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In the gravitational collapse of matter beyond spherical symmetry, gravitational waves are nec-
essarily present. On the other hand, gravitational waves can collapse to a black hole even without
matter. One might therefore wonder how the interaction and competition between the matter fields
and gravitational waves affects critical phenomena at the threshold of black hole formation. As a
toy model for this, we study the threshold of black-hole formation in 4+1 dimensions, where we add
a massless minimally coupled scalar matter field to the gravitational wave ansatz of Bizón, Chmaj
and Schmidt (in a nutshell, Bianchi IX on S3 × radius × time). In order to find a stable discreti-
sation of the equation governing the gravitational waves in 4+1 physical dimensions, which has the
same principal part as the spherical wave equation in 9+1 dimensions, we first revisit the problem
of critical spherical scalar field collapse in n + 2 dimensions with large n. Returning to the main
problem, we find numerically that weak gravitational wave perturbations of the scalar field critical
solution decay, while weak scalar perturbations of the gravitational wave critical solution also decay.
A dynamical systems picture then suggests the existence of a codimension-two attractor. We find
numerical evidence for this attractor by evolving mixed initial data and fine-tuning both an overall
amplitude and the relative strength of the two fields.
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I. INTRODUCTION

In many self-gravitating systems that are ex-
actly scale-invariant, or asymptotically scale-
invariant on small scales, numerical time evolu-
tions of regular, finite mass initial data show that

data which are fine-tuned more and more closely
to the threshold of collapse, but otherwise generic,
evolve into arbitrarily small black holes on the su-
percritical side of the threshold, arbitrarily large
curvature before dispersion on the subcritical side.
This is known as “type II critical phenomena in
gravitational collapse”, see [1] for a review.

The near-critical time evolutions go through a
universal codimension-one attractor that is self-
similar (or asymptotically self-similar on small
scales), and which itself has a naked singularity,
called the “critical solution”. In the limit of per-
fect fine-tuning of any one parameter of the initial
data to the collapse threshold, the time evolution
approaches but never leaves the critical solution,
and so a naked singularity is generated in the time
evolution of a codimension-one set of otherwise
generic initial data.

This is well established numerically, and well
understood mathematically, for a number of
Einstein-matter systems in spherical symmetry,
see [1]. Moreover, for at least some of these sys-
tems, type II critical collapse is stable under small
but finite non-spherical perturbations [2, 3]. Go-
ing beyond spherical symmetry is interesting for
at least two reasons: it allows for angular momen-
tum, and for gravitational collapse in vacuum.

Vacuum critical collapse is of interest as it is
not tied to a particular choice of matter. However,
fine-tuning to the threshold of collapse in vacuum
gravity has proved numerically very difficult even
in twist-free axisymmetry, see [4, 5] for the cur-
rent state of the art. As a stepping stone from
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vacuum, critical collapse has been investigated in
twist-free axisymmetry with matter, in particular
a perfect fluid [3] and electromagnetic radiation
[6]. However, in going beyond spherical symmetry,
the moving matter necessarily also creates gravi-
tational waves. In the critical collapse of axisym-
metric electromagnetic waves, an approximately
discretely self-similar (from now on, DSS) critical
solution was observed, but with scale-periodicity
less regular than that observed in spherical scalar
field collapse [6]. It was conjectured that this is
due to the effect of strong gravitational waves.

As a spherically symmetric toy model for this in-
teraction of matter and gravitational waves, one of
us with collaborators [7] investigated critical col-
lapse with two massless matter fields, a Yang-Mills
(from now on, YM) and a scalar field. They found
the well-known critical solutions for pure YM and
pure scalar field matter. Perturbing pure initial
data with an infinitesimal amount of the other
type of matter, they established that weak YM
perturbations of the scalar field critical solution
decay, but that weak scalar perturbations of the
YM critical solution grow.

Setting up mixed initial data with different
ratios, and fine-tuning again to the black-hole
threshold, they found a mixed-field critical solu-
tion that starts as a growing perturbation of the
pure YM critical solution (at large scales) and
ends as a decaying perturbation of the pure scalar
critical solution (at small scales). This solution
changes its matter content from pure YM to pure
scalar field on the fly, while remaining very com-
pact (with 2M/R ∼ 0.5) and approximately DSS,
with the approximate log-scale period ∆ changing
from the YM to the scalar field value.

Here we investigate another toy model, where
the two interacting fields truly are gravitational
waves and a massless matter field. Bizón, Chmaj
and Schmidt [8] proposed an ansatz in 4+1 space-
time dimensions on the manifold S3 × (R × R+),
where the metric on the factor S3 is homogeneous
but anisotropic, namely, it is of Bianchi type IX.
Here all metric variables depend only on time
and radius, even though the spacetime is vacuum.
(This can be generalised to higher odd-dimensional
spheres). To this system we simply add a homoge-
neous massless minimally coupled scalar field Ψ.

We thus have a toy model for matter coupled
to gravitational waves, but where all fields depend
only on radius and time, so that numerical time
evolutions are cheap. Besides the unphysical di-
mensions, the major shortcoming of this model
is that the scalar field cannot create gravitational
waves if they are absent initially – we shall discuss
this in more detail below.

The field equations for the scalar field and the
gravitational waves are essentially spherical wave

equations, in the physical 4+1 dimensions for the
scalar field Ψ, but effectively in 9+1 dimensions
for the gravitational wave variable b. As is well-
known, such spherical wave equations are numeri-
cally difficult in high dimensions. It turns out the
methods that work well in 3+1 dimensions stretch
to 4+1 but not to 9+1 dimensions. As a stepping
stone, we were therefore forced to revisit the prob-
lem of critical collapse of a spherically symmetric
scalar field in high dimensions. In Appendix A we
re-derive and modify the method of [9] and present
successful tests in critical scalar field collapse in
9+1 (physical) dimensions.

In Sec. III we present our discretisation of the
field equations, using the methods of Appendix A
for the field b, and in Sec. IV the similarity coordi-
nates that we use to display the approximate self-
similarity of near-critical time evolutions. Sec. V
contains our numerical results, and Sec. VI our
conclusions.

