
University of Southampton Research Repository 

Copyright ©  and Moral Rights for this thesis and, where applicable, any accompanying data are 

retained by the author and/or other copyright owners. A copy can be downloaded for personal 

non-commercial research or study, without prior permission or charge. This thesis and the 

accompanying data cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic details must be given, 

e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the 

University Faculty or School or Department, PhD Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 





 

 

University of Southampton 

Faculty of Engineering and Physical Sciences 

Optoelectronics Research Centre 

 

Atomic Scale Dynamics of Thermal and Driven Motion  

in Photonic Nanostructures 

 

 

by 

Tongjun Liu 

 

ORCID ID 0000-0003-4931-1734 

Thesis for the degree of Doctor of Philosophy 

January 2023 

 

https://www.southampton.ac.uk/
https://orcid.org/0000-0003-4931-1734




 

 

University of Southampton 

Abstract 

Faculty of Engineering and Physical Sciences 

Optoelectronics Research Centre 

Doctor of Philosophy 

 

Atomic Scale Dynamics of Thermal and Driven Motion 

in Photonic Nanostructures 

by 

Tongjun Liu 

This Thesis reports on the study of atomic scale dynamics of thermal and driven motion in 

nanomechanical and nano-optomechanical photonic metamaterials system including their atomic 

scale movement visualization and control. 

• I have developed a sub-atomic motion visualization technique combining picometric 

displacement sensitivity with the nanometric spatial resolution of a conventional scanning 

electron microscope, and demonstrated its application in characterization of 

thermomechanical (Brownian) motion in nanomechanical structures, nanomechanical 

photonic metamaterials, NEMS/MEMS devices and biological structures. 

• Using this technique, I have reported on the first observation of short-timescale ballistic 

motion in the flexural mode of a nano-membrane cantilever, driven by thermal fluctuations of 

flexural phonons. Within intervals <10 µs, the membrane moves ballistically at a constant 

velocity of ~300 µm/s, on average. Access to ballistic regime provides the first experimental 

verification of the equipartition theorem and Maxwell-Boltzmann statistics for flexural modes. 

• For the first time I have optically resolved the average position of a nanowire with an absolute 

error of ~30 pm using light at a wavelength of 𝜆= 488 nm, thus providing the first example of 

sub-Brownian metrology with 𝜆/10,000 resolution. To localize the nanowire, I employed a 

deep learning analysis of the scattering of topologically structured light, which is highly 

sensitive to the nanowire’s position. 

• For the first-time, I have demonstrated: a) optical parametric control of the spectrum of 

thermomechanical motion on an array of nano-opto-mechanical resonators; b) phononic 

frequency comb generation by the array; c) thermal energy exchange between two coupled 

oscillators within an optically driven array. 

Collectively, these works advance the visualization and control of photonic nanostructures at the 

picometre scale, thus opening up the exciting field of picophotonics. 
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Chapter 1 Introduction 

Angström scale movement and femto- to pico-second dynamics are readily found in atomic and 

molecular systems such as free charge carrier moving in crystals, chemical bond vibration or 

molecular vibration, rotation, chemical reaction process [1, 2], phonon transport in crystals [3] and 

2D materials [4]; atomic length scale protein conformational changes, and motion that happens in 

protein folding process [5]. 

In nano-(opto)mechanics [6], electromagnetic, optical, thermal and quantum fluctuation forces 

become stronger as the physical dimensions of objects decrease (e.g. the Coulomb force vs. 

separation between two electrons) and at sub-micron scales they begin to compete with weakening 

forces of elasticity (e.g. Hooke’s law force vs. extension/compression of a spring). Nanoscale 

movements also become faster as mass decreases with size, achieving gigahertz bandwidth at the 

nanoscale [6]. This means movement can be activated by different kinds of forces at relatively high 

frequency. Exciting new functionalities emerge through the exploitation of nanomechanical 

movements of nanoparticles, -powders, -wires, -ribbons, -tubes, -shells, -composites and -

membranes (including 2D materials such as graphene). 

Indeed, forces at the nanoscale can act as a bridge between the domains of nanomechanics and 

nanophotonics. The changing balance of elastic and electromagnetic forces or quantum fluctuation 

forces on the nanoscale opens up new possibilities for controlling photonic response through 

movement of a photonic nanostructure. This is true not only in nanophotonics but also generally in 

all kinds of systems, such as micro- and nano-electro-mechanical systems (MEMS & NEMS) [7], two-

dimensional (2D) materials systems [8], quantum mechanical systems [9] and biomechanical 

systems [10]. 

All of these structures exhibit thermal (Brownian) movement with picometre amplitudes at 

frequencies in the few megahertz to few gigahertz range at room temperature. Nanomechanical 

effects related to thermal motion and the importance of configuration entropy (all  possible 

configurations or particle positions of a system) at the nanoscale give rise to self-organization and 

cooperative dynamics in nanosystems [11]. Quantum vacuum fluctuation such as the Casimir effect 

and Van der Waals interactions play important and often decisive roles in nanomechanical 

structures [12]. 

Nano/picoscale movement can also be induced by external stimuli [13], for example in the form of 

piezoelectric drive, electromagnetic and optical excitation, temperature change, or indeed 

quantum-level interactions. Important examples include widely-adopted micro- and nano-electro-
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mechanical systems (MEMS & NEMS) such as the accelerometers found in every smartphone, 

nanomechanical photonic metamaterials with variable optical properties controlled by nanoscale 

movements of photonic nanostructures, and nanofluidic devices for lab-on-chip application in 

medicine. 

Over the last decade, protein nanomechanics and structural dynamics have seen tremendous 

progress and evolved into a burgeoning field of biochemical research [10]. 

These considerations present substantial technological opportunities and explain the growing 

interest in nanomechanics and the fundamentals of atomic scale dynamics. 

1.1 Atomic scale dynamics: fundamental science and technological 

importance 

1.1.1 Dynamics at (sub-) atomic scale: fundamental science 

The Royal Swedish Academy of Sciences has awarded the 1999 Nobel Prize in Chemistry to 

Professor Ahmed H. Zewail for showing that it is possible with a rapid laser technique to see how 

atoms in a molecule move during a chemical reaction. Angström-scale movement and dynamics 

were assumed to happen during the chemical reaction process. Despite the rich history of chemistry 

over two millennia, the actual atomic motions involved in chemical reactions had only been 

observed in real time recently [1]. Chemical bonds break, form, or geometrically change with 

astonishing rapidity. Whether in isolation or in any other phase, this ultrafast transformation is a 

dynamic process involving the mechanical motion of electrons and atomic nuclei. The speed of 

abovementioned atomic motion is ∼1 km/s, and hence, to record atomic-scale dynamics over a 

distance of an angström, the average time required is ∼100 fs. The very act of such atomic motions 

as reactions unfold and pass through their transition states is the focus of the field of 

femtochemistry [1]. With femtosecond time resolution one can “freeze” structures far from 

equilibrium and prior to their vibrational and rotational motions, or reactivity [1]. Ultrafast pulsed 

laser techniques have made the direct exploration of this temporal realm a reality. Spectroscopy, 

mass spectrometry, and diffraction play the role of “ultrahigh-speed photography” in the 

investigation of molecular processes. A femtosecond laser probe pulse provides the shutter speed 

for freezing nuclear motion with the necessary spatial resolution. The pulse probes the motion by 

stroboscopy, i.e., by pulsed illumination of the molecule in motion and recording the particular 

snapshot. A full sequence of the motion is achieved by using an accurately timed series of these 

probe pulses, defining the number of frames per second. These achievements mark the beginning 

of sub-atomic dynamics research in physics, chemistry and biology. 
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Therefore, sub-atomic scale dynamics in terms of either characteristic length or time scale is of 

great fundamental interest as well as in the research community advancing fundamental 

understanding of electron transport, ultrafast dynamics and light-matter interactions in materials. 

There are some examples in the following: 

Ultrafast dynamics of electrons: Electrons have played a central role in the scientific and 

technological revolution of the 20th century. It is widely anticipated that their role as a key driver 

of scientific and technological progress will be increasingly replaced by photons in the 21st century.  

However, this assessment may be premature, or overly simplistic. About half a century after the 

invention of transistors and lasers, our insight into and impact on the atomic-scale motion of 

electrons in matter is still in its infancy. Therefore, the scientific and technological progress brought 

about by electrons is not over yet. Rather, this is just the beginning, considering that experimental 

tools and techniques to observe and control electron dynamics in real time at the atomic scale are 

now available [2, 14-17]. 

Phonon transport in 2D materials: Thermal transport in two-dimensional (2D) materials has 

attracted great attention since the discovery of high thermal conductivity in graphene, which is 

closely related to ballistic, hydrodynamic and flexural phonon transport [18]. It was recently 

reported that the lattice thermal conductivity of graphene is dominated by contributions from the 

out-of-plane or flexural phonon modes, previously thought to be negligible [19]. This unexpected 

result was connected to the anomalously large density of states of flexural phonons compared to 

their in-plane counterparts and to a symmetry-based selection rule that significantly restricts 

anharmonic phonon-phonon scattering of the flexural modes [19]. 

Structural dynamics of a single molecule: The internal vibrations of molecules drive the structural 

transformations that underpin chemistry and cellular function. While vibrational frequencies are 

measured by Raman spectroscopy, the normal modes of motion (a pattern of motion in which all 

parts of the system move sinusoidally with the same frequency and with a fixed phase relation) are 

inferred through theory because their visualization would require microscopy with angström-scale 

spatial resolution which can be achieved in a scanning tunnelling microscope [20]. Also, scanning 

probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. 

These forces have been applied quasi-statically to create surface structures and influence chemical 

processes, and exploiting local dynamics to realize coherent control on the atomic scale [21]. 

Picophotonics: Picophotonics is the emerging science of light matter interaction at picometre [(sub-) 

atomic] scale [22]. It includes cavity-electrodynamics at atomic level, atomic scale resolution of 

metrology and imaging, Langevin dynamics in photonic nanostructures at picometric scale. It also 
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includes the study of Casimir or Van der Waals forces and non-Hamiltonian forces in nanomechanics 

[23-25]; electron and plasmon quantum transport through atomic scale gaps [26]; configuration 

chemistry of individual molecules; protein folding [27]; other dynamic events in macromolecules 

and nanomachines; entropic forces in nanosystems; and thermal or Brownian nano-

(opto-)mechanics at atomic length scale. 

1.1.2 Atomic scale movement: technological importance 

Richard Feynman first imagined many physically achievable devices or systems in his famous 1959 

lecture “There's Plenty of Room at the Bottom”[28], where he invited scientists to enter a new field 

of physics later known as nanotechnology [7] and tried thinking about and answering the following 

questions: How to write information at the atomic scale? How to read this information at the atomic 

level? And inspired by biological systems such as tiny cells, he has also imagined that we can 

manufacture a nano-machine which can do what we want it to do. How to realize a miniaturized 

computer also has the marvelous capability of face identification? How to arrange atoms in the way 

we want? What would the properties of materials be if we could really arrange the atoms the way 

we want them to? 

Molecular machines, micro- and nano-electromechanical system (MEMS/NEMS) and later micro-

/nano-mechanical photonic metamaterials have since become practical implementations of this 

idea [6, 29]. MEMS are microscopic devices with moving parts typically between 1 and 100 

micrometers in size. They have established applications in digital spatial light modulators (e.g., 

Texas Instruments’ DMD chips for data projection), and high-performance pressure sensors, 

gyroscopes, and accelerometers (e.g., in mobile phones). NEMS, as the name suggests, are smaller 

– being broadly defined as having at least one characteristic dimension in the 1-100 nm range, with 

a plethora of potential applications in advanced (including quantum level) sensing and signal 

processing under development [7, 30]. Recent progress in micromechanical sensors and 

nanomechanical sensors in the internet of things (IoT) demands new techniques for the 

characterisation of fast nanoscale mechanical movements that underpin the functionalities of 

microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) devices and 

sensors (found in any smartphone and IoT devices), reconfigurable micromechanical switches for 

telecommunication networks and Lidar for autonomous vehicles. 

As another implementation of Feynman’s idea, mechanically reconfigurable photonic metamaterial 

devices, namely, metadevices [6, 29] take advantage of the changing balance of forces at the 

nanoscale as detailed in section 1.1.3. They engage electromagnetic (Coulomb, Lorentz, Ampère, 

and optical gradient) forces, as well as thermal effects (differential expansion, shape memory) and 
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acoustic excitation to dynamically change their optical properties [6]. Atomic- to nano-scale 

changes in the geometry and/or spatial arrangement of constituent ‘metamolecule’ building blocks 

fabricated on elastic nano-membranes can deliver a wealth of optical modulation and tuning 

functionalities with electro-/magneto-/thermo-/acousto-optical and nonlinear response 

coefficients orders of magnitude larger than those found in natural media [6]. 

1.1.3 Atomic scale dynamics of thermal motion in photonic nanostructures 

Photonic metamaterials or metasurfaces consist of arrays of subwavelength unit cells also known 

as ‘metamolecules’ that are made of optical antennas realized recently by the progress in 

manufacturing technology and nanofabrication. They are artificially engineered materials that have 

boosted the development of miniaturized optical and photonic devices because of their 

unprecedented and controllable effective electromagnetic properties, including electric 

permittivity and magnetic permeability [31], and full wavefront shaping: amplitude, phase, 

polarization, wavevector and total angular momentum (spin plus orbital angular momentum) 

control [32]. Importantly, the effective properties of metamaterials are mainly dependent on the 

geometry and arrangement of the constituting subwavelength unit cells. This enables versatile 

designs of their electromagnetic properties. 

An important research direction in nanophotonics and metamaterials is mechanically 

reconfigurable metamaterials or metasurfaces that goes towards the development of 

reconfigurable metamaterial devices [6, 29], via integrating nanomechanical actuation mechanism 

with metamolecules, see Figure 1.1. This is achieved by structurally rearranging the metamolecule 

array, i.e. repositioning the metamolecules of the arrays, or their components, with respect to each 

other by engaging electromagnetic Coulomb, Lorentz and Ampère forces [6, 29], as well as thermal 

stimulation and optical signals to dynamically change their optical properties at the megahertz to 

gigahertz frequency range. 

By encoding the mechanical degree of freedom to the optical counterpart, nanomechanical 

photonic devices formed as periodic arrays of optical antennas supported by flexible 

nanomembrane structures have boosted the development of reconfigurable optical metamaterials 

or metasurfaces. This allows one to achieve giant thermal-optical [33], electro-optical [34, 35], 

electro-chiral [36], magnetoelectro-optical [37], acousto-optical [38], phase change [39, 40], 

thermoelastic [41], nonlinear optical responses [42] and realize an electrostatically addressable 

electro-optical modulator [43], dynamic wave plate [40] and plasmonic colours for sustainable 

optical displays [44]. 
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Figure 1.1 Reconfigurable nanomechanical photonic metamaterials. (a) Thermally reconfigurable metamaterial driven 

by differential thermal expansion between gold and silicon nitride layers [33]. (b) A meta electro-optical modulator driven 

by electrostatic forces [45]. (c) A magnetically actuated optical nanomembrane metamaterial [46]. (d) An all-optical 

reconfigurable nano-optomechanical metamaterial [35]. (e) A sub-GHz nonlinear device: all-dielectric metamaterial with 

a large optomechanical nonlinearity [34]. (f,g) A spatial light modulator: electrically addressable metadevice randomly 

reconfigurable in one dimension [43]. (h) Electrogyratory metamaterial suspended above an ITO-coated glass back-plane. 

Static electric field actuates the nanomechanical material, changing its chirality and optical activity [36]. (i) MEMS dynamic 

wave plate [40]. (j) MEMS cantilever–controlled plasmonic colours for sustainable optical displays [44]. Scale bars in a-f, 

h, are 2 μm; g, 2 mm; e, 500 nm; j, 50 μm. 

In nano-(opto-)mechanical systems or more precisely their components, such as a cantilever or a 

bridge beam of microscopic length and nanoscopic cross section, experience thermal motion which 

induces fluctuation of optical properties. While optical resonances can be characterized in routine 

transmission and reflection experiments, mapping the high-frequency mechanical resonances of 

individual elements in complex metamaterial structures such as illustrated in Figure 1.1b-e is 

challenging. In particular, the thermal vibration frequencies of nanomechanical devices increase as 

objects decrease in size reaching MHz to GHz. Optical antennas or resonators are supported by the 

moving nanomechanical components such as bridge beams; typically, they have width and 
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thickness of a hundred nanometres smaller than the diffraction limit and length of 10s micrometres. 

These thermal movements have an averaged motion amplitude of 100 pm which is at atomic length 

scale (e.g. the van der Waals diameter of a silicon atom is ~220 pm). 

Thermomechanical movement is of significance in technological applications and fundamental 

research. Firstly, thermal vibrations in nanomechanical photonic metamaterials result in small 

fluctuations of their optical properties but may perturb their switching characteristics. This is 

because as the dimensions of a mechanical oscillator shrink to the molecular scale, their vibrations 

become increasingly coupled and strongly interacting until even weak thermal fluctuations could 

make the mechanical oscillator nonlinear [47]. Secondly, these fluctuations provide an opportunity 

for the characterization of mechanical properties and/or properties of the environment, and can 

provide a reference for calibration of displacement sensitivity, which is important in metrology. 

Furthermore, if we are interested in the high-speed operation of these devices at timescales below 

its momentum relaxation time typically at nanosecond level, the Brownian motion of micro/nano-

objects becomes ‘ballistic’ [48]. Finally, nano-(opto-)mechanical devices are underpinned by their 

mechanical degree of freedom. Therefore, it’s also of great significance to control the mechanical 

degree of freedom at will. 

1.2 Nanomechanical motion detection techniques 

How to quantify/visualize thermomechanical movement of the individual elements in a complex 

nanomechanical system such as nanomechanical photonic metamaterials? Over the last several 

decades, many efforts have been put into micro/nanomechanical motion or molecular vibration 

detection and imaging. These methods include ultrafast (4D) electron microscopy [14], laser 

interferometry or spectroscopy and Laser Doppler vibrometry [49, 50], scanning probe methods 

[51-53] (such as using atomic force microscopes, scanning tunnelling microscopes and magnetic 

force microscopes, etc.). 

Time-resolved electron microscopy: Ultrafast electron microscopy (UEM), also called 4D electron 

microscopy [14], is based on the pump-probe experiments to study complex transient events on 

the nanoscale temporal and spatial resolution with ultrafast electrons as probes, which has been 

an area of significant interest in materials science, biology, and chemistry. Figure 1.2a shows direct 

imaging nanomechanical motions of a nano-cantilever in real space and time with 4D electron 

microscopy [54]. The frames show referenced difference images with the reference frame (-10 ns) 

subtracted from subsequent frames. The difference images illustrate the characteristic dynamics of 

the non-anchored end of the nanoscale Cu crystal cantilever. 
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However, UEM is a highly-specialized instrument which generally contains very complex optics and 

timing control systems and also is not easily accessible and is generally used for the study of 

reversible dynamics. While the conventional scanning electron microscope (SEM) also has the 

nanometric resolution and is easily accessible, its capability to study the irreversible dynamics such 

as thermal movement in nanostructures can be further developed as will be shown in Chapter 3. 

Laser interferometry: A review on laser light enabled nanomechanical motion measurement and 

imaging can be found in ref. [50]. Several techniques based on laser-driven interferometers and 

cavities are illustrated in Figure 1.2b with sensitivities reaching from thermal displacement 

amplitudes (typically at the picometre scale) all the way to the quantum regime. Figure 1.2b1 shows 

a simple two-path interferometer for characterizing a mechanical device (top). The thermal motion 

(blue trace) of a high-Q membrane is readily resolved above the measurement imprecision 

background (grey). Figure 1.2b2 illustrates a cavity-enhanced measurement in which an optical 

whispering-gallery-mode resonator is used. Thermal motion (red) trace is far above the imprecision 

background (grey), which is itself below the resonant standard quantum limit (SQL) for this 

mechanical mode. Figure 1.2b3 depicts a cavity-based measurement of highly coherent mechanical 

resonators put inside a Fabry–Pérot resonator. Quantum backaction starts to dominate over the 

thermal motion of the device, including correlations that lead to squeezing of the output light 

(violet trace) below the vacuum noise (grey), among others. Figure 1.2b4 compares the relative 

levels of the measurement imprecision, backaction, and thermomechanical noise in the 

measurement of the above three cases. Laser-based motion imaging can be realised by scanning 

laser interferometry over the sample. Scanning laser interferometry is particularly useful to 

characterize complex mechanical mode structures, such as Si3N4 membranes with phononic crystal 

structures [55]. 

Laser Doppler vibrometry: A laser Doppler vibrometer (LDV) is a scientific instrument that is used 

to make non-contact vibration measurements of a surface [49]. The laser beam from the LDV is 

directed at the surface of interest, and the vibration amplitude and frequency are extracted from 

the Doppler shift of the reflected laser beam frequency due to the motion of the surface. Using 

optical heterodyne detection scheme, the output of an LDV is generally a continuous analog voltage 

that is directly proportional to the target velocity component along the direction of the laser beam.  

Laser interferometry and laser Doppler vibrometry are non-invasive techniques and can provide 

extremely high sensitivity to changes in optical path length (i.e. in the direction of light propagation) 

but, for imaging purposes in the transverse direction, they are diffraction-limited with a spatial 

resolution of a few hundred nanometres at best. Using this method, it’s not possible to characterise 

the individual constituting nanomechanical components in a complex photonic metamaterial. 
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However, these challenges can be circumvented by using electron beams as demonstrated in 

Chapter 3. Also, as shown in Chapter 5, a nanostructure’s movement in the plane perpendicular to 

the direction of light propagation can be accurately measured through scattering patterns when 

light passes through it although with modest picometric sensitivity. Furthermore, movement of 

nanostructures can be measured by detecting the reflectance or transmittance change when the 

nanostructures are patterned with optical resonators, such as metamolecules, that are coupled to 

each other (Chapter 6). 

 

Figure 1.2 Existing nano-motion imaging techniques. (a) 4D electron micrographs of the nanoscale cantilever [54]. (b) 

Probing mechanical motion by laser interferometry [50]. (c) Scanning probe method combined with near-field plasmon 

sensing [56]. 

Scanning probe methods: Scanning probe microscopy (SPM) has by now been extended to a wide 

spectrum of basic and applied fields which plays an important role in the understanding and 

perception of matter at its nanoscopic and even atomic levels [57]. SPM uses a sharp tip to 

physically raster-scan samples and locally collect information from the surface. Various signals can 

be directly detected by SPM in real space with atomic or nanoscale resolution, which provides 

insights into the structural, electronic, vibrational, optical, magnetic, (bio)chemical and mechanical 

properties [57]. 

For example, in the scanning probe microscopy (SPM)-based near-field method as reported in [56], 

a sharp metallic tip on a microcantilever with a line-grating serves both as a local probe and a local 

source (Figure 1.2c). The localized surface plasmons are generated and confined at the tip, by tightly 
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focusing the light onto the tip. The interaction between the tip and the moving device surface 

scatters the localized plasmons, which are then measured at the far-field with a photodetector. 

Because the intensity of the optical interaction varies significantly with the distance between the 

tip and the surface as in apertureless scattering-type near-field optical microscopy, the scattered 

light collected at the far-field carries information on the oscillations of the mechanical resonator. 

The reported sensitivity of this technique is about 0.45 pm/Hz1/2. 

However, the potential concern is that external load from the probe will be introduced which may 

affect the mechanical properties of device under test. In particular, when measuring the complex 

nanomechanical photonic metamaterials as illustrated in Figure 1.1, the stiction between 

neighbouring nanowires as a result of introduced electrostatic and van der Waals interaction may 

happen after doing raster-scanning measurement. This concern can be overcome when using the 

electron or light as a probe. 

1.3 Layout of this thesis 

This thesis reports on the study of the atomic length scale dynamics of thermal and driven motion 

in photonic nanostructures, such as cantilever or bridge beams - the building blocks of 

nanomechanical photonic metamaterials and MEMS/NEMS, using secondary electrons, structured 

light and optomechanical interactions. It specifically focuses on visualization and control of a 

nanostructures’ atomic length scale Langevin dynamics and externally stimulated movement. 

In Chapter 2, I provide theoretical background on thermal (Brownian) motion and its Langevin 

dynamics for both free particles and nanomechanical resonators. It covers the basics of the pure 

diffusion model, the Langevin model without memory, and the generalized Langevin model with 

hydrodynamic memory. Thermomechanical displacement power spectral density (PSD) of a 

nanomechanical resonator is mathematically derived in terms of mechanical eigenfrequency, 

effective mass and mechanical damping from the Langevin model. Ballistic thermal motion 

characteristics of a nanomechanical structure at short timescale are also analysed from the 

Langevin equation. As one of the important parts in my research work, a Brownian parametric 

oscillator model is also introduced. 

In Chapter 3, I develop a motion visualization technique, based upon spectrally resolved detection 

of secondary electron emission from moving objects, that combines picometric displacement 

sensitivity with the nanometric spatial (positional/imaging) resolution of electron microscopy. The 

sensitivity of the technique is quantitatively validated in measurements of the thermodynamically 

defined amplitude of a nano-cantilever’s Brownian motion. It is further demonstrated in application 

to visualizing externally driven oscillatory modes of cantilever, individual element characterisation 
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of nanomechanical photonic metamaterial and MEMS device structures. With an electron-shot 

noise limited floor reaching ~1 pm/Hz1/2, it can provide for the study of movements with sub-atomic 

amplitudes.  

Chapter 4 reports on the observation of short-timescale ballistic motion in the flexural mode of a 

nano-membrane cantilever, driven by thermal fluctuation of flexural phonons, including 

measurements of ballistic velocities and displacements performed with sub-atomic resolution, 

using the free electron edge-scattering technique described in Chapter 3. The microsecond 

temporal resolution is a new dimension in this chapter, i.e. making it possible to access the short 

timescale ballistic regime. 

Chapter 5 reports on an experiment in which the average position of a nanowire with a thermal 

oscillation amplitude of ~150 pm is resolved in single-shot measurements with absolute error of 

~30 pm using superoscillatory light at a wavelength of 𝜆= 488 nm, providing the first example of 

such sub-Brownian metrology with 𝜆/10,000 resolution. To localize the nanowire, I employ a deep 

learning analysis of the scattering of topologically structured light, which is highly sensitive to the 

nanowire’s position. 

In Chapter 6, I demonstrate the optical detection and control of the picometre scale thermal 

fluctuation in nano-optomechanical metamaterials. Parametric control of thermal motion of a 

nano-optomechanical oscillator array via dynamic photothermal tunning and parametric coupling 

between two distinct optomechanical oscillators are demonstrated as well. 

Lastly, a summary of this Thesis is presented in 0, together with possible future, emerging research 

directions. 
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Chapter 2 Theoretical background 

This chapter starts from a theoretical interpretation of our familiar form of Brownian motion of a 

free particle, such as the inexhaustible and erratic motion of small pollen grains suspended in water. 

It firstly introduces Einstein’s pure diffusion theory of Brownian motion dating back to 1905 which 

for the first time physically interpreted the long-time erratic movement, then a stochastic Langevin 

equation (considering the inertia of a Brownian particle) capable of revealing both the short time 

scale ballistic and long-time diffusive movement is introduced and a generalized Langevin model 

that considers the hydrodynamic interaction between fluid and particle is also briefly described. 

In the second part, thermal fluctuation in a nanomechanical beam, as the main focus of this thesis, 

is described using the well-accepted Langevin model for a mechanical oscillator driven by noise in 

terms of the parameters of effective mass, mechanical eigenfrequency and mechanical damping. 

Thermomechanical displacement power spectral density, as is widely used in experimental 

measurements in this thesis (sections 3.4, 4.1, 6.3 and 6.4), is obtained from this model. Ballistic 

thermal motion characteristics of a nanomechanical structure at short timescale are also derived 

from the Langevin equation. In section 2.2.3, a numerical modeling of a Brownian nanomechanical 

oscillator is performed by solving the Langevin equation to better illustrate the thermomechanical 

movement in different damping regimes and the behavior of ballistic regime thermal movement 

before coming to the experimental demonstration in section 4.1.  

In the third part, the mechanical eigenfrequency of a regular nanomechanical beam with uniform 

rectangular cross-section is derived from Euler-Bernoulli beam theory [58, 59] considering its 

geometry and properties of constituting materials, which is an important parameter in the Langevin 

model. Additionally, the effect of tensile stress on a beam resonator is examined; on one hand this 

helps explain the variation of mechanical resonance frequencies observed in an array of 

geometrically identical nanomechanical oscillators (sections 3.4.3 and 6.3); on other hand by tuning 

the tension within a nanomechanical structure, its thermomechanical vibration frequency can be 

tuned , which provides a solid theoretical foundation for the parametric control of the 

thermomechanical vibration of a nanomechanical oscillator array, as experimentally demonstrated 

in section 6.4. Mode dependent effective mass used in the Langevin model for a mechanical beam 

is also analytically described. This is an important parameter in the thermomechanical displacement 

power spectral density of a nanomechanical structure that can be experimentally measured and 

used to evaluate the displacement sensitivity of a technique such as demonstrated in sections 3.4, 

5.4 and 6.3, since its amplitude is thermodynamically related to the physical parameters of the 
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object. Origins of the mechanical damping are briefly summarised, although it is beyond the scope 

of the experimental study reported in this thesis. 

Lastly, in section 2.4, a Brownian parametric oscillator model is introduced which helps interpret 

and analyze the experimentally observed probe transmission spectrum evolution in the presence 

of parametric pumping as will be presented in section 6.4. An analytical solution of this model in 

the frequency domain is also given with its applicability analyzed from numerical calculations. 

2.1 Thermal (Brownian) motion of a free particle and its statistics 

Soon after the invention of the optical microscope in the 17th century, the inexhaustible and erratic 

motion of small pollen grains suspended in a fluid has been observed. Generally, these early 

observations were interpreted as the motion of living creatures. In 1827, the botanist Robert Brown 

systematically demonstrated that any small particles suspended in a fluid have such characteristics, 

even an inorganic grain. Therefore, the explanation for such motion should resort to the realm of 

physics rather than biology. Since then, this phenomenon has been named after the botanist as 

Brownian motion. It was not until 1905 that physicists such as Albert Einstein, William Sutherland, 

and Marian von Smoluchowski [60-62] started to gain a theoretical understanding of Brownian 

motion. While the existence of atoms and molecules was still open to objection, Einstein explained 

the phenomenon through a microscopic picture, i.e., the kinetic theory of molecules. If heat is a 

result of vibrational motion of molecules, a Brownian particle in a fluid should undergo an 

enormous number of random bombardments by the surrounding fluid molecules and its diffusive 

motion should be observable [60]. The experimental validation of Einstein’s theory by Jean Baptiste 

Perrin unambiguously verified the atomic nature of matter, which was awarded the Nobel Prize in 

Physics in 1926 [63, 64]. Since the seminal works in the 1900s, this subject has fostered many 

fundamental developments on equilibrium and nonequilibrium statistical physics and enriched the 

applications of fluid mechanics such as the rheology of suspensions [63]. 

2.1.1 Pure diffusion model and Langevin equation 

Einstein’s seminal work in 1905 [60] has two innovative aspects: the first part is to connect two 

transport processes: the mass diffusion of the particle and the momentum diffusion of the fluid 

[63]. Hence, the diffusion coefficient 𝐷 can be expressed in terms of the fluid properties [63]: 

 𝐷 =
𝑅𝑇

𝑁𝐴

1

6𝜋𝜇𝑟𝑎
 (2.1.1) 

where 𝑅 is the ideal gas constant, 𝑇 is the temperature, 𝑁𝐴 is Avogadro's number, 𝑟𝑎 is the radius 

of the Brownian particle and 𝜇 is the viscosity of the fluid. The second part formulates the diffusion 
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equation to relate the mass diffusion to the mean square displacement (MSD) [63], which is a 

measurable quantity. After a long and hard reasoning [60], Einstein calculates the mean square 

displacement (MSD) 〈[∆𝑥(𝜏)]2〉 in a certain direction say 𝑥-direction (see Figure 2.1a) of a Brownian 

particle at a given observation time interval 𝜏 as 

 〈[∆𝑥(𝜏)]2〉 = 2𝐷𝜏 (2.1.2) 

which is proportional to the diffusion constant of the suspended substance 𝐷 and the observation 

time 𝜏 [60]. Here the angle bracket 〈⋯ 〉 indicates that a statistical ensemble average. 

