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Abstract—The dual-functional radar and communication
(DFRC) technique constitutes a promising next-generation wire-
less solution, due to its benefits in terms of power consumption,
physical hardware, and spectrum exploitation. In this paper,
we propose sophisticated beamforming designs for multi-user
DFRC systems by additionally taking the physical layer security
(PLS) into account. We show that appropriately designed radar
waveforms can also act as the traditional artificial noise conceived
for drowning out the eavesdropping channel and for attaining
increased design degrees of freedom (DoF). The joint beamform-
ing design is formulated as a non-convex optimization problem
for striking a compelling trade-off amongst the conflicting design
objectives of radar transmit beampattern, communication quality
of service (QoS), and the PLS level. Then, we propose a
semidefinite relaxation (SDR)-based algorithm and a reduced-
complexity version to tackle the non-convexity, where the globally
optimal solutions are found. Moreover, a robust beamforming
method is also developed for considering realistic imperfect
channel state information (CSI) knowledge. Finally, simulation
results are provided for corroborating our theoretical results and
show the proposed methods’ superiority.

Index Terms—Dual-functional radar and communication sys-
tem, joint beamforming design, physical layer security, multi-user
MIMO.

I. INTRODUCTION

The proliferation of wireless mobile services exhibits an
exponential trend, leading to a scarcity of spectral resources
and to escalating spectrum prices. For example, it has been
reported that the number of connected devices is expected
to be 80 billion by 2030 with an annual growth rate of
around 25%, and that of the active Internet of Things (IoT)

This work is supported in part by the National Natural Science Foundation
udner Grant 62271163, in part by the Fundamental Research Funds for the
Central Universities (3072022QBZ0401, 3072021CFT0404). F. Liu would
like to acknowledge the financial support of the National Natural Science
Foundation of China under Grant 62101234, as well as of the Young Elite
Scientist Sponsorship Program by the China Association for Science and
Technology (CAST) under Grant No. YESS20210055. L. Hanzo would like to
acknowledge the financial support of the Engineering and Physical Sciences
Research Council projects EP/W016605/1 and EP/P003990/1 (COALESCE)
as well as of the European Research Council’s Advanced Fellow Grant
QuantCom (Grant No. 789028). (Corresponding author: Wei Wang.)

Fuwang Dong, and Fan Liu are with the Department of Electronic and Elec-
trical Engineering, Southern University of Science and Technology, Shenzhen
518055, China (email: dongfw@sustech.edu.cn; liuf6@sustech.edu.cn)

Wei Wang, and Xin Li are with the College of Intelligent System Science
and Engineering, Harbin Engineering University, Harbin, 150001, China
(email: wangwei407@hrbeu.edu.cn; xinxin forever@126.com ).

Sheng Chen, and Lajos Hanzo are with the School of Electronic and
Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
(email: sqc@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

devices will reach 24.1 billion by 2030 [1], [2]. Recently, the
concept and scope of Integrated Sensing and Communication
(ISAC) technology have been formally defined in [3], [4],
enabling sensing and communication simultaneously in the
same frequency band or/and hardware platform, which can
significantly improve the resource utilization. Due to the
numerous advantages offered by ISAC, it is envisioned to
be a promising technique in terms of supporting autonomous
vehicles [5], [6] and the IoT in 6G wireless networks [7].

There are two main ISAC categories in terms of transmitted
signal: radar and communication spectrum coexistence and
dual functional radar-communication (DFRC) [8], [9]. In this
paper, we consider a DFRC system, which transmits dual-
functional signals/waveforms from a single hardware platform,
to gain benefits from joint sensing and signaling operations
via real-time cooperation. The main motivation of transmit
beamforming is to synthesize multiple beams towards both
the communication users and the radar targets by exploiting
the associated spatial degrees of freedom (DoF). In [10], the
authors considered the radar targets as virtual downlink users
encountering a line of sight (LoS) channel. Therefore, the
beamforming matrix was designed for closely matching the
desired radar beampattern, while simultaneously guaranteeing
the signal to interference and noise ratio (SINR) attained by the
downlink users. Furthermore, the authors of [11], [12] studied
the associated symbol/waveform level probing signal design
issues, where the multi-user interference energy was mini-
mized under the similarity and constant modulus constraints of
the radar waveform. However, the above-mentioned schemes
only utilize the communication waveform as the DFRC wave-
form to implement target detection, hence leading to a DoF
reduction, thereby to a radar performance degradation. To this
end, the authors of [13] firstly proposed a jointly precoded
individual communication and radar waveforms based scheme,
where the communication signal can be regarded as a special
case relying on nullifying the dedicated radar waveforms.
Therefore, by exploiting the inherent advantages of the radar
waveform, the DoF erosion can be efficiently compensated,
hence resulting in target detection performance improvements,
especially for a small number of downlink users.

Another critical problem in the DFRC system, which has
been largely overlooked in the relevant literature, is how to
guarantee the privacy and security of the desired informa-
tion [14]. The DFRC base station (BS) transmits the dual-
functional probing waveform for detection purposes, but also
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TABLE I
OUR CONTRIBUTIONS IN CONTRAST TO THE STATE-OF-THE-ART.

[10] [13] [17] [18] [19] Our work
Secure Transmission 3 3 3 3

Jointly precoded communication and radar waveforms 3 3

Precoder design rather than covariance matrix 3 3 3 3

Radar beampattern optimization 3 3 3

Multiple users 3 3 3 3

Imperfect CSI estimations 3 3

Multiple eavesdroppers 3

Using radar signal as artificial noise 3

Tight solution for PLS design 3

sends confidential information to the targets. Evidently, private
information might be leaked to the targets, which may act as
potential eavesdroppers (Eves). Recently, several schemes have
been proposed for guaranteeing secure data transmission by
exploiting constructive interference [15], frequency hopping
[16], and additional artificial noise (AN) [17]–[19], etc. As a
low complexity yet powerful technique, the AN method has
been widely harnessed in the communication community for
enhancing the physical layer security (PLS). The basic princi-
ple of AN-aided secure transmission is that of contaminating
the transmit signal by well-designed AN to degrade Eve’s
reception without affecting the legitimate users (LUs) [20].

In [17], several optimization problems, including secrecy
rate maximization, target return SINR maximization, and
transmit power minimization were formulated for a DFRC
system in the presence of a single target and a single communi-
cation receiver. To tackle the non-convexity of the secrecy rate
expression, an approximate algorithm based on the first-order
Taylor expansion was proposed, which however resulted in
a performance gap between the original non-convex problem
and the approximated one. The authors of [18] considered a
unified joint passive radar and communication system, where
the SNR at the passive radar receiver was maximized, while
keeping the secrecy rate above a certain target. Moreover,
several practical constraints, such as realistic target direction
estimation and imperfect channel state information (CSI) were
taken into account in the associated robust beamforming
proposal of [19]. However, at the time of writing, most of
the contributions on secure DFRC systems have the following
two drawbacks: (1) They only design the covariance matrix of
the AN, yet no further analysis of the DFRC system’s radar
detection is offered; (2) Several relaxation algorithms are used
such as Taylor expansions or semidefinite relaxation (SDR)
techniques, but the performance loss compared to the original
non-convex problem is overlooked.

