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ABSTRACT
Electromagnetic radiation plays a crucial role in various physical and chemical processes.
Hence, almost all astrophysical simulations require some form of radiative transfer model.
Despite many innovations in radiative transfer algorithms and their implementation, realistic
radiative transfer models remain very computationally expensive, such that one often has to
resort to approximate descriptions. The complexity of these models makes it difficult to assess
the validity of any approximation and to quantify uncertainties on the model results. This
impedes scientific rigour, in particular, when comparing models to observations, or when
using their results as input for other models. We present a probabilistic numerical approach to
address these issues by treating radiative transfer as a Bayesian linear regression problem. This
allows us to model uncertainties on the input and output of the model with the variances of the
associated probability distributions. Furthermore, this approach naturally allows us to create
reduced-order radiative transfer models with a quantifiable accuracy. These are approximate
solutions to exact radiative transfer models, in contrast to the exact solutions to approximate
models that are often used. As a first demonstration, we derive a probabilistic version of the
method of characteristics, a commonly-used technique to solve radiative transfer problems.
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1 INTRODUCTION

Light, or electromagnetic radiation in general, is a key component of
ourUniverse. Not only does it dictatewhatwe can or cannot observe,
it also has the ability to significantly affect numerous physical and
chemical processes ranging from radiative heating, cooling, and
pressure in hydrodynamics to various photo-reactions in chemistry.
As a result, almost every astrophysical simulation requires some
form of radiative transfer model.

Over the years, many different schemes have been devised
to model radiative transfer, ranging from probabilistic Monte Carlo
methods (see e.g. Noebauer&Sim2019, and the references therein),
to several types of formal solvers (see e.g. De Ceuster et al. 2019;
Kanschat et al. 2009, and the references therein). Despite many
improvements in computational efficiency and the use of modern
computer hardware, realistic radiative transfer models keep posing
a formidable computational challenge. Consequently, one often has
to resort to approximate descriptions of the radiation field, such as
flux-limited diffusion (see e.g. Moens et al. 2022), or parametrised
radiative heating and cooling functions (see e.g. Xia et al. 2018),
which are often used in hydrodynamics models, or semi-analytical
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descriptions of the photon flux, which are used in photo-chemistry
modelling (see e.g. Van de Sande & Millar 2019). Each of these
approximate descriptions has its underlying assumptions and limi-
tations, and as models become larger and more complex, it becomes
increasingly difficult to properly assess their validity, or to gauge
the potential impact of a certain approximation on the results.

Every approximation induces uncertainty on the model result.
These uncertainties can either be intrinsic to the model, for instance,
due to the discretisation of a continuous variable, or are due to the
propagation of uncertainties through the model, for instance, due
to uncertainties in the radiative constants of the medium that are
used in the model. Currently, most radiative transfer models lack
any form of uncertainty quantification. This is a severe shortcoming
that impedes scientific rigour, in particular, when comparing these
seemingly exact model results to naturally noisy observations. In
addition, as observations reach ever higher spatial and spectral reso-
lutions (see e.g. Decin et al. 2020), the model uncertainties become
ever more relevant. Moreover, with the dawn of a new era of emu-
lated models (see e.g. de Mĳolla et al. 2019; Holdship et al. 2021;
Kasim et al. 2022), in which algorithms are trained rather than pro-
grammed, and simulation data is used as ground truth, it is crucial,
more than ever, to properly understand the uncertainties associated
with simulations. Unfortunately, due to the computational com-
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plexity of radiative transfer and the requirement for many approxi-
mations it remains very challenging to provide proper uncertainty
quantification for most astrophysical radiative transfer models.

There is, however, an approach that can answer both to the
need for approximation, because of computational efficiency, and
the need for uncertainty quantification, for scientific rigour. Instead
of starting from an approximate description, the idea is to start from
a more complete description and approximate (or compress) it into
a smaller, more tractable, model. There are two key advantages to
this approach: (i) the approximation can be tailored to the problem
at hand, and (ii) the uncertainty induced by the approximation can
be estimated by the information lost in compressing the model.

In De Ceuster et al. (2020), it was already shown that typi-
cal radiative transfer simulations of 3D hydrodynamics models, can
often be compressed by more than an order of magnitude in size,
without significant loss of accuracy, using a heuristic re-meshing al-
gorithm. This shows that accurate radiative transfer approximations
can be obtained by compressing more precise models. It remains,
however, to quantify the uncertainties induced by compressing the
model and to have more rigorous means to guide the now only
heuristic compression algorithm.

In this paper, we propose a novel approach to quantify uncer-
tainties, based on ideas from probabilistic numerics. Specifically,
we introduce a new numerical method, referred to in the literature as
a probabilistic numerical method (Hennig et al. 2015, 2022), whose
output is a probability distribution over solutions to the problem.The
mean of this distribution coincides with a traditional solution, while
the variance can be interpreted as an uncertainty or error measure.
The advantages of this probabilistic approach over existing methods
are that: (i) since the output contains an intrinsic description of the
approximation error, that error can be controlled without the need
to compute expensive and often conservative error measures, (ii)
as a full probability distribution, the description of error is richer
than standard error measures, which typically constitute worst-case
bounds on a global (i.e. norm-wise) or local error, and (iii) since the
approximation error is expressed in a probabilistic manner, it can
naturally be combined with other sources of uncertainty to provide
a unified description of all uncertainty in the solution, as will be
demonstrated in Section 3.2.2. These three pointsmake probabilistic
numerical methods particularly appropriate for modelling radiative
transfer, given the dire need for reliable uncertainty estimates on a
computationally expensive model in the presence of uncertainties
on input quantities such as radiative constants.

In particular, we propose to treat radiative transfer as aBayesian
linear regression problem. The radiation field is modelled as the
expectation of a multivariate Gaussian probability distribution over
possible solutions for the radiation field, conditioned on evaluations
of the radiative transfer equation and boundary conditions. As such,
the variance of the conditioned distribution can be used as ameasure
of uncertainty on this result. The computational complexity of the
regression model can be controlled by the dimension of the feature
space, i.e. the number of basis functions that is used. This allows us
to create approximate (reduced-order) radiative transfer models, by
reducing the number of basis functions.

The idea to treat function approximation or the solution of
operator equations as a regression problem is certainly not new
and can be traced all the way back to Poincaré (1896), as pointed
out by Diaconis (1988). More recently, motivated by Hennig et al.
(2015), these ideas gained renewed interest and now form an active
research domain in applied mathematics known as probabilistic
numerics (see e.g. Cockayne et al. 2019; Hennig et al. 2022). For
a comprehensive recent history, see e.g. Oates & Sullivan (2019).

The specific idea to view the solution of operator equations as
a Bayesian linear regression problem has been proposed several
times, by several different authors, and in several different contexts
(e.g. van den Boogaart 2001; Graepel 2003; Cockayne et al. 2017).
While, in the literature, this is usually derived from a Gaussian
process, here, we take a slightly more general point of view.

The probabilistic numerical method presented here is closely
related to finite element methods (see also e.g. Girolami et al. 2021).
In fact, the method just gives a probabilistic interpretation to an
otherwise classical collocation method (see e.g. Kansa 1990a,b;
Fasshauer 1999). Finite element methods were introduced in the
context of astrophysical radiative transfer by Dykema et al. (1996),
who applied it to the moments of the radiative transfer equation.
Since then, these methods have successfully been applied in several
astrophysical contexts (see e.g. Meier 1999; Richling et al. 2001;
Korčáková & Kubát 2003). Due to their widespread use, especially
in industry, there is a vast body of research dedicated to uncertainty
quantification for these methods (see e.g. Verfürth 2013, and the
references therein). Also in the astrophysical context, for instance,
Richling et al. (2001) proposed an error measure on their finite
element radiative transfer solver, which they furthermore used to
adapt their discretisation. The key difference between classical finite
element methods and the method presented here, is the probabilistic
interpretation of the results, i.e. here the solutions are (conditioned)
probability distributions over the space of possible solutions, rather
than a single solution. This allows us to also take into account the
uncertainties on the model input, and furthermore facilitates the use
of our model both in forward and inverse modelling pipelines.

Alternatively, themethod presented in this paper can be viewed
as a linear (and hence analytically solvable) version of a physics-
informed neural network method (see e.g. Lagaris et al. 1998, 2000;
Raissi et al. 2019). This technique, inspired by machine learning, to
solve, for instance operator equations, has already been successfully
applied to radiative transfer problems, for example by Mishra &
Molinaro (2021), who, furthermore, derived rigorous error bounds
for their results (Mishra & Molinaro 2022). The assumption of
linearity makes our model much simpler than this, and allows us to
obtain analytic solutions which can be used, for instance, to relate
it directly to the commonly-used method of characteristics.

The structure of this paper is as follows. In Section 2, we
introduce Bayesian linear regression and show how it can be used
to solve linear operator equations in a way that naturally allows for
uncertainty quantification. In Section 3, we apply this to radiative
transfer. We show how reduced-order radiative transfer models can
be obtained, and we derive a Bayesian version of the method of
characteristics. Section 4 concerns future research towards practical
implementations, and we conclude with Section 5.

2 METHODS

Wepresent a probabilistic numerical method to solve linear operator
equations by treating it as a (Bayesian) linear regression problem.
This idea has already been discussed at length in the literature (see
e.g. van den Boogaart 2001; Graepel 2003; Cockayne et al. 2017).
Nevertheless, we present it again, but in a slightly more general
way, to demonstrate its full potential for astrophysical modelling,
and radiative transfer in particular. For a more comprehensive in-
troduction, see e.g. Bishop (2006), Rasmussen & Williams (2006),
or Hennig et al. (2022).
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2.1 Linear Regression

The aim of a linear regression model is to approximate (or fit) a
function, 𝑓 , with a linear combination of basis functions, 𝜙𝑖 , based
on data in the form of function evaluations, (𝑥𝑑 , 𝑦𝑑 ≡ 𝑓 (𝑥𝑑)). In
this paper, we only consider real functions, so all variables are
always assumed to be real. Given a set of 𝑁b basis functions, {𝜙𝑖},
and a set of 𝑁d data points, {(𝑥𝑑 , 𝑦𝑑)}, the approximation can either
be expanded in terms of the basis function or in terms of the data,
resulting respectively in the primal and dual formulation.

2.1.1 Primal formulation

In the primal formulation, the approximation, 𝑓 (𝑥), is modelled as
a linear combination of the basis functions,

𝑓 (𝑥) =

𝑁b∑︁
𝑖=1

𝑤𝑖 𝜙𝑖 (𝑥) ≡ 𝒘T𝝓(𝑥), (1)

where we defined the weight vector, 𝒘, and basis function vector, 𝝓.
Appropriate weights, 𝑤𝑖 , can be found, for instance, by minimising
the regularised mean squared error between the model and the data,

RMSE(𝒘) ≡
𝑁d∑︁
𝑑=1

1
𝜎2
𝑑

(
𝒘T𝝓(𝑥𝑑) − 𝑦𝑑

)2
+

𝑁b∑︁
𝑖=1

(
𝑤𝑖

_𝑖

)2
. (2)

The factors, 𝜎−2
𝑑
, weight the contributions of the different data

points to the mean error, and are summarised in the diagonal matrix
𝝈 ≡ diag(𝜎𝑑). We also added a regularisation term, characterised
by the diagonal matrix 𝝀 ≡ diag(_𝑖), which penalises the size of the
components of the weight vectors. This will guarantee the existence
of a unique solution, as we will see below. If we define the design
matrix, Φ𝑑𝑖 ≡ 𝜙𝑖 (𝑥𝑑), and the data vector pair, (𝒙, 𝒚), equation (2)
can conveniently be rewritten as,

RMSE(𝒘) ≡
(
𝝈−1 (𝚽𝒘 − 𝒚)

)2
+

(
𝝀−1𝒘

)2
, (3)

in which the square of a vector, 𝒂, is defined as (𝒂)2 ≡ 𝒂T𝒂.
Minimising this regularised mean squared error by demanding a
vanishing gradient with respect to the weights, 𝒘, yields,(
𝚽T𝝈−2𝚽 + 𝝀−2

)
𝒘min = 𝚽T𝝈−2𝒚, (4)

in which 𝒘min is the weight vector that minimises (3). The resulting
(optimal) function approximation (1) is thus given by,

𝑓 (𝑥) = 𝒚T𝝈−2𝚽
(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1
𝝓(𝑥). (5)

The inverse is guaranteed to exist as long as the regularisation term
is non-zero, i.e. _𝑖 ≠ 0,∀𝑖 ∈ {1, . . . , 𝑁b}. Note that a (𝑁b × 𝑁b)-
dimensional linear system must be solved to obtain the approximate
solution, and hence the computational cost of the primal formulation
is determined by the number of basis functions, 𝑁b.

