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Abstract— Novel techniques are conceived for joint Compressive Sensing (CS)
and Low-Density Parity Check (LDPC) coding in Wireless Sensor Networks
(WSNs), namely a Soft-Input Soft-Output (SISO) tree search Sphere Decoding (SD)
technique, and a SISO Hamming Distance (HD) based solution. Factor graphs
are utilized to describe the connectivity between the signals and sensors, as
well as with the LDPC codes. In the Fusion Center (FC), the factor graphs may
be used for iterative joint LDPC-CS decoding, in order to recover the signals
observed. However, the CS decoder of the FC suffers from high complexity,
if the exhaustive Maximum A posteriori (e-MAP) technique is employed, which
considers all possible combinations of source signals detected by each of the
associated sensors. Hence, in the proposed SD and HD schemes only the more
likely combinations of source signals are tested for reducing the CS decoding
complexity. More specifically, a tree search technique is used in the first step to find the most likely combination of
source signal values. Then, in the second step, the proposed SD continues the tree search to find a set of alternative
hypotheses. This facilitates the generation of high quality extrinsic information, which may be iteratively exchanged with
the LDPC decoder. By contrast, in the HD approach, the second step obtains the alternative hypotheses within a certain
HD of the most likely source signal combination. Both our BLock Error Rate (BLER) results and Extrinsic Information
Transfer (EXIT) charts show that the proposed SD and HD techniques approach the performance of the full-search e-MAP
approach at a significantly reduced complexity. In particular, we show the e-MAP solution is about 56 times more complex
than the SD approach and around 210 times more complex than the HD approach. Compared to a Separate Source-Channel
Coding (SSCC) hard information benchmarker, the proposed SISO schemes improve the decoding performance by about
1.7 dB. Furthermore, the SISO schemes allow the iterations inside the CS decoding to eliminate the error floors and obtain
a further 2.45 dB gain.

Index Terms— Joint source-channel coding, compressive sensing, LDPC coding, sphere decoding, tree search, Hamming
distance technique, EXIT charts, factor graph
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I. INTRODUCTION

Shannon’s source-channel separation theorem [1] proves
that there is no disadvantage in separating source coding
from channel coding [2] under certain idealized circumstances.
More specifically, Shannon shows that near-capacity commu-
nication does not require the source and channel coding to
be performed jointly, provided that the delay and complexity
are not limited. However, in finite block length transmission
over non-stationary channels, Joint Source-Channel Coding
(JSCC) (For convenience, all acronyms used in this paper
have been summarized in Table I) has been shown to offer
significantly improved coding gain [3] over Separate Source-
Channel Coding (SSCC) when relying on limited complexity.
More explicitly, JSCC uses source coding to compress a source
signal by removing the uncontrollable source redundancy,
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while channel coding is employed to improve the error cor-
rection performance by adding carefully controlled redundancy
before transmission [4], where the reduction and addition of
redundancy is performed jointly between these two processes.

TABLE I: Acronyms employed throughout this paper.
BLER BLock Error Rate
CNs Check Nodes
CND Check Node Decoder
CS Compressive Sensing
e-MAP exhaustive Maximum A Posterior
EXIT EXtrinsic Information Transfer
FC Fusion Center
HD Hamming Distance
i.i.d. Independent and Identically Distributed
JSCC Joint Source-Channel Coding
LDPC Low-Density Parity Check
LLRs Logarithmic-Likelihood Ratios
MI Mutual Information
QPSK Quadrature Phase Shift Keying
SD Sphere Decoding
SISO Soft-Input Soft-Output
SNs Sensor Nodes
SND Sensor Node Decoder
SSCC Separate Source-Channel Coding
TSs Time Slots
VN Variable Nodes
VND Variable Node Decoder

In particular, JSCC has been demonstrated to play a ben-
eficial role in Wireless Sensor Networks (WSNs) [5] to al-
leviate the problems of constrained energy [6]–[8], as well
as unreliable communication channels [9], [10]. Compressive
Sensing (CS) technology has been widely adopted in WSNs
to solve energy-constrained problems. In [11] the authors
use CS in WSN in the presence of an eavesdropper. They
propose a technique to maintain secrecy in the presence of
an eavesdropper and achieve an excellent signal detection
performance. Mohammadi et al. [12] focus their attention on
the distributed detection problem of a localized phenomenon
of interest resulting in sparse signals at each sensor, where CS
and quantization are employed at each sensor. Recently, the
combination of JSCC and CS has received particular attention
in the literature of WSNs. In [13], Chen et al. examine the
trade-off between the required transmission energy and the
quality of the recovered signals in a WSN that employs a
CS coded JSCC scheme. Their results show that the CS
technique is robust to both channel fading and noise. In [14],
CS was used for source coding and linear network coding
for channel coding, in order to recover the signal within a
tolerance distortion level. In both [13] and [14], a large amount
of traffic is generated by each of the N sensors, which can
only be reduced moderately by the compression performed
in each sensor [15]. More specifically, a set of N signals
may be compressed into a set of M (M < N ) observations
made by a set of M sensors if only K out of N signals

are activated at a time, which avoids an excessive amount
of network traffic. Furthermore, WSNs typically relying on
hostile channels, motivating the application of channel coding
to protect the signals during transmission. In particular, Low-
Density Parity Check (LDPC) codes are widely used in CS
coded JSCC schemes [16], [17], as a benefit of their excellent
performance.

Soft-Input Soft-Output (SISO) techniques constitute the
core of iterative decoding [18]. In JSCC schemes employing
SISO techniques for the concatenated source and channel
code [19], iterative joint source-channel decoding [20], [21]
may be used for significantly improving the performance
of hard decoding [22] for Separate Source-Channel Coding
(SSCC) schemes. In the case of a SISO decoder used for
CS, an approximate Maximum A Posteriori (MAP) decoder
may be employed for discovering the presence/absence of the
association between the signals and sensors, as well as for
inferring the source statistics [23]. The e-MAP technique is
capable of reliably inferring the specific association of N
signals with M sensors and it iteratively exchanges its soft
values with an LDPC decoder. However, the MAP decoder
suffers from high complexity when considering all possible
associations between sensors and signals [24], which will be
referring to the exhaustive MAP (e-MAP) in this paper. To
elaborate further, there may be many connected signals for
each sensor with many possible combinations of values, which
leads to a potentially excessive complexity upon considering
every possible combination in the e-MAP decoder.

Against this background, we propose a pair of novel tech-
niques for reducing the complexity of SISO CS decoding in
the iterative JSCC receiver. Sphere Decoding (SD) is typically
used for reducing the complexity of signal detection in order
to solve minimum Euclidean distance problems in WSNs
[25], [26]. In [25], the authors propose a SD algorithm that
performs maximum-likelihood decoding based on an extended
distance metric. In [26], channel-quality-aware decision fusion
rules are conceived for MIMO systems, and a generalized SD
is employed for circumventing the exponentially escalating
complexity. In this treatise, we also employ the SD technique
for reducing the decoding complexity imposed by searching
for the most likely candidates. However, in our scheme, we
search for the most likely candidates by directly relying on the
node metrics calculated using LLRs rather than on the node
metrics calculated using Euclidean distance [25], [26]. More
specifically, we conceive a SD and a Hamming Distance (HD)
based technique to search for the most likely combination of
the source signal and associated sensor value, which contains
not only the most likely combination but also the most likely
alternative hypotheses. Explicitly, these alternative hypotheses
are important for generating reliable extrinsic information,
which may then be iteratively exchanged with the concatenated
channel decoder. We commence by using a tree search to find
the most likely combination of the source signal and associated
sensor value based on the prior knowledge about the sparsity
level and presence/absence of association between signals and
sensors, as well as the a priori information provided by the
concatenated channel decoder. Following this, the SD finds



3

the alternative hypotheses by continuing the tree search, while
the HD-based technique finds the alternative hypotheses by
considering the HD between the alternative hypotheses and the
most likely combination. In this way, we avoid traversing all
possible combinations and significantly reduce the complexity
of CS decoding.

TABLE II: Contrasting our contribution to the state-of-the-art.
[13] [14] [16] [17] [19] [27] This work

JSCC
√ √ √ √ √ √ √

WSNs
√ √ √ √ √

CS
√ √ √ √ √

LDPC
√ √ √ √

SD
√ √

HD
√

SISO tree search
√

EXIT chart analysis
√ √

We boldly and explicitly contrast our contributions to the
state-of-the-art in Table II and detail them below:
1 We reduce the complexity of SISO CS decoding by using a

tree search to find the most likely combination of the source
signal and associated sensor values before using the SD to
find the set of likely alternative hypotheses, in order to glean
high quality extrinsic information, which can be iteratively
exchanged with the concatenated channel decoder. Unlike
the traditional SD routinely used for JSCC or for MIMO
detection based on the distance between adjacent points
[27]–[29], the proposed scheme performs tree search-based
SD relying on the input Logarithmic-Likelihood Ratios
(LLRs). Furthermore, our scheme exploits the additional
constraints imposed by the sparsity upper bound K ′ and the
presence/absence of connectivity between the source signals
and sensors, which make the application of SD a challenge.
We demonstrate that the proposed SD reduces the SISO
CS decoding complexity by a factor of 56 compared to the
e-MAP approach.

2 Furthermore, as a complement to the SD used for finding
alternative hypotheses, we also conceive a HD based tech-
nique. More specifically, all combinations of source signal
and the associated sensor values within a certain HD of the
most likely combination are considered as alternative hy-
potheses. Our results show that the proposed HD technique
approaches the error rate of the e-MAP at a complexity,
which is about 210 times lower.