II. METRIC ANSATZ AND FIELD
EQUATIONS

We make the Bianchi IX ansatz of [8], restricting
to the biaxial case. We introduce null coordinates
adapted to the Bianchi IX symmetry (u, x, θ, ϕ, ψ),
in terms of which the line element becomes

ds2 = −2Gdudx−Hdu2 +
1

4
R2
(
e2B dθ2

+(e2B cos2 θ + e−4B sin2 θ) dϕ2

−2e−4B sin θ dϕ dθ + e−4B dψ2
)
. (1)

The coordinate u is null, and the tangent vector to
the affinely parameterised outgoing null geodesics
ruling the surfaces of constant u is Ua := −∇au =
G−1(∂x)a. Here G, H, R and B are functions of
u and x only. We also introduce the derivative
operator

Ξ := ∂u −
H

2G
∂x, (2)

which is tangential to the ingoing null rays ema-
nating from the 3-surfaces of constant u and x. In
the special case H = 0, x is also a null coordinate
and Ξ = ∂u.

We fix the remaining coordinate freedom in the
ansatz (1) by imposing

H

2G
=

(
1− x

x0

)
1

2R,x(u, 0)
, (3)

G(u, 0) = R,x(u, 0), (4)

R(0, x) =
x

2
. (5)

This puts the centre R = 0 at x = 0, makes u the
proper time there, and makes x = x0 an ingoing

2



null surface. More generally, surfaces of constant
x are timelike for 0 ≤ x < x0 and spacelike for
x > x0. In particular, choosing the outer bound-
ary of our numerical domain at x = xmax > x0

means that this boundary is future spacelike and
no boundary condition is required.

Moreover, if x0 is chosen so that the ingoing
lightcone x = x0 is approximately the past light-
cone of the accumulation point (u∗, 0) of scale
echoes of an (approximately) self-similar space-
time, our coordinate system automatically zooms
in on this point, giving us good resolution in crit-
ical collapse without the need for explicit mesh
refinement.

Our coordinate x can be related to an ingoing
null coordinate v by

v(u, x) = −f(u)

(
1− x

x0

)
, (6)

where

f(u) = exp

[
−x0

∫ u

0

du′

2R,x(u′, 0)

]
. (7)

v is an increasing linear function of x, such that
v = 0 is mapped to x = x0. Our coordinate system
can therefore be thought of as a continuous version
of Garfinkle’s algorithm [10], which rescales v lin-
early in what in our notation is called x, but by
interpolation at discrete moments of time u, rather
than the continuous use of a radial shift vector. We
had previously used Garfinkle’s method in [6], and
for that problem our new algorithm gives the same
accuracy and run times. We have made the change
here as it simplifies convergence testing. Both al-
gorithms require a good choice of, in our notation,
x0 in order to make the coordinate system zoom
in on the accumulation point of critical collapse.

To regularise the field equations, we redefine two
of the metric coefficients as

B =: R2b (8)

and

G =: R,xg. (9)

There are four algebraically independent com-
ponents of the Einstein equations

Rab = 8π∇aΨ∇bΨ. (10)

(We work in units where G = c = 1.) From
these, we select one which is an ordinary differen-
tial equation for g on the slices of constant u, and
two which are wave quations for R and b. The re-
maining Einstein equation is then redundant. We
also have a wave equation for the matter field Ψ.

The four field equations thus obtained can be
arranged in the following hierarchy:

D(ln g) =
8πR

3
(DΨ)2

+2R3(Db+ 2Rb)2, (11)

D(R2ΞR) =
gR

3
(1− 4e6bR2

)e−8bR2

, (12)

D(R3/2ΞΨ) = −3

2
ΞRR1/2(DΨ), (13)

D(R7/2Ξb) =
2

3
gR−1/2e−8bR2

(
1− e6bR2

+bR2(4e6bR2

− 1)
)

−4bR3/2ΞR− 7

2
R5/2ΞRDb.(14)

Here

Df :=
f,x
R,x

, (15)

so that D is d/dR along the null geodesics ruling
the slices of constant u. Note that these equations
do not explicitly contain H. Rather, H can be cho-
sen freely [we choose (3)], and appears only when
we use

Ψ,u = ΞΨ +
H

2G
Ψ,x (16)

in order to advance Ψ in u, and similarly for b and
R.

Eqs. (11-14) can be solved for g, ΞR, ΞΨ and
Ξb in the above order by the integration

If :=

∫
fR,x dx =

∫
f dR (17)

along the outgoing null geodesics, labelled by con-
stant (u, θ, ϕ, ψ), starting the integration from the
centre R = 0. Because of factors of R, three of
the startup conditions are selected by regularity
at R = 0. The fourth startup condition at R = 0
is the gauge choice g = 1, equivalent to (4) above.

This selection and hierarchical arrangement of
the field equations closely resembles the form of
the field equations for the spherical scalar field and
YM field of [7], with ∂u replaced by its generalisa-
tion Ξ. Somewhat less closely, it also resembles the
formulation for the spherical scalar field of [10–12]
(but with D and Ξ applied to Ψ in the opposite
order), and the scheme of [13] for the vacuum Ein-
stein equations on null cones with a regular vertex
(but in terms of null coordinates u and x, rather
than Bondi coordinates u and R).

In analogy with the field redefinitions made in
[9] (see also Appendix A) we replace b as an
evolved variable by

χ := b+
2

7
RDb, (18)
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from which we can reconstruct b as

b =
1

R7/2

∫ R

0

χd(R̃7/2). (19)

The computation of b from χ is more stable nu-
merically if we integrate (19) by parts, giving us

b = χ− 2

9

1

R7/2

∫ R

0

Dχd(R̃9/2). (20)

The second term on the right-hand side of Eq. (20)
is O(R) near the origin, and thus generates less
error from finite differencing than the original in-
tegral in Eq. (19), which is O(1) there.

The evolution equation for χ is

Ξχ =
4

21

g

R3
Γ(bR2)− 8

7

b

R

(
ΞR+

g

2

)
− (χ− b)

2R

[
ΞR+

2g

3
(1− 4e6bR2

)e−8bR2

]
,

(21)

where Γ(x) := 3x+e−8x(1−e6x+x(4e6x−1)). Its
series expansion is Γ(x) = 30x2 + O(x3), and so
the leading b2R4 term near the origin cancels the
first denominator of Eq. (21).

