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Abstract— Novel techniques are conceived for joint Compressive Sensing (CS)
and Low-Density Parity Check (LDPC) coding in Wireless Sensor Networks
(WSNs), namely a Soft-Input Soft-Output (SISO) tree search Sphere Decoding (SD)
technique, and a SISO Hamming Distance (HD) based solution. Factor graphs
are utilized to describe the connectivity between the signals and sensors, as X2 @ _ %
well as with the LDPC codes. In the Fusion Center (FC), the factor graphs may N ———
be used for iterative joint LDPC-CS decoding, in order to recover the signals /N7
observed. However, the CS decoder of the FC suffers from high complexity, X3} N

if the exhaustive Maximum A posteriori (e-MAP) technique is employed, which ) \/\/\

considers all possible combinations of source signals detected by each of the Cy
associated sensors. Hence, in the proposed SD and HD schemes only the more o )7

likely combinations of source signals are tested for reducing the CS decoding _@
complexity. More specifically, a tree search technique is used in the first step to find the most likely combination of
source signal values. Then, in the second step, the proposed SD continues the tree search to find a set of alternative
hypotheses. This facilitates the generation of high quality exirinsic information, which may be iteratively exchanged with
the LDPC decoder. By contrast, in the HD approach, the second step obtains the alternative hypotheses within a certain
HD of the most likely source signal combination. Both our BLock Error Rate (BLER) results and Extrinsic Information
Transfer (EXIT) charts show that the proposed SD and HD techniques approach the performance of the full-search e-MAP
approach at a significantly reduced complexity. In particular, we show the e-MAP solution is about 56 times more complex
than the SD approach and around 210 times more complex than the HD approach. Compared to a Separate Source-Channel
Coding (SSCC) hard information benchmarker, the proposed SISO schemes improve the decoding performance by about
1.7 dB. Furthermore, the SISO schemes allow the iterations inside the CS decoding to eliminate the error floors and obtain
a further 2.45 dB gain.
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that there is no disadvantage in separating source coding
from channel coding [2] under certain idealized circumstances.
More specifically, Shannon shows that near-capacity commu-
nication does not require the source and channel coding to
be performed jointly, provided that the delay and complexity
are not limited. However, in finite block length transmission
over non-stationary channels, Joint Source-Channel Coding
(JSCC) (For convenience, all acronyms used in this paper
have been summarized in Table I) has been shown to offer
significantly improved coding gain [3] over Separate Source-
Channel Coding (SSCC) when relying on limited complexity.
More explicitly, JSCC uses source coding to compress a source
signal by removing the uncontrollable source redundancy,
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while channel coding is employed to improve the error cor-
rection performance by adding carefully controlled redundancy
before transmission [4], where the reduction and addition of
redundancy is performed jointly between these two processes.

TABLE I: Acronyms employed throughout this paper.

BLER | BLock Error Rate

CNs Check Nodes

CND Check Node Decoder

CS Compressive Sensing

e-MAP | exhaustive Maximum A Posterior
EXIT EXtrinsic Information Transfer
FC Fusion Center

HD Hamming Distance

iid. Independent and Identically Distributed
JSCC Joint Source-Channel Coding
LDPC | Low-Density Parity Check
LLRs Logarithmic-Likelihood Ratios
MI Mutual Information