3 We provide the Extrinsic Information Transfer (EXIT) chart
based characterization of the proposed solutions. In this
way, we characterize the iterative exchange of extrinsic
information between the CS decoder as well as the concate-
nated channel decoder, and show that both the proposed SD
and HD techniques approach the performance of the e-MAP
approach.

The rest of this paper is organized as follows. A top-level
description of the system model and of the iterative joint
LDPC-CS decoder are provided in Section II. Then the SD
approach and HD techniques are introduced in Section III.
Section IV characterizes the EXIT functions and decoding

trajectory of the proposed scheme, before our complexity
analysis in Section V. Our simulation results are provided in
Section VI before offering our conclusions in Section VII.

Throughout this paper, the following notations are used; A,
a, A: matrix, vector and scalar; Ai: the ith matrix among all
matrices; ai: the ith row of matrix A; ai,j : the jth element
of vector ai; ã, ãa, ãe: LLR, a priori LLR, extrinsic LLR;
ãi→j : LLR from the ith node to the jth node; â: estimated
value of a; AT : transpose.

II. SYSTEM MODEL

This section begins by describing the structure of the
proposed system model in Section II-A, before the flow of the
iterative joint LDPC-CS decoding is discussed in Section II-B.

A. Top level description of the proposed system model
The proposed system model is shown in Fig. 1. The N

Variable Nodes (VNs) in Fig. 1 represent N signals, where
each VN Vn (n ∈ [1, N ]) can be considered to be a random
variable, adopting a vector xn ∈ {0, 1}1×T of T non-
equiprobable binary values across T Time Slots (TSs). Here,
the binary signal values are sparse, with only K � N of the N
signals in each TS adopting a value of 1, with all of the other
N −K binary values adopting a value of 0. In this treatise,
we assume that the sparsity upper bound K ′, 1 ≤ K ≤ K ′ is
prior knowledge available at the Fusion Center (FC). In this
context two scenarios are considered, the first one is when the
true sparsity K = K ′ is known a priori to the FC and the
other is when the true sparsity K is unknown to the FC, but
the upper bound of the sparsity K ′, 1 ≤ K ≤ K ′ is known
to the FC. In a practical CS-based WSN, the residual-based
algorithms of [30] may be used either for directly estimating
the sparsity or its upper bound during the training phase in
the FC [30]. The binary value of the nth signal in the tth

TS is represented by the notation xn,t, where n ∈ [1, N ] and
t ∈ [1, T ], allowing the representation of the nth signal vector
as xn = [xn,1, · · · , xn,T ].

The proposed system model adopts M sensors, which form
the WSN to observe the N signals, where the sparsity upper
bound K ′ of the system is exploited to facilitate M < N . Each
sensor is represented by the notation Sm, where m ∈ [1,M ],
and is used for simultaneously observing several signals. In the
proposed system model, the association between the signals
and sensors are chosen randomly, while are exemplified by
the dashed lines in the factor graph of Fig. 1. Here, the edges
of the factor graph are characterized by the sensing matrix
Φ ∈ {0, 1}M×N , which is assumed to be prior knowledge
available at the FC. Here, the nth column of the sensing matrix
represents the association of the nth signal, while the mth row
represents the association of the mth sensor. More specifically,
a value of 1 in the sensing matrix indicates the association
between the nth signal, n = 1, . . . , N and the mth sensor,
M = 1, . . . ,M , while a value of 0 indicates no association.
In the proposed system model, each sensor may observe both
different number of signals and different combinations of the
signals, where the degree of each sensor identifies the number
of connected signals it observes, corresponding to the number
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Fig. 1: Block diagram illustrating the relationship between signals, sensors and the Fusion Center (FC).

of 1 in each row of Φ. Then, the set of degrees may be
stored in a vector d = [d1, · · · , dm, · · · , dM ]T . However,
in the proposed system model, the number of sensors used
for observing each signal is a fixed value Ks, which means
that the number of 1 in each column of Φ is fixed to
Ks. Furthermore, the randomly selected connectivity between
signals and sensors is assumed to be time-invariant across the
T TSs. The proposed scheme may be applied in a real-life
application of non-invasive wild-life monitoring in a nature
habitat. For example, we may consider a case where there are
K wild animals living in a habitat, which has been divided into
N number of one-square-meter tiles, wherein M microphones
have been installed throughout the habitat to detect the actions
of wild animals. Each microphone can detect wild animal
activity within several neighbouring tiles. In the case where
we know that K wild animals live in the habitat, we will
know that exactly K tiles will be occupied in any time slot
and hence these microphones allow us to track wild animals
in a non-invasive manner

In the proposed system model, the sensors perform an OR
function to combine the binary values provided by the set
of connected signals. Explicitly, a sensor outputs a binary
values of 0 if all connected signals provide value of 0 at
a particular TS and a sensor output a value of 1 otherwise.
In this way, the N binary signals provided in each TS are
compressed to M binary observations provided by the M
sensors. More specifically, the observation of the mth sensor
is a binary vector ym = [ym,1, · · · , ym,T ] comprising T
observations across the T TSs. Following this, each of the M
sensors processes its vector of observations ym using an LDPC
encoder [31] having a parity check matrix H ∈ {0, 1}W×U
and coding rate R = T

E in order to generate the encoded
bit sequence am = [am,1, . . . , am,U ] having a length U .
Then rate matching adjusts the encoded bit sequence length
to E. Afterwards, Quadrature Phase Shift Keying (QPSK)
modulation is performed individually for each pair of encoded
bits before transmission in order to obtain the complex vector
bm ∈ C1×E

2 . Here, the symbol energy Es is normalized to 1.

The complex vector bm is transmitted over an AWGN chan-
nel in order to obtain the received complex vector cm, while
the components of the AWGN are zero-mean, Independent
and Identically Distributed (i.i.d.) complex Gaussian random
variables with variance N0. Hence, the Signal-to-Noise Ratio
(SNR) is given by Es

N0
. Soft demodulation for QPSK [32] and

rate dematching are performed upon the received signal cm,
in order to obtain the channel LLRs ãm = [ãm,1, · · · , ãm,E ],
which are forwarded to the FC as inputs of the iterative joint
LDPC-CS decoder detailed in Section II-B.

B. Top level description of the proposed iterative joint
LDPC-CS decoding scheme

The iterative joint LDPC-CS decoding block of Fig. 1 is
comprised of the factor graphs shown in Fig. 2. These factor
graphs are comprised of many Check Nodes (CNs), VNs,
and Sensor Nodes (SNs). Algorithm 1 describes the operation
of these various nodes during the iterative joint LDPC-CS
decoding process. The function of the SNs will be introduced
in Section III, while the operations of the CNs and VNs is
described in [33].

The factor graphs of Fig. 2 include both LDPC decoder
and CS decoding. Here, the LDPC decoder is comprised
of the Variable Node Decoder I (VNDI) and Check Node
Decoder (CND), having W VNs and U CNs in each layer.
The number of LDPC decoding layers is equal to the number
of sensors M , where each layer represents the CS decoder
of the corresponding sensor. More specifically, the CNs and
VNs in the same layer work together, while the M layers
are operated in parallel but not directly together, as shown in
Fig. 2. Similar to LDPC decoding, CS decoding comprises
the Sensor Node Decoder (SND) and Variable Node Decoder
II (VNDII), where the former has M SNs in each of the T
layers, while the latter has N VNs in each layer. To elaborate
further, each layer of CS decoding considers one TS, which
is in contrast to LDPC decoding, where each layer considers
one sensor. This creates a time/sensor grade, which allows the
TSs of the CS decoding to indirectly help each other via the
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Fig. 2: The factor graph to show the iterative exchange of LLRs between VND I, CN decoder for LDPC decoding, SN and
VND II for CS decoding.

sensors of the LDPC decoder and vice versa. More specifically,
the SNs and VNs II in the same layer work together directly,
whilst those of different layers work in parallel but without
direct interaction, as shown in Fig. 2.

The input of the mth,m ∈ [1,M ] layer in the LDPC
decoder is the rate-dematched channel LLRs ãm, which is
generated as discussed in Section II-A and shown in Fig. 1.
During iterative joint LDPC-CS decoding, the mth layer can
also take input from the CS decoder, which provides the
a priori LLRs ỹam. Each VN processes the LLRs gleaned from
its connected CNs, CS decoding SNs as well as channel LLRs,
and then passes the extrinsic LLRs µ̃e to its connected CNs.
Following this, each CN is operated and extrinsic LLRs ν̃e

are passed to the connected VNs. Here, we add subscripts
to the LLRs within the LDPC decoder and CS decoder to
represent the connectivity of the factor graph edge upon which
the LLR is exchanged. For example, µ̃eU→1 represents an
extrinsic LLR being exchanged from the U th VN I to the first
CN. The connectivity of VNs and CNs in each layer depends
on the factor graph adopted by the particular LDPC coding
standard, with all layers having the same connectivity. In this
work, we employ the 3GPP 5G NR LDPC code Base Graph
(BG) 2 [31]. Following the completion of iLDPC number of
iterations between the VNDI and CND in the LDPC decoder,
the extrinsic LLRs Ỹ

e
generated by the VNDI comprise all

extrinsic LLRs gleaned from all VNs I in the M layers, which
are forwarded to the connected SNs. The subscripts of the

LLRs exchanged between the LDPC and CS decoder represent
the layers they belong to. For instance, ỹeM→3 represents an
extrinsic LLR passed from the M th layer in the LDPC decoder
to the 3rd layer of the CS decoder. The connectivity between
the CS decoding SNs and VNs I is based on the layers
they belong to. More specifically, in the LDPC decoder, the
uth, u ∈ [1, T ] VN I in the mth,m ∈ [1,M ] layer connects to
the mth sensor in the tth layer of the CS decoder, where
we have u = t. The number U of VNs in the VNDI is
typically higher than T , since the encoded LDPC bits comprise
both systematic bits and parity bits. However, the CS decoder
can only provide extrinsic information pertaining to the T
systematic bits and hence it is not connected to the U − T
VNs that characterize parity bits.