Furthermore, the expression ΞR + g/2, which
appears in the second term of Eq. (21), is O(R2)
near the origin. This cancels the denominator of
the second term. To see this explicitly, manifestly
cancel the O(1) and O(R) contributions in ΞR and
g/2 by integrating Eq. (12) by parts, giving us

ΞR− g

6
(1− 4e6bR2

)e−8bR2

= − 1

R2

∫ R

0

gR̃3

6

[
8π

3
(DΨ)2

+2R̃2(R̃Db+ 2b)2

+8(R̃Db+ 2b)(1− e−6bR̃2

)e−2bR̃2

]
dR̃. (22)

The left hand side equals ΞR+ g/2 +O(R4), and
from the regularity of Ψ and b the integral on the
right hand side is O(R4). [We do not use Eq. (22)
in our code. It is given here just to show that
Eq. (21) is explicitly regular.]

Finally, the regularity of the last term on the
right hand side of Eq. (21) follows from the defini-
tion of χ, Eq. (18).

We now introduce some diagnostics. We de-
fine the Misner-Sharp-like quasilocal mass func-
tion M(u, x), and the related compactness C, by

C :=
M

R2
:= 1−∇aR∇aR = 1 + 2

ΞR

g
. (23)

In spherical symmetry, a marginally outer-trapped
surface (from now on also referred to as an appar-
ent horizon), occurs where C = 1, but our formula-
tion of the Einstein equations does not allow us to

reach this. Rather, we take C → 1 as an approxi-
mate criterion for apparent horizon formation.

For the diagnosis of subcritical scaling we intro-
duce the curvature-like quantities

RΨ := Raa = 8π∇aΨ∇aΨ = −16π

g
ΞΨDΨ,

(24)

RB := 6∇aB∇aB = −12

g
ΞBDB

= −12

g
(R2Ξb+ 2RΞRb)(R2Db+ 2Rb).

(25)

RΨ is actually the Ricci scalar, which is deter-
mined by Ψ alone, while B does not contribute to
the Ricci tensor at all. However, Ψ and B appear
in a similar manner both in the Einstein equation
for g, namely

D(ln g) =
2R

3

(
4π(DΨ)2 + 3(DB)2

)
(26)

[compare Eq. (11)], and in the mass aspect, namely

DM =
2R

3

[
3 + e−8B − 4e−2B

+(R2 −M)
(
4π(DΨ)2 + 3(DB)2

)]
.(27)

We have adjusted the overall constant factor in the
definition of RB to reflect this. Note that RΨ is
nonzero at the centre, whereas RB ∼ R2 vanishes
there.

Even though B represents genuine gravitational
waves, their polarisation is in the angular, homo-
geneous, directions (θ, ϕ, ψ), while the scalar field
depends only on the orthogonal directions (u, x).
Therefore the scalar matter field cannot create
gravitational waves if they are absent initially, in
contrast to the case of electromagnetic waves, or
a non-spherical scalar field or fluid, in 3+1 dimen-
sions. In this respect, the system looks mathe-
matically more similar to that of [7] (two matter
fields coupled to each other only through the met-
ric) than to, say, a massless scalar field minimally
coupled to gravity in axisymmetry.

III. NUMERICAL METHOD

Our numerical implementation is an adaptation
of that of [7]. We represent our fields on a grid
with Nx = 600 equally spaced points in x, and
numerically advance in the retarded time u. We
set xi = i∆x for 1 ≤ 1 ≤ Nx, with x = 0 not on
the grid. We extrapolate to x = 0 where needed,
and for output only, but we use the assumption
that R = 0 there in our boundary conditions.
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At every time step, we solve for b, g and the
ingoing null derivatives ΞR, ΞΨ and Ξχ from (20),
the integrated versions of Eqs. (11-13), and (21),
in this order. We then evolve R, Ψ and χ from u to
u+∆u using a second-order Runge-Kutta method.
We use the heuristic timestep criterion

|ΞR|∆u ≤ CR,x∆x, (28)

implemented as

∆u = C min
i

2(Ri −Ri−1)

max(ΞRi,ΞRi−1)
. (29)

C is a dimensionless factor of order unity, as in [7].
We use C = 0.1 throughout.

To start up the integration of the Einstein equa-
tions, we make the least-squares fit Ψ ' Ψ0 +
Ψ1R + O(R2) to the two innermost grid points.
We then substitute these expansions into the inte-
gral expressions for g, ΞR, ΞΨ and Ξχ, obtaining

g = 1 +
4πΨ2

1

3
R2 +O(R3), (30)

ΞR = −1

2
− πΨ2

1

3
R2 +O(R3), (31)

ΞΨ =
Ψ1

2
+O(R). (32)

These expansions are used at the first grid point
to start up the integrations for g,ΞR and ΞΨ. No
linear expansion is required for Ξχ as there is no
integral.

The derivative D is discretised by symmetric fi-
nite differencing with respect to R:

(DΨ)i =
Ψi −Ψi−1

Ri −Ri−1
, (33)

and likewise for χ and b. Indicating by

Ψ̄i =
Ψi + Ψi−1

2
(34)

the numerical approximation of Ψ in the midpoint
of the i-th grid cell (and likewise for other quanti-
ties), the integrals over the grid points 1, . . . , j are
then discretised using the midpoint rule:∫ Rj

R1

f(Ψ,DΨ, ...) d(R̃α)

'
j∑
i=2

f(Ψ̄i, (DΨ)i, ...)(R
α
i −Rαi−1), (35)

where f(...) is a placeholder for the right-hand
sides of (20) and the integrated versions of
Eqs. (11-13), and we use α = 9/2, 2, 2, 3/2, respec-
tively, in these equations. We use this discretisa-
tion of the integration measure because of its lower
error near the origin compared with dR.

Because our finite-differencing scheme is second-
order accurate in ∆x, we expect any output to
also converge to second order at sufficiently early
time. We have checked convergence with a se-
quence Nk := N0 · 2k of resolutions with N0 = 100
and k = 0...4. Denoting by Zk the output of the
code for fixed initial data and Nk grid points, we
expect the quantity ∆Zk = 4k · (Zk+1 −Zk) to be
approximately independent of k.

We found pointwise convergence to second order
in ∆x in the bulk of the grid, except near the ori-
gin. The error at the first gridpoint was found to
be approximately first-order. We have not found
a stable way of improving on this. The transition
to second order is illustrated in Fig. 1.