Motivated by filling the above-mentioned knowledge gap
in the literature, we develop jointly precoded communication
and radar waveforms for secure transmission in a multiple-
input multiple-output (MIMO) DFRC system inspired by [13],
serving multiple LUs and detecting the targets simultaneously.
On one hand, the DFRC platform relying on the ISAC tech-
nique eliminates duplication in the system’s hardware. On the
other hand, the bespoke transmit signals can simultaneously
meet the requirements of radar, communications, and PLS,
circumventing redundancy in the resource consumption for

each functionality, hence also the power dissipation. Compared
to the current DFRC schemes such as those in [10]–[12], [19],
our method achieves superior radar detection performance
thanks to the increased DoFs attained by the additional radar
waveforms. In contrast to [13], the PLS level is also considered
in our work, where the targets may act as potential Eves. The
radar waveforms conveying no confidential information may
also be exploited as the AN imposed on the communication
signals for contaminating the eavesdropping channels. The
main contributions of this paper are summarized as follows,
and they are also boldly and explicitly contrasted to the
literature at a glance in Table 1.

• We develop jointly precoded communication and radar
waveforms for secure transmission. Specifically, the AN
of traditional PLS designs can be replaced by bespoke
radar signals specifically designed for inflicting interfer-
ence upon the Eves, whilst additionally increasing the
DoF available for target detection.

• We formulate the joint beamforming design as a non-
convex optimization problem under the consideration of
both radar, communication and security performance. An
SDR-based and the associated low complexity algorithms
are also conceived for tackling the non-convexity of the
problem, where we prove that the relaxation used in our
scheme is tight.

• We propose a robust beamforming design for the more
practical scenarios of imperfect estimations, including the
uncertain target directions and the imperfect CSI acquired
for the LUs. We also show that the globally optimal
reconstruction method proposed for ideal scenarios still
applicable to our robust beamforming scheme.

• We analyze the performance trade-offs among radar, com-
munication and PLS both theoretically and by simulation
for providing new insights into flexible beamforming.

The rest of this paper is organized as follows. In Section II,
we establish the mathematical model of joint communication
and radar signal transmission and introduce the performance
metrics of radar detection, multiuser communication, and
system security, respectively. The proposed SDR-based beam-
forming and the low complexity ZF-based algorithms are
characterized in Section III. Furthermore, Section IV provides
our robust beamforming method relying on imperfect CSI
knowledge, while the performance vs. the complexity of the
proposed algorithms is analyzed in Section V. Finally, our
simulation results and conclusions are provided in Section VI
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TABLE II
FREQUENTLY USED SYMBOLS

Notation Description

R Covariance matrix of the transmitted signals
H Communication CSI matrix
Wr (Wc) Radar (Communication) beamforming matrix
Γe (Γc) SINR threshold at Eves (LUs)
K Number of the LUs
Q Number of the targets (Eves)
M Number of antennas
β Path-loss coefficient for radar channel
Lr(R, α) Least square function for MIMO radar beampattern
γk (γ̃q) SINR of the k-th LU (the q-th Eve)

and VII, respectively.
The notations used in this paper are as follows. Upper-

case A (lower-case a) bold characters denote matrices (column
vectors), and lower case normal letters a are scalars; (·)T ,
(·)∗ and (·)H represent the transpose, conjugate and complex
conjugate transpose operations respectively; |a| and ‖a‖2 stand
for the magnitude of a scalar a and the `2-norm of the
vector a; E{·} is the statistical expectation; diag{a} stands
for a diagonal matrix using the elements of a as its diagonal
elements; for a matrix A, [A][i,j] denotes the (i, j)th element;
A[:,1:k] and A[1:k,:] represent the sub-matrices containing the
first k columns and rows of A respectively; IM is the n-
dimensional identity matrix and 0M×N is the M ×N matrix
having all-zero entries. Frequently used symbols in this paper
are summarized in Table II.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. Transmission and Reception Signal Model

As shown in Fig. 1, a colocated MIMO BS transmits DFRC
signals to detect Q targets and K LUs simultaneously. For
the consideration of our PLS design, all the targets considered
are non-cooperative, such as unmanned aerial vehicle (UAV)
which are regarded as the potential Eves at the same time. We
assume that the BS is equipped with M antennas arranged in
a uniform linear array (ULA), and all the Eves and LUs have
a single antenna. The proposed beamforming design can be
readily extended to multi-antenna scenarios.

Following [13], the discrete-time transmitted signal at time
slot n, which is the weighted sum of the communication
signals and radar waveforms, can be expressed as

x[n] = Wrs[n] + Wcc[n], n = 0, 1, · · · , N − 1, (1)

where s[n] = [s1[n], · · · , sM [n]]T represents the individual
radar signals and c[n] = [c1[n], · · · , cK [n]]T stands for the K
parallel communication symbol streams intended for the LUs.
N is the total number of symbols. Furthermore, Wr ∈ CM×M
and Wc ∈ CM×K denote the beamforming matrices (or pre-
coders) designed for the radar waveforms and communication
waveforms. The conventional transmit signal strategy which
only exploits the communication signals for detection in [10]–
[12], [19], can be regarded as the special case associated with
Wr = 0. In line with the literature, the following assumptions
are stipulated for the transmitted signals (1).

Fig. 1. The DFRC system detects the targets (Eves) and serves downlink
users by transmitting mixture waveform.

• Both the radar and communication signals have zero
mean, and they are temporally white wide-sense station-
ary stochastic processes;

• The radar and the communication waveforms are statis-
tically independent, hence we have E{scH} = 0M×K ;

• The M radar waveforms are orthogonal to each other,
then we have E{ssH} = IM ;

• The communication symbols transmitted to different LUs
are uncorrelated, i.e., E{ccH} = IK ;

Here, the signal power is normalized to unity. Thus, the
covariance matrix of the transmitted signal can be written as

R = E{xxH} = WrWH
r + WcWH

c . (2)

Let y = [y1, y2, · · · , yK ]T denote the received signal vector
of all the LUs, which can be expressed by

y = Hx + nc, (3)

where H = [h∗1, · · · ,h∗K ]T ∈ CK×M is the channel matrix
and hk represents the channel vector spanning from the BS to
the kth LU, and nc ∼ CN (0, σ2

c IK) denotes the additive white
Gaussian noise (AWGN). Moreover, the targets of interest can
be viewed as virtual downlink users located in the LoS channel
of DFRC systems [10]. Therefore, the signal received by the
qth target (Eve) can be modeled as [19]

rq = βqaH(θq)x + ne, (4)

where βq is the complex path-loss coefficient, ne is the AWGN
with covariance σ2

e , and a(θ) represents the ULA arrays’
steering vector, which can be expressed as

a(θ) =
1√
M

[
1, e2π

d
λ sin(θ), · · · , e2π(M−1) dλ sin(θ)

]T
. (5)

Here, d is the antenna spacing, λ is the carrier wavelength,
and θ is the azimuth of the target.