The input of the tth, t ∈ [1, T ] layer in the CS decoder is
constituted by the a priori LLRs z̃at provided by the LDPC
decoder for the SNs. Furthermore, CS decoding also benefits
from a priori knowledge of the probability of each compressed
signal ym,m = 1, . . . ,M having the value 0, where this
knowledge is represented by the LLRs l = [l1, . . . , lM ], which
are added to the a priori LLRs z̃at provided by the LDPC
decoder, as shown in Fig. 2. To elaborate further, the LLRs
representing the probability that the mth compressed signal
ym adopts the binary value 0 is given by lm = log

(
Pm

1−Pm

)
,

where Pm = (P0)dm and P0 is the probability of occurrence of
0 in each TS. Further still, the mth,m = 1, . . . ,M SN in the
tth layer takes the a priori LLR inputs γ̃a from the connected
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VNs II of the CS decoder. Following this, the SN processes
z̃am→t, γ̃

a in order to generate the extrinsic LLRs γ̃e, which
are passed to its connected VNs II. In response, each VN II
generates the extrinsic LLRs λ̃e, which are then passed back
to the SNs, where the SNs and the VNs II iterate over iCS
iterations, as shown in Algorithm 1. The connectivity between
the SNs and VNs II in each layer mirrors the connectivity
between the signals and sensors in Fig. 1. Following the
completion of these iterations, all SNs in all T layers generate
the extrinsic LLR Z̃

e
, which are passed back to the LDPC

decoder as a priori LLRs Ỹ
a
. Like the VNs I, the VNs II

operate according to [33]. By contrast, the operations of the
SNs is detailed in Section III-A.

After completing iLDPC−CS iterations between the LDPC
and CS decoder, all VNs II in the CS decoder output the
a posteriori LLRs Λ̃

p
. Final, SSCC hard decisions are made

in order to obtain the estimated signals X̂ = [x̂1, . . . , x̂N ]T .
Here, the a posteriori LLR λ̃p of a VN II is obtained by adding
up all a priori LLRs λ̃a arriving from its connected SNs. Then,
the final decision is made by exploiting the knowledge that
there are K ′ signals having a binary value of 1 in each of
the T TSs. Accordingly, the a posteriori LLRs λ̃pt in the
tth, t = 1, . . . , T TS are sorted in decreasing order of values
and those that have the K ′ highest values are identified as
being the ones most likely to have binary values of 1 in each
of the T TSs.

As shown in Algorithm 1, each of the iLDPC−CS outer
iterations between the LDPC and CS decoder comprises
iLDPC inner iterations and iCS inner iterations for the LDPC
and CS decoder, respectively. Algorithm 1 relies on the signal
combination matrices [Q1, · · · ,QM ], which will be detailed in
Section III. In the initialization of the LDPC decoder during
the outer iterations, the a priori LLRs Ỹa provided by the
CS decoder are set to zero, before the probability knowledge
l = [l1, l2, · · · , lM ] is added. Furthermore, the a priori LLRs
M̃a provided by the CND for the VNDI are reset to zero
during the initialization of the LDPC decoder during each
outer iteration. Similarly, the a priori LLRs Γ̃a forwarded by
the VNDII to the SND are reset to zero during the initialization
of the CS decoder during each outer iteration.

Here, iterative joint LDPC-CS decoding employs SISO
decoding for the iterative exchange of extrinsic LLRs. By
contrast, the SSCC benchmarker employs hard information
decoding components and separate LDPC-CS decoding. In this
benchmarker, the mth LDPC decoder converts the channel
LLRs ãm into hard information bits, which are forwarded
to the SNs of the CS decoder. The SNs then provide votes
for their connected VNs in VNDII, where the votes express
this opinion concerning the value gleaned from the connected
VNs in VNDI and may be used for determining whether the
corresponding signals have values of 1 in each of the T TSs.
More specifically, a SN forwards a vote of 1 to its connected
VNs in VNDII, if it judges that the corresponding signal
should adopt the binary value 1, otherwise a value of 0. Then,
each VN in VNDII selects a value of 1 for its corresponding
signal, if all of the connected SNs vote for this value. To
elaborate further, each VN in VNDII counts the number of the
votes for a binary value of 1 provided by its connected sensors.

If the count is equal to the degree of the VN in VNDII, then
it considers the corresponding signal to have a value of 1. By
contrast, in the SSCC hard information benchmarker, there is
no iterative information exchange either within the CS decoder
or between the CS and LDPC decoder. Hence, the complexity
of CS decoding using the SSCC hard information approach is
quantified by

ChardCS = N(M − 1)T. (1)

The output of the decoder is a vector of estimated values
x̂n = [x̂n,1, · · · , x̂n,T ] across each signal n ∈ [1, N ] for all T
TSs for both the proposed SISO schemes and the SSCC hard
information benchmarker.

Algorithm 1: Iterative joint LDPC-CS decoding algo-
rithm

Input: H, K ′, d = [d1, d2, . . . , dM ]T , iLDPC , iCS ,
iLDPC−CS , N , M , T , Φ, Q1, . . . ,QM ,
l = [l1, . . . , lM ]T , channel LLRs: ã1,. . . ,ãM

Output: Estimated binary signals x̂1, . . . , x̂N
1 for i = 1 to iLDPC−CS do
2 Initialization for LDPC decoding;
3 VNDI update in the LDPC decoding;
4 for ii = 1 to iLDPC do
5 CND update in the LDPC decoding;
6 VNDI update in the LDPC decoding;
7 end
8 Initialization for CS decoding;
9 SND update in the CS decoding;

10 for jj = 1 to iCS do
11 VNDII update in the CS decoding;
12 SND update in the CS decoding;
13 end
14 end
15 Perform final decision to obtain the estimated binary

signal x̂1, . . . , x̂N ;

III. THE PROPOSED SD APPROACH AND HD APPROACH

In this section, the e-MAP technique of the SN update in
the SND of the CS decoder is introduced in Section III-A,
while the proposed SD and HD solutions are discussed in
Section III-B.

A. e-MAP approach
In the e-MAP approach, each SN in the SND converts

the a priori LLRs γ̃a and z̃a into the extrinsic γ̃e LLRs by
considering all possible combinations of signal values for all
connected signals. Let us illustrate this using an example based
on the SN S2 in Fig. 2 during the tth TS. As seen in Fig. 2, S2

is connected to the second, third, fourth and fifth VNs II, and it
also connects to the tth VN I in the second layer of the LDPC
decoder. The input LLRs are inferred from V II2 (γ̃a2→2), V II3
(γ̃a3→2), V II4 (γ̃a4→2), V II5 (γ̃a5→2), corresponding to the
signals, and V I2 (z̃at→2) is provided by the LDPC decoder.
The target of the SN S2 is to calculate the extrinsic LLRs
(z̃e2→t, γ̃

e
2→2, γ̃e2→3, γ̃e2→4 and γ̃e2→5) for the connected VN I

and VNs II.
In this example, we assume a sparsity upper bound of K ′ = 2,
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so that K ′ = 2 of the N signals may have the binary value of 1
in each of the T TSs, with all other signals adopting the value
0 in this particular TS. In this example, we assume that the
true sparsity K = K ′, as well as signals corresponding to the
VNs V3 and V5, have values of 1. The possible combinations
of connected signal values can be listed based on the prior
knowledge of the node connectivity Φ and the sparsity upper
bound K ′ in the FC. For S2 of Fig. 2, the matrix of possible
combinations can be expressed as

Qe−MAP
2 =


V I2 0 1 1 1 1 1 1 1 1 1 1

V II2 0 0 0 0 1 1 1 1 0 0 0
V II3 0 0 0 1 0 0 0 1 1 1 0
V II4 0 0 1 0 0 0 1 0 0 1 1
V II5 0 1 0 0 0 1 0 0 1 0 1

.
(2)

Each column in the brackets represents a possible combination
of the associated signal values, where the first bit of each
combination represents the predicted value of V II2 in this
particular combination, while the second, third and fourth
bits correspond to V II3, V II4 and V II5, respectively in this
example. The values at the top-line outside the brackets are
stored in a row vector denoted by g2, and they correspond to
the specific values of V I2, which are obtained by performing
the OR function that describes the operation of the SNs on
the corresponding combinations. The first column represents
the particular combination, where all four connected VNs II
have zero values, and hence the predicted value from V I2 is 0.
However, the combination represented by the second column
predicts that V II5 has a value of 1 and V II2, V II3 and V II4
all have zero values, in which case V I2 has 1. Because the
sparsity upper bound K ′ is prior knowledge in the FC, no
combination has a number of 1 values higher than K ′. In
this example, the true combination is [0 1 0 1]T , and the true
value of V I2 is 1. Since the connectivity Φ of the factor graph
does not vary across the T TSs, the combinations matrix Q
corresponding to each SN does not change in this period, but
the true combination of each SN may be expected to change in
different TSs. While this example is fairly trivial, the number
of possible combinations can be large, where the number of
possible combinations for the mth SN Sm may be quantified
as

P e−MAP
m =

min{K,dm}∑
k=0

(
dm
k

)
. (3)

According to its combination matrix Qm, the mth SN
preforms the decoding. First of all, the probabilities in the
logarithmic domain of for the set of P e−MAP

m combination
are calculated as:

ηm =

dm∑
i=1

(
|Qe−MAP

m (i, :)− 1| � γ̃am(i)
)

+|gm−1|� z̃am→t,

(4)
where the ηm is a probability vector of length of P e−MAP

m ,
while the 1 vectors have the length of P e−MAP

m , with all
elements set to 1. The notation | · | represents the element-wise
absolute values of a vector. Here, γ̃am is a column vector that
contains all a priori LLRs provided by the VNs II connected
to the SN Sm, while z̃am→t = ỹem→t is the a priori LLR

provided by the VN I connected in the tth TS, and � is the
dot product.