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6

Δ
b
k

x

k=4
k=3
k=2
k=1
k=0

FIG. 1. The scaled error ∆bk for k = 0...4, represented
for 0 ≤ x ≤ 0.6 and at a particular time instance
u = 0.444 for centered Gaussian pure gravitational
wave initial data with b(0, x) = 13.88 exp[−(x/0.25)2].
While the curves progressively coincide for x & 0.2,
they differ slightly at the first grid points, although
some (slower) convergence is still noticeable.

The computation of the function Γ(x), which
appears in Eq. (21), is done by performing a Tay-
lor expansion up to 7th order once its argument
satisfies bR2 ≤ 0.01. This way, its zeroth and first
order terms are manifestly cancelled, avoiding nu-
merical error near the origin from using the full
expression for Γ.

We diagnose the formation of a marginally
outer-trapped surface by comparing the maximum
over one moment of time u of the compactness C :=
M/R2, defined by Eq. (23), to a fixed threshold
Cmax = 0.999. Similarly, we diagnose dispersion if
the maximum of the compactness over the slice of
constant u becomes smaller than Cmin = 0.001.

IV. SIMILARITY COORDINATES

In any coordinates xµ := (T, ξ, θ, ϕ, ψ) adapted
to the Bianchi symmetry and to DSS, by definition
a spacetime is DSS if and only if the metric takes
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the form

gµν = e−2T g̃µν , (36)

where g̃µν is periodic in T with some period ∆. In
particular, the area radius R must take the form

R = e−T R̂, (37)

with R̂ again periodic. A scalar-field Ψ whose
stress-energy tensor is compatible with this metric
must itself be periodic in T with the same period.

We now introduce the specific DSS-adapted co-
ordinates

T := − ln

(
u∗ − u
k

)
(38)

ξ :=
R

u∗ − u
=
R

k
e−T (39)

for a constant u∗ > 0 and u < u∗. (For u > u∗,
both ξ and T are undefined). The constant k is a
length scale which we set to 1. From Eq. (1) it is
clear that the metric in coordinates (ξ, T ) is of the
form (36), and that the spacetime is DSS if and

only if g, R̂ and B are periodic in T .

When either Ψ(0, x) = 0 or B(0, x) = 0, we
expect all dimensionless physical quantities, such
as Ψ or B and M/R2, to be periodic in T while
the spacetime approximates the critical solution.
We also expect dimensionful quantities to scale as
e−lT , where l is their length dimension. Thus, in
the pure scalar field critical solution, RΨ behaves
as e2T times a periodic function of T (at constant
x), and in the pure gravitational wave critical so-
lution, RB is e2T times a periodic function of T .

V. NUMERICAL RESULTS

A. Initial data

We choose the 2-parameter family of Gaussian
initial data (with parameters p and q)

Ψ(0, x) = p(1− q)A(Ψ)

exp

[
−
(
R− µ(Ψ)

w(Ψ)

)2]
, (40)

χ(0, x) = pqA(χ) exp

[
−
(
R− µ(χ)

w(χ)

)2]
, (41)

as well as a two-parameter family with the profile
of the derivative of a Gaussian function:

Ψ(0, x) = −2p(1− q)A(Ψ)

(
R− µ(Ψ)

w2
(Ψ)

)
e
−
(
R−µ(Ψ)
w(Ψ)

)2

,

(42)

χ(0, x) = −2pqA(χ)

(
R− µ(χ)

w2
(χ)

)
e
−
(
R−µ(χ)

w2
(χ)

)2

.

(43)

Here pqA(Ψ) and p(1− q)A(χ) are the amplitudes,
w(Ψ) and w(χ) are the widths, and µ(χ) and µ(Ψ)

the centres of the Gaussians. The free initial data
for the evolved variables are completed by Eq. (5)
above.

The field equations, with the gauge boundary
condition g = 1 at the centre, are scale-invariant in
the sense that they do not change when we replace
the arguments (u, x) of G (or g), R, B (or b) and
Ψ by (λu, λx), and the value of R by λR and of
b by λ−2b, but leaving the values of G (or g), B
and Ψ unchanged. Put simply, everything scales
according to its dimension, with u, x and R having
dimension length, b having dimension (length)−2

and B, G, g and Ψ being dimensionless. We fix
this overall scale freedom by always setting the
outer boundary of the grid to xmax = 8.

For a fixed value of q, we start the bisection in p
with a large value of x0 close to xmax, adjusting it
manually and restarting the procedure until all in-
dividual simulations retain good spatial resolution
throughout their evolution. This is done by keep-
ing track of the grid point index of the location
of the apparent horizon formed in the supercriti-
cal steps: if x0 is too large, the horizon is formed
at small x and the dynamics are not well resolved
spatially. If x0 is too small and for sufficient fine-
tuning, the apparent horizon is formed outside the
spatial grid.

After some experimentation, we choose widths,
centers and amplitudes

A(χ) = 1.0,

µ(χ) = 0.5,

w(χ) = 0.05,

A(Ψ) = 0.01,

µ(Ψ) = 1.15325,

w(Ψ) = 0.115325

(44)

for the Gaussian initial data and

A(χ) = 0.023,

µ(χ) = 0.74,

w(χ) = 0.074,

A(Ψ) = 0.034,

µ(Ψ) = 1.22,

w(Ψ) = 0.224

(45)

for the Gaussian derivative initial data. These
have the following properties:

1. For pure scalar initial data q = 0 and pure
gravitational wave initial data q = 1, the critical
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amplitudes are p ' 1. This is essentially a matter
of convenience.

2. For the two pure initial data sets the accumu-
lation point of echos at R = 0, u = u∗, v = v∗ is at
a similar value of v∗. This is achieved in practice
by independently finding the approximate value of
x0 ' v∗ for two sets of initial data corresponding
to pure scalar field and pure gravitational waves,
and then rescaling the scalar field initial data such
that the two values of x0 coincide.

This ensures that when we choose values of q
representing a mixture of the two fields and then
fine-tune p again to the threshold of collapse, we
can expect the fields to interact strongly. By con-
trast, if v∗ was much smaller for, say, the scalar
field, in fine-tuning p for mixed data to the thresh-
old of collapse, we would be likely to find critical
collapse dominated by the scalar field, with the
gravitational waves arriving later and either dis-
persing or forming a large black hole.