The BS has to acquire the CSI for both LUs and Eves
before the beamforming design. In general, the CSI marix H of
LUs can be obtained through channel estimation and feedback
techniques [21]. By contrast, the CSI from the BS to the Eve
is challenging to acquire, since the Eves tend to be passive
in general. Fortunately, the sensing functionality of the DFRC
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Fig. 2. Flow of the mathematical analysis.

signal can be exploited for estimating the azimuth and path-
loss coefficient through radar parameter estimation techniques
[22], [23]. Since we only focus on the beamforming design,
the processes of radar parameter estimation and information
demodulation are ignored in this paper. The elaborate details
can be found in [1], [24]. Before proceeding to our mathe-
matical analysis, we have depicted in Fig. 2 the flow of the
analysis described in the sequel, which allows readers to grasp
the overall structure of this paper at a glance.

B. Performance Metrics

In our proposed physical layer beamformer designed for
secure transmission, some important properties related to the
symbol-level waveform design [11], [12] are not considered,
such as the radar’s ambiguity function, the peak-to-average
power ratio (PAPR), etc. Next, we introduce our performance
metrics used for the target detection, for the communication
quality of service (QoS), and for the PLS level, respectively.

(1) Performance metric for MIMO radar: In general, there
are two primary MIMO radar functions, namely detection and
tracking. MIMO radar tends to create both spatially orthogonal
waveforms and omni-directional beampatterns (i.e., R = I)
for detecting the potential targets in the detection stage, since
there is no prior information concerning the targets. Then, in
the tracking stage, MIMO radar steers the beam to the target
directions of interest acquired during the previous observa-
tions. Instead of maximizing the SINR at radar receiver [25],
we focus on the radar transmit beampattern performance. The

synthesized radar beampattern at azimuth θ can be formulated
as

P (θ; R) = E{aH(θ)xxHa(θ)} = aH(θ)Ra(θ). (6)

Additionally, the cross-correlation pattern between direction
θ1 and θ2 can be written as

Pc(θ1, θ2; R) = aH(θ2)Ra(θ1). (7)

The objectives of beamformer design for MIMO radar include
the following [26]
• Optimize the beampattern over the sectors of interest to

concentrate the signal power while maintaining a low
sidelobe level;

• Reduce the cross-correlation pattern over the set of target
angles to achieve an excellent adaptive performance;

To this end, we adopt the loss function defined in terms of
the least squares as our performance metric for MIMO radar,
which is formulated as

Lr(R, α) = Lb(R, α) + ηLc(R), (8)

where η is the weighting factor representing the relative
importance of the two terms based on the associated practical
requirements. The first term represents the mean squared error
between the designed and desired beampatterns, which can be
formulated as

Lb(R, α) =
1

L

L∑
l=1

|αΦ(θl)− P (θl; R)|2. (9)

Here, α is a scaling factor, Φ(θ) denotes the desired transmit
beampattern, and {θl}Ll=1 represents the fine grid of points that
cover the targets of interest. Let ∆ denote the beam-width,
then the desired beampattern at azimuth θ? is given by

Φ(θ) =

1, θ? − ∆

2
≤ θ ≤ θ? +

∆

2
0, otherwise.

(10)

Moreover, the second term is the mean-squared cross-
correlation pattern, given by

Lc(R) =
2

P 2 − P

P−1∑
p=1

P∑
q=p+1

|Pc(θ̄p, θ̄q; R)|2, (11)

where {θp}Pp=1 are the given directions of the targets. We refer
the reader to [13], [26] for more details.

(2) Performance metric for multi-user communication:
The achievable transmission rate related to the SINR of the sig-
nal received by the downlink users is a standard performance
measure in multiuser communication systems. For notation
convenience, we introduce W = [Wc,Wr], where wi is the
ith column of W for i = 1, · · · ,K + M . Then, the signal
covariance matrix can be rewritten as

R = WWH =

K+M∑
i=1

wiwHi =

K+M∑
i=1

Ri, (12)

where Ri = wiwHi is the rank 1 covariance matrix. Specif-
ically, R1, · · · ,RK are the covariance matrices of communi-
cation symbols, where the last M ones are those of the radar
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waveforms. Thus, the SINR at the kth LU can be formulated
as

γk =
E{|hHk wkck|2}

K∑
i=1,i6=k

E{|hHk wici|2}+
M∑
j=1

E{|hHk wj+Ksj |2}+ σ2
c

=
hHk Rkhk

K+M∑
i=1,i6=k

hHk Rihk + σ2
c

.

(13)
There are two popular design criteria for multiuser beamform-
ing [27]. One of them is the throughput criterion to maximize
the system’s sum-rate. The other is the fairness criterion used
for maximizing the minimal SINR at each user, which can be
expressed as

max min{γ1, · · · , γK}. (14)

In this work, the SINR-fairness is adopted as the performance
metric for multiuser communication. On the one hand, the
fairness metric guarantees that each LU can obtain satisfactory
QoS. On the other hand, the fairness metric based optimization
is more tractable than the NP-hard optimal throughput beam-
forming problem. Given a minimal level of communication
QoS Γc, the SNR-fairness metric can be transformed to forcing
the minimal SINR of the users to be higher than the target
threshold, i.e., γk ≥ Γc, k = 1, · · · ,K.

(3) Performance metric for PLS level: When the targets
become Eves, the achievable data rates at Eves are non-
negligible. A straightforward method is to increase the propor-
tion of interference signal power to the detriment of the useful
signal. According to the previous analysis, the radar waveform
conveying no desired information can be regarded as the
interference contaminating the reception of Eves. Accordingly,
by recalling the received signal model (4), the SINR for the
qth Eve can be formulated as

γ̃q =
|βq|2a(θq)

H
∑K
k=1 Rka(θq)

|βq|2a(θq)H
∑K+M
i=K+1 Ria(θq) + σ2

e

. (15)

Following [19], we consider the worst-case SINR in (15),
assuming that all the information intended for the K LUs is
the desired signal for Eves. As stated in [28], there will exist
modulation and coding schemes that allow the LUs rather than
the Eves to reliably decode the transmit information, as long
as γk > γ̃q , for ∀k, q. Therefore, we restrict the maximal
SINR at Eves to be less than a given threshold Γe, instead
of optimizing the secrecy rate [log(1 + γk) − log(1 + γ̃q)]

+

defined in [17], to achieve a satisfactory PLS level. On the one
hand, the system’s secrecy rate is difficult to determine due to
its non-convexity with respect to Ri. On the other hand, since
SINR-fairness based schemes are still capable of maintaining
a minimal communication rate due to the monotonicity of the
log function, we can equivalently achieve a desired secrecy
rate [log(1 + Γc) − log(1 + Γe)]

+ by appropriately choosing
the thresholds Γc and Γe.