The probabilities of the P e−MAP
m combinations are then

exploited for calculating the extrinsic LLRs γ̃e of the SN Sm.
More specifically, the extrinsic LLR forwarded from the Sm
to its kth (k ∈ [1, dm]) connected VN II V IIn are calculated
as

γ̃em→n = max
[
ηm(Qe−MAP

m (k, :) = 0)
]

−max
[
ηm(Qe−MAP

m (k, :) = 1)
]
− γ̃an→m,

(5)

where ηm(Qe−MAP
m (k, :) = 0) represents the set of probabil-

ities associated with the corresponding combinations having 0
values in the kth row, and ηm(Qe−MAP

m (k, :) = 1) is the set of
probabilities associated with the corresponding combinations
having 1 values in the kth row. Here, γ̃an→m is the a priori
LLR provided by the nth VN II for the SN Sm in the tth TS.
Similarly, the extrinsic LLR provided by Sm for its connected
VN I in the tth TS is calculated as
z̃et→m = ηm(gm = 0)−max {ηm(gm = 1)} − z̃am→t, (6)

where z̃am→t is the a priori LLR provided for Sm by its
connected VN I in the tth TS.
The complexity of each SN Sm employing the e-MAP ap-
proach is quantified in terms of the number of addition and
max calculations formulated as

Ce−MAP
Sm

= 2dm × P e−MAP
m −

min{K,dm}∑
k=0

k

(
dm
k

)
. (7)

B. The proposed approaches
As shown by the binomial coefficients in Eq. (3) and (7)

above, the number of possible combinations escalates rapidly
with the sparsity upper bound K ′ and the degree dm of
the mth sensor, which leads to an excessive the complexity
for the e-MAP approach. Hence, this section introduces the
proposed SD and HD techniques, which aim for pruning
the combination matrix Q of the e-MAP approach in order
to reduce the associated complexity. This is achieved by
generating a combination matrix, which contains only the more
likely combinations and abandons the less likely ones. More
specifically, the pruned combination matrix contains the single
most likely combination, which is identified by using a tree
search, as well as several alternative hypotheses having high
likelihoods, which are necessary for obtaining high-quality
extrinsic LLRs Γ̃

e
and Z̃

e
. The rest of this section is organised

as follows. Section III-B.1 introduces a first step that is
common for both the proposed SD and HD approaches, which
identifies the most likely combination using a tree search.
Section III-B.2 then elaborates further on the SD approach,
while Section III-B.3 relies on Section III-B.1 to elaborate
further on the HD approach.

1) The tree search: Algorithm 2 shows the flow of search
for the most likely combination using a tree search. Fig. 3
illustrates a specific example of tree search in a particular TS
based on the example of S2 in Fig. 2, which has a degree
of 4 and it is connected to the 2nd, 3rd, 4th and 5th VN
II of Fig. 2, where the sparsity upper bound is K ′ = 2. The
proposed method of searching for the most likely combination
is based only on the a priori LLRs arriving from VNs II. The
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Fig. 3: An example of the proposed SD approach based on S2 in Fig. 2, where [0 1 0 1]T is the most likely combination. Here
transitions to left imply ‘0‘ values, while transitions to right imply ’1’ values. The values alongside each edge in the tree are
the metrics of the paths, while the values in the circles are the metrics of each node, and the numbers next to the circles are
the order that each node is traversed in. The emphasised paths correspond to the most likely combination, while the dashed
lines represent the nodes and paths that are not traversed through at all.

a priori LLR z̃a provided by the VN I is not considered in the
tree search, because it only has to be used when considering
the all-zero combination during the calculation of the extrinsic
LLRs z̃e. Apart from the all-zero combination, all other
combinations have binary values 1 for the values gm predicted
from the LDPC decoder. Since the alternative hypothesis of
the bits gm is required, hence the all-zero combination may
be considered as a special case and always be included in the
pruned combination matrix, as will be detailed in Sections III-
B.2 and III-B.3. Owing to this, the bit corresponding to the
LDPC decoding does not have to be considered in the tree
search and may be removed in order to reduce the associated
complexity.

To elaborate, let us consider a particular example where the
a priori LLRs γ̃a of S2 provided by V II2, V II3, V II4 and
V II5 are 2, −3, −1 and −5, respectively. Accordingly, there
are four layers in the tree corresponding to the four connected
VNs II, as shown in Fig. 3. The tree search starts from the
root node in layer 0 with a node metric equal to 0. The path
metrics associated with the edges in the tree are dependent
on the a priori LLRs of the corresponding layer in Fig. 3.
In cases where an a priori LLR is positive, the path metrics
associated with branches to the left in the corresponding layer
are set to 0, and the right hand side path metrics are set to the
negative of the a priori LLRs. By contrast, if the a priori LLR
is negative, the left path metrics in that layer are set equal to
that particular a priori LLR, and the right path metrics are
set to 0. The a priori LLR associated with the first layer is
provided by V II2 in Fig. 3 and has a value of 2. Hence, the
left path metric from the root node down to the left child
node in the first layer adopts the value of pl1 = 0, while the
right path metric adopts the value of pr1 = −2. as shown in
Fig. 3. In the first layer of the example, the metrics of the left
child node and right child node are wl1 = 0 and wr2 = −2,
respectively, which are defined by adding the path metrics of
the respective branches to the node metric of the root node.
Upon generating two new child nodes, the child node having a

more positive node metric will be set as the next parent node,
and all other child nodes will be saved in the stack for later
traversal. In this example, the left child node in the first layer
is set as parent node in the next step, and the right node is
saved in the stack. Then, the tree search of Fig. 3 progresses
to the second layer, whose a priori LLR from V II3 is −3.
In the second layer, the left path metric is set as pl2 = −3
and the right path adopts pr2 = 0 accordingly. Hereafter, the
metrics of child node 3 and child node 4 are calculated as
wl3 = wl1 + pl2 = −3 and wr4 = wl1 + pr2 = 0.

Following the traversal rules, the tree search of Fig. 3
extends down to the last layer, whereupon the parent node is
node 6 with metric 0 and node 2, 3 and 5 are in the stack. The
final a priori LLR from V II5 has a value of −5, which implies
a binary value of 1 and a traversal to the right. However, the
transition to the right node in this case is not allowed, because
the number of right traversals would exceed the sparsity upper
bound of K ′ = 2 in this particular example. Hence, the only
option is to traverse left to node 7 in the last layer, which
corresponds to the combination [0 1 1 0]T and has the metric
of −5. However, the first combination reached is not always
the most likely combination, and hence the traversal should
be continued further.

Whenever the traversal reaches the last layer, the new parent
node for the next step is selected as the entry in the stack
with the most positive metric, before removing the new parent
node from the stack and extending its child nodes. In cases
where more than one nodes have the highest node metric in
the stack, the node having the smallest index may be selected
as the new parent node. Following this, the traversal continues
from the layer where the new parent node is to the last layer.
In order to limit the complexity of the tree search when the
number of layers is large, a limit ξ may be imposed on
the number of combinations that will be identified before
terminating the search for the most likely combination. In
this simple example, we set the threshold to ξ = 3, and the
combination having the most positive metric is selected as the
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Algorithm 2: Tree search for searching the most likely
combination
Input: dm, K ′, a priori LLRs from the connected

VNs II γ̃a1 , . . . , γ̃
a
dm

, threshold ξ
Output: the most likely combination

1 Stack: S = {root node}
2 for i = 1 to dm do
3 if γ̃ai > 0 then
4 pli = 0;
5 pri = −γ̃ai
6 else
7 pli = γ̃ai ;
8 pri = 0;
9 end

10 end
11 while the number of combinations < ξ do
12 Parent node: the node with the most positive

metric wp in the stack S.
13 Delete the parent node in the stack S.
14 Lp: the layer that the parent node is in.
15 for j = Lp + 1 to dm do
16 if the number of traversed right paths is smaller

than K ′ then
17 Left child node metric = wp + plj ;
18 Right child node metric = wp + prj ;
19 if j 6= dm then
20 Set the node having more positive

metric as the new parent and save the
other one in the stack S.

21 else
22 Obtain two combinations;
23 end
24 else if the number of traversed right paths is

larger than or equal to K ′ then
25 Left child node metric = wp + plj ;
26 if j 6= dm then
27 Always set the left child node as the

new child node;
28 else
29 Obtain one combination;
30 end
31 end
32 Store the combinations in the combination matrix.
33 end
34 Choose the combination with most positive metric as

the most likely combination.

most likely combination, when the limit of 3 combinations is
reached. Therefore, the traversal continues until we reach the
nodes 8 and 9 of Fig. 3, which have the metrics of −6 and
−1, respectively. In this example, the combination [0 1 0 1]T

corresponds to node 9 with the highest node metric −1 may
be set as the most likely combination. Alternatively, the search
may be terminated, when there are no remaining nodes in the
stack having a node metric higher than that of the node in
the final layer corresponding to the most likely combination
found so far.