 

Figure 2.1 Diffusive versus ballistic Brownian motion. In the case considered by Einstein (a), the particle’s speed and 

direction have changed many times between measurements (the yellow dots), and the observer sees a diffusive random 

walk with uncorrelated steps (the red arrows). Measurements made at shorter time intervals (b) resolve the smooth 

ballistic motion. Arrows indicate the apparent velocities of the particle. Black line shows the particle’s trajectory observed 

with infinitesimal time interval. Images are adapted from [48]. 

The main criticism of the diffusion model, as Einstein himself realized later [65], is that the inertia 

of the particle is neglected. This implies that an infinite force is required to change the velocity of 

the particle to achieve a random walk at each step (Figure 2.1a) [48]. Therefore, its velocity cannot 

be defined and its trajectories are erratic. Since an apparent velocity is deduced by two consecutive 

positions, it really depends on the time-resolution of the observations (Figure 2.1). If the 

observations are separated by a diffusive time scale as in Einstein’s model, the particle appears to 

walk randomly (Figure 2.1a). From the MSD of the diffusion, we may determine an effective mean 

velocity over a time interval as 𝑣 ≡ √〈[∆𝑥(𝜏)]2〉 𝜏⁄ = √2𝐷 𝜏⁄  . As 𝜏 approaches 0, this effective 

velocity diverges and cannot represent the real velocity of the particle. Physically, however, we 

should be able to find a time scale smaller than its momentum relaxation time for the ballistic 

regime where the velocity does not change significantly (Figure 2.1b), that is the root mean square 

displacement √〈[∆𝑥(𝜏)]2〉  is proportional to the observation time interval 𝜏  with well-defined 

velocity 𝑣(0), i.e. √〈[∆𝑥(𝜏)]2〉 ≈ 𝑣(0)𝜏.  

A remedy for the unphysical feature of Einstein’s model at the ballistic time scale was proposed by 

Paul Langevin [66], which takes into account the inertia of the particle. In Langevin’s formulation, 
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the equation of motion for the Brownian particle is formally based on Newton’s second law of 

motion as 

 𝑚𝑥̈(𝑡) + 𝛾𝑠𝑥̇(𝑡) = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) (2.1.3) 

where 𝑚 is the mass of the particle of radius 𝑟𝑎, 𝛾𝑠 = 6𝜋𝜇𝑟𝑎 is the Stokes friction coefficient with 𝜇 

being the fluid viscosity, and 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) is a random force on the particle. In this case, the velocity 

of the particle 𝑣(𝑡) = 𝑥̇(𝑡) is well-defined and it is subject to two different types of forces exerted 

by the surrounding fluid: a friction force and random force. It is further assumed that the random 

force is an independent Gaussian white noise process. Hence, it satisfies following constraints 

 〈𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)〉 = 0, 〈𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡′)〉 = Γ𝛿(𝑡 − 𝑡′) (2.1.4) 

 〈𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)𝑥(𝑡′)〉 = 0, 〈𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)𝑣(𝑡′)〉 = 0 (2.1.5) 

Here, Γ = 2𝛾𝑠𝑘𝐵𝑇 represents a fundamental relation named as the fluctuation-dissipation theorem 

(FDT) [67] with 𝑘𝐵 the Boltzmann constant. Roughly speaking, the magnitude of the fluctuation Γ 

must be balanced by the strength of the dissipation 𝛾𝑠  so that temperature is well defined in 

Langevin’s model. Therefore, the pair of friction and random forces acts as a thermostat for a 

Langevin system. It should not come as a surprise that the frictional force and the random force 

have such a relation, since they both come from the same origin of interactions between the 

particle and the surrounding fluid molecules. 

Then, following [63], we obtain an expression for the MSD over the entire time interval range as: 

 〈[∆𝑥(𝜏)]2〉 =
2𝑘𝐵𝑇

𝛾𝑠
(𝜏 −

𝑚

𝛾𝑠
+

𝑚

𝛾𝑠
𝑒−𝜏 (𝑚 𝛾𝑠⁄ )⁄ ) (2.1.6) 

On the one hand, for observation time interval much larger than the particle’s momentum 

relaxation time 𝜏𝑏 = 𝑚 𝛾𝑠⁄ , i.e.,  𝜏 ≫ 𝜏𝑏  (or the massless case 𝜏𝑏 = 0 ), the exponential term 

becomes negligible, and we retrieve Einstein’s result 

 
𝑑

𝑑𝜏
〈[∆𝑥(𝜏)]2〉 =

2𝑘𝐵𝑇

𝛾𝑠
= 2𝐷 (2.1.7) 

On the other hand, for 𝜏 ≪ 𝜏𝑏 or 𝜏 → 0, by using the Taylor series 𝑒−𝜏 = 1 − 𝜏 + 𝜏2 2!⁄ + 𝑂(𝜏3) 

we obtain 

 〈[∆𝑥(𝜏)]2〉 =
𝑘𝐵𝑇

𝑚
𝜏2 (2.1.8) 

which is identical to the ballistic regime derived from the equipartition theorem, i.e.,  〈𝑣2(0)〉 =

𝑘𝐵𝑇 𝑚⁄ .  Hence, one can clearly see that Langevin’s model can explain the ballistic regime as well 

as Einstein’s long-time diffusion result of the MSD. 



Chapter 2 

17 

2.1.2 Hydrodynamic model: generalized Langevin equation 

For completeness, the hydrodynamic model for a Brownian particle is also briefly summarised here 

although it is not studied experimentally in this thesis. Although the velocity autocorrelation 

function (VACF) of a Brownian particle was never explicitly measured in the first half of the 

twentieth century due to experimental challenges, it was widely believed to decay exponentially 

[63]. When a new era of computational science began in the 1950s, using molecular dynamics (MD) 

simulations, some pioneers started to realize that the VACF of molecules does not follow strictly an 

exponential decay, but has a slowly decreasing characteristic [63]. A milestone took place in 1970 

when Alder and Wainwright [68] delivered a definite answer for the long persistence of the VACF 

as an algebraic decay, that is, velocity correlation function 𝐶(𝑡)~𝑡−𝑑 2⁄  for 𝑡 → ∞. Here 𝑑 is the 

dimension of the problem. These observations from computer simulations led to many intriguing 

questions as to what is missing in the Langevin model. The most suspicious assumption of the 

Langevin model (and also of the Einstein model) is probably that the friction coefficient 𝛾𝑠 is taken 

as the solution of the steady Stokes flow, whereas a Brownian particle undergoes erratic 

movements constantly. Therefore, the steady friction may be valid only if the surrounding fluid 

becomes quasi-steady immediately after each movement, or less strictly, before the relaxation time 

of Brownian particle. This deficiency was already pointed out in the early lectures of Hendrik Lorentz 

that Stokes drag coefficient 𝛾𝑠 = 6𝜋𝜇𝑟𝑎 is a good approximation only when the mass density ratio 

𝜌𝑓/𝜌𝐵 of the fluid and the Brownian particle is so small that the fluid inertia is negligible [63]. 

Since the seminal work of Alder and Wainwright, it was very soon widely acknowledged that 

unsteady hydrodynamics plays a significant role in the dynamics of the Brownian particle. Quasi-

steady state in the Langevin model can be examined only if we consider the unsteady solution of 

the hydrodynamics, which has been available for more than a century from the independent works 

of Basset and Boussinesq [63, 69]. For a free moving rigid particle suspended in a continuum fluid 

described by the fluctuating hydrodynamics [70], the non-Markovian generalized Langevin 

equation can be formulated as [71-74]: 

 𝑚𝑥̈(𝑡) + 𝐹𝑓𝑟(𝑡) + 𝐹𝑒𝑥𝑡(𝑡) = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) (2.1.9) 

For a free  spherical particle (i.e. where external force 𝐹𝑒𝑥𝑡(𝑡) = 0) undergoing motion influenced 

by the inertia of the surrounding fluid, its resistant force was known to Boussinesq and Basset [63, 

69]: 

 𝐹𝑓𝑟(𝑡) = −6𝜋𝜇𝑟𝑎𝑣(𝑡) −
𝑚𝑓

2
𝑣̇(𝑡) − 6𝜋𝜇𝑟𝑎√

𝜏𝑓

𝜋
∫

𝑣̇(𝑡′)

√𝑡 − 𝑡′

𝑡

−∞

𝑑𝑡′ (2.1.10) 
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where 𝜏𝑓 = 𝑟𝑎
2𝜌𝑓 𝜇⁄  denotes the so-called vortex diffusion time and 𝑚𝑓 2⁄ = 6𝜋𝜇𝑟𝑎𝜏𝑓 9⁄ =

2𝜋𝑟𝑎
3𝜌𝑓 3⁄  is the ‘added mass’, i.e., the mass of fluid displaced by the Brownian particle. The Basset 

force arises from vorticity that originates at the surface of an accelerating particle and diffuses 

outward, expanding to the size of the particle in time 𝜏𝑓 . The strength of the Basset force is 

proportional to √𝜇𝜌𝑓. As the density of the surrounding medium approaches zero, so does 𝜏𝑓 and 

the vorticity diffuses away immediately. As the viscosity approaches zero, the interaction between 

the particle and the vorticity approaches zero. In the time domain, the sphere-fluid interaction force 

can be written as 

 𝐹𝑓𝑟(𝑡) = ∫ 𝛾(𝑡 − 𝑡′)𝑣(𝑡′)
𝑡

−∞

𝑑𝑡′ (2.1.11) 

where 𝛾(𝑡)  is the memory kernel. In the angular frequency ( 𝜔 ) domain, the Fourier-Laplace 

transform of the memory kernel, 𝛾[𝜔], better illustrates the nature of the Basset force. Compared 

to the original Langevin equation (2.1.3), Eqn. (2.1.11) is non-Markovian as the friction force is 

history-dependent. The memory kernel 𝛾(𝑡)  is the inverse Laplace transform of Eqn. (2.1.10). The 

explicit form of 𝛾[𝜔] is 

 

𝛾[𝜔] = 𝛾𝑠(1 + √−𝑖𝜔𝜏𝑓) −
𝑖𝜔𝑚𝑓

2
 

= 𝛾𝑠 (1 + √
𝜔𝜏𝑓

2
) −

𝑖𝜔𝑚𝑓

2
(1 + 9√

1

𝜔𝜏𝑓
) 

(2.1.12) 

In the second line here, it has been separated into its real and imaginary parts. The real part 

contributes to motion in-phase with the external force, corresponding to non-conservative 

(dissipative) interactions, while the imaginary part contributes to motion out of phase with the 

force and corresponds to conservative (inertial) interactions.  

In addition, the random force 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) is non-white or coloured, as described by fluctuation-

dissipation theorem 

 〈𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡 + 𝜏)〉 = 2𝛾𝑠𝑘𝐵𝑇 (𝛿(𝜏) −
1

4
√

𝜏𝑓

𝜋
𝜏−3 2⁄ ) (2.1.13) 

Widom was able to solve this problem analytically and showed the existence of the long-time tail 

in the velocity autocorrelation function of the Brownian particle [75, 76]: 

 𝐶(𝑡) =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓(𝜍 − 𝜚)
[𝜍𝑒𝜍2𝑡𝑒𝑟𝑓𝑐(𝜍√𝑡) − 𝜚𝑒𝜚2𝑡𝑒𝑟𝑓𝑐(𝜚√𝑡)] (2.1.14) 
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where 𝑒𝑟𝑓𝑐() is the complementary error function, and 

 𝜚 = [𝜁 + √𝜁2 − 4𝛾𝑠𝑚𝑒𝑓𝑓] 2𝑚𝑒𝑓𝑓⁄ , 𝜍 = [𝜁 − √𝜁2 − 4𝛾𝑠𝑚𝑒𝑓𝑓] 2𝑚𝑒𝑓𝑓⁄  (2.1.15) 

In this equation, the shorthand notation 𝜁 = 6𝜋𝑟𝑎
2

√𝜌𝑓𝜇 has been introduced, with 𝑟𝑎  being the 

radius of the Brownian particle, 𝜌𝑓  the fluid density, and 𝜇  the shear viscosity of the fluid. 

Furthermore, the effective mass is 𝑚𝑒𝑓𝑓 = 𝑚 +
1

2
𝑚𝑓 , with 𝑚  being the mass of the Brownian 

particle and 𝑚𝑓 = 4𝜋𝑟𝑎
3𝜌𝑓 3⁄  the mass of the fluid displaced by the Brownian particle. In the limit 

𝑡 → 0, one obtains 

 lim
𝑡→0

𝐶(𝑡) =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓
 (2.1.16) 

This result is in contradiction with the equipartition theorem because the effective mass 𝑚𝑒𝑓𝑓 

instead of particle mass 𝑚 is used. This paradox was solved by Zwanzig and Bixon [77]. They showed 

that there is a rapid initial decrease from 𝑘𝐵𝑇 𝑚⁄  to 𝑘𝐵𝑇 𝑚𝑒𝑓𝑓⁄  at very short time scales by 

including compressibility effects in the study of the velocity autocorrelation function. It is easy to 

determine the long-time behaviour of the velocity autocorrelation function, using the asymptotic 

expansion of the product of the exponential function and complementary error function. One then 

obtains for 𝐶(𝑡) 

 𝐶(𝑡) = 𝑘𝐵𝑇
𝜁

2𝛾𝑠
2√𝜋

𝑡−3 2⁄ + 𝑂(𝑡−3 2⁄ ) (2.1.17) 

which shows the famous long-time tail. 

In an analogous way one can obtain an expression for the mean-square displacement [76]:  

 

〈[∆𝑥(𝜏)]2〉 = 2𝐷 (𝜏 −
2𝜁

𝛾𝑠√𝜋
√𝜏 +

(𝜁2 − 𝛾𝑠𝑚𝑒𝑓𝑓)

𝛾𝑠
2

+
𝛾𝑠

𝑚𝑒𝑓𝑓(𝜍 − 𝜚)
[𝜍−3𝑒𝜍2𝜏𝑒𝑟𝑓𝑐(𝑏√𝜏) − 𝜚−3𝑒𝜚2𝜏𝑒𝑟𝑓𝑐(𝜚√𝜏)]) 

(2.1.18) 

This expression had already been presented by Paul and Pusey [78], and Weitz et al. presented 

measurements which support this expression [79]. In the limit of large 𝜏  we obtain the familiar 

result 

 〈[∆𝑥(𝜏)]2〉 = 2𝐷𝜏 (2.1.19) 
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2.2 Thermal fluctuation in a nanomechanical structure 

Classical Brownian motion experiments reveal how a microscopic particle is driven in chaotic 

motion externally by collisions with molecules of ambient gas or liquid. According to the fluctuation-

dissipation theorem [80], in a nanomechanical structure, Brownian motion can be driven in several 

ways [30, 81] including the collisions of phonons with the walls of the nanostructure [82] and 

collisions with the ambient molecules. It also may come from the emission and absorption of 

thermal photons. Vibrations transfer from the clamped end may contribute to it as well [30]. These 

both introduce random impulses that induce Brownian motion and dampen the oscillations to 

reach equilibrium [80]. 

The majority of nanomechanical photonic metamaterials are constructed from cantilevers or 

doubly clamped beam-like components of microscopic length and nanoscopic cross section. The 

thermal motion of such structures under vacuum as the case studied in this thesis is driven 

internally by momentum transfer resulting from the interference, annihilation and creation of 

incoherent flexural phonons in the main mechanical modes. (The emission and absorption of 

thermal photons are not important due to the low momentum of such photons and the bad optical 

cavity.) 

Thermomechanical vibration of a nanomechanical structure, such as a cantilever or bridge beam, 

can be modelled as a trapped particle’s Brownian motion where external restoring force is 

considered, i.e. the Langevin equation with restoring force for this system [83]. Here, for a 

nanomechanical beam, assuming that the mechanical mode spectrum is sufficiently sparse such 

that there is no spectral overlap with other mechanical modes and ignoring the hydrodynamic 

interaction where mass density ratio 𝜌𝑠/𝜌 of the surrounding medium and the mechanical beam is 

so small that the surrounding media’s inertia is negligible [63, 71-74], the motion of a 

nanomechanical beam 𝑥(𝑡)  at a particular mechanical mode in a certain direction say 𝑥 (Figure 2.2) 

can be modelled as a 1-dimensional damped harmonic oscillator driven by the random thermal 

force as described by the Langevin equation [30, 58, 83-85]: 

 𝑥̈(𝑡) + 𝛾𝑚𝑥̇(𝑡) + 𝜔𝑚
2 𝑥(𝑡)  = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)/𝑚𝑒𝑓𝑓 (2.2.1) 

 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) = √2𝑘𝐵𝑇𝛾𝑚𝑚𝑒𝑓𝑓𝜂(𝑡) (2.2.2) 

Here,  𝜔𝑚,  𝑚𝑒𝑓𝑓 and 𝛾𝑚 and are its undamped angular frequency (as will be discussed in section 

2.3.1), effective mass (see section 2.3.2) and dissipation factor (𝛾𝑚 = 𝛾𝑠 𝑚𝑒𝑓𝑓⁄  compared with Eqn. 

(2.1.3); its origins are summarised in section 2.3.3) for a nanomechanical structure. 𝑘𝐵  is the 

Boltzmann constant and 𝑇 is the environment temperature. The random thermal force 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 



Chapter 2 

21 

is a white noise which is related to friction and temperature through fluctuation dissipation 

theorem [80]. Equation (2.2.2) gives the amplitude of this thermal noise explicitly in terms of 𝛾𝑚, 

the Boltzmann energy 𝑘𝐵𝑇 , and 𝜂(𝑡) , which is a normalized white-noise, hence 〈𝜂(𝑡)〉 = 0 ; 

〈𝜂(𝑡)𝜂(𝑡′)〉 = 𝛿(𝑡 − 𝑡′) for all t, t’. Here the angle bracket 〈… 〉 indicates ensemble average. 

If one measures the motion of a single harmonic oscillator in thermal equilibrium, one will observe 

a displacement 𝑥(𝑡)  (Figure 2.2) oscillating at the damped angular frequency 𝜔1 =

√𝜔𝑚
2 − (𝛾𝑚 2⁄ )2. Due to the influence of both mechanical damping and the fluctuating thermal 

Langevin force, these oscillations will have a randomly time-varying amplitude and phase [30]. Both 

amplitude and phase change on the time scale given by the momentum relaxation time or damping 

time 𝜏𝑏 = 𝛾𝑚
−1. A figure of merit to quantify this damping is the dimensionless quality factor 𝑄 

which is defined as 

 𝑄 = 2𝜋 (
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
) (2.2.3) 

In the limit of small damping rate, 𝛾𝑚 ≪ 𝜔𝑚 , the quality factor can be approximated by 𝑄 =

𝜔𝑚/𝛾𝑚. Essentially, the quality factor gives the number of cycles that are needed for the system to 

lose its energy to the environment. 

 

Figure 2.2 Thermomechanical movement of a damped nanomechanical oscillator. Brownian motion (thermal 

fluctuations) of a nanomechanical resonator in the time domain, with amplitude fluctuating on a time scale set by the 

damping time 1 𝛾𝑚⁄ . The variance of position is proportional to the environment temperature. 

2.2.1 Thermomechanical displacement power spectral density 

Thermomechanical displacement power spectral density (PSD), a spectral representation of 

thermal motion in the frequency domain, is equal to the Fourier transform of the displacement 

autocorrelation function [85] and is widely used in experimental measurements as shown in 

sections 3.4, 4.1, 6.3 and 6.4. It can be directly derived from the Langevin equation. 

Usually, it is convenient to study a thermomechanical oscillator in the frequency domain. By 

transforming the Langevin equation Eqn. (2.2.1) to the frequency domain, one can obtain: 

 −𝜔2𝑥(𝜔) − 𝑖𝜔𝛾𝑚𝑥(𝜔) + 𝜔𝑚
2 𝑥(𝜔) = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝜔) 𝑚𝑒𝑓𝑓⁄  (2.2.4) 
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Therefore, 

 𝑥(𝜔) = 𝜒(𝜔)𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝜔) =
𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝜔)

𝑚𝑒𝑓𝑓

1

𝜔𝑚
2 − 𝜔2 − 𝑖𝛾𝑚𝜔

 (2.2.5) 

where 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝜔) = √2𝑘𝐵𝑇𝛾𝑚𝑚𝑒𝑓𝑓 . This expression describes the linear response of the 

mechanical oscillator in the frequency space, where a force 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝜔) leads to a mechanical 

response 𝑥(𝜔), which is defined by the mechanical susceptibility 𝜒(𝜔) [85] that is given by  

 𝜒(𝜔) =
1

𝑚𝑒𝑓𝑓[𝜔𝑚
2 − 𝜔2 − 𝑖𝛾𝑚𝜔]

 (2.2.6) 

The double-sided displacement power spectral density (PSD) is defined as [86]: 𝑆𝑥𝑥(𝜔) = |𝑥(𝜔)|2, 

so 

 𝑆𝑥𝑥(𝜔) =
2𝑘𝐵𝑇𝛾𝑚

𝑚𝑒𝑓𝑓

1

(𝜔𝑚
2 −𝜔2)2 + 𝛾𝑚

2 𝜔2
 (2.2.7) 

which describes how the power of the quantity 𝑥(𝑡) is distributed in the frequency space. And the 

double-sided velocity spectral density is 𝑆𝑣𝑣(𝜔) = 𝜔2𝑆𝑥𝑥(𝜔) 

 𝑆𝑣𝑣(𝜔) =
2𝑘𝐵𝑇𝛾𝑚

𝑚𝑒𝑓𝑓

𝜔2

(𝜔𝑚
2 −𝜔2)2 + 𝛾𝑚

2 𝜔2
 (2.2.8) 

Therefore, the single-sided (containing only positive frequency components) thermomechanical 

displacement power spectral density (PSD) of a nanomechanical resonator (i.e., 𝑆𝑥 = 2𝑆𝑥𝑥 ), in 

terms of its effective mass 𝑚𝑒𝑓𝑓, quality factor 𝑄 = 𝜔𝑚 𝛾𝑚⁄  and resonant frequency 𝑓𝑚 = 𝜔𝑚 2𝜋⁄ , 

is 

 𝑆𝑥(𝜔) =
4𝑘𝐵𝑇𝛾𝑚

𝑚𝑒𝑓𝑓

1

(𝜔𝑚
2 −𝜔2)2 + 𝛾𝑚

2 𝜔2
 (2.2.9) 

with a typical resonance curve shown in Figure 2.3a. Or in the frequency domain 

 𝑆(𝑓) =
𝑘𝐵𝑇𝑓𝑚

2𝜋3𝑚𝑒𝑓𝑓𝑄[(𝑓𝑚
2 − 𝑓2)2 + (𝑓𝑓𝑚 𝑄⁄ )2]

 (2.2.10) 

with units of m2/Hz, which is widely used and can be measured experimentally as shown in sections 

3.4, 4.1, 6.3 and 6.4. 

Moreover, it can be shown in later section 2.2.2 that the mean square of the quantity 𝑥(𝑡) is the 

area under the power spectral density [85] 
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 〈𝑥2〉 =
1

2𝜋
∫ 𝑆𝑥𝑥(𝜔)

+∞

−∞

𝑑𝜔 = ∫ 𝑆𝑥𝑥(𝑓)
+∞

−∞

𝑑𝑓 (2.2.11) 

 

Figure 2.3 Mechanical movement of a damped oscillator. (a) Single-sided thermomechanical displacement power 

spectral density in thermal equilibrium. (b) Mechanical motion amplitude and phase response under external stimuli. 

In thermal equilibrium, the mean mode energy of the harmonic mechanical oscillator, 〈𝐸〉, is given 

by the sum of kinetic and potential energies 

 〈𝐸〉 =
1

2
𝑚𝑒𝑓𝑓〈𝑣2〉 +

1

2
𝑘〈𝑥2〉 (2.2.12) 

where 〈𝑥2〉  is the mean square thermal displacement and 〈𝑣2〉  is the mean square velocity in 

thermal equilibrium. From the equipartition theorem we get individual equipartition of the kinetic 

and the potential energies: 

 
1

2
𝑚𝑒𝑓𝑓〈𝑣2〉 =

1

2
𝑘〈𝑥2〉 =

1

2
𝑘𝐵𝑇 (2.2.13) 

Using the last equation and spring constant 𝑘 = 𝑚𝑒𝑓𝑓𝜔𝑚
2  we get the mean square thermal 

displacement 

 〈𝑥2〉 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2  (2.2.14) 

This provides an evaluation of the variance of thermal motion for a nanomechanical structure as 

used in sections 3.4.1, 4.1, 5.4.2 and 6.3. And the root-mean-square thermal motion amplitude and 

velocity are respectively 

 √〈𝑥2〉 = √
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 ,      √〈𝑣2〉 = √

𝑘𝐵𝑇

𝑚𝑒𝑓𝑓
 (2.2.15) 

Furthermore, from equation (2.2.11) we obtain that the area under the single-sided mechanical 

thermal noise spectrum of a mechanical harmonic oscillator equals the variance of its displacement  
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 〈𝑥2〉 =
1

2𝜋
∫ 𝑆𝑥(𝜔)

+∞

0

𝑑𝜔 = ∫ 𝑆𝑥(𝑓)
+∞

0

𝑑𝑓 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2  (2.2.16) 

as illustrated in Figure 2.3a. 

For a mechanical damped harmonic oscillator driven by a coherent force 𝐹(𝑡) = 𝐹0 cos(𝜔𝑑𝑡), in 

the angular frequency domain, the amplitude response 𝑥(𝜔𝑑) is given by 

 
𝑥(𝜔𝑑) =

𝐹0/𝑚𝑒𝑓𝑓

√(𝜔𝑚
2 − 𝜔𝑑

2)2 + 𝛾𝑚
2 𝜔𝑑

2

 
(2.2.17) 

and the phase 𝜙(𝜔𝑑) by 

 𝜙(𝜔𝑑) = tan−1 (
𝛾𝑚𝜔𝑑

𝜔𝑚
2 − 𝜔𝑑

2) (2.2.18) 

By applying an inverse Fourier transform, we can also obtain the displacement in the time domain 

 𝑥(𝑡) =
𝜔𝑚

𝛾𝑚

𝐹0

𝑚𝑒𝑓𝑓𝜔𝑚
2 sin 𝜔𝑑𝑡 = 𝑄

𝐹0

𝑚𝑒𝑓𝑓𝜔𝑚
2 sin 𝜔𝑑𝑡 = 𝑄

𝐹0

𝑘
sin 𝜔𝑑𝑡 (2.2.19) 

𝑘 = 𝑚𝑒𝑓𝑓𝜔𝑚
2  being the spring constant. On resonance (𝜔𝑑 = 𝜔𝑚), the motion is 𝜋 2⁄  out of phase 

with the driving force (see Figure 2.3b), and the motional amplitude reaches a maximum, which is 

proportional to the quality factor 𝑄. 

2.2.2 Ballistic thermal motion statistics 

In Chapter 4, I present experimental observations of short-timescale ballistic motion of a nano-

membrane cantilever. This regime can be understood starting from the Langevin equation for the 

thermal motion of a damped harmonic oscillator in one dimension, which is given by Eqn. (2.2.1). 

In the following, the ballistic motion characteristics in terms of mean square displacement (MSD) 

at short-timescale are mathematically revealed for underdamped, critically damped and 

overdamped Brownian oscillators. 

The Wiener-Khinchin theorem [30, 85] states that the power spectral density of a wide-sense 

stationary random process 𝑆𝑥𝑥(𝜔), i.e., a stochastic process with a constant mean (here 𝑥(𝑡)), is 

equal to the Fourier transform of its autocorrelation function 𝐶𝑥(𝜏) = 〈𝑥(𝑡)𝑥∗(𝑡 + 𝜏)〉, and vice 

versa: 

 𝑆𝑥𝑥(𝜔) = ∫ 𝑑𝜏𝑒−𝑖𝜔𝜏〈𝑥(𝑡)𝑥∗(𝑡 + 𝜏)〉
+∞

−∞

 (2.2.20) 
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where ∗ means the complex conjugate and can be ignored because quantity 𝑥(𝑡) here is real-

valued function. Therefore, position autocorrelation 〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉  here is the inverse Fourier 

transform of displacement power spectral density 

 

〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 =
1

2𝜋
∫ 𝑆𝑥𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔

+∞

−∞

=
1

2𝜋
∫

2𝑘𝐵𝑇𝛾𝑚

𝑚𝑒𝑓𝑓

1

(𝜔𝑚
2 −𝜔2)2 + 𝛾𝑚

2 𝜔2
𝑑𝜔

+∞

−∞

 

(2.2.21) 

The above integration kernel has four singularities, when (𝜔𝑚
2 −𝜔2)2 + 𝛾𝑚

2 𝜔2 = 0, with 

 𝜔 = ±
𝑖𝛾𝑚

2
± √𝜔𝑚

2 − (𝛾𝑚 2⁄ )2 (2.2.22) 

The damped angular frequency defined as 

 𝜔1 = √𝜔𝑚
2 − (𝛾𝑚 2⁄ )2 (2.2.23) 

Depending upon the value of 𝜔1, one can identify three different regimes:  𝜔1 > 0 corresponds to 

an underdamped oscillator; 𝜔1 = 0: critically damped oscillator; 𝜔1complex value: overdamped 

oscillator. The integral in equation (2.2.21) can be calculated as a contour integral in the complex 

plane of 𝜔 by taking the residues at the poles located at values of equation (2.2.22) while only 

considering the upper half semi-circle because of the observation time interval 𝜏 > 0.  

For under/over damped cases, we can get the position autocorrelation function: 

 〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 𝑒

−
𝜏

2𝜏𝑏 (𝑐𝑜𝑠𝜔1𝜏 +
𝑠𝑖𝑛𝜔1𝜏

2𝜔1𝜏𝑏
) (2.2.24) 

with momentum relaxation time 𝜏𝑏 = 1 𝛾𝑚⁄ . Note that at 𝜏 = 0 , 〈𝑥2(𝑡)〉 = 𝑘𝐵𝑇 (𝑚𝑒𝑓𝑓𝜔𝑚
2 )⁄  – 

corresponding simply to equipartition theorem 1 2⁄ 𝑚𝑒𝑓𝑓𝜔𝑚
2 〈𝑥2(𝑡)〉 = 1 2𝑘𝐵𝑇⁄ .  