III. THE BEAMFORMING DESIGN FOR IDEAL SCENARIOS

In this section, we aim for designing the transmit beamform-
ing matrices Wr and Wc under the consideration of the perfor-

mance metrics for the radar beampattern, the communication
QoS and the PLS levels given in the previous section. We first
consider the ideal conditions, where the BS perfectly knows
the CSI both for the LUs and Eves, and leave the beamformer
design under the more practical imperfect CSI scenario for the
next section.

A. The proposed SDR-based beamforming algorithm

Our beamforming design objective is to minimize the dif-
ference between the desired transmit beampattern and that
generated by the BS to achieve good target detection and
tracking performance. Meanwhile, the beamforming design
also guarantees that the downlink SINR at the LUs remains
higher than the given threshold, while that of the Eve is lower.
Recalling the definition (12), instead of directly optimizing
the precoding matrix W, the SDR based optimization problem
with respect to the variables Ri can be formulated as

minimize
R,{Ri},α

Lr(R, α) (P0)

subject to R =

K+M∑
i=1

Ri ∈ S+M , α > 0, (16a)

Ri ∈ S+M , i = 1, · · · ,K +M, (16b)
rank(Ri) = 1, i = 1, · · · ,K +M, (16c)
[R][m,m] = Pt/M, m = 1, · · · ,M, (16d)
γk ≥ Γc, k = 1, · · · ,K, (16e)
γ̃q ≤ Γe, q = 1, · · · , Q, (16f)

where S+M represents the set consisting of all M -dimensional
complex positive semidefinite matrices, i.e., S+M = {A|A ∈
CM×M ,A = AH ,A � 0}. The rank-1 constraint in (16c) is
equivalent to Ri = wiwHi . (16d) represents the per-antenna
power constraints, and Pt is the total transmit power of the
BS. Furthermore, the objective function and the constraints
(16e), (16f) are the performance metrics introduced in Section
II-B, where Γc and Γe are the predefined SINR thresholds at
the LUs and Eve, respectively.

Upon substituting the SINR expressions (13) as well as (15)
into the constraints and applying some simple mathematical
manipulations, (16e) and (16f) can be recast as

(1 + Γ−1c )hHk Rkhk ≥ hHk Rhk + σ2
c , ∀k (17a)

(1 + Γ−1e )aHq
K∑
k=1

Rkaq ≤ aHq Raq +
σ2
e

|βq|2
,∀q (17b)

where aq is the abbreviated form of a(θq). It can be observed
that the individual matrices {Ri}i≥K+1 have no effect on the
SINR constraints, which motivates us to remove these matrix
variables from the original problem P0 of (16). As a result,
the number of matrix variables is reduced from K + M + 1
to K + 1, leading to much reduced memory requirements.
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By reformulating the constraint (16a), problem P0 can be
transformed to

minimize
R,R1,··· ,RK ,α

Lr(R, α) (P1)

subject to R ∈ S+M , R−
K∑
k=1

Rk ∈ S+M , (18a)

α > 0, Rk ∈ S+M , k = 1, · · · ,K, (18b)
rank(Rk) = 1, k = 1, · · · ,K, (18c)
[R][m,m] = Pt/M, m = 1, · · · ,M, (18d)
(17a), (17b).

However, problem P1 is non-convex due to the rank-1 con-
straints. Thus, the SDR relaxation based version of problem
P1 can be obtained by omitting the rank-1 constraints (18c),
which is denoted by problem P2. Thus, the problem P2 has
become a standard quadratic semidefinite program (QSDP),
since the objective function is a positive-semidefinite quadratic
form and all the constraints are either linear or semidefinite.
Hence, the global optimum can be obtained in polynomial time
with the aid of standard convex optimization toolboxes [29],
[30]. Note that the optimal solutions of the relaxed problem
P2 are not necessarily rank-1 matrices, hence either the classic
eigenvalue decomposition or Gaussian randomization methods
[31] can be leveraged to obtain the solutions of the origi-
nal problem P1. Unfortunately, these kinds of approximate
algorithms usually only provide suboptimal solutions of the
original problem, hence resulting in a loss of performance.

To circumvent this deficiency, we set out to find a global
optimum for problem P1, which means that the SDR relax-
ation is tight. Inspired by the result in [13], we propose the
following proposition.

Proposition 1: Let R̂, R̂1, · · · , R̂K be the optimal solution
of the QSDP problem P2. There also exists a global optimum
R̃, R̃1, · · · , R̃K for problem P1, where we have

R̃ = R̂, w̃k = (hHk R̂khk)−1/2R̂khk, R̃k = w̃kw̃Hk , (19)

for k = 1, · · · ,K.
Proof : The proof is relegated to Appendix A. �
According to Proposition 1, we can get the global rank-

1 optimal solution for problem P1 from its QSDP relaxation
based version P2, where the relaxation is tight. The remaining
step is to find the optimal solution for the original problem
P0, i.e. obtaining the precoding matrix Wr for the radar
waveforms. To meet the constrains of (16a) and (16b), the
M precoding vectors {wi}i≥K+1 can be obtained by the
following decomposition

WrWH
r = Rrad = R̃−

K∑
k=1

R̃k, (20)

where Wr = [wK+1, · · · ,wK+M ]. Actually, since the associ-
ated waveform level design is not considered in this work, the
decomposition (20) is not unique, but it is trivial thanks to the
positive semi-definite nature of the radar signal’s covariance
matrix. Several decomposition methods such as the square root
matrix (Wr = R

1
2

radU, U is an arbitrary unitary matrix) based

one [32] and the Cholesky decomposition based one may be
applied [33].