2.1.2 Dual formulation

In the dual formulation, the approximation, 𝑓 (𝑥), is modelled as a
linear combination of (evaluations of a kernel function on) the data,

𝑓 (𝑥) =

𝑁d∑︁
𝑑=1

𝑣𝑑 𝑘 (𝑥𝑑 , 𝑥) ≡ 𝒗T𝑘 (𝒙, 𝑥), (6)

in which the kernel is defined in terms of the basis functions,

𝑘 (𝑥, 𝑥′) ≡
𝑁b∑︁
𝑖=1

𝜙𝑖 (𝑥)_2𝑖 𝜙𝑖 (𝑥
′) = 𝝓(𝑥)T𝝀2𝝓(𝑥′), (7)

where we used the regularisation parameter, 𝝀, from equation (2).
This definition of the kernel ensures the correspondence between
the primal and dual formulation (see also Section 2.1.3). Intuitively,
the kernel expresses how the solution hinges on the data points, x.
From this definition of the kernel, it can be seen that the weights of
the primal and dual formulation are related as, 𝒘 = 𝝀2𝚽T𝒗. Also
here, the appropriate weights can be obtained by minimising the
regularised mean squared error. Keeping our previous definitions,
the error (3) in terms of the new weights, 𝒗, reads,

RMSE(𝒗) ≡
(
𝝈−1

(
𝚽𝝀2𝚽T𝒗 − 𝒚

))2
+

(
𝝀𝚽T𝒗

)2
. (8)

Minimising this regularised mean squared error by demanding a
vanishing gradient with respect to the new weights, 𝒗, yields,(
𝚽𝝀2𝚽T 𝝈−2𝚽𝝀2𝚽T + 𝚽𝝀2𝚽T

)
𝒗min = 𝚽𝝀2𝚽T𝝈−2 𝒚, (9)

in which 𝒗min is the weight vector that minimises (8). Note that
𝚽𝝀2𝚽T might not be invertible and thus equation (9) might not
have a unique solution. However, we can always pick the uniquely
solvable system that will also minimise (8), by omitting the overall
factor, 𝚽𝝀2𝚽T𝝈−2, which yields,(
𝚽𝝀2𝚽T + 𝝈2

)
𝒗min = 𝒚. (10)

The resulting function approximation then reads,

𝑓 (𝑥) = 𝒚T
(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝑘 (𝒙, 𝑥). (11)

Note that the inverse is guaranteed to exist as long as 𝜎𝑖 ≠ 0,∀𝑖 ∈
{1, . . . , 𝑁d}. In this case, a (𝑁d × 𝑁d)-dimensional linear system
needs to be solved to obtain the approximate solution, and thus, in
contrast to the primal formulation, the computational cost of the
dual formulation is determined by the number of data points, 𝑁d.

Note that the dual formulation can also be constructed directly
from a given kernel without any link to a set of basis functions. In
particular, the design matrix always appears as,𝚽𝝀2𝚽T = 𝑘 (𝒙, 𝒙),
and thus can always be replaced by its equivalent kernel expression.

2.1.3 Primal versus Dual formulation

One can show that the solutions of the primal (5) and dual (11)
formulation are equal. For this to be true, one needs to show that

𝝈−2𝚽
(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1
=

(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝚽𝝀2, (12)

as is done in Appendix A1. The only, yet key, difference between
both formulations is thus the size of the linear system that needs to
be solved to obtain the solution.

2.1.4 Solving linear PDEs as linear regression

Numerically solving linear operator equations, and in particular
linear partial differential equations (PDEs), can be viewed as a linear
regression problem. Say we want to numerically solve a PDE,

ℒ 𝑓 (𝑥) = 𝑔(𝑥), 𝑥 ∈ 𝐷
ℬ 𝑓 (𝑥) = ℎ(𝑥), 𝑥 ∈ 𝜕𝐷

(13)
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on a domain, 𝐷, with boundary, 𝜕𝐷, where the PDE and boundary
conditions are determined respectively by the linear operatorsℒ and
ℬ. Suppose that for the numerical solution the domain is discretised
to �̃�, and that 𝒂 is a vector containing the points in �̃�, and the
boundary is discretised to 𝜕�̃�, and that 𝒃 is a vector containing the
points in 𝜕�̃�, then we can split the data as,

(𝒙, 𝒚) =

((
𝒂
𝒃

)
,

(
𝑔(𝒂)
ℎ(𝒃)

))
≡

((
𝒂
𝒃

)
,

(
𝒈
𝒉

))
. (14)

Similarly, we can split the matrix, 𝝈, as, 𝝈 = diag(𝝈L,𝝈B), and
the design matrix, 𝚽, which has function evaluations at different
data points on its rows, can be split as,

𝚽 ≡
(
ℒ𝝓 (𝒂)
ℬ𝝓 (𝒃)

)
≡

(
𝚽L
𝚽B

)
. (15)

In this new notation, the key matrices appearing in the primal and
dual formulation can respectively be written as,

𝚽T𝝈−2𝚽 + 𝝀−2 = 𝚽TL𝝈
−2
L 𝚽L + 𝚽TB𝝈

−2
B 𝚽B + 𝝀−2 (16)

𝚽𝝀2𝚽T + 𝝈2 =

(
𝚽L𝝀

2𝚽TL + 𝝈2L 𝚽L𝝀
2𝚽TB

𝚽B𝝀
2𝚽TL 𝚽B𝝀

2𝚽TB + 𝝈2L

)
. (17)

In terms of the kernel, equation (17) can also be rewritten as,

𝑘 (𝒙, 𝒙)+𝝈2 =

(
ℒ1ℒ2𝑘 (𝒂, 𝒂) + 𝝈2L ℒ1ℬ2𝑘 (𝒂, 𝒃)
ℬ1ℒ2𝑘 (𝒃, 𝒂) ℬ1ℬ2𝑘 (𝒃, 𝒃) + 𝝈2B

)
, (18)

in which the subscripts on the operators indicate whether they act
on the first or second argument of the kernel.

As with linear regression, numerically solving the PDE can
thus be formulated as a minimisation problem and can be solved
both in the primal and dual formulation. The only difference is that
the design matrix, 𝚽, should be redefined as in equation (15). This
technique is known as the collocation method for solving operator
equations (see e.g. Fasshauer 1999; Schaback & Wendland 2006).

Intuitively, this can be understood as follows. The weights for
the solution of the linear operator equation (13) are determined
in terms of the basis functions, {𝜙𝑖}, by fitting the functions 𝑔(𝑥)
and ℎ(𝑥), with the basis functions {ℒ𝜙𝑖} and {ℬ𝜙𝑖} respectively.
Hence, the basis functions should ideally be chosen such that {ℒ𝜙𝑖}
can properly fit 𝑔(𝑥), {ℬ𝜙𝑖} can properly fit ℎ(𝑥), and {𝜙𝑖} can
properly fit the sought after solution function 𝑓 (𝑥).

2.2 Bayesian Linear Regression

The framework of linear regression can also be derived in aBayesian
or probabilistic setting. Here we consider a stochastic function,
𝐹 (𝑥), giving a probability distribution over the possible results for
every value, 𝑥, and are interested in the distribution of this function
as it is conditioned on observations of evaluations (𝒙, 𝒚) of that
function, i.e. our goal is to find 𝑝(𝐹 (𝑥) | 𝒚). Note that, to simplify
notation further on, we write |𝒚 to denote conditioning on the data,
whereas we actually mean | (𝒙, 𝒚). We summarised the definitions
and some further explanations of the statistical concepts that are
used throughout this and subsequent sections in Appendix A2.

2.2.1 Bayesian primal formulation

Given a linear model in the primal formulation with corresponding
weights, 𝒘, a zero-mean Gaussian error on the observed function
evaluations, Y, results in a Gaussian likelihood given by,

𝑝 (Y | 𝒘) = N
(
𝒘T𝝓(𝒙), 𝝈2

)
= N

(
𝚽𝒘, 𝝈2

)
. (19)

Note that we reused the variable 𝝈2 and reinterpreted it as the
variance on the data, allowing for deviations from the mean value,
𝚽𝒘, predicted by themodel given the weights, 𝒘.Wewill see below
that both interpretations are indeed compatible. Furthermore, we
assume a zero-mean Gaussian prior on the stochastic weights,W,

𝑝 (W) = N
(
0, 𝝀2

)
. (20)

Note that we reused the variable 𝝀2 and reinterpreted it as the
variance of the prior on the weights. Using the relations given in
Appendix A3, we can infer that the implied distribution of the
weights conditioned on the data is given by,

𝑝(W | 𝒚) = N
(
𝝁𝒘 |𝒚 , 𝚺𝒘 |𝒚

)
, (21)

in which the mean vector and covariance matrix are defined as,

𝝁𝒘 |𝒚 ≡ 𝚺𝒘 |𝒚𝚽
T𝝈−2𝒚, (22)

𝚺𝒘 |𝒚 ≡
(
𝝀−2 +𝚽T𝝈−2𝚽

)−1
. (23)

Since the stochastic function, 𝐹 (𝑥), is a linear mapping of the
weights, 𝐹 (𝑥) = WT𝝓(𝑥), the conditioned distribution reads,

𝑝
(
𝐹 (𝑥) | 𝒚

)
= N

(
`primal (𝑥), 𝜎2primal (𝑥)

)
, (24)

in which the mean and variance are defined as,

`primal (𝑥) ≡ 𝝁T𝒘 |𝒚𝝓(𝑥), (25)

𝜎2primal (𝑥) ≡ 𝝓(𝑥)T𝚺𝒘 |𝒚𝝓(𝑥). (26)

Substituting equation (22), we rediscover the primal solution (5) as
the mean of the resulting conditioned primal distribution,

`primal (𝑥) = 𝒚T𝝈−2𝚽
(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1
𝝓(𝑥). (27)

Furthermore, we now also have a measure for the spread in possible
approximations from the variance of the conditioned distribution,

𝜎2primal (𝑥) = 𝝓(𝑥)T
(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1
𝝓(𝑥). (28)

This allows us to predict an approximation for the function, 𝑓 ,
based on the data, (𝒙, 𝒚), and provide a confidence level for the
result. It should be noted that to compute the variance either for
each 𝑥 a separate (𝑁b × 𝑁b)-dimensional linear system needs to
be solved, or that an (𝑁b × 𝑁b)-dimensional matrix needs to be
inverted explicitly. However, since one usually does not require a
high precision for an uncertainty estimate, the matrix inverse can
quickly be computed in an approximate way.

2.2.2 Bayesian dual formulation

A similar argument can be made for the dual formulation and is
typically encountered in the context of Gaussian processes (see e.g.
Rasmussen & Williams 2006). Since we assumed that the weights,
W, and the errors (or spread) in the data, Y, both follow a zero-
mean (multivariate) Gaussian distribution, the function values and
the data will follow a joint (multivariate) Gaussian distribution,

𝑝

( [
𝐹 (𝑥)
𝒚

] )
= N

( [
0
0

]
,

[
𝑘 (𝑥, 𝑥) 𝑘 (𝑥, 𝒙)
𝑘 (𝒙, 𝑥) 𝑘 (𝒙, 𝒙) + 𝝈2

] )
, (29)

where we reused the definition of the kernel (7). The posterior
distribution can be obtained by conditioning on the data (𝒙, 𝒚),
using the relations given in Appendix A4,

𝑝
(
𝐹 (𝑥) | 𝒚

)
= N

(
`dual (𝑥), 𝜎2dual (𝑥)

)
, (30)
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in which the mean and variance are respectively defined as,

`dual (𝑥) ≡ 𝑘 (𝑥, 𝒙)
(
𝑘 (𝒙, 𝒙) + 𝝈2

)−1
𝒚 (31)

𝜎2dual (𝑥) ≡ 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥, 𝒙)
(
𝑘 (𝒙, 𝒙) + 𝝈2

)−1
𝑘 (𝒙, 𝑥). (32)

Rewriting this in terms of the design matrix, we rediscover the dual
solution (11) as expectation of the conditioned distribution,

`dual (𝑥) = 𝝓(𝑥)T𝝀2𝚽T
(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝒚. (33)

Moreover, we can similarly obtain a measure for the quality of the
approximation from the variance of the conditioned distribution,

𝜎2dual (𝑥) = 𝝓(𝑥)T
(
𝝀2 − 𝝀2𝚽T

(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝚽𝝀2

)
𝝓(𝑥). (34)

Again, we can predict an approximation for the function, 𝑓 , based
on the data, (𝒙, 𝒚), and provide a confidence level for the result.
Also here, it should be noted that to compute the variance either
for each 𝑥 a separate (𝑁d × 𝑁d)-dimensional linear system needs
to be solved, or that an (𝑁d × 𝑁d)-dimensional matrix needs to be
inverted explicitly. However, as in the primal formulation, since one
usually does not require a high precision for an uncertainty estimate,
the matrix inverse can quickly be computed in an approximate way.