The mean squared displacement (MSD) 〈[∆𝑥(𝜏)]2〉  of a Brownian underdamped harmonic 

oscillator – a measure of average distance travelled at a given time interval 𝜏 (the orange line in 

Figure 4.3a), can thus be obtained through 〈[∆𝑥(𝜏)]2〉 = 〈|𝑥(𝑡) − 𝑥(𝑡 + 𝜏)|2〉 = 2〈𝑥2(𝑡)〉 −

2〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 as: 

 𝑀𝑆𝐷(𝜏) = 〈|𝑥(𝑡) − 𝑥(𝑡 + 𝜏)|2〉 =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 [1 − 𝑒

−
𝜏

2𝜏𝑏 (𝑐𝑜𝑠𝜔1𝜏 +
𝑠𝑖𝑛𝜔1𝜏

2𝜔1𝜏𝑏
)] (2.2.25) 

For the critically damped case, the position correlation function reads 
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 〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 𝑒

−
𝜏

2𝜏𝑏(1 + 𝜏/𝜏𝑏) (2.2.26) 

And mean square displacement is 

 𝑀𝑆𝐷(𝜏) = 〈|𝑥(𝑡) − 𝑥(𝑡 + 𝜏)|2〉 =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 [1 − (1 +

𝜏

2𝜏𝑏
) 𝑒

−
𝜏

2𝜏𝑏] (2.2.27) 

For short time scales 𝜏 ≪ 𝜏𝑏  or 𝜏 → 0, by using the Taylor series 𝑒−𝑡 = 1 − 𝑡 + 𝑡2 2!⁄ + 𝑂(𝑡3), 

sin(𝑡) = 𝑡 + 𝑂(𝑡3)  and cos(𝑡) = 1 − 𝑡2 2!⁄ + 𝑂(𝑡4) , one obtains respectively from equations 

(2.2.25) and (2.2.27), 

 𝑀𝑆𝐷(𝜏) =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 [1 − (1 −

𝜏

2𝜏𝑏
+

𝜏2

8𝜏𝑏
2 + 𝑂(𝜏3)) (1 +

𝜏

2𝜏𝑏
−

𝜔1
2𝜏2

2
+ 𝑂(𝜏3))] (2.2.28) 

 𝑀𝑆𝐷(𝜏) =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 [1 − (1 +

𝜏

2𝜏𝑏
) (1 −

𝜏

2𝜏𝑏
+

𝜏2

8𝜏𝑏
2 + 𝑂(𝜏3))] (2.2.29) 

Using equation (2.2.23) and 𝜏𝑏 = 1 𝛾𝑚⁄  (i.e., 𝜔1 = √𝜔𝑚
2 − 1 (2𝜏𝑏)2⁄ ) to simplify these expressions, 

one obtains the ballistic behavior, respectively, of an under/over damped oscillator with 𝜔1 =

√𝜔𝑚
2 − 1 (2𝜏𝑏)2⁄  (the purple line in in Figure 4.3a):  

 𝑀𝑆𝐷𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐(𝜏) =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 (

1

8𝜏𝑏
2 + 𝜔1

2) 𝜏2 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓
𝜏2 (2.2.30) 

and for a critically damped oscillator 𝜔1 = 0, i.e., 𝜔𝑚
2 = 1 (2𝜏𝑏)2⁄  

 𝑀𝑆𝐷𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐(𝜏) =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2

𝜏2

8𝜏𝑏
2  =

𝑘𝐵𝑇

𝑚𝑒𝑓𝑓
𝜏2 (2.2.31) 

which is proportional to the square of observation time interval with velocity identical to the one 

derived from the equipartition theorem, i.e.,  〈𝑣2(0)〉 = 𝑘𝐵𝑇 𝑚⁄ . The velocity autocorrelation 

function (VACF) can be obtained by similar means considering Eqn. (2.2.9): 

 〈𝑣(𝑡)𝑣(𝑡 + 𝜏)〉 =
1

2𝜋
∫ 𝑆𝑣𝑣(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔

+∞

−∞

 (2.2.32) 

Using contour integration, the VACF for an underdamped Brownian oscillator is then given by: 

 〈𝑣(𝑡)𝑣(𝑡 + 𝜏)〉 =
𝑘𝐵𝑇

𝑚𝑒𝑓𝑓
𝑒

−
𝜏

2𝜏𝑏 (𝑐𝑜𝑠𝜔1𝜏 −
𝑠𝑖𝑛𝜔1𝜏

2𝜔1𝜏𝑏
) (2.2.33) 
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The normalized velocity autocorrelation function (NVACF), quantifying similarity between the 

velocity 𝑣 after time 𝜏 and the initial velocity (the orange line in Figure 4.3b), is 

 𝑁𝑉𝐴𝐶𝐹 = 𝜓(𝜏) = 𝑒
−

𝜏
2𝜏𝑏 (cos 𝜔1𝜏 −

sin 𝜔1𝜏

2𝜔1𝜏𝑏
) (2.2.34) 

showing an exponential decay in the envelope with increasing time. 

2.2.3 Numerical calculation of Langevin equation 

To better illustrate the thermomechanical movement and its ballistic thermal motion 

characteristics, numerical calculation was performed to study Brownian dynamics of a damped 

harmonic oscillator by solving Eqn. (2.2.1) using the method described in [83, 84], where equation 

(2.2.1) can be rewritten as two coupled first-order differential equations in terms of position 𝑥(𝑡) 

and velocity 𝑥̇(𝑡) with given initial values of 0. Random noise 𝜂(𝑡) ~ 𝑁(0, 1) in equation (2.2.2) is 

implemented as a series of random numbers generated from the standard normal distribution (with 

mean 0 and standard deviation 1). Parameters for a Brownian oscillator of effective mass (𝑚𝑒𝑓𝑓 = 

47 pg) and oscillating angular frequency (𝜔𝑚 = 2𝜋𝑓0  = 2π×5.7 kHz) used in the simulation are 

obtained from our experimental sample as will be presented in Chapter 4. The displacements of the 

oscillator at room temperature (𝑇  = 300 K) for three different regimes according to equation 

(2.2.23): underdamped (𝛾𝑚 = 0.2𝜔𝑚), critically damped (𝛾𝑚 = 2𝜔𝑚) and overdamped (𝛾𝑚 = 4𝜔𝑚) 

regimes are simulated as shown in Figure 2.4. 

Figure 2.4a shows the simulated real time positions in the underdamped (red), critically damped 

(green), and overdamped (blue) regimes. Note that all three regimes have the same mean (zero) 

and variance (𝑘𝐵𝑇 (𝑚𝑒𝑓𝑓𝜔𝑚
2 )⁄ ). Only at short times as shown in the inset, does the difference 

between the three regimens reveal itself: the position coordinate of the underdamped system 

oscillates, while the position coordinate of the overdamped system does not show discernible 

persistence of motion. The position coordinate of the critically damped system looks at times like 

it oscillates, but actually only displays positively correlated random motion. 

As can be seen from Figure 2.4b, the numerically calculated displacement power spectral density 

agrees very well with the analytical description given by Eqn. (2.2.10). The resonance peak in the 

frequency spectrum is disappearing with the increasing mechanical damping. The high frequency 

tails contain the ballistic movement information which all display a 𝑓−4 decrease as indicated by 

the purple dashed lines, while the overdamped case also displays a 𝑓−2 decrease as indicated by 

the blue dashed line, which is attributed to the diffusive motion. 



Chapter 2 

28 

 

Figure 2.4 Numerical calculation of Langevin model for a thermomechanical oscillator. (a) Positions of a damped 

nanomechanical oscillator (a cantilever in its fundamental mode) in a thermal bath. Three different regimes are studied 

by varying the dissipation factor 𝛾𝑚 above and below the critical value 2𝜔𝑚: Underdamped [red, 𝛾𝑚 = 0.2𝜔𝑚, critically 

damped [green, 𝛾𝑚 = 2𝜔𝑚 ], and overdamped [blue, 𝛾𝑚 = 4𝜔𝑚 ]. The inset shows a magnified portion of the trace, 

revealing the oscillating, critical, and random nature of the motion, respectively. On the right, histograms show the 

distribution of the position data with 𝑘𝐵𝑇 (𝑚𝑒𝑓𝑓𝜔𝑚
2 )⁄  - variance Gaussians overlaid. (b) Displacement power spectral 

density (PSD) for three regimes. The black line is derived from the Langevin model for thermal motion of a harmonic 

oscillator given by equation (2.2.10) in frequency domain. Dashed blue and purple lines illustrate 𝑓−2 and 𝑓−4 behaviors, 

respectively, here 𝑓  represents frequency. (c) Mean square displacement (MSD) of the position for three different 

regimes with fitting line according to equations (2.2.25) for under/overdamped oscillators and equation (2.2.27) for a 

critically damped oscillator. 

However, when a time series of positions is examined, the first measure applied is frequently the 

mean square displacement (MSD) at a given time interval as shown in Figure 2.4c. We can see in all 

three regimes the mean square displacement has the time square dependence at short time 

interval indicating the ballistic motion with characteristic 𝑀𝑆𝐷(𝜏) = (𝑘𝐵𝑇 𝑚𝑒𝑓𝑓⁄ )𝜏2 as eye-guided 

by the purple dashed line. And only in the overdamped regime we can see the transition from 

ballistic regime to diffusive regime (𝑀𝑆𝐷(𝜏) ∝ 𝜏). Finally, MSDs in three regimes all plateau at the 

same level 2 𝑘𝐵𝑇 (𝑚𝑒𝑓𝑓𝜔𝑚
2 )⁄  for time lags larger than 1 ms. 

2.3 Mechanical properties of a nanomechanical structure 

The parameters of mechanical eigenfrequency and effective mass used in the Langevin model for a 

nanomechanical structure are detailed in the following sections considering its geometry and 

constituting materials. Mechanical resonances of a nanomechanical beam under stress is also 

examined, this explains the variation of mechanical resonant frequencies observed in an array of 
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geometrically identical nanomechanical oscillators (sections 3.4.3 and 6.3). The origin of mechanical 

damping of a nanomechanical structure is also briefly reviewed in section 2.3.3. 

2.3.1 Mechanical eigenfrequency in a nanomechanical structure 

Mechanical motion in nanostructures results from their intrinsic elasticity and extrinsic clamping 

conditions, which lead to a restoring force towards a given equilibrium position. The motion is 

characterized by a set of orthogonal eigenmodes each having a distinct resonance frequency and 

displacement shape, which are obtained by solving the characteristic elastic equations [59, 85]. A 

large number of nano/micro-mechanical resonators possess beam-like geometries and can be 

effectively modelled as macroscopic beam-like structures. The Euler-Bernoulli beam model is used 

to model the bending behaviour of slender beams (ratio of length to thickness of more than ten, 

𝐿/ℎ > 10) under the assumption that the beam has no shear deformation and rotational inertia [59, 

85]. For simple geometries, such as a stress-free singly clamped (cantilever) or doubly clamped 

beam (bridge), analytical solutions can be found in [59, 85] and the 𝑛th mode frequency of the 

beam is given by 

 𝑓𝑛 =
𝜆𝑛

2

2𝜋𝐿2
√

𝑌𝑀

𝜌𝐴𝑐
 (2.2.35) 

where 𝜆𝑛  is a mode dependent dimensionless parameter; 𝐿 , 𝑌,  𝑀 , 𝜌 , and 𝐴𝑐  are the length, 

Young’s modulus, second moment of inertia, mass density, and cross-sectional area of the 

mechanical beam. Values 𝜆𝑛 for flexural modes of a singly clamped cantilever and doubly clamped 

bridge beam are shown in Table 2.1. 

Table 2.1 Value of mode dependent parameter 𝜆𝑛 for cantilever and bridge 

Mode number (𝒏) 
𝜆𝑛 

Singly clamped beam (Cantilever) Doubly clamped beam (Bridge) 

1 1.8751 4.7300 

2 4.6941 7.8532 

3 7.8548 10.9955 

𝑛>3 (𝑛 − 1)𝜋 + 𝜋/2 𝑛𝜋 + 𝜋/2 

For a one-material beam with rectangular cross-section (width 𝑤 and thickness ℎ), in which the 

second moment of inertia is 𝑀 = ∬ 𝑧2𝑑𝐴𝑐 = 𝑤ℎ3 12⁄ , the 𝑛th out-of-plane flexural mode along 

the thickness direction has natural frequency 
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 𝑓𝑛 =
𝜆𝑛

2 ℎ

2𝜋√12𝐿2
√

𝑌

𝜌
 (2.2.36) 

where ℎ, 𝐿 is the structure’s thickness and length, while the natural frequency of in-plane mode is 

 𝑓𝑛 =
𝜆𝑛

2 𝑤

2𝜋√12𝐿2
√

𝑌

𝜌
 (2.2.37) 

with beam’s width 𝑤. 

A comparison between the analytical formulas and simulations can be performed for the simple 

case of a uniform beam such as a singly clamped cantilever and doubly clamped bridge beam. 

Considering a stress-free silicon nitride (Si3N4) beam with length 𝐿 = 20 μm, thickness ℎ = 100 nm, 

width 𝑤  = 200 nm, Young’s modulus 𝑌  = 260 GPa, density 𝜌 = 3100 kg/m3 and using Equation 

(2.2.36) we can calculate its mechanical eigenfrequencies analytically for the first three flexural 

modes along the thickness direction. For the first three flexural modes of cantilever (bridge) beam, 

we find the mechanical eigenfrequencies are 0.370 MHz (2.353 MHz) and 2.318 MHz (6.487 MHz), 

6.490 MHz (12.718 MHz) respectively. These values are in good agreement with those obtained 

from finite element method (FEM) modelling using COMSOL Multiphysics as shown in Figure 2.5 for 

a cantilever (bridge) beam 0.370 MHz (2.360 MHz) and 2.321 MHz (6.508 MHz), 6.500 MHz (12.765 

MHz) respectively. 

 

Figure 2.5 Mode shape and frequencies of the first three modes of a stress-free silicon nitride beam. (a) Cantilever’s 

first 3 out-of-plane flexural modes. (b) Bridge’s first three out-of-plane flexural modes. 

The simple case described in the above assumes that there is no stress in the beam. However, thin 

films and membranes used in beam fabrication are usually pre-stressed either as a consequence of 

their fabrication procedure or by design. In free-standing membranes for instance, high stress is 
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favoured as it enhances the quality factor of their mechanical resonances. In beam structures, 

increase of tensile stress leads to higher resonance frequencies. Following [59] the presence of 

tensile stress 𝜎 in a beam results in resonance frequencies 

 𝑓𝑛 =
𝜆𝑛

2

2𝜋𝐿2
√

𝑌𝑀

𝜌𝐴𝑐

√1 +
𝜎𝐴𝑐𝐿2

𝑌𝑀𝜆𝑛
2  (2.2.38) 

which is Eqn. (2.2.35) multiplied by a term that increases with stress. Therefore, the eigenfrequency 

of a stressed beam is the eigenfrequency of the beam under zero stress multiplied by the stress 

dependent term. This shows that an increase of tensile stress in a beam will increase its resonance 

frequency. Therefore, tuning of the internal stress in a nanomechanical structure can provide 

tunable frequency response (the same is true with tuning the strings of a musical instrument via 

tension). By tuning the tensile stress within a nanomechanical structure, its thermomechanical 

vibration frequency can be tuned, which provides a method for controlling of the 

thermomechanical vibration of nanomechanical oscillator arrays, as demonstrated in section 6.4. 

For a geometrically complex nanostructures, such as bridge beams patterned with optical antennas, 

finite element numerical simulation (e.g. COMSOL) can be used to identify the structure’s 

mechanical eigenfrequencies and mode shapes. 

2.3.2 Effective mass of a nanomechanical structure 

Effective mass of a nanomechanical structure is an important parameter in its thermomechanical 

displacement power spectral density and provides a non-invasive calibration method or reference 

to evaluate the displacement sensitivity of a technique as illustrated in sections 3.4.1, 5.4.2 and 6.3. 

This section derives the effective mass for a nanomechanical beam that is used in the Langevin 

equation. The effective mass 𝑚𝑒𝑓𝑓,𝑛  of a nanomechanical structure, usually mechanical mode-

shape dependent, relates its potential energy 𝐸𝑝  to its 𝑛 th eigenfrequency 𝑓𝑛  and maximum 

displacement 𝑑𝑛
∗  through the expression 

 𝐸𝑝 =
1

2
𝑚𝑒𝑓𝑓,𝑛𝜔𝑛

2|𝑑𝑛
∗ |2 (2.2.39) 

Potential energy can be determined through a volume integral 

 𝐸𝑝 =
1

2
𝜔𝑛

2 ∫ 𝜌(𝑟)|𝑑𝑛(𝑟)|2𝑑𝑉 (2.2.40) 

where 𝑑𝑛(𝑟) is the spatial displacement distribution (‘shape’) of the 𝑛th mode and 𝜌(𝑟) is the 

spatial density distribution of the structure. Combining these two equations gives 
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 𝑚𝑒𝑓𝑓,𝑛 = ∫ 𝜌(𝑟) |
𝑑𝑛(𝑟)

𝑑𝑛
∗ |

2

𝑑𝑉 = ∫ 𝜌(𝑟)|𝑅𝑛(𝑟)|2𝑑𝑉 (2.2.41) 

where 𝑅𝑛(𝑟) is the normalized displacement at position 𝑟 for the 𝑛th mode. 

In some cases [85, 87] (e.g. ideal cantilevers, strings, and rectangular membranes of uniform density 

distribution) the ratio of effective to physical mass 𝑚𝑒𝑓𝑓 𝑚⁄  assumes a single mode-independent 

value for the geometry. In others (doubly-clamped beams, circular membranes), there are well-

established sets of mode-dependent values. In the general case, such as the nanomechanical 

photonic metamaterial (section 6.3), the above volume integral can be evaluated numerically, for 

example via finite element modelling. 

For a single-material cantilever beam of uniform rectangular cross-section, its effective mass is a 

quarter of its real mass 𝑚𝑒𝑓𝑓 = 0.25𝑚, while 𝑚𝑒𝑓𝑓 = 0.4𝑚 for a single-material bridge beam. And 

the spring constant for a bridge beam 𝑘 = 𝑚𝑒𝑓𝑓𝜔1
2 at fundamental mode is 65 times that of the 

cantilever beam having the same geometry meaning that the bridge’s displacement is 1/65 of that 

of a cantilever under the same exerted force. 

Considering a 20 μm long, 100 nm thick and 200 nm wide silicon nitride (material parameters shown 

in Table 2.2) doubly-clamped nanomechanical beam having picogram-scale effective mass, they are 

expected to oscillate at their fundamental mode around 2 MHz by a root-mean-square thermal 

motion amplitude of 100 picometres which is atomic scale (e.g. the van der Waals diameter of a 

silicon atom is ~220 pm) at room temperature. The instaneous velocity of ballistic thermal motion 

is expected to be 3 mm/s meaning that it will move an average of 3 pm within 1 ns. 

Table 2.2 Material properties used throughout this thesis 

Materials 
Young’s modulus 𝒀 

(GPa) 

Mass density 𝝆 

(kg/m3) 

Thermal conductivity 

𝜿 (W∙m-1∙K-1) 

Heat capacity 

𝑪𝒑 (J∙kg-1∙K-1) 

Si3N4 260 3100 2.5 [88] 700 

Au 70 19300 300 129 

amorphous Si 170 2330 1.5 [89] 700 

2.3.3 Mechanical dissipation in a nanomechanical structure 

The mechanical damping of a nanomechanical structure is ambient pressure dependent and there 

are three pressure regimes that can be distinguished: the intrinsic, the molecular and the viscous 

regime [58, 90-92]. A different dominant dissipation mechanism occurs in each of these regimes. In 
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the experimental study of this thesis where sample are placed in vacuum chamber, intrinsic 

damping dominates. 

Intrinsic regime: In vacuum the dissipation mechanisms in nanomechanical structure are intrinsic-

internal and intrinsic-external. Intrinsic-internal mechanisms include effects such as phonon-

phonon scattering (acoustic phonons), phonon-electron scattering and thermoelastic damping 

(acoustic-thermal phonon scattering) [58, 90-92]. Support dissipation and surface losses are 

regarded as intrinsic-external mechanisms. The overall quality factor 𝑄𝑡𝑜𝑡𝑎𝑙  can be written as a 

summation of contributions according to 

 𝑄𝑡𝑜𝑡𝑎𝑙
−1 = ∑ 𝑄𝑖

−1 (2.2.42) 

where 𝑄𝑖 refers to the contribution of a given mechanism. Thermoelastic damping stems from a 

heat flow over the thickness of the cantilever between opposite areas, which are alternatively 

under compressed and tensile stress during resonance [93]. Loss due to clamping occurs because 

of the strain induced at the connection to the support structure and motional energy leakage to 

the base region. 

Molecular regime: In the molecular regime collisions between the nano-beam and the surrounding 

gas molecules have to be taken into account. If the gas pressure is small, the Knudsen number 𝐾𝑛 

is high. This number is the ratio between the mean free path of the gas molecules and the beam 

size. At pressures so low that 𝐾𝑛 ≫ 10 the mechanical 𝑄 factor is dominated by the intrinsic losses 

discussed above. With increasing pressure, the molecular regime starts at about 𝐾𝑛~10  [94]. 

Momentum exchange between individual gas molecules and the mechanical structure at a rate 

proportional to the difference in velocity between the molecules and the resonator is here 

considered to be the damping source.  

Viscous regime:  When 𝐾𝑛 < 0.01, gas molecules can no longer be considered as free molecules 

and collisions between the molecules have to be taken into account. In this regime the gas behaves 

like a viscous incompressible fluid [95]. 

2.4 Parametric oscillation 

A parametric oscillator is a harmonic oscillator in which oscillations are driven by periodically 

varying a parameter (such as the mass or spring constant) of the system at a frequency typically 

different from the natural frequency of the oscillator. In Chapter 6, I present experimental 

observations of parametric control over picometric thermomechanical vibration in a nano-



Chapter 2 

34 

optomechanical system. The underlying dynamics of those observations can be described by the 

Brownian parametric oscillator equation [96]: 

 𝑥̈(𝑡) + 𝛾𝑚𝑥̇(𝑡) + [𝜔𝑚
2 + 2𝜀𝜔𝑚 cos(𝜔𝑝𝑡)]𝑥(𝑡) = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓⁄  (2.2.43) 

where 𝑥(𝑡) is the real time thermal vibration of a nanomechanical resonator at angular frequency 

𝜔𝑚 with effective mass of 𝑚𝑒𝑓𝑓 driven by thermal Langevin force 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡), 𝛾𝑚 is the mechanical 

dissipation factor and 𝜔𝑝 is the parametric pumping angular frequency. This oscillator has a time 

varying spring constant 𝑘(𝑡) = 𝑚𝑒𝑓𝑓[𝜔𝑚
2 + 2𝜀𝜔𝑚 cos(𝜔𝑝𝑡)], where 𝜀 is the parametric pumping 

strength proportional to the frequency shift (𝛿𝜔 = √𝜔𝑚
2 + 2𝜀𝜔𝑚 − 𝜔𝑚~𝜀). The parametric pump 

with angular frequency of 𝜔𝑝 converts the initial thermomechanical vibration without parametric 

driving at frequency 𝜔𝑚 into multiple thermal vibration Stokes’ or anti-Stokes’ sidebands centered 

at angular frequencies 𝜔 = 𝜔𝑚 ± 𝑁𝜔𝑝 via frequency mixing with 𝑁 being an integer. 

At low parametric pumping strength and in a stable regime, the sidebands’ weight depends on the 

ratio between parametric pumping strength 𝜀 and its frequency 𝜔𝑝, and the parametrically driven 

thermomechanical displacement power spectral density spectrum can be represented as: 

 Γ(𝜔) = ∑ 𝐽𝑁
2 (𝜀 𝜔𝑝⁄ )Γ0(𝜔𝑚 + 𝑁𝜔𝑝)

∞

−∞

 (2.2.44) 

with 

 Γ0(𝜔𝑚) =
4𝛾𝑚𝑘𝐵𝑇

𝑚𝑒𝑓𝑓[(𝜔𝑚
2 − 𝜔2)2 + 𝛾𝑚

2 𝜔2]
 (2.2.45) 

being the initial thermomechanical displacement power spectral density (PSD) without parametric 

pumping. 𝐽𝑁 represents the 𝑁th order Bessel function of the first kind. 

Figure 2.6 shows the numerically calculated thermomechanical displacement PSD results obtained 

by numerically solving the Eqn. (2.4.43) for one of the experimentally measured nano-

optomechanical oscillators as presented in Chapter 6. It has the effective mass 𝑚𝑒𝑓𝑓  = 2.2 pg, 

mechanical angular frequency 𝜔𝑚1 = 2π×2328.3 kHz (𝛾𝑚1 = 2𝜋𝛿𝑓1= 2π×1.21 kHz, 𝑄1 = 1926.8). 

The blue line in Figure 2.6a shows the numerically calculated thermomechanical displacement PSD 

assuming the parametric pumping strength 𝜀= 9.87 kHz,  𝜔𝑝 = 2π×20 kHz, one can see the initial 

thermomechanical displacement PSD (orange curve) is converted into multiple thermal vibration 

Stokes’ or anti-Stokes’ sidebands centered at angular frequencies 𝜔 = 𝜔𝑚 ± 𝑁𝜔𝑝 (blue curve). A 

good match between the numerical and analytical model is found in Figure 2.6a-c when the 

parametric pumping strength is relatively small. However, as can be seen in Figure 2.6d, deviation 
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is found particularly on the low-frequency Stokes’ sidebands when the parametric pumping 

strength is strong enough. The experimentally measured maximum parametric pumping strength 

is 𝜀 2𝜋⁄  ~ 10 kHz range as will be shown in section 6.4. Therefore, the analytical result in Eqn. (2.4.43) 

can be used to analyze the experimental data. 

 

Figure 2.6 Numerically calculated displacement power spectral density for a Brownian parametric oscillator.Orange line 

shows the thermomechanical displacement power spectral density for a Brownian oscillator without parametric pumping 

term. Blue line and yellow lines respectively show the numerically calculated and the analytically approximated Eqn. 

(2.4.44) thermomechanical displacement power spectral density. (a)(b) Calculated spectra evolution for two oscillators 

with different parametric pumping frequency 𝜔𝑝  =2π×20 kHz and 2π×2 kHz while having same pumping strength 

𝜀=2π×9.87 kHz. (b)-(d) Calculated spectra evolution for the oscillators with different parametric pumping strength 𝜀 while 

having same pumping frequency 𝜔𝑝=2π×2 kHz. 

2.5 Summary 

In this chapter, the development of a physical description of Brownian or thermal motion has been 

introduced starting from Einstein’s pure diffusion model, Markovian Langevin model to non-

Markovian Langevin model when considering hydrodynamic interaction. These theories can be in 

principle applied to a nanomechanical structure that is situated in different environments. 

Thermal motion of a nanomechanical structure in a particular mechanical mode has been described 

using Langevin model by including a restoring force term. Thermomechanical displacement power 

spectral density that is widely used in experimental measurements in sections 3.4, 4.1, 6.3 and 6.4 
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has been derived from this model. Ballistic thermal motion characteristics of a nanomechanical 

structure at short timescale are also mathematically derived and numerical modelling is performed, 

which supports understanding and interpretation of the experimental results in section 4.1. 

In the Langevin model, the parameters of mechanical eigenfrequency and effective mass for a 

nanomechanical beam with regular shape can be derived from Euler-Bernoulli beam theory. 

Additionally, the effect of tensile stress on the eigenfrequency of a nanomechanical beam is 

examined, this supports the explanation of the variation of mechanical resonant frequencies 

observed in an array of geometrically identical nanomechanical oscillators (sections 3.4.3 and 6.3). 

This also provides the theoretical foundation for the parametric control of the thermomechanical 

vibration of nanomechanical oscillator arrays via dynamic photothermal tuning mechanism as 

demonstrated in section 6.4. The mode-dependent effective mass has been derived which can 

assist in determining displacement sensitivity of a technique as will be experimentally 

demonstrated in sections 3.4.3 and 6.3. Considering a 20 μm long, 100 nm thick and 200 nm wide 

Si3N4 doubly-clamped nanomechanical beam having picogram-scale effective mass, they are 

expected to oscillate in the thickness direction at their fundamental mode around 2 MHz by a root-

mean-square thermal motion amplitude of 100 picometres which is atomic length scale at room 

temperature. 

A Brownian parametric oscillator model and its numerical calculation are also introduced which 

helps analyze and interpret the experimental observations of parametric control over a Brownian 

oscillator as presented in section 6.4. 

Overall, these models underpin the theoretical part of this thesis and are used to analyse the 

experimental data throughout the following chapters. 
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Chapter 3 Sub-atomic movement visualization in 

nanostructures via free electron edge-scattering 

The existing nano-imaging techniques such as transmission and scanning electron microscopes, 

scanning probe techniques (STM, AFM, etc.) and optical super-resolution microscopies (PALM, STED, 

STORM, etc. ) [97-100], and recently introduced methodologies employing superoscillatory and 

topologically structured light fields [101-103] provide nanometric spatial resolution in ‘static’ 

imaging. However, the acquisition frame rate of the instruments limits the application in imaging 

of MHz to GHz frequency motion. Time-resolved or ultrafast electron microscopes [14] are highly-

specialized instruments employing short-pulse (typically fs laser-driven) electron sources and streak 

camera or time-correlated photon counting detectors to interrogate stimulated, short-timescale 

(e.g. carrier, lattice and bonding) dynamics in materials in pump-probe and stroboscopic regimes, 

which is capable of studying complex transient events on the nanoscale temporal and spatial 

resolution while generally containing very complex optics and timing control systems. Laser-based 

interferometric and cavity spectroscopic techniques [49, 50] can provide MHz frequency picometric 

sensitivity to changes in optical path length (i.e. in the direction of light propagation) but, for 

imaging purposes in the transverse direction, they are diffraction-limited with a spatial resolution 

of a few hundred nanometres at best. 

In this chapter, I introduce a technique for hyperspectral motion visualization (HMV), which 

combines sensitivity to the movement of sub-atomic amplitude with the nanometric spatial 

resolution of secondary electron signal in conventional scanning electron microscopy (SEM). 

Quantitative, directionally-resolved measurements and mapping of displacement amplitude and 

relative phase, provides for highly localized interrogation of mechanical resonance characteristics 

(eigenfrequencies, quality factors) of target structures and visualization of their mechanical modes. 

Section 3.1 describes the basics of electron-beam specimen interaction producing the various 

signals and their energy distributions and the interaction volume. Section 3.2 illustrates the concept 

and working principle of the developed hyperspectral motion visualization (HMV) SEM techniques 

followed by the instrumentation details in 3.3. The applications of this technique for thermal 

movement characterisation and driven motion mapping are demonstrated in section 3.4. Lastly, 

the secondary electron shot-noise limited displacement sensitivity and sample perturbation by the 

electron beam is analysed in section 3.5. 
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3.1 Electron-beam specimen interaction 

Electrons interact elastically or inelastically with atoms at various depths within the specimen, 

producing various types of signals that contain information about the surface topography and 

composition of the sample, including secondary electrons (SE), back-scattered electrons (BSE), 

characteristic X-rays and visible/near-infrared light (cathodoluminescence, CL), absorbed current 

(specimen current), elastically or inelastically scattered and transmitted electrons [104] (Figure 3.1).  

 

Figure 3.1 Electron-beam specimen interaction. (a) Various signals and their energy distributions. (b) Signals emitted 

from different parts of the interaction volume. Images are adapted from ref. [104]. 

In the secondary electron imaging (SEI) used in this work, the secondary electrons are emitted from 

the specimen surface. Consequently, SEI can produce very high-resolution images of a sample 

surface, revealing details less than 1 nm in size. Another commonly available mode of imaging is 

based upon back-scattered electrons (BSE), which are electrons reflected from the sample by elastic 

scattering. They emerge from deeper locations within the specimen and, consequently, the 

resolution of BSE images is less than SE images. However, BSE is often used in analytical SEM, along 

with the X-ray spectra, where the intensity of the BSE signal is strongly related to the atomic number 

(Z) of the specimen. BSE images can provide relative atomic number contrast linked to the 

elemental distribution in the sample. In samples predominantly composed of light elements, such 

as biological specimens, BSE imaging can image colloidal gold immuno-labels of 5 or 10 nm diameter, 

which would otherwise be difficult or impossible to detect in secondary electron images. X-rays are 

emitted when the electron beam removes an inner shell electron from the sample, causing a higher-

energy electron to fill the shell and release energy. The energy or wavelength of these X-rays can 

be measured by energy-dispersive X-ray spectroscopy or wavelength-dispersive X-ray spectroscopy 

and used to identify and measure the abundance of elements in the sample and map their 

distribution. Cathodoluminescence (CL) is the emission of low energy photons in the range from 
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approximately 1 eV to 5 eV (infrared, visible, and ultraviolet light) as a result of inelastic scattering 

of the high energy beam electrons, which can be used to characterise electronic state information. 

3.2 Concept of hyperspectral motion visualization SEM 

The functional principle behind the motion visualization technique is illustrated in Figure 3.2. 

Conventional secondary electron images are formed by raster scanning a focused electron beam 

over an object and detecting, at each point, the integrated secondary electron current. Any fast-

moving components of the object (the wings and antennae of the bee in Figure 3.2a) will suffer 

‘motion-blur’ because their displacement cannot be tracked on timescales shorter than the frame 

rate. However, by instead recording the time dependence of the secondary electron (SE) current at 

each point one can detect and spatially map fast movements of the object. One may then record 

either full raster-scanned images with SE detection locked at a chosen frequency, or construct a 

complete hyperspectral image by computing the Fourier spectrum of motion at each point. These 

‘images’ will show spatially resolved, quantitative detail of displacement amplitude and phase at a 

chosen frequency or across a range of frequencies.  