2) Proposed SD approach: In the proposed SD approach,
the tree search traversal will continue beyond finding the
most likely combination until alternative hypotheses have been
obtained for each layer. In the example of Fig. 3, on the
way to reaching the most likely combination [0 1 0 1]T ,

we also obtained two other combinations [0 1 1 0]T and
[0 1 0 0]T , corresponding to node 7 and node 8, respectively.
At this point, node 2, and node 3 of Fig. 3 are in the stack
available for further traversal. The combinations [0 1 1 0]T

and [0 1 0 0]T represent alternative hypotheses for the third
and fourth bits of the most likely combination [0 1 0 1]T , but
alternative hypotheses are missing for the first and second bits.
In cases like this where we do not have alternative hypotheses
for all bits, the SD approach continues to traverse, evolving
from the node in the stack having the most positive metric,
until all alternative hypotheses are obtained. As mentioned
in Section III-B.1, the all-zero combination may be treated
as a special case. If the all-zero combination is not present
in the combination matrix after the tree search, then it may
be added to the last column of the combination matrix.
After extending the tree search until alternative hypotheses
are obtained for all bits in the example above, we obtain the
following combination matrix for S2 using the proposed SD
approach.

QSD
2 =


V I2 1 1 1 1 1 0

V II2 0 0 0 1 0 0
V II3 1 1 1 1 0 0
V II4 1 0 0 0 1 0
V II5 0 0 1 0 1 0

, (8)

In order to constrain the complexity of the proposed joint
iterative LDPC-CS scheme, the tree search seeking alternative
hypotheses may be abandoned after the number of combi-
nations considered has reached a limit ϕ. For example, we
may consider the case where an alternative hypothesis that
provides a binary value of 1 for the first bit is still missing
after obtaining ϕ = 100 combinations. In this case, the left
path of the first layer and the child nodes beneath that path
of Fig. 3 will not be visited, and only the right path of the
first layer and the child nodes beneath it will be visited. This
helps us obtain at least one alternative hypothesis for each bit
as quickly as possible.

The proposed SD approach significantly reduces the decod-
ing complexity compared to the e-MAP approach by reducing
the number of combinations that are used for calculating the
extrinsic LLRs. After we obtain the combination matrix using
the proposed SD approach, the combination matrix in Eq. (4)
and Eq. (5) may be replaced by QSD

m , while gm in Eq. (6) may
be replaced by the specific gm corresponding to the QSD

m .
The complexity of each SN Sm using the proposed SD

approach in the CS decoder may be quantified in terms of
by the number of additions and max computations during the
extrinsic LLR calculation. Additionally, the complexity of tree
search should be included in the proposed SD approach. In
contrast to the e-MAP approach, where the combination matrix
of Sm does not vary across the T TSs, may vary from TS to
TS for the proposed SD approach, depending on the values
of the input a priori LLRs. The complexity associated with
each visit to a SN Sm using the proposed SD approach may
be calculated as
CSDSm

= 2dm × PSDm −
∑

(QSD
m ) + numnodes − 2, (9)

where
∑

QSD
m is the total number of elements having a value

of 1 among all rows and columns of QSD
m , which corresponds
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to the second term of Eq. (7),
∑min{K,dm}
k=0 k

(
dm
k

)
. Here,

PSDm is the number of combinations obtained by the SD ap-
proach, which depends on the input LLRs for Sm. Meanwhile,
numnodes represents the number of nodes traversed during
the tree search. Note that the calculation complexity of SN
decoding in the SD approach is mainly influenced by the
number of combinations used for the extrinsic LLR, since the
complexity of the tree search is low compared to the savings
attained by pruning the less likely combinations.

3) Proposed HD approach: In contrast to the tree search
of the proposed SD approach, our HD technique considers
the Hamming distance between combinations for selecting
alternative hypotheses. More specifically, the HD approach
populates the combination matrix with the most likely combi-
nation obtained by the tree search and all other combinations
that are within a specified HD of that most likely combination.
Returning to the example of Section III-B.1, the most likely
combination is [0 1 0 1]T , and the set of all valid combi-
nations within a HD of say 2 are specified in the following
combination matrix of S2

QHD
2 =


V I2 1 1 1 1 1 1 0 1

V II2 0 0 0 1 1 0 0 0
V II3 1 0 1 0 1 0 0 1
V II4 0 0 0 0 0 1 0 1
V II5 1 1 0 1 0 1 0 0

, (10)

Having said that we still exclude all combinations that are
within the specified HD of the most likely combination, but
have more than K ′ binary value of 1.

The combination matrix QHD
m may be used for performing

decoding processing of the SN by replacing the combination
matrix Qe−MAP

m in Eq. (4) and Eq. (5), while gm in Eq. (6) is
replaced by the specific gm corresponding to the combination
matrix QHD

m . As in the SD approach, if the combination
matrix does not include the all-zero combination, it may
be added to the last column. The number of combinations
obtained for the SN Sm by employing the proposed HD
approach may be formulated as:

PHDm =

min{HD,K,dm}∑
k=0

(
dm
k

)
. (11)

The complexity of a SN Sm employing the proposed HD
approach in the CS decoder may be quantified by the number
of additions and max functions evaluations according to
CHDSm

= 2dm × PHDm −
∑

(QHD
m ) + nummost − 2, (12)

where
∑

(QHD
m ) is the sum of all elements in QHD

m , and
nummost is the number of nodes that are traversed through,
while searching for the most likely combination. As mentioned
in Section III-B, the complexity of the decoding in the SNs is
mainly influenced by the number of combinations. When the
specified HD is small, the number of combinations considered
by the HD approach can be significantly reduced compared
to the e-MAP approach, yielding a very significant decoding
complexity reduction.

IV. EXIT CHART ANALYSIS

In Section IV-A, EXIT functions are introduced for the
case of non-equiprobable bits. The LDPC EXIT function and

CS EXIT function are detailed in Sections IV-B, Section IV-
C, respectively. Following this, Section IV-D portrays our
trajectory plots for characterizing the iterative exchange of
Mutual Information (MI) between the LDPC and CS decoders.

A. EXIT function for non-equiprobable bit sequence
A constituent decoder in an iterative decoding process may

be characterized by its EXIT functions [34]. Typically, a pair
of constituent decoders engage in an iterative exchange of
extrinsic information during iterative decoding, which may
be characterized by a decoding trajectory that represents the
MI evolution of the iterative exchange of extrinsic LLRs.
The proposed iterative joint LDPC-CS decoding scheme is
divided into LDPC decoding and CS decoding. In our scheme,
the observations in the sensors (y1, . . . ,yM ) may be sparse,
according to the sparse signals (x1, . . . ,xN ) and sparse sens-
ing matrix Φ. Owing to this, the extrinsic LLRs that are
exchanged between the LDPC and CS decoder in Fig. 2
pertain to non-equiprobable bits. As a results of this, the EXIT
chart analysis of the LDPC decoding and CS decoding is
different from conventional EXIT chart analysis, where the
iteratively exchanged extrinsic LLRs pertain to equiprobable
bit values. In an EXIT chart, the quality of the exchanged
a priori and extrinsic LLRs is quantified by the MI between
the LLR sequence and its corresponding bit sequence [35].
In our software used for generating the EXIT functions,
the a priori LLRs are generated artificially based on their
corresponding bit sequence, in order to characterize each
decoder individually. In this section, we adopt the notation
ω to represent a bit sequence having non-equiprobable bit
values, and the notation ω̃ to represent its corresponding LLR
sequence. Meanwhile, the quality of the LLR sequence ω̃ is
quantified by the MI I (ω; ω̃). The probability that each bit of
the bit sequence ω adopts the binary value 0 is Pω . We may
artificially generate each LLR of ω̃ using

ω̃i =
σ2
ω

2
(1− 2ωi) +Nω + log

(
Pω

1− Pω

)
, (13)

where ωi is a bit of the bit sequence ω. Here, Nω is an
independent Gaussian random variable with zero mean and
variance σ2

ω [34], [36].
The MI I(ω; ω̃) between the sequence of non-equiprobable

bits ω and the LLRs ω̃ may be calculated using the so-called
histogram-based method of [37]
I(ω; ω̃) =∑
ωi=0,1

∫ +∞

−∞
fω̃|ω(ω̃i|ωi)fω(ωi) log2

(
fω̃|ω(ω̃i|ωi)
fω̃(ω̃i)

)
dω̃i.

(14)

B. LDPC EXIT function
Fig. 4 shows a block diagram illustrating our software used

for characterizing an LDPC EXIT function. As discussed in
Section II-B, M number of LDPC decoders are operated in
parallel, and each layer works in parallel across the M layers
of the factor graph of Fig. 2. Hence, Fig. 4 illustrates the
generation of the LDPC EXIT function for one of these layers
having an index m. Once the EXIT function of all M layers
has been obtained, an overall LDPC EXIT function may be
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Fig. 4: Adapted schematic used to depict the generation of the
EXIT function for LDPC decoding, where solid lines are used
for components of the real system and dash lines are used for
components that are particular to the EXIT charts software
components.
obtained by taking an average over the M layers.

As an inner decoding process, LDPC decoding has two input
a priori LLR sequences, namely ãm provided by the channel
and ỹam by the CS decoder, respectively. The channel LLRs
ãm may be generated as discussed in Section II-A and shown
in Fig. 4, wherein a random bit sequence ym is processed
by LDPC encoding, rate matching, QPSK modulation, before
transmission over an AWGN channel. At the receiver, QPSK
soft demodulation and rate dematching are used for obtaining
the channel LLRs ãm. By contrast, the other a priori LLRs
ỹam provided by CS decoding may be generated artificially
according to Eq. (13), allowing the EXIT function of LDPC
decoding to be characterized independently from the EXIT
function of CS decoding.