QPSK | Quadrature Phase Shift Keying
SD Sphere Decoding

SISO Soft-Input Soft-Output

SNs Sensor Nodes

SND Sensor Node Decoder

SSCC | Separate Source-Channel Coding
TSs Time Slots

VN Variable Nodes

VND Variable Node Decoder

In particular, JSCC has been demonstrated to play a ben-
eficial role in Wireless Sensor Networks (WSNs) [5] to al-
leviate the problems of constrained energy [6]-[8], as well
as unreliable communication channels [9], [10]. Compressive
Sensing (CS) technology has been widely adopted in WSNs
to solve energy-constrained problems. In [11] the authors
use CS in WSN in the presence of an eavesdropper. They
propose a technique to maintain secrecy in the presence of
an eavesdropper and achieve an excellent signal detection
performance. Mohammadi et al. [12] focus their attention on
the distributed detection problem of a localized phenomenon
of interest resulting in sparse signals at each sensor, where CS
and quantization are employed at each sensor. Recently, the
combination of JSCC and CS has received particular attention
in the literature of WSNs. In [13], Chen et al. examine the
trade-off between the required transmission energy and the
quality of the recovered signals in a WSN that employs a
CS coded JSCC scheme. Their results show that the CS
technique is robust to both channel fading and noise. In [14],
CS was used for source coding and linear network coding
for channel coding, in order to recover the signal within a
tolerance distortion level. In both [13] and [14], a large amount
of traffic is generated by each of the N sensors, which can
only be reduced moderately by the compression performed
in each sensor [15]. More specifically, a set of N signals
may be compressed into a set of M (M < N) observations
made by a set of M sensors if only K out of N signals

are activated at a time, which avoids an excessive amount
of network traffic. Furthermore, WSNs typically relying on
hostile channels, motivating the application of channel coding
to protect the signals during transmission. In particular, Low-
Density Parity Check (LDPC) codes are widely used in CS
coded JSCC schemes [16], [17], as a benefit of their excellent
performance.

Soft-Input  Soft-Output (SISO) techniques constitute the
core of iterative decoding [18]. In JSCC schemes employing
SISO techniques for the concatenated source and channel
code [19], iterative joint source-channel decoding [20], [21]
may be used for significantly improving the performance
of hard decoding [22] for Separate Source-Channel Coding
(SSCC) schemes. In the case of a SISO decoder used for
CS, an approximate Maximum A Posteriori (MAP) decoder
may be employed for discovering the presence/absence of the
association between the signals and sensors, as well as for
inferring the source statistics [23]. The e-MAP technique is
capable of reliably inferring the specific association of N
signals with M sensors and it iteratively exchanges its soft
values with an LDPC decoder. However, the MAP decoder
suffers from high complexity when considering all possible
associations between sensors and signals [24], which will be
referring to the exhaustive MAP (e-MAP) in this paper. To
elaborate further, there may be many connected signals for
each sensor with many possible combinations of values, which
leads to a potentially excessive complexity upon considering
every possible combination in the e-MAP decoder.

Against this background, we propose a pair of novel tech-
niques for reducing the complexity of SISO CS decoding in
the iterative JSCC receiver. Sphere Decoding (SD) is typically
used for reducing the complexity of signal detection in order
to solve minimum Euclidean distance problems in WSNs
[25], [26]. In [25], the authors propose a SD algorithm that
performs maximum-likelihood decoding based on an extended
distance metric. In [26], channel-quality-aware decision fusion
rules are conceived for MIMO systems, and a generalized SD
is employed for circumventing the exponentially escalating
complexity. In this treatise, we also employ the SD technique
for reducing the decoding complexity imposed by searching
for the most likely candidates. However, in our scheme, we
search for the most likely candidates by directly relying on the
node metrics calculated using LLRs rather than on the node
metrics calculated using Euclidean distance [25], [26]. More
specifically, we conceive a SD and a Hamming Distance (HD)
based technique to search for the most likely combination of
the source signal and associated sensor value, which contains
not only the most likely combination but also the most likely
alternative hypotheses. Explicitly, these alternative hypotheses
are important for generating reliable extrinsic information,
which may then be iteratively exchanged with the concatenated
channel decoder. We commence by using a tree search to find
the most likely combination of the source signal and associated
sensor value based on the prior knowledge about the sparsity
level and presence/absence of association between signals and
sensors, as well as the a priori information provided by the
concatenated channel decoder. Following this, the SD finds



the alternative hypotheses by continuing the tree search, while
the HD-based technique finds the alternative hypotheses by
considering the HD between the alternative hypotheses and the
most likely combination. In this way, we avoid traversing all
possible combinations and significantly reduce the complexity
of CS decoding.

