1)′

z/x

)
of the residuals

êzi , produced in a step of the composite calibration procedure, is multiplied by the q × q matrix A =[
Z
′
1L1Z1 + Z

′
2L2Z2

]−1
, also produced during the composite calibration. The resulting n1 × q matrix,

say C, associated with the LFS sample s1, is saved for later use. Next, for any LCF variable y the q × 1

vector Z
′
2L2Y2, generated by LCF data only, is multiplied by the matrix C to give the n1 × 1 vector

ê1 in (16). The n2 × 1 vector
(
Z2 −X2B̂

(2)′

z/x

)
B̂
′

y is produced in a similar manner. Finally the n2 × 1

vector Y2 −X2B̂
′

y/x of the residuals êyi is computed easily using the LCF data, and then the vector ê2

in (16) is generated in an obvious way.

The estimated variances produced by the residuals given by (16) are the same variances produced

by the residuals given by (14).
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