B. The ZF-based low complexity algorithm

The main computational complexity burden in the proposed
SDR-based algorithm is imposed by that of solving the QSDP
problem P2, which motivates us to seek a low-complexity
solution. Inspired by the zero forcing (ZF) based method of
[13], we develop a reduced-complexity sub-optimal algorithm
by incorporating ZF constraints into problem P2. The ZF
method is widely used in low-complexity linear precoders,
because its performance tends to that of the optimal non-
linear precoder, especially for a large number of antennas [34],
[35]. Its main appeal is that of eliminating the inter-user and
radar interferences, hence achieving a high SINR at each user.
Mathematically, the ZF constraints can be expressed as

HWc = diag(
√
ρ1, · · · ,

√
ρK), HWr = 0K×M , (21)

where ρk represents the signal power at the kth user, for 1 ≤
k ≤ K. Upon recalling the definition W = [Wc,Wr] and R =
WWH , (21) can be equivalently transformed to the following
form (Theorem 2, [13])

HRHH = diag(ρ), (22)

where ρ = [ρ1, · · · , ρK ]. Moreover, substituting (21) or (22)
into the SINR expression (13), the associated SINR constraints
(17a) can be simplified by

ρk ≥ Γcσ
2
c , ∀k. (23)

It can be observed that the individual matrix variable Rk
has been removed from the SINR constraints for the LUs by
imposing the ZF constraints. Following the same methodology
for further reducing the number of matrix variables, and by
introducing the auxiliary matrix variable Rcom =

∑K
k=1 Rk,

the PLS constraint (17b) can be rewritten as follows

(1 + Γ−1e )aHq Rcomaq ≤ aHq Raq +
σ2
e

|βq|2
, ∀q (24)

Furthermore, we can immediately infer the ZF constraint for
Rcom as

HRcomHH = HWcWH
c HH = diag(ρ). (25)

As a consequence, either the communication SINR constraint
or the PLS constraint no longer contains the individual matrix
variable Rk. Accordingly, problem P2 can be converted to

minimize
R,Rcom,ρ,α

Lr(R, α) (P3)

subject to R ∈ S+M , R− Rcom ∈ S+M ,Rcom ∈ S+M , (26a)
[R][m,m] = Pt/M, m = 1, 2, · · · ,M, (26b)

HRHH = diag(ρ), (26c)

HRcomHH = diag(ρ), (26d)
α > 0, (23), (24).

Problem P3 is also a standard QSDP problem, because the
objective function has a positive-semidefinite quadratic form
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Algorithm 1 The proposed SDR(ZF)-based beamforming
algorithm designed for secure DFRC.

Input:
Total transmit power of base station Pt;
Radar desired beampattern Φ(θ);
Instantaneous downlink channel H;
SINR threshold at LUs Γc and at Eves Γe;
The directions of Eves θq, q = 1, · · · , Q;
Output
The overall precoding matrix W = [w1, · · · ,wK+M ].
Steps
1. Compute the optimal solution of P2 (or P3) via convex
optimization solver;
2. Compute w1, · · · ,wK by (19) (or by (28));
3. Compute wK+1, · · · ,wK+M by (20) (or by (29));

and all the constraints are either linear or semidefinite. Simi-
larly, the optimal solutions R̂ and R̂com can be obtained by a
standard convex optimization toolbox in polynomial time.

The next step is to recover the precoding matrix W from
the optimal solutions R̂ and R̂com. Inspired by Theorem 2
of [13], we conceive the following procedure of constructing
the radar and communication precoding matrices, respectively.
First, either the classic Cholesky decomposition or square
root method is used by exploiting the positive-semidefinite
property for R̂com = LcLHc . Then, we employ the row QR
decomposition of HLc, yielding

HLc = [Lh, 0K×(M−K)]Q, (27)

where Lh is a K × K lower triangular matrix and Q is a
M × M unitary matrix. Thus, the communication precoder
can be formulated as

Wc = Lc[QH ][:,1:K], (28)

while the radar precoding matrix Wr can be expressed as

WrWH
r = R̂rad = R̂−WcWH

c . (29)

Subsequently, we analyze the feasibility of the proposed pre-
coder design method by introducing the following proposition.

Proposition 2: Given the optimal solution R̂ and R̂com of
problem P3, the matrices Wc in (28) and Wr in (29) are
also the optimal precoders of problem P3 and satisfy the ZF
constraint (21) at the same time.

Proof : The proof is divided into three parts, and it is
relegated to Appendix B. �

Proposition 2 illustrates the feasibility and efficiency of
the proposed precoding matrices recovered from the optimal
solution of problem P3. In summary, we can obtain the
optimal beamforming for DFRC secure transmission with the
perfectly known CSI by the proposed SDR-based and the low
complexity ZF-based algorithms. The detailed procedure of
the proposed algorithms are summarized in Algorithm 1.

IV. ROBUST BEAMFORMING DESIGN WITH IMPERFECT
CSI KNOWLEDGE

In practice, it is challenging to obtain the exact CSI due
to the estimation errors, feedback quantization, hardware defi-

ciencies, etc., resulting in imperfect CSI knowledge at the BS.
Specifically, for the radar targets, we assume that the direction
of the q-th target is roughly known by the BS within an angular
interval of [θq − ∆θq, θq + ∆θq], where ∆θq represents the
associated angle uncertainty. Moreover, for the communication
LUs, the additive error model of the CSI matrix for the k-th
LU is considered as hk = ĥk + εk, where ĥk is the estimated
CSI matrix and εk denotes the channel uncertainty. To this
end, we aim for designing the robust beamforming scheme
for secure transmission in this section.

A. Wide main-lobe beampattern design

The uncertainties of the target directions have an impact
on both the objective function and the PLS constraints in
problem P0. On one hand, the BS should form a wide main-
lobe to avoid missing the target. Thus, the beam-width ∆ in
(10) should be appropriately chosen according to the angular
uncertainty ∆θq , in order to cover all the possible locations
of the target.

On the other hand, since Eve may be located in an arbitrary
direction within the angular interval, we should guarantee a
satisfactory secrecy rate for every possible direction. Con-
sequently, the SINR constraints (17b) should be modified
according to

(1 + Γ−1e )aHqi
K∑
k=1

Rkaqi ≤ aHqiRaqi +
σ2
e

|βq|2
, ∀θqi ∈ Ω̄q, (30)

where Ω̄q is a discrete set that covers the potential directions
of the q-th Eve, and aqi represents the compact form of a(θqi).
It can be observed that the angular uncertainty introduces
more constraints similar to (17b) over the associated angular
interval. Evidently, the proposed Algorithm 1 is also capable
of handling the modified constraints (30). In other words,
the number of targets and the uncertainty of target directions
determine the number of PLS constraints. Naturally, imposing
a large number of constraints for securing certain PLS levels
results in degraded radar beampattern and communication
QoS. We will illustrate this phenomenon in Section VI.

B. Robust beamforming for mitigating CSI error of LUs

Similar to [19], [37], we assume that the CSI uncertainty is
bounded by a spherical region as

Sk := {ĥk + εk | ||εk|| ≤ uk}, ∀k. (31)

In this case, the SINR expression for the k-th LU in (13)
should be replaced by the worst-case SINR over the set Sk,
namely

γ̄k = min
hk∈Sk

γk, ∀k. (32)

Thus, based on the definitions (31) and (32), the SINR
constraint in (17a) can be reformulated as

(ĥk+εk)H
[
(1 + Γ−1c )Rk − R

]
(ĥk+εk)−σ2

c ≥ 0, ∀k. (33)

Then, we adopt the popular S-procedure of robust optimization
to tackle the SINR constraints mentioned above. By introduc-
ing an auxiliary vector t = [t1, · · · , tK ], the original problem
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P1 can be reformulated as the following robust beamforming
version [19], [37]

minimize
R,R1,··· ,RK ,t,α

Lr(R, α) (P4)

subject to (18a)− (18d), (17b) or (30),(
Sk + tkIM Skĥk

ĥ
H

k Sk hHk Skhk − σ2
c − tku2k

)
� 0,∀k

Sk := (1 + Γ−1c )Rk − R, tk ≥ 0.
(34)

Again, by dropping the rank-1 constraints (18c), problem
P4 becomes a QSDP, which can be efficiently solved in
polynomial time. Then, we will show that the optimal solution
of the QSDP reconstruction method in (19) also holds for the
proposed robust beamforming.