2.2.3 Bayesian primal versus Bayesian dual formulation

As in the non-Bayesian case, we note that in the primal formulation
a (𝑁b × 𝑁b)-dimensional linear system needs to be solved, while in
the dual formulation it is a (𝑁d × 𝑁d)-dimensional linear system.

We already showed in the non-Bayesian case (Section 2.1.3)
that the primal and dual solutions are equal. Using the Woodburry
matrix identity, we can now also easily verify that the variances for
the primal and dual Bayesian formulation are equal, since,(
𝝀−2 +𝚽T𝝈−2𝚽

)−1
= 𝝀2 − 𝝀2𝚽T

(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝚽𝝀2. (35)

We can conclude that the duality also holds in the probabilistic
sense, which implies for the probability distributions that,

N
(
`primal (𝑥), 𝜎2primal (𝑥)

)
= N

(
`dual (𝑥), 𝜎2dual (𝑥)

)
. (36)

Both formulations are thus equivalent and can therefore be used
interchangeably, as long as they are both well-defined.

It should be noted that our choice of Gaussian priors was only
motivated by computational convenience, and that it is not ideal.
For instance, the Gaussian distribution always assigns a non-zero
probability, also to negative values of a variable. For many physical
quantities that are only positive, such as density or temperature, this
is not desirable as it can lead to non-physical results. However, this
is the case for many numerical schemes, and, bearing in mind these
dangers, the Gaussian distribution is a good first approximation for
the uncertainties in our variables.

The Bayesian linear regression problem can alternatively also
be formulated using other distributions for the priors (see e.g. Shah
et al. 2014, for an example using Student-𝑡 distributed priors), but
always at the expense of computational convenience.

2.2.4 The limit of uninformative data: 𝝈 → ∞

In order to gain more insight into these results, we consider some
limiting cases. In the limit of uninformative data, i.e. 𝝈 → ∞, the
uncertainty on the data is so large that conditioning on them does

not change the prior distribution. Hence, as can be seen by taking
the limit, 𝝈 → ∞, in equations (27, 28, 33, 34), one finds,

`primal (𝑥) = `dual (𝑥) = 0, (37)

𝜎2primal (𝑥) = 𝜎
2
dual (𝑥) = 𝝓(𝑥)T𝝀2𝝓(𝑥), (38)

which is exactly the zero-mean prior distribution that we assumed.
A similar argument1 can be made for the limit of perfect prior

knowledge, i.e. 𝝀 → 0, when the confidence in the prior is so large
that no conditioning on any data can change it.

2.2.5 The limit of perfect data: 𝝈 → 0

In order to gain further insight into the results, let us ignore any
effects that might be caused by uncertainties in the data and consider
the limit of perfect data, i.e. 𝝈 → 0. The primal and dual solutions
in this limit are respectively given by,

`primal (𝑥) → 𝒚T𝚽
(
𝚽T𝚽

)−1
𝝓(𝑥), (39)

`dual (𝑥) → 𝒚T
(
𝚽𝝀2𝚽T

)−1
𝚽𝝀2𝝓(𝑥). (40)

Note that the inverses above do not necessarily exist. In particular,
if 𝑁d > 𝑁b, the singular value decomposition shows that 𝚽𝝀2𝚽T

must be singular and thus only the primal formulation remains,
whereas if 𝑁d < 𝑁b, it follows that𝚽T𝚽must be singular and thus
only the dual formulation remains2. As a result, in the limit 𝝈 → 0,
if 𝑁d ≠ 𝑁b, the duality between the two formulations ceases to hold
and only the formulation with the smallest corresponding linear
system will have a unique solution.

Moreover, note that in this limit the variance of the primal
formulation always vanishes. As a result, there is no probabilistic
interpretation in the limit of perfect data when 𝑁d > 𝑁b and only
the primal formulation remains. Intuitively, this can be understood
since, in general, a linear regression model using 𝑁b basis functions
cannot perfectly fit 𝑁d data points. Hence, the assumption that the
data can be fit perfectly, will, in general, be wrong. The uncertainty
in the data, i.e. 𝝈 ≠ 0, is required to allow for some slack in fitting
the 𝑁d data points with only 𝑁b basis functions.

Similarly, in the dual formulation, the variance in the limit of
perfect data, i.e. 𝝈 → 0, reads,

𝜎2dual (𝑥) = 𝝓(𝑥)T
(
𝝀2 − 𝝀2𝚽T

(
𝚽𝝀2𝚽T

)−1
𝚽𝝀2

)
𝝓(𝑥), (41)

which evidently only makes sense if the inverse of 𝚽𝝀2𝚽T exists,
which requires that 𝑁d ≤ 𝑁b. In the particular case that 𝑁d = 𝑁b,
demanding that 𝚽𝝀2𝚽T is invertible implies that 𝚽 is invertible,
such that also in this case the variance vanishes. Hence, in the
limit of perfect data there is only a probabilistic interpretation if
𝑁d < 𝑁b, assuming that the inverse for 𝚽𝝀2𝚽T exits. Intuitively
this can be understood from the fact that we model the spread in
the distribution with the same basis functions as we use to model
the function approximation. If we assume the data to be exact and
if 𝑁d ≥ 𝑁b, the contributions of all basis functions are fixed by
the data and there are no undetermined degrees of freedom that can
cause a spread in the resulting distribution conditioned on the data.

1 The reason why a similar argument applies is the duality between the
parameters 𝝈 and 𝝀. For instance, in the simplified case that 𝝈 = 𝜎1 and
𝝀 = _1, the parameter determining the behaviour of the model is 𝜎/_.
2 Note, however, that the existence of the inverses of𝚽𝝀2𝚽T and𝚽T𝚽 still
depends on the choice of basis functions and the positions of the data points.
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A similar argument can be made for the limit of uninformative
prior knowledge, i.e. 𝝀 → ∞, when the uncertainty in the prior is
so large that the regression essentially fully depends on the data.

2.3 Uncertainty Quantification

Quantifying uncertainties is an approximate endeavour. After all,
the exact solution, 𝑓 , is required in order to determine the exact
error, Y, that is made in a function approximation, 𝑓 , since,

𝑓 (𝑥) = 𝑓 (𝑥) + Y(𝑥). (42)

Although it is possible to obtain highly accurate estimates for the
errors in particular models (see e.g. Oberkampf & Roy 2010), it
is crucial to note that any form of practical on-the-fly uncertainty
quantification will always only be an approximation for the true
error. Just as the quality of the approximation highly depends on the
estimation method, so does the quality of the error.

2.3.1 Uncertainty in the probabilistic numerical paradigm

Following the probabilistic numerical paradigm (Hennig et al. 2015;
Cockayne et al. 2019; Hennig et al. 2022), we aim to quantify the
uncertainty in the solution of linear operator equations bymodelling
the distribution over possible solutions conditioned on the data. In
particular,wewill use the expectation of the conditioned distribution
as our function approximation,

𝑓 (𝑥) ≡ E [𝐹 (𝑥) | 𝒚] . (43)

As a result, we can estimate the expected squared error in this
approximation with the variance of the conditioned distribution,

Ỹ2 (𝑥) ≡ V [𝐹 (𝑥) | 𝒚] . (44)

This can be inferred from the fact that the stochastic function, 𝐹 (𝑥),
with corresponding stochastic error, E(𝑥), ought to be related as,

𝐹 (𝑥) = 𝑓 (𝑥) + E(𝑥), (45)

and the definition of the variance, which implies that,

V [𝐹 (𝑥) | 𝒚] = E
[ (
𝐹 (𝑥) − 𝑓 (𝑥)

)2 | 𝒚
]
= E

[
E(𝑥)2 | 𝒚

]
. (46)

Assuming that the probabilistic model, 𝐹 (𝑥) | 𝒚, is an adequate
model for the actual function, 𝑓 (𝑥), the variance thus quantifies the
expected squared error in the function approximation. Note that in
our particular case, where the posterior is a Gaussian, the variance
does not depend on the function values, 𝒚, of the data but only on
the locations at which the function was evaluated, 𝒙.

Based on the variance in the dual formulation (32), one can
derive an upper and lower bound on the expected squared error,

0 ≤ Ỹ2 (𝑥) ≤ 𝑘 (𝑥, 𝑥), (47)

where, in the left inequality, we used that the variance has to be
positive and in the right inequality that 𝑘 (𝒙, 𝒙) + 𝝈2 is a positive
definite matrix, such that the second term in (32) is always negative.
It might seem odd to have an error measure that is bounded from
above. However, one should note that it is not an upper bound on
the actual error, but rather an upper bound on the expected error.

There is an alternative way to understand the error measure
defined in (44) using the reproducing kernel Hilbert space (RKHS)
of the kernel (see e.g. Cockayne et al. 2017). Let H denote the
RKHS of the kernel defined in (7), with an associated inner product,
〈〉H , and norm ‖ · ‖H ≡

√︁
〈·, ·〉H . If we now consider the projection

𝑃 𝑓 ∈ H of the function, 𝑓 , in the RKHS, H , one can derive the
following bound (see Appendix A5),��𝑃 𝑓 (𝑥) − 𝑓 (𝑥)

�� ≤ ‖𝑃 𝑓 ‖H Ỹ(𝑥). (48)

This means that Ỹ(𝑥) bounds the local error in the approximation, 𝑓 ,
as measured in the RKHS. To intuitively see how this comes about
without needing the notion of a RKHS, note that if the function
that one tries to approximate is 𝑓 (𝑥) = 𝑘 (x, 𝑥), based on the data
y = 𝑘 (x, x), then the variance (32) is exactly equal to the difference
between 𝑓 , and its approximation (31). Now if the function one tries
to approximate is not 𝑘 (x, 𝑥), but a linear combination of evaluations
of 𝑘 (x, 𝑥), this difference can grow by an additional factor which
can be bounded by ‖𝑃 𝑓 ‖H , yielding the bound (48).

It should be emphasised that inequality (48) only bounds the
error in the approximation with respect to the projection of the
true solution in the RKHS, 𝑃 𝑓 , and not the error with respect
to the true solution, 𝑓 , itself. Hence, the strength of this bound
crucially depends on the RKHS, and thus on the particular kernel,
or equivalently, on the particular set of basis functions that is used.
If the projection, 𝑃 𝑓 , in the RKHS is a good approximation for
the true function, 𝑓 , then the error bound (48) can also be used
to bound the true error in equation (42). However, this assumes a
certain regularity of the function, 𝑓 , and again crucially depends on
the particular choice of kernel or basis functions.

If {𝜙𝑖} is a finite and orthonormal set of square-integrable basis
functions on some domain, 𝐷, i.e. 〈𝜙𝑖 , 𝜙 𝑗 〉 ≡

∫
𝐷
𝜙𝑖𝜙 𝑗 = 𝛿𝑖 𝑗 , then

the function space spanned by these basis functions is a RKHS, say
H , with reproducing kernel (7), with respect to the following inner
product. Since every function in the RKHS can be expressed as a
linear combination of the basis functions, the inner product between
𝑔(𝑥) = 𝒈T𝝓(𝑥) ∈ H and ℎ(𝑥) = 𝒉T𝝓(𝑥) ∈ H can be defined as
〈𝑔, ℎ〉H ≡ 𝒈T𝝀−2𝒉. Hence, for a finite set of orthonormal basis
functions, it is this inner product that must be used to compute the
norm in the local error bound (48).

2.4 Example basis functions & kernels

Given the data, the key parameters that determine the regression
model are the set of basis functions or the kernel in the primal and
dual formulation respectively. In order to gain more insight into the
linear regression method, we consider some specific examples of
basis functions and their corresponding kernels.

2.4.1 Fourier basis

As a first example, consider the set of 𝑁b = 2𝑁 + 1 real Fourier
basis functions, {1} ∪ {sin(𝜔𝑛𝑥)}𝑁𝑛=1 ∪ {cos(𝜔𝑛𝑥)}𝑁𝑛=1, where we
defined 𝜔𝑛 ≡ 2𝜋𝑛/𝐿, with 𝐿 the size of the domain that we are
interested in. Given these basis functions, the primal representation
of the function approximation (5) corresponds to the (truncated)
Fourier series of the function that we are looking for. If we denote
the entry in 𝝀 corresponding to the constant with _, the entries
corresponding to the sines with _𝑛, and the entries corresponding
to the cosines with _′𝑛, the resulting kernel can be expanded as,

𝑘 (𝑥, 𝑥′) = _2 +
𝑁∑︁
𝑛=1

(
_2𝑛 + _′2𝑛
2

)
cos

(
𝜔𝑛 (𝑥 − 𝑥′)

)
+

𝑁∑︁
𝑛=1

(
_2𝑛 − _′2𝑛
2

)
cos

(
𝜔𝑛 (𝑥 + 𝑥′)

)
.