TABLE II: Contrasting our contribution to the state-of-the-art.
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We boldly and explicitly contrast our contributions to the
state-of-the-art in Table II and detail them below:

1 We reduce the complexity of SISO CS decoding by using a
tree search to find the most likely combination of the source
signal and associated sensor values before using the SD to
find the set of likely alternative hypotheses, in order to glean
high quality extrinsic information, which can be iteratively
exchanged with the concatenated channel decoder. Unlike
the traditional SD routinely used for JSCC or for MIMO
detection based on the distance between adjacent points
[27]-[29], the proposed scheme performs tree search-based
SD relying on the input Logarithmic-Likelihood Ratios
(LLRs). Furthermore, our scheme exploits the additional
constraints imposed by the sparsity upper bound K? and the
presence/absence of connectivity between the source signals
and sensors, which make the application of SD a challenge.
We demonstrate that the proposed SD reduces the SISO
CS decoding complexity by a factor of 56 compared to the
e-MAP approach.

2 Furthermore, as a complement to the SD used for finding
alternative hypotheses, we also conceive a HD based tech-
nique. More specifically, all combinations of source signal
and the associated sensor values within a certain HD of the
most likely combination are considered as alternative hy-
potheses. Our results show that the proposed HD technique
approaches the error rate of the e-MAP at a complexity,
which is about 210 times lower.

3 We provide the Extrinsic Information Transfer (EXIT) chart
based characterization of the proposed solutions. In this
way, we characterize the iterative exchange of extrinsic
information between the CS decoder as well as the concate-
nated channel decoder, and show that both the proposed SD
and HD techniques approach the performance of the e-MAP
approach.

The rest of this paper is organized as follows. A top-level
description of the system model and of the iterative joint
LDPC-CS decoder are provided in Section II. Then the SD
approach and HD techniques are introduced in Section III.
Section IV characterizes the EXIT functions and decoding

trajectory of the proposed scheme, before our complexity
analysis in Section V. Our simulation results are provided in
Section VI before offering our conclusions in Section VII.

Throughout this paper, the following notations are used; A,
a, A: matrix, vector and scalar; Aj: the it matrix among all
matrices; a;: the i row of matrix A; a;:j: the j* element
of vector aj; &, a2, a%: LLR, a priori LLR, extrinsic LLR;
8ixj: LLR from the i node to the j™ node; &: estimated
value of a; AT: transpose.

[l. SYSTEM MODEL

This section begins by describing the structure of the
proposed system model in Section II-A, before the flow of the
iterative joint LDPC-CS decoding is discussed in Section II-B.

A. Top level description of the proposed system model

The proposed system model is shown in Fig. 1. The N
Variable Nodes (VNs) in Fig. 1 represent N signals, where
each VN Vi, (n 2 [1; N]) can be considered to be a random
variable, adopting a vector X, 2 T0; 1g1 T of T non-
equiprobable binary values across T Time Slots (TSs). Here,
the binary signal values are sparse, with only K~ N of the N
signals in each TS adopting a value of 1, with all of the other
N K binary values adopting a value of 0. In this treatise,
we assume that the sparsity upper bound K% 1 K KU is
prior knowledge available at the Fusion Center (FC). In this
context two scenarios are considered, the first one is when the
true sparsity K = K' is known a priori to the FC and the
other is when the true sparsity K is unknown to the FC, but
the upper bound of the sparsity K1 K K is known
to the FC. In a practical CS-based WSN, the residual-based
algorithms of [30] may be used either for directly estimating
the sparsity or its upper bound during the training phase in
the FC [30]. The binary value of the n'™" signal in the tt"
TS is represented by the notation Xp.t, where n 2 [1; N] and
t 2 [1; T], allowing the representation of the Nt signal vector
as Xp = [Xn:1; s Xn:T]

The proposed system model adopts M sensors, which form
the WSN to observe the N signals, where the sparsity upper
bound K' of the system is exploited to facilitate M < N. Each
sensor is represented by the notation Sy, where m 2 [1; M],
and is used for simultaneously observing several signals. In the
proposed system model, the association between the signals
and sensors are chosen randomly, while are exemplified by
the dashed lines in the factor graph of Fig. 1. Here, the edges
of the factor graph are characterized by the sensing matrix

2 fO;lgNI N, which is assumed to be prior knowledge
available at the FC. Here, the ™" column of the sensing matrix
represents the association of the N™ signal, while the m™ row
represents the association of the mt™ sensor. More specifically,
a value of 1 in the sensing matrix indicates the association
between the n'™" signal, n =
M =
In the proposed system model, each sensor may observe both
different number of signals and different combinations of the
signals, where the degree of each sensor identifies the number
of connected signals it observes, corresponding to the number
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Fig. 1: Block diagram illustrating the relationship between signals, sensors and the Fusion Center (FC).