All plots in the following correspond to the
Gaussian initial data, except for Fig. 19, which
compares results from the two families.

For given q, we perform 50 bisection steps from
a rough initial bracket for p∗(q) to determine its
value up to machine precision. We work in dou-
ble precision. With p∗(q) known (for a given set
of numerical parameters such as x0, xmax, C and
∆x) the scaling laws are then re-evaluated on 450
evenly spaced points in log10 |p−p∗|, with 30 points
per decade, to resolve for the fine structure of the
DSS scaling, which we expect to be periodic with
period ∆/(ln(10)γ) in log10 |p− p∗|.

B. The pure field cases

The mass and curvature scaling laws obtained
for pure scalar field (q = 0) and pure gravitational
wave (q = 1) initial data give critical exponents
γΨ ' 0.415 and γB ' 0.164 respectively, which
agree with the results found in [9] and [8], respec-
tively.

The echoing periods ∆ [in T , defined above in
Eq. (38)] of the best near-critical solutions were
estimated by identifying the period with that of
the Fourier mode of highest peak of Ψ or B, and
then fitting the curves by eye with a sine wave of
the same period. We determined ∆Ψ ' 1.6 and
∆B ' 0.47, in agreement with the values found in
[9] and [8].

C. Gravitational waves with small scalar
field perturbation

We now add a small perturbation ε� 1 to both
q = 0 and q = 1, so that either b or Ψ evolves

as an almost-linear perturbation on a background
solution driven by the other field.

We begin with the case q = 1−ε, with ε = 10−6.
When Ψ evolves essentially as a linear perturba-
tion, separation of variables allows us to consis-
tently look for solutions of the scalar test field
equation of the form

Ψ(ξ, T ) = Re eλΨT Ψ̂(ξ, T ), (46)

where λΨ = κΨ + iωΨ is a complex number and
the complex function Ψ̂(ξ, T ) is periodic in T with
period ∆B (the same as the background solution).
As a result, e−κΨTΨ(ξ, T ) is only quasi-periodic in
T , with a discrete spectrum offset by ωΨ.

The radius Rah of apparent horizon formation,
which has dimension length, scales as

Rah(p) ∼ (p− p∗)γB . (47)

By applying (46) to the expression for RΨ, which
has dimension length−2, we deduce that it scales
as ∼ e2(1+κΨ)T when the scalar field is treated per-
turbatively. For near-critical solutions, the maxi-
mum value of curvature is achieved just after de-
parting from self-similarity, which occurs at a time
T ' −γB ln |p− p∗| [14]. From this we obtain the
scaling relation(

max
ξ,T

RΨ

)−1/2

∼ (p− p∗)(1+κΨ)γB . (48)

The critical exponents γB ' 0.164 and γ̃Ψ = (1 +
κΨ)γB ' 0.133 were calculated from the mass and
curvature scaling laws for q = 1 − ε = 1 − 10−6

(Fig. 2), giving us κΨ ' −0.19.
The perturbation exponent κΨ was indepen-

dently estimated by adjusting Ψe−κΨT by eye to
be as quasi-periodic as possible in our best near-
critical evolution, placing it in the interval κΨ ∈
(−0.2,−0.15) (see Fig. 6).

Fig. 3 shows the residuals of the linear fit of the
scaling law for Rah

res(p) := log10Rah − γ log10 |p− p∗| − β, (49)

where β is the intercept of the fit. Similar plots

for R
−1/2
B and R

−1/2
Ψ are shown in Figs. 4-5.

The quantities Ψ, B/ξ2 and M/R2 are repre-
sented in Figs. 6-8 for the best subcritical evolu-
tion for Gaussian initial data. Both B and B/ξ2

are dimensionless, but B is O(R2) near the origin
while B/ξ2 is O(1), which is why we plot the lat-
ter. Note that because ε is small, at this resolution
Figs. 3, 4, 7 and 8 are indistinguishable from their
counterparts in the pure gravitational wave case
q = 1, so they can serve to illustrate that case,
too.
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D. Scalar field with small gravitational wave
perturbation

Similar calculations hold for B and RB when
q = ε = 10−6, where the gravitational waves are
treated as a linear perturbation on the dominant
scalar field solution, giving us

B(ξ, T ) = Re eλBT B̂(ξ, T ), (50)

with λB = κB + iωB . The critical exponent
γΨ ' 0.413 was calculated numerically from the
scaling laws for the radius of apparent horizon for-
mation and for the Ricci scalar, see Fig. (9). The
perturbation exponent κB was estimated by ad-
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0.

justing Be−κBT by eye to be as periodic as possible
in our best near-critical evolution, placing it in the
interval κB ∈ (−1.55,−1.45). The maximum of
the pseudo-curvature RB does not show power law
scaling in (p−p∗): RB scales as∼ e2(1+κB)T , which
decays because κB < −1, and so its global maxi-
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mum is dominated by a value at early times which
is dependent on the initial data, and so one cannot
apply the same argument that led to Eq. (48).

The residuals of the linear fit for the scaling laws

of Rah and R
−1/2
Ψ are represented in Figs. 10-11.

The quantities Ψ, B/ξ2 and M/R2 are represented
in Figs. 12-14 for the best subcritical evolution
for Gaussian initial data. Again, Figs. 10, 11, 12
and 14 are at this resolution indistinguishable from
their counterparts in the case q = 0 of a pure scalar
field.

E. Mixed fields and the bi-critical solution

As κB and κΨ have both negative real part, both
Ψ and B are decaying perturbations on the back-
ground critical solution of the other field when
their initial amplitude is sufficiently small such
that their dynamics are essentially linear.

When q is decreased more from q = 1, the scalar
field Ψ still decays, but when q . 0.9 (for Gaussian
initial data) the non-linear dynamics play a more
significant role and Ψ instead starts growing with
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FIG. 10. Residuals of the linear fit to Fig. 9 for the for
the radius Rah of apparent horizon formation for q =
ε. The scaling exponent is γ = 0.4131 and the fitted
period of the residuals is ∆res = 1.7, which is related
to the echoing period of the critical solution by ∆res =
∆Ψ/(ln(10)γ), resulting in ∆Ψ ' 1.6, consistent with
Fig. 14.