(49)
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Typically, one would expect that modes corresponding to the same
length scale, i.e. same 𝑛, would have similar weights, _𝑛 ≈ _′𝑛, such
that the second summation vanishes. This approximately renders
the kernel into a radial basis function 𝑘 (𝑥, 𝑥′) ≈ 𝐾 (‖𝑥 − 𝑥′‖).

Now consider the simplest case, when all _𝑛 = _′𝑛 = _. The
kernel is then a radial basis function and can be computed explicitly,

𝑘 (𝑥, 𝑥′) =
_2

2

(
1 +
sin

(
𝜋(2𝑁 + 1) (𝑥 − 𝑥′)/𝐿

)
sin

(
𝜋(𝑥 − 𝑥′)/𝐿

) )
, (50)

which is commonly known as (one half plus) the Dirichlet kernel.
The kernel attains itsmaximumon the diagonal, 𝑘 (𝑥, 𝑥) = _2 (𝑁+1),
and oscillates and decays away from there. The dual solution (11)
is a linear combination of these radial basis functions centred, and
thus peaking, around the data points, and decaying away elsewhere.

Note that, as the number of basis functions increases, 𝑁 → ∞,
the kernel becomes more narrow and peaked, and in the limit tends
towards a delta distribution. Since the kernel centred around a data
point represents the influence of that data point on the solution, this
implies that with increasing 𝑁 , the effect of each individual data
point on the solution decreases and becomes ever more confined to a
shrinking region around each data point. Similarly, with increasing
𝑁 , the variance (or corresponding uncertainty estimate) in between
data points will increase. Intuitively, this can be understood, since
increasing the number of basis functions, while keeping the number
of data points fixed, will imply that the basis functions are ever less
constrained by the data, a problem commonly known as over-fitting.

Over-fitting can be cured with regularisation by damping the
higher order modes in the kernel through 𝝀, making it less peaked
in the limit of large 𝑁 . Note that the entries of the regularisation
vector, 𝝀, appear as the Fourier coefficients of the kernel (49).
This illustrates the crucial interplay between the choice of basis
functions and regularisation. In a sense, regularisation effectively
comes down to re-scaling the basis functions, since by making the
re-scaling, 𝜙𝑖 → _𝑖𝜙𝑖 , the regularisation vector can always be cast
into the trivial form 𝝀 = 1.

The Fourier basis allows us to restrict the desired solution of
the regression problem to a minimal length scale, defined by 𝐿/𝑁 .
Therefore, by considering only a limited number of basis functions,
𝑁b � 𝑁d, one can obtain a large-scale (𝐿/𝑁) approximation for the
model, which can efficiently be solved in the primal formulation, as
it only requires the solution of an (𝑁b × 𝑁b)-dimensional system.

A potential problem with the Fourier basis is that the effective
width, b, of the kernel (49), which can be estimated as, b ∼ 𝐿/𝑁 , is
the same around every data point. This is fine as long as the distance
between the data points, x, is much smaller than the effective width
of the kernel, but causes problems, for instance, if there are “lonely”
data points whose nearest neighbours are much farther away than
the effective width of the kernel. Since the kernel rapidly decays
for length scales beyond its effective width, the solution around a
so-called “lonely” data point, say 𝑥𝑙 , can be approximated as,

𝑓 (𝑥) = 𝒗T𝑘 (𝒙, 𝑥) ≈ 𝑣𝑙𝑘 (𝑥𝑙 , 𝑥), (51)

which holds, as long as 𝑥 is much closer to 𝑥𝑙 than to its nearest
neighbour, say 𝑥n

𝑙
, i.e. ‖𝑥 − 𝑥𝑙 ‖ � ‖𝑥 − 𝑥n

𝑙
‖. Since the nearest

neighbour is much farther away than the effective width of the
kernel (by definition of a “lonely point”), there is a significant region
around 𝑥𝑙 , defined by {𝑥 : b < ‖𝑥 − 𝑥𝑙 ‖ � ‖𝑥 − 𝑥n

𝑙
‖}, for which,

𝑓 (𝑥) ≈ 0. (52)

Similarly, the variance (or uncertainty estimate) for the function
approximation in that region will attain its maximum value,

Ỹ2 (𝑥) ≈ 𝑘 (𝑥, 𝑥) = _2 (𝑁 + 1). (53)

Hence, the approximation is probably not good in that region. This
type of problem can be avoided by choosing basis functions or a
kernel that is locally adapted to the distribution of data points.

2.4.2 Radial basis functions

As a second example, consider a set of basis functions generated by
a radial basis function, 𝜓, centred around each data point, 𝑥𝑖 , such
that there is one basis function, 𝜙𝑖 for each data point 𝑥𝑖 , with,

𝜙𝑖 (𝑥) = 𝜓

(
‖𝑥 − 𝑥𝑖 ‖
b𝑖

)
, (54)

in which b𝑖 controls the effective width of the radial basis function
around data point, 𝑥𝑖 . The corresponding kernel for this basis reads,

𝑘 (𝑥, 𝑥′) =

𝑁b∑︁
𝑖=1

𝜓

(
‖𝑥 − 𝑥𝑖 ‖
b𝑖

)
_2𝑖 𝜓

(
‖𝑥′ − 𝑥𝑖 ‖

b𝑖

)
. (55)

Issues with “lonely” data points as encountered with the Fourier
basis can be avoided here by tailoring the basis functions to the
data, for instance, by choosing b𝑖 = ‖𝑥𝑖 − 𝑥n𝑖 ‖, in which 𝑥

n
𝑖
is the

nearest neighbour of 𝑥𝑖 .
Radial basis functions are a popular choice for solving operator

equations. Although, often, some care is required to cope with the
ill-conditioning of the resulting linear system (see e.g. Fornberg &
Flyer 2015). Moreover, radial basis functions often offer an intuitive
interpretation. For instance, when dealing with smoothed-particle
hydrodynamics data (Gingold & Monaghan 1977; Lucy 1977), the
basis functions can be related to the smoothing kernels and represent
the proliferation of the data from each particle.

Since, in this approach, the basis functions are tied to the
data points, approximating the solution around certain data points
can be achieved by discarding the corresponding basis functions.
In De Ceuster et al. (2020), a mesh reduction method for radiative
transfer models was proposed in which, based on a certain heuristic,
data points which were not deemed essential were discarded from
themodel. A similar but improved reduction scheme can be obtained
using the linear regression approach with basis functions tied to the
data, by discarding the corresponding basis functions instead. In
this way, the data itself does not have to be discarded and can still
be taken into account, while the model is reduced in computational
complexity. Furthermore, theBayesian linear regressionmethod can
provide an estimate for the uncertainty on the result after solving
the reduced model. This leads us to the question whether there are
even better bases to compress radiative transfer models.

2.4.3 Wavelet bases

Wavelets have a proven track record for data compression in various
applications, such as sound and image processing (see e.g. Vetterli
2001), and have already successfully been applied to solve operator
equations (see e.g. Stevenson 2009, and the references therein). They
combine the localisation in scale of the Fourier basis, i.e. certain
basis functions describe certain length scales, with the localisation
in space of radial basis functions, i.e. certain basis functions describe
certain regions in space. As a result, wavelet bases are of the form,

𝜓𝑚𝑛 (𝑥) = 𝑎−𝑚/2 𝜓
(
𝑥 − 𝑛𝑏
𝑎𝑚

)
, (56)

indexed by two indices, in which 𝑚 describes the length scale, and
𝑛 describes the location, parametrised by the constants 𝑎 and 𝑏
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respectively. By imposing the mathematical structure of a multi-
resolution analysis, relations between the different scales can be
derived which allow one to construct orthogonal wavelet bases,
which give rise to efficient algorithms to decompose functions into
their wavelet components (see e.g. Daubechies 1992).

By selecting (or disregarding) certain wavelet basis functions
we thus can locally refine (or coarsen) the solution of the linear
regression problem. However, this assumes that we know where
we want to refine the model and where a coarser representation
suffices. Alternatively, by expressing the data directly in a wavelet
basis (e.g. using a fast wavelet transform), one can select only those
components that significantly contribute (see e.g.Daubechies 1992).

There is a large variety of wavelet bases and the key remains
to choose an appropriate one. Moreover, when the aim is to solve
operator equations, the wavelet basis should still be appropriate
when acted upon with the relevant operator. Choosing appropriate
wavelet bases adapted to a particular operator turns out to be a
challenging endeavour (see e.g. Stevenson 2009). However, recently,
significant progress has been made, for instance, by Owhadi (2017),
which makes wavelet bases an attractive choice for solving large
(Bayesian) linear regression problems (see also Section 4).

3 BAYESIAN RADIATIVE TRANSFER

We can now apply the probabilistic numerical approach developed
above to the particular case of radiative transfer problems. The
goal is to find the radiation field throughout a region, based on the
radiative properties of the medium and some boundary conditions.
The radiation field can be described by the specific monochromatic
intensity, 𝐼a (x, n̂), i.e. the energy at a point, x, transported in a
direction, n̂, in a certain frequency bin, a. Interactions between
the radiation field and the medium can be described in terms of
the change they imply in the specific monochromatic intensity. The
radiative transfer equation is a linear operator equation that relates
this change to the radiative properties of the medium,

ℒ𝐼a (x, n̂) = [a (x), (57)

in which, [a (x), is the emissivity of the medium. In the time-
independent case and including scattering, the operator,ℒ, acts on
the intensity as (see e.g. Mihalas & Weibel-Mihalas 1984),

ℒ𝐼a (x, n̂) ≡
(
𝜒a (x) + n̂ · ∇

)
𝐼a (x, n̂)

−
∮
dΩ′

∫ ∞

0
da′ Φaa′

(
x, n̂, n̂′) 𝐼a′ (x, n̂′).

(58)

Here, we introduced the opacity, 𝜒a (x), and the scattering redis-
tribution function, Φaa′ (x, n̂, n̂′). Since ℒ is a linear operator,
the solution of the radiative transfer equation, given appropriate
boundary conditions, can be viewed as a Bayesian linear regression
problem. It remains to find an appropriate set of basis functions (in
the primal formulation), or to find an appropriate kernel (in the dual
formulation), given the radiative properties of the medium.

3.1 Approximate Radiative Transfer models

Almost all astrophysical simulations require some kind of radiative
transfer model. However, due to the significant computational cost,
one is often forced to make drastic approximations. In this section,
we show how the primal formulation can be used to create reduced-
order or approximate radiative transfer models and show how it can
be applied, for instance, to compute approximatedLambda operators
for atomic and molecular line transfer.

3.1.1 Reduced-order models

As already alluded to in Section 2.4, we can obtain approximate
solutions for a linear regression problem by considering reduced
sets of basis functions in the primal formulation. The basis functions
essentiallymap the regression problem to an𝑁b-dimensional feature
space in which the problem is solved. Therefore, in a sense, the
primal solution (5) can be interpreted as follows,

𝑓 (𝑥) = 𝒚T 𝝈−2𝚽︸ ︷︷ ︸
compress

(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1︸                     ︷︷                     ︸
solve

𝝓(𝑥)︸︷︷︸
decompress

. (59)

First, the 𝑁d-dimensional data vector, 𝒚, is mapped into the 𝑁b-
dimensional feature space, which can be viewed as a projection or
compression, if 𝑁b < 𝑁d. Then, the problem is solved in the 𝑁b-
dimensional feature space, and finally mapped back into the desired
format. The least-squares problem posed in equation (3) minimises
the compression loss. The resulting reduced-order model provides
an approximate solution to the (more) exact radiative transfer prob-
lem, in contrast to the exact solutions to approximate models that
are often used. Moreover, the probabilistic interpretation allows us
to quantify with the variance (28) the uncertainty that was intro-
duced by compressing the model, allowing us to strictly control the
trade-off between accuracy and computational cost.

By denoting the first part of equation (59) as a compression of
the data, one could ask whether the vector-matrix multiplication in
equation (59) is the most efficient way to perform this compression.
Indeed, for the Fourier and wavelet bases there exist more efficient
algorithms to express a given data set into these bases, the so-
called Fast Fourier Transform (FFT) and Fast Wavelet Transform
(FWT) respectively (see e.g. Press et al. 2007). These can reduce
the computational cost of these models even further.

The type and amount of compression critically depends on the
set of basis functions that is used. One way to choose them, for
instance, is by performing a principle component analysis on the
design matrix,𝚽. This yields what is known as a proper orthogonal
decomposition (POD; see e.g. Benner et al. 2017). In addition to
performing this compression, the probabilistic approach now also
allows to quantify the uncertainties that are thus introduced.