 

Figure 3.2 Hyperspectral Motion Visualization (HMV-SEM) concept. (a) Conventional (static) secondary electron (SE) 

images obtained in a scanning electron microscope are based upon the time-averaged SE signal at each point, whereby 

moving parts suffer ‘motion blur’. HMV-SEM maps based upon the detection of selected frequency components in the SE 

signal will show only those parts which oscillate at that frequency, revealing the amplitude and direction of movement at 

each point. (b-d) An incident electron beam scanned over an object [notionally here, one of the bee’s antennae, along 

the line AB in (a)] generates a scattered secondary electron signal with an amplitude profile (c) related to the physical 

profile of the object (b) and the spot size and intensity profile of the incident electron beam. Where the gradient (d) of 

this profile is non-zero, displacements of the object 𝜕𝑦 translate to changes in SE signal 𝜕𝐼𝑆𝐸, as illustrated inset to (c). 

For simple objects, much useful information can be obtained from images recorded at just a few 

selected frequencies, as will be demonstrated in what follows. Figure 3.2 (b-d) details the 

mechanism by which the SE signal generated by an incident electron beam transduces displacement 

[105, 106], including at length scales far smaller than the beam diameter where movement induced 
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local variation of SE flux is still significant at structure’s edges. While the target object (notionally 

one of the bee’s antennae in Figure 3.2a) is stationary, the SE current 𝐼𝑆𝐸(𝒓) generated as an 

incident electron beam is scanned along the line AB (where 𝒓 is coordinate in the image plane) will 

change in magnitude from and return to zero on either side (where the incident beam entirely 

misses the object) at a rate dependent upon the sharpness of the physical edges and the intensity 

profile of the electron beam. At these edges, small time-dependent displacements 𝜕𝑹(𝑡) of the 

object will translate to changes in the SE signal: 

 
𝜕𝐼𝑆𝐸(𝒓, 𝑹(𝑡))

𝜕𝑡
=  

𝜕𝐼𝑆𝐸(𝒓, 𝑹(𝑡))

𝜕𝑹
∙

𝜕𝑹

𝜕𝑡
 =  −∇𝐼𝑆𝐸(𝒓) ∙ 𝒗(𝑡) (3.2.1) 

where 𝒗 is the object’s movement velocity vector at the measurement point. Integrated over time: 

 𝐼𝑆𝐸(𝒓, 𝑡) =  −∇𝐼𝑆𝐸(𝒓) ∙ 𝑹(𝑡) + 𝐶 (3.2.2) 

Thus, at each point on the oscillating target, the magnitude of the time-dependent SE signal will be 

equal to the scalar product of two vectors: the gradient of the static SEM image parallel to the 

motion direction at that point ∇𝐼𝑆𝐸(𝒓) and the displacement 𝑹(𝑡). As such, motion in any direction 

with a non-zero projection to the image plane can be detected at any point where the 

corresponding SE gradient is non-zero. In the Figure 3.2 schematic, for example, if the image plane 

is inclined at an angle 𝜃𝑖 to the y axis, both horizontal 𝜕𝑦(𝑡) and vertical 𝜕𝑧(𝑡) displacements of 

the object (in and out of the 𝑥𝑦 sample plane) can be detected on the basis of a SE signal gradient 

parallel to 𝑦. The noise equivalent displacement (NED) level in such measurements – the magnitude 

of displacement detectable with unitary signal-to-noise ratio with an integration time of one second 

– is determined largely by the Poisson statistics of electrons incident on the SE detector (see section 

3.5.1). It is inversely proportional to the SE current gradient ∇𝐼𝑆𝐸. As estimated in section 3.5.1, for 

a typical SEM, this minimum detectable displacement can be as small as ~1 pm even while the 

incident beam diameter (i.e., static imaging resolution) is ≥ 1 nm. The ability to detect motion at 

this scale presents remarkable opportunities for imaging the movement of nanostructures, bearing 

in mind that by comparison the lattice constants of solids are typically in the 300-700 pm range and 

the radii of isolated neutral atoms lie between 30 and 300 pm. 

3.3 Instrumentation for hyperspectral motion visualization SEM 

A hyperspectral motion visualization SEM consists of two main parts: a conventional scanning 

electron microscope (SEM) with external scanning control, and lock-in detection and data 

acquisition modules, see Figure 3.3. 
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Figure 3.3 Hyperspectral Motion Visualization (HMV-SEM) instrumentation. (a) A SEM consisting of electron optics, 

sample positioning, signal detection and a vacuum system. (b) The electron beam is externally controlled through deflect 

lens or scan coil by a dual-channel arbitrary function generator generating sawtooth-like waves for raster scanning. (c) 

For Brownian motion detection, the instrument is configured as a spectrum analyser (oscilloscope with FFT function) and 

SEM is operating in the spot mode. (d) For motion imaging mode, the lock-in is then referenced to the clock frequency to 

demodulate the output signal of the secondary electron detector pixel by pixel and build amplitude and phase maps of 

the object’s movements at the frequency of interest. 

The hyperspectral motion visualization system was built around the scanning electron microscope 

arm of an FEI Helios NanoLab™ 600 DualBeam FIB/SEM system. The secondary electron detector 

used in this work is a built-in through-the-lens detector (TLD) allowing ultra-high-resolution imaging 

(UHR) mode. Acquisition and processing of the signal from the secondary electron detector are 

performed using a Zurich Instruments UHFLI digital lock-in amplifier, which has the oscilloscope 

with FFT function and multi-Frequency option. For Brownian motion detection, the instrument is 

configured as a spectrum analyser (oscilloscope with FFT function) and the SEM is operated in spot 

mode. In the hyperspectral motion imaging regime, scanning of the electron beam is controlled by 

a dual-channel arbitrary function generator (Tti TGF4242) generating sawtooth-like waves for 

horizontal and vertical scanning while the lock-in amplifier’s internal clock generator is optionally 

used to drive a piezoelectric sample stage actuator (Thorlabs PA4FEH3W). The lock-in is then 

referenced to that clock frequency to demodulate the output signal of the secondary electron 

detector and build amplitude and phase maps of the object’s movements at said frequency. The DC 

component of the signal is simultaneously employed to build the conventional SEM image of the 

sample using the multi-Frequency option. The raster scanning speed can be adjusted depending on 

the sampling rate and integration time of lock-in detection. 
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3.4 Applications of hyperspectral motion visualization SEM 

To elucidate and quantitatively validate the performance of the HMV-SEM technique we employ 

rectangular cantilevers, i.e., the common actors and structural components of many 

nanomechanical devices and systems – objects with well-understood, analytically described modes 

of oscillation. 

3.4.1 Thermal motion characterization 

As introduced previously, the random thermal motion of small objects at non-zero temperatures is 

perhaps most familiar in the microscopic random walk of free particles in liquids, known as 

Brownian motion. But the thermal motion of picometric amplitude is also present in anchored 

micro-/nano nano-objects, such as cantilevers and doubly-clamped beams, and is most profound 

at their natural mechanical resonant frequencies. Such motion provides an ideal calibration 

reference for the sensitivity of the HMV-SEM technique as its amplitude is thermodynamically 

related to the physical parameters of the object: which is to say that a direct quantitative 

comparison can be made between experiment and energy equipartition theorem [30, 85]. 

To demonstrate, we detect the thermal motion of a 22 µm long cantilever (Figure 3.4a) 

manufactured by focused ion beam milling from a 50 nm thick silicon nitride membrane (a flexible 

substrate) coated by thermal evaporation with 50 nm of gold (for strong secondary electron signal 

contrast). With the incident electron beam fixed at a point on one of the cantilever’s long edges 

near the tip, as indicated in Figure 3.4a, we record the time dependence of the secondary electron 

signal in the frequency domain and calculate the corresponding amplitude spectral density (ASD, 

Figure 3.4c). In all measurements reported here an incident electron energy of 5 keV and a beam 

current of 86 pA is employed, whereby the effects of electron beam-induced heating and 

momentum transfer to the cantilever are negligible (see section 3.5.2). The measured secondary 

electron signal ASD at a given point is directly related to cantilever displacement ASD (right-hand 

axis in Figure 3.4c) via the SE signal gradient (Figure 3.4b) at that point, with account taken for the 

oblique incidence of the electron beam. One can observe peaks in the frequency spectrum at three 

of the cantilever’s natural oscillation frequencies: specifically, the fundamental out-of-plane mode 

at 117.6 kHz, fundamental in-plane mode at 528.0 kHz and second-order out-of-plane mode at 

739.0 kHz (attribution of modes being confirmed by computational modelling). Cantilever 

mechanical properties are simulated using the solid mechanics module in COMSOL Multiphysics 

(finite element method). A rectangular 100 nm thick (50 nm each of silicon nitride and gold) × 500 

nm wide cross-section is assumed. From this model, the three lowest Eigenfrequencies of a 22 μm 

long cantilever are those of the fundamental out-of-plane flexural mode at 111 kHz; fundamental 
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in-plane flexural mode at 518 kHz; and the 2nd-order out-of-plane flexural mode at 695 kHz. These 

correlate well with measured resonance frequencies (Figure 3.4c) – small discrepancies being 

accounted for by manufacturing imperfections and internal stresses within/between the silicon 

nitride and gold layers (which also account for the slightly out-of-plane equilibrium position of the 

cantilever). 

 

Figure 3.4 Sensing thermal motion of a cantilever. (a) Static secondary electron image of a gold-coated silicon nitride 

cantilever [100 nm thick, 500 nm wide, 22 μm long], viewed at an oblique angle 𝜃𝑖 = 15° to the membrane plane. (b) 

Profile along the line AB of secondary electron DC signal and the gradient thereof. (c) Amplitude spectral density (ASD) of 

secondary electron signal measured at the point *, showing peaks associated with out-of- and in-plane oscillatory modes 

[as denoted by the inset schematics]. The right-hand axis shows a calibrated scale of displacement ASD. Overlaid red lines 

are analytical displacement ASD curves given by Eq. (3.3), using experimentally measured values of 𝑓𝑚 and 𝑄 for each 

mode, and assuming 𝑚𝑒𝑓𝑓 = 0.25𝑚. 

According to the Wiener–Khinchin theorem [30, 85], the thermomechanical displacement power 

spectral density (PSD = ASD2) of an oscillator is 

 𝑆(𝑓) =
𝑘𝐵𝑇𝑓𝑚

2𝜋3𝑚𝑒𝑓𝑓𝑄[(𝑓𝑚
2 − 𝑓2)2 + (𝑓𝑓𝑚 𝑄⁄ )2]

 (3.4.1) 

where 𝑘𝐵  is the Boltzmann constant, 𝑇 is temperature and, for each mode, 𝑚𝑒𝑓𝑓 , 𝑓𝑚  and 𝑄 are 

respectively the effective mass, natural frequency and quality factor. From experiment – the 

mapping of Eq. (3.4.1) onto the peaks in Figure 3.4c using measured values of 𝑓𝑚 and 𝑄 at room 
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temperature (𝑇 = 300 K), with 𝑚𝑒𝑓𝑓  determined by best fit – root mean square (RMS) thermal 

motion amplitudes √〈𝑥2〉 can be evaluated as the square root of an integral of PSD over frequency: 

 √〈𝑥2〉 = √∫ 𝑆(𝑓)𝑑𝑓
∞

0

 (3.4.2) 

These calculations yield amplitudes of 1.60 nm for the out-of-plane mode at 117.6 kHz; 0.53 nm for 

the in-plane mode at 528.0 kHz; and 0.27 nm for the second-order out-of-plane mode at 739.0 kHz. 

These compare very well with analytical values of 1.57, 0.35 and 0.25 nm respectively, from thermal 

equipartition for an ideal rectangular cantilever, whereby √〈𝑥2〉 = √𝑘𝐵𝑇 𝑚𝑒𝑓𝑓(2𝜋𝑓𝑚)2⁄  and 𝑚𝑒𝑓𝑓 

has a fixed value of 0.25𝑚 for all modes (𝑚 being the real mass). The accuracy of the correlation 

between theory and experiment is illustrated in Figure 3.4c by the overlaid analytical curves, which 

are calculated according to Eq. (3.4.1) with 𝑚𝑒𝑓𝑓 = 0.25𝑚. Likewise, the ~1 pm/Hz1/2 background 

signal level seen in Figure 3.4c corresponds very well with the expected noise equivalent 

displacement floor (see section 3.5).  

Full-width half-maximum peak widths ∆𝑓 are a measure of oscillator damping: ∆𝑓 = 𝛾𝑠 (2𝜋𝑚𝑒𝑓𝑓)⁄ , 

where 𝛾𝑠 is the (material, ambient pressure, and mode-dependent) Stokes friction coefficient[107, 

108]. With the effective mass of a cantilever being, again, not mode-dependent, the peak width ∆𝑓 

is straightforwardly proportional to, and resonance quality 𝑄 = 𝑓𝑚 ∆𝑓⁄  inversely proportional to 𝛾𝑠. 

3.4.2 Hyperspectral driven motion mapping 

The HMV-SEM technique can also be applied to map externally-driven movements of 

nanostructures. By raster scanning the injection point over a target and synchronously detecting 

the SE signal at the driving frequency (using a lock-in amplifier), a spatially resolved map of driven 

oscillation amplitude and phase can be constructed, giving a comprehensive picture of the sample’s 

mechanical response at the selected frequency. By then changing the driving frequency and 

repeating the raster scan, a hyperspectral image of sample movements can be assembled. We 

demonstrate this modality by visualizing the oscillatory motion of cantilevers driven by a 

piezoelectric transducer (with an oscillatory amplitude of ≤1 nm). Figure 3.5a-c show images of the 

above (Figure 3.4) cantilever in terms of, respectively, the DC component (c.f. static SE image) and 

the amplitude and phase of the time-dependent component of the SE signal at 739.0 kHz – the 

frequency of its second-order out-of-plane bending mode. These illustrate how the technique 

reveals movement at the high SE contrast edges of a structure: no signal is detected where the SE 

gradient is zero (along the central area of the cantilever surface). In this case, each bright edge of 

the cantilever in Figure 3.5a appears as a pair of lines in Figure 3.5b with opposing phase relative to 
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the piezo actuator (Figure 3.5c), corresponding to closely-spaced points of positive and negative SE 

gradient encountered as the incident electron beam is scanned across the edge. Phase mapping 

records the relative phase of modulated secondary electron signal referring to the driving signal. It 

depends on both the local gradient and the motion mode shape of the studied structure according 

to Eqn. (3.2.2). 

 

Figure 3.5 Visualization of driven cantilever motion. (a-c) DC component (a) and synchronously recorded amplitude and 

phase (b and c respectively) of the time-dependent component of the secondary electron signal recorded while the 

structure is mechanically driven at the cantilever’s 739.0 kHz 2nd-order out-of-plane resonant frequency by a piezo-

actuator. (d) Calibrated out-of-plane [z-direction] displacement amplitude maps of the cantilever. (e) x-z plane projection 

of absolute displacement with the corresponding numerically simulated mode profile overlaid as a pair of dashed lines. 

Note that the vertical image-plane scale [panels a-d] has been enlarged for clarity: the 2 μm scale bar applies only to the 

x direction. Also, for clarity in (d), no data is presented at points where the SE gradient falls below a noise threshold, i.e., 

such that displacement cannot be quantified. The same [white] pixels are then also excluded from (c). (f) 2nd order out-

of-plane mode phase mapping of a cantilever. The final measured phase is a product of secondary electron gradient with 

the mode shape. Here, ‘-’ and ‘+’ are 𝜋 out-of-phase. 

As shown in Figure 3.5f, a second order out-of-plane mode cantilever is used to illustrate phase 

mapping. The secondary electron gradient depends on the scanning direction, which is positive on 

one edge and negative on the other edge. The cantilever’s left clamped end part and its tip part 

(separated by the node line) moves out-of-phase in the case of second order out-of-plane 
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oscillation mode. Therefore, the measured electronic signal phase is the multiplication of SE signal 

gradient and mode shape. The ‘-’ and ‘+’ signs mean they are out-of-phase with a relative phase 

shift of 𝜋. An out-of-plane displacement amplitude map (Figure 3.5d) is obtained by dividing the 

time-dependent SE signal amplitude at each point of Figure 3.5b by the corresponding signal 

gradient derived from Figure 3.5a, taking account of the oblique viewing angle. Combining this with 

the signal phase and plotting all pixels as a histogram of absolute displacement against x coordinate, 

reveals the displacement mode shape, as shown in Figure 3.5e. In this example, the cantilever tip 

oscillates with an amplitude of ~25 nm. Currently, the minimum detectable displacement in motion 

mapping is about 0.1 nm (1 Angström) with an integration time of 0.1ms corresponding to the 

calibrated motion noise level. 

To illustrate hyperspectral motion visualization, we employ a set of three cantilevers with different 

lengths (17, 22 and 27 µm) cut from a single membrane (Figure 3.6). Having first identified their 

individual natural frequencies from thermal motion spectra (as per Figure 3.5 above), we drive the 

structure and spatially map the movement of the whole sample at each frequency in turn (Figure 

3.6a). The selective, resonant excitation of one cantilever at a time in either its fundamental or 

second-order out-of-plane bending modes is clearly observed, with the expected mode shapes 

being well defined in corresponding x-z projections of displacement (Figure 3.6b). 

 

Figure 3.6 Hyperspectral visualization of driven cantilever motion. (a) Out-of-plane [z-direction] displacement amplitude 

maps of a set of three cantilevers of different length, shown in the zero-frequency [static secondary electron] image, 

recorded while the structure is mechanically driven at a selection of frequencies [as labelled] by a piezo-actuator. (b) 

Corresponding x-z plane projections of absolute displacement overlaid with numerically simulated mode profiles (dashed 

lines). 
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3.4.3 Visualization of movement in devices with multiple degrees of freedom 

The examples presented above introduce the HMV-SEM technique by way of its use to study 

thermal and driven motion of isolated cantilevers. However, its full potential lies in application to 

more complex structures and devices with multiple degrees of freedom – ‘nano-machines’. Here, 

we illustrate how the HMV-SEM technique can be used to interrogate thermal and driven motion, 

and thereby to better understand the functionality, of a nano-mechanical photonic metamaterial 

(Figure 3.7a-b) and a comb structure within a MEMS accelerometer (Figure 3.7c-f).  

 

Figure 3.7 Mapping thermal and driven motion in photonic metamaterials and MEMS devices. (a) SEM image of an 

optomechanical metamaterial fabricated on a silicon-nitride nanomembrane (b) In-plane thermal motion displacement 

spectra measured at the centres of the fifteen narrow beams [as numbered in (a)]. (c) SEM image of a capacitive Si comb 

within a MEMS accelerometer. (d, e) Corresponding displacement amplitude maps for piezo actuator-driven in-plane 

motion at 438.2 and 441.6 kHz – the fundamental resonant frequencies of selected comb cantilever ‘fingers’ [marked by 

white arrows]. (f) Representative thermal motion spectrum measured at the tip of the comb cantilever finger marked 

with a red dot in (c). 

Figure 3.7a shows an SEM image of a plasmonic nano-opto-mechanical metamaterial comprising 

an array of gold nano-brick trimers supported on alternately wide (325 nm) and narrow (165 nm) 

28 μm long, 50 nm thick silicon nitride beams. This metamaterial has exceptionally large optical 

nonlinearity underpinned by the mutual displacement of neighboring beams, driven by interactions 

between dipole moments induced in the plasmonic nano-bricks by a control (pump) light beam [35]. 

The relative positions of the gold nano-bricks within the trimers determine the optical properties 

of the metamaterial as seen by a transmitted or reflected signal (probe) light beam at a different 

wavelength [35]. Ideally, a modulated pump beam will induce synchronous resonant (i.e., large 

amplitude) oscillation of one or other wide/narrow structural beams, thereby maximizing the effect 

of light-by-light control – the induced change in optical properties at the probe wavelength. As such, 

the nonlinear optical response of the metamaterial is dependent on the mechanical properties of 
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the structure, such as the natural frequencies and quality factors of the beams. All beams of the 

same type should preferably be mechanically identical to exclude inhomogeneous broadening of 

the nonlinearity. The diffraction limit precludes selective optical interrogation of the properties of 

individual structural beams, but the resolution of the electron beam-based motion visualization 

technique is perfectly suited to the task. The thermal motion spectra in Figure 3.7b reveal variations 

in the mechanical properties of a set of nominally identical beams: the fifteen narrow beams of the 

metamaterial shown have fundamental in-plane resonant frequencies of 1.44 MHz ±2%, mean 

square displacement amplitudes of 209 pm ±6% and quality factors of 1400 ±33%. While with the 

peripheral beams numbered 1, 2 and 15 excluded, these distributions narrow to ±1% in resonant 

frequency, ±4% in displacement amplitude and ±5% in 𝑄. From static SEM imaging (Figure 3.7a), 

those three beams are subject to noticeable equilibrium out-of-plane deformation, but variations 

in mechanical properties among the majority cannot be anticipated – they are seen to have a high 

level of geometric uniformity, constrained only by the nanometric fabrication tolerances of the FIB 

milling technique. However, variations in their mechanical parameters are related not only to 

dimensional discrepancies or fabrication imperfections, but also to variations in tension (in the 

same way that tension determines the pitch of a violin string) derived from non-uniform stress 

intrinsic to the silicon nitride membrane substrate. The ability to quantify the mechanical response 

of the individual structural elements of a metamaterial provides valuable insight into device 

performance and provides for the possibility of in-situ correction during fabrication (i.e., within a 

dual-beam FIB/SEM system), thus enabling the fabrication of high-performance devices.  

Figure 3.7c shows an SEM image of a silicon capacitive comb sensing element within a commercial 

MEMS accelerometer developed for automotive air-bag deployment systems. Acceleration in the 

sensing direction induces an inertial force on the mass attached to the movable part of the comb, 

resulting in a change in distance between the ‘fingers’ of the fixed and movable parts of the comb. 

From the associated change in capacitance, acceleration can be quantified. Device behaviours 

including sensitivity and false alarm response depend strongly upon the mechanical characteristics 

of the comb fingers, which are in effect micromechanical cantilevers, and controlled artificial 

displacements of the inertial mass may be applied to the detection of defective combs. Using the 

HMV-SEM technique (Figure 3.7d-f), we find that the nominally identical fingers of the present 

comb indeed have closely spaced fundamental resonant frequencies - varying by only ±0.4% about 

a mean value of 440 Hz, and resonance 𝑄-factors of order 1.3×104 that vary by as much as ±8%. The 

fingers manifest in-plane thermal motion tip displacements of ~ 25 pm (as compared to a separation 

between adjacent fingers of ~ 5 μm). 

The application of the motion detection technique to the spatial mapping of externally driven 

movements of flea setae is also illustrated in Figure 3.8. For this purpose, samples are mounted on 
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a piezoelectric actuator and the incident electron beam is raster-scanned over the sample, with the 

amplitude and phase of the secondary electron current oscillation detected at the piezo driving 

frequency by a lock-in amplifier. The point-by-point raster scanning, with an integration time of 20 

μs at each pixel (and as above a 5 kV, 86 pA electron beam), is externally triggered for consistent 

registration of phase over the entire image area. Figure 3.8, referencing Robert Hooke’s iconic 1665 

optical microscopic image [109], shows stimulated nano-motion electron microscopic images of a 

(deceased) flea at a selection of different driving frequencies. The imaged maxillary palpus and coxa 

region include setae that are a few tens of micrometres long and a few hundred nanometres in 

diameter, which are here found to have natural oscillation frequencies in the sub-MHz range. The 

images (Figure 3.8b-d) reveal resonant oscillatory displacement amplitudes reaching a few hundred 

nanometres (in response to a piezo actuator in-plane drive amplitude of ~10 nm and against a 

background of the whole sample moving with said amplitude – dark blue features in the upper 

panels of Figure 3.8b-d). The lower panels in Figure 3.8b-d show the phase of the modulated 

secondary electron signal relative to the (piezo) driving force. This depends on both the local 

gradient and the motion mode shape of the structure: the absence of phase discontinuities along 

the long edges of resonantly oscillating setae show that they are moving in a fundamental flexural 

mode, i.e. that all points along the length are moving in the same direction at the same time. 

 

Figure 3.8 Hyperspectral imaging of driven oscillations of flea setae. (a) Static secondary electron image of the entire 

flea and enlarged detail of the motion-imaged area. (b, c, d) Amplitude (upper row) and corresponding phase (lower) of 

secondary electron signal modulation at selected driving frequencies [as labelled]. 

3.5 Fundamental measurement limit and sample perturbation by the 

electron beam 

3.5.1 Noise Equivalent Displacement (NED) 

The noise equivalent displacement (NED) level in HMV-SEM is determined largely by the Poisson 

statistics of electrons incident on the SE detector, whereby the standard deviation of shot noise is 
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 √𝑁𝑒 = √𝐼𝑆𝐸𝜏/𝑒 (3.5.1) 

𝑁𝑒  being the number of electrons detected in time interval  𝜏 .The SE current gradient can be 

estimated as 

 ∇𝐼𝑆𝐸(𝒓)~ ∆𝐼𝑆𝐸 𝑟𝑒⁄  (3.5.2) 

where ∆𝐼𝑆𝐸 is the change in SE current over a distance equal to the incident electron beam spot size 

𝑟𝑒 ~ 1nm.  In measuring the amplitude of displacement 𝑑𝑚𝑒𝑎𝑠  by detecting secondary electron 

current variation, the number of electrons detected in time 𝜏 is then 

 𝑆𝑒 = 𝑑𝑚𝑒𝑎𝑠(∆𝐼𝑆𝐸/𝑟𝑒)𝜏/𝑒 (3.5.3) 

A unitary signal-to-noise ratio (SNR) will be achieved when  𝑆𝑒 √𝑁𝑒 = 1⁄ , which is to say when 

 𝑑𝑚𝑒𝑎𝑠~𝑟𝑒√𝑒𝐼𝑆𝐸 (∆𝐼𝑆𝐸
2𝜏)⁄  (3.5.4) 

In practice (Figure 3.4b), we record SE detector output voltage 𝑉𝑆𝐸 = Ω𝐼𝑆𝐸  and evaluate the 

corresponding gradient 

 ∇𝑉𝑆𝐸(𝒓)~ Ω∆𝐼𝑆𝐸 𝑟𝑒⁄  (3.5.5) 

in which terms the measurable displacement with unitary SNR is  

 𝑑𝑚𝑒𝑎𝑠~(𝑟𝑒 ∆𝑉𝑆𝐸⁄ )√𝑒 𝜏⁄ √𝑉𝑆𝐸√Ω (3.5.6) 

The constant of proportionality Ω is estimated at ~3×1010 Ohms, under an assumption that the full-

scale 1.5V value of 𝑉𝑆𝐸  (Figure 3.4b) is associated with a maximum current 𝐼𝑆𝐸  of order 50 pA (from 

an incident beam current of 86 pA; a SE yield of 0.6, typical for gold at 5 keV [ref. [104]]; and SE 

collection efficiency approaching 100% for an SEM in a short working distance immersion lens 

configuration [110]). Thus, at the point marked by an asterisk in Figure 3.4b, where 𝑉𝑆𝐸 ~1V and 

𝛥𝑉𝑆𝐸 𝑟𝑒⁄  ~60 mV/nm, we may expect to measure a displacement as small as 𝑑𝑚𝑒𝑎𝑠 ~1.2 pm with a 

one second integration time. This also means that, in a second, 𝑆  =1.47×104 (∆𝐼𝑆𝐸  = 2 pA) of 

electrons out of the totally generated 𝑁  = 2.15×108 ( 𝐼𝑆𝐸  = 34.4 pA) electrons contain the 

information of 𝑑𝑚𝑒𝑎𝑠 = 1.2 pm movement, which takes only 0.0068%. In the driven motion mapping 

examples of Figure 3.5 and Figure 3.6, where integration time is reduced to 0.1 ms, the expected 

NED level rises accordingly to ~120 pm/Hz1/2. 
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3.5.2 Electron-to-cantilever momentum transfer 

A non-relativistic electron of energy 𝐸𝑒 has a velocity 𝑣 = √
2𝐸𝑒

𝑚𝑒
 and momentum 𝑝 = 𝑚𝑒𝑣, where 

𝑚𝑒 is the electron mass. (𝑣 𝑐⁄  ~ 0.1 in the present case, so relativistic corrections can be ignored.) 

An electron beam of current 𝐼𝑒 contains 𝐼𝑒 𝑒⁄  electrons per second, where 𝑒 is the electronic charge, 

and may thus impart a maximum force 𝐹𝑟𝑎𝑑 =
𝐼𝑒

𝑒
𝑝 =

𝐼𝑒

𝑒
√2𝐸𝑒𝑚𝑒. This amounts to ~2×10-14 N in the 

present case. 

3.5.3 Electron-beam induced heating 

For the purpose of estimating electron beam-induced temperature change, we consider: 

- a free-standing bilayer beam of 50 nm gold on 50 nm silicon nitride, with length 𝐿 = 22 μm 

and width 𝑤 = 500 nm, in vacuum; 

- an electron beam with acceleration voltage 𝑉  = 5 kV and a beam current 𝐼𝑒  = 86 pA 

incident on the gold side of the beam. 

Monte Carlo modelling [111] shows that >99% of electrons are stopped within the 100 nm (gold 

plus silicon nitride) thickness of the beam at this low electron energy. In keeping with prior works 

[105] we assume that around 2.5% of incident electron beam power is absorbed as heat 𝐻𝑎𝑏𝑠 = 

0.025𝐼𝑒𝑉 ~10 nW, predominantly in the gold layer. 

The temperature change 𝛿𝑇 over the entire beam is related to the heat loss rate by Fourier’s law 

𝐻𝑎𝑏𝑠 = −𝜅𝐴𝑐𝛿𝑇 𝐿⁄ , where 𝜅 is thermal conductivity and 𝐴𝑐 = 𝑤ℎ is cross-sectional area, ℎ being 

thickness. The thermal conductivity of gold (300 W∙m-1∙K-1) is much larger than that of silicon nitride 

(2.5 W∙m-1∙K-1) so the presence of the nitride layer is ignored for the purposes of this estimate 

(whereby ℎ = 50 nm), giving 𝛿𝑇 ~29 mK. 

Finite element modelling (the heat transfer module in COMSOL Multiphysics) gives a very similar 

result. Herein we assume: 

- the presence of both layers, with specific heat capacities at a constant pressure of 129 

and 700 J∙kg-1∙K-1 respectively for gold and silicon nitride; 

- that the beam has an initial temperature 𝑇 = 300 K and that one end (i.e., the anchored 

end of the cantilever) is attached to a thermostat at 300 K; 
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- a 10 nW point source of heat at one corner of the gold layer at the free end of the beam 

(i.e., the cantilever tip, as in the point measurement of Brownian motion presented in 

Figure 3.4).  

Under these conditions, the temperature at the opposite gold corner of the cantilever tip increases 

by 𝛿𝑇 ~27 mK. 

Root mean square thermal displacement is proportional to the square root of temperature, so the 

relative change resulting from a temperature change 𝛿𝑇 is given by √1 + 𝛿𝑇/𝑇 − 1. At ~5×10-5 in 

the present case (i.e., not more than a few tens of femtometres against the measured ~1 nm 

thermal motion RMS cantilever tip displacements), this contribution is negligible. 

3.6 Summary 

In summary, in this chapter based upon the detection of the spectrally resolved secondary electrons 

current as a consequence of natural and/or stimulated oscillation of target nanostructures, I have 

developed a methodology and the instrumentation for quantitative, directionally-resolved 

measurements of high-frequency movements in the megahertz range with picometric (sub-atomic) 

amplitudes and the hyperspectral visualization of the movement with nanometric spatial resolution.  

The hyperspectral movement visualization technique is deployed on a conventional scanning 

electron microscope to interrogate thermal (Brownian) and externally-driven motion at the pico- 

to the nanoscale in nanomechanical structure and nanomechanical photonic metamaterials. It is 

shown to provide for: highly localized measurement of an oscillator’s resonant frequencies and 

quality factors; measurement of thermal motion amplitudes down to the electron shot noise-

equivalent displacement level of 1 pm/Hz1/2; and frequency- and directionally-resolved mapping of 

oscillatory motion ‘mode shapes’ with spatial (SEM imaging) resolution far beyond the diffraction 

limit applicable to optical vibrometry techniques. 