T , with RΨ eventually dominating RB , and the
solution approaches the known scalar field critical
solution for large enough T . The same behaviour is
observed for the other 2-parameter family of ini-
tial data, although the value of q for which the
scalar field begins to grow with T is q . 0.85. We
have investigated the transition between these two
regimes, such that the scalar field and the gravi-
tational wave both neither grow nor decay in the
critical solution found by fine-tuning p to p∗ for
given q ' q∗. In other words, we have to fine-
tune in two parameters at once. In practice, we
fine-tune to the black-hole threshold p = p∗(q) in
an automated inner loop, and fine-tune to q∗ in a
manual outer loop, as the bisection criterion for q
is less clear-cut than collapse versus dispersion for
p, and we were not sure what to expect at the q
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threshold.
We expect the bi-critical solution to be an inter-

mediate attractor for (p, q) ' (p∗(q∗), q∗), in which
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the solution becomes at least approximately self-
similar, with both fields neither growing nor de-
caying.

In the triaxial vacuum collapse case investigated
in [15], for which the two competing fields play
symmetric roles ( the two critical solutions are the
same up to a discrete symmetry), the bi-critical so-
lution was also found to be discretely self-similar
with a constant echoing period. In the present
biaxial case plus scalar field, however, the two
critical solutions are distinct, with γΨ > γB and
∆Ψ > ∆B .

We would have expected that for q ' q∗ and p
sufficiently close to p∗(q), the solution starts out
with both b and Ψ equally important. But this
is not so at least for our two 2-parameter families.
Rather, in these solutions Ψ starts out as a growing
perturbation of the b critical solution, before enter-
ing a phase where both Ψ and b neither grow nor
decay, and spacetime is still approximately DSS.

The presence of this transition phase means that
we use up some of the available fine-tuning of p,
and hence some of the available range of T , before
we reach the expected bi-critical solution. This
in turn means that we cannot fine-tune q as well
as expected, nor observe the properties of the bi-
critical solution over as many periods as expected.

Fig. 15 illustrates the dimensionless quantities
R2RΨ and R2RB , which can be taken as measures
of how much Ψ and b curve the spacetime, for three
different values of q close to the threshold q∗. In
Fig. 15a, with q = qa ' 0.918, the scalar field
grows with T while the solution is approximately
DSS, and its stress-energy content dominates RB ,
for T > 3.5, until both fields eventually disperse
(as p < p∗ in this evolution). In Fig. 15c, with
q = qc ' 0.922, the scalar field is decaying while
the solution is approximately DSS: the amplitude
of R2RΨ grows until T ' 4.5 and then it decays
while that of R2RB grows until T ' 6, after which
both fields disperse. In Fig. 15b, with the inter-
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(a) q := qa = 0.9184570312.
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(b) q := qb = 0.9200439452.
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(c) q := qc = 0.9216308593.
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FIG. 15. The maxima and minima (over x) of the quantities R2RB (orange) and R2RΨ (purple), plotted against
T for different values of q, with qa < qb < qc, extracted from the respective best subcritical evolutions. For
reference, the same quantities for the two pure critical solutions are plotted together in Fig. 15d.

mediate value q = qb ' 0.920, both fields Ψ and
B seem to stay at approximately the same rela-
tive amplitude until they both disperse. It is dif-
ficult to tell whether Ψ grows or decays because
the interval where the solution is approximately
DSS is short, and this makes it harder to deter-
mine q∗ precisely. However, we are confident that
qa < q∗ < qc, with q∗ ' qb our best approxima-
tion (for the Gaussian initial data). To improve
the bisection in q, one would need to run our time
evolutions in quadruple precision, so as to better
fine-tune p∗ and thus observe more echoing before
the fields disperse or form a black hole. As that is
computationally much more time-consuming, we
have not attempted it.

For comparison with Figs. 15a-15c, Fig. 15d il-
lustrates R2RΨ for the pure scalar field critical so-
lution (q = 0) and R2RB for the pure gravitational
wave critical solution (q = 1).

Figs. 16-18 show Ψ, B and M/R2 for the best
subcritical evolution with Gaussian initial data
and with q = qb, which was our best estimate of q∗
up to two decimal digits. We observe that Ψ and
B are approximately neither growing or decaying
for 2.5 ≤ T ≤ 7 before dispersing.

From the data underlying these figures, we have
estimated the echoing periods of Ψ, B, C, R2RΨ

and R2RB as follows. We take discrete Fourier
transforms of (maxx Ψ)(T ) and (maxxB)(T ) for a
suitable interval of T , and adjust the resulting pe-
riod for what seemed the best fit by eye. Although
this is subjective, from the quality of the fit we es-
timate that we can determine the periods within
∼ 0.01. The results are given, separately for ∆Ψ/2
and ∆B , and for different q ' q∗, in Tables I and
II, respectively.

Although the separately fitted values of ∆Ψ/2
and ∆B are not equal, they are roughly within
our estimate of the accuracy ∼ 0.01 to which we
can determine these periods. Note that the vari-
ation of the periods with q over the ranges of q
considered in the table is somewhat larger than
the difference of ∆Ψ/2 and ∆B at the same q. (As
already discussed, we are not able to determine q∗
very accurately.)

As further tests, we have also compared the fit-
ted values of ∆Ψ/2 and ∆B to our plots of R2RΨ

and R2RB , respectively, and find that they match
well. Finally, we are confident that ∆B . ∆C .
∆Ψ/2 (consistent with all being equal).
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TABLE I. Estimated periods ∆Ψ/2 and ∆B for Gaus-
sian initial data.

q ∆Ψ/2 ∆B

0.9184570312 = qa 0.61 0.59
0.9200439452 = qb 0.59 0.57
0.9216308593 = qc 0.5825 0.56
0.9248046875 0.574 0.55

TABLE II. Estimated periods ∆Ψ/2 and ∆B for Gaus-
sian derivative initial data.

q ∆Ψ/2 ∆B

0.859375 0.5875 0.55
0.8671875 0.56 0.518
0.87 0.55 0.512
0.8725 0.55 0.511

In short, our observations are consistent both
with ∆B = ∆Ψ/2 and ∆B < ∆Ψ/2. In other
words, we cannot decide if the critical solution is
periodic (DSS) or only quasiperiodic in T .