3.1.2 Application: Approximate Lambda Operators

Approximations to radiative transfer are often used to accelerate
iterative line radiative transfer solvers. Models involving atomic or
molecular line radiative transfer show a non-linear coupling between
the radiative properties of the medium and the radiation field. This
coupling can be expressed as,

𝐼 = Λ [[ (𝐼)] , (60)

in which 𝐼 indicates the radiation field, Λ is a linear operator, and
we explicitly indicated the dependence of [ on the radiation field.
It is this dependency of [ on 𝐼 that is usually non-linear. Due to
this non-linear coupling, the radiation field has to be computed in
an iterative way, (see e.g. Chapter 13 in Hubeny & Mihalas 2014),

𝐼 (𝑛+1) = Λ

[
[

(
𝐼 (𝑛)

)]
. (61)

This iterative scheme often shows notoriously slow convergence and
one often has to resort to acceleration techniques, such as operator
splitting (Cannon 1973a,b), which yields the implicit scheme,

𝐼 (𝑛+1) = Λ∗
[
[

(
𝐼 (𝑛+1)

)]
+

(
Λ − Λ∗) [

[

(
𝐼 (𝑛)

)]
, (62)
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inwhich the linear operator,Λ∗, is an approximation for the operator,
Λ, that can easily be inverted (see e.g. Rybicki & Hummer 1991, for
a specific implementation). Intuitively, the better the approximation,
Λ∗, the smaller the dependence on the previous iteration in (62),
and thus the better convergence will be. The key to success in this
acceleration scheme is to find a good approximate operator, Λ∗.

Comparing equations (5), (57), and (60), one can see that, in
the primal formulation, the operator, Λ, in matrix form is given by,

𝚲 = 𝝓(𝑥)T𝝀2𝚽T
(
𝚽𝝀2𝚽T + 𝝈2

)−1
. (63)

As a result, good approximations to this operator can be obtained,
for instance, by considering reduced sets of basis functions in the
corresponding linear regression problem, as shown in Section 3.1.1.

3.2 Method of Characteristics

In order to make the probabilistic approach to radiative transfer
more concrete, we consider the specific example of the method of
characteristics and derive it from a Bayesian point of view.

In its simplest form, in the absence of scattering and neglecting
any frequency dependence, the time-independent radiative transfer
equation along a single ray reads,

ℒ𝑠 𝐼 (𝑠) = [(𝑠), (64)

in which the linear differential operator,ℒ𝑠 , is defined as,

ℒ𝑠 ≡ 𝜒(𝑠) + 𝜕𝑠 . (65)

For future reference, we already note that the Green’s function for
this linear operator,ℒ𝑠 , is given by,

𝐺 (𝑧, 𝑠) = Θ(𝑠 − 𝑧) 𝑒−𝜏 (𝑧, 𝑠) , (66)

in which Θ is the Heaviside function, and the optical depth, 𝜏, over
an interval [𝑧, 𝑠] along the ray, is defined as,

𝜏(𝑧, 𝑠) ≡
∫ 𝑠

𝑧
d𝑠′ 𝜒(𝑠′), (67)

such that 𝜕𝑠𝜏(𝑧, 𝑠) = 𝜒(𝑠), and thus, as expected,

ℒ𝑠𝐺 (𝑧, 𝑠) = 𝛿(𝑠 − 𝑧). (68)

Using this Green’s function one can (at least formally) solve the
radiative transfer equation, as in the method of characteristics.

3.2.1 Classical method of characteristics

The method of characteristics solves the transfer equation starting
from its formal solution based on the Green’s function. Given the
boundary condition, 𝐼 (𝑠0) = 𝐼0, at boundary point, 𝑠0, one finds,

𝐼 (𝑠) = 𝐼0 𝑒
−𝜏 (𝑠0 ,𝑠) +

∫ 𝑠

𝑠0
d𝑠′ [(𝑠′) 𝑒−𝜏 (𝑠

′,𝑠) . (69)

The required integrals in equations (67) and (69) are then evaluated
using a (local) interpolation both for the emissivity and opacity
functions, [(𝑠) and 𝜒(𝑠).

At this point, a distinction is often made between so-called
short and long characteristic methods depending on the location of
the point 𝑠0 in the discretisation. In the case of short characteristics,
𝑠0 is taken to be the previous point in the discretisation, while, in
the case of long characteristics, it is taken to be the boundary of the
computational domain. For our intents and purposes this distinction
does not matter, so we continue with the formulation in (69), in
which 𝑠0 can be any point in the discretisation.

The emissivity and opacity are usually interpolated using a
linear scheme. Given a kernel, ^, the interpolant (11) in the dual
formulation can be written as,

[̃(𝑠) ≡ 𝜼T
(
^(𝒂, 𝒂) + 𝝈2[

)−1
^(𝒂, 𝑠), (70)

�̃�(𝑠) ≡ 𝝌T
(
^(𝒂, 𝒂) + 𝝈2𝜒

)−1
^(𝒂, 𝑠), (71)

in which 𝒂 is the vector of positions at which the values for [ and 𝜒
are given, and where 𝝈2[ and 𝝈2𝜒 denote the diagonal matrices with
the variances for the given values of [ and 𝜒 respectively. However,
in the classical method of characteristics, these variances are never
used, and thus implicitly assumed to be negligible. In the Bayesian
method of characteristics, however, they model the uncertainties in
the emissivities and opacities that originate, for instance, from the
uncertainties in the radiative data (see Section 3.2.2). Furthermore,
we note that, in principle, one can use a different kernel for [ and 𝜒,
although, in practice, one often uses the same one. One particularly
popular choice of kernel is the one corresponding to the basis of
Lagrange polynomials, since they trivially satisfy the interpolation
property. With equations (70) and (71), the formal solution yields,

𝐼 (𝑠) = 𝐼0 𝑒
−�̃� (𝑠0 ,𝑠) + 𝜼TK−1

[

∫ 𝑠

𝑠0
d𝑠′ ^(𝒂, 𝑠′) 𝑒−�̃� (𝑠

′,𝑠) (72)

in which the interpolated optical depth is given by,

𝜏(𝑧, 𝑠) = 𝝌TK−1
𝜒

∫ 𝑠

𝑧
d𝑠′ ^(𝒂, 𝑠′), (73)

where, for brevity, we defined the matricesK[ ≡ ^(𝒂, 𝒂) +𝝈2[ , and
K𝜒 ≡ ^(𝒂, 𝒂) + 𝝈2𝜒 . The integrals in equations (72) and (73) can
now be evaluated on the (analytically) known kernel function, ^,
thus solving the radiative transfer equation.

3.2.2 Bayesian method of characteristics

Now we show how the method of characteristics can be derived
as a Bayesian linear regression problem in the dual formulation by
choosing a particular type of kernel, or equivalently by choosing a
particular set of basis functions.

Given the Green’s function (66) for the differential operator in
the radiative transfer equation, consider a kernel of the form,

𝑘 (𝑧, 𝑠) =

∫ +∞

−∞
d𝑠′

∫ +∞

−∞
d𝑧′ ^(𝑠′, 𝑧′) 𝐺 (𝑧′, 𝑧) 𝐺 (𝑠′, 𝑠), (74)

in which ^(𝑠′, 𝑧′) is another kernel from which we only demand
that it does not correlate the region 𝑠 > 𝑠0 with 𝑠 < 𝑠0. The reason
for this is, that, in the classical method of characteristics, we want
to use the solution at 𝑠0 as a true boundary condition, i.e. such that
nothing at 𝑠 > 𝑠0 affects the solution at 𝑠 < 𝑠0, and vice versa. This
implies a block diagonal kernel of the from,
^(𝑧, 𝑠) ≡ Θ(𝑠0 − 𝑧)Θ(𝑠0 − 𝑠)^(𝑧, 𝑠)

+ Θ(𝑧 − 𝑠0)Θ(𝑠 − 𝑠0)^(𝑧, 𝑠).
(75)

If we now assume that ∀𝑎 ∈ 𝒂 : 𝑎 > 𝑠0, and we assume no error on
the boundary condition, one can show (see Appendix A6) that the
dual solution for the Bayesian linear regression problem reads,

𝐼 (𝑠) = 𝐼0 𝑒
−�̃� (𝑠0 ,𝑠) + 𝜼TK−1

[

∫ 𝑠

𝑠0
d𝑠′ ^(𝒂, 𝑠′) 𝑒−�̃� (𝑠

′,𝑠) (76)

with the corresponding uncertainty estimate given by,

Ỹ2𝐼 (𝑠) =

∫ 𝑠

𝑠0
d𝑠′

∫ 𝑠

𝑠0
d𝑧′ 𝑒−�̃� (𝑠

′, 𝑠) 𝑒−�̃� (𝑧
′, 𝑠)

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1

[ ^(𝒂, 𝑧′)
)
.

(77)
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Note that the probabilistic solution (76) is exactly the same as the
classical solution (72) for the method of characteristics. Therefore,
we can conclude that both methods are equivalent, but with the
important difference that the probabilistic approach can account for
uncertainties on the input (through 𝝈[) and we thus can estimate
the uncertainty on the result. Moreover, in the expression between
parentheses in equation (77),

^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1
[ ^(𝒂, 𝑧′) (78)

we recognise the resulting variance in the dual formulation (32) that
stems from the interpolation of the emissivity (70).

We should note that in the definition of the kernel (74), we
implicitly assumed that we knew the Green’s function (66), and
thus we implicitly assumed that we knew the optical depth (67). In
general, we do not have an exact expression for the optical depth.
However, we can find an approximate solution by solving another
Bayesian linear regression problem for the operator equation,

𝜕𝑠𝜏(𝑧, 𝑠) = 𝜒(𝑠), (79)

with boundary condition, 𝜏(𝑧, 𝑧) = 0, which, using the kernel,

𝑘 (𝑧, 𝑠) =

∫ +∞

−∞
d𝑠′

∫ +∞

−∞
d𝑧′ ^(𝑠′, 𝑧′), (80)

unsurprisingly, yields the expected solution,

𝜏(𝑧, 𝑠) = 𝝌TK−1
𝜒

∫ 𝑠

𝑧
d𝑠′ ^(𝒂, 𝑠′), (81)

with the corresponding uncertainty estimate given by,

Ỹ2𝜏 (𝑧, 𝑠) =

∫ 𝑠

𝑧
d𝑠′

∫ 𝑠

𝑧
d𝑧′

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1

𝜒 ^(𝒂, 𝑧′)
)
.

(82)

This can now be used to define the Green’s function (66).
It should be emphasised that the uncertainty on the optical

depth, and by extension the uncertainty on the opacity, is not yet
included in the uncertainty estimate for the radiation field (77). The
expression (77) only includes the uncertainties on the emissivity,
and not on the opacity or optical depth, because the opacity (only)
appears in the linear operator (65), which in the Bayesian linear
regressionmethod is assumed to be deterministic. The reason for this
is that imposing a probability distribution also on the linear operator
would render the posterior distribution non-Gaussian, which would
severely complicate conditioning and impede analytical solutions.

Nevertheless, in this particular case, an analytic solution can
still be obtained for the expectation and the variance of the radiation
field, taking into account the distribution of the opacity, although
the resulting distribution is not a Gaussian anymore.

From equations (76) and (77), and equations (81) and (82), we
know the distributions of the stochastic functions 𝐼 and 𝜏,

𝑝 (𝐼 | 𝜏) = N
(
𝐼, Ỹ2𝐼

)
, (83)

𝑝 (𝜏) = N
(
𝜏, Ỹ2𝜏

)
. (84)

The expectation, 𝐼, and variance, Ŷ2
𝐼
, of the radiation field with

respect to the joint distribution with 𝜏 can then be obtained using
the law of total expectation (see Appendix A7),

𝐼 ≡ E [𝐼] = E𝜏 [E [𝐼 | 𝜏]] = E𝜏

[
𝐼
]
, (85)

and similarly, using the law of total variance (see Appendix A8),

Ŷ2𝐼 ≡ V [𝐼] = E𝜏 [V [𝐼 | 𝜏]] + V𝜏 [E [𝐼 | 𝜏]]

= E𝜏

[
Ỹ2𝐼

]
+ E𝜏

[
𝐼2

]
− 𝐼2.

(86)

Evaluating these expectations yields (see Appendix A9),

𝐼 (𝑠) = 𝐼0 𝑒
−�̂� (𝑠0 ,𝑠) + 𝜼TK−1

[

∫ 𝑠

𝑠0
d𝑠′ ^(𝒂, 𝑠′) 𝑒−�̂� (𝑠

′,𝑠) (87)

with the corresponding uncertainty estimate given by,

Ŷ2𝐼 (𝑠) ≤
∫ 𝑠

𝑠0
d𝑠′

∫ 𝑠

𝑠0
d𝑧′ 𝑒−𝜏 (𝑠

′, 𝑠) 𝑒−𝜏 (𝑧
′, 𝑠)

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1

[ ^(𝒂, 𝑧′)
)

+ 𝐼2 (𝑠) − 𝐼2 (𝑠).