This technique enables identification of variation in the mechanical resonance frequency of 

nanomechanical beams of the same geometry, due to the non-uniform stress inherent in the silicon 

nitride film substrate. The ability to quantify the mechanical response of the individual structural 

elements of a metamaterial provides valuable insight into device performance. 
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Chapter 4 Ballistic dynamics of flexural thermal 

movements in a nano-membrane 

Flexural deformations and modes of oscillation are now understood to be of fundamental 

importance to the thermal, optical, electrical and mechanical properties of graphene and other 2D 

materials [112-116], and to the optical properties of photonic metamaterials through near-field 

coupling among resonators [6] and mechanochromic effects (i.e. mechanical deformation induced 

color change) [41]. In particular, atomic- to nano-scale flexural deformation in the geometry of 

elastic nano-membranes can deliver a wealth of optical modulation and tuning functionalities with 

electro-/magneto-/thermo-/acousto-optical and nonlinear response coefficients orders of 

magnitude larger than those found in natural media [6]. As objects decrease in size the thermal 

vibration of flexural components becomes increasingly important. For example, although thermal 

vibration of flexural components adds noise to induced controlled movements that underpin the 

functionality, these fluctuations provide an opportunity for the characterization of mechanical 

properties and sensing its surroundings [117]. 

In contrast with a classical Brownian particle in a fluid that is thermally perturbed by external 

collisions with ambient molecules, under vacuum thermal movements of the flexural components 

within nanomechanical photonic metamaterials are driven internally by momentum transfer from 

the annihilation and creation of the flexural phonons. 

As long ago as 1906, Einstein realized that the commonly held picture of diffusive thermal motion, 

characterized by erratic, discontinuous changes in speed and direction, must break down at short 

time and length scales, where inertia becomes substantial [65] – objects must move ballistically 

between ‘collision’ events. He concluded that this regime of motion would be impossible to observe 

as to do so would require, at the time, unimaginably high spatial and temporal measurement 

resolution. Indeed, even today, it is a challenging proposition: while such measurements have been 

reported in recent years for optically-trapped microparticles undergoing Brownian motion in gas 

[118] and liquid [72], the phonon-dominated dynamics of free-standing films, nano-membranes, 

nano-wires and cantilevers remained underexplored because there were no routinely available 

technologies for quantifying their short-timescale nano/picoscale motion. 

This chapter shows detection of variations in secondary electron emission from the edge of a 

moving (oscillating) nano-membrane interrogated with a focused electron beam provides for 

measurements of the membrane’s position with microsecond temporal resolution and sub-atomic 

displacement sensitivity as developed in Chapter 3. The microsecond temporal resolution is a new 
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dimension in this chapter, i.e. making it possible to access the short timescale ballistic regime. The 

detection method reveals the Einstein-predicted ballistic regime of thermal flexural motion of the 

membrane in short time scales. The reported experiments allow the measurement of velocities of 

consecutive steps of membrane movement and their statistics and provide direct experimental 

verification of the applicability of the equipartition theorem and Maxwell-Boltzmann statistics to 

flexural dynamics. 

Theoretical work of this chapter is given in section 2.2 by solving the Langevin equation to better 

illustrate the behavior of ballistic regime thermal movement which supports understanding and 

interpretation of the experimental results in section 4.1. Experimental method of detecting ballistic 

thermal motion regime is described in section 4.2 followed by the analysis of sample disturbance 

using this method in section 4.3. 

4.1 Experimental results and discussion on ballistic motion detection 

The dynamics of thermal motion in the out-of-plane flexural mode of a cantilever cut from a free-

standing gold nano-membrane was investigated here. The material and geometry were selected to 

facilitate observation of the ballistic regime by consideration of the cantilever's effective mass, the 

natural frequency and quality factor of its fundamental flexural mode, and the secondary electron 

yield. It was 30 nm thick and 62 μm long with a width tapered from 0.6 μm at the fixed end to 3 μm 

at the other, and an effective mass 𝑚𝑒𝑓𝑓  = 47 pg (Figure 4.1). 

 

Figure 4.1 Nanomechanical micro-cantilever. (a) In-plane dimensional schematic of the cantilever. (b) False colour 

scanning electron microscope image of the cantilever, taken at a 30° viewing to the free-standing gold membrane surface 

normal along vertical direction. (Purple: Si frame, Yellow: gold membrane) 
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The secondary electron flux generated by scattering of an electron beam tightly focused on the 

edge of the membrane is highly sensitive to its position (see section 4.2 experimental method part). 

Position measurements as a function of time reveal Gaussian distributions of the membrane’s 

position and velocity with root-mean-square values of √〈𝑥2〉= 8.3 nm and √〈𝑣2〉= 0.30 mm/s, 

respectively (Figure 4.2). The natural oscillation frequency of the cantilever 𝜔𝑚/2𝜋 = 5.7 kHz and 

the damping time 𝜏𝑏  =  1/𝛾𝑚  = 14 ms were evaluated from the Fourier spectrum of the 

displacement autocorrelation function. 

 

Figure 4.2 Thermomechanical motion of a gold nano-membrane cantilever measured by free electron edge scattering. 

Time series recording of displacement (a) and corresponding [derived] velocity (b) of the tip of a cantilever moving in its 

fundamental flexural mode under vacuum. (c) and (d) show corresponding displacement and velocity distributions. 

Overlaid black lines are Gaussian fittings. (e) and (f) show zoomed in sections of (a) and (b) respectively, in which the 

oscillatory period of the mode 𝜃 = 1.75×10-4 s is resolved. 

To reveal the detailed nature of nano-membrane cantilever thermal motion, from the experimental 

data we evaluate mean squared displacement 〈[∆𝑥(𝜏)]2〉  as a function of observation time 𝜏 

(Figure 4.3a). For small observation intervals 𝜏 ≪ 𝜃 (where 𝜃 = 1.75×10-4 s is the oscillation period 

of the cantilever) the mean squared displacement 〈[∆𝑥(𝜏)]2〉 grows quadratically with τ. This is 

direct evidence of the ballistic motion regime, as it means that velocity is constant over the 

observation interval. This is confirmed by the normalized velocity autocorrelation function 

〈𝑣(𝑡)𝑣(𝑡 + 𝜏)〉/ (𝑘𝐵𝑇 𝑚𝑒𝑓𝑓⁄ ) plotted in Figure 4.3b, which evaluates how close the velocity at the 

end of the observation period is to the velocity at the beginning. At short time intervals, the near-

unity value of the autocorrelation function is again explicit evidence of the ballistic regime. From 
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Figure 4.3a one can conclude that over intervals up to ~10-5 s the cantilever essentially moves 

ballistically over average distances up to 3 nm.  

In essence, the ballistic regime implies that within a short observation interval 𝜏 ≪ 𝜃, the natural 

oscillation of the cantilever is not significantly disturbed by momentum transfer related to the 

annihilation and creation of individual flexural phonons. Here, the emission and absorption of 

thermal photons makes a negligible contribution because of their low momentum. At room 

temperature (𝑇 = 300 K) the average number of thermal phonons [30, 119] with energy ℏ𝜔𝑚 in the 

flexural mode is 𝑛̅𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≈ 𝑘𝐵𝑇 (ℏ𝜔𝑚)⁄  = 1.1×109, while the average lifetime of the flexural 

phonons can be evaluated as  (𝑛̅𝑡ℎ𝑒𝑟𝑚𝑎𝑙γ𝑚)−1 = 13 ps, during which time the cantilever moves an 

average distance of √〈𝑣2〉/(𝑛̅𝑡ℎ𝑒𝑟𝑚𝑎𝑙γ𝑚)  = 3.9 fm. One can observe that phonon momentum 

transfer events begin to affect the ballistic regime of natural oscillation only when the observation 

intervals τ > 10-5 s, i.e., about 6% of the oscillation period 𝜃. During this period of observation 

(𝑛̅𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝛾𝑚)𝜏 ~106 phonons out of the ~1.1×109 in the mode are created and dissipated.  

For longer observation periods, 〈[∆𝑥(𝜏)]2〉 becomes a complex oscillating function of 𝜏. A truly 

diffusive regime, wherein 〈[∆𝑥(𝜏)]2〉  ∝  𝜏  and which is characteristic of free Brownian particle 

movement, is not observable in underdamped cantilevers, where the dynamics are affected by a 

restoring force. The statistical properties of cantilever thermal motion are described by the 

Langevin model [83, 84] for a harmonic oscillator (as discussed in section 2.2): 𝑥̈ +  𝛾𝑚𝑥̇ + 𝜔𝑚
2 𝑥 =

𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓⁄ , where 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) = √2𝑘𝐵𝑇𝛾𝑚𝑚𝑒𝑓𝑓𝜂(𝑡) is the thermal force related to the 

dissipation factor 𝛾𝑚  through the fluctuation-dissipation theorem [67], 𝑘𝐵 is the Boltzmann 

constant, and 𝜂(𝑡) is a delta-correlated normalized white noise term: 〈𝜂(𝑡)〉 = 0; 〈𝜂(𝑡)𝜂(𝑡′)〉 =

𝛿(𝑡 − 𝑡′). There is a good correlation between experimental data (blue data points in Figure 4.3ab) 

and the Langevin model predictions (orange lines) 

  〈[∆𝑥(𝜏)]2〉 = 〈|𝑥(𝑡) − 𝑥(𝑡 + 𝜏)|2〉 =
2𝑘𝐵𝑇

𝑚𝑒𝑓𝑓𝜔𝑚
2 [1 − 𝑒

−
𝜏

2𝜏𝑏 (𝑐𝑜𝑠𝜔1𝜏 +
𝑠𝑖𝑛𝜔1𝜏

2𝜔1𝜏𝑏
)] (4.1.1) 

over the entire range of observation times, particularly at 𝜏 << 𝜃 where the value of 〈[∆𝑥(𝜏)]2〉 

accurately follows the 𝜏2(𝑘𝐵𝑇/𝑚𝑒𝑓𝑓)  dependence derived from the model. 𝜔1 =

√𝜔𝑚
2 − (𝛾𝑚 2⁄ )2 being the damped angular frequency. The analytical curves are not fittings to the 

data using any kind of scaling parameters – the near-perfect match seen in Figure 4.3 is obtained 

using only the measured values of 𝑚𝑒𝑓𝑓, 𝜔𝑚 and 𝛾𝑚.  
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Figure 4.3 Statistics of nano-membrane cantilever thermal motion - comparison between experiment and analytical 

theory. (a) Mean squared displacement 〈[∆𝑥(𝜏)]2〉 of the membrane cantilever tip as a function of the observation time 

interval 𝜏. Experimental data are plotted as blue circles; The orange line is derived from the Langevin model for thermal 

motion of a harmonic oscillator; The violet dashed line is an asymptote for ballistic motion at a constant velocity of 

√𝑘𝐵𝑇/𝑚𝑒𝑓𝑓 = 0.297 mm/s. (b) Normalized velocity autocorrelation function 〈𝑣(𝑡)𝑣(𝑡 + 𝜏)〉/(𝑘𝐵𝑇 𝑚𝑒𝑓𝑓⁄ ) as a function 

of the observation time interval, again showing experimental data (blue points) overlaid with analytical theory (orange 

line) (c) Measured cantilever tip velocity distribution for an observation time interval 𝜏 = 4.7 μs [blue circles]. Solid lines 

are Maxwell-Boltzmann distributions: blue, as a best-fit to the experimental data, with√〈𝑣2〉 = 0.303 mm/s; Orange, with 

√〈𝑣2〉 = 0.297 mm/s from equipartition theorem. (d) Experimentally measured values of 1

2
𝑘〈𝑥2〉 [potential energy, green 

symbols and line] and 1

2
𝑚𝑒𝑓𝑓〈𝑣2〉 [kinetic energy, purple line] as functions of the observation time 𝜏. At short timescales, 

where 𝑣 represents the well-defined ballistic velocity, the latter equates to kinetic energy. Error bars on experimental 

data points represent the standard deviation over a number of repeated independent measurements. Yellow shaded 

zones in (a), (b) and (d) denote the ballistic regime. 

In the ballistic regime of motion (𝜏 ≪ 𝜃) nanomembrane cantilever velocity 𝑣 is well defined, so 

the distribution of velocities over an ensemble of sampling events can be established, as plotted in 

Figure 4.3c for the shortest observation interval 𝜏  = 4.7 μs. A Maxwell-Boltzmann velocity 

distribution fitting 

 𝑓(𝑣) = √
𝑚𝑒𝑓𝑓

2𝜋𝑘𝐵𝑇
𝑒𝑥𝑝 (−

𝑚𝑒𝑓𝑓𝑣2

2𝑘𝐵𝑇
) (4.1.2) 

to the data yields variance, i.e., a root-mean-square velocity √〈𝑣2〉= 0.303 mm/s that is well-

matched to the value obtained from energy equipartition theorem: √𝑘𝐵𝑇/𝑚𝑒𝑓𝑓= 0.297 mm/s. The 

small 2% discrepancy between these values is related to the shot noise of the electron beam current 

in the experimental case. Compliance with the equipartition theorem, which stipulates that the 
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Boltzmann energy 𝑘𝐵𝑇 should be equally distributed between potential and kinetic energies of the 

cantilever is also illustrated in Figure 4.3d. Figure 4.3d shows experimental values of 1

2
𝑘〈𝑥2〉 and 

1

2
𝑚𝑒𝑓𝑓〈𝑣2〉  as functions of the observation time interval 𝜏  (𝑘 = 𝑚𝑒𝑓𝑓𝜔𝑚

2  being the cantilever's 

spring constant). The former equates to the potential energy of the cantilever; the latter equates 

to kinetic energy only at short intervals 𝜏 ≪ 𝜃 , where 𝑣  represents the well-defined ballistic 

velocity. Convergence of the two traces at short timescales thereby confirms equipartition of kinetic 

and potential energies in the ballistic regime (the yellow shaded band in Figure 4.3d). 

The observations of the thermomechanical motion of a nano-membrane cantilever reveal the 

following dynamics: At short timescales, up to about 10 μs the membrane moves with constant 

velocity (i.e. ballistically), with the average displacement being directly proportional to the 

observation time interval. Brownian-like dynamics emerge for longer observation times, when 

membrane motion is caused by multiple phononic creation/annihilation events: average 

displacement becomes a sub-linear function of the observation time. When length of the 

observation interval becomes equal to the natural oscillation period, average displacement reaches 

a minimum. For intervals much longer than the oscillation period, the mean squared displacement 

2𝑘𝐵𝑇 (𝑚𝑒𝑓𝑓𝜔𝑚
2 )⁄  is proportional to temperature and is independent of observation time. High 

sampling-rate measurements of the instantaneous trajectory of the cantilever provide direct 

verification of the thermal equipartition theorem and the Maxwell-Boltzmann distribution of 

velocities for the membrane. 

4.2 Experimental method on ballistic motion detection 

The displacement measurements technique is based on monitoring the secondary electrons flux 

created by scattering of the tightly focused electron beam on the sharp edge on the moving object 

as developed in Chapter 3. In this measurement, a focused electron beam with acceleration voltage 

𝑉 = 5 kV and a beam current 𝐼𝑒 = 690 pA (larger spot size will give larger linear measurement regime 

reducing high electronic harmonic signals) incident on the vertical edge center of cantilever tip to 

pick out the fundamental flexural thermal oscillation at room temperature in high vacuum of 

2.6×10-6 mbar. In order to obtain more projection of movement into the plane perpendicular to the 

incident electron beam, sample was attached on a 45-deg pretilt stub. The structure’s thermal 

movement is probed at different positions using focused electron beam to discern the mode shapes 

of the first 3 mechanical modes. Figure 4.4b-f show the Fourier transform of the position 

autocorrelation function (i.e., position power spectral density, PSD) obtained from the measured 

real time displacement 𝛿𝒓(𝑡). 
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Figure 4.4 Experimental evidence of separating out the fundamental out-of-plane mode. (a) Measuring 45-degree tilted 

cantilever sample at 3 different noted positions. (b) Displacement power spectral density (PSD, obtained from the real 

time position measurement) in unit of nm2/Hz of the cantilever measured at the centre position of unclamped end at 

noted by red dot in (a). Fundamental out-of-plane mode is clearly measured as shown by the resonance peak around 5.7 

kHz. The peak around frequency of 11.4kHz is the second harmonics. (c) zoomed in of (b) reveals resonance around 15.7 

kHz corresponds to the first torsional mode. (d) zoomed in section of the spectrum from panel (a), reveal no detectable 

thermal vibration within this frequency range when focusing the electron beam at the centre of the cantilever, along its 

vertical edge. (e) Measurement at the long edge of the cantilever reveals the torsional oscillations. (f) Displacement PSD 

measured at the corner of cantilever reveals Brownian oscillations of all three modes. 

As can be seen in Figure 4.4b, when measuring at the center of the vertical edge as indicated by the 

red dot in Figure 4.4a, fundamental out-of-plane mode is revealed with good signal to noise ratio. 

The effective mass 𝑚𝑒𝑓𝑓  and mechanical quality factor 𝑄  for the cantilever’s fundamental 

oscillatory mode are obtained by fitting the following analytical expression for displacement power 

spectral density Equation (2.2.10). 

As indicated by the purple dot in Figure 4.4a, while measuring along the horizontal long edge away 

from its tip part clearly reveal the fundamental torsional mode (Figure 4.4e). Also, if one measured 

at the corner of the cantilever as indicated by the orange dot in Figure 4.4a, all 3 modes can be 

clearly revealed with fundamental in-plane mode showing by peak around 80 kHz in Figure 4.4f. As 

can be seen from Figure 4.4c, zoomed frequency range of Figure 4.4b, fundamental torsional 

mechanical movement signal around 15.7 kHz is suppressed by 4 orders of magnitude while the 

fundamental in-plane mode signal at ~ 80 kHz (see Figure 4.4d) is well below the shot-noise level 

when measuring at the center of the vertical edge of the cantilever. One can also see spurious 

signals at integer multiples of the strongest modulation frequencies (i.e. high-order harmonics) in 

Figure 4.4b-c,e due to the nonlinear transduction [120] of movement at larger displacement. 
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4.3 Disturbance of cantilever movement by the probe electron-beam 

In keeping with prior works [105] I assume that around 2.5% of incident electron beam power is 

absorbed as heat 𝐻𝑎𝑏𝑠  =  0.025𝐼𝑒𝑉 ~100 nW. Using evaluation method described in section 3.5.3, 

the cantilever temperature is increased by electron bombardment by 𝛿𝑇 ~ 0.4 K resulting in a 

negligible relative increase of the root mean square thermal displacement of the cantilever by only 

one part in (√1 + 𝛿𝑇/𝑇 − 1) ~7×10-4. 

The force related to momentum transfer from the electron beam is 𝐹𝑟𝑎𝑑 =
𝐼𝑒

𝑒
√2𝐸𝑒𝑚𝑒 ~1.6×10-13 

N. Assuming a spring constant for the cantilever of 60 μN/m (from finite element modelling), this is 

sufficient to induce static tip displacement of ~2.6 nm. This is much smaller than the (30 nm) 

thickness of the cantilever, equating to cantilever rotation about the anchor point of only ~0.002°, 

and is of negligible consequence to its thermal motion dynamics. 

4.4 Summary 

To conclude, based on the technique developed in Chapter 3 and incorporating the new dimension 

of microsecond temporal resolution, in this chapter I have reported the first observation of the 

ballistic regime of thermal movements of a microcantilever membrane driven internally by 

momentum transfer from the annihilation and creation of the flexural phonons under vacuum, thus 

unveiling the physics of thermodynamics in micro/nano-mechanical structures. 

The measured ballistic regime behaviour agrees very well with the one predicted by the Langevin 

model: membrane moves with constant velocity (i.e. ballistically), with the average displacement 

being directly proportional to the observation time interval. Over intervals up to ~10-5 s, the 

cantilever essentially moves ballistically over average distances up to 3 nm. 

High sampling-rate measurements of the instantaneous trajectory of the cantilever provide direct 

verification of thermal equipartition theorem and the Maxwell-Boltzmann distribution of velocities 

for the membrane. 
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Chapter 5 Subatomic optical localization beyond 

thermal fluctuations  

Is optical imaging and metrology of nanostructures exhibiting Brownian motion possible with 

resolution beyond thermal fluctuations? Over the past decade, spatial resolution in far-field optical 

imaging and metrology has improved far beyond the classical Abbé diffraction limit of 𝜆/2, where 

𝜆  is the wavelength of light. Nonlinear STED (stimulated emission depletion) and statistically 

enhanced STORM (stochastic optical reconstruction microscopy) techniques used in biological 

imaging [98, 100] now routinely achieve resolution of a few tens on nanometres, or better than 

𝜆/10. The application of artificial intelligence to the analysis of coherent light scattered by an object 

offers metrology with an accuracy of only a few nanometres, or better than 𝜆/100 [121], on a par 

with scanning electron microscopy. 

In this chapter I demonstrate an approach to optical measurements with absolute error reaching a 

previously unimaginable level of 𝜆/10,000 – a “sub-Brownian” length scale, equivalent to a fraction 

of the typical size of an atom, and several times shorter than the thermal motion amplitude of the 

target objects and the resolution of transmission electron (cryo)microscopy. In single-shot 

measurements one can determine object dimensions through a deep learning-enabled analysis of 

its scattering pattern when it is illuminated with coherent, topologically structured light (e.g., super-

oscillatory (SO) light) containing deeply subwavelength singularity features. 

In section 5.1, research background and basics of optical superoscillations are reviewed followed 

by the methods for designing and experimental generation of a super-oscillatory focus as described 

by our former group member’s work in refs. [122, 123] that are illustrated in section 5.2. Fabrication 

and characterisation of the nano-electro-mechanical double slit are described in section 5.3. 

Methodology and experimental results for deep learning-enabled optical measurements of 

nanowire position is presented in section 5.4 with details of the neural network architecture, 

training, and application procedures illustrated in section 5.4.1. Experimental results in terms of 

optical measurement under the illuminations of super-oscillatory and ‘plane-wave’ and analysis on 

the advantage of super-oscillatory light in metrology application are discussed in section 5.4.2.  

5.1 Optical superoscillation 

A systematic review of optical superoscillation can be found in refs. [124, 125]. Superoscillations 

are band-limited functions with the counterintuitive property that they can vary arbitrarily faster 

than their fastest Fourier component, over arbitrarily long intervals. Optical superoscillations are 
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rapid, subwavelength spatial variations of the intensity and phase of light, occurring in complex 

electromagnetic fields formed by the interference of several coherent waves [125]. The discovery 

of superoscillations stimulated a revision of the limits of classical electromagnetism — in particular, 

the studies of phenomena such as unlimitedly small energy hotspots, phase singularities, energy 

backflow, anomalously high wavevectors and their intriguing similarities to the evanescent 

plasmonic fields on metals [125]. Systematic study of optical superoscillations was recently revived 

in the context of quantum mechanics after Aharonov [126] showed that weak quantum mechanical 

measurements can have values outside the spectrum of the corresponding operator. In other words, 

a ‘local’ measurement of a value, such as the wavenumber of an optical wave, can be outside the 

range seen when a global measurement is taken [127]. In 2006, Berry and Popescu [128] showed 

that this implied optical waves could form arbitrarily small spatial energy localizations that 

propagate far from a source, and without the need for evanescent waves. However, only a small 

fraction of energy of the electromagnetic field can exist in the form of a superoscillation. Ferreira 

and Kempf showed [129] that the energy that can be channelled into the superoscillatory region 

decreases exponentially with the number of superoscillations. This is a particularly important and 

prohibiting limitation if one would like to use superoscillations for communication of high-

frequency information using a low-bandwidth communication line. The energy channelled into the 

super-oscillatory region also increases with the speed of oscillation, but only polynomially. In optics 

this means that as the size of an optical hot-spot is reduced, polynomially less energy of the wave 

can be concentrated in the hot-spot. The latter fact is crucial for optical superoscillation to be 

applied for sub-wavelength light localization and imaging [125]. In principle, there are no limitations 

on the size of the hot-spot: it can be as small as we wish, providing we do not care how much energy 

it contains. However, it is the energy of the hot-spot and noise characteristics of the device that 

determines the practical limits of how small the hot-spot can be while remaining useful in imaging 

or light-localization applications such as manufacturing with light or data recording [124, 125].  

While superoscillation may sound like an exotic and complicated phenomenon, it is often present 

in complex field patterns but can remain unnoticed due to their small amplitudes. For instance, 

following the approach of [130], it can be demonstrated simply in a one-dimensional wave 

consisting of six spatial Fourier components: 

 𝑓(𝑥) = 𝑎𝑒𝑖𝜑 = ∑(𝑎𝑛𝑒𝑖2𝜋𝑛𝑥)

5

𝑛=0

 (5.1.1) 

where 𝑎𝑛  are the Fourier coefficients (here 𝑎0  = 19.0123, 𝑎1  = −2.7348, 𝑎2  = −15.7629, 𝑎3  = 

−17.9047, 𝑎4 = −1.0000, 𝑎5 = 18.4910.) 



Chapter 5 

63 

 

Figure 5.1 One-dimensional superoscillation with discrete spectrum. (a) a super-oscillatory function (solid blue line) and 

its fastest Fourier component (dashed orange line). (b) Zoom of the function near the origin showing a narrow peak with 

rapidly oscillating phase (solid green line) in the nulls on either side. The super-oscillatory region is shaded in grey [130].  

Figure 5.1a shows the intensity of the wave |𝑓(𝑥)|2 and its fastest Fourier component cos(𝑘𝑚𝑎𝑥𝑥) 

with 𝑘𝑚𝑎𝑥  = 10π. The function appears to oscillate slowly compared with the fastest Fourier 

component, but if we examine the low intensity region near 𝑥 = 0 (Figure 5.1b), then one can see 

that there is an extremely narrow peak, about 10 times narrower than the fastest Fourier 

component! This peak demonstrates two of the characteristics of superoscillation, firstly that 

super-oscillatory features are generally of low intensity, and secondly that the phase 𝜑 is rapidly 

oscillating in the super-oscillatory region (green solid line in Figure 5.1b). The rapidly oscillating 

phase is often used as a signature of superoscillation: a function is said to be super-oscillatory in a 

region where the phase gradient 𝑘𝑙𝑜𝑐𝑎𝑙 = 𝑑𝜑 𝑑𝑥⁄ is greater than that of the fastest Fourier 

component of said function, 𝑘𝑙𝑜𝑐𝑎𝑙 > 𝑘𝑚𝑎𝑥. That is, the optical field is super-oscillatory if the local 

wavenumber is greater than the maximum wavenumber presents in the wave. This super-

oscillatory region is shaded in grey Figure 5.1b.  

5.2 Designing and generation of an optical superoscillation 

5.2.1 Designing an optical superoscillation 

In 2006, Berry and Popescu [128] showed theoretically that superoscillations could be created by a 

properly designed diffraction grating, and that they could propagate a significant distance from that 

grating. Their demonstration considered the evolution of the particular super-oscillatory function 

 𝑓(𝑥) = (cos 𝑥 + 𝑖𝑎 sin(𝑥))𝑁       (𝑎 > 1, 𝑁 ≫ 1) (5.2.1) 

both as a quantum mechanical wavefunction and an optical field in the paraxial approximation. 

They showed that as the optical field propagates away from a grating that created it, the super-

oscillatory sub-wavelength features are maintained over much greater distances than normal 
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evanescent features. They showed that, while diffraction causes the superoscillations to become 

larger, they can maintain their super-oscillatory nature over a distance of up to 14 wavelengths. 

This demonstration was extended to non-paraxial wave propagation in [131]. Indeed, as sketched 

in Figure 5.2a, the field cross section at the hot-spot along the direction parallel to the plane of the 

array may be presented as a superposition of partial waves emanated from individual holes/slits of 

the binary mask: 

 𝐸(𝑥) = ∑ 𝑎𝑛 cos (𝑘𝑛
||

𝑥 + 𝜑𝑛)

𝑛

 (5.2.2) 

Such a superposition resembles the structure of a super-oscillating function (5.2.1): for a certain 

combination of partial amplitudes 𝑎𝑛 , spatial frequencies 𝑘𝑛
||

, and phases 𝜑𝑛 , superoscillation 

features are created, similar to those illustrated in Figure 5.1. By designing and optimizing the 

arrangement of the slits array, one can obtain a one-dimensional super-oscillatory hot spot focusing 

as shown in Figure 5.2b. 

 

Figure 5.2 Formation of a superoscillatory feature by light diffracted on the hole/slit array. (a) Light diffracted through 

an optimized binary mask forming a super-oscillatory feature. This essentially is equivalent to an array of segmented 

plane wave source that interfere with each other and generates a cylindrical superoscillatory focusing in the far field. (b) 

Simulated intensity and phase mappings using Lumerical FDTD Solutions. 

Superoscillations are also remarkably common in random systems. It was shown that on average 

one third of the area of a two-dimension speckle pattern was super-oscillatory and this was 

extended to waves in more dimensions [124, 125]. Despite the abundance of naturally occurring 

superoscillations, it is also possible to instructively design a generator of an optical field with 

particular super-oscillatory features, such as a hot-spot of a particular profile. To do this, the spot 

is specified within a given field of view (FoV) as shown in Figure 5.3a; outside this field of view (that 



Chapter 5 

65 

is in the sideband region) the intensity is allowed to take any value. Indeed, it has been shown in 

[132] that any arbitrarily small field feature can be represented as a series of bandlimited functions 

if we are concerned only with a prescribed field of view. This may be achieved using the formulism 

of prolate spheroidal wavefunctions (PSWF) developed by Slepian and Pollack [133]. This is a 

complete set of functions which are orthogonal both within the limited field of view and across all 

space (including any sidebands). The main feature of prolate spheroidal wavefunctions is that they 

are bandlimited and therefore can be formed from conventional plane propagating waves. 

Therefore, the desired sub-wavelength hot-spot is represented as a sum of prolate spheroidal 

wavefunctions (Figure 5.3b), which can be truncated when a satisfactory level of approximation is 

achieved. Using the method described in [123], Figure 5.3c-f show the generated sub-wavelength 

super-oscillatory hot spot with FoV = 2𝜆  and FWHM = 0.42 𝜆 at wavelength 𝜆  = 488 nm from 

superposition of two circular prolate spheroidal functions 𝐸(𝑟 𝜆⁄ ) = 4.477 𝑆3(𝑟 𝜆⁄ ) + 𝑆4(𝑟 𝜆⁄ ), 

where 𝑟 is radial distance from the beam axis. 

 

Figure 5.3 Superoscillatory hot spot generated by superposition of circular prolate spheroidal wavefunctions. (a) 

Important parameters of a superoscillatory spot: the ratio of hot-spot and sideband intensities is a measure of conversion 

efficiency; the field of view, i.e., the area around the hot-spot which is not illuminated by sidebands, the ratio of the peak 

hot-spot intensity to the grass level intensity determines the finesse of optical fabrication and the noise level of imaging 

instruments. (b) First four terms of prolate spherical wavefunctions (PSWF). (c) A super-oscillatory focusing generated by 

the superposition of PSWF function 𝐸(𝑟 𝜆⁄ ) = 4.477 𝑆3(𝑟 𝜆⁄ ) + 𝑆4(𝑟 𝜆⁄ ). Intensity profile of the designed field along 

propagation direction. (d) Calculated full width half maximum (FWHM) value of the field along propagation direction. 

Simulated intensity (e) and phase (f) profiles in the transverse plane (𝑧 = 5 μm as indicated by the dashed lines in (c-d)). 

One can see several zones of phase jump and/or singularities. 
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5.2.2 Super-oscillatory light generation 

A super-oscillatory hot spot can be experimentally generated through a super-oscillatory lens (SOL), 

spatial light modulators (SLM) and digital mirror devices (DMD) [125]. Currently, most super-

oscillatory lenses are constructed with binary intensity or phase masks. The particle swarm 

optimization (PSO) algorithm has been widely employed [124]. Typically, the merit functions for 

optimization include the size of the central spot (FWHM), numerical aperture and size of the usable 

field of view (FoV). Super-oscillatory focusing can also be achieved using spatial light modulators 

(SLM) and a conventional microscope objective that focuses a beam with a carefully designed 

amplitude and phase profile using the method in the previous section (5.2.1) for precise tailored 

interference as shown in Figure 5.4. In experiment, a spatial light modulator for super-oscillatory 

hot spot generation as described by our former group member’s work in [122] was used. An input 

beam from a fibre-coupled laser is expanded and collimated, and is incident on an amplitude 

shaping SLM. The amplitude modulated beam is then imaged onto a phase modulating SLM, using 

a 4-f system. This phase and amplitude spatially modulated beam are then demagnified and imaged 

onto the back focal plane of the microscope objective: the field on SLMs and the focal plane of the 

objective are then related by a Fourier transform. In this setup any arbitrary field profile may be 

obtained at the microscope focal plane simply by encoding its Fourier transform on the SLMs. 