Proposition 3: Let R̂, R̂1, · · · , R̂K be the optimal solution
of the relaxed version of problem P4. Then the R̃, R̃1, · · · , R̃K
associated with the expression of (19) is also the optimal
solution of the original problem P4.

Proof : By employing the result in Proposition 1, the proof
becomes straightforward upon substituting (19) into the con-
straints (33). �

V. PERFORMANCE AND COMPLEXITY ANALYSIS

A. Complexity Analysis

The complexity of the proposed algorithms is dominated by
the QSDP problem. For a given solution accuracy ε, the worst-
case complexity order of solving problem P2 using the primal-
dual interior-point algorithm is O[(K + Q)6.5M6.5log(1/ε)]
[13], [38], where K + Q and M refer to the number of
semidefinite constraints and the dimension of matrix variables,
respectively. Compared to the SDR algorithm, the low com-
plexity ZF beamforming problem P3 includes 5 = O(1) such
constraints, hence the worst-case complexity order becomes
O[Q6.5M6.5log(1/ε)]. Furthermore, for the robust beamform-
ing algorithm with imperfect CSI knowledge, the complexity
also depends on the number of elements in the set Ω̄q of
(30). Specifically, upon denoting the cardinality of the set
Ω̄q as P , the worst-case complexity is on the order of
O[K6.5P 6.5M6.5log(1/ε)].

B. Performance Analysis

In this subsection, we provide the performance analysis of
the proposed algorithms.

(I) We can immediately spot the performance trade-off
among the radar beampattern, the communication QoS, and
the PLS level in problem P1. The constraints (17a) and (17b)
always hold, when we have Γc = 0 and Γe →∞. In this case,
problem P1 is reduced to the conventional radar-only beam-
forming design, determining the optimal beampattern for radar
detection. Explicitly, any improvements of the communication
QoS and PLS level are attained at the cost of sacrificing the
radar performance, since the radar loss function will increase
upon increasing Γc or decreasing Γe.

(II) Compared to the SDR-based algorithm, the low com-
plexity ZF-based algorithm forces the radar and inter-user in-
terference to zero, potentially raising the SINR at the LUs to a

certain threshold (denoted by Γ̂). Thus, for the communication
constraints, we have{

γZF
k = Γ̂ > γSDR

k ≥ Γc, when Γc < Γ̂,

γZF
k = γSDR

k ≥ Γc ≥ Γ̂, when Γc ≥ Γ̂.
(35)

For a relatively low threshold Γc, the interference encountered
by the users do not have to be as low as zero to satisfy the
SINR constraint, resulting in γZF

k > γSDR
k . By contrast, the in-

terference in γSDR
k has to be eliminated to meet the high SINR

requirements, resulting in γZF
k = γSDR

k . According to (35), we
can immediately conclude the following properties of the ZF-
based algorithm. (1) It results in worse radar beampattern than
the SDR-based algorithm because more severe restrictions are
imposed by the ZF constraint when Γc < Γ̂. (2) The radar
loss function and the users’ SINR remains constant, as long
as the threshold Γc is lower than a positive value Γ̂. (3) The
performance of ZF-based beamforming tends to be similar to
that of SDR-based beamforming at high SINRs, i.e., Γc ≥ Γ̂.

(III) For the SDR-based algorithm, the system’s secrecy rate
is always approximated by log2(1+Γc)−log2(1+Γe) given the
thresholds Γc and Γe, because the optimal solution generally
reaches the boundary of the feasible region. By contrast, the
secrecy rate of the ZF-based algorithm may become higher
than the above value for small Γc values due to the potentially
high SINR achieved under the ZF constraint. The proposed
algorithms guarantee to have a secrecy rate above a certain
lower bound.

(IV) Upon considering the extreme case that the channels of
the users and Eves have the same quality, i.e., βka(θk) = hk,
the communication QoS constraint (17a) and the PLS level
constraint (17b) are contradictory to each other, hence lead-
ing to the infeasibility of problem P1. This means that the
feasibility probability of problem P1 significantly depends on
the values of Γc as well as Γe, and on the distances between
the targets and Eves. The proposed joint beamforming design
method will become invalid, when the Eves are at the same
directions as the users. The symbol-level range sidelobe design
[36] may be a promising remedy, which we will leave for
future research.

(V) It should be pointed out that the joint PLS beamforming
design of [19] minimized the SINR at Eve, which is different
from the proposed method optimizing the radar transmit
beampattern. Even though it cannot be compared directly due
to the different functional requirements, the proposed method
has the following advantages over [19]. (1) The fractional
programming approach is adopted in [19], where a sequence
of SDPs has to be solved by iteration, imposing a heavy
computational burden. By contrast, the proposed methods
only have to solve a SDP or QSDP problem with the same
number of matrix variables. (2) The eigenvalue decomposition
or Gaussian randomization techniques of [19] result in a sub-
optimal solution, when the ranks of the optimal matrices
obtained by the SDP solver are not equal to 1. By contrast, the
proposed SDR relaxation is tight. (3) When using the SINR
instead of the secrecy rate as the objective, the difference
between the achievable rate of users and that of Eves may
become negative, leading to a secrecy rate of SR = 0. By
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contrast, the proposed algorithms can always guarantee a
satisfactory secrecy rate.

VI. SIMULATION RESULTS

In this section, we evaluate the proposed joint PLS beam-
forming algorithm by numerical simulations. The system pa-
rameters are set as follows, unless specified otherwise. The
BS is equipped with a ULA having half-wavelength spacing
between adjacent antennas, i.e. d/λ = 1/2. The number of
antennas is set to M = 10, and the total transmit power is
normalized as Pt = 1. The angular directions are obtained by
uniform sampling with resolution of 0.1◦, including {θl}Ll=1

in (9) with the range of [−90◦, 90◦], and Ωq in (30). Without
loss of generality, we adopt the Rayleigh fading model for
the multi-user communication channel so that each entry of
H obeys the standard complex Gaussian distribution with
hi,j ∼ CN (0, 1). Additionally, we assume the noise levels
at the Eves and LUs to be the same, i.e., σ2

c = σ2
e = 0.01 for

convenience. The individual radar waveforms and communica-
tion symbols are generated as random quadrature-phase-shift-
keying (QPSK) modulated sequences, with the total number
of symbols being N = 1024.