As discussed in Section II-B, the processing of LDPC
decoding comprises initialization, CN update and VN update.
Upon completion of these processes, the extrinsic LLRs ỹem
are output by LDPC decoding, and each element in the
vector ỹem is added with an LLR quantifying the prob-
ability of the corresponding bit in ym adopting a value
of 0. More specifically, these LLRs are given by lm =[
log
(

Pm

1−Pm

)
, . . . , log

(
Pm

1−Pm

)]
∈ R1×T , and the resultant

superimposed extrinsic LLRs ỹ′em may be used for quantifying
the MI using Eq. (14).

Fig. 5 characterizes the iterative exchange of extrinsic LLRs
ỹ′em and z̃′et between the LDPC and CS decoder, where
the corresponding bit sequences of ym and zt have non-
equiprobable binary values. Here, we adopt N = 500 signals,
M = 150 sensors, a degree for each signal of Ks = 5,
true sparsity of K = K ′ = 5, coding rate of R = 1

3 and
T = 500 TSs, using the 3GPP NR BG 2 to generate the
parity check matrix used by LDPC coding. Unless otherwise
specified, these fundamental parameters are adopted for all
simulation results throughout this paper, including our EXIT
charts, complexity analysis, and BLock Error Rate (BLER)
plots. The axes of the EXIT chart represent the average MI
I(y; ỹ′e) of the extrinsic LLRs ỹ′e and z̃′e, each of which
ranges from 0 to the average entropy H̄ of all M bit sequences
[y1; . . . ,ym; . . . ;yM ]. Here, an MI of I(y; ỹ′e) = 0 indicates
that there is no information in the LLR sequences ỹ′e about
the corresponding bit sequences y, while an MI equal to the
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Fig. 5: EXIT chart to analyze the iterations inside the LDPC decoding and CS decoding
for the case of N = 500 signals, M = 150 sensors, a degree for each signal of
Ks = 5 , true sparsity K = K′ = 5, LDPC BG of 2, coding rate R = 1

3 , T = 500
TSs, SNR = −4.4 dB, threshold of finding the most likely combination ξ = 10 and
threshold of finding alternative hypotheses ϕ = 100, using the e-MAP approach for CS
decoding with QPSK modulation for communication over an AWGN channel.

average entropy H̄ indicates that the LLR sequences ỹ′e have
perfect information about the corresponding bit sequences y.
Recall that, the M non-equiprobable bit sequences in the
proposed system are provided by the M different sensors,
where each potentially has a different entropy H(ym,t) owing
to their different degrees dm,m ∈ [1,M ]. Owing to this,
the bits in the different bit sequences ym have different
probabilities of adopting a value of 0. In order to characterize
the system as a whole, the EXIT chart shows the mean over all
entropies H(ym,t), where m = 1, . . . ,M and the final average
MI H̄ is the average of MI values that correspond to M layers
in the LDPC decoder. Here, the entropy of each bit in the bit
sequence ym with probability Pm of adopting a value of 0 is
calculated as
H(ym,t) = −Pm×log2(Pm)−(1−Pm)×log2(1−Pm). (15)

The LDPC EXIT functions of Fig. 5 show that when the
LDPC decoder is presented with a priori LLRs ỹam having an
MI of 0, it responds by providing extrinsic LLRs ỹ′em having
a non-zero MI. This may be explained by the information
provided by the channel LLRs ãm, which contain information
about the content of the bit sequences ym. Furthermore, when
the a priori LLRs ỹam provided by the CS decoder contain
perfect information, the LDPC decoder responds by providing
extrinsic LLRs having perfect information, hence allowing the
LDPC decoder to converge to the top right-hand corner of
the EXIT chart. Fig. 5 shows that increasing the number of
iterations iLDPC performed within the LDPC decoder, moves
the LDPC EXIT functions upwards. More specifically, as the
number of iteration is increased, the value of the extrinsic
MI I(ym; ỹ′em) increases for a given value of the a priori
MI I(ym; ỹam), leading to improved decoding performance.
However, when the number of iterations iLDPC performed by
the LDPC decoder is higher than 16, Fig. 5 shows that only
limited further gain may be obtained for channel SNRs above
−4.4 dB. The capacity of the LDPC-CS scheme is expressed
as the discrete-input continuous-output memoryless channel
capacity when the transmission is over a QPSK modulated
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AWGN channel. The capacity bound is given by the specific
SNR, when the channel capacity equals the throughput of the
LDPC-CS scheme. Furthermore, the throughput is calculated
as η = H(xn,t)

N
MR log2 δ, where H(xn,t) is the entropy of

each signal in the xn, and δ is the modulation order. In our
scheme, when N = 500, M = 150, K = K ′ = 5 and
R = 1/3 using QPSK modulation, the capacity bound is about
−8.75 dB. Owing to this, we recommend striking an attractive
performance vs. complexity trade-off by setting the number
of iterations performed in the LDPC decoder to iLDPC = 16
throughout this paper.

C. CS EXIT function
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Fig. 6: Adapted schematic used to depict the generation of
EXIT function for CS decoding, solid lines are used for com-
ponents, which appear in the iterative decoding system, while
dashed lines are used for EXIT chart software components.

Fig. 6 illustrates the block diagram for characterizing CS
EXIT functions. As discussed in Section II-B, there are T
layers in the CS decoder, corresponding to the T TSs. Here,
the block diagram of Fig. 6 corresponds to a single layer of CS
decoding having an index t. More specifically, the randomly
generated bit sequence et represents the tth column of X
and contains all N signal values in the tth TS. As shown
in Fig. 6, the bit sequence et is processed by CS encoding
based on the factor graph of Fig. 1. Rather than being provided
by the LDPC decoder, the a priori LLRs z̃at are generated
artificially using Eq. (13), which includes the prior knowledge
of the probability that each bit in the compressed bit sequence
zt adopts the binary value 0. In contrast to LDPC decoding,
where each bit of the sequence ym has the same probability of
adopting a binary value of 0, the probability of each bit in zt
adopting a binary value 0 is different. This may be attributed
to the different degrees of the M sensors, which results in the
different probabilities for the M bits obtained in the tth TS.
Hence, the prior knowledge of the bit value probabilities may
be represented by the vector of LLRs l = [l1, · · · , lM ], which
is included in the artificially generated a priori LLRs z̃at . The
CS decoder accepts the inputs z̃at and generates the extrinsic
LLRs z̃et as discussed in Section II-B and shown in Fig. 2.
Following this, the extrinsic LLRs z̃et of the CS decoder are
added to the vector l representing the MI, and the resultant
LLRs are measured using Eq. (14). The final MI of the system
is obtained by averaging across all T MI values corresponding
to T layers in the CS decoder.

Fig. 5 shows that the MI I(zt; z̃
′e
t ) of the extrinsic LLRs

z̃′et and the MI I(zt; z̃
a
t ) of the a priori LLRs z̃a of the CS

EXIT functions are plotted as the swapped axes relative to the
LDPC EXIT functions. This swapping is adopted because the
extrinsic LLRs z̃′et produced by the LDPC decoder become
the a priori LLRs z̃at of the CS decoder, and vice versa.
Hence, inverting the CS decoder EXIT functions represents the
corresponding MIs on the same axis. In contrast to the LDPC
EXIT functions, Fig. 5 shows that the CS EXIT functions
start from the bottom left corner of the EXIT chart, where
I(zt; z̃

′e
t ) equals to 0, when I(zt; z̃

a
t ) is equal to 0. This is

because the CS decoder has a single source of information and
when the a priori LLR vector z̃at contains no information,
then the CS decoder is unable to generate any information
for the extrinsic LLR vector z̃′et . Fig. 5 shows that when the
number of iterations iCS performed within the CS decoder
is increased, the CS EXIT functions move downwards. More
specifically, the extrinsic MI I(zt; z̃

′e
t ) increases with the

number of iterations iCS performed within the CS decoder
for a given value of a priori MI I(zt; z̃

a
t ), implying superior

decoding performance. However, as shown in Fig. 5, there
is diminishing returns beyond iCS = 3 iterations, hence we
adopt iCS = 3 throughout the rest of this paper.
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Fig. 7: CS functions for e-MAP, SD and HD approaches using N = 500 signals,
M = 150 sensors, a degree for each signal of Ks = 5, true sparsity K = K′ =
5, LDPC BG of 2, coding rate R = 1

3 , T = 500 TSs, threshold of finding most
likely combination ξ = 10 and threshold of finding counter-hypotheses ϕ = 100,
iLDPC = 16, iCS = 3, for the case of using QPSK modulation for communication
over an AWGN channel.

Fig. 7 compares the CS EXIT functions for the proposed
SD and HD approaches, and adopts the e-MAP approach as
a benchmarker. The CS EXIT functions in Fig. 7 show that
the proposed SD and HD approaches result in very similar
CS EXIT functions as the e-MAP approach, implying that
the CS decoder can obtain the same decoding performance
by employing the proposed techniques, with the benefit of
substantially reduced complexity.

D. Decoding trajectory
In an EXIT chart, a stair-case-shaped decoding trajectory

may be used to illustrate the iterative exchange of extrinsic
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information between a pair of decoders, namely the LDPC
and CS decoders in the proposed scheme. This stair-case-
shaped the decoding trajectory characterizes the MIs measured
during the iterative exchange of extrinsic LLRs in the proposed
scheme. The calculation of MI for the decoding trajectory is
performed using the same Eq. (14) as used for drawing the
EXIT functions.
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Fig. 8: EXIT chart and trajectories for the proposed LDPC-CS scheme with N = 500
signals, M = 150 sensors, a degree for each signal of Ks = 5, true sparsity K =
K′ = 5, LDPC BG of 2, coding rate R = 1

3 , T = 500 TSs, iLDPC = 16,
iCS = 3, threshold of finding most likely combination ξ = 10 and threshold of
finding counter-hypotheses ϕ = 100, when using QPSK modulation for communication
over an AWGN channel having various SNRs.