 

Figure 5.4 Creating superoscillations with spatial light modulators. Schematic of the setup for super-oscillatory (SO) 

focusing with SLMs. Light from a fibre-coupled laser is collimated, expanded, polarized and is incident on an amplitude 

modulating SLM. This beam from this SLM is imaged onto the phase SLM with a 1:1 telescope, and then demagnified onto 

the black focal plane of a microscope objective using a further telescope system. 

SLM-based super-oscillatory focusing, while similar in principle to focusing with binary SOLs, has a 

number of experimental differences [124, 125]: The SLM approach allows focal spots to be formed 
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at the focus of a microscope objective, giving a working distance of at least a few hundred microns, 

compared to the few tens of microns currently seen with binary SOLs, making experiments on rough 

surfaces or within thick objects easier. SLM focusing is also more suitable for reflection, or epi-

fluorescence, imaging, as it does not require a double pass through a binary SOL, but only through 

a standard microscope objective, and it may also be more suitable for optical scanning of the super-

oscillatory spot as performed in a laser scanning confocal microscope. On the other hand, the SLM 

system is more complex to align, consisting of a number of optical components and considerable 

free-space path length. The binary SOLs have only one component and require only a relatively easy 

to achieve collimated laser beam as input. The SLM system is also sensitive to aberrations in the 

optical system. Although these are somewhat corrected for by the eigenmode optimization, this 

does not remove all aberrations. Both binary SOLs and SLM super-oscillatory focusing rely on the 

spatial coherence of the input beam. 

5.3 Sample fabrication and characterization 

Experimentally, the nano-electro-mechanical double slit (Figure 5.5a) is cut by focused ion beam 

milling from a 50 nm thick Si3N4 membrane coated with 65 nm gold and the terminals at the 

nanowire ends were electrically separated by removing only the gold film layer in selected areas. 

The in-plane position of the suspended nanowire relative to a fixed edge of the surrounding 

membrane, i.e. the width of the gap between the nanowire and the membrane edge, could be 

controlled electrostatically [45] with high precision over a few nanometer range through the 

application of a DC bias across the gap. 

 

Figure 5.5 Nano-electro-mechanical double slit and switching behaviour characterization. (a) SEM image of the 

fabricated sample. (b) Experimentally measured averaged gap width changes of the two slits or displacement of the 

nanowire 𝛿𝑥 as a function of applied bias 𝑉𝑏𝑖𝑎𝑠 as shown by data dots [determined from SEM imaging at the different 

measured positions] with analytical model fitting indicated by lines approaching 𝛿𝑥 = 0.996𝑉𝑏𝑖𝑎𝑠
2 . 



Chapter 5 

68 

The fabricated nano-electro-mechanical device (Figure 5.5a) has slits’ width of 100 nm and central 

nanowire’s width of 200 nm and total length of 17 μm including its 1 μm tapered ends of width 100 

nm. In order to determine its switching characteristics, the relative width change of two gaps 

against the bias of large amplitude was measured in a scanning electron microscope (SEM) while 

taking several images for its averaged displacement determination. The averaged gap width 

changes or the central nanowire’s center of mass position 𝛿𝑥  approximates to 𝛿𝑥~𝛼𝑓𝑖𝑡𝑉𝑏𝑖𝑎𝑠
2  at 

smaller bias with fitting parameter 𝛼𝑓𝑖𝑡 (depending on nanowire’s constituents and geometry) is 

determined to be 0.996 for the measured sample with analytical model fitting of its switching 

behavior in Figure 5.5b. Although each measurement by scanning electron microscope has an 

average uncertainty of ±1.2 nm, 4 measurements over a range of applied bias values enables 

determination of the quadratic dependence with high precision. 

5.3.1 Analytical description of switching characteristics 

Elastic nanostructures can be moved by electrostatic forces between charged objects and its 

electrostatically tunning and switching behaviour can be easily understood theoretically [45, 134, 

135]. In the electrostatic (low frequency) limit, here considering the balance of elastic restoring 

force and electrostatic attraction between an elastic nanowire structure and its neighbouring 

anchored membrane (Figure 5.6a) separated by a gap 𝑔. The restoring force is 𝐹𝑟 = 𝑘(𝑔0 − 𝑔) =

𝑘𝛿𝑥 , where 𝑔0  is the initial gap size and 𝑘~32𝑌ℎ 𝑤3 𝐿3⁄  is the spring constant for lateral 

displacement 𝛿𝑥 of a nano-bridge, with Young’s modulus 𝑌 and bridge thickness ℎ, width 𝑤 and 

length 𝐿. It can be shown from Gauss’ law that the electrostatic force between two parallel wires 

[135] with charge 𝑄𝑒  is 𝐹𝑒 = 𝑄𝑒
2/(2𝜋𝜀0𝐿(𝑔 + 𝑤))  and their gap-dependent capacitance (which 

determines 𝑄𝑒 ) is 𝐶 = 𝑄𝑒 𝑉𝑏𝑖𝑎𝑠⁄ = 𝜋𝜀0𝐿/𝑐𝑜𝑠ℎ−1(1 + 𝑔/𝑤), where 𝑉𝑏𝑖𝑎𝑠  is the applied voltage. 

From 𝐹𝑟 = 𝐹𝑒 follows that 

 𝑉𝑏𝑖𝑎𝑠 = 𝑉0√𝐷𝑟(1 + 𝑊 − 𝐷𝑟) 𝑐𝑜𝑠ℎ−1 (
1 + 𝑊 − 𝐷𝑟

𝑊
) (5.3.1) 

 

𝑉0 = √
64𝑌ℎ𝑤3𝑔0

2

𝜋𝜀0𝐿4
 

(5.3.2) 

where 𝐷𝑟 = 1 − 𝑔 𝑔0⁄ = 𝛿𝑥 𝑔0⁄  and 𝑊 = 𝑤 𝑔0⁄  are the relative displacement and relative width, 

𝑔 is the gap width of a given DC bias and 𝑤 is the nanowire width. In the lower voltage regime, the 

gap width change or the nanowire’s center of mass position in equilibrium 𝛿𝑥has a quadratic 

dependence on DC bias as detailed below. However, as the electrostatic force tends towards infinity, 

the gap approaches zero, there is a threshold voltage 𝑉0, where the elastic restoring force cannot 

balance the electrostatic force anymore (Figure 5.6b). 
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Figure 5.6 Switching behaviour of the nano-electro-mechanical double slit. (a) In-plane dimensional schematic of the 

double slit where nanowire is electrostatically controlled by DC bias. (b) Analytical model of switching characteristics 

according to equation (5.3.1) and its approximation fitting 𝛼𝑓𝑖𝑡𝑉𝑏𝑖𝑎𝑠
2  at lower DC bias regime. Dashed line indicated the 

irreversible switching happens at threshold voltage 𝑉0 . Inset: Logarithmic-logarithmic plot of switching dynamics 

demonstrates the displacement of the nanowire has quadratic dependence on the DC bias in the smaller relative 

displacement region (dashed line indicates 𝐷𝑟 = 0.04 as used in experiment for maximum relative displacement). 

In order to derive the relationship between the nanowire’s displacement and applied DC bias in the 

lower voltage regime, for simplicity of the derivation, the experiment sample parameters of width 

𝑤=200 nm and initial gap size 𝑔0 = 100 nm are used and therefore 𝑊 = 𝑤 𝑔0⁄ = 2. Substituting 

𝑊 = 2 into Eq. (5.3.1), one can obtain 

 𝑉𝑏𝑖𝑎𝑠~√𝐷𝑟(3 − 𝐷𝑟) 𝑐𝑜𝑠ℎ−1 (
3 − 𝐷𝑟

2
) (5.3.3) 

Using Puiseux series to expand the inverse hyperbolic cosine function [136], one can obtain 

 

𝑉𝑏𝑖𝑎𝑠~√𝐷𝑟(3 − 𝐷𝑟)√2 (
3 − 𝐷𝑟

2
− 1) [1 −

1

12
(

3 − 𝐷𝑟

2
− 1) +

3

160
(

3 − 𝐷𝑟

2
− 1)

2

+ ⋯ ] 

𝑉𝑏𝑖𝑎𝑠~√𝐷𝑟√3 − 𝐷𝑟√1 − 𝐷𝑟 [1 −
1

12
(

3 − 𝐷𝑟

2
− 1) +

3

160
(

3 − 𝐷𝑟

2
− 1)

2

+ ⋯ ] 

𝑉𝑏𝑖𝑎𝑠~√𝐷𝑟[𝑐0 + 𝑐1𝐷𝑟 + 𝑐2𝐷𝑟
2 + ⋯ ] 

(5.3.4) 

For the smaller displacement case: 𝐷𝑟 = 1 − 𝑔 𝑔0⁄ = 𝛿𝑥 𝑔0⁄  (in our experiment the maximum 𝛿𝑥 

= 4 nm and 𝑔0  is 100 nm and maximum 𝐷𝑟  =  0.04 ), higher order terms can be reasonably 

neglected and therefore, 

 𝑉𝑏𝑖𝑎𝑠~𝑐0√𝐷𝑟~𝑐0√
𝛿𝑥

𝑔0
 (5.3.5) 
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Thus, 

 𝛿𝑥~𝛼𝑓𝑖𝑡𝑉𝑏𝑖𝑎𝑠
2  (5.3.6) 

with fitting parameter 𝛼𝑓𝑖𝑡. The validity of this approximation can be seen from Figure 5.6b. The 

gap width change or the central nanowire’s center of mass position approximates 𝛿𝑥~𝛼𝑓𝑖𝑡𝑉𝑏𝑖𝑎𝑠
2  at 

smaller bias as shown in inset of Figure 5.6b with fitting parameter 𝛼 (depending on nanowire’s 

constituents and geometry) is 0.996 for the measured sample, one can see this fitting is valid for 

relative displacement change 𝐷𝑟<0.1 or 𝛿𝑥<10 nm for the measured sample. 

5.4 Deep learning-enabled optical measurements of nanowire position 

In optical measurement (Figure 5.7), the sample is illuminated, and scattered light is collected in 

transmission mode via a pair of 100×, NA = 0.9 microscope objectives. The computer-controlled 

wavefront synthesizer employed in this work is described in detail in section 5.2.2. It is based upon 

a pair of (Meadowlark P512) spatial light modulators – one for intensity and the other for phase 

modulation. In the present case, for laser light at a wavelength 𝜆 = 488 nm, it was programmed to 

generate an axially-symmetric superoscillatory wavefront constructed from two circular prolate 

spheroidal functions 𝐸(𝑟 𝜆⁄ ) = 4.477 𝑆3(𝑟 𝜆⁄ ) + 𝑆4(𝑟 𝜆⁄ ) , where 𝑟  is radial distance from the 

beam axis. In the ‘plane wave’ illumination regime, the synthesizer was configured to generate a 

defocused Gaussian beam profile having a (measured) intensity variance of only ±5% over the ~400 

nm width of the sample (i.e. including the nanowire and gap on either side). 

 

Figure 5.7 Measuring nanowire displacement via scattering of topologically structured light. Incident light scattered 

from the nanowire (in the present case, 17 μm long and 200 nm wide with a 100 nm gap on either side) is imaged in 

transmission through a high-NA microscope objective (not shown). Deeply-subwavelength lateral (x-direction) 

displacements of the wire, controlled by application of a DC bias between the wire and the adjacent edge of the 

supporting membrane, are quantified via a deep-leaning enabled analysis of single-shot scattering patterns. 
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To enable optical measurements of unknown nanowire positions, a dataset of single-shot scattering 

patterns recorded at different (electrostatically controlled) positions of the nanowire was created 

(Figure 5.8). Single-shot scattering pattern images for static nanowire displacements from zero to 

4 nm (applied DC bias of 0-2V in 10 mV steps) were recorded. Knowledge of said position is obtained 

from a priori measurement, under a scanning electron microscope, of the dependence of nanowire 

position on applied bias as discussed in section 5.3. 

5.4.1 Neural network architecture, training, and application procedures 

As shown in Figure 5.8, eighty percent of these images, selected at random, were used for neural 

network training, i.e., as scattering patterns for known positions of the nanowire. The trained 

network was then tasked with determining (nominally) unknown nanowire positions from 

previously unseen single-shot scattering patterns. 

 

Figure 5.8 Methodology for deep learning-enabled optical measurements of nanowire displacement. Using a 

superoscillatory structured incident light field as example, single-shot scattering pattern images for static nanowire 

displacements from zero to 4 nm (applied DC bias of 0-2V in 10 mV steps) were recorded. These were analysed using a 

convolutional neural network (CNN, containing 3 convolutional layers and 3 fully connected layers): 80% of images 

(selected at random) for training and validation, the other 20% for testing. 

The convolutional neural network (CNN) contained three convolution layers with, respectively, 

sixty-four 5×5, one hundred and twenty-eight 4×4, and two hundred and fifty-six 2×2 kernels, and 

three fully connected layers with 128, 256, 128 neurons. Each of the convolution layers was 

followed by a pooling layer with 4×4, 3×3, and 3×3 kernels with Rectified Linear Unit activation 

functions. The network was trained with the Adam stochastic optimization method and root mean 

square error loss function. More details on the introduction and implementation of the 

convolutional neural network can be found in Appendix A. 

The experimental dataset comprised scattering intensity patterns imaged with a 9𝜆 × 9𝜆 (350 × 350 

pixels) field of view at a distance 2𝜆 from the sample. These were recorded (for each regime of 



Chapter 5 

72 

illumination) at 201 different electrostatically-controlled positions of the nanowire, with x-direction 

displacements of ≤4 nm from its zero-bias equilibrium position. 64% of the images (selected at 

random) were used for network training, 16% for validation, with the remaining 20% then 

employed for testing (i.e. as scattering patterns for nominally unknown nanowire positions, to be 

determined by the trained network). For statistical purposes, i.e. to exclude the dependence of 

measurement outcome on the selection of training images, and their order of appearance in the 

training set, twenty independent iterations of the training, validation and testing procedure were 

performed. 

5.4.2 Experimental results and discussion 

Figure 5.9 shows the results of such measurements, as the absolute error in the optical 

measurement of nanowire position, retrieved by the trained neural network from the scattering 

pattern, against the ground truth (a priori calibrated) displacement values in the 10-1000 pm range. 

The statistical spread of datapoints is derived from twenty independent neural network training 

cycles. Experimental results show that nanowire position can be measured with a mean absolute 

error of as little as 76 pm using plane wave illumination and 28 pm with superoscillatory 

illumination. For comparison, the diameter of a silicon atom is ~220 pm. 

 

Figure 5.9 Optical measurements of nanowire displacement. Absolute error in measurements of nanowire displacement, 

using (a) plane wave and (b) topologically structured (superoscillatory) light field illumination, against actual displacement. 

Red horizontal lines show mean absolute errors for order-of-magnitude actual displacement bands, i.e. from 10-100 and 

100-1000 pm. (c) Magnitude of uncertainty in actual nanowire displacement. 

It’s noted that ground truth values of nanowire displacement were independently established by a 

priori measurements under a scanning electron microscope for a number of different bias settings 

and interpolated by a quadratic dependence. Indeed, the first non-zero term in the analytical 

expression for the dependence of nanowire displacement on applied bias must be quadratic as 

displacement does not depend on the sign of the bias; and higher order terms are negligible while 

the magnitude of displacement remains much smaller that the gap size (~100 nm). Although each 
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individual measurement by scanning electron microscope has an uncertainty of ±1.2 nm, a large 

number of measurements over a range of applied bias values enables determination of the 

quadratic dependence with high precision. Error propagation analysis yields an uncertainty in 

ground truth displacements of <0.4% of its value (as shown in Figure 5.9c). 

Optical metrology based upon analysis of scattered light is an inverse problem that can be reduced 

to the Fredholm integral equation, which can be efficiently solved by a neural network [121]. Recent 

work has demonstrated that this approach yields accuracy better than 𝜆/100 in measuring the 

width of gaps in an opaque film with plane wave illumination, using a neural network trained on a 

set of fabricated samples with a range of different gap sizes [121]. There are two major contributing 

factors to the hundredfold improvement in mean absolute error reported here: a radically better 

training process and the use of topologically structured superoscillatory light. 

Precisely tailored interference of multiple waves can form intensity “hotspots” in free space, with 

dimensions smaller than the conventional diffraction limit, as a manifestation of what is known as 

superoscillation. The electromagnetic field near a superoscillatory hotspot has many features 

similar to those in the vicinity of resonant plasmonic nanoparticles or nanoholes - hotspots are 

surrounded by phase singularities and nanoscale zones of energy backflow where phase gradients 

can be more than an order of magnitude larger than in a free propagating plane waves [137]. 

The use of such topologically structured light gives an advantage for AI-enabled metrology: The 

ability to evaluate small changes in the position of the nanowire depends upon the magnitude of 

associated changes in the scattered light field at distance z from the object  𝐴(𝑥, 𝑧)𝑒𝑖𝜙(𝑥) =

 𝑓(𝐴0(𝑥, 0)𝑒𝑖𝜙0(𝑥,0)), where 𝐴0(𝑥, 0) is the amplitude and 𝜙0(𝑥, 0) is the phase of the incident 

light in the xy object plane as illustrated in Figure 5.10 a-b. A small displacement in the object 

against the incident field in the x-direction results in a change in scattered light intensity 

𝛿𝐼(𝑥) ~ 𝛿𝐴0 (𝑥, 0)2 + 𝐴0 (𝑥, 0)2 𝛿𝜙0(𝑥, 0)2 . The first term in this expression is related to the 

change of illumination intensity associated with the object’s positional shift, while the second 

relates to the corresponding change in phase. The phase-dependent term is absent for plane wave 

illumination, but can be large under superoscillatory illumination, when the object traverses a small 

(deeply subwavelength) feature of the incident field, such as a singularity, where the phase 

𝜙0(𝑥, 0) jumps by 𝜋. 

The responses of scattered plane wave and topologically structured light fields to displacement of 

an illuminated nanowire are also illustrated, through computational modelling, in Figure 5.10c-f. 

Numerical simulations were performed using Lumerical FDTD Solutions. Silicon nitride is taken to 

have a refractive index 𝑛 = (2 +  0𝑖), while parameters for gold are those by Johnson & Christy. 

Incident light is polarized parallel to the nanowire and perfectly matching layer (PML) boundary 
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conditions are used. The incident superoscillatory field was generated through a binary amplitude 

mask as detailed in Ref. [137]. 

 

Figure 5.10 Sensitivity of scattered fields to small nanowire displacements. (a) Electric field amplitude and phase 

distributions of the superoscillatory field in the focal plane. (b) Phasor diagram of the electric field change 𝛿𝐸 induced by 

a smaller movement 𝛿𝑥. For PW illumination, only electric field amplitude change, while structured light induces both 

amplitude and phase change with larger intensity change. (c) Intensity and (d) phase profiles of the superoscillatory field 

in the xz plane [light propagating in the +z direction, wavelength λ = 488 nm]. The sample – a nanowire in the gap between 

two semi-infinite sections of membrane – lies in the z = 0 plane [its cross-sectional profile being shown in green in (c) and 

grey in (d)]. (e) Relative change in scattered light intensity resulting from a λ/1000 displacement of the sample in x-

direction along a cross-sectional line through the scattering pattern in the sampling plane [the line PQ in Figure 5.7] as a 

function of the initial position x0 of the sample relative to the symmetry axis of the light field. (f) Corresponding plot of 

relative change in scattered light intensity for plane wave illumination of the same sample structure. 

The incident superoscillatory wavefront (detailed in Ref. [137]) has a central intensity maximum 

(Figure 5.10c) flanked by phase singularities and zones of high phase gradient (Figure 5.10d). The 

case where these singularities lie in the nanowire sample plane is considered here. As a figure of 

merit for the sensitivity of the scattered field to small displacements of the nanowire, Figure 5.10e 

presents the magnitude of the relative change in scattered light intensity induced by a λ/1000 (~0.5 
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nm) shift in nanowire position, as a function of (horizontally) image plane coordinate and (vertically) 

the initial position of the sample within the structured light field. The scattered field intensity is 

strongly dependent on both, with largest changes (of up to 0.08%), occurring when a sharp edge of 

the nanostructure coincides with a phase singularity in the incident superoscillatory field. For 

comparison, Figure 5.10f shows the same for plane wave illumination. Here, the variations in 

scattered field intensity are smaller (reaching only 0.03%) and relatively weakly dependent on both 

image plane coordinate and lateral position of the sample. The contrast between Figure 5.10e and 

f explains the better mean error of positional measurement achieved with superoscillatory, as 

compared to plane wave, illumination (Figure 5.9). 

The quality of artificial intelligence is directly related to the quality of training data for the neural 

network. The possibility here to achieve picometric levels of absolute error results firstly from the 

use of a training set that is ultimately congruent with the object of interest: the same 

electrostatically reconfigurable nanostructure is used for training and as the object of metrological 

study. Moreover, ground truth positional displacement values are much more precisely calibrated 

in this singular electrostatically controlled gap sample (Figure 5.9c) than they are in previously 

employed sets of mutually independent training samples fabricated with typically few-nanometer 

tolerance [101, 121].   

The reported results represent the first example of “sub-Brownian” optical metrology – the 

measurement of object dimensions/displacements smaller than the amplitude of its thermal 

motion. The amplitude of nanowire thermal vibration can be evaluated from the Langevin oscillator 

model: in the present case, the nanowire’s fundamental in-plane oscillatory mode at 𝑓𝑚 = 1.6 MHz 

with effective mass 𝑚𝑒𝑓𝑓 = 2 pg has an average thermal fluctuation amplitude of 𝛿𝑥𝑅𝑀𝑆 =

√𝑘𝐵𝑇 (4𝜋2𝑚𝑒𝑓𝑓𝑓𝑚
2)⁄   ~ 145 pm at room temperature 𝑇= 300 K (𝑘𝐵 is the Boltzmann constant), i.e. 

a value markedly higher than the achieved (superoscillatory illumination) measurement error of 

~30 pm. This is possible because measurements are performed with a detector integration time of 

~100 ms and thus return the mean position of the nanowire, which oscillates thermally with a much 

shorter (~0.6 μs) period. Measurements are single-shot, and do not require scanning of the object, 

so they can be performed in binning mode, with a frame rate equal to that of the image sensor, 

which can reach MHz. 

5.5 Summary 

In summary, in a proof-of-principle experiment using a nano-electro-mechanical double slit sample, 

the relative positions of nanostructures can be measured with picometric resolution using 
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scattering of topologically structured light that is far below the reported accuracy [101, 103, 121]. 

Through artificial intelligence enabled analysis of scattered coherent light, sub-atomic resolution is 

achievable in single-shot measurements below the thermal vibration amplitude with sufficient 

exposure time longer than vibration damping time.  

In this chapter, I have also analytically studied and experimentally demonstrated that structured 

light shows superiority in the motion measurement compared with conventional beam as a result 

of its rapid spatial variations. It’s shown that nanowire position can be measured with a mean 

absolute error of as little as 76 pm using plane wave illumination and 28 pm with superoscillatory 

illumination. This shows that a nanostructure’s position in the plane perpendicular to the direction 

of light propagation can be accurately measured through scattering patterns when light passes 

through. 
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Chapter 6 Optical detection and control of thermal 

fluctuation in nano-optomechanical metamaterials 

The combination of optical resonators and nanomechanical resonators undergoing pico- or 

nanoscale movement actuated by electromagnetic forces [6, 30], thermal fluctuation [67], and 

quantum vacuum fluctuations [24, 25], on one hand, has enabled new platforms to efficiently 

reconfigure optical properties [6, 30] opening up the new field of picophotonics research [22] and  

applications in frequency conversion [138-143], which are of interest for communications and 

interfacing quantum systems operating at different frequencies [144]. On the other hand, strong 

nano-opto-mechanical interaction also enable optical readout of displacement, as discussed in 

section 1.2, and the control of nanomechanical oscillators as a result of dynamical backaction. This 

allows mechanical cooling [145], electromagnetic induced transparency [146], topological phonon 

transport [147], nonreciprocity [148, 149], and can facilitate mechanical nonlinearity leading to 

hybrid bistability [150, 151], phononic frequency combs [152], and optomechanical dissipative 

micro-solitons [152] at low laser intensity levels.  

In this chapter, I demonstrate optical parametric control of thermomechanical motion in an array 

of nano-optomechanical resonators. A parametric oscillator is a harmonic oscillator in which 

oscillations are driven by periodically varying a parameter (such as the mass or spring constant) of 

the system at a frequency typically different from the natural frequency of the oscillator. I 

performed experiments on the optical parametric control of thermal motion via modulation of 

photothermal heating of nanowires; on tunable phononic frequency comb generation at microwatt 

laser power levels, by combining parametric control of a mechanical oscillator with the action of 

pondermotive optical forces originating from dipole-dipole interactions within the metamaterial; 

and on dynamic optomechanical coupling between two distinct doubly-clamped nanowires driven 

by fluctuating thermal forces, via parametric pumping at the difference frequency of their 

mechanical resonances. These experiments were conducted with a nano-optomechanical 

metamaterial sample (a free-standing array of flexible silicon nitride nanowires decorated with 

pairs of dissimilar silicon nanobricks) fabricated by my colleague Dr Jinxiang Li, and an experimental 

setup that he developed originally for the study of optomechanical asymmetry [153]. 

In section 6.1, I present the optomechanical interactions including optical force enhancement 

within metamaterials and mechanical frequency tuning as a result of a photothermal tuning 

mechanism, whereby laser-induced heating decreases tensile stress in the nanowires. Section 6.2 

details the design and measured optical properties of the nano-optomechanical metamaterial 

sample used in subsequent experiments, and the optical detection of thermomechanical 
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fluctuations in the sample is described in section 6.3. Experiments on the parametric control of 

thermal vibrations and tunable phononic frequency comb generation are presented in section 6.4 

together with an analysis of the evolution of thermomechanical spectra and the dynamic 

photothermal response of nanowires. Lastly, section 6.5 presents experiments demonstrating 

energy transfer between two parametrically coupled nanowires in a nano-optomechanical 

metamaterial system. 

6.1 Optomechanical effects in photonic metamaterials 

Optomechanical interactions in nanomechanically reconfigurable photonic metamaterials are 

generally of two kinds: first, dissipative interactions such as spring softening effect as a result of 

optical heating due to the photonic nanostructures’ light absorption. And second, interactions 

underpinned by optical forces, i.e. radiation pressure and the gradient force. 

6.1.1 Optical force enhancement within metamaterials 

The component of the total averaged force 〈𝑭〉 acting on a metamaterial structure illuminated with 

light is calculated using a surface integral: 〈𝐹𝑖〉 = ∯〈𝑇𝑖𝑗〉𝑛𝑗𝑑𝑆 , where 𝑆  is a bounding surface 

around the metamaterial element, 𝑛𝑗 is the unit vector pointing out of the surface and 〈𝑇𝑖𝑗〉 is the 

time-averaged Maxwell stress tensor [134, 154]: 

 〈𝑇𝑖𝑗〉 = 1 2⁄ 𝑅𝑒[𝜀𝑟𝜀0(𝐸𝑖𝐸𝑗
∗ − 1 2⁄ 𝛿𝑖𝑗|𝐸|2) + 𝜇𝑟𝜇0(𝐻𝑖𝐻𝑗

∗ − 1 2⁄ 𝛿𝑖𝑗|𝐻|2)] (6.1.1) 

where 𝐸 and 𝐻 are the total electric and magnetic fields (obtained from 3D finite element Maxwell 

solver simulations in COMSOL Multiphysics), 𝛿𝑖𝑗  is Kronecker's delta, 𝜀0  ( 𝜇0 ) is the vacuum 

permittivity (permeability) and 𝜀𝑟 (𝜇𝑟) is their relative counterpart, and 𝑅𝑒 stands for the real part. 

The element 𝑖𝑗 of the Maxwell stress tensor has units of momentum per unit of area per unit time 

and gives the flux of momentum parallel to the 𝑖th axis crossing a surface normal to the 𝑗th axis (in 

the negative direction) per unit of time [134, 154]. The stress tensor integral equation encompasses 

both the radiation pressure and the near-field gradient force, while not including Casimir forces 

derived from vacuum quantum fluctuations (which exist even in the absence of illumination).  

To enhance out-of-plane forces, one possible method is to take advantage of high-quality factor 

Fano resonances [155] or bound states in the continuum (BIC) [156] in Mie-scattering. The inset of 

Figure 6.1b shows dimensional schematics of the BIC dielectric optomechanical metamaterial, 

manifesting such an effect. The periodicity of the square unit cell is 900 nm. The widths of the two 

150 nm thick silicon bricks separated by a 150 nm wide air gap are 200 nm and 250 nm, respectively, 

and they are supported by 50 nm thick silicon nitride (Si3N4) having refractive index of 𝑛𝑆𝑖3𝑁4
 = 2.0. 
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Silicon is assumed to be lossless with a refractive index of 𝑛𝑆𝑖 = 3.48 in the near-infrared range being 

considered. Under 𝑥-polarized plane wave illumination normally incident in the 𝑧 direction, this 

structure presents a sharp transmission Fano-resonance at a wavelength that depends on the 

length of the narrow nanobars (see Figure 6.1a). This is a result of the antiphase oscillation of 

displacement currents generated in the two bars. As can be seen from Figure 6.1b, relative optical 

radiation pressure is enhanced around tenfold compared with a perfect reflector at normal 

incidence, where radiation pressure is 2𝑃 𝑐⁄  at maximum. This enhancement is attributed to 

momentum transfer from photons stored in the high-quality factor cavity with unity reflection 

formed by the unit cell, while optical force cancellation happens at wavelengths where unity 

transmission happens. 

 

Figure 6.1 Out-of-plane optical force enhancement in nano-optomechanical metamaterials. (a) Numerically simulated 

reflection (R) and transmission (T) spectra of a metamaterial with unit cell comprising a pair of asymmetric silicon 

nanobars with different lengths for normally incident x-polarized light with narrow silicon nanobrick of length 600 nm 

and 650 nm, respectively, as shown in inset of (b). (b) Spectral dispersion of out-of-plane optical forces in z-direction on 

the constituent nanobars of the dielectric metamaterial. Optical force is presented in units of 𝑃 𝑐⁄ , where 𝑃 is the incident 

power per unit cell and 𝑐 is the speed of light in vacuum. 

In order to enhance in-plane optical forces within a metamaterial, one may enhance the fields, and 

thereby field gradients, within the plane of the structure. Figure 6.2a plots the numerically 

simulated optical spectra of a Mie-scattering based electromagnetic induced transparency (EIT) 

metasurface (unit cell dimensions detailed in the inset, Si and Si3N4 layers have thickness of 150 nm 

and 50 nm) in the lossless (𝑛𝑆𝑖  =  3.48) and lossy cases (𝑛𝑆𝑖  =  3.48 +  0.01𝑖 ) for normally 

incident x-polarized light. The refractive index of silicon nitride (Si3N4) is 𝑛𝑆𝑖3𝑁4
 = 2.0. A clear 
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transparency window in the transmission spectra is observed (Figure 6.2a), as the result of 

destructive interference between “bright” mode (excited electric dipole in the upper nanobars) and 

“dark” mode (excited magnetic dipole in the lower nanobars through energy exchange from upper 

nanobars). As can be seen in Figure 6.2b, in-plane attractive optical force enhanced approximately 

an order of magnitude as a result of the local field enhancement between the two component parts. 

However, as can be seen, optical force is loss dependent. The higher the absorption, the smaller is 

the optical force. 

 

Figure 6.2 In-plane optical force enhancement in nano-optomechanical metamaterials. (a) Numerically simulated 

reflection (R), transmission (T) and absorption (A) spectra of a metamaterial with unit cell comprising nanobars arranged 

in Π shape for normally incident x-polarized light in lossless 𝑛𝑆𝑖  = 3.48 (solid lines) and lossy 𝑛𝑆𝑖  = 3.48 + 0.01𝑖 cases 

(dashed lines), respectively. Inset: Dimensional schematic view of a metamaterial unit cell. (b) Spectral dispersion of in-

plane optical forces on the constituent nanobars of the dielectric metamaterial. Optical force is presented in units of 𝑃 𝑐⁄ , 

where 𝑃 is the incident power per unit cell and 𝑐 is the speed of light in vacuum. The inset shows a map of the optically 

induced charge distributions at a wavelength of 1285 nm in terms of the instaneous electric field 𝐸𝑧 that these changes 

generate normal to the metamaterial surface. 