For comparison, we choose the joint beamforming de-
sign method and its low-complexity counterpart proposed in
[13] termed as Benchmark 1 and Benchmark 2, respectively.
Compared to [10], where only the communication signal is
exploited by the DFRC system, the superiority of the combined
radar waveforms and communication signals in terms of
increasing the DoFs has been shown in [13]. Therefore, we
refer to [13] for circumventing repetition.

First, we numerically characterize the MIMO radar transmit
beampattern, where the proposed SDR-based algorithm and
its low-complexity version are referred to as SDR and ZF,
respectively. We set the direction of a single target to θ0 = 0◦,
the threshold for the LUs’ SINRs to Γc = 10dB, and the
threshold for the Eve’s SINR to Γe = 0dB. Fig. 3 illustrates
the trade-off among the radar beampattern, the communication
QoS and the PLS level. Although the proposed algorithms
impose a performance degradation on the transmit beampattern
compared to their counterparts, the target secrecy rate (SR) can
still be guaranteed. By contrast, Benchmark 1 and 2 form better
beampatterns, but their SR becomes zero. Then, we evaluate
the system performance versus the predefined SINR thresholds
Γc and Γe, respectively.

A. System Performance Evaluation vs. the Threshold Γc

In this subsection, we keep the SINR threshold of Eves
Γe = 0dB as a constant, and sweep Γc of LUs from 10dB to
18dB to test its impact. All of the simulation results represent
averaged values over 500 Monte Carlo trials. In each trial,
the target direction θq is chosen randomly in the range of
[−60◦, 60◦], and the CSI of the link spanning from the BS
and the LUs obey the standard Complex Gaussian distribution.
The radar performance is evaluated as the difference between
the DFRC transmit beampattern and the optimal radar-only
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Fig. 3. Radar transmit beampattern for the direction θ0 = 0◦, with K = 2,
Γc = 10dB, and Γe = 0dB.

beampattern by defining the mean square error (MSE) metric
as

MSE =
1

L

L∑
l=1

|P (θl; R̂)− P (θl; R?)|2, (35)

where R? is the optimal radar-only variance matrix by the 3dB
low sidelobe beampattern design scheme of [26] .

Fig. 4 shows the beampattern MSE versus the SINR thresh-
old Γc of the LUs. We can observe the following three
phenomena from Fig. 4. (1) The beampattern MSEs of all
algorithms increase upon increasing Γc, which is consistent
with the previous analysis. As expected, the MSE of the ZF-
based algorithms remains constant in the scenarios of K = 2
and for SINRs below 16dB at K = 4. This is because the
ZF-based methods force the interference to zero, leading to
a potentially high SINR. Thus, the performance will remain
constant until the SINR thresholds become higher than the
potential SINR achieved by the ZF constraint. The perfor-
mance gaps between the SDR-based and ZF-based methods
become quite small for high enough values of Γc. (2) The
benchmark algorithms formulate better beampattern, since the
PLS aspects of confidential information protection is not taken
into account in these methods. (3) The more users have to be
supported, the higher the beampattern MSE becomes. Notably,
the impact of the number of users K on the beampattern MSE
is more significant than that of the SINR threshold Γc, which
implies that serving more downlink users is more restrictive
than improving the SINR level of the users.

In Fig. 5, we quantify the achievable sum-rate versus the
SINR threshold Γc, where the system sum-rate is defined by∑K
k=1 log2(1 + γk). The SDR and Benchmark 1 curves are

fairly similar and increase linearly with the SINR constraint
Γc. This is because the optimal solution should reach the
SINR boundary related to the given threshold. Conversely, as
seen in the analysis of Section V-B, the ZF-based beamformer
achieves a higher communication sum rate to the detriment of
the radar performance. Meanwhile, the performances of the
SDR-based and ZF-based beamformer tend to become similar
at high SINR thresholds for both K = 2 and 4. Furthermore,
the curves of the Benchmark 2 are slightly higher than those
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of the proposed ZF algorithms, since there is an additional
minimum PLS constraint imposed on the ZF algorithm.

Fig. 6 illustrates the system’s secrecy rate versus the SINR
threshold Γc. Observe that the curves of SDR associated with
K = 2 and K = 4 are coincident and increase linearly
upon increasing Γc. Recall from Section V-B that the system’s
secrecy rate will only reach the value of log2(1 + Γc) −
log2(1+Γe), if the optimization problem is feasible, regardless
of how the other parameters change. Additionally, the ZF-
based beamformer associated with K = 2 achieves a higher
secrecy rate than that of the SDR-based algorithm at small
values of Γc, since it can reach a higher SINR level than
the given threshold. However, the secrecy rate of these two
algorithms becomes similar for K = 4. Actually, supporting
more communication users imposes more restrictions on the
optimization problem P3, hence forcing the minimal SINR
level to approximate the threshold Γc. Moreover, the proposed
PLS-protected beamforming design guarantees a satisfactory
PLS level by appropriately choosing the thresholds. By con-
trast, the benchmark 1 and 2 are not capable of secrecy
protection, especially not for numerous legitimate users K.

B. System Performance Evaluation vs. the Threshold Γe

In this subsection, we evaluate the system performance
versus the SINR threshold Γe of the Eves. Accordingly, we set
Γc = 10dB as a constant, while all other system parameters

remain unchanged. The SINR threshold Γe is varied from
−20dB to 0dB with intervals of 2dB. It should be highlighted
that the benchmark curves of [13] remain constant in all the
figures of this subsection. This is because these algorithms do
not take the PLS into account, hence the change of threshold
Γe does not affect these performances.

Fig. 7 shows that the radar beampattern MSE decreases
upon increasing Γe both for the proposed SDR and ZF
algorithms. Specifically, we can see that the curves of Fig.
7 remain near-constant, when Γe is less than −12dB, while
decreasing noticeably, when Γe is higher than −10dB. Similar
trends may also be observed in Fig. 8 and Fig. 9, which implies
that the performance is not sensitive to the choice of Γe, when
Γe is less than −12dB for this set of parameters. Having
excessively low Γe increases the infeasibility probability of
the optimization problem considered.

In Fig. 8, we can see that the system’s sum-rate also remains
unchanged for the SDR algorithm as a result of the constant
threshold Γc being close to the optimal solution. By contrast,
the curves of ZF show an increasing trend in Fig. 8 upon
increasing Γe, since a higher Γe implies that less severe
restrictions are imposed on the ZF-based beamforming.

In Fig. 9, the SDR and the ZF for K = 4 reach the
boundary of the secrecy rate log2(1 + Γc) − log2(1 + Γe).
Meanwhile, the ZF for K = 2 attains a higher secrecy rate
than its counterparts, since supporting less LUs imposes less
restrictions on the beamforming design. Furthermore, we can
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infer from Fig. 8 and Fig. 9 that although a low Γe reduces the
achievable data rate of the Eve, it also results in a low data rate
for the LUs. Therefore, no obvious secrecy rate improvement
is attained upon reducing Γe.