Fig. 8 illustrates the LDPC and CS EXIT functions to-
gether with the corresponding decoding trajectories. Here,
each horizontal transition in the staircase characterizes the
improvement in MI obtained by the CS decoder, while each
vertical transition corresponds to the LDPC decoder. As shown
in Fig. 8, for the case of SNR of −6 dB, when the LDPC and
CS EXIT functions intersect, the EXIT chart tunnel may be
deemed closed. In this case, the iterative decoding trajectory
becomes curtailed at the intersection point of the LDPC and
CS EXIT functions, and will become unable to pass beyond it
towards the top right-hand corner of the EXIT chart, where a
low BLER is achieved. Hence, a closed EXIT tunnel implies
having a high BLER. By contrast, an open EXIT tunnel allows
the iterative decoding trajectory to evolve towards the top
right-hand corner of the EXIT chart, as exemplified for the
case SNR = −4.4 dB in Fig. 8. It may be observed that as
the SNR is increased, the open EXIT chart tunnel becomes
wider, and fewer steps are required to get through the tunnel,
indicating that a low BLER can be achieved using fewer
iterations. Increasing the number of iterations iLDPC and iCS
performed within the LDPC and CS decoder has the effect of
widening the EXIT chart tunnel, as described in Sections IV-B
and IV-C.

Fig. 8 shows that at SNR = −4.4 dB, 6 steps/iterations
are required for reaching the top right-hand corner of the
EXIT chart, where a low BLER is attained. This implies
that iLDPC−CS = 6 iterations are recommended between the
LDPC and CS decoder. Note that, there is a slight mismatch

between the corner points of the decoding trajectory and
the EXIT functions. This may be explained by the random
independent generation of the LLRs in the a priori LLR vector
ỹam and z̃at when drawing the LDPC and CS EXIT functions.
However, when iterating between the LDPC and CS decoder,
the factor graph of Fig. 2 has many short cycles of length 4
in the connectivity between the LDPC and CS decoder, which
creates correlation between the LLRs, and this is not modeled
by the EXIT charts analysis. However, Fig. 8 shows the general
agreement between the trajectories and EXIT functions, which
validates the proposed scheme.

V. COMPLEXITY ANALYSIS

The complexity of each operation in each SN for each of the
e-MAP, SD and HD approaches was quantified in Section III.
Furthermore, the complexity calculation for each VN I and
VN II may be quantified by characterizing the forwards and
backwards propagation algorithm [38] as follows

CV Nv
= 3(dVv

− 1), (16)
where dVv is the degree of the VN v.
Likewise, the complexity of each operation of a CN c may be
quantified by [39]

CCNc
= 3(dCc

− 2), (17)
where dCc

is the degree of the CN c.
The complexity of the proposed iterative joint LDPC-CS
scheme may be compared to that of a benchmarker, which
uses soft-input hard-output LDPC decoding and no iterations
within the CS decoder or between the LDPC and CS decoders.
The complexity of this hard information benchmarker may be
calculated using Eq. (18) from Table III.

The overall complexity of the proposed iterative joint
LDPC-CS decoding scheme takes into account each operation
of all VNs, CNs and SNs, and may be calculated according
to Eq. (19) of Table III. Explicitly, the term of CSm

in
Eq. (19) represents the complexity of the SNs, which may be
replaced by the superscripted versions provided in Section III
III for each of the e-MAP, SD and HD approaches. Note that
the complexity associated with a tree search depends on the
specific a priori LLRs γ̃a provided for the SN, hence we rely
on Monte Carlo simulations for quantifying the complexity of
SD and HD approaches.

Fig. 9 characterizes the average number of additions and
max evaluations performed by the proposed iterative joint
LDPC-CS decoding scheme as a function of the sparsity upper
bound K ′, when employing the same parameters as in the
EXIT charts of Section IV with the number of iterations
performed within the LDPC and CS decoding of iLDPC = 16,
iCS = 3, for each of the different approaches. As shown
in Fig. 9, the complexity of the proposed HD approach is
independent of the sparsity upper bound K ′. This is because
the complexity is dominated by the number of combinations
considered by the respective approaches, and in the case of
the HD approach using HD = 1, the number of combinations
considered using Eq. (11) depends only on the degree of
sensors, but not on the sparsity upper bound K ′. By contrast,
the complexity of the proposed SD approach increases with
the sparsity upper bound K ′. This may be explained by the
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TABLE III: Complexity equations for different approaches.

hard information CLDPC−CS = iLDPC ×
(∑V

v=1 CV Nv +
∑C
c=1 CCNc

)
+ ChardCS . (18)

e-MAP Ce−MAP
Sm

(7) CLDPC−CS =iLDPC−CS ×

iLDPC ×

 V∑
v=1

CV Nv +
C∑

c=1

CCNc


+(iCS + 1)×

M∑
m=1

CSm + iCS ×
N∑

n=1

CVV Nn

 . (19)

SD CSDSm
(9)

HD CHDSm
(12)
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Fig. 9: Complexity of different approaches for the case of N = 500 signals, M = 150
sensors, a degree for each signal of Ks = 5, sparsity upper bound K′ = 5, LDPC
BG of 2, coding rate R = 1

3 , T = 500 TSs, iLDPC = 16, iCS = 3, threshold
of finding most likely combination ξ = 10 and threshold of finding counter-hypotheses
ϕ = 100, using QPSK modulation for communication over an AWGN channel.

higher complexity of the tree that results from using a higher
sparsity upper bound K ′, typically leading to more nodes and
more combinations in the SD approach, hence increasing the
complexity. For the e-MAP approach, the complexity initially
grows rapidly as the sparsity upper bound K ′ is increased
before such a rating. As shown in Eq. (3), the number of
combinations considered by the e-MAP approach is influenced
by the sparsity upper bound K ′ when K ′ is lower than the
SN degree dm, but when K ′ is increased above dm, then the
complexity only depends on the value of dm. The complexity
of the SSCC hard information benchmarker only depends on
the number of signals N , sensors M and number of TSs T , as
shown in Eq. (18). Owing to this, the complexity of the SSCC
hard information approach is not influenced by the sparsity
upper bound K ′, as shown in Fig. 9. As expected, Fig. 9
shows that the SSCC hard information approach has the lowest
complexity. But it may be observed that the specific choice of
the scheme significantly inferences the joint source-channel
coding complexity relative to the e-MAP approach.

Fig. 10 characterizes the complexity of the proposed itera-
tive joint LDPC-CS as a function of the degree of the signals
Ks for each of the different approaches, when employing
the same fundamental parameters as in the EXIT charts of
Section IV and the number of iterations inside within the
LDPC decoder is iLDPC = 16 and within the CS decoder
is iCS = 3. As the degree of signals Ks is increased,
the average degree of sensors is also increased, and hence
the number of combinations considered by the SNs of the
proposed SD approach, HD approach and e-MAP approach
escalates accordingly. Fig. 10 shows that the rate of complexity
increase as the signal degree Ks is significantly higher for the
e-MAP approach than for the proposed SD and HD techniques.
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Fig. 10: Complexity of different approaches for the case of M/N = 3/10, a degree
for each signal of Ks = 5, sparsity upper bound K′ = 5, LDPC BG of 2, coding
rate R = 1

3 , T = 500 TSs, threshold of finding most likely combination ξ = 10 and
threshold of finding counter-hypotheses ϕ = 100, iLDPC = 16, iCS = 3, using
QPSK modulation over an AWGN channel.

But the complexity of the SSCC hard information approach
does not depend on the degree Ks of signals since no iterative
decoding is performed within the CS decoder or between the
LDPC and CS decoder.

VI. BLOCK ERROR RATE RESULTS

This section characterizes the BLER performance of
the proposed joint LDPC-CS decoding scheme, which is
compared to benchmarkers. The fundamental parameters
adopted in the following investigations are the same as those
mentioned above in Section IV, where we adopt N = 500
signals, M = 150 sensors, each signal has a degree of
Ks = 5, an LDPC coding rate of R = 1

3 , a true sparsity
of K = K ′ = 5, an LDPC block length that comprises
T = 500 TSs, 3GPP BG 2 and QPSK modulation for
communication over an AWGN channel. More specifically,
we compare the BLER performance of the proposed SD and
HD approaches against the SSCC hard information approach
as well as e-MAP approach and investigate the impact of
using different numbers of iterations in the various schemes.
Our results show that the proposed SD and HD approaches
can maintain the same performance as the e-MAP approach,
while considerably reducing the complexity. Moreover, the
BLER results of the joint LDPC-CS decoding schemes show
that the use of soft information allows iterative decoding
within the CS decoder to eliminate the limitation associated
with CS decoder in the SSCC hard information benchmarker.
Joint LDPC-CS decoding allows iterations between the LDPC
and CS decoder, which can further improve the decoding
performance.