6.1.2 Photothermal tuning mechanism within nano-optomechanical metamaterial 

Generally, in a nano-optomechanical system, heating of a mechanical beam, as a result of increasing 

light absorption, will result in a stress reduction due to thermal expansion. Optical heating changes 

the stress 𝜎 in a mechanical beam through the thermal expansion coefficient 

 𝜎 = 𝜎𝑜 + 𝜎𝑡 = 𝜎𝑜 − 𝛼𝑌𝛿𝑇 (6.1.2) 
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where 𝜎𝑜 is the initial stress at the initial temperature 𝑇0, 𝜎𝑡 = −𝛼𝑌𝛿𝑇 is the temperature change 

𝛿𝑇 related stress change, 𝛿𝑇 is the average temperature increase of the mechanical beam, 𝑌 is its 

Young’s modulus, and 𝛼 is its thermal expansion coefficient. According to Euler–Bernoulli beam 

theory, the resonant frequency 𝑓(𝜎) of a pre-stressed doubly-clamped beam at its fundamental 

flexural mode is given by  [58, 59, 157] 

 𝑓(𝜎) = 1.03
ℎ

𝐿2
√

𝑌

𝜌
√1 +

𝜎𝐿2

3.4𝑌ℎ2
 (6.1.3) 

where ℎ is the thickness, 𝐿 is the length, 𝜌 is the density of the material, and 𝜎 is the tensile stress 

along the beam. Therefore, considering equation (6.1.3), frequency shift 𝛿𝑓 reads 

 𝛿𝑓 = 𝑓(𝜎) − 𝑓(𝜎𝑜) = 𝑓𝑜 (√1 +
𝛽𝜎𝑡

1 + 𝛽𝜎0
− 1) (6.1.4) 

where 

 𝑓𝑜 = 1.03
ℎ

𝐿2
√

𝑌

𝜌
√1 + 𝛽𝜎𝑜 = 𝑓1√1 + 𝛽𝜎𝑜 (6.1.5) 

being the initially stressed eigenfrequency without photothermal heating, 𝑓1  is the stress free 

mechanical eignenfrequcy and 𝛽 represents 

 𝛽 =
𝐿2

3.4𝑌ℎ2
 (6.1.6) 

The frequency shift 𝛿𝑓  in equation (6.1.4) can be approximated using Taylor series in the low 

temperature increase limit as 

 
𝛿𝑓~

𝑓𝑜

2

𝛽𝜎𝑡

1 + 𝛽𝜎𝑜
= −

𝑓𝑜

2

𝛽𝛼𝑌

1 + 𝛽𝜎𝑜
𝛿𝑇 

(6.1.7) 

which decreases linearly with the increase of temperature change. 

 

Figure 6.3 Concept of photothermal tuning of mechanical eigenfrequencies. Incident light heats a nanomechanical 

oscillator, causing a shift of its mechanical resonance frequency. Redshift of mechanical resonance frequency is observed 

by increasing laser power. 
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Assuming a mechanical beam of length 𝐿, illuminated at its central part (Figure 6.3), the energy 

absorbed per second, 𝑃𝑎𝑏𝑠, in the centre is in equilibrium with the heat flow through the material 

out into the supports that have a constant temperature 𝑇0. Following [59, 158], the temperature 

distribution is described as 

 𝑇(𝑥) = 𝑇0 + 2(𝑇𝑚𝑎𝑥 − 𝑇0)
𝑥

𝐿
  (6.1.8) 

for 0 ≤ 𝑥 ≤
𝐿

2
, where 𝑇𝑚𝑎𝑥 is the temperature at the centre. The heat flux, 𝑄𝑇 through one half of 

the structure can be described by the one-dimensional Fourier’s law as 

 𝑄𝑇 = −𝜅𝐴𝑐

𝜕𝑇

𝜕𝑥
  (6.1.9) 

where 𝐴𝑐 is the mechanical beam’s cross section and 𝜅 is the material’s thermal conductivity. The 

total power absorbed in the beam must be equal to the total energy flowing from the centre to the 

supports 

 𝑃𝑎𝑏𝑠 = 2|𝑄𝑇|  (6.1.10) 

Combination with Equations (6.1.8) and (6.1.9) gives 

 𝛿𝑇𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥 − 𝑇0 =
𝑃𝑎𝑏𝑠𝐿

4𝜅𝐴𝑐
  (6.1.11) 

The average temperature increase of the structure becomes 

 𝛿𝑇 =
𝛿𝑇𝑚𝑎𝑥

2
=

𝑃𝑎𝑏𝑠𝐿

8𝜅𝐴𝑐
  (6.1.12) 

Hence, frequency shift 𝛿𝑓 

 𝛿𝑓 = −
𝑓𝑜

2

𝛽𝛼𝑌

1 + 𝛽𝜎𝑜
𝛿𝑇 = −

𝑓𝑜

2

𝛽𝛼𝑌

1 + 𝛽𝜎𝑜

𝑃𝑎𝑏𝑠𝐿

8𝜅𝐴𝑐
 (6.1.13) 

is linearly proportional to laser power absorption 𝑃𝑎𝑏𝑠 when temperature increase is small.  

6.2 Nano-optomechanical metamaterial for parametric oscillation 

experiments 

Experiments described in the remaining sections of this chapter employ an all-dielectric 

nanomechanical metamaterial (Figure 6.4) fabricated on a silicon nitride membrane of nanoscale 

thickness [6, 33]. As shown in Figure 6.4a, it consists of a planar array of periodically arranged 
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optical resonators (with dimensional schematic of a unit cell or metamolecule is depicted in Figure 

6.4b) supported by a 1D array of mechanical resonators, which are flexible nanowires of microscale 

length cut from the silicon-nitride membrane by focused ion beam (FIB) milling. 

 

Figure 6.4 Optical properties of dielectric nano-optomechanical metamaterials. (a) SEM image of fabricated sample, 

black areas are cut through. (b) Dimensional schematic of a metamolecule. The periodicity along x and y direction are 900 

and 820 nm. (c) The optical transmission, reflection and absorption spectra measured using CRAIC Spectrophotometers. 

Pump laser wavelength 1550 nm, Probe laser wavelength 1540 nm. (d) Simulated metamaterial optical spectra using 

COMSOL Multiphysics considering Si and Si3N4 with refractive index 𝑛𝑆𝑖  =  3.48 +  0.1𝑖 and 𝑛𝑆𝑖𝑁  =  2.0 +  0.0𝑖. (e) 

Normal to the metamaterial component of optical forces 𝐹𝑧1,2 acting on the strip segments along the light propagation 

direction shown in a quantified through Maxwell stress tensor calculation [42]. The net optical force on the unit cell 

(yellow line) is presented alongside the value expected from reflection and absorption (dotted purple line). Forces are 

shown per unit cell in units of 𝑃 𝑐⁄ , where 𝑃 is the incident power per unit cell and 𝑐 is the speed of light in vacuum. Inset 

shows map of the optically induced charge distributions at the pumping wavelength in terms of instaneous electric field 

𝐸𝑧 that these changes generate normal to the metamaterial surface. 

The metamaterial was fabricated on a 200 nm thick silicon nitride membrane coated with a 115 nm 

layer of amorphous silicon (a-Si) by plasma-enhanced chemical vapor deposition (PECVD). This 

bilayer was then structured by FIB milling to define an array of asymmetric nanorod pairs in the 
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amorphous silicon layer, on 31 μm long silicon nitride beams. The structure supports a closed mode 

optical resonance [159] at a wavelength of 1530 nm as shown in Figure 6.4c, underpinned by the 

excitation of antiparallel displacement currents in the pair of amorphous silicon nanorods [160, 

161]. In numerical simulation (as shown in Figure 6.4d-e), considering the experimentally measured 

optical spectra of the metamaterial sample, silicon refractive index is fitted to be 𝑛𝑆𝑖  =  3.48 +

 0.1𝑖. The relative optical force between the two constituting elements is calculated as ~3 𝑃 𝑐⁄  

considering the loss of silicon material in the experimentally used sample, where 𝑃 is the incident 

power per unit cell and 𝑐 is the speed of light in vacuum. 

As shown in Figure 6.5, numerical calculations show that the relative optical transmittance ∆𝜇𝑡/𝜇0
𝑡  

is generally a nonlinear function of the relative displacement between neighbouring beams along 

the 𝑧  direction (here ∆𝜇𝑡  is the change of transmittance at a given displacement 𝛿𝑧  and 𝜇0
𝑡  is 

transmittance of the metamaterial without displacement), but may be approximately linear for 

sufficiently small displacements. This is illustrated by 3D finite element Maxwell solver simulations 

of the resonant optical properties of the array for different levels of mutual displacement between 

neighbouring beams (see Figure 6.5a). For instance, for displacements of up to 40 nm, 

transmittance changes approximately parabolically with displacement at 1550 nm (Figure 6.5b). 

 

Figure 6.5 Optical properties of the dielectric nanomechanical metamaterials. (a) Computed values of (∆𝜇𝑡/𝜇0
𝑡 ), a figure 

of merit of responsivity of the metamaterial’s optical properties to the relative displacement of neighbouring beams along 

𝑧 at different levels of displacement. (b) Dependence of (∆𝜇𝑡/𝜇0
𝑡 ) on displacement at wavelengths of 1550 nm. Positive 

displacement corresponds to the movement of narrower beams along +z relative to wider beams; all results are for x-

polarized light. 

6.3 Optical detection of thermal fluctuations in nano-optomechanical 

metamaterials 

As has been discussed in previous chapters, nano-components such as beams and cantilevers can 

be modelled as damped mechanical oscillators [162-165]. Considering nanomechanical structures 
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located in the xy-plane, and engaged in out-of-plane thermal motion in the 𝑧 direction throughout 

this chapter, the Langevin equation for the thermal motion of such a component can be written as 

[58] 

 𝑧̈ + 𝛾𝑚𝑧̇ + 𝜔𝑚
2 𝑧 = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎l(𝑡)/𝑚𝑒𝑓𝑓 = √2𝜋𝑘𝐵𝑇𝛾𝑚 𝑚𝑒𝑓𝑓⁄ 𝜂(𝑡) (6.3.1) 

where 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡)  is the Langevin thermal force experienced by the oscillator related to the 

dissipation factor 𝛾𝑚 through the fluctuation-dissipation theorem, 𝜂(𝑡) is a normalized white noise 

term, 𝑚𝑒𝑓𝑓 is the effective mass of the object, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 

𝜔𝑚 = 2𝜋𝑓𝑚 = √(𝑘 𝑚𝑒𝑓𝑓)⁄  is the natural angular frequency of oscillation, 𝑓𝑚  is the natural 

frequency and 𝑘 is the spring constant. The resonance quality factor 𝑄 = 𝜔𝑚 𝛾𝑚⁄  in the limit of 

small damping, 𝛾𝑚 ≪ 𝜔𝑚, which we assume here. 

Thermomechanical fluctuations of a component’s position 𝑧(𝑡) are transduced to fluctuations of 

intensity of light scattered on the component, 𝛿𝐼(𝑡) =
𝜕𝜇(𝑧,λ)

𝜕𝑧
∙ 𝐼0 ∙ 𝛿𝑧(𝑡) , where 𝐼0 and 𝐼 =

𝜇(𝑧, 𝜆)𝐼0 are the intensities of the incident and scattered light, and 𝜇(𝑧, 𝜆) is, generally, a nonlinear 

function of the component’s displacement 𝑧  and optical wavelength 𝜆  or frequency shown in 

Figure 6.5b. As, in a stochastic process, the power spectral density is equal to the Fourier transform 

of its autocorrelation function [85], the scattered light amplitude spectral density 𝑆𝐼
1 2⁄ (𝑓) resulting 

from small thermomechanical fluctuations in position 𝛿𝑧(𝑡) is: 

 𝑆𝐼
1 2⁄ (𝑓) =

𝛿𝐼

√∆𝑓
= (

𝜕𝜇(𝑧, λ)

𝜕𝑧
|

𝑧=0
∙ 𝐼0 ) × √

𝑘𝐵𝑇𝑓𝑚

2𝜋3𝑚𝑒𝑓𝑓𝑄[(𝑓𝑚
2 − 𝑓2)2 + (𝑓𝑓𝑚 𝑄⁄ )2]

 (6.3.2) 

where ∆𝑓 is the bandwidth. In an optomechanical metamaterial, a non-diffracting array of identical 

oscillating components, the same formula will describe the spectra of fluctuations of the intensity 

of light transmitted 𝐼𝑡 through the metamaterial, see Figure 6.5.  

Transmittance fluctuations over a range of mechanical frequencies can be calculated by integration 

over the power spectral density of the fluctuations 

 

𝛿𝐼/𝐼0 = √∫ (𝑆𝐼
1 2⁄ (𝑓))

2
𝑑𝑓

=  
1

𝜇0
𝑡 (λ)

×
𝜕𝜇𝑡(𝑧, λ)

𝜕𝑧
|

𝑧=0

× √
𝑘𝐵𝑇

2𝜋3𝑚𝑒𝑓𝑓
√∫

𝑓𝑚 𝑄⁄

(𝑓𝑚
2 − 𝑓2)2 + (𝑓𝑓𝑚 𝑄⁄ )2

𝑑𝑓 

(6.3.3) 
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Integration from 0 to ∞, or at least over the whole resonance, gives the root-mean-square (RMS) 

fluctuations 

 𝛿𝐼/𝐼0 =
1

𝜇0
𝑡 (λ)

×
𝜕𝜇𝑡(𝑧, λ)

𝜕𝑧
|

𝑧=0

× √
𝑘𝐵𝑇

4𝜋2𝑚𝑒𝑓𝑓𝑓𝑚
2 (6.3.4) 

where the final term corresponds to the RMS beam displacement of 

 𝛿𝑧𝑟𝑚𝑠 = √
𝑘𝐵𝑇

4𝜋2𝑚𝑒𝑓𝑓𝑓𝑚
2 (6.3.5) 

Assuming metamaterial beams, such as those shown by Figure 6.4, with an effective mass 𝑚𝑒𝑓𝑓 = 

2 pg and mechanical quality factor of 𝑄 = 2000 moving at a damped frequency 𝑓1 = 2 MHz, and a 

typical change in optical properties with beam displacement of 𝜕𝜇/(𝜇0𝜕𝑧) ~ 1 %/nm, one may 

expect to observe an RMS thermomechanical displacement amplitude of 𝛿𝑧𝑟𝑚𝑠 = 100 pm at the 

centre of the beams at room temperature, resulting in a ~ 0.1% RMS fluctuations of optical 

properties. By applying this analytical description to experimental data collected by Dimitrios Papas 

and Jinxiang Li for, respectively, plasmonic and all-dielectric metasurfaces, we have shown that 

mechanical fluctuations of the constituent nanowires with amplitudes of a just a few hundred 

picometres lead to reflectivity/transmittance fluctuations on the order of 0.1% [117].  

 

Figure 6.6 Experimental setup for detection and control of thermal fluctuation in nanomechanical metamaterials. (a) 

Schematic of the pump–probe measurement setup and a scanning electron micrograph of the metamaterial sample. 

Pump and probe laser beams are polarized along x-direction at wavelength of 1550 nm and 1540 nm with ~5 μm spot 

size in diameter. The pump and probe laser power on sample is ~40μW and ~20μW. Iso.: optical isolator, EOM: electro-

optic-intensity modulator, PD: photodetector, ESA: electronic spectrum analyser. For thermal motion detection, pump 

laser is kept at a fixed laser power level without intensity modulation. [As will be described in section 6.4, for parametric 

control of thermal motion, pump laser is modulated by electro-optic-intensity modulator (EOM)]. (b) Calibrated 

displacement power spectral density of nanowires within dielectric metamaterials without pump laser modulation. 

Different peaks correspond to the thermal movement of different nanowires. Resonant peak widths 𝛿𝑓 are labelled in 

kHz. 

Figure 6.6b shows a representative probe transmission spectrum for the all-dielectric metamaterial 

presented in Figure 6.4. As can be seen in Figure 6.6a, measurements were performed by 



Chapter 6 

87 

monitoring the x-polarized continuous-wave (CW) probe laser intensity transmitted through the 

sample while keeping pump laser at a fixed laser power level without intensity modulation. 

[Application of the intensity modulation of pump will be shown in the parametric control of thermal 

motion experiment in section 6.4.] The pump and probe optical sources used are fiber-coupled 

telecommunication semiconductor lasers operating at the wavelengths of 1550 and 1540 nm, 

respectively. The pump and probe were then combined into a single beam using a fiber coupler, 

decoupled into free space and focused on the sample placed in a microscope using focusing and 

collection objectives a confocal pair of 20× (NA=0.4) microscope objectives. The pump and probe 

laser power on the sample is ~40μW and ~20μW with spot size ~ 5μm in diameter corresponding 

to laser intensity of ~2μW/μm2 and ~1μW/μm2. The metamaterial sample was mounted in a 

vacuum chamber at a pressure of 4-5 μbar to reduce air damping of the mechanical modes. The 

intensity of probe light transmitted from the samples was monitored with a photodetector and a 

radio frequency spectrum analyser. 

Displacement is then calibrated using the following procedure: Assuming the noise processes are 

uncorrelated, the total noise power spectral density (PSD) 𝑆𝑣,𝑡𝑜𝑡𝑎𝑙  is the sum of the PSDs from 

individual noise processes. Thus, we have 𝑆𝑣,𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑣,𝑡ℎ + 𝑆𝑣,𝑠𝑦𝑠 . Here 𝑆𝑣,𝑡ℎ  is the 

thermomechanical motion power spectral density 𝑆𝑧,𝑡ℎ  translated into the electronic domain, 

through the ‘displacement-to-voltage’ responsivity ℜ ≡ 𝑆𝑣,𝑡ℎ
1 2⁄

𝑆𝑧,𝑡ℎ
1 2⁄

⁄ . The other term 𝑆𝑣,𝑠𝑦𝑠  is the 

voltage noise floor of the measurement system. Measured data can be fitted to the expression for 

𝑆𝑣,𝑡𝑜𝑡𝑎𝑙 by using 𝑆𝑣,𝑡ℎ ≡ ℜ2 × 𝑆𝑧,𝑡ℎ and treating 𝑆𝑣,𝑠𝑦𝑠 as a frequency-independent function within 

the smaller measured range: 

 

𝑆𝑣,𝑡𝑜𝑡𝑎𝑙(𝑓) = ℜ2 × 𝑆𝑧,𝑡ℎ + 𝑆𝑣,𝑠𝑦𝑠

= ℜ2
𝑘𝐵𝑇𝑓𝑚

2𝜋3𝑚𝑒𝑓𝑓𝑄[(𝑓𝑚
2 − 𝑓2)2 + (𝑓𝑓𝑚 𝑄⁄ )2]

+ 𝑆𝑣,𝑠𝑦𝑠 
(6.3.6) 

Using effective mass of 𝑚𝑒𝑓𝑓 = 2.7 pg as calculated from COMSOL simulation for the narrow beam 

with known geometry and material parameter and from the fitting the first peak (assuming 𝑇 = 

300K), we obtain 𝑆𝑣,𝑡ℎ
1 2⁄

 = 0.4 mV/Hz1/2, 𝑄 = 1927, and ℜ = 0.308mV/nm. As seen in Figure 6.6b, this 

fitting returns a noise equivalent power spectral density of 𝑆𝑧,𝑠𝑦𝑠~1.53pm2/Hz. 

Several peaks are seen in the frequency spectrum (Figure 6.6b), each corresponding to an individual 

nanowire. Here, the main cause of variations between the resonance frequencies of individual, 

nominally identical beams is most likely disparities in beam tension across the sample resulting 

from the non-uniformity of intrinsic stress in the membrane, rather than variations of their physical 

dimensions. These variations in tensile stress across the metamaterials can be evaluated from 

Equation (6.1.5). The observed range of frequencies (from 2.3 to 2.5 MHz) is consistent with an 
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initial tensile stress of 𝜎𝑜 ~25 MPa and variations from beam to beam of ~10 MPa (using a 

numerically calculated stress-free eigenfrequency 𝑓1 = 1.96 MHz for the supporting silicon nitride 

beam). These numbers are in keeping with the fact that stresses of between several hundred 

megapascals and a gigapascal are common in unstructured silicon nitride membranes [166], 

resulting in significant post FIB-fabrication stress variations across metamaterial arrays. 

6.4 Parametric control of thermal motion in a nano-optomechanical 

metamaterial 

The dynamic photothermal tuning mechanism as described in section 6.1.2 is exploited to 

periodically modulate the mechanical resonance frequency of nanowires in thermal (Brownian) 

motion driven by a white noise. Thus, this creates an array of Brownian parametric oscillators with 

time-varying spring constant. As schematically shown in Figure 6.7, light modulated at an angular 

frequency of 𝜔𝑝 functions as a parametric pump which converts the thermomechanical vibrations 

of the nanowire at frequency 𝜔𝑚 into multiple thermal vibration Stokes’ or anti-Stokes’ sidebands 

at angular frequencies 𝜔 = 𝜔𝑚 ± 𝑁𝜔𝑝  (where 𝑁  is an integer) via nonlinear optomechanical 

interaction of frequency mixing. 

 

Figure 6.7 Artistic impression of optical parametric control of thermomechanical vibration in an array of nano-

optomechanical oscillators. The modulated light at angular frequency of 𝜔𝑝  functions as a parametric pump which 

converts the thermomechanical spectrum at frequency 𝜔𝑚  into a series of thermal vibration sidebands centered at 

𝜔 = 𝜔𝑚 ± 𝑁𝜔𝑝 via frequency mixing. It creates Stokes’ and anti-Stokes sidebands whose amplitudes can be externally 

controlled by the parametric pump frequency and amplitude. 

6.4.1 Optical parametric control of thermal motion 

In this work, parametric control over thermal motion is demonstrated for a pair of dissimilar 

nanowires in the metamaterial array – those with resonant frequencies indicated in Figure 6.6b at 

𝜔𝑚1 = 2π×2328.3 kHz (𝛾𝑚1 = 2𝜋𝛿𝑓1= 2π×1.21 kHz, 𝑄1 = 1926.8) and 𝜔𝑚2 = 2π×2358.2 kHz (𝛾𝑚2 = 

2π×1.65 kHz, 𝑄2 = 1431.5) for two narrow nanowires. Experimental setup is schematically shown 

in Figure 6.6a. 
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In this experiment, the probe laser is at a wavelength of 1540 nm which is continuous-wave (CW). 

The probe laser power incident on the sample is 𝑃𝑖𝑛 ~ 20μW corresponding to laser intensity of 𝐼0 

~ 1μW/μm2 considering the laser spot of diameter ~5 μm. The pump laser is at a wavelength of 

1550 nm. The intensity of the pump laser beam was modulated by a fibre-coupled electro-optical 

modulator (EOM) with an averaged power incident on the sample of 𝑃𝑖𝑛 ~ 40μW, corresponding to 

laser intensity of 𝐼0 ~ 2μW/μm2 considering the laser spot of diameter ~5 μm.  As shown in Figure 

6.8, the modulation depth of pump laser beam is defined as the ratio of power modulation 

amplitude 𝑃𝑎𝑚𝑝 and its average power 𝑃𝑎𝑣𝑔, and is controlled by the applied peak-to-peak voltage 

𝑉𝑝 to the EOM. The pump modulation depth increases with the increasing peak-to-peak voltage 𝑉𝑝  

at a rate of 25%/Vpp, while its average power does not change. 

 

Figure 6.8 Laser power modulation as a function of applied peak-to-peak voltage on electro-optic intensity modulator. 

The power modulation depth, defined as the ratio of power modulation amplitude 𝑃𝑎𝑚𝑝 and its average 𝑃𝑎𝑣𝑔, is 25%/Vpp. 

The pump and probe were coupled into a single fibre and then focused onto the sample via a 

collimator and 20× (NA=0.4) microscope objective. Transmitted light was collected via a matched 

and axially-aligned objective, collimator and fibre on the opposite side of the sample chamber. Only 

probe light passes through the filter and was monitored with a photodetector and a radio frequency 

spectrum analyser. 

Figure 6.9a displays the evolution of probe transmission spectra that are calibrated into 

thermochemical displacement power spectral density (see section 6.3) with increasing pump 

modulation depth while keeping the pump modulation frequency fixed at 𝜔𝑝 = 2π×2 kHz. One can 

see that with increasing pump modulation depth, first, creation of a series of sidebands located at 

frequencies 𝜔𝑚 ± 𝑁𝜔𝑝 in the spectra; second, strong oscillations in the amplitudes of the peaks: 

for example, as shown in Figure 6.9a, for the mechanical mode 𝜔𝑚1, the experimental spectra 

exhibit a nearly complete extinction of the initial state occupation at 2.0 Vpp and its reappearance 

at 3.0 Vpp. The oscillation in the amplitude of the first order sidebands can also be easily found. 

Therefore, total number and amplitudes of sidebands can be controlled by appropriately choosing 
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the external parametric pumping parameters. Furthermore, the spectra evolve differently for two 

nanowires of different damping rates.  

The underlying dynamics of these behaviours can be described by the Brownian parametric 

oscillator equation [96] as presented in section 2.4 and repeated as: 

 𝑧̈(𝑡) + 𝛾𝑚𝑧̇(𝑡) + [𝜔𝑚
2 + 2𝜀𝜔𝑚 cos(𝜔𝑝𝑡)]𝑧(𝑡) = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓⁄  (6.4.1) 

where 𝑧(𝑡) is the real time thermal vibration of a nanowire along z-direction (Figure 6.5) at angular 

frequency 𝜔𝑚 with effective mass of 𝑚𝑒𝑓𝑓 driven by thermal Langevin force 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡),  𝛾𝑚 is the 

mechanical dissipation factor and 𝜔𝑝  is the parametric pumping angular frequency. The optical 

parametric pumping pulse creates a time varying spring constant 𝑘(𝑡) = 𝑚𝑒𝑓𝑓[𝜔𝑚
2 +

2𝜀𝜔𝑚 cos(𝜔𝑝𝑡)] via photothermal tuning mechanism as discussed in section 6.1.2, where 𝜀 is the 

parametric pumping strength reflecting the maximum mechanical resonant angular frequency shift 

of the nanowire (𝛿𝜔 = √𝜔𝑚
2 + 2𝜀𝜔𝑚 − 𝜔𝑚~𝜀). It is related to absorbed light power and therefore 

proportional to the pump modulation depth. Essentially, the optomechanical interaction studied 

here constitutes an optical phase-modulation of the nanowires’ mechanical vibration. 

 

Figure 6.9 Evolution of thermomechanical power spectral density as a function of parametric pumping strength. (a) 

Evolution of the probe transmission spectra [calibrated into displacement power spectral density] with increasing pump 

laser intensity modulation depth (25%/Vpp). (b) Amplitudes (open or solid circles for mechanical mode 1 or 2) of the 𝑁𝑡ℎ-

order spectral sidebands shown in (a). Solid lines, square of the 𝑁𝑡ℎ-order Bessel functions of the first kind. (c) Analytical 

evolution of Brownian power spectral density as a function of the parametric pumping strength with dashed lines indicate 

cut-off frequency which is proportional to parametric pumping strength 𝜀. 
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The parametrically driven thermomechanical displacement power spectral density (PSD) obtained 

from Eqn. (6.4.1) as described in section 2.4 is 

 Γ(𝜔) = ∑ 𝐽𝑁
2 (𝜀 𝜔𝑝⁄ )Γ0(𝜔𝑚 + 𝑁𝜔𝑝)

∞

−∞

 (6.4.2) 

Here, Γ0(𝜔𝑚) = 4𝛾𝑚𝑘𝐵𝑇 {𝑚𝑒𝑓𝑓[(𝜔𝑚
2 − 𝜔2)2 + 𝛾𝑚

2 𝜔2]}⁄  is the initial thermomechanical 

displacement power spectral density (PSD) without parametric pumping.  𝐽𝑁 represents the 𝑁th 

order Bessel function of the first kind.  

A good agreement is found between experimentally measured thermomechanical displacement 

power spectral density (as shown by the black dotted curves in Figure 6.9a) and analytical fitting 

results (as shown by solid lines in Figure 6.9a) using Eqn. (6.4.2) for two different nanowires and 

including the system noise level of 2pm2/Hz. 

The retrieved weights for the 𝑁𝑡ℎ sideband from this fitting are plotted by circles in Figure 6.9b for 

each curve plotted in Figure 6.9a, and they follow closely with analytical values 𝐽𝑁
2 (𝜀 𝜔𝑝⁄ ) from 

analytical model (solid line in Figure 6.9b) with the parametric pumping strength 𝜀 obtained from 

this fitting is plotted in inset of  Figure 6.9b. As expected, the induced parametric pumping strength 

𝜀 grows linearly with the pump modulation depth. 

To reveal the evolution of thermomechanical displacement power spectral density with the 

increasing parametric pumping strength more clearly, analytical mapping of thermomechanical 

displacement power spectral density for the first mechanical mode is illustrated in Figure 6.9c. With 

increasing parametric pumping strength, one can see a linear spreading in the range of sidebands 

with cut-off frequency proportional to parametric pumping strength 𝜀 (see dashed white lines), 

together with strong oscillations in their amplitudes. Therefore, parametric pumping creates new 

Stokes’ and anti-Stokes’ sidebands each weighted by the Bessel function 𝐽𝑁
2 (𝜀 𝜔𝑝⁄ ), evolving as a 

function of parametric pumping strength 𝜀.  

Figure 6.10a shows the evolution of the measured probe transmission spectra that are calibrated 

into thermochemical displacement power spectral density with varied parametric driving frequency 

𝜔𝑝. This allows one to reach larger ratio of 𝜀 𝜔𝑝⁄  while keeping the pump laser modulation depth 

fixed at 50%.  One can see that with decreasing parametric pumping frequency (from bottom panel 

to top panel) the spectra are broadening and more sidebands are covered within, however, their 

amplitudes are decreasing as a result of energy conservation. The fitted analytical 

thermomechanical displacement power spectral density (as shown by solid lines) using Eqn. (6.4.2) 

again overlaps very well with the experimentally measured ones (as shown by black dotted curves). 
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Figure 6.10 Evolution of thermomechanical spectrum as a function parametric pumping frequency. (a) Evolution of the 

probe transmission spectra [calibrated into displacement power spectral density] with growing parametric pumping 

frequency. (b) Experimentally retrieved parametric pumping strength as a function of applied frequency while keeping 

laser modulation depth fixed at 50%. The fittings of frequency response show the typical behaviour of a first-order low 

pass filter with cut-off frequency of 1.5 and 1.3 kHz and static pumping strength of 2π×11kHz and 2π×10 kHz. (c) 

Amplitudes (open or solid circles for mechanical mode 1 or 2) of the 𝑁𝑡ℎ -order spectral sidebands shown in (a) for 

frequency 𝜔𝑝 2𝜋⁄  = 4, 3, 2 kHz and (d) 𝜔𝑝 2𝜋⁄  = 1kHz. Solid lines, square of the 𝑁𝑡ℎ-order Bessel functions of the first 

kind. (e) Analytical evolution of Brownian power spectral density as a function of parametric pumping frequency with 

parametric pumping strength obtained from (b). 

Parametric pumping strength 𝜀 (resulting from photothermal effect) is obtained from Figure 6.10a 

as a function of pumping frequency and plotted by circles in Figure 6.10b. The frequency response 

shows the typical behavior of a first-order low pass filter [167] with a cutoff frequency of 1.5 and 

1.3 kHz and static  pumping strength of 2π×11kHz and 2π×10 kHz for two mechanical modes when 

the illuminated laser power intensity is 𝐼0  ~2 μW/μm2. This overall agrees with that of the 

simulation result for dynamic photothermal response which suggests thermal relaxation frequency 

of the nanowire is ~8 kHz. Hence, the reported parametric control of the Brownian motion 
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mechanism can also enable photothermal dynamic response characterisation for a nanomechanical 

element. 