We note, however, that in the system for which
this one is a toy model, the Einstein-Maxwell equa-
tions in twistfree axisymmetry, all fields in the crit-
ical solution are clearly only quasi-periodic [6], al-
ready when viewed on their own. By contrast, the
quantities in Figs. 16-18 seem, by eye, to be pe-
riodic. One may take this to be an argument in
favour of strict DSS.

Recall that ∆Ψ ' 1.6 and ∆B ' 0.47 in the
pure scalar field and gravitational wave critical so-
lutions, respectively. So we can at least say that
∆Ψ/2 and ∆B have moved from their pure val-
ues towards a common intermediate value in the
bi-critical solution.
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FIG. 16. The scalar field Ψ(ξ, T ) for optimal fine-
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Fig. 19 illustrates the estimated value of γ for
different q, calculated from the scaling laws for
the radius of apparent horizon formation Rah. To
test universality, we present the results for initial
data with a Gaussian profile (in black) and for ini-
tial data with the profile of a Gaussian derivative
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FIG. 17. The field B for optimal fine-tuning with q =
qb. It is zero at the origin R = 0 ⇔ ξ = 0 due to
Eq. (8).
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FIG. 18. The compactness M/R2 for optimal fine-
tuning with q = qb.

(in blue). As q∗ depends on the family, the black
points are plotted against q, and the blue points
are plotted against

q̃ :=
sq

1− (1− s)q
(51)

with 0 ≤ s ≤ 1 a free parameter. This transforma-
tion has q = 0 and q = 1 as fixed points, with slope
1 near q = 0 and slope s near q = 1. By adjusting
s we can ensure that the neighbourhood around q∗
is located approximately at the same region in the
q̃-axis for both curves. We have set s = 0.5.

From Fig. 19 we see that for both our 2-
parameter families of initial data, γ ' 0.41 for
q = 0, corresponding to the scalar field critical so-
lution, and its does not vary significantly with q
until |q − q∗| ' 0.02. In this interval, the black
hole mass scaling exponent depends on ln(p− p∗):
for poor fine-tuning, we find γ ' 0.168, close to
gravitational wave critical solution, and for better
fine-tuning its value is slightly higher and depen-
dent on q, decreasing monotonically from γ ' 0.22
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to γ ' 0.18. This break in the scaling laws cor-
responds to the transition from a growing scalar
field perturbation to the true bi-critical solution in
near-critical time evolutions, as seen in Figs. 16-18.
As q approaches 1, γ settles to the value γ ' 0.164
of the gravitational wave critical solution. For this
range of q, the exponent is small, which is why the
number of echoing periods seen is limited when
fine-tuning in p up to double-precision.

VI. CONCLUSIONS

We have studied the threshold of black hole for-
mation for a massless scalar field minimally cou-
pled to the gravitational wave metric ansatz of [8]
in 4+1 dimensions [8], (the latter restricted to the
biaxial case). We think of this as a toy model
for matter gravitational collapse beyond spherical
symmetry, where gravitational waves are also nec-
essarily present.

We found that weak gravitational wave pertur-
bations of the scalar field critical solution decay,
while weak scalar perturbations of the gravita-
tional wave critical solution also decay. This is
different from the case of critical collapse of two
massless matter fields [7], in which scalar perturba-
tions on the Yang-Mills field critical solution grow,
but Yang-Mills perturbations on the scalar field
critical solution decay.

These observations suggest the schematic phase
space picture of Fig. 20. Here, any point in the
phase space represents an initial data set, up to
an overall length scale, parameterised in our case
as (Ψ(x), χ(x)), and a time evolution curve corre-
sponds to a spacetime, in our case in null slicing,
again up to an overall scale, with the time T of the

dynamical system determining the missing scale as
e−T . In this picture, a DSS solution should be a
closed curve, but for simplicity we represent it as
a fixed point.

To find the bi-critical solution suggested by this
picture, we then explored the transition between
the two pure critical solutions for mixed initial
data in our new toy model.

The evidence for the existence of the hypotheti-
cal codimension-two attractor comes from the be-
haviour of our best near-critical [that is, p ' p∗(q)]
evolutions for different values of q. In the limit
of perfect fine-tuning of p, as the mixing param-
eter q decreases from 1, we observe a transition
from the gravitational wave critical solution to the
scalar field critical solution. By continuity, we ex-
pect there to be a q∗ such that, in the limit of
perfect fine-tuning to p = p∗(q∗), both fields play
equal dynamical roles. Increasing or decreasing p
an infinitesimal amount above or below the curve
p = p∗(q) would push the critical solution to even-
tual collapse or decay, respectively, while increas-
ing or decreasing q exactly along this curve would
push it into decaying into the pure gravitational
wave or pure scalar critical solutions, respectively.

The numerical limits of fine-tuning do not al-
low us to follow the putative bi-critical solution for
given q down to arbitrarily large T , but our obser-
vations are consistent with the assumption that in
the limit (q, p) = (q∗, p∗(q∗)), the system evolves
toward an intermediate attractor for which Ψ and
B neither grow nor decay.

Going beyond that, we want to know if the
bi-critical solution is strictly DSS, with a com-
mon period for all variables (in the sense that
∆Ψ = 2∆B), or only quasiperiodic. Unfortunately,
because we observe the bi-critical solution over few
periods, Figs. 16-18 and Fig. 15b seem to be com-
patible both with ∆Ψ/2 = ∆B or with a slightly
smaller value of ∆B .

With solutions of the toy model depending only
on radius and time, one might hope to con-
struct a strictly DSS solution (as the hypotheti-
cal bi-critical solution) by ansatz, imposing peri-
odic boundary conditions in T with a period ∆
to be solved for. Such an ansatz was solved nu-
merically for the spherical scalar field in 3+1 di-
mensions in [16], and the numerical approximate
solution was leveraged into a proof of existence as
a real-analytic exact solution in [17]. However, a
failure to find an approximate numerical solution
of such an ansatz would not prove the absence of
an exact DSS solution, as the numerical solution
of a highly nonlinear boundary value problem may
simply not converge from an initial guess that is
too rough. By contrast, it is not clear how one
could even make an ansatz of quasi-periodicity.
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FIG. 20. Schematic conjectured phase space picture,
with the infinite-dimensional phase space represented
in three dimensions. The framed plane represents the
black hole threshold (in reality a hypersurface). All
arrow lines represent trajectories (spacetimes). The
filled dots represent fixed points (DSS spacetimes):
the scalar field critical solution, on the left, the grav-
itational wave critical solution, on the right, and the
codimension-two critical solution in between. Here the
middle fixed point has two unstable modes, while the
left and right ones have one each. An infinite number
of phase space dimensions of the black hole threshold
are suppressed, and with them an infinite number of
stable modes of each fixed point within the black hole
threshold. The two dashed lines represent three fami-
lies of initial data with q = 0 (left) and q = 1 (right).
Hollow dots represent initial data with p < p∗, p = p∗
and p > p∗ for each family. Figure taken from [7].