Fig. 11 displays the BLER performance for different
JSCC schemes when employing different combinations of
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Fig. 11: BLER results for the e-MAP approach, proposed SD approach and proposed
HD approach for the case of N = 500 signals, M = 150 sensors, a degree for each
signal of Ks = 5, true sparsity K = K′ = 5, LDPC BG of 2, coding rate R = 1

3 ,
T = 500 TSs, threshold of finding most likely combination ξ = 10 and threshold of
finding alternative hypotheses ϕ = 100, using QPSK modulation for communication
over an AWGN channel. The iteration combinations are shown as iLDPC − iCS −
iLDPC−CS in the legend.

iLDPC , iCS and iLDPC−CS iterations. Fig. 11 shows that
the proposed SD and HD approaches always achieve very
similar performance as the e-MAP approach, across all
combinations of iterations. This confirms the results of Fig. 7,
which showed that CS decoding employing the proposed
SD and HD approaches can maintain the same decoding
performance as the e-MAP approach. According to Eq. (7),
the CS decoding complexity relying on the e-MAP approach
is around 4.02× 1010 additions and max operations, which is
about 57 times the 7.17×108 additions and max operations of
the SD approach based on Eq. (9). Moreover, the complexity
of CS decoding employing the e-MAP approach is around
211 times the 1.91 × 108 additions and max operations
of the proposed HD approach, based on Eq. (12). These
numerical results demonstrate that the proposed SD approach
significantly reduces the complexity compared to the e-MAP
approach, and that the HD approach even further reduces it.
Since the proposed HD approach achieves the same decoding
performance as the e-MAP approach while having the lowest
complexity, we adopt the HD approach for the joint LDPC-CS
decoding scheme throughout the rest of this section.

Fig. 12 characterizes the BLER of the benchmarker
using the hard information, and the SISO scheme using the
proposed HD approach. Observe that the BLER performance
increases significantly when increasing the number of LDPC
iterations towards iLDPC = 16, but then offers diminishing
returns beyond this point for both the proposed HD approach
and the hard information approach in agreement with the
results of Fig. 5. Upon considering the performance vs.
complexity trdae-off, iLDPC is an attractive choice. The
proposed HD approach achieves about 1.7 dB gain at BLER
= 10−1 compared to the hard information benchmarker, when
iLDPC = 16, iCS = 1. However, Fig. 12 shows that both the
proposed HD approach and hard information benchmarker
suffer from error floors when iCS = 1, which is caused by
the limitation of the CS decoding performance. Fortunately,
the soft information used in the proposed HD approach
allows iterative decoding within the CS decoder and between
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Fig. 12: BLER results for SSCC hard information approach and JSCC HD approach
for the case of HD = 1 with N = 500 signals, M = 150 sensors, a degree for
each signal of Ks = 5, true sparsity K = K′ = 5, LDPC BG of 2, coding rate
R = 1

3 , T = 500 TSs, threshold for finding most likely combination ξ = 10 and
threshold for finding counter-hypotheses ϕ = 100, iCS = 1, using QPSK modulation
for communication over an AWGN channel.

the LDPC and CS decoder, which eliminates this error floor
when iCS > 1.
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Fig. 13: BLER results for HD approach with various numbers of CS iterations for the
case of N = 500 signals, M = 150 sensors, a degree for each signal of Ks = 5,
true sparsity K = K′ = 5, LDPC BG of 2, coding rate R = 1

3 , T = 500 TSs,
iLDPC = 16 in LDPC decoding, threshold for finding most likely combination ξ =
10 and threshold for finding counter-hypotheses ϕ = 100, iCS = 1, using QPSK
modulation for communication over an AWGN channel.

Fig. 13 characterizes the BLER performance of the
proposed HD approach as a function of SNR for different
numbers of CS decoding iterations iCS in the JSCC scheme.
It may be observed that an error floor emerges, when adopting
only iCS = 1 iteration for CS decoding, but this error floor
may be removed by increasing the number of iterations
to iCS = 2. A further BLER improvement is attained by
opting for iCS = 3, but we observe no further gain beyond
iCS = 3, which is consistent with the results of Fig. 5. In
order to achieve good performance without wasting resources,
iCS = 3 is the best choice for the number of inner iterations
in the CS decoding, which was determined by testing a range
of different configurations. Hence, Fig. 13 demonstrates that
iterative CS decoding is necessary for avoiding error floors
and hence the complexity reduction in this paper is strongly
motivated.
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Fig. 14: BLER results for HD approach for various number of iterations between LDPC
and CS decoding iLDPC−CS for the case of N = 500 signals, M = 150 sensors,
a degree for each signal of Ks = 5, true sparsity K = K′ = 5, LDPC BG of 2,
coding rate R = 1

3 , T = 500 TSs, iLDPC = 16 in LDPC decoding, iCS = 3 in
CS decoding, threshold for finding most likely combination ξ = 10 and threshold for
finding counter-hypotheses ϕ = 100, using QPSK modulation for communication over
an AWGN channel.

Fig. 14 characterizes the BLER performance of the proposed
HD approach for various numbers of iterations iLDPC−CS
between LDPC and CS decoder in the JSCC scheme. It
may be observed that significant BLER gain is obtained by
increasing the number of iterations between the LDPC and
CS decoder, although diminishing returns are offered beyond
iLDPC−CS = 6, which is consistent with the result suggested
by the trajectory of Fig. 8. In particular, the adoption of
iLDPC−CS = 6 offers about 2.45 dB improvement at a BLER
10−3 compared to using iLDPC−CS = 1 but naturally at the
cost of increasing the complexity by a factor of about 6 times.
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Fig. 15: BLER results of the HD approach when adopting various coding rates R, for the
case of N = 500 signals, M = 150 sensors, a degree for each signal of Ks = 5, true
sparsityK = K′ = 5, LDPC BG of 2, T = 500 TSs, iLDPC = 16 LDPC decoding
iterations, iCS = 3 CS decoding iterations, iLDPC−CS = 6 iterations between
LDPC decoding and CS decoding, a threshold for finding the most likely combination
of ξ = 10 and a threshold for finding counter-hypotheses of ϕ = 100, for the case of
using QPSK modulation for communication over an AWGN channel.

Fig. 15 characterizes the BLER performance of the proposed
HD approach for various LDPC coding rates R. As may be ex-
pected, when the coding rate increases, the BLER performance
is significantly degraded, but this capability demonstrates the
flexibility of the proposed WSN scheme.
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Fig. 16: BLER results of the proposed HD approach when adopting various values for the
true sparsity K, for the case of N = 500 signals and M = 150 sensors. Furthermore,
the degree of each signal is Ks = 5, the sparsity upper bound K′ = 5, the LDPC BG
is 2, the coding rate is R = 1/3, T = 500 TSs, and we use iLDPC = 16 LDPC
decoding iterations, iCS = 3 CS decoding iterations, iLDPC−CS = 6 iterations
between LDPC decoding and CS decoding. We employ a threshold of ξ = 10 for finding
the most likely combination and a threshold of ϕ = 100 for finding counter-hypotheses,
for the case of using QPSK modulation for communication over an AWGN channel.

Fig. 16 shows another scenario in that the sparsity upper
bound K ′ is known to the FC, and the true sparsity K is not
always equal to the K ′. In this case, we define the BLER
as the particular fraction of blocks in which not all non-zero
values of the signal are identified. As shown in the figure,
when the true sparsity K is smaller than the upper bound
K ′, the decoding BLER performance becomes better, and the
lower the true sparsity is, the better the decoding performance
becomes. The explanation for this is that the lower the value
of K, the fewer non-zero entries are defined and the easier
it becomes to decode successfully when the FC has the prior
knowledge of the sparsity upper bound K ′.

VII. CONCLUSIONS

In this paper, we have proposed a pair of novel techniques
for reducing the complexity of a joint iterative LDPC-CS
decoding scheme, namely the proposed SD and HD ap-
proaches. In particular, these dramatically reduce the com-
plexity required to generate high quality extrinsic LLRs from
the SN. Both techniques employ a tree search to explore the
various combinations of signal values and identify the most
likely combination. Following this first processing step, the
SD approach continues the tree search to obtain alternative
hypotheses, which are necessary for generating high-quality
extrinsic LLRs. By contrast, the HD approach obtains the
alternative hypotheses by selecting all candidates within a
certain HD of the most likely combination. Our EXIT charts
and BLER results demonstrate that the proposed SD and
HD techniques achieve the same decoding performance as
the full-search based e-MAP approach, which considers all
possible combinations of signal values during CS decoding.
Our numerical results demonstrate that the e-MAP approach
has about 56 times higher complexity than that of the proposed
SD approach, and about 210 times higher complexity than
that of the proposed HD approach. Furthermore, we compare
the proposed HD approach designed for the JSCC scheme
to a benchmarker in the SSCC scheme, which performs CS
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decoding using hard information. Our results show that the use
of soft information in the proposed HD approach improves
the decoding performance by about 1.7 dB in the case of
QPSK modulation over an AWGN channel. Furthermore,
we demonstrate that invoking iterations both within the CS
decoder and between the LDPC and CS decoder eliminates
the error floor, which allows a further 2.45 dB of gain to be
obtained. Our results are validated by EXIT chart analysis,
which is consistent with the BLER results.

The proposed FC requires M number of LDPC decoders
and hence our future work will consider hardware efficient
implementation of this. Among the state-of-the-art techniques
for channel coding, LDPC decoding is widely considered to
be the most hardware-efficient [40], [41]. In the proposed
WSN scheme, all sensors transmit messages comprising the
same number T of bits, which presents an opportunity for
parallel LDPC decoding to be used. More specifically, the
main complexity contribution of an LDPC decoder is typically
that of the data handling routine and memory access, rather
than the computation. In the case where all M LDPC decoders
process messages of the same length, the routine may be
considered to be common among them. Hence, an efficient
hardware architecture, which shares the routine across all of
the M decoders may be conceived, which has M parallel
computation units. Furthermore, even if the different sensors
are using different coding rates, we may harness the rate
matching architecture of the 3GPP LDPC code to overcome
this issue in our future research. More specifically, upon
reception of short blocks from some sensor nodes employing
high coding rates, zero padding can be applied to increase the
length of the received vectors of LLRs to match the longest
received signal vector of LLRs. In this way, all M LDPC
codes may be decoded using the same lowest coding rate,
while sharing the associated routines and the memory access.
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