Comparing the retrieved sideband weights with the analytical results for pumping frequencies  

𝜔𝑝 2𝜋⁄  = 4, 3, 2 kHz (see Figure 6.10c), a good agreement is also found. However, the deviation is 

found in Figure 6.10d for the second mechanical mode 𝜔𝑚2 at parametric pumping frequency 𝜔𝑝 

= 2π×1 kHz, this is due to the system noise where features such as peaks in the spectrum are buried 

in the noise and sideband weights are hard to retrieve. 

Figure 6.10e shows the analytical evolution of Brownian power spectral density as a function of the 

parametric pumping frequency using parametric pumping strength obtained from Figure 6.10b for 

the first mechanical mode 𝜔𝑚1. One can see more sidebands are generated for lower parametric 

pumping frequency and an interesting ‘interference pattern’ in frequency space can be observed. 

6.4.2 Phononic frequency comb generation 

The parametric control of Brownian motion demonstrated above suggests that certain frequency 

components of movement may be enhanced, as compared to the static/undriven case, when the 

resonance condition 𝜔 = 𝜔𝑚 ± 𝑁𝜔𝑝  is fulfilled, providing parametric gain defined as G(𝜔) =

 Γ(𝜔) Γ0(𝜔)⁄ . Unlike mechanical frequency combs that have been theoretically proposed using 

Fermi–Pasta–Ulam–Tsingou chains [152, 168], and later demonstrated in micromechanical 

resonators using nonlinear three-wave mixing [152, 169-171], here I present a tunable phononic 

frequency comb generation mechanism combining parametric pumping at frequency 𝜔𝑝  and a 

pondermotive light driving force at frequency 𝜔𝑑  near the mechanical resonance. This is 

experimentally achieved by modulating the pump laser intensity at the said two different 

frequencies. This regime can be mathematically described by adding the pondermotive light driving 

force term 𝐹𝑑 cos(𝜔𝑑𝑡)  on the righthand side of the Brownian parametric oscillator equation 

(6.4.1).  

 
𝑧̈(𝑡) + 𝛾𝑚𝑧̇(𝑡) + [𝜔𝑚

2 + 2𝜀𝜔𝑚 cos(𝜔𝑝𝑡)]𝑧(𝑡)

= 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓⁄ + 𝐹𝑑 cos(𝜔𝑑𝑡) 
(6.4.3) 

This force, coming from dipole-dipole interactions between neighboring optical resonators in the 

metamaterial (which has an estimated magnitude of ~25 fN in the present experimental 

configuration), induces several peaks in the transmission spectra at frequencies 𝜔𝑑 ± 𝑁𝜔𝑝  (see 

Figure 6.11) via frequency mixing. 

The signal at the optical driving frequency 𝜔𝑑 in Figure 6.11a increases with the growing parametric 

pumping strength 𝜀  as a result of parametric gain at this frequency (as 𝜔𝑑  coincides with 
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parametric sidebands of increasing amplitude). Also, a series of teeth appear at frequencies 𝜔𝑑 ±

𝑁𝜔𝑝. By controlling the parametric pumping frequency 𝜔𝑝, thereby the parametric gain spectrum, 

tunable frequency combs with different frequency separations can be generated (Figure 6.11b).  

 

Figure 6.11 Formation of a phononic frequency comb. (a) Thermomechanical displacement power spectral density 

evolution as a function of growing parametric pumping strength 𝜀 while keeping its frequency fixed at 𝜔𝑝 2𝜋⁄  = 2kHz. The 

instantaneous optical force driving is fixed at frequency 𝜔𝑑 = 2335 kHz with laser intensity modulation depth of 25%. The 

instantaneous light driving force induces several coherent oscillations at a multiple frequency 𝜔𝑑 ± 𝑁𝜔𝑝. (b) A tunable 

frequency comb generated by tuning parametric pumping frequency 𝜔𝑝  or comb separation while keeping the 

instantaneous optical force driving fixed at mechanical resonance frequency  𝜔𝑚1 2𝜋⁄  = 2328.5 kHz with laser intensity 

modulation depth of 25%. 

6.5 Parametrically coupled optomechanical resonators 

Dynamic coupling between two optomechanically connected doubly-clamped beams driven by 

thermal fluctuational forces is realized by parametrically pumping them at the difference frequency 

between their mechanical resonances. This enables strong vibrational coupling in systems where 

energy exchange between the two resonators is intrinsically inefficient owing to the frequency 

mismatch. The dynamics of such a system can be described by the following pair of coupled 

parametric Brownian oscillator equations: 

 

𝑧̈1(𝑡) + 𝛾𝑚1𝑧̇1(𝑡) + [𝜔𝑚1
2 + 2𝜀1𝜔𝑚1 cos(𝜔𝑝𝑡)]𝑧1(𝑡) + Λ cos(𝜔𝑝𝑡) 𝑧2(𝑡)

= 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓1⁄  

𝑧̈2(𝑡) + 𝛾𝑚2𝑧̇2(𝑡) + [𝜔𝑚2
2 + 2𝜀2𝜔𝑚2 cos(𝜔𝑝𝑡)]𝑧2(𝑡) + Λ cos(𝜔𝑝𝑡) 𝑧1(𝑡)

= 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) 𝑚𝑒𝑓𝑓2⁄  

(6.5.1) 
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where 𝑧1, 𝑧2 are real time positions of the nanowires, 𝛾𝑚1, 𝛾𝑚2 are their mechanical dissipation 

factors, 𝜔𝑚1, 𝜔𝑚2 their mechanical resonance angular frequencies, 𝜀1, 𝜀2 the parametric pumping 

strengths for the two oscillators, and 𝑚𝑒𝑓𝑓1, 𝑚𝑒𝑓𝑓2 are their effective masses. 𝜔𝑝 is the parametric 

pumping frequency. Λ is the coupling rate between two mechanical oscillators, and 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is the 

thermal Langevin force. 

 

Figure 6.12 Dynamic coupling between two distinct optomechanical beams. (a) SEM images of planar dielectric 

metamaterials supported by Si3N4 beams of varied lengths fabricated on silicon nitride membranes. (b) Energy or 

spectrum diagram of the coupling between two thermomechanical oscillators with parametric pumping protocol. Blue 

bars denote the thermomechanical spectrum the mechanical oscillator with resonance frequency 𝜔𝑚1 , yellow bar 

represent the thermomechanical spectrum of the mechanical oscillator with resonance frequency 𝜔𝑚2, when parametric 

pumping frequency satisfies 𝜔𝑝 = 𝜔𝑚2 − 𝜔𝑚1, energy transfer between two thermomechanical oscillators starts and is 

indicated by the red arrows. (c) Thermomechanical spectrum evolves with increasing parametric pumping strength at 

fixed parametric pumping frequency 𝜔𝑝 ≅ 𝜔𝑚2 − 𝜔𝑚1  = 2π×6 kHz. (d) Spectra evolution with increased parametric 

pumping frequency 𝜔𝑝 while keeping the laser modulation depth fixed at 62.5%. 

This experiment employed a different metamaterial sample comprised of silicon nitride beams of 

varying length, as shown in Figure 6.12a, whereby neighbouring beams can be readily identified in 

the frequency spectra of transmission. Figure 6.12b shows the energy diagram of the phonon 

transfer process for two frequency mismatched thermomechanical oscillators that are coupled to 

each other through a parametric pumping frequency 𝜔𝑝 . When parametric pumping frequency 

satisfies 𝜔𝑝 = 𝜔𝑚2 − 𝜔𝑚1, energy transfer between two thermomechanical oscillators starts as 

indicated by the red arrows. Figure 6.12c shows the experimental evolution of the 

thermomechanical modes of two neighbouring nanowires with natural resonant frequencies 𝜔𝑚1= 

2π×1930 kHz and 𝜔𝑚2=2π×1936 kHz, as a function of the coupling strength Λ, which is proportional 
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to the laser modulation depth, while keeping the parametric pumping frequency fixed at 𝜔𝑝 ≅

𝜔𝑚2 − 𝜔𝑚1 ~ 2π×6 kHz. Mode splitting is clearly seen with increasing coupling strength indicating 

the strong coupling between two oscillators. The separation between the split peaks provides the 

coupling rate which can become so large that it can exceed the intrinsic energy dissipation rate of 

the two modes. Also, sidebands appear which replicate the dispersion of the 𝜔𝑚1 and 𝜔𝑚2 modes 

at lower and higher frequencies 𝜔𝑚1 − 𝜔𝑝 and 𝜔𝑚2 + 𝜔𝑝, as a result of frequency mixing. Figure 

6.12d shows the evolution of the spectra with fixed coupling strength while sweeping the 

parametric pumping frequency 𝜔𝑝 from 2π×1 kHz to 2π×14 kHz. Here one can see that when 𝜔𝑝 

approaches the difference frequency 𝜔𝑚2 − 𝜔𝑚1 (i.e., 2π×6 kHz) of the two oscillators, splitting of 

spectral peaks occurs, indicating strong optomechanical coupling. A similar effect is seen when 

pumping at half of the difference frequency 𝜔𝑝 = (𝜔𝑚2 − 𝜔𝑚1) 2⁄  ~ 2π×3kHz. 

6.6 Summary 

In this chapter I studied optomechanical interactions within nano-optomechanical metamaterials 

and the dependence of mechanical resonances of metamaterial beams on illumination by light. The 

ability to control mechanical resonances with light can be exploited for tuning of metamaterial 

functionalities. It is shown that frequencies of natural mechanical resonances of nano-

optomechanical metamaterials can be continuously tuned by light induced heating affecting 

mechanical tension in the nanostructure. 

I have demonstrated optical detection and parametric control of a picometric Brownian motion of 

the individual mechanical oscillators within a metamaterial array, and of two optomechanically 

coupled oscillators. This optical parametric control protocol allows continuous mechanical 

frequency conversion utilizing nonlinear optomechanical interaction (i.e. frequency mixing) at 

lower intensity level. This frequency mixing effect provides a new mechanism for phononic 

frequency comb generation in nano-optomechanical metamaterials by combining parametric 

control of mechanical oscillators with a periodic optical driving force. Finally, energy transfer 

between two thermomechanically oscillating nanowires via parametric coupling has been 

demonstrated in nano-optomechanical metamaterial. 
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Chapter 7 Conclusions 

7.1 Summary 

This thesis has been dedicated to several experimental efforts towards visualizing, interrogating 

and controlling the atomic length scale (fast) dynamics of thermal and driven motion in photonic 

nanostructures leveraging secondary electrons, light and optomechanical interactions. They open 

an exciting field of picophotonics, the emerging science of light and its interactions with matter at 

picometre [(sub-)atomic] scale. 

 

Figure 7.1 Atomic scale thermal movement visualization and control in nanostructures. (a) Important tools developed 

in this thesis in comparison with the routinely available electron and optical tools in terms of spatial/positional and 

temporal resolution (based on fast electronics instead of ultrafast pump-probe technique). (b) Based on the nano-

optomechanical metamaterial platform, oscillatory thermodynamics at the atomic length scale are studied for a single 

oscillator with a fixed spring constant at short-time scale, a parametric oscillator with time varying spring constant, and 

two different parametrically coupled oscillators that are coupled into a heat bath 𝑇. 

From a technological metrology perspective: 

1. In Chapter 3, I have demonstrated a novel hyperspectral motion visualization technique built 

around a conventional scanning electron microscope via free electron edge-scattering to locally 

interrogate the thermomechanical movement. This extends a conventional scanning electron 

microscope to the dynamic mode regime with nanometre (nm) spatial resolution, microsecond 

(μs) temporal resolution and picometric (pm/Hz1/2) electron-shot noise limited displacement 

sensitivity. This is essential for studying fast dynamics in nanomechanical structures, and is 

particularly suitable for the mechanical properties’ characterisation of NEMS devices and 

complex nanomechanical photonic metamaterials. This hyperspectral movement visualization 

technique is based on conventional scanning electron microscopy which therefore can be 

widely accessible for researchers from the nanomechanics and nano-optomechanics 
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community. It can also be applied to a wide variety of nanomaterials, structures, and devices, 

for highly-localized evaluation of material parameters such as Young’s modulus, stress/strain 

measurement, mass sensing, micro/nano-device manufacturing process control and 

optimization, non-destructive testing, and the study of forces and fields at the (sub)nanometer 

scale. 

2. In Chapter 5, I have reported an important advance on optical super-resolution imaging, which 

in a proof-of-principle experiment can localize the position of a nanowire with subatomic 

resolution beyond the magnitude of its thermal fluctuations via artificial intelligence (AI)-

enabled analysis of structured light scattering. This surpasses the routinely achievable optical 

resolution of a few tens on nanometres, or better than 𝜆/10 from nonlinear STED (stimulated 

emission depletion) and statistically enhanced STORM (stochastic optical reconstruction 

microscopy) techniques used in biological imaging. Illumination with topological light gives 

access to higher accuracy than conventional plane wave illumination is also demonstrated. The 

reported proof-of principle demonstration can be straightforwardly applied to measuring 

subatomic displacements in many practical applications (allowing in-situ training) including: 

non-contact position monitoring of platforms in ultra-precise STM/AFM instruments and mask 

aligner; and monitoring structural deformations and thermal drifts in precise instruments. 

From a fundamental perspective: 

1. In Chapter 4, I have studied fast dynamics of ballistic thermal movement in a nano-membrane 

to the atomic scale. This enables observation of fundamental statistical mechanics, such as the 

Maxwell–Boltzmann velocity distribution and the energy equipartition theorem in 

nanomechanical systems, thus unveiling the fast dynamics underpinning functionality of 

micro/nano mechanical devices and metamaterials. Short-interval measurements in the 

ballistic regime (where fast, e.g., micro-channel plate, electron detectors would extend 

capability to higher frequencies – shorter time intervals) present new opportunities, such as for 

fast thermometry, based on evaluation of the initial 𝑘𝐵𝑇/𝑚𝑒𝑓𝑓  slope of mean squared 

displacement. Importantly, in being based only on the fundamental rules of thermodynamics 

and knowledge of the material and geometrical parameters of the cantilever, the calibration of 

such a thermometry would not require reference to any external standard. The slope 

measurement may also be used for fast monitoring of cantilever mass at known temperature, 

for instance during materials deposition processes or for the detection of molecular adsorption 

and desorption [172]. 

2. In Chapter 6, based on the nano-optomechanical metamaterial platform, I have studied the 

dynamics of nonlinear nano-optomechanical oscillators that are thermally driven and optically 

controlled. I have studied the optical parametric control over a thermomechanical oscillator 
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which allows continuous mechanical frequency conversion utilizing nonlinear optomechanical 

interaction of frequency mixing. A tunable phononic frequency comb generation mechanism is 

also provided. Lastly, thermal energy exchange between two optomechanically linked 

oscillators has also been demonstrated via parametric pumping at the difference frequency of 

two thermomechanical vibrations. From the fundamental research interest, current work 

provides a feasible way for realization and implementation of Floquet nano-optomechanical 

insulator [173], temporal or spatiotemporal metamaterials [174] on nano-optomechanical 

metamaterial platform. This work may also shed light on diverse applications related to precise 

probing of the temperature and dynamic thermal response characterization for a 

nanomechanical structure. 

7.2 Outlook 

There is enormous scope for further studies. Here a very brief outlook is given on what could follow 

in this thesis. 

From technological perspective: 

1. Currently, the 3 dB detection bandwidth of the developed hyperspectral motion visualization 

technique is ~ 5MHz which is limited by the bandwidth of the built-in secondary electron 

detector in the SEM. Micro-channel plate electron detectors would extend capability to higher 

frequencies. With a high-speed secondary electron detector, it would be possible to study 

dynamics in the GHz frequency range [54, 175]. Promising new techniques for resolving and 

hyperspectrally mapping picometric movements might also be realized via other modes of 

imaging (see section 3.1) such as backscattering electrons and cathodoluminescence in the 

future. Using cathodoluminescence imaging mode, one can not only obtain the movement 

information but also the optical properties of the nanostructures and their mutual-interactions. 

This would allow investigating the mechanical phonon-coupled quantum emitters [176, 177] 

and entangled phonon-photon pairs [178]. 

2. With a high-speed camera, the artificial intelligence enabled optical super-resolution imaging 

technique may be possible to visualize the fast dynamics of a nanoscale object, comparable 

with the above technique realized by the scanning electron microscopy. Besides, the artificial 

intelligence enabled optical super-resolution imaging technique has currently been 

demonstrated for 1D imaging in a proof-of-principle experiment, it can be readily extended to 

2D and 3D objects of a priori known shapes. It will hopefully be commercially available when 

its applicability can be extended into objects of random shape. This requires endeavour in 

developing new algorithms and physics inspired model in artificial intelligence. Furthermore, 
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how to combine the numerical simulation dataset from Maxwell-solver with the experimental 

dataset to obtain a trustworthy model and thus getting rid of the lab-intensive dataset 

collection process requires further efforts. 

From fundamental research interest: 

The nano-optomechanical metamaterial system provides an ideal platform for studying interesting 

dynamics in an array of (non-) linear (coupled) oscillators that are driven by Langevin thermal force 

and controlled optically at low power intensity. Many fundamental research work can be done 

based on this platform. 

This includes mainly nonlinear optomechanics such as phonon lasing and noise squeezing [179] by 

driving the oscillator in the parametric resonance regime, non-reciprocal phonon transfer [180], 

synthetic dimension [147], phonon-phonon scattering, and mechanical solitons [152]. These 

hopefully can be realized by improving the sample design and optimizing the sample fabrication 

process.  

Besides, the nano-optomechanical metamaterial system provides a platform for the study of Van 

Der Waals, (non-)Hamiltonian forces [23-25], and quantum gravity in nano-systems [181, 182]. 

Additionally, a collective behavior of an oscillators array (mimicking many-body system), such as 

the optomechanical synchronization as a result of optomechanical coupling within its constituting 

elements is expected to be observed when the mechanical frequency variance is smaller than the 

nonlinear coupling rate. This would allow the realization of a classical analogue of time crystal [183]. 

These considerations would help to bring nano-optomechanical systems to the fore as candidates 

for future sensing, communications, computing and networking. 
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Appendix A Introduction convolutional neural networks 

and their implementation in this work 

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on 

the use of data and algorithms to imitate the way that humans learn, gradually improving its 

accuracy [184]. Machine learning models fall into three primary categories: supervised machine 

learning, unsupervised machine learning, and reinforcement learning [184, 185]. Deep learning is a 

subfield of machine learning that is inspired by artificial neural networks, which in turn are inspired 

by biological neural networks. A specific kind of deep neural network is the convolutional network 

[185], which is commonly referred to as a CNN or ConvNet. It is a deep, feed-forward artificial neural 

network, also called a multi-layer perceptron (MLP). Convolutional neural networks have been one 

of the most influential innovations in the field of machine vision. They have performed far better 

than traditional machine vision system and have produced state-of-the-art results. These neural 

networks have proven to be successful in many different real-life case studies and applications, 

including: 

• Image classification, object detection, segmentation, face recognition; 

• Self-driving cars that leverage CNN based vision systems; 

• Classification of crystal structure using a convolutional neural network. 

This success can be traced back initially to 2012, the year in which Alex Krizhevsky [186] used 

convolutional neural networks to win that year's ImageNet Competition, reducing classification 

error from 26% to 15%. This brought neural networks to renewed prominence in what is often 

called the "third wave of neural networks" - the first two waves having been in the 1940s-60s and 

in the 1970s-80s. 

Figure A.1 shows the typical architecture of a convolutional neural network for a supervised 

learning model. It shows that an image as an input to the network, which goes through multiple 

convolutions, subsampling, and a fully connected layer, to generate an output. The convolution 

layer computes the output of neurons that are connected to local regions or receptive fields in the 

input, each computing a dot product between their weights and a small receptive field to which 

they are connected in the input volume. Each computation leads to extraction of a feature map 

from the input image. The objective of subsampling is to obtain an input representation by reducing 

its dimensions, which helps in reducing overfitting. One of the techniques of subsampling is max 

pooling. With this technique, one can select the highest pixel value from a region depending on its 
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size. The objective of the fully connected layer is to flatten the high-level features that are learned 

by convolutional layers and to combine all of the features. It passes the flattened output to the 

output layer where one may then use a softmax classifier (for classification tasks) or a sigmoid 

activation function (for regression tasks) to predict the input image label. 

 

Figure A. 1 Typical convolutional neural network (CNN) architecture. A CNN generally contains multiple convolutions, 

subsampling, a fully connected layer, and a final output layer. 

In practice, CNN can be implemented using either TensorFlow or PyTorch frameworks in Python. In 

Chapter 6, the CNN implementation was realized in TensorFlow using the Keras library. Keras 

contains numerous implementations of commonly used neural-network building blocks such as 

layers, objectives, activation functions, optimizers, and a host of tools to make working with image 

and text data easier, and to simplify the coding necessary for writing deep neural network code. In 

addition to standard neural networks, Keras contains support for convolutional and recurrent 

neural networks. It also supports other common utility layers like dropout, batch normalization, 

and pooling. For linear regression tasks demonstrated, the implementation of a convolutional 

neural network generally, and specifically in the case demonstrated in Chapter 6, consists of the 

following procedures: 

Load the data: Training and test images, along with their labels, are loaded and stored in variables, 

which constitute the training and test dataset. 

Data preprocessing: Converting each image of the training and test set into a matrix which is fed 

into the network is the first step. Before feeding it into the network one needs to convert it to float 

type, and rescale pixel values to the 0 - 1 inclusive range. The labels then need to be converted to 

a normalized vector in range 0 - 1 (or class labels converted to an encoding vector for classification 

tasks). The last step is a crucial one: In machine learning or any data specific task, one should 

partition the data into training and test data correctly (an 80:20% split in the present case). For the 

model to generalize well, one should also split the training data into two parts, one designed for 

training and another one for validation. In the present case, we train the network on 80% of the 

training data and validate it on the remaining 20%. This helps to reduce overfitting by validating the 

model on data it has not seen in training phase, which helps to boost test performance. 
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The network: In the present case, images are of a size 350 x 350 pixels. We convert the image matrix 

to an array, rescale it between 0 and 1, reshape it to a size 350 x 350 x 1, and feed this as an input 

to the network. Three convolutional layers are used: The first layer has 64 5 x 5 filters; The second 

layer has 128 4 x 4 filters and the third layer has 256 2 x 2 filters. In addition, there are three max-

pooling layers each of size 4 x 4, 4 x 4 and 3 x 3. Finally, three fully connected dense layers containing 

neurons each of size 128, 256 and 128 that are activated by a sigmoid function. 

 

Figure A. 2 Architecture of the Model. CNN generally contains multiple convolutions, subsampling, a fully connected layer 

and a final output layer. 

Model the data: Firstly, one must import all the necessary modules required to train the network. 

We used a batch size of 32. Using a higher batch may be preferable but is constrained by available 

memory. The choice contributes significantly to determining the learning parameters and affects 

prediction accuracy. 

Neural network architecture: In Keras, one can simply stack the desired layers one by one. We add 

a first convolutional layer with the Conv2D() function, the max-pooling layer with the 

MaxPooling2D() function, and so on. The last layer is a Dense layer that has a sigmoid activation 

function. 

Compile the model: After the model is created, it is compiled using the Adam optimizer, one of the 

most popular optimization algorithms. Finally, one specifies the metric (mean square error in the 

present case) to be used as a loss function for minimization while the network is training. 

Train the model: In Keras, with the Keras' fit() function. One of the problems with training neural 

networks lies in the choice of the number of training epochs to use. Too many epochs can lead to 

overfitting of the training dataset, whereas too few may result in an underfit model. Early stopping 

is a method that allows one to specify an arbitrarily large number of training epochs and then to 

stop training once the performance stops improving on a holdout validation dataset. This method 

yields a so-called best trained model. 

Predict labels: Finally, using the best trained model, the labels of unseen test images can be 

predicted by the network. 
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Appendix B Publications 

Journal Articles: 

1. Ballistic Dynamics of Flexural Thermal Movements in a Nano-membrane Revealed with 

Subatomic Resolution 

T. Liu, J. Y. Ou, N. Papasimakis, K. F. MacDonald, V. E. Gusev and N. I. Zheludev  

Sci. Adv. 8 (33), eabn8007 (2022) doi: 10.1126/sciadv.abn8007 

2. Visualization of Sub-atomic Movements in Nanostructures 

T. Liu, J. Y. Ou, E. Plum, K. F. MacDonald, and N. I. Zheludev 

Nano Lett. 21(18), 7746-7752 (2021) doi: 10.1021/acs.nanolett.1c02644 

3. Detection of sub-atomic movement in nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

Nanoscale Adv. 3, 2213 (2021) doi: 10.1039/d0na01068e 

4. Thermal fluctuations of the optical properties of nanomechanical photonic 

metamaterials 

J. Li, D. Papas, T. Liu, J. Y. Ou, K. F. MacDonald, E. Plum, and N. I. Zheludev 

Adv. Opt. Mater., 202101591 (2021) doi: 10.1002/adom.202101591 

5. Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface 

Array 

I. A. Ajia, J. Y. Ou, N. J. Dinsdale, H. J. Singh, T. Chen-Sverre, T. Liu, N. I. Zheludev, and O. L. 

Muskens 

Nano Lett. 11, 4563-4569 (2021) doi: 10.1021/acs.nanolett.1c00205 

Manuscript Under Review/ in Preparation: 

1. Picophotonics - Subatomic Optical Localization Beyond Thermal Fluctuations,  

T. Liu, C. H. Chi, J. Y. Ou, J. Xu, E. A. Chan, K. F. MacDonald, and N. I. Zheludev 

(Nat. Mater., under review) arXiv:2205.01475 (2022) 

2. Photonic metamaterial analogue of a continuous time crystal,  

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

(Nat. Phys., under review) arXiv:2209.00324 (2022) 

3. Parametric control of thermal fluctuation in a nano-optomechanical metamaterial, 

T. Liu*, J. Li*, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev (In preparation, * joint first 

authors) 

http://dx.doi.org/10.1126/sciadv.abn8007
http://dx.doi.org/10.1021/acs.nanolett.1c02644
http://dx.doi.org/10.1039/d0na01068e
https://onlinelibrary.wiley.com/doi/10.1002/adom.202101591
http://dx.doi.org/10.1021/acs.nanolett.1c00205
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Conference Contributions: 

In cases where I am the presenting author, my name is underlined 

1. (invited) Metamaterial analogue of continuous time-crystal,  

T. Liu, J. Y. Ou, K. F. MacDonald, N. I. Zheludev,  

16th International Congress on Artificial Materials for Novel Wave Phenomena 

(Metamaterials 2022), Siena, Italy, 12–17 Sept, 2022 

2. (invited) From phase change nanophotonics to phase change nano-opto-mechanics,  

T. Liu, D. Papas, J. Li, J. Y. Ou, E. Plum, K. F. MacDonald, and N. I. Zheludev  

META 2022, Torremolinos, Spain, 19-22 Jul 2022 

3. Picophotonics: Sub-Brownian detection of nanowire position with atomic-scale 

resolution using topologically structured light,  

T. Liu, J.-Y. Ou, J. Xu, K. F. MacDonald, and N. I. Zheludev 

CLEO 2022, San Jose, CA, USA, 15-20 May 2022 

4. Experimental observations of thermal fluctuations of metamaterial optical properties 

D. Papas, J. Li, T. Liu, J. Y. Ou, K. F. MacDonald, E. Plum, and N. I. Zheludev 

CLEO 2022, San Jose, CA, USA, 15-20 May 2022 

5. (keynote) Picophotonics: visible invisible 

G. Adamo, E. A. Chan, J. Li, T. Liu, S. Kurdiumov, K. F. MacDonald, J. Y. Ou, N. Papasimakis, 

E. Plum, T. Pu, C. Rendon-Barraza, Y. Wang, and N. I. Zheludev 

SPIE Photonics Europe 2022, Strasbourg, France, 3-8 Apr 2022 

6. Thermal fluctuations in the optical properties of dielectric and plasmonic 

nanomechanical metamaterials 

J. Y. Ou, D. Papas, T. Liu, J. Li, E. Plum, K. F. MacDonald, and N. I. Zheludev 

Nanometa 2022, Seefeld, Austria, 28-31 Mar 2022 

7. Optical metrology with sub-atomic resolution 

K. F. MacDonald, T. Liu, J. Y. Ou and N. I. Zheludev 

Nanometa 2022, Seefeld, Austria, 28-31 Mar 2022 

8. (invited) Picophotonics 

C. Rendón-Barraza, E. A. Chan, J. Li, T. Liu, K. F. MacDonald, J.-Y. Ou, D. Papas, N. 

Papasimakis, E. Plum, T. Pu, G. Yuan, and N. I. Zheludev 

15th International Congress on Artificial Materials for Novel Wave Phenomena, Virtual 

Meeting, 20-26 Sept 2021 

9. (invited) Picophotonics: Visible invisible 
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C. Rendón-Barraza, E. A. Chan, S. Kurdiumov, T. Liu, K. F. MacDonald, J. Y. Ou, N. 

Papasimakis, T. Pu, G. Yuan and N. I. Zheludev 

SPIE Optics & Photonics 2021, Virtual Conference, 1 - 5 Aug 2021 

10. (invited) Metamaterial Nanomachines driven by heat, sound, electric and magnetic fields, 

and light 

T. Liu, J. Li, D. Papas, J. Y. Ou, E. Plum, K. F. MacDonald, and N. I. Zheludev 

SPIE Optics & Photonics 2021, Virtual Conference, 1 - 5 Aug 2021 

11. (invited) Dynamics of nanomechanical metamaterials: Pico-vibrometry with light and 

electron beams 

J. Y. Ou, T. Liu, J. Li, D. Papas, E. Plum, K. F. MacDonald, and N. I. Zheludev 

META 2021, Virtual Conference, 20 - 23 July 2021 

12. (invited) Nanomechanical photonic metamaterials 

E. Plum, D. Papas, J. Li, T. Liu, J. Y. Ou, Q. Zhang, G. Lan, K. F. MacDonald, and N. I. Zheludev 

Materials for Humanity (MH21), Virtual Conference, 6-9 July 2021 

13. Flat photonic devices based on nanomechanical metamaterials driven by light, sound, 

electric and magnetic signals 

J. Li, T. Liu; K. F. MacDonald, J. Y. Ou, D. Papas, E. Plum, and N. I. Zheludev 

Optical Design and Fabrication Congress, Virtual Conference, 27 Jun - 1 Jul 2021 

14. First Observation of Phonon-induced Ballistic Motion in Photonic Nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

CLEO/Europe-EQEC 2021 Virtual Meeting, 21 - 25 June 2021 

15. Picometric Ballistic (non-Brownian) Thermal Movements in Photonic Nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

CLEO 2021 Virtual Conference, 9-14 May 2021 

16. Ultrafast Hyperspectral Nanomotion Imaging of Ballistic and Brownian Motion in 

Metamaterial Nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald and N. I. Zheludev 

Metamaterials 2020 (Virtual Conference), 28 Sept – 01 Oct 2020 

17. (invited) Functional nanomechanical metamaterials 

J. Y. Ou, D. Papas, J. Li, T. Liu, Q. Zhang, D. Piccunotti, E. Plum, K. F. MacDonald and N. I. 

Zheludev 

Photon 2020 (virtual conference), 1-4 Sep 2020 

18. Exotic effects in nanomechanical metamaterials 

J. Y. Ou, D. Papas, J. Li, T. Liu, Q. Zhang, D. Piccinotti, E. Plum and K. F. MacDonald, and N. I. 

Zheludev 

SPIE Optics & Photonics 2020, Digital Forum, 23 - 27 Aug 2020 
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19. (invited) Functional nanomechanical metamaterials driven by light, electromagnetic 

forces and sound 

N. I. Zheludev, D. Papas, T. Liu, J. Li, Q. Zhang, J. Y. Ou, E. Plum, and K. F. MacDonald 

CLEO 2020 Virtual Conference, 11-15 May 2020 

20. High-frequency nano-motion imaging of artificial nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

SPIE Photonics Europe Digital Forum 2020, 6-10 Apr 2020 

21. High-Frequency Nano-motion Electron Imaging for Artificial Nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

Electron Beam Spectroscopy for Nanophotonics 2019 (EBSN2019), Paris, France, 16-19 Sept 

2019 

22. Imaging of high-frequency motion in artificial nanostructures 

T. Liu, J. Y. Ou, K. F. MacDonald, and N. I. Zheludev 

Metamaterials'2019, Rome, Italy, 16 - 21 Sep 2019 
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