of 1 in each row of . Then, the set of degrees may be
stored in a vector d [dy; dm; ;dM]T. However,
in the proposed system model, the number of sensors used
for observing each signal is a fixed value Kg, which means
that the number of 1 in each column of is fixed to
Ks. Furthermore, the randomly selected connectivity between
signals and sensors is assumed to be time-invariant across the
T TSs. The proposed scheme may be applied in a real-life
application of non-invasive wild-life monitoring in a nature
habitat. For example, we may consider a case where there are
K wild animals living in a habitat, which has been divided into
N number of one-square-meter tiles, wherein M microphones
have been installed throughout the habitat to detect the actions
of wild animals. Each microphone can detect wild animal
activity within several neighbouring tiles. In the case where
we know that K wild animals live in the habitat, we will
know that exactly K tiles will be occupied in any time slot
and hence these microphones allow us to track wild animals
in a non-invasive manner

In the proposed system model, the sensors perform an OR
function to combine the binary values provided by the set
of connected signals. Explicitly, a sensor outputs a binary
values of O if all connected signals provide value of O at
a particular TS and a sensor output a value of 1 otherwise.
In this way, the N binary signals provided in each TS are
compressed to M binary observations provided by the M
sensors. More specifically, the observation of the mt" sensor
is a binary vector Ym = [Ym:1;  ;Ym:T] comprising T
observations across the T TSs. Following this, each of the M
sensors processes its vector of observations Y, using an LDPC
encoder [31] having a parity check matrix H 2 f0; 1gW v
and coding rate R = T in order to generate the encoded

E

Then rate matching adjusts the encoded bit sequence length
to E. Afterwards, Quadrature Phase Shift Keying (QPSK)
modulation is performed individually for each pair of encoded
bits before transmission in order to obtain the complex vector
bm 2 C! Z. Here, the symbol energy Es is normalized to 1.

The complex vector by, is transmitted over an AWGN chan-
nel in order to obtain the received complex vector Cny,, while
the components of the AWGN are zero-mean, Independent
and Identically Distributed (i.i.d.) complex Gaussian random
variables with variance Ng. Hence, the Signal-to-Noise Ratio
(SNR) is given by E—z Soft demodulation for QPSK [32] and
rate dematching are performed upon the received signal Cp,
in order to obtain the channel LLRs &y = [&m:1; ; 8m:El,s
which are forwarded to the FC as inputs of the iterative joint
LDPC-CS decoder detailed in Section II-B.

B. Top level description of the proposed iterative joint
LDPC-CS decoding scheme

The iterative joint LDPC-CS decoding block of Fig. 1 is
comprised of the factor graphs shown in Fig. 2. These factor
graphs are comprised of many Check Nodes (CNs), VNs,
and Sensor Nodes (SNs). Algorithm 1 describes the operation
of these various nodes during the iterative joint LDPC-CS
decoding process. The function of the SNs will be introduced
in Section III, while the operations of the CNs and VNs is
described in [33].

The factor graphs of Fig. 2 include both LDPC decoder
and CS decoding. Here, the LDPC decoder is comprised
of the Variable Node Decoder I (VNDI) and Check Node
Decoder (CND), having W VNs and U CNs in each layer.
The number of LDPC decoding layers is equal to the number
of sensors M, where each layer represents the CS decoder
of the corresponding sensor. More specifically, the CNs and
VNs in the same layer work together, while the M layers
are operated in parallel but not directly together, as shown in
Fig. 2. Similar to LDPC decoding, CS decoding comprises
the Sensor Node Decoder (SND) and Variable Node Decoder
II (VNDII), where the former has M SNs in each of the T
layers, while the latter has N VNs in each layer. To elaborate
further, each layer of CS decoding considers one TS, which
is in contrast to LDPC decoding, where each layer considers
one sensor. This creates a time/sensor grade, which allows the
TSs of the CS decoding to indirectly help each other via the