C. System Performance Evaluation for imperfect CSI

First, we evaluate the impact of angular uncertainties of
the Eves on the system performance. We set Q = 3 targets
having the directions of θ1 = −40◦, θ2 = 0◦, and θ3 = 40◦,
respectively. Each target has the same direction uncertainty
of ∆θ = 5◦. The BS detects and tracks these targets, while
serving K = 3 LUs. The SINR thresholds for the LUs and
the Eves are set to Γc = 10dB and Γe = 0dB, respectively.

Fig. 10 illustrates the radar transmit beampattern synthe-
sized by the proposed algorithms. The SINR level defined by
(15) is calculated over the set of [−90◦, 90◦] angular direction.
It can be observed that although the BS forms multi-beams
pointing to the directions of the Eves, the SINR levels in
each interval covering the Eves are controlled by the threshold
Γe. This is because the signal power of radar waveforms is
higher than that of the communication symbols, which have
to be protected. Moreover, although the beampattern of the
ZF algorithm is less beneficial than that of the SDR (higher
side-lobe), the average spatial SINR level is lower than that
of the SDR algorithm. In Fig. 11, we evaluate the impact of
the direction uncertainties on the optimization performance
upon varying Γc from 10dB to 18dB. As expected, further
constraints are introduced by the uncertainty of the target
directions, hence leading to an eroded radar performance.

Fig. 12 shows the estimated secrecy rate calculated by the
known imperfect CSI versus the error bound for the scenario
of K = 2. It can be observed that the estimated secrecy
rates remain constant and are equal to the secrecy rates in
the case of perfect CSI. By contrast, the curves obtained in
the case of imperfect CSI exhibit an increasing trend. This is
because the worst-case secrecy rate is forced to be larger than
a given threshold in our robust beamforming algorithm, while
the statistical difference between the worst-case and estimated
secrecy rate becomes larger upon increasing the error bound.

VII. CONCLUSION

A DFRC multi-user communication system was pro-
posed, while taking the physical layer security into account.
The weighted sum of the communication signal and radar
waveform was adopted for dual-functional transmission. We
demonstrated that the additional radar waveform conveying no
confidential information improves the DoF in target detection
and simultaneously contaminates the eavesdropping channel.
Subsequently, the SDR and the low complexity ZF algorithms
were proposed for finding the global optimal solution of the
formulated non-convex beamforming design problem. Further-
more, we also designed the robust beamforming for the more
practical scenarios of imperfect CSI knowledge. Finally, we
evaluated the impact of the parameters on the attainable sys-
tem performance by numerical simulations, which showed an
excellent consistency with the theoretical analysis. Designing
PLS systems operating in the face of other types of legitimate
and eavesdropping channels as well as hardware impairments
is left for our future research. Another promising area of
research is the design of Pareto-optimal multi-component
systems relying on the full set of optimal operating points
in terms of throughput, bit error rate (BER), package loss,
latency, etc.

APPENDIX A
THE PROOF OF PROPOSITION 1

By applying the Theorem 1 in [13], we only have to prove
that the PLS constraint (17b) holds for R̃, R̃1, · · · , R̃K , if it
holds for R̂, R̂1, · · · , R̂K . First, we show that

aH(θ)R̂ka(θ) ≥ aH(θ)R̃ka(θ), (36)

for arbitrary θ. Upon substituting the expression of R̃k into
(19), the right-hand side term of the inequality can be ex-
panded as

aHR̃ka = aHw̃kw̃Hk a
= (hHk R̂khk)−1aHR̂khkhHk R̂ka
= (hHk R̂khk)−1|aHR̂khk|2.

(37)

Additionally, according to the Cauchy-Schwarz inequality, we
have

(hHk R̂khk)(aHR̂ka) ≥ |aHR̂khk|2. (38)
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Therefore, it can be readily seen from (37) and (38) that (36)
holds. Thus, we can expound as follows

aHq R̃aq +
σ2
e

|β|2
(a)
= aHq R̂aq +

σ2
e

|β|2

≥ (1 + Γ−1e )aHq
K∑
k=1

R̂kaq

(b)

≥(1 + Γ−1e )aHq
K∑
k=1

R̃kaq,

(39)

where (a) and (b) follow the first equation in (19) and the
inequality (36), respectively. Thus, the PLS constraint (17b)
holds for R̃, R̃1, · · · , R̃K , hence completing the proof.

APPENDIX B
THE PROOF OF PROPOSITION 2

The proof is divided into the following three parts:
(1) We show that the radar covariance matrix R̂rad in (29)

is a positive semidefinite matrix, hence it can be decomposed
by either the Cholesky decomposition or by the square root
method. Actually, we have

R̂−WcWH
c

= R̂− R̂com + R̂com −WcWH
c

= R̂− R̂com + Lc(I− [QH ][:,1:K][Q][1:K,:])LHc .

(40)

Here, R̂ − R̂com is positive semidefinite due to the constraint
(26a). Since [QH ][:,1:K] is the sub-matrix containing the first
K columns of unitary matrix, (I − [QH ][:,1:K][Q][1:K,:]) is
a positive semidefinite matrix, thereby the last term is also
positive semidefinite.

(2) We show that the proposed precoding matri-
ces satisfy the ZF constraint (21). Upon letting F =
diag(

√
ρ1, · · · ,

√
ρK), we have

HRcomHH = HLcLHc HH = LhLHh = FFH . (41)

Note that LhLHh and FFH are the Cholesky decompositions
of the matrix diag(ρ), therefore we have Lh = F according
to the uniqueness of the Cholesky decomposition of a positive
definite matrix. Thus, we have

HWc = HLc[QH ][:,1:K]

= [Lh, 0K×(M−K)]Q[QH ][:,1:K]

= Lh = F.
(42)

Moreover, for the radar precoding matrix, we arrive at

HWrWH
r HH = H(R̂−WcWH

c )HH

= FFH − FFH = 0.
(43)

Thus we can readily obtain HWr = 0 from (43).
(3) We show that the proposed precoding matrices meet the

PLS constraint (24). According to the positive semidefinite
property, we can show that

yH(I− [QH ][:,1:K][Q][1:K,:])y ≥ 0, (44)

for an arbitrary non-zero vector y. Upon letting y = LHc aq ,
we have

aHq Lc(I− [QH ][:,1:K][Q][1:K,:])LHc aq
= aH0 R̂comaq − aHq WcWH

c aq ≥ 0.
(45)

By applying the inequality (45), we can see that

aHq R̂aq +
σ2
e

|β|2
(a)

≥ (1 + Γ−1e )aHq R̂comaq

≥ (1 + Γ−1e )aHq WcWH
c aq,

(46)

where (a) is valid, because R̂ and R̂com are the feasible
solution of problem P3 and R̂ follows the relationship (29).
Consequently, it can be observed that the precodering matrix
constructs also satisfy the PLS constraint, hence completing
the proof.
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