(88)

These expressions look very similar to equations (76) and (77). The
only difference is that the optical depth is replaced by newly defined
effective optical depths,

𝜏(𝑧, 𝑠) ≡ 𝜏(𝑧, 𝑠) − 1
2
Ỹ2𝜏 (𝑧, 𝑠), (89)

𝜏(𝑧, 𝑠) ≡ 𝜏(𝑧, 𝑠) − 1
2
Ỹ2𝜏 (𝑧, 𝑠), (90)

and there are additional terms in (87), which account for correlations
in the optical depth. The intensity, 𝐼, is defined analogously to 𝐼,
but with 𝜏 replaced by 𝜏. Equation (88) only gives a practical upper
bound. In Appendix A9, we also derive the complete expression
for Ŷ2

𝐼
. The uncertainty on the optical depth thus causes an effective

reduction of the optical depth that appears in the radiation field (87).

3.3 Example

We illustrate the Bayesian method of characteristics with a simple
example. Consider a set of 𝑁d points, {𝑠𝑑}, at which we know the
emissivities, {[𝑑}, and opacities, {𝜒𝑑}. Moreover, consider a set
of 𝑁b = 𝑁d basis functions that satisfy the interpolation property
for the data points, i.e. 𝜙𝑖 (𝑠𝑑) = 𝛿𝑑𝑖 , such that the design matrix
is an identity matrix. As a result, we have that ^(𝒂, 𝒂) = 𝝀2, such
that, if we use the same interpolation scheme both for [ and 𝜒, we
have that, K[ ≡ 𝝀2 + 𝝈2[ , and K𝜒 ≡ 𝝀2 + 𝝈2𝜒 . Furthermore, one
can show that ^(𝒂, 𝑠) = 𝝀2𝝓(𝑠). Finally, we assume that 𝝀 = _1,
and we assume the same uncertainty for every data point, such that
𝝈[ = 𝜎[1 and 𝝈𝜒 = 𝜎𝜒1. The resulting optical depth and the
corresponding uncertainty estimate can then be written as,

𝜏(𝑧, 𝑠) =
_2

_2 + 𝜎2𝜒
𝝌T𝝍𝜏 (𝑧, 𝑠), (91)

Ỹ2𝜏 (𝑧, 𝑠) =
_2𝜎2𝜒

_2 + 𝜎2𝜒
𝝍𝜏 (𝑧, 𝑠)T 𝝍𝜏 (𝑧, 𝑠), (92)

in which 𝝌 is the vector of opacities, and we defined the vector,

𝝍𝜏 (𝑧, 𝑠) ≡
∫ 𝑠

𝑧
d𝑠′ 𝝓(𝑠′). (93)

Similarly for the radiation field, we find that,

𝐼 (𝑠) = 𝐼0 𝑒
−�̂� (𝑠0 ,𝑠) + _2

_2 + 𝜎2[
𝜼T�̂�𝐼 (𝑠), (94)

Ŷ2𝐼 (𝑠) ≤
_2𝜎2[

_2 + 𝜎2[
�̄�𝐼 (𝑠)T �̄�𝐼 (𝑠) + 𝐼2 (𝑠) − 𝐼2 (𝑠), (95)

in which 𝜼 is the vector of emissivities, and we defined the vectors,

�̂�𝐼 (𝑠) ≡
∫ 𝑠

𝑠0
d𝑠′ 𝝓(𝑠′) 𝑒−�̂� (𝑠

′, 𝑠) , (96)

�̄�𝐼 (𝑠) ≡
∫ 𝑠

𝑠0
d𝑠′ 𝝓(𝑠′) 𝑒−𝜏 (𝑠

′, 𝑠) . (97)
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Figure 1. Example of the Bayesian method of characteristics for 25 data
points, with 𝐼0 = 1.0 W/m2, 𝜎[ = 1.0 W/m3, 𝜎𝜒 = 2.5 m−1, and
_ = 10.0. The error bars on the data and the shaded areas around the
curves show the respective (local) 1𝜎 confidence intervals (CI), or its upper
bound (95) for the intensity. The source code for this figure can be found at
github.com/FredDeCeuster/RadiativeTransferAsRegression.

Figure 1 shows the solution the the radiative transfer equation
along a single ray using the Bayesian method of characteristics.
The variances were chosen comically large, especially to illustrate
the effective optical depths. Even with such large variance, we see
that the effect on the optical depth is relatively small. As basis
functions, we choose the 25 fifth-order basis splines that interpolate
the 25 uniformly distributed data points, i.e. such that 𝜙𝑖 (𝑠𝑑) = 𝛿𝑑𝑖 .
It should be emphasised that, although the probability distributions
for the emissivity, opacity, and optical depth are all Gaussian, the
probability distribution for the intensity is not a Gaussian. In fact, we
have not specified the particular distribution, but could nevertheless
determine the expectation and variance.

Although we only presented the probabilistic numerical
method in the absence of scattering, neglecting any frequency de-

pendence, and only along a single ray, we should note that it can
readily by generalised to a three dimensions, including scattering
and frequency dependence. How this can be done for a particular
set of basis functions will be demonstrated in a forthcoming paper.

4 DISCUSSION

The probabilistic numerical method presented in this paper differs
significantly from commonly-used (probabilistic) sampling-based
Monte Carlo methods for uncertainty quantification (Metropolis
& Ulam 1949). Where sampling-based Monte Carlo methods are
non-intrusive and treat the physical model under consideration as a
black box, the probabilistic numerical approach, as described here,
requires to recast the entire description of the model as a Bayesian
linear regression problem. This investment, however, pays off in
a key advantage for the probabilistic numerical approach: where
sampling-based methods typically require many model evaluations
to obtain a distribution, the probabilistic numerical approach re-
quires only a single, albeit computationally slightly more expen-
sive, model evaluation. This is particularly advantageous for com-
putationally expensive models, such as the ones encountered in
radiative transfer, as described in this paper.

The (Bayesian) linear regression model is critically defined by
the choice of basis functions or the choice of the corresponding
kernel. As discussed in Section 2.4, different choices of basis func-
tions give rise to different kinds of descriptions, or, when, 𝑁b < 𝑁d,
different kinds of approximations. In particular, the truncation of a
set of Fourier basis functions implies a characteristic minimal re-
solvable length scale, whether or not to include certain data-centred
radial basis functionswill alter the solution around those data points,
and wavelets allow one to locally refine or coarsen the model. All
of these particular bases have their particular advantages and dis-
advantages, but none of them is in any sense optimal. Furthermore,
it should be noted that, in our discussion of different bases, we
did not take into account the effect of the operator acting on the
basis functions, while at the end of Section 2.1.4 it was empha-
sised that to solve a linear operator equation such as (13), the basis
functions should ideally be chosen such that {ℒ𝜙𝑖} can properly
fit 𝑔(𝑥), {ℬ𝜙𝑖} can properly fit ℎ(𝑥), and {𝜙𝑖} can properly fit
the sought after solution function 𝑓 (𝑥). There are many different
ways to solve this optimisation problem of finding an appropriate
(reduced) set of basis functions, often colloquially referred to as
model-order reduction methods (see e.g. Benner et al. 2017). One
particularly interesting method by Owhadi (2017) describes how to
construct a basis that is in a sense optimal, based on probabilistic
numerical considerations (see also Owhadi & Scovel 2019). In a
forthcoming paper, we will choose a particular type of basis, show
how it can be tailored to the problem at hand, and demonstrate how
this can be used to solve radiative transfer problems in a practical
three-dimensional setting.

Probabilistic numerical methods are by no means restricted to
radiative transfer applications and can readily be applied to various
other solvers of operator equations. In particular, we envision similar
techniques to be useful, for instance, in chemical kinetics models
that simulate the chemical evolution of a set of species, given a
network of chemical reactions (see e.g. McElroy et al. 2013). These
chemical networks are also often reduced to lower the computational
cost (see e.g. Grassi et al. 2021). As a result, the probabilistic
numerical setting might also there lead to interesting approximation
techniques. However, since these are initial value problems, the
required probabilistic numerical approach will probably be different
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from what was presented here and more along the lines of, for
instance, Conrad et al. (2017).

5 CONCLUSION

Inspired by the probabilistic numerical approaches advocated,
amongst others, by Hennig et al. (2015, 2022) and Cockayne et al.
(2019), we have presented a way to view radiative transfer as a
Bayesian linear regression problem. Specifically, we have modelled
the solution of a radiative transfer problem with the expectation of
a multivariate Gaussian probability distribution over possible solu-
tions, conditioned on evaluations of the radiative transfer equation
and boundary conditions. This allowed us to model uncertainties,
both on the input and output of the model, with the variances of the
associated probability distributions, without the need for computa-
tionally expensive (Monte Carlo) sampling schemes. Moreover, this
method naturally allowed us to create reduced-order radiative trans-
fer models, for which the probabilistic interpretation furthermore
allowed us to quantify the uncertainty that was introduced by reduc-
ing the model. As an example, we showed how the commonly-used
method of characteristics can be derived from a probabilistic point
of view.

The aim of this paper was not to present the definitive proba-
bilistic numerical approach for radiative transfer, but rather to mo-
tivate future research in this direction by showing the potential
benefits of a probabilistic point of view and indicate connections
with other research, for instance, by quantifying uncertainties from
a statistical point or view, and viewing model reduction as a form
of data compression.
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APPENDIX A: MATHEMATICAL BACKGROUND

A1 Equivalence between primal and dual formulation

To show the equivalence between the primal and dual formulation
we have to prove equation (12), or equivalently,

𝝈−2𝚽
(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1
−

(
𝚽𝝀2𝚽T + 𝝈2

)−1
𝚽𝝀2 = 0. (A1)

Using the Woodburry matrix identity, the second term expands as,

𝝈−2𝚽𝝀2 − 𝝈−2𝚽
(
𝝀−2 +𝚽T𝝈−2𝚽

)−1
𝚽T𝝈−2𝚽𝝀2. (A2)

Using (A2) in (A1), ignoring the overall factor,𝝈−2𝚽, and isolating
the terms with the inverse, it remains to show that,(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1 (
1 +𝚽T𝝈−2𝚽𝝀2

)
− 𝝀2 = 0. (A3)

Rewriting the second factor by extracting 𝝀2 then yields,(
𝚽T𝝈−2𝚽 + 𝝀−2

)−1 (
𝝀−2 +𝚽T𝝈−2𝚽

)
𝝀2 − 𝝀2 = 0 (A4)

making it clear that the equality indeed holds and that the primal
and dual solutions are thus equivalent.

A2 Definitions

In this section, we summarise and explain some of the concepts
from statistics that are used throughout the main text.

A2.1 Expectation

The expectation, E[𝑋], of a random variable, 𝑋 , is defined as the
integral (or sum) over all possible values, 𝑥, that variable can take,
weighted by its probability density, 𝑝(𝑥),

E[𝑋] ≡
∫
d𝑥 𝑝(𝑥) 𝑥. (A5)

Although here, in our notation, we carefully distinguished between
the random variable, 𝑋 , and a specific realisation of that variable, 𝑥,
throughout this paper, we sometimesmake the common slight abuse
of notation by denoting both a random variable and its realisations
with the same symbol.

A2.2 Variance

The variance, V[𝑋], of a random variable, 𝑋 , is defined as the
expectation of the square difference between that variable and its
expectation,

V[𝑋] ≡ E
[
(𝑋 − E[𝑋])2

]
. (A6)

The variance can be interpreted as the expected square deviation
from its expectation and thus quantifies the spread of the distribution
of the random variable. Sometimes, the variance can be computed
more conveniently as,

V[𝑋] = E
[
𝑋2

]
− E [𝑋]2 , (A7)

which follows from the definition (A6) by direct computation.

A2.3 Covariance

The covariance, Cov[𝑋𝑖 , 𝑋 𝑗 ], between two random variables, 𝑋𝑖
and 𝑋 𝑗 , is defined as, the expectation of the product of the differ-
ences of each variable with its expectation,

Cov[𝑋𝑖 , 𝑋 𝑗 ] ≡ E
[
(𝑋𝑖 − E[𝑋𝑖])

(
𝑋 𝑗 − E[𝑋 𝑗 ]

) ]
. (A8)

The covariance of a random variable and itself equals its variance,

Cov[𝑋𝑖 , 𝑋𝑖] = V[𝑋𝑖], (A9)

which follows directly from the definitions (A6) and (A8).