Appendix A: Scalar field equations in
spherical symmetry in n+ 2 dimensions

In this Appendix, we explore the problem of a
massless scalar field minimally coupled to gravity
in a spherically symmetric spacetime in n + 2 di-
mensions. We use coordinates (u, x,Ωn), where u
and x are the same as defined in Section II, and
Ωn are coordinates on the n-sphere:

ds2 = −2gR,xdudx−Hdu2 +R2dΩ2
n (A1)

The Einstein equations

Rab = 8π∇aΨ∇bΨ (A2)

and the scalar field wave equation

∇a∇aΨ = 0 (A3)

can be put in the following hierarchy in these co-
ordinates:

D(ln g) =
8πR

n
(DΨ)2, (A4)

D(Rn−1ΞR) = −n− 1

2
gRn−2, (A5)

D(Rn/2ΞΨ) = −n
2
Rn/2−1ΞRDΨ. (A6)

Using boundary conditions at R = 0, we write the
above equations in integral form to make the link
to the numerical integrations more explicit:

g = exp

[
4π

n

∫ R

0

(DΨ)2 d(R̃2)

]
, (A7)

ΞR = −1

2

1

Rn−1

∫ R

0

g d(R̃n−1), (A8)

ΞΨ = − 1

Rn/2

∫ R

0

DΨΞRd(R̃n/2). (A9)
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FIG. 21. The scalar field Ψ(x, T ) in the best near-
critical evolution in 8+1 dimensions. A black line rep-
resents the extrapolation to the regular centre R = 0.
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FIG. 22. The field h(x, T ) in the best near-critical
evolution in 8+1 dimensions. A black line represents
the extrapolation to the regular centre R = 0.

The division by Rn−1 to calculate ΞR in
Eq. (A8) generates numerical instabilities near the
origin R = 0 when the dimension increases. While
it produces no significant effect in n + 2 ≤ 5 di-
mensions, in 8+1 dimensions it leads to unphysical
behavior in ΞR. A simple solution to this is to in-
tegrate the equation by parts as suggested in [9]
and to use Eq. (A7):

ΞR =
g

2
+

4π

n(n+ 1)

1

Rn−1

∫ R

0

g(DΨ)2 d(R̃n)

(A10)
The second term in Eq. (A10) can be more accu-
rately computed as it is O(R2) near the origin.
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FIG. 23. The compactness M/R2 in the best near-
critical evolution in 8+1 dimensions. A black line rep-
resents the extrapolation to the regular centre R = 0.

In a similar manner, the wave equation,
Eq. (A9), displays instabilities in 8+1 dimensions
near the origin R = 0 which arise from integrating
over and dividing by Rn/2 the term on the right
hand side, which is O(1) for small R. To avoid
this, we define a field h as

h :=
d(Rn/2Ψ)

d(Rn/2)
= Ψ +

2

n
(DΨ)R, (A11)

from which we can recover

Ψ =
1

Rn/2

∫ R

0

h d(R̃n/2). (A12)

(An evolution equation for h follows below). The
problematic integral in Eq. (A9), which is no
longer needed, appears to have simply been re-
placed by another problematic integral, Eq. (A12).
However, this can again be integrated by parts to
make it more explicitly regular, whereas integra-
tion by parts would not be useful for Eq. (A9).

The final form of our field equations can be col-

lected in the following hierarchy:

Ψ = h− 1
n
2 + 1

1

Rn/2

∫ R

0

Dh d(R̃n/2+1), (A13)

g = exp

[∫ R

0

2πn
(h−Ψ)2

R̃
d(R̃)

]
, (A14)

ΞR =
g

2
+

4π

n(n+ 1)

1

Rn−1

∫ R

0

g(DΨ)2 d(R̃n),

(A15)

Ξh =
1

2R
(h−Ψ)

[
(n− 1)g +

n

4
ΞR
]
. (A16)

The second term on the right hand side of
Eq. (A13) below is O(R) at the origin, and thus
more stable to compute than ΞΨ. [It is not use-
ful to integrate the expression for ΞΨ in Eq. (A9)
by parts directly, as the integrand would involve
second-order derivatives of Ψ.] The new evo-
lution equation (A16) does not require an inte-
gral and does not come with high powers of R.
Eqs. (A14) and (A16) are well defined at the ori-
gin as h − Ψ = O(R) by Eq. (A11) and by regu-
larity of Ψ. In n+ 2 = 4 dimensions in particular,
it is O(R2) and reduces to Ξh = 0 in Minkowski
spacetime, where g = −ΞR/2 = 1.

This field transformation has been commonly
used in 4 dimensions, for example in [10–12]. In
[18], Garfinkle et al. introduced a generalization
of h from 3+1 to higher spacetime dimensions,
completely different from Eq. (A12), that main-
tains the property of h being constant along in-
going light rays in Minkowski spacetime, Ξh = 0.
This is possible only for even n, as solutions of
the wave equation in flat spacetime satisfy Huy-
gens’ principle only in even spacetime dimensions.
We have tried to explain in this Appendix why the
definition of h of Bland et al. [9] is numerically ad-
vantageous even though for n 6= 2 it does not have
the very property that seems to have motivated its
introduction in n = 2.

As an indication that our implementation of this
formulation works, Figs. 21-23 show the critical
solution in 8+1-dimensional spherical scalar field
collapse, found by fine-tuning the amplitude of a
family of initial data to the collapse threshold.

In the main paper, we are concerned with the
dynamics of the field b, whose governing equation
is mathematically similar to that of the scalar wave
equation in 8+1 dimensions. As in odd spacetime
dimensions we cannot use the methods of [18], we
have adopted the formulation described here for
arbitrary integer n, with our χ and b in 4+1 di-
mensions the equivalents of h and Ψ in 8+1 di-
mensions.
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