A2.4 Marginal probability

The marginal probability distribution, 𝑝(𝑋𝑖), of a random variable,
𝑋𝑖 , given the joint probability distribution, 𝑝(𝑋𝑖 , 𝑋 𝑗 ), with another
random variable, 𝑋 𝑗 , is given by,

𝑝(𝑋𝑖) ≡
∫
d𝑋 𝑗 𝑝(𝑋𝑖 , 𝑋 𝑗 ), (A10)

which amounts to integrating out the other random variable. Note
the abuse of notation in using the random variable, 𝑋 𝑗 , to denote its
observed value, 𝑥 𝑗 .

A2.5 Conditional probability

The conditional probability, 𝑝(𝑋𝑖 |𝑥 𝑗 ), of a random variable, 𝑋𝑖 ,
given the observation of the value, 𝑥 𝑗 , of another random variable,
𝑋 𝑗 , is given by,

𝑝(𝑋𝑖 |𝑋 𝑗 ) ≡
𝑝(𝑋𝑖 , 𝑋 𝑗 )∫
d𝑋𝑖 𝑝(𝑋𝑖 , 𝑋 𝑗 )

=
𝑝(𝑋𝑖 , 𝑋 𝑗 )
𝑝(𝑋 𝑗 )

, (A11)

which amounts to a re-scaling of the joint distribution, 𝑝(𝑋𝑖 , 𝑋 𝑗 ),
with the marginal distribution 𝑝(𝑋 𝑗 ). Note the abuse of notation in
using the random variable, 𝑋 𝑗 , to denote its observed value, 𝑥 𝑗 .
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A2.6 Multivariate Gaussian or normal probability distribution

A random vector variable, 𝑿 ∼ N(𝝁,𝚺), follows a multivariate
Gaussian or normal probability distribution with mean vector, 𝝁,
and covariance matrix, 𝚺, if its probability distribution is given by,

𝑝(𝑋) ≡ 1√︁
det (2𝜋𝚺)

exp
(
−1
2
(𝑿 − 𝝁)T 𝚺−1 (𝑿 − 𝝁)

)
. (A12)

By direct computation, one can verify that the expectation, variance,
and covariance of the components, 𝑋𝑖 , of the multivariate Gaussian
distributed vector variable 𝑿 ∼ N(𝝁,𝚺), are respectively given by,

E[𝑋𝑖] = `𝑖 , (A13)
V[𝑋𝑖] = Σ𝑖𝑖 , (A14)

Cov[𝑋𝑖 , 𝑋 𝑗 ] = Σ𝑖 𝑗 . (A15)

The relations between a marginal and conditional (multivariate)
Gaussian distributions are given in Appendix A3 and the relations
for conditioning a (multivariate) Gaussian distribution are given in
Appendix A4.

A3 Marginal & conditional Gaussians

Given a (marginal)Gaussian distribution, 𝑝(𝒙), and a corresponding
conditional Gaussian distribution, 𝑝(𝒚 | 𝒙), which are defined as,

𝑝(𝒙) = N
(
𝝁𝒙 , 𝚺𝒙

)
, (A16)

𝑝(𝒚 | 𝒙) = N
(
𝐴𝒙 + 𝒃, 𝚺𝒚 |𝒙

)
, (A17)

the other corresponding marginal distribution, 𝑝(𝒚), and the reverse
conditional distribution, 𝑝(𝒙 | 𝒚), are given by,

𝑝(𝒚) = N
(
𝐴𝝁𝒙 + 𝒃, 𝚺𝒚 |𝒙 + 𝐴𝚺𝒙𝐴

T
)
, (A18)

𝑝(𝒙 | 𝒚) = N
(
𝚺

(
𝐴T𝚺−1

𝒚 |𝒙 (𝒚 − 𝒃) + 𝚺−1
𝒙 𝝁𝒙

)
, 𝚺

)
, (A19)

in which we defined the covariance matrix,

𝚺 ≡
(
𝚺−1
𝒙 + 𝐴T𝚺−1

𝒚 |𝒙𝐴
)−1

. (A20)

These relations can be derived by “completing the square” in the
distribution function and collecting the relevant terms, as described
in detail, for instance, in Bishop (2006).

A4 Conditioning a Gaussian

Consider a stochastic vector variable, 𝒚, defined by two separate
stochastic vector variables, 𝒂 and 𝒃, and assume that all components
follow a (multivariate) Gaussian distribution, i.e.,

𝒚 =

[
𝒂
𝒃

]
∼ N

( [
𝝁𝒂
𝝁𝒃

]
,

[
𝚺𝒂𝒂 𝚺𝒂𝒃
𝚺𝒃𝒃 𝚺𝒃𝒃

] )
, (A21)

in which, 𝝁𝒂 and 𝝁𝒃 are the mean vectors and the matrices 𝚺𝒂𝒂 ,
𝚺𝒂𝒃 = 𝚺T

𝒃𝒂
, and 𝚺𝒃𝒃 , together form the covariance matrix. Now,

we can ask what the resulting distribution of 𝒂 would be, given prior
knowledge about the value for 𝒃. Fixing the value of 𝒃 again yields
a multivariate Gaussian distribution,

𝑝 (𝒂 | 𝒃) = N
(
𝝁𝒂 |𝒃 ,𝚺𝒂 |𝒃

)
, (A22)

in which the conditioned mean and variance are given by,

𝝁𝒂 |𝒃 = 𝝁𝒂 + 𝚺𝒂𝒃 𝚺
−1
𝒃𝒃

(
𝒃 − 𝝁𝒃

)
, (A23)

𝚺𝒂 |𝒃 = 𝚺𝒂𝒂 − 𝚺𝒂𝒃 𝚺
−1
𝒃𝒃 𝚺𝒃𝒂 . (A24)

These relations can be derived by “completing the square” in the
distribution function and collecting the relevant terms, as described
in detail, for instance, in Bishop (2006).

Note that without correlation between 𝒂 and 𝒃, i.e. when𝚺𝒂𝒃 =

𝚺T
𝒃𝒂

= 0, the prior knowledge about 𝒃 will not affect the distribution
of 𝒂, which is in line with expectations.

A5 RKHS bound on the uncertainty

Let H denote the reproducing kernel Hilbert space (RKHS) of the
kernel defined in (7), with an associated inner product, 〈〉H , and
norm ‖ · ‖H ≡

√︁
〈·, ·〉H . The defining properties of an RKHS with

reproducing kernel, 𝑘 , are that, 𝑘 (𝑥, ·) ∈ H , and that,
∀ 𝑓 ∈ H : 〈 𝑓 , 𝑘 (𝑥, ·)〉H = 𝑓 (𝑥), (A25)

i.e. an inner productwith the kernel around 𝑥 corresponds to function
evaluation in 𝑥 (see e.g. Berlinet & Thomas-Agnan 2004, for a
comprehensive introduction). The latter is known as the reproducing
property and it is the key to derive the bound given in equation (48).
If we now consider the projection 𝑃 𝑓 ∈ H of the function, 𝑓 , in the
RKHS,H , the reproducing property (A25) implies that,
𝑃 𝑓 (𝑥) = 〈𝑃 𝑓 , 𝑘 (𝑥, ·)〉H . (A26)

By definition of the data, we also have that 𝑃 𝑓 (x) = y, such that,

y = 〈𝑃 𝑓 , 𝑘 (x, ·)〉H . (A27)

Substituting this in (31), and defining K ≡ 𝑘 (x, x) + 𝝈2, yields,

𝑓 (𝑥) = 𝑘 (𝑥, 𝒙)K−1 〈𝑃 𝑓 , 𝑘 (x, ·)〉H , (A28)

such that, in combination with equation (A26), we find that,��𝑃 𝑓 (𝑥) − 𝑓 (𝑥)
��

=

���〈𝑃 𝑓 , 𝑘 (·, 𝑥) − 𝑘 (𝑥, 𝒙)K−1𝑘 (·, x)
〉
H

���
≤ ‖𝑃 𝑓 ‖H

𝑘 (𝑥, ·) − 𝑘 (𝑥, 𝒙)K−1𝑘 (x, ·)

H
,

(A29)

where in the last step, we used the Cauchy-Schwarz inequality.
Considering the square of the last factor, we find,𝑘 (𝑥, ·) − 𝑘 (𝑥, 𝒙)K−1𝑘 (x, ·)

2
H

= 𝑘 (𝑥, 𝑥) − 2𝑘 (𝑥, 𝒙)K−1𝑘 (x, 𝑥)

+ 𝑘 (𝑥, 𝒙)K−1𝑘 (x, x)K−1𝑘 (x, 𝑥)

= 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥, 𝒙)K−1𝑘 (x, 𝑥)

− 𝑘 (𝑥, 𝒙)K−1 (K − 𝑘 (x, x)
)
K−1𝑘 (x, 𝑥)

= Ỹ2 (𝑥) − 𝑘 (𝑥, 𝒙)K−1𝝈2K−1𝑘 (x, 𝑥),

(A30)

where in the last equality we used equation (32). Since the second
term can be viewed as (minus) the square of the Euclidean norm of
the vector, 𝝈K−1𝑘 (x, 𝑥), it will always be negative, such that,𝑘 (𝑥, ·) − 𝑘 (𝑥, 𝒙)K−1𝑘 (x, ·)


H

≤ Ỹ(𝑥). (A31)

Note that in the limit of perfect data, i.e.𝝈 → 0, the above inequality
becomes an equality. Substituting this in equation (A29), we obtain
the desired bound on the local error,��𝑃 𝑓 (𝑥) − 𝑓 (𝑥)

�� ≤ ‖𝑃 𝑓 ‖H Ỹ(𝑥). (A32)

It should be emphasised that this only bounds the absolute difference
between the approximation and the projection of the true solution in
the RKHS, not the absolute difference between the approximation
and the true solution itself. Therefore, the strength of this bound
crucially depends on the RKHS, and thus on the particular kernel,
or equivalently, on the particular set of basis functions that is used.
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A6 Equivalent kernel for the method of characteristics

Given a linear PDE, and given the corresponding Green’s function,
𝐺, for the differential operator, one can construct a kernel,

𝑘 (𝑧, 𝑠) =

∫ +∞

−∞
d𝑠′

∫ +∞

−∞
d𝑧′ ^(𝑠′, 𝑧′) 𝐺 (𝑧′, 𝑧) 𝐺 (𝑠′, 𝑠), (A33)

based on another kernel, ^. For later convenience, we define a new
function, 𝑔, that, using the Green’s functions, can be expressed as,

𝑔(𝑠, 𝑧) ≡ ℒ2𝑘 (𝑧, 𝑠) =

∫ +∞

−∞
d𝑧′ ^(𝑠, 𝑧′) 𝐺 (𝑧′, 𝑧), (A34)

𝑔(𝑧, 𝑠) ≡ ℒ1𝑘 (𝑧, 𝑠) =

∫ +∞

−∞
d𝑠′ ^(𝑠′, 𝑧) 𝐺 (𝑠′, 𝑠), (A35)

in which the subscript on the differential operator, ℒ, indicates
whether it acts on the first or second argument. Note that both
definitions are consistent, since 𝑘 is symmetric in its arguments.
Using the Green’s functions again, one can derive,

ℒ1ℒ2𝑘 (𝑧, 𝑠) = ℒ1𝑔(𝑠, 𝑧) = ^(𝑠, 𝑧), (A36)
ℒ2ℒ1𝑘 (𝑧, 𝑠) = ℒ2𝑔(𝑧, 𝑠) = ^(𝑠, 𝑧). (A37)

When solving the PDE as a Bayesian linear regression problem, the
corresponding covariance matrix of the joint distribution, reads,

©«
ℒ1ℒ2𝑘 (𝒂, 𝒂) ℒ1ℬ2𝑘 (𝒂, 𝒃) ℒ1𝑘 (𝒂, 𝑠)
ℬ1ℒ2𝑘 (𝒃, 𝒂) ℬ1ℬ2𝑘 (𝒃, 𝒃) ℬ1𝑘 (𝒃, 𝑠)

ℒ2𝑘 (𝑠, 𝒂) ℬ2𝑘 (𝑠, 𝒃) 𝑘 (𝑠, 𝑠)

ª®¬ (A38)

and can be simplified using the definitions above to yield,

©«
^(𝒂, 𝒂) ℬ1𝑔(𝒂, 𝒃) 𝑔(𝒂, 𝑠)

ℬ1𝑔(𝒂, 𝒃) ℬ1ℬ2𝑘 (𝒃, 𝒃) ℬ1𝑘 (𝒃, 𝑠)
𝑔(𝒂, 𝑠) ℬ2𝑘 (𝑠, 𝒃) 𝑘 (𝑠, 𝑠)

ª®¬ . (A39)

The requirement that this matrix is positive semi-definite for all
Green’s functions, 𝐺, can be reduced to the condition that,

^(𝒂, 𝑠)T ^(𝒂, 𝒂)−1 ^(𝒂, 𝑧) ≤ ^(𝑠, 𝑧), (A40)

holds for all 𝑠, 𝑧 ∈ 𝐷, which is equivalent to the condition that ^ is
a positive semi-definite kernel, as expected.

In the method of characteristics (Section 3.2), we considered
the special case where the second kernel, ^, has the additional
property that it cannot correlate the regions 𝑠 > 𝑠0 and 𝑠 < 𝑠0, i.e.

^(𝑧, 𝑠) ≡ Θ(𝑠0 − 𝑧)Θ(𝑠0 − 𝑠)^(𝑧, 𝑠)
+ Θ(𝑧 − 𝑠0)Θ(𝑠 − 𝑠0)^(𝑧, 𝑠).

(A41)

Using the Green’s function from the radiative transfer equation, this
implies, for 𝑧 ≥ 𝑏 and 𝑠 ≥ 𝑏, that,

𝑘 (𝑧, 𝑠) =

∫ 𝑧

𝑏
d𝑧′

∫ 𝑠

𝑏
d𝑠′ ^(𝑧′, 𝑠′) 𝑒−𝜏 (𝑧

′,𝑧) 𝑒−𝜏 (𝑠
′,𝑠)

+ 𝑘 (𝑏, 𝑏) 𝑒−𝜏 (𝑏,𝑧) 𝑒−𝜏 (𝑏,𝑠) .
(A42)

Similarly, this implies, for 𝑧 ≥ 𝑏 and 𝑠 ≥ 𝑏, that,

𝑔(𝑠, 𝑧) =

∫ 𝑧

𝑏
d𝑧′ ^(𝑠, 𝑧′) 𝑒−𝜏 (𝑧

′,𝑧) , (A43)

and in particular that for 𝑠 ≥ 𝑏, we have that 𝑔(𝑠, 𝑏) = 0. As a result,
the inverted matrix in equations (33) and (34) reduces to,(
ℒ1ℒ2𝑘 (𝒂, 𝒂) + 𝝈2L ℒ1ℬ2𝑘 (𝒂, 𝑏)
ℬ1ℒ2𝑘 (𝑏, 𝒂) ℬ1ℬ2𝑘 (𝑏, 𝑏) + 𝜎2B

)
=

(
^(𝒂, 𝒂) + 𝝈2L 𝑔(𝒂, 𝑏)
𝑔(𝒂, 𝑏)T 𝑘 (𝑏, 𝑏) + 𝜎2B

)
=

(
^(𝒂, 𝒂) + 𝝈2L 0

0T 𝑘 (𝑏, 𝑏) + 𝜎2B

) (A44)

Define the matrix K ≡ ^(𝒂, 𝒂) +𝝈2L, and let us assume that there is
no uncertainty on the boundary condition, i.e. 𝜎B = 0. The function
approximation in the dual formulation then reads,

𝑓dual (𝑠) =

(
𝜼
𝐼0

)T (
K 0
0T 𝑘 (𝑏, 𝑏)

)−1 (
𝑔(𝒂, 𝑠)
𝑘 (𝑏, 𝑠)

)
= 𝐼0 𝑒

−𝜏 (𝑏,𝑠) + 𝜼TK−1
∫ 𝑠

𝑏
d𝑠′ ^(𝒂, 𝑠′)𝑒−𝜏 (𝑠

′,𝑠) .

(A45)

We clearly recognise the result from the method of characteristics.
Similarly, the corresponding variance reads,

�̃�2dual (𝑠) = 𝑘 (𝑠, 𝑠) −
(
𝑔(𝒂, 𝑠)
𝑘 (𝑏, 𝑠)

)T (
K 0
0T 𝑘 (𝑏, 𝑏)

)−1 (
𝑔(𝒂, 𝑠)
𝑘 (𝑏, 𝑠)

)
=

∫ 𝑠

𝑏
d𝑠′

∫ 𝑠

𝑏
d𝑧′ 𝑒−𝜏 (𝑠

′, 𝑠) 𝑒−𝜏 (𝑧
′, 𝑠)

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1^(𝒂, 𝑧′)

)
.

(A46)

In the parentheses, we recognise the conditioned variance (32) that
stems from the interpolation of the emissivity (70).

A7 The law of total expectation

Given two random variables, 𝑋 and𝑌 , in the same probability space,
the law of total expectation states that,

E[𝑋] = E𝑌

[
E[𝑋 |𝑌 ]

]
, (A47)

i.e. the expectation of 𝑋 is the same as the expectation over 𝑌 of the
conditional expectation of 𝑋 given 𝑌 . A sketch for a proof can be
derived from the following equalities,

E𝑌

[
E[𝑋 |𝑌 ]

]
=

∫
d𝑌 𝑝(𝑌 )

∫
d𝑋 𝑝(𝑋 |𝑌 ) 𝑋

=

∫
d𝑌

∫
d𝑋 𝑝(𝑋,𝑌 ) 𝑋

=

∫
d𝑋 𝑝(𝑋) 𝑋

= E[𝑋],

(A48)

where in the first equality we used the definition of the expectation,
in the second we used the conditional probability, and in the third
we used the marginal probability.

A8 The law of total total variance

Given two random variables, 𝑋 and𝑌 , in the same probability space,
the law of total variance states that,

V[𝑋] = E𝑌

[
V[𝑋 |𝑌 ]

]
+ V𝑌

[
E[𝑋 |𝑌 ]

]
, (A49)

i.e. the variance of 𝑋 is the sum of the expected conditional variance
and the variance of the conditional expectation. This follows directly
form the law of total expectation (A47). Using the law of total
expectation in equation (A7) yields,

V[𝑋] = E𝑌

[
E
[
𝑋2 |𝑌

] ]
− E𝑌

[
E[𝑋 |𝑌 ]

]2
= E𝑌

[
V
[
𝑋 |𝑌

]
+ E

[
𝑋 |𝑌

]2] − E𝑌

[
E[𝑋 |𝑌 ]

]2
= E𝑌

[
V
[
𝑋 |𝑌

] ]
+ E𝑌

[
E
[
𝑋 |𝑌

]2] − E𝑌

[
E[𝑋 |𝑌 ]

]2
= E𝑌

[
V[𝑋 |𝑌 ]

]
+ V𝑌

[
E[𝑋 |𝑌 ]

]
,

(A50)

where in the second and fourth equality we used equation (A7) and
in the third equality we used the linearity of the expectation.
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A9 Expectations of optical depth

We compute the expectations with respect to the Gaussian-
distributed optical depth to obtain the total expectation and variance
in equations (87) and (88). Since the optical depth always appears
in an exponential, we are interested in,

E𝜏

[
𝑒−𝜏 (𝑧,𝑠)

]
=

∫
d𝜏(𝑧, 𝑠) 𝑝

(
𝜏(𝑧, 𝑠)

)
𝑒−𝜏 (𝑧,𝑠)

= exp
(
−𝜏(𝑧, 𝑠) + 1

2
Ỹ2𝜏 (𝑧, 𝑠)

)
,

(A51)

in which we used that the optical depth is Gaussian distributed, as
in equation (84). In the exponent, we recognise what we defined as
the effective optical depth in equation (89). Using the linearity of
the expectation, this immediately yields the result in equation (87).

Similarly, for the variance, we also require,

E𝜏

[
𝑒−𝜏 (𝑧

′,𝑠) 𝑒−𝜏 (𝑠
′,𝑠)

]
= E𝜏

[
𝑒−𝜏 (𝑧

′,𝑠)
]

E𝜏

[
𝑒−𝜏 (𝑠

′,𝑠)
]

+ Cov
[
𝑒−𝜏 (𝑧

′,𝑠) , 𝑒−𝜏 (𝑠
′,𝑠)

]
.

(A52)

Since the optical depth is Gaussian distributed, the exponential of
minus the optical depth will follow a log-normal distribution. The
covariance of this log-normal distribution is given by,

Cov
[
𝑒−𝜏 (𝑧

′,𝑠) , 𝑒−𝜏 (𝑠
′,𝑠)

]
=(

exp
(
Cov

[
−𝜏(𝑧′, 𝑠), −𝜏(𝑠′, 𝑠)

] )
− 1

)
× exp

(
−𝜏(𝑧′, 𝑠) − 𝜏(𝑠′, 𝑠) + 1

2

(
Ỹ2𝜏 (𝑧′, 𝑠) + Ỹ2𝜏 (𝑠′, 𝑠)

))
,

(A53)

such that we can write the required expectation as,

E𝜏

[
𝑒−𝜏 (𝑧

′,𝑠) 𝑒−𝜏 (𝑠
′,𝑠)

]
=

exp
(
Cov

[
−𝜏(𝑧′, 𝑠), −𝜏(𝑠′, 𝑠)

] )
× exp

(
−𝜏(𝑧′, 𝑠) − 𝜏(𝑠′, 𝑠) + 1

2

(
Ỹ2𝜏 (𝑧′, 𝑠) + Ỹ2𝜏 (𝑠′, 𝑠)

))
.

(A54)

The covariance of the optical depths can easily be derived from their
joint Gaussian distribution, which yields,

Cov
[
−𝜏(𝑧′, 𝑠), −𝜏(𝑠′, 𝑠)

]
=

∫ 𝑠

𝑧′
d𝑧′′

∫ 𝑠

𝑠′
d𝑠′′

(
^(𝑠′′, 𝑧′′) − ^(𝒂, 𝑠′′)TK−1

𝜒 ^(𝒂, 𝑧′′)
)

=
1
2

(
Ỹ2𝜏 (𝑧′, 𝑠) + Ỹ2𝜏 (𝑠′, 𝑠) − Ỹ2𝜏 (𝑠′, 𝑧′)

)
,

(A55)

where the last equality can be derived by subdividing the (2D)
domain of integration. Using the second effective optical depth
variable (90) to simplify notation, equation (A54) can be written as,

E𝜏

[
𝑒−𝜏 (𝑧

′,𝑠) 𝑒−𝜏 (𝑠
′,𝑠)

]
= 𝑒−𝜏 (𝑧

′,𝑠) 𝑒−𝜏 (𝑠
′,𝑠) 𝑒−

1
2 Ỹ
2
𝜏 (𝑠′,𝑧′) . (A56)

Using the linearity of the expectation, we thus find,

E𝜏

[
Ỹ2𝐼

]
=

∫ 𝑠

𝑠0
d𝑠′

∫ 𝑠

𝑠0
d𝑧′𝑒−𝜏 (𝑠

′, 𝑠) 𝑒−𝜏 (𝑧
′, 𝑠) 𝑒−

1
2 Ỹ
2
𝜏 (𝑠′,𝑧′)

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1

[ ^(𝒂, 𝑧′)
)
.

(A57)

Furthermore, using the same relations, we can find that,

E𝜏

[
𝐼2

]
= 𝐼20 𝑒

−2𝜏 (𝑠0 ,𝑠)

+ 2 𝐼0 𝑒−𝜏 (𝑠0 ,𝑠)
∫ 𝑠

𝑠0
d𝑠′𝐻 (𝑠′) 𝑒−

1
2 Ỹ
2
𝜏 (𝑠0 ,𝑠′)

+
∫ 𝑠

𝑠0
d𝑧′𝐻 (𝑧′)

∫ 𝑠

𝑠0
d𝑠′𝐻 (𝑠′) 𝑒−

1
2 Ỹ
2
𝜏 (𝑧′,𝑠′)

(A58)

where we defined 𝐻 (𝑠′) ≡ 𝜼TK−1
[ ^(𝒂, 𝑠′) 𝑒−𝜏 (𝑠′,𝑠) , to simplify

notation. In practice, equations (A57) and (A58) are difficult to
work with due to their dependence on the cross term, Ỹ2𝜏 (𝑧′, 𝑠′).
However, since this is a positive quantity, we can define an upper
bound by removing it, such that equation (A57) simplifies to,

E𝜏

[
Ỹ2𝐼

]
≤

∫ 𝑠

𝑠0
d𝑠′

∫ 𝑠

𝑠0
d𝑧′𝑒−𝜏 (𝑠

′, 𝑠) 𝑒−𝜏 (𝑧
′, 𝑠)

×
(
^(𝑠′, 𝑧′) − ^(𝒂, 𝑠′)TK−1

[ ^(𝒂, 𝑧′)
)
,

(A59)

and, furthermore, equation (A58) simplifies to,

E𝜏

[
𝐼2

]
≤ 𝐼2. (A60)

where, in analogy with equation (A47), we defined,

𝐼 (𝑠) ≡ 𝐼0 𝑒
−𝜏 (𝑠0 ,𝑠) + 𝜼TK−1

[

∫ 𝑠

𝑠0
d𝑠′ ^(𝒂, 𝑠′) 𝑒−𝜏 (𝑠

′,𝑠) (A61)

Combining all these results yields the practical inequality